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ABSTRACT OF THE DISSERTATION
Spatio-temporal Principles of Infra-slow Brain Activity
by
Anish Mitra
Doctor of Philosophy in Biology and Biomedical Sciences

Neurosciences

Washington University in St. Louis, 2019

Professor Marcus Raichle, Chairperson

In the study of systems where basic laws have eluded us, as is largely the case in
neuroscience, the simplest approach to progress might be to ask: what are the biggest,
most noticeable things the system does when left alone? Without any perturbations or
fine dissections, can regularities be found in the basic operations of the system as a
whole? In the case of the brain, it turns out that there is an amazing amount of activity
even in the absence of explicit environmental inputs or outputs. We call this
spontaneous, or resting state, brain activity. Prior work has shown that spontaneous
brain activity is dominated by very low frequencies: the biggest changes in brain activity
happen relatively slowly, over 10’s-100’s of seconds. Moreover, this very slow activity of
the brain is quite metabolically expensive. The brain accounts for 2% of body mass in
an adult, but requires 20% of basal metabolic expenditure. Remarkably, the energy
required to sustain brain function is nearly constant whether one is engaged in a

demanding mental task or simply out to lunch. Furthermore, work over the past three

Xi



decades has established that the spontaneous activities of the brain are not random,
but instead organized into specific patterns, most often characterized by correlations
within large brain systems. Yet, how do these correlations arise, and does spontaneous
activity support slow signaling within and between neural systems? In this thesis, we
approach these questions by providing a comprehensive analysis of the temporal
structure of very low frequency spontaneous activity. Specifically, we focus on the
direction of travel in low frequency activity, measured using resting state fMRI in
humans, but also using electrophysiological techniques in humans and mice, and
optical calcium imaging in mice. Our temporal analyses reveal heretofore unknown
regularities in the way slow signals move through the brain. We further find that very low
frequency activity behaves differently than faster frequencies, that it travels through
distinct layers of the cortex, and that its travel patterns give rise to correlations within
networks. We also demonstrate that the travel patterns of very low frequency activity
are highly dependent on the state of the brain, especially the difference between wake
and sleep states. Taken together, the findings in this thesis offer a glimpse into the

principles that govern brain activity.
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Chapter 1: Introduction

Contemporary neuroscience is rife with remarkable tools for exploring the brain in
ever greater detail. As of this writing, we have access to experimental methodologies
that allow us to delineate the wide diversity of individual cells in the brain with
unprecedented fidelity (Tasic et al. 2016), to turn on or off individual ion channels in cell
types of interest (Urban and Roth 2015; Yizhar et al. 2011), to manipulate single genes
in living brains (Swiech et al. 2015), to map the connectivity structure of individual
neurites (Lichtman et al. 2008), and even to record neural activity at nanosecond
resolution from thousands of in vivo individual neurons (Stevenson and Kording 2011).
In combination, these techniques may indeed make it possible, as articulated by
President Obama’s BRAIN Initiative executive committee, “to produce dynamic pictures
of the brain that show how individual brain cells (...) interact at the speed of thought.”
Yet rather than capitalizing on modern developments to study fast interactions among
small brain elements, the present thesis aims to understand very slow activity across
the whole brain. Why?

The best defense | can muster is that although the reductionist approach of
mainstream neuroscience may very well yield insights, there are reasons to believe that
a full understanding of the brain will not emerge from reductionism alone. Consider, for
example, our physical understanding of the universe. A reductionist approach to physics
could reasonably posit that a complete understanding of electron pairs (although there
are, of course, even smaller elements to consider!) is necessary to understand the bulk
behavior of matter. While this approach might yield significant insight on quantum

mechanical principles and the electrostatic force, in a two-electron system, one would



never notice gravity, a force 10* times weaker than the electrostatic force. Of course,
the fact that gravity emerges as a noticeable influence only in enormous collections of
matter does not diminish its importance in shaping our universe, and to this day, there
still does not exist a reductionist quantum theory of gravity. Indeed, historically, failure to
grasp quantum mechanics did not hinder Johannes Kepler from describing planetary
motion or Isaac Newton from finding the law of gravitation. Evidently, there are limits to
reductionist understandings of complex systems, and as Philip Anderson observed,
“‘more is different”.

How does this relate to neuroscience and the present thesis? The answer is that
there is mounting evidence, aided by the advent of large-scale neuroimaging tools, that
there are functional brain properties that are best observed and understood at the
whole-brain scale. In particular, very low frequency brain activity exhibits a remarkable
long-distance organization in both space and time in the absence of any explicit input or
output (Fox and Raichle 2007; Hiltunen et al. 2014). The spatio-temporal patterns
discovered in very low frequency spontaneous (or “resting state”) brain activity were not
presaged by previous studies of circuit-level neural activity, and although these findings
were initially dismissed as “noise”, artifact, or epi-phenomena, recent work has linked
these low frequency resting state patterns to several aspects of human brain function in
health and disease (Biswal et al. 2010; Buckner et al. 2008; Emerson et al. 2017; Smith
et al. 2015; Snyder and Raichle 2012). These findings have established the existence
and practical utility of organized low frequency activity in the brain. Yet, we still lack
answers to fundamental questions of how spontaneous patterns arise in very low

frequency brain activity, the rules that govern their organization, and their relationship to



higher frequency brain activity. The temporal properties of low frequency resting state
activity are especially unclear, as the predominant strategy for quantifying the
organization of low frequencies has been zero-lag correlations, which by definition
preclude any understanding of directed signaling (Mitra and Raichle 2016). Thus, the
focus of this thesis is to explore the principles underlying the whole-brain spatio-
temporal organization of infra-slow (<0.1 Hz) frequency brain activity specifically from a
temporal perspective, including an examination of directed signaling in infra-slow
frequencies. We will then leverage our understanding of the temporal structure of infra-
slow activity to understand how the spontaneous organization in these frequencies
varies over state and interacts with higher frequencies, as well as how specific cortical
layers contribute to the organization of systems-wide activity.

To frame the relevance of this work, it is necessary to appreciate in greater detail
how low frequency activity has shaped our understanding of the brain to date. Work
involving spontaneous very low frequency activity in the brain can be traced to two
strains in the extant literature. First, and more recent, are findings attributable to the
advent of neuroimaging. Positron Emission Tomography (PET) imaging represented a
breakthrough in functional neuroimaging, as it allowed the first truly reliable, whole-brain
in vivo view of brain function in humans (Snyder and Raichle 2012). Unlike previous
modalities such as the electroencephalogram (EEG) (Berger 1929), which measured
electrophysiogical brain activity, early PET studies measured brain metabolism or “cost”
(Raichle and Mintun 2006). Using ingenious “subtraction paradigms”, researchers
measured brain metabolism during an experimental condition, and then subtracted out

brain metabolism measurement in a corresponding control (Raichle 2015). The resulting



difference yields remarkably beautiful pictures of the spatial topographies of large-scale
brain systems involved in particular tasks, such as language generation (Petersen et al.
1988; Raichle 2015). In addition to providing in vivo pictures of known brain networks,
the subtraction paradigm in PET imaging also led to the discovery of new brain
networks that were previously unknown to neuroscience, including the default mode
network (Raichle et al. 2001). In retrospect, it is difficult to imagine neuron-by-neuron
investigations ever revealing this large brain-wide system.

The ability to visualize in vivo activity in specific brain networks during tasks in
many ways stole the show with respect to the scientific content of PET. Yet lurking in
the PET subtraction paradigm was another powerful finding: brain networks identified
through the subtraction paradigm represented minuscule changes in brain cost. For
example, metabolism in the language network during verb-generation only increases by
1% or less (Raichle 2015), a finding that is concordant with a previous mental arithmetic
study conducted by Sokoloff at the whole-brain level which showed no appreciable
increase in metabolism during task (Sokoloff et al. 1955). Ongoing basal brain
metabolism, on the other hand, is quite expensive. In a resting adult, although the brain
is 2% of the body’s mass, it comprises 20% of the body’s metabolic activity (Raichle and
Mintun 2006). These findings bring to the fore an important principle: although the brain
is tremendously active from a metabolic perspective, task-induced changes in brain
metabolism are negligible. Most of the brain’s metabolism is instead attributable to
spontaneous (or task-independent) activities (Raichle 2011).

This statement raises an obvious question: if not task-linked neural activity, then

what is responsible for the brain’s enormous cost? One answer is the energy required to



maintain electrochemical hyperpolarization in neurons, primarily established by Na*-K*
transport pumps, which is a necessary precondition for neuronal cells to undergo action
potentials (although surprisingly energy-dependent ion transport only accounts for ~40%
of brain metabolism (Astrup et al. 1981)). Putting aside the 40% detail for a moment
(perhaps Astrup neglected to poison a heavy tail of energetically costly ion pumps), we
can compose a simple portrait: the brain expends tremendous energy maintaining a
stable, quiescent baseline (electrochemical hyperpolarization) from which neurons are
briefly released (in the form of action potentials) to send high frequency electrical
signals. Task-based neural activity appears “cheap” because the cost is paid up front by
establishing the hyperpolarized baseline.

The only difficulty with this explanation is that it does not align with experimental
fact. The “quiescent baseline” model suggests a reflexive brain that is intrinsically silent
in the absence of explicit input or output. Instead, even prior to imaging, recordings of
brain activity ranging from in vivo EEG to slice preparations revealed that the brain is
spontaneously active (Berger 1929). However, these spontaneous activities of the brain
were often dismissed as artifact, noise in the neural system, or simply neural activity
attributable to uncontrolled variables. In retrospect, several findings laid the groundwork
for challenging this perspective, but a critical breakthrough came in work conducted
using voltage sensitive dye imaging by Grinvald and colleagues (Kenet et al. 2003).
Grinvald imaged brain activity in the anesthetized cat visual area 18, where most cells
were known to be sensitive to stimulus orientation, and first produced a standard
orientation map of the cortex using measured evoked activity to full-field gratings of

vertical orientation. Then comes the clever part: Grinvald also recorded the



spontaneous activity in visual area 18 of anesthetized cats in a dark room with no visual
input. He then computed a map of the correlation structure of spontaneous visual
activity in the absence of any visual input, and surprisingly, the correlation structure of
spontaneous (input-free) activity in the visual cortex precisely matched the evoked-
patterns in response to vertical gratings. In other words, the spontaneous fluctuations
were not merely noisy departures from the brain’s attempt to hold a quiescent baseline.
Instead, spontaneous fluctuations were exquisitely organized into correlated
topographies in concordance with evoked topographies. However, there was a critical
difference between the evoked and spontaneous activity: whereas the evoked maps
were produced using neural activity within the first 100ms of grating presentation, that is
activities of 10 Hz and faster, the fluctuations driving the correlation structure of the
spontaneous activity were much slower, <1 Hz. Thus, while the correlation structure of
spontaneous activity matched the evoked topography in visual area 18, spontaneous
activity was far slower than evoked activity.

Shortly after the Grinvald study, Biswal and colleagues showed a similar
correspondence between the correlation structure of spontaneous activity and task-
evoked activity topography in primary motor cortex using fMRI (Biswal et al. 1995),
where the frequency of the blood oxygen level dependent (BOLD) signal (<0.1 Hz infra-
slow activity) is even lower than what Grinvald observed. Still, even in fMRI, the
principle that evoked activities are faster than spontaneous fluctuations hold true: task-
evoked fMRI activity generally describes at longest a 20 second period (0.05 Hz),
whereas the correlation structure of fMRI activity is driven by cycles of 100 seconds or

longer (0.01 Hz) (Biswal et al. 2010; Buckner and Vincent 2007; Damoiseaux et al.



2006). As an aside, although the fast-evoked versus slow-spontaneous principle is not
explored in this thesis, Ken Harris has written about the mechanistic and possible
functional consequences of this idea in elegant recent work (Sakata and Harris 2009).
The discovery that correlation patterns in spontaneous activity are organized into
topographies that resemble task-evoked systems has led to thousands of papers
exploring the details of spatial correlation networks and their relationships to a wide
array of physiological and pathological neural functions in humans and animal models
(Albert et al. 2009a; Albert et al. 2009b; Biswal et al. 2010; Buckner et al. 2008; Mantini
et al. 2011; Smith et al. 2015; Stafford et al. 2014; Thomas Yeo et al. 2011; White et al.
2011). However, the question of how correlation patterns arise in spontaneous activity,
especially those observed using resting state fMRI (rs-fMRI), and what these patterns
might mean has received less attention. There is a perplexingly persistent dogma that
BOLD signals, observed using fMRI or other techniques such as optical imaging, reflect
a “sluggish” version of higher frequency activity (Friston et al. 1998). The idea is that
neurons undergo action potentials, or neural networks oscillate at high frequencies (10-
100 Hz), and that in response to this neural activity, there is a slow blood flow response,
giving rise to BOLD measurements (de Zwart et al. 2005; Lindquist et al. 2009; Ma et al.
2016). The slow blood flow response is postulated to be a low-pass filter on high
frequency neural activity, thus presenting a “smeared out” view of underlying neural
activity (de Zwart et al. 2005; Kim and Kim 2011). Worse still, the parameters of the
“vascular low-pass filter” are feared to vary across the brain, so much so that any timing
differences in BOLD signals across the brain are reflexively attributed to properties of

blood vessels as opposed to neural activity (Friston 2009; Handwerker et al. 2004).



Yet again, the difficulty with this model is that it is contradicted by experimental
fact. First, simulations which model the correlation structure of rs-fMRI on the basis of
high frequency resonance in structural networks explain only a modest portion of
observed data (Honey et al. 2009). Second, direct recordings of brain electrophysiology
and calcium fluctuations have demonstrated that spontaneous infra-slow fluctuations in
BOLD signals are directly linked to spontaneous infra-slow fluctuations in neuronal
physiology (He et al. 2008; Hiltunen et al. 2014; Leopold et al. 2003; Matsui et al. 2016;
Pan et al. 2013). In other words, very low frequency brain activity is not the
consequence of measuring through a “vascular low-pass filter”. Instead, infra-slow
activity is a bona fide feature of brain function, a fact that may have been obscured by
the failure of many studies to record or analyze neural activity <0.1 Hz (Sirotin and Das
2009).

The understanding that infra-slow activity exists in the brain allows us to pose
some interesting questions. For example, what is the purpose of infra-slow brain activity,
and might infra-slow activity travel within the brain to give rise to its correlation
structure? Here we arrive at the second strain of the extant literature. Although
neuroimaging may have popularized low frequency brain activity in recent times, robust
investigations into very low frequency neural activity were conducted in the 1950’s and
60’s. Indeed, to the best of my knowledge, the Soviet scientist Nina Aleksanda
Aladjalova was the first to use the term “infra-slow” with reference to neural activity in
her 1954 letter to Nature (Aladjalova 1954), where she reported spontaneous very slow
fluctuations (periods of 10 seconds or greater) in local field potential activity in the rabbit

visual and motor cortex (in vivo), recorded using a direct-current coupled amplifier of her



own design. Aladjalova also made several further contributions to the understanding of
infra-slow activity in the brain (Aladjalova 1962): (1) She noted that unlike the sinusoidal
characterization of higher frequency rhythms, infra-slow activity is arrhythmic, in
accordance with our present understanding of scale-free spectral content in brain
activity, (2) She found that very brief visual stimulations did not elicit infra-slow activity
changes, but that longer, seconds long stimuli did, and (3) She found that although
there was no simple relationship between infra-slow activity and action potentials, action
potentials were far more likely in certain phases of the infra-slow fluctuation, leading her
to believe that infra-slow activity represented changes in cortical excitability. In each of
these discoveries, Aladjalova was remarkably prescient.

On the final point, that infra-slow activity may represent changes in cortical
excitability, Aladjalova cited work conducted by Benjamin Libet in the 1940’s that
studied propagation of very low frequency neural activity in cortical slices (Libet and
Kahn 1947). Libet found that he could document reproducible patterns of propagated
spontaneous infra-slow frequency activity (although he did no call it that) in the frog
cortex, and that these patterns were remarkably robust to even transection of the frog
cortex. That is, the waves Libet was observing could move across cuts in the cortex,
leading him to theorize that “the whole [cortical] sheet would behave like the polarized
membrane of a nerve fiber. A local depolarization, resulting from the discharge of one
cell or a few adjacent ones, would permit neighboring cells to discharge through the
“‘leak” current and so initiate a spreading wave of depolarization.” The idea that
spontaneous activity can spread, relatively slowly, across the cortex as if the cortical

sheet were itself a medium has also been advanced in contemporary studies using



calcium and voltage sensitive dye imaging in mice (Chan et al. 2015; Matsui et al. 2016;
Mohajerani et al. 2010; Stroh et al. 2013).

The purpose of presenting this history, which is by no means complete (see also:
(Bishop 1932; O'Leary and Goldring 1964; Steriade et al. 1993)) is to emphasize that
the central ideas in this thesis, while out of the mainstream fashion of neuroscience, are
not without precedent. As is evident, decades of prior work has already suggested that
infra-slow neural activity is a genuine phenomenon of biological interest, that there are
reproducible patterns in the way infra-slow activity travels through the brain, and that
these infra-slow activity patterns appear to be an emergent phenomenon of large
groups of neurons (and possibly glia and other brain cell types (Poskanzer and Yuste
2011)).

The ensuing chapters of this thesis will build upon these ideas in the following steps:

e First, we will demonstrate that there is a consistent set of lead-lag relationships
(that is, apparent propagation) in resting state fMRI data collected in humans.
These lead-lag relationships in infra-slow BOLD signals are roughly on the order
of 1 second, that is, below the temporal sampling density of most fMRI data.
Nonetheless, | will show that we can compute these temporal delays by applying
parabolic interpolation to empirically computed cross-correlation curves.
Moreover, we will showcase the first evidence that the temporal structure of rs-
fMRI can be altered as a function of state.

e Second, we will explore the dimensionality of the temporal structure of rs-fMRI,
as a means of estimating the number of temporal sequences or “lag threads”

found in the data. Decomposing the general delay structure of rs-fMRI into a set
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of temporal sequence factors allows us to explore two issues. First, if the
dimensionality of the temporal structure is greater than 1, then by definition, no
single factor (set of delays) can explain the entirety of rs-fMRI temporal structure.
In particular, it means that even if one set of delays is attributable purely to
differences in vasculature across the brain, the other temporal sequences must
be attributable to other presumably neural processes. Second, we are able to
leverage the extracted temporal sequences to demonstrate that the correlation
structure of rs-fMRI is the consequence of specific properties in its temporal
structure. The reverse is not true: the correlation structure of rs-fMRI does not
constrain its temporal structure.

Third, we will explore how the temporal structure of rs-MRI is altered in as a
function of arousal state, specifically in wakefulness versus slow wave sleep. The
difference between these states has been previously studied using functional
connectivity analysis on rs-fMRI, and although differences have been found, the
effect sizes are quite small. We demonstrate dramatic reversals in the direction
of rs-fMRI activity travel across arousal states.

Fourth, we continue our exploration of the role of spontaneous infra-slow rs-fMRI
activity during sleep by specifically studying cortical-hippocampal temporal
structure in wakefulness and slow wave sleep. In addition to rs-fMRI, we also
study infra-slow electrophysiology, acquired in humans, in wake and sleep. On
this basis, we demonstrate that the direction of infra-slow signals between cortex
and hippocampus reverses across wake and sleep, in both rs-fMRI and

electrocorticography, establishing an electrophysiological correlate of rs-fMRI
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directionality. We further find that higher frequency delta band (1-4Hz) activity
travels in the opposite direction as infra-slow activity, during both wakefulness
and sleep, implying that infra-slow propagation may serve as a very low
frequency feedback signal which moves in the opposite direction as higher
frequency feed forward activity.

e Fifth, we move from the human to the mouse. Using whole-cortex
calcium/hemoglobin imaging and laminar electrophysiology in mice, we show that
infra-slow activity in each of these modalities travels through the cortex along
stereotyped trajectories that are distinct from trajectories in delta (1-4Hz) activity.
Moreover, there is directionality reversal in both infra-slow and delta activity
trajectories across wakefulness and anesthesia. Finally, we find that infra-slow
travels through distinct cortical layers as compared to both delta activity and
higher frequencies. These findings expand our understanding of resting state
BOLD signal relationships and illustrate the unique physiology of long-distance

organization in spontaneous infra-slow brain activity.

The specific arguments contained in these chapters are sometimes rather technical, but
the final argument advanced in this thesis is quite simple: spontaneous infra-slow brain
activity has a distinct, lawful, state-dependent temporal structure as it moves through

specific layers of the cerebral cortex.
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Chapter 2: Computing temporal delays in resting state fMRI

This chapter has been published as a journal article. The citation is:
Mitra A, Snyder A, Hacker C, Raichle M. (2014). Lag structure in resting state
fMRI. J. Neurophysiol. doi:10.1152/jn.00804.2013.

Marc Raichle, Abraham Snyder and | conceived the project and research approach. |
designed and implemented the methods and performed the data analysis. Carl Hacker

helped with figure construction. Marc Raichle, Abraham Snyder and | wrote the paper.
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2.1 Preface

At the time this paper was published in 2014, the idea that temporal lags in resting state
fMRI data might be meaningful had never been articulated in print. Two points of
common wisdom precluded consideration of BOLD signal temporal lags. First,
conventional fMRI sequences provide one image of the human brain every 2-3 seconds.
The fMRI community believed that such slow sampling of bran activity meant that
meaningful temporal delays could not be computed from the data. Second, even if
temporal delays were found, it was widely held that these delays were likely due to
vascular factors. Indeed, the only papers that had considered temporal lags in fMRI to

date were solely focused on long vascular delays in stroke tissue.

In this paper, we demonstrated that parabolic interpolation can be applied to cross-
correlation/covariance curves derived from fMRI data to compute temporal delays on
the order of ~0.5 seconds, and that the temporal structure derived from these
computations is extremely stable in a group of ~700 subjects. We further argued that
computed temporal delays are not attributable to purely vascular factors by
demonstrating focal differences in temporal delays across conditions and providing a
rough estimate of the dimensionality of temporal structure in resting state fMRI (more on
this in Chapter 3). Finally, this work revealed one of the first yet enduring principles of
the organization of resting state fMRI signals: in normal, awake adults, there is no net
temporal sequence to activity among networks. That is, we do not consistently observe,
for example, the visual network as a whole sending signals to the motor network.

Instead, we find bi-directional signal flow between networks.
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2.2 Abstract

The discovery that spontaneous fluctuations in BOLD (blood oxygen level dependent)
signals contain information about the functional organization of the brain has caused a
paradigm shift in neuroimaging. It is now well established that intrinsic brain activity is
organized into spatially segregated resting state networks (RSNs). Less is known
regarding how spatially segregated networks are integrated by the propagation of
intrinsic activity over time. To explore this question, we examined the latency structure
of spontaneous fluctuations in the fMRI BOLD signal. Our data reveal that intrinsic
activity propagates through and across networks on a timescale of approximately one
second. Variations in the latency structure of this activity resulting from sensory state
manipulation (eyes open versus closed), antecedent motor task (button press)
performance, and time of day (morning vs. evening) suggest that BOLD signal lags
reflect neuronal processes rather than hemodynamic delay. Our results emphasize the

importance of the temporal structure of the brain’s spontaneous activity.

2.3 Introduction

It has been recognized since the inception of fMRI that the blood oxygen level
dependent (BOLD) signal exhibits spontaneous fluctuations (Purdon and Weisskoff
1998). Although this phenomenon was initially regarded as noise, Biswal and
colleagues showed that spontaneous fluctuations of the BOLD signal are temporally
synchronous within the somatomotor system (Biswal et al. 1995). This basic result has
since been extended to multiple functional systems spanning the entire brain (Buckner
et al. 2011a; Choi et al. 2012; Power et al. 2011; Thomas Yeo et al. 2011).

Synchronicity of intrinsic activity is widely referred to as functional connectivity; the
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associated topographies are known as resting state networks (RSNs; equivalently,
intrinsic connectivity networks (Fox and Raichle 2007)). The importance of
understanding intrinsic activity is underscored by the fact that RSNs recapitulate the
topographies of fMRI responses to a wide variety of sensory, motor and cognitive task
paradigms (Cordes et al. 2000; Smith et al. 2009) providing a powerful means of
delineating brain functional organization without the need for subjects to perform tasks.
RSNs also provide an important window on the pathophysiology of various diseases
(Fox and Greicius 2010; Zhang and Raichle 2010). These results establish that intrinsic
brain activity is spatially structured, linked to the representation of function, and clinically

relevant.

Almost all prior fMRI studies of intrinsic brain activity have used either seed-based
correlation mapping (Biswal et al. 2010) or spatial independent components analysis
(sICA) (Beckmann et al. 2005). Critically, both of these computational strategies
incorporate the assumption that activity within RSNs is exactly synchronous. However,
resting state fMRI studies in rat and man suggest that intrinsic activity is
spatiotemporally structured (Majeed et al. 2011; Majeed et al. 2009). Ample evidence
of temporally structured intrinsic activity has been observed in the mouse using voltage
sensitive dye imaging (Ferezou et al. 2007; Han et al. 2008; Huang et al. 2010;
Mohajerani et al. 2013; Mohajerani et al. 2010; Sato et al. 2012). In humans, Garg and
colleagues (Garg et al. 2011) performed vector autoregressive (VAR) modeling of
intrinsic activity followed by dimensionality reduction and identified two main

spatiotemporal streams propagating through the brain. More recently, Smith and
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colleagues (Smith et al. 2012) used temporal independent component analysis (tICA) to
isolate multiple “temporal functional modes” in human resting state fMRI data. Implicit
in this analysis is the notion that intrinsic brain activity can be decomposed into
spatiotemporal components. However, the temporal features of these components

were not explicitly explored.

Here, we specifically focus on the temporal features of intrinsic brain activity as
expressed in its latency structure. We demonstrate that lags in intrinsic activity, as
reflected in the BOLD signal, are highly reproducible across several large cohorts of
young healthy adults. Moreover, this structure is modified, with appropriate focality, by
the state of the eyes (open or closed), recent motor task performance, and time of day
(i.e., morning vs. evening). When represented in 3D image format, iso-lag contours
superficially resemble resting state networks (RSNs). However, closer analysis shows
that lag topography actually is orthogonal to RSNs. Thus, each RSN encompasses a
range of early and late regions and no RSN leads or follows any other. Rather, a
temporal structure emerges which provides a framework for the functional integration of

more conventionally defined RSNs.

2.4 Methods

Theory

Conventional seed-based correlation analysis involves computation of the Pearson
correlation, r, between the time series extracted from a seed region, e.g., x,(t), and a
second time series, x,(t), extracted from other loci (either single voxels or another

region of interest). Thus,
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where g, and a,, are the temporal standard deviations of signals x; and x,, and T is

the interval of integration. Here, we generalize the assumption of exact temporal

synchrony and compute lagged cross-covariance functions. Thus,

Care, (@ = 2 [ 2t + 1) - xx (Bt 2)

where 7 is the lag (in units of time). The value of T at which C,_,. (7) exhibits an

1X2
extremum defines the temporal lag (equivalently, delay) between signals x; and x,
(Konig 1994). (Alternative strategies for latency analysis are discussed in the
Appendix.) Clearly, Egs. 1 and 2 are related. Thus, Cy, ,,(0) = 0,0y, ,- In Other
words, the Pearson correlation is equal to the cross-covariance at zero lag, normalized
by the signal standard deviations. Because cross-covariance functions are not
normalized, they retain sensitivity to signal magnitudes, which is critical in the present
analyses. Although cross-covariance functions can exhibit multiple extrema in the
analysis of periodic signals, BOLD time series are aperiodic (He et al. 2010; Maxim et al.
2005), and almost always give rise to lagged cross-covariance functions with a single,

well defined extremum, typically in the range +0.5 sec. We determined the extremum

abscissa and ordinate using parabolic interpolation (Figure 1).
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Figure 2-1: Calculation of pair-wise timeseries lag using cross-covariance and parabolic
interpolation. The top right panel shows 195 s of two sampled time series extracted from
two loci in the brain. The corresponding lagged cross-covariance function, computed
over a full run (~300 s), is shown in the lower left panel (Eq. 2). The lagged cross-
covariance is defined over the range L, where L is the run duration. The range of the
plotted values is restricted to +12 s, which is equivalent to +4 frames (red markers) when
the repetition time is 3s. The lag between the timeseries is the value at which the
[absolute value of the] cross-covariance function is maximal. This extremum can be
determined at a resolution finer than the temporal sampling density (one frame every 3
seconds) by performing parabolic interpolation (green line, lower right panel) through the
computed values (red markers). This extremum (arrow, yellow marker) defines both the
lag between time series i and j (z;;; Eq. 4) and the corresponding amplitude (a;;; EQ. 5).

Given a set of n time series, {x,(t),x,(t), -, x,(t)}, extracted from n regions of interest
(ROIs), a lagged cross-covariance function can be computed between every pair of time

series. Thus,

Crn; (1) = %fxl-(t +1)-x,@®)dt  i,j €1.2,..,n. 3)
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Cy(7) iIsan n X n matrix that describes the covariance structure of the signal system

parametric in lag. Finding all z; ; corresponding to the extrema, a; j, of Cxixj(T) yields

the anti-symmetric matrix, T

(4)

The diagonal entries of T are necessarily zero, as any time series has zero lag with
itself. Moreover, 7;; = —1;;, since time series x;(t) preceding x;(t) implies that x;(t)
follows x;(t) by the same interval. T is widely known as a time-delay (TD) matrix, and

represents all lag information contained in {x, (t), x,(t), -+, x,(t)}.

The TD matrix does not contain any information regarding signal magnitudes.
Therefore, the relative contribution of each signal pair to the entire spatiotemporal
process is lost. To recover signal magnitude information, we define a second anti-

symmetric matrix, A:

T1,1-011 vt TyntAin
A = E . E . (5)

—Tin"A1n " Tpn ' Aun
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A is anti-symmetric for the same reasons asis T. In A4, the time delays, 7, ;, are
weighted by the magnitude of the signals at the extremum of Cxixj(r). We refer to A as

an amplitude-weighted time-delay (AWTD) matrix.

We projected the multivariate data represented in the TD and AWTD matrices onto one-
dimensional maps using the technique described by Nikolic and colleagues (Nikolic
2007; Schneider et al. 2006). We refer to these one-dimensional maps as latency
projections. Operationally, the projection is done by taking the mean across the

columns of T (Eq. 4) and A (Eq. 5), that is,

T, = [Z?=1Tl.j Z}Llfn.j]’ (6)

and

Ap = [Ejcrtijar - EjeaTojan ), 0

where T, and A, are 1 X n latency projections of the TD and AWTD matrices,
respectively. Thus T,, and A, are row vectors whose elements represent latency and
amplitude-weighted latency at each ROI. These projections can be represented in 3D
image format (e.g., Figure 2). Critically, the projection technique is valid only if the TD
and AWTD matrices are significantly transitive. Transitivity refers to the existence of
consistent lag relations. Perfect transitivity means that the sum of lags over all closed

loops is exactly zero. Given measurement error, perfect transitivity is never observed in
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real neural data. A test for significant transitivity can be implemented by considering all
time series triples (Nikolic 2007). Partial transitivity is defined as the fraction of all
possible triples in a TD matrix that exhibit transitivity. A TD matrix is said to be
significantly transitive if the fraction of all possible triples that exhibit transitivity
significantly exceeds the number expected by chance alone (p <.05). All TD and
AWTD matrices presented here satisfy this condition. Additional details regarding the

projection technique are given in (Schneider et al. 2006).

Latency projections represent spatiotemporal processes in the brain. An estimate of the
regional amplitude (in units of BOLD percent change) of each such process can be

computed as the quotient of 4, divided by T,,. Thus,

Amp = A,./T,, (8)

where the division is performed element-wise. Amp is a 1 X n row vector, which we
refer to as the latency process amplitude (LPA) image, that estimates the contribution of
the spatiotemporal process to the total BOLD time series at each ROI. To compute this
estimate, we first apply principal component analysis (PCA) to the complete set of
BOLD time series. PCA assigns a percentage of the variance in the BOLD time series

to each PC. Amp is projected onto each PC to find a weight w;:

w/™ = Proj(Amp, PCEO'P), i =1..n. 9)
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These weights are used to compute a weighted sum of PC variances.

Am .
Varfp'? = $w ™ - Var,epow,i =1..n. (10)

Thus, each latency projection accounts for a computable fraction, Var;p, of BOLD time
series variance. Analogously, the TD matrix is subjected to PCA, and latency
projections (in units of seconds) are projected onto the TD matrix eigenvectors.

wk = Proj(LP,PCI"), i=1..n. (11)

These weights are used to compute the variance of the TD matrix accounted for by the

latency projection.

VarLTPD = ZiWiLP Var,.m,i=1..n. (12)
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Imaging methods

Participants

Four extant, independent data sets were analyzed in this study. A large data set (N =
692) was obtained from the Harvard-MGH Brain Genomics Superstruct Project (Yeo et
al. 2011b) (dataset 1, Table 1). The 692 subjects in dataset 1 were randomly divided
into 7 cohorts of approximately 99 subjects each to test the reproducibility of our
analyses. Three additional data sets (Fox et al. 2005b; Fox et al. 2007; Shannon et al.
2013) were previously acquired at the Neuroimaging Laboratories of the Mallinckrodt
Institute of Radiology at the Washington University School of Medicine (datasets 2-4,
see Table 1). All patients were young adults screened to exclude neurological
impairment and psychotropic medications. Demographic information and acquisition

parameters are given in Table 1.

Dataset 1 P 3 4

Number of 692 (305 M + 10(4M+6F) | 17(8 M+9F) 24(15M + 9 F)

subjects H3

Agein years 21.4+24(SD.) |[233%£3(SD) |231+24(SD) | 259+2.3(S.D)

Scanner Siemens Tim Trio | Siemens Siemens Siemens Tim Trio
Allegra Allegra

Acquisition voxel
size

(3mm)3

(4mm)3

(4mm)3

(4mm)3

Flip Angle

85°

90°

90°

90°

Repetition Time (s)

3.00

3.03

2.16

2.08

Number of frames 124X 2 runs 110X 6 runs 194X 2 runs 194X 2 runs

Citation (Yeo et al., 2011) | (Foxet al., (Fox, Snyder et (Shannon et al.,
2005) al.2007) 2012)

Experimental Replicability Eyes open vs. Before vs. After | Morning vs.
Eyes closed motor task Evening

Question

Table 2-1: Characteristics of analyzed datasets.
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MRI acquisition

Imaging was performed with a 3T Siemens Allegra (Washington University) or a 3T
Siemens Tim Trio (Harvard-MGH) scanner. Functional images were acquired using a
BOLD contrast sensitive gradient echo echo-planar sequence [parameters listed in
Table 1]. In dataset 1, all participants were simply instructed to keep their eyes open,
remain still, and not fall asleep. Two fMRI runs were acquired per subject. In dataset 2,
three runs were acquired in the eyes open visual fixation condition and 3 runs were
acquired with eyes closed (Fox et al. 2005b). In dataset 3, we contrasted 2 resting state
runs separately acquired before and after an intervening run during which subjects
performed an attention demanding button press task (Fox et al. 2007). During the
button press task, subjects were instructed to press a button in response to a visual cue
(dimming of the fixation cross-hair). In dataset 4, we contrasted 2 resting state runs
acquired in the morning (~1 hour after each subject’s usual wake time) and evening (~2
hours before usual bed time). In all datasets, anatomical imaging included one sagittal
T1-weighted magnetization prepared rapid gradient echo (MP-RAGE) scan (T1W) and

one T2-weighted scan (T2W). The MP-RAGE sequence in dataset 1 was multi-echo.

fMRI preprocessing

Initial fMRI preprocessing followed conventional practice (Shulman et al. 2010). Briefly,
this included compensation for slice-dependent time shifts, elimination of systematic
odd-even slice intensity differences due to interleaved acquisition, and rigid body
correction of head movement within and across runs. Atlas transformation was achieved

by composition of affine transforms connecting the fMRI volumes with the T2W and
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T1W structural images. Head movement correction was included with the atlas
transformation in a single resampling that generated volumetric timeseries in (3mm)?
atlas space. Additional preprocessing in preparation for latency analysis included spatial
smoothing (6 mm full width at half maximum (FWHM) Gaussian blur in each direction),
voxel-wise removal of linear trends over each fMRI run, temporal low-pass filtering
retaining frequencies below 0.1 Hz, and zero-meaning each voxel time series. Spurious
variance was reduced by regression of nuisance waveforms derived from head motion
correction and timeseries extracted from regions (of “non-interest”) in white matter and
CSF. Nuisance regressors included also the BOLD timeseries averaged over the brain
(Fox et al. 2005b). Additionally, we employed frame-censoring with a threshold of 0.5%
root mean square frame-to-frame intensity change (Power et al. 2012). Frame-
censoring excluded 3.8 = 1.1% of all magnetization steady-state frames from the

correlation mapping computations.

Gray matter segmentation and ROI definition

All present analyses were restricted to gray matter. A gray matter mask was
constructed on the basis of a group averaged ‘®F-flurodeoxyglucose positron emission
tomography (FDG-PET) image. Group level gray matter masks conventionally are
constructed by segmenting structural scans, e.g., using FreeSurfer (Fischl 2012). Here
we achieved the same objective by thresholding a group average metabolic image,
exploiting the fact that gray matter has approximately uniform FDG uptake. This
strategy generates smoother gray matter partitions than structural segmentation. The

source FDG-PET image, in (3mm)? atlas space, was generated in a separate
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experiment (Vaishnavi et al. 2010), and was thresholded to exclude white matter, large
vessels, and cerebrospinal fluid (CSF) spaces. To reduce the dimensionality of the
latency analyses (number of ROIs), the gray matter mask was divided into (6mm)? cubic

ROIs, discounting any cubes containing fewer than 50% gray matter voxels.

2.5 Results

Resting state latency projections

Latency projection results obtained in dataset 1 are displayed in Figure 2. The latency
projection result (Figure 2A,C) spans approximately one second between the earliest
and latest areas of the brain. The principle features of this map are: (i) a high degree of
bilateral symmetry, and (ii) spatially distinct early and late regions. The earliest and
latest brain regions are the posterior cingulate cortex/precuneus (PCC) and the
cerebellum, respectively. The amplitude-weighted latency projection (Figure 2B) and
the un-weighted TD latency projection (Figure 2A) exhibit similar topographies. Figure
2D illustrates the across sub-group spatial correlogram corresponding to the 7 sub-
groups comprising dataset 1. This correlogram quantitatively demonstrates the spatial
similarity between time delay (TD) and amplitude-weighted time delay (AWTD) latency
projections (off diagonal blocks) as well as reproducibility across sub-groups (diagonal

blocks).

The latency process amplitude (LPA) image (Figure 3A,B; see Eqg. 8 for derivation) has

high values in brain areas that strongly contribute to the brain’s latency structure. Asis

true of the results shown in Figure 2, the LPA maps are highly similar across sub-
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groups of dataset 1 (Figure 3C). High amplitude values appear in the default mode
network (Raichle et al. 2001), as well as some other areas, most notably the visual
cortex. The cerebellum, as a whole, contributes relatively little to the brain’s latency
structure except in parts that belong to the DMN (Crus Il and the inferior vermis). We
note that the topographies of lag (Figure 2A,C) and latency process amplitude (Figure

3A,B) are distinct.
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Figure 2-2: Results obtained in dataset 1. The 692 subjects were randomly divided into 7
equally sized subgroups of approximately 99 subjects each. (A) Latency projection of
the time delay (TD) result obtained in the first sub-group illustrated in voxel-space. Lag
is measured in seconds. (B) Latency projection of the amplitude-weighted time delay
(AWTD) result corresponding to the TD result shown in (A). Because the BOLD signal
magnitude depends on multiple fMRI sequence parameters, the unit of amplitude-
weighted lag is arbitrary. (C) Surface representation of the volumetric result shown in (A).
Arrows point to specific regions mentioned in the Discussion: posterior precuneus
cortex (PCC), ventromedial prefrontal cortex (VMPFC), dorsal anterior cingulate cortex
(dACC), anterior insula (Al), posterior parietal cortex (PPC), dorsolateral prefrontal cortex
(DLPFC). (D) Spatial correlation between all TD (first 7 rows/columns) and AWTD (last 7
rows/columns) latency projections calculated in the 7 sub-groups.
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The amplitude map can be used to estimate the relative contribution of the
corresponding latency projection to the total variance of the BOLD signal within gray
matter. This accounting is analogous to fractionating variance using principal
component analysis. In our data, on average, 20.1% (+/- 0.7%) of the total variance in
the whole brain BOLD signal time series is explained by the latency projection (Eq. 10).
Moreover, 71.5% (+/- 1.4%) of the TD matrix variance is attributable to the latency
projection (Eqg. 12). Therefore, the latency process we have identified is a significant
driver of sequential BOLD activity in the resting state, but it represents only a first

component.

0.99

Figure 2-3: (A) Latency process amplitude (LPA) map illustrated in voxel-space obtained
in the first sub-group of dataset 1 (same data as in Figure 2A-C). The scale is in units of
BOLD amplitude. See Eq. 8 for derivation. (B) Surface representation of the volumetric
result shown in (A). (C) Spatial correlation between all amplitude maps calculated in the
7 subgroups of dataset 1.
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State contrasts

The effect of state contrast on the latency structure of intrinsic activity was studied in
three experiments. We first compared the eyes open versus the eyes closed (EO-EC)
condition (dataset 2, Table 1). In the eyes open state, subjects were instructed to
maintain visual fixation on a small crosshair. This state contrast is known to modulate
the amplitude of intrinsic BOLD activity in visual cortex (Marx et al. 2004; McAvoy et al.
2008). The latency projection correlates of this experiment are shown in Figure 4. The
most prominent change in latency was a shift toward later values in the dorsal visual
stream with eyes open as compared with eyes closed. Similar changes were observed
in the ventral visual stream, curiously omitting V1. The latency projection amplitude
(LPA) also showed a large shift toward higher values in the dorsal visual stream with
eyes closed as compared with eyes open. This result is consistent with numerous
previous reports documenting reduced amplitude of BOLD fluctuations in the eyes open
state (Bianciardi et al. 2009; Marx et al. 2004; McAvoy et al. 2008). This set of

observations is significant in the light of potential relations between latency and

perfusion (see below).

Figure 2-4: Latency results obtained in dataset 2.
(A) Eyes Open (EO). (B) Eyes Closed (EC). (C)
Eyes Open minus Eyes Closed. (D) Voxels with a
statistically significant EO versus EC latency
effect. (E) EO minus EC latency process
amplitude (LPA) difference image. Color
indicates statistically significant voxels.
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Figure 2-5: Latency results
obtained in dataset 3. (A)
Before button-press task. (B)
After button-press task. (C)
After minus Before. (D)
Voxels with a statistically
significant recent task
performance latency effect. (E)
After minus Before latency
process amplitude (LPA)
difference image. Color
indicates statistically
significant voxels.

In the second experiment, we compared the resting state after versus before
performance of a cued right hand button push task (Fox et al. 2007; Fox et al. 2006).
During the task fMRI run, subjects were instructed to press a button in response to a
visual cue (dimming of the fixation cross-hair). The most prominent latency change was
a shift toward later latency values in left ventral motor cortex following task performance
(Figure 5). A shift toward earlier latency values was observed in bilateral striatum,
although this effect was significant in only a small cluster of voxels in the right putamen
(Figure 5D). As opposed to the EO-EC experiment, this contrast was computed over
two identical resting state conditions (i.e., before and after task performance) rather
than concurrent state contrast (i.e., eyes open at rest versus eyes closed at rest).

Consequently, the change in latency structure seen following the button press task is a
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function of antecedent task performance. The latency projection amplitude (LPA)
showed a large reduction in the PCC (Figure 5E). No LPA change was observed in the
voxels showing significant latency shifts. Thus, the LPA and latency effects were
spatially dissociated in the button-push paradigm, whereas in the EO-EC experiment

the effects were spatially overlapping.

Figure 2-6: Latency results obtained in dataset 4. (A)
Morning latency map. (B) Evening latency map. (C)
Evening minus morning change in latency. Warm hues
indicate increased lateness in the evening. Cool hues
indicate increased earliness in the evening. (D)
Statistically significant latency differences are seen in
entorhinal and insular cortex. (E) Previously reported
(Shannon et al. 2013) diurnal change in functional
connectivity. Magenta indicates the two regions of
interest, right and left entorhinal cortex, exhibiting the
greatest diurnal change in functional connectivity with
the rest of the brain (circled in central slices in panels A-
E). Presently reported diurnal changes in latency (panels
A-D) correspond to previously published functional
connectivity changes in entorhinal cortex (panel E).

Finally, we contrasted resting state latency in data acquired shortly after waking in the
morning and just prior to retiring in the evening (Shannon et al. 2013). This contrast was
chosen specifically because it revealed significant diurnal changes in functional
connectivity bilaterally in entorhinal cortex (magenta region in Figure 6E). In the

morning, entorhinal cortices were functionally connected prominently to anterior insula.
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In the evening, entorhinal cortices exhibited strong functional connectivity with cortical
areas involved in memory retrieval as well as a significant reduction in functional
connectivity with anterior insula. The present results, shown in Figure 6A-D,
demonstrate significant latency changes in the entorhinal cortices from late in the
morning (Figure 6A) to relatively early in the evening (Figure 6B). In contrast, latency
shifted in the opposite direction in insular cortex (i.e., later in the evening as compared
to morning). There were no statistically significant changes in LPA in the morning vs.
evening contrast, again demonstrating that latency and amplitude effects can be

dissociated.

Latency in relation to RSNs

Inspection of Figure 2A suggests a similarity in spatial scale between RSNs (Figure 7)
and latency maps. This observation raises the question of the relation between RSNs
and latency maps. To address this question, we computed the mean latency within
each RSN. The obtained result was remarkably close to zero in every RSN (root mean
squared latency value averaged over RSNs = 0.03 s). This outcome is not imposed by
our analytic strategy. We generated surrogate RSNs matched in spatial frequency and
scale to true RSNs to test whether the orthogonal relationship between RSNs and
latency structure could be attributed to chance (Figure 7, See Appendix for more
details). This analysis indicated that the likelihood of observing a root mean square
value of 0.03 s is less than 1% (Figure 8), suggesting that the observed latency-RSN
relationship is not attributable to chance alone. The implication of this result is that no

RSN is either early or late. Instead, activity propagates both through and across RSNs.

40



Figure 9 shows the TD matrix corresponding to the results shown in Figure 2. Ciritically,
the ROIs have been ordered first by RSN membership (Hacker et al. 2013) (see Figure
7), and, within RSN, by temporal order using latency projections by RSN block. Figure
9 also includes voxels assigned to the cerebrospinal fluid (CSF) category. The diagonal
blocks in the TD matrix represent latency within RSNs (e.g., within DMN latencies,

outlined in white); the off diagonal blocks represent latencies across RSNSs.

MLP RSNs ~ MLPRSNs

Surrogate RSNs
% I

. Dorsal Attention Network (DAN)

. Ventral Attention Network (VAN) 50 reat RENs (MLF)

—— surrogate RSNs

. Somatomotor Network (SMN)
Visual Network (VIS)
Fronto-parietal Control Network (FPC)

Language-Auditory Network (LAN)

Default Mode Network (DMN)

CSF/White-matter (CSF)

0.00 0.10 0.20
spatial frequency (1/mm)

Figure 2-7: Real and surrogate RSNs. RSN labels and color-codes are presented in lower
left. To test the statistical significance of the latency-RSN relationship, we created
surrogate RSNs matched in spatial frequency to real RSNs. The real RSNs were defined
as the group level winner-take-all result in Hacker et. al. 2013 (referred to here as “MLP
RSNs”). Surrogate RSNs (N = 1000) were generated by applying symmetric group
operations to the real RSNs (see Appendix). One typical example of surrogate RSNs is
illustrated adjacent to the real RSNs. Spatial frequency domain representations (3D
Fourier transforms of RSNs and surrogate RSNs) are on the upper right. The spatial
frequency domain results are averaged over all real RSNs and over all surrogate RSNs,
respectively, omitting the CSF component. Only the f,=0 planes of the 3D spatial
frequency domain representations are shown. The graph (lower right) shows relative
spectral power (in dB) read out along the diagonal blue traces in the frequency domain

representations. The plots are symmetric about the Nyquist folding frequency = ;n—m,

which reflects the spatial sampling density (3mm cubic voxels). Critically, the spatial
frequency content of the surrogate RSNs is well matched to the real RSNs.
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Figure 2-8: Histogram of summed squared
mean latency values in surrogate RSNs. 1000
surrogate RSN partitions (e.g., Figure 7) were
generated. The latency mean was evaluated for
each surrogate RSN. On the assumption that
mean RSN latencies are normally distributed
about zero, the sum of squares of these values
theoretically is distributed as x*(7). The light
blue trace represents the theoretical gamma
probability density function fit to the
simulations (blue histogram). The vertical pink

DD 0005 001 00s 002 0025 003 003 004 0045 005 Ilne represents the Summed Squared Iatency

Seconds? values in the real RSNs (0.006s?). A squared

sum value of 0.006s” corresponds to a root mean square value of 0.03s, as reported in
the main text. The surrogate data indicate the probability of this outcome occurring by
chanceis p < 0.0096.

Trials

Figure 9 includes some features that are algebraically constrained. In particular, the TD
matrix is anti-symmetric. Therefore, each diagonal block is anti-symmetric as well.
However, the algebra does not impose any relation between latency and RSN
membership. Therefore, the structure evident in Figure 9 is informative. The diagonal
blocks show a wide range and well-ordered distribution of latencies. Thus, activity
propagation is present within each RSN. The CSF block is much less well ordered even
though it was analyzed identically to the true RSNs. This distinction demonstrates that
the observed intra-RSN latency structure reflects brain organization at the systems level

and is not an algebraic artifact.

The off-diagonal blocks represent activity propagation across networks. Each block
contains well-ordered early, middle, and late components much like the diagonal blocks.
Again, this is not algebraically imposed. To obtain a numerical measure of latency
spread within blocks, we computed the latency standard deviation. The mean value of

this measure across the diagonal blocks was 0.15s. The same result (0.15s) was
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obtained in off-diagonal blocks. The existence of latency ordering within off-diagonal
blocks suggests organized lag relations between constituent parts of RSNs. As an
example, consider the off-diagonal block corresponding to the DMN paired with the
dorsal attention network (DAN), outlined in white in Figure 9. A well-ordered
progression from early (blue) to late (red) is evident, indicating that parts of the DMN
lead the DAN and vice versa. Again, a comparison with the CSF blocks is informative.
Very little structure is evident in the DAN:CSF block (outlined in white), reflecting the

absence of organized reciprocal latency.

R T B I e Figure 2-9: Relationship of latency to
RSNs. The figure shows a TD matrix
with ROIs ordered by RSN membership
(see Figure 7 for abbreviations). Within
each RSN, the ROIs are further ordered
by latency. Note wide range of latencies
within RSNs (diagonal blocks, each
necessarily anti-symmetric) and anti-
symmetric features across RSNs (off-
diagonal blocks). Note also absence of
organization in CSF blocks. Blocks
referred to in the Main Text are outlined
in white. The diagonal blocks in the TD
matrix illustrate that each network has
early, middle, and late components.
Moreover, the off diagonal blocks have
early, middle, and late components.
Therefore, no network leads or follows any other network. Rather, lags are equivalently
distributed within and across RSNSs.

To examine the possibility that the latency process is present with more power within
certain RSNs or RSN pairs, we computed the amplitude-weighted time-delay matrix
(Figure 10), in which ROls are ordered as in Figure 9. Since the lag values are
weighted by amplitude, ROI interactions with little power have values closer to zero
(green hues in Figure 10). As above, we computed a measure of spread within blocks

as the amplitude-weighted latency standard deviation. Among the RSNs, the DMN and
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VIS exhibited the greatest spread of amplitude weighted latencies. This feature
appears in Figure 10 has a high level of blue/red saturation. In contrast, the CSF blocks
are comprised primarily of values near zero (appear green). These results are in line
with Figure 3. The critical feature in Figure 10 is that the diagonal and off-diagonal
blocks are comparably saturated. In quantitative terms, the diagonal and off-diagonal
blocks exhibit comparable mean standard deviations (0.35 and 0.33, respectively, in
units of amplitude-seconds). Combining the results shown in Figures 9 and 10 implies
that lag amplitudes are similarly distributed within and across RSNs.

e B R L BN Figure 2-10: Amplitude-weighted time

SRS : B - * delay (AWTD) matrix corresponding to

Figure 9. Blocks referred to in the Main
Text are outlined in white.

DAN

VAN

SMN &

CSF

Control analyses

We considered three non-neuronal explanations for the spatial patterns of BOLD
latency projections (Figure 2). First, is there a relationship to vascular territories
(anterior cerebral artery, middle cerebral artery, posterior cerebral artery)? Reference
to standard vascular territory maps (Damasio 1983) shows no clear correspondence. In
particular, Figure 2 shows latency contrast around the ventral central sulcus, whereas

this part of the brain and widely surrounding areas are all middle cerebral artery territory.

44



Although different vascular territories see arterial blood at different latencies with
respect to the aorta, there is no parsimonious mechanism by which this difference could
translate to differential BOLD signal latencies. Second, better perfused tissue may be
expected to show a more prompt response to neural activity. In fact, precisely this
mechanism probably accounts for delayed BOLD signals in the vicinity of recent infarcts
(Amemiya et al. 2013). Accordingly, we compared latency projections to a group
average perfusion map constructed on the basis of PET data (Vaishnavi et al. 2010). A
scatter plot of cerebral blood flow (CBF) versus latency was constructed (Figure 11).
Inspection of this plot showed no clear evidence of a systematic relation between CBF
and latency (Pearson r = -0.05). A negative correlation is in line with the theory that
better perfused tissue shows more prompt BOLD response to neuronal activity.
However, this effect is negligible, as it only explains 2.5% of latency variance.

Figure 2-11: Comparison of cerebral blood flow
versus time-delay (TD) latency projection. (A)
Cerebral blood flow map obtained in a group of 33
normal young adults. (B) TD latency projection;
same data as Figure 2A-C. (C) Scatter plot showing
the relationship between cerebral blood flow and
the latency projection. Each dot represents one ROI.
To test whether the reproducibility of latency
structure (Figure 2D) is attributable to CBF, we
computed the mean cross-group correlation for the
7 cohorts in dataset 1, before and after regressing
out the effects of CBF. The mean cross-group
correlation was r = 0.898 in both cases. This result
+207 , iy 1 demonstrates that the effect of CBF on measured

= - latency, if present, is negligible.
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Finally, it is well known that the BOLD signal is strongly weighted toward the venous
side of the circulation (Hall et al. 2002). Therefore, the BOLD signal in cerebral veins
should appear at late latencies (Lee et al. 1995). To investigate this possibility, a group
average “venogram” was constructed by computing the voxel-wise beta-map
corresponding to the differentiated global signal (see Appendix for details).
Thresholding this map to retain only negative values generated an image demarcating
the major venous structures in the head (Figure 12). Reference to this map
demonstrated that cerebral venous structures do account for some features of the
latency map, in particular, lateness in the superior and sagittal sinuses. Most of the
vascular spaces, however, were already excluded from our analysis by our gray matter
mask (see Methods). Thus most of the features evident in Figure 2 do not correspond

to the “venogram” and, therefore, are not attributable to cerebral venous outflow.

Figure 2-12: Venous contribution to
latency structure. (A) Venogram. (B)
TD latency projection for comparison.
Our gray matter masking procedure
(see Methods) excludes many of the
voxels that correspond to venous
structures, but some overlap is
apparent. (C) TD latency projection with
venous structures masked out.
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2.6 Discussion

Summary of Present Findings

We used latency projections (Nikolic 2007) to study the lag structure of the resting state
BOLD signal in healthy young adults. Substantial consistency was demonstrated over 7
large cohorts. The amplitude of lagged activity was highest in the default mode, control,
and visual networks. Latency process amplitude (LPA) estimation indicated that the
spatio-temporal process shown in Fig. 2A accounts for approximately 20% of the resting
state BOLD signal. These results provide of means of studying integration within and
across resting state networks, which so far have been defined primarily in terms of

network segregation.

We studied the effects of three state contrasts (eyes open vs. eyes closed, before vs.
after right handed button push in response to visual cue, morning vs. evening) to test
whether latency structure depends on neuronal activity. Temporal structure was
modified, with appropriate focality, in all three experiments, suggesting that the latency

structure is indeed neuronally driven.

Time-delay matrices (Fig. 9) suggest functional integration within and across RSNSs.
Surprisingly, we found that the temporal structure of the BOLD signal is orthogonal to
RSN topography. In other words, there is equivalent activity propagation both within
and across RSNs. The well-ordered organization of activity propagation within and
across RSNs contrasts with the highly disorganized activity evident in CSF,

demonstrating that the observed propagation structure is not algebraically imposed. By
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generating surrogate RSNs, we demonstrated that the orthogonal relationship between

RSNs and latency is not attributable to chance (Figure 7, Appendix).

Finally, we investigated the effects of CBF and large vascular structures on latency
structure.

CBF was found to have negligible explanatory power (Figure 11). The superior sagittal
sinus contributed some late features in the latency map, but masking the latency image
by an fMRI-derived “venogram” (see Appendix) demonstrated that most latency features

are not attributable to large vascular structures (Figure 12).

Observed latency in relation to vascular physiology

The BOLD signal is governed by the local concentration of deoxyhemoglobin, which is
paramagnetic and, therefore, an MRI contrast agent (Ogawa et al. 1990). Changes in
the fMRI BOLD signal, either task-related or spontaneous, reflect changes in blood flow
that are greater than changes in oxygen consumption. These changes have been
physiologically linked to changes in local field potentials (Goense and Logothetis 2008;
Logothetis 2008; Logothetis et al. 2001; Logothetis and Wandell 2004) and cellular
metabolism (i.e., changes in cellular redox states (Mintun et al. 2004; Vern et al. 1997,
1998) and aerobic glycolysis (see (Raichle and Mintun 2006) for review)). Most recently,
propagated activity in the mouse brain (see Neurophysiology of latency) has been
visualized using voltage sensitive dye imaging (Mohajerani et al. 2013; Mohajerani et al.
2010), which entirely avoids the question of neurovascular coupling. Nevertheless,

concern lingers that regional variations in the latency of neurovascular coupling could
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largely account for observed delay structure (Friston 2009; 2011, Friston et al. 2013;

Friston and Dolan 2010; Handwerker et al. 2004).

Hemodynamic and neuronal contributions to observed lag structure cannot be
separated on the basis of the BOLD signal alone. However, we can adjudicate between
a primarily neuronal vs. primarily hemodynamic explanation for observed lag structure

by considering the plausibility of each of these explanations for our results.

First, we find changes in latency structure as a result of state contrasts (Figures 4-6). A
vascular explanation for this result implies focal changes in the dynamics of
neurovascular coupling. It might be argued that the latency differences in Figures 4 and
6 reflect changes in sympathetic tone (due to eye closure or time of day) leading to
altered vascular dynamics. However, Figure 5 contrasts two resting states separated by
a task run. It is highly plausible that task performance leaves a neural trace. In fact,
such traces must underlie episodic memory and skill acquisition. It is much less
plausible, although not inconceivable, that prior task performance leaves a trace
manifesting as focally altered vascular hemodynamic coupling. Second, latency
projections are orthogonal to RSNs (Figures 7 and 8) in a manner not attributable to
chance. Thus, there exists a structured relationship between RSNs, which
unguestionably reflect neuronal activity, and latency projections. A purely vascular
explanation for this relationship is difficult to imagine, although we cannot exclude it.
Conversely, a neuronal explanation for this relationship suggests that lagged activity

plays a role in functional integration across segregated brain networks. Third, let us
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suppose that regional differences in neurovascular coupling delays do exist. We further
assume that neural processes are effectively simultaneous, that is, we neglect axonal
conduction delays on the order of tens of msec (Vicente et al. 2008).Then, by
hypothesis, some regions transduce neural activity into a BOLD signal before other
regions. This time shift can be represented as a set of ordered relations, as illustrated in
Figure 2. We show in the Appendix that such a structure gives rise to a lag matrix of
dimensionality exactly one. However, Bayesian Information Criterion analysis (Minka
2001) indicates that the most likely dimensionality of the BOLD TD matrix (Figure 9) is 2
(Figure 13, See Appendix for details). This result implies the existence of two transitive
systems of lags within the TD matrix. Regionally dependent latencies in neurovascular
coupling mathematically can account for only one of these (see Appendix). Therefore,
hemodynamic delays, even if they exist, cannot account for the entirety of the observed

latency structure.

Although these considerations argue for a neuronal basis for latency structure, the
present fMRI data provide only indirect evidence. Future direct tests combining other
modalities (e.g., metabolic or electrophysiologic) with fMRI will be necessary to

definitely assess the physiological basis of latency structure.

Neurophysiology of latency
Several features in our latency projection results are consistent with previous
identification of sources and sinks of intrinsic activity obtained using vector auto-

regressive (VAR) modeling. Sources and sinks correspond, respectively, to early and
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late areas in the latency structure. Specifically, Garg and colleagues found that inferior
parietal cortex and PCC are sources of propagated activity (Garg et al. 2011). This
result matches our assignment of these regions as early in the latency projection
(Figure 2). Similarly, Desphande and colleagues identified the DMN as a major locus of
propagated intrinsic brain activity, in agreement with our amplitude map result (Figure 3)
(Deshpande et al. 2011). Moreover, the anterior prefrontal cortex was reported to be a
sink of propagated activity, which matches our assignment of this region as late in the
latency projection (Figure 2). Many of the above discussed features were also obtained
by Majeed and colleagues using a novel iterative technique based on computing lagged

correlation functions (Majeed et al. 2011).

Propagated activity is well documented in the electrophysiology literature. Recent work
in the mouse using voltage sensitive dye (VSD) imaging has documented wave-like
propagation of both evoked and spontaneous activity (Ferezou et al. 2007; Han et al.
2008; Huang et al. 2010; Mohajerani et al. 2013; Mohajerani et al. 2010; Sato et al.
2012). Although VSD is capable of millisecond temporal resolution, the observed
spontaneous activity motifs in the mouse cortex play out over approximately 0.5s
(Mohajerani et al. 2013; Mohajerani et al. 2010), in close agreement with our results
(Figure 2A). The speed of spontaneous activity propagation in the mouse has been
estimated as approximately 0.2 m/s (Han et al. 2008; Mohajerani et al. 2010). In our
data, we take as typical a latency difference of 0.5 s over 10 cm, which yields a
propagation speed of 0.2 m/s, in agreement with the mouse estimate. Slow wave

propagation has also been documented during slow wave sleep (SWS). The speed of
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slow wave propagation in SWS has been estimated as 0.4 to 6.3 m/s (Massimini et al.
2004; Murphy et al. 2009b). This speed of propagation estimate is reasonably
comparable to the estimate from our data (0.2m/s, see above), given that the SWS
figure was obtained on the basis of scalp electroencephalography (EEG) and inverse
source modeling (Murphy et al. 2009b). Interestingly, Murphy and colleagues report
that the DMN is preferentially involved in slow wave propagation during SWS (Murphy
et al. 2009b), which is concordant with our finding that the DMN is represented with high
amplitude in the latency projection (Figure 3). Although SWS and waking quiet rest are
distinct states, intrinsic activity exhibits many similarities across levels of arousal
(Larson-Prior et al. 2009; Vincent et al. 2007). RSNs are present, albeit with arousal-
dependent features, in both wakefulness and SWS (Samann et al. 2011). Substantial
evidence indicates that the slow waves in SWS represent UP and DOWN state
oscillations (Huber et al. 2004; Massimini et al. 2004; Murphy et al. 2009b; Yuste 1997).
It has been reported that UP and DOWN states persist during wakefulness, although
they are intermixed with other activity and are much less periodic (Vyazovskiy et al.
2011). If so, the same mechanism may drive slow activity in waking and SWS. Thus,
there exists a plausible electrophysiological mechanism underlying slow propagated

BOLD activity.

Murphy and colleagues find that sources and sinks of spontaneous activity in the mouse
recapitulate patterns of activity observed in task responses (Mohajerani et al. 2013). In
other words, primary areas (such as primary somatosensory cortex) tend to be sources

in task-evoked and spontaneous activity, while higher order areas such as the parietal
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lobule are sinks during task-evoked and spontaneous activity. Our results show partial
correspondence with this principle. In particular, primary motor cortex is early and
superior parietal lobule is late (Figure 2C), in agreement with task-evoked studies in
mice (Mohajerani et al. 2013). Additionally, lateral prefrontal cortex exhibits very
delayed response to item recognition trials (Schacter et al. 1997), which is in agreement
with our spontaneous activity lag results (Figure 2A,C). However, primary sensory and
auditory cortices are late in our data (Figure 2C), in contrast with the Murphy results.
These divergences could be attributable to differences in species or technique, but we
believe that the more likely explanation lies in a fundamental distinction between
spontaneous and task-evoked activity. Task-evoked BOLD responses in humans exhibit
a wide variety of waveforms and variable mixtures of sustained and transient
components, depending on locus and task paradigm (Fox et al. 2005a; Gonzalez-
Castillo et al. 2012). Moreover, these responses play out on a time scale on the order
of several seconds. In contrast, our lag results are generally confined to a range of £0.5
seconds. Thus, although there may be some shared motifs between lagged
spontaneous and task-evoked activity, the two phenomena most likely represent
different processes with different temporal structures (see (Raichle 2011) for further

discussion).

Functional significance of latency
It is striking that the resting state BOLD signal, which has been used to identify spatially
segregated functional networks (Power et al. 2011; Yeo et al. 2011a), also carries a

signature of functional integration within and across RSNs. Critically, resting state
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activity propagation is directed, as reflected in a latency map (Figure 2). Thus, there is
a stereotyped pattern of activity propagation in the human brain, such that, on average,
certain brain loci initiate propagated activity (early regions) while other loci are
destinations (late regions). While it is widely believed that cross-network
communication underlies brain function (Bressler and Menon 2010), discussion of this
point largely derives from task based experiments. Our analyses reveal loci
corresponding to sources and sinks of propagated intrinsic activity. Remarkably, many
of the same loci have been independently identified, on the basis of task-based fMRI, as
key cortical nodes regulating behavior (Bressler and Menon 2010; Nelson et al. 2010).
Specifically, these loci (Figure 2C) are: posterior precuneus cortex (PCC, early),
ventromedial prefrontal cortex (VMPFC, late), dorsal anterior cingulate cortex (dACC,
early), anterior insula (Al, late), posterior parietal cortex (PPC, early), dorsolateral
prefrontal cortex (DLPFC, late). These areas represent three pairs of regions
belonging to the default mode, salience, and fronto-parietal control networks,
respectively. It is probably not coincidental that, within each network pair, one region is
early while the other is late. Indeed, the orthogonality of RSN and latency topography
suggests that propagated activity in the resting state may serve as a framework for RSN
integration. Thus, analyzing latency structure might be a useful method to increase our
understanding of cognitive processes, whether they are physiologic or pathologic in

nature.

One feature of our results that deserves further comment is that the cerebellum as a

whole is late in the latency map (Figure 2A). The cerebellum is widely regarded as
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responsible for reflexive adjustments during active behavior (Buckner et al. 2011b;
Leiner et al. 1991, Strick et al. 2009), for example, adjusting motor programs in
response to unanticipated changes in environmental parameters (e.g., load). In the
resting state, the role of the cerebellum appears to be minor, as reflected by the low
amplitude of intrinsic cerebellar BOLD fluctuations (Li et al. 2012; Logothetis and
Wandell 2004). Our data suggest that, at least in the resting state, the primary direction
of information flow appears to be from prosencephalon to cerebellum. This observation
is consistent with the current understanding of the cerebellum as primarily a receiver of
multimodal information from the cerebral cortex (Leiner et al. 1991). Nonetheless, we
cannot exclude the possibility that the vascular response to neural demand is generally
late in the cerebellum. However, this explanation would be specific to the cerebellum as
opposed to the posterior circulation, because visual and infero-temporal cortices are

mostly early.

State Contrasts in Latency

The original motivation for examining state contrasts was to present evidence that
neuronal phenomenology drives latency structure. However, the observed effects of
state contrast on latency are potentially of physiologic interest. In the eyes open
condition, propagated signals appear to flow from primary to higher order visual cortex
(Figure 4A), in accordance with known direction information flow in visual processing
(Van Essen et al. 1992). In the eyes closed condition, the direction of signal propagation
appears to reverse (Figure 4B). Speculatively, this reversal may reflect may reflect top-

down influences supporting mental imagery (Stokes et al. 2009). In the button push
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contrast, we theorize that changes in latency after performance of a motor task reflect
physiologic processes related to learning. Although the task is simple (pushing a button
in response to cross-hair dimming), it is attention demanding, and subjects do show an
improvement in reaction time (data not shown). Enhanced signaling from putamen to
the left motor region (Figure 5D) may underlie this improvement. This result is

consistent for the known role of the putamen in motor learning (Grafton et al. 1995).

The presently observed latency differences between morning and evening (Figure
6C,D) spatially correspond to previously reported functional connectivity changes in
medial temporal lobe and insula (Figure 6E) (Shannon et al. 2013). The previous
findings point to changes in signal correlation; the present results point to diurnal
changes in directed signaling. Specifically, the entorhinal cortex is late in the morning
and early in the evening. Entorhinal cortex is the main interface between hippocampus
and neocortex (Lavenex and Amaral 2000). It is believed that the hippocampus
accumulates encoded experiences during the day, and that this form of memory is labile
(Axmacher et al. 2009). Memory consolidation is thought to require transfer of
information from hippocampus to neocortex, which takes place later in the day and
during sleep (Axmacher et al. 2009). Accordingly, entorhinal cortex may be late in the
morning because it is acting as an information accumulator. Conversely, entorhinal
cortex is early in the evening because it is transferring information to cortex, thereby
facilitating formation of hippocampal independent memories. The insula is relatively
early in the morning and late in the evening. Interpreting this effect will require further

investigation.
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Limitations

There are 3 principle limitations of this work. First, our method for estimating latencies
(parabolic interpolation of pair-wise cross-covariance estimates) undoubtedly includes
some imprecision, in part because the temporal sampling density is relatively low (see
Repetition Times in Table 1). However, our conclusions are based on results obtained
at the group level. These group level latency estimates are reproducible across 7 large

cohorts (Figure 2D).

Second, our findings are based on resting state fMRI data pre-processed using global
signal regression (GSR). GSR is a controversial processing step (Fox et al. 2009;
Murphy et al. 2009a); however, in preliminary analyses, it was determined that omission
of GSR greatly reduces the range of observed latencies. This is easily understandable
as a consequence of retaining large quantities of instantaneously correlated shared
variance. ltis likely that some fraction of the global signal is neuronally derived
(Scholvinck et al. 2010); however, it is certain that a large fraction is non-neuronal
artifact attributable to head motion (Power et al. 2012; Power et al. 2013; Yan et al.
2013) and variable pCO, (Birn et al. 2006). Moreover, the artifactual component of the
global signal exhibits substantial cross subject variability (He and Liu 2012; Power et al.
2013). Therefore, GSR is a necessary noise-reduction technique in the present

analysis.
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Finally, to estimate the statistical significance of the orthogonality of latency structure
with respect to RSNs, we developed a method to generate surrogate RSNs with the aim
of matching the spatial characteristics of real RSNs (see Appendix). While the topology
of true RSN structure was preserved in the surrogates, the spatial frequency distribution
was only approximately matched (Figure 7). Nevertheless, we are persuaded that the

orthogonality relationship is statistically significant.
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2.8 Appendix

Alternative Strategies for Computing and Analyzing Latencies

We directly computed lags between time series on the basis of lagged cross-covariance
functions. Parabolic interpolation was used to determine the lag of maximal covariance
at a temporal resolution finer than the sampling density. An alternative method based
on iterating lagged correlation functions has been described (Majeed et al. 2011;
Majeed et al. 2009), but it applies to whole images as opposed to ROI pairs.
Additionally, the iterative method provides no basis for calculating what percentage of
variance attributable to latency components. The major alternative strategy for

estimating lags is the phase-slope method, in which lag is computed as the derivative
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with respect to frequency of complex coherence phase (Jenkins and Watts 1968).
Although the phase slope method has been used to analyze fMRI data (Hinkley et al.
2013; Sun et al. 2005), we chose a time domain method because the frequency domain
method requires differentiation, which yields noisy and unstable estimates. Moreover,
the phase-slope method requires evaluating slope over some interval under the

assumption that the slope is constant, which is not necessarily true.

Having obtained a time delay matrix by any method, alternatives for extracting latency
components include the present (projection) method (Nikolic 2007; Schneider et al.
2006) and eigenvector decomposition. We tested both approaches and found that the
principal eigenvector generally is very similar to the result obtained by the projection
method. However, the projection method yielded much more reproducible results in

cross-subgroup analysis shown in Main Text Figure 2.

A substantial body of previous work has applied vector autoregressive (VAR) methods
to the study of directed influences in fMRI data (Deshpande et al. 2011; Friston et al.
2003; Garg et al. 2011; Goebel et al. 2003; Smith et al. 2012). All of these methods
require the computation of k X k X t matricies, where k is the number of ROIs, and 7 is
the order of the model. Even if model order is limited to 1 (Garg et al. 2011; Smith et al.
2012), VAR does not directly return lag, which is the present quantity of interest.
Dynamic causal modeling (dcm) is a VAR based method for estimating the most likely
topology of directed graphs. However, in practice, dcm is limited to a handful of ROIs,

and therefore, is unsuited to the present investigation. Granger causality (Deshpande
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et al. 2011; Goebel et al. 2003) is theoretically less combinatorically demanding than
dcm, but like dcm, is essentially an information-theoretic analysis. The scope of our
analysis is much more restricted and does not rely on models. Our results carry
implications regarding the existence of propagated disturbances and directed influences
in intrinsic brain activity, but we here avoid information theoretic approaches in favor of

a more concrete and interpretable analysis based on lags.

Generation of surrogate RSNs

We generated surrogate RSNs topologically matched to real RSNs and approximately
matched in spatial frequency distribution (Figure 7). Surrogate RSNs were generated
by treating the left hemisphere of the real RSN brain as an element of a high
dimensional symmetric group that respects the topology of the true RSNs. We then
applied randomly generated full-rank permutations on the uni-hemispheric RSN brain
partition. In greater detail, the 3D MLP RSN partition was converted to a 1D vector and
the ends were connected to form a ring. The ring, then, was randomly rotated and the
3D to 1D transform inverted. In principle, other group operations could have been
applied, but rotation theoretically preserves spatial scale. The resulting 3D map was
reflected across the mid-sagittal line to generate hemispherically symmetric surrogate

RSNs. Equivalence of spatial scale was verified by 3D-Fourier analysis (Figure 7).

Generation of “venograms”

Regression frequently is used to compute the topography within the brain of reference

signals, e.g., estimated response waveforms in task fMRI. Similarly, the topography of
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a time shifted reference signal can be computed by regressing the derivative of the time

signal (Friston et al. 1998). This technique is easily understood as an application of a

Taylor Expansion: f(t + At) = f(t) + At -%. In the present work, f(t) is the global

signal, which has already been removed by regression during pre-processing. Thus,
regression of the differentiated global signal yields the topography of the delayed global

signal, i.e., large venous structures.

Estimation of TD matrix dimensionality

Experimentally observed lag structures include measurement errors. Hence, the
dimensionality of our TD matrices must be estimated. To perform this estimation, we ran
the procedure created by T. P. Minka, which compares the eigenspectrum of the actual
data to the eigenspectrum of a random matrix and expresses the result in terms of
likelihood (Minka 2001). The Minka algorithm requires a positive definite matrix. As the
TD matrix is not positive definite, the algorithm was run on the square of the TD matrix,
which is mathematically required to have the same dimensionality of the TD matrix itself
(Allison et al. 2010). The most likely dimensionality of the lag structure illustrated in
Figure 9 is 2 (Figure 13).

Figure 2-13: Estimation of time-delay (TD) matrix
model order. The TD matrix intrinsic dimensionality
likelihood was calculated (Minka 2001) using
Bayesian Information Criterion (BIC) in the 7 groups
corresponding to Figure 2. In each group, the
dimensionality of highest likelihood is 2. This result
implies the existence of two transitive systems of
lags within the TD matrix. Regionally dependent
- neurovascular coupling can explain only one of
! 2 : : s these transitive systems of lags. Therefore,

ModelOrder hemodynamic delays, even if they are substantial,
cannot account for the entirety of latency structure.

Likelihood (arbitrary units)

0
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Dimensionality of a TD matrix representing a single set of fixed delays
We prove that a fixed set of regionally distinct neurovascular coupling delays explains
only one component of a TD matrix. The proof depends on showing that a TD matrix

representing a single set of lagged relationships has only a single eigenvector.

Let the fixed set of regional delays be represented as the column vector, gg\‘, where n
is the number of regions. Suppose that T is the anti-symmetric matrix generated by this
set of delays. Thus,

0 e Ty 0 v dy, —d,

T = : = : " :
—Tip 0 dy—d, - 0

(A1)
Previous work has shown that, for a nonzero anti-symmetric matrix

A € R™™ rank(A) < 2k if and only if there exists x4, ..., Xx, ¥1, ...y¥1 € R™ such that
A=Y (x;y7 — y;x7) (Allison et al. 2010). Hence, if we construct x,y such that

T = xy” —yxT, then k = 1, and rank(T) < 2. Since the rank of any anti-symmetric
matrix over R must be even (Allison et al. 2010), rank(T) = 2, as T is nonzero. The
eigenvalues of a real, anti-symmetric matrix come in conjugate imaginary pairs (Allison
et al. 2010). Therefore, T has only 2 conjugate imaginary eigenvalues, +ci,
corresponding to a single eigenvector, +v, except for sign. Notice that the
dimensionality of T is 1 even though its rank is 2. This is because for all real, anti-

symmetric matrices, the rank is 2 times the dimensionality, as eigenvalues come in

conjugate imaginary pairs (see above). Thus, once we construct x, y such that T =

62



xy” — yxT, we have proven that a TD matrix representing a single set of lagged
relationships has only a single eigenvector.
Now, it remains to construct x,y such that T = xy” — yxT. Letx € R" suchthatx; =1

foralli and y; = d; forj =1,...,n. Then,

d, d,
dy d; d,

xyl —yxT =11, d;...d,) — d, [111..1) = -

Y
: ]

rdydy .. dy
dyd, .. dy

=
QU
3

d,dy ..