27,518 research outputs found

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Comment: 55 pages, 82 figure

    An optical fiber based interferometer to measure velocity profiles in sheared complex fluids

    Full text link
    We describe an optical fiber based interferometer to measure velocity profiles in sheared complex fluids using Dynamic Light Scattering (DLS). After a review of the theoretical problem of DLS under shear, a detailed description of the setup is given. We outline the various experimental difficulties induced by refraction when using a Couette cell. We also show that homodyne DLS is not well suited to measure quantitative velocity profiles in narrow-gap Couette geometries. On the other hand, the heterodyne technique allows us to determine the velocity field inside the gap of a Couette cell. All the technical features of the setup, namely its spatial resolution (50\approx 50--100μ100 \mum) and its temporal resolution (1\approx 1 s per point, 1\approx 1 min per profile) are discussed, as well as the calibration procedure with a Newtonian fluid. As briefly shown on oil-in-water emulsions, such a setup permits one to record both velocity profiles and rheological data simultaneouslyComment: 13 pages, 16 figures, Submitted to Eur. Phys. J. A

    CMS Central Hadron Calorimeter

    Get PDF
    We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.Comment: 7 pages, 11 Figures, corresponding author: H. Budd, [email protected]

    The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI

    Full text link
    Interferometric measurements of optical path length differences of stars over large baselines can deliver extremely accurate astrometric data. The interferometer GRAVITY will simultaneously measure two objects in the field of view of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) and determine their angular separation to a precision of 10 micro arcseconds in only 5 minutes. To perform the astrometric measurement with such a high accuracy, the differential path length through the VLTI and the instrument has to be measured (and tracked since Earth's rotation will permanently change it) by a laser metrology to an even higher level of accuracy (corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path techniques are used for nanometer precision measurements, but with these methods it is difficult to track the full beam size and to follow the light path up to the primary mirror of the telescope. Here, we present the preliminary design of a differential path metrology system, developed within the GRAVITY project. It measures the instrumental differential path over the full pupil size and up to the entrance pupil location. The differential phase is measured by detecting the laser fringe pattern both on the telescopes' secondary mirrors as well as after reflection at the primary mirror. Based on our proposed design we evaluate the phase measurement accuracy based on a full budget of possible statistical and systematic errors. We show that this metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres

    A Step-by-step Guide to the Realisation of Advanced Optical Tweezers

    Get PDF
    Since the pioneering work of Arthur Ashkin, optical tweezers have become an indispensable tool for contactless manipulation of micro- and nanoparticles. Nowadays optical tweezers are employed in a myriad of applications demonstrating the importance of these tools. While the basic principle of optical tweezers is the use of a strongly focused laser beam to trap and manipulate particles, ever more complex experimental set-ups are required in order to perform novel and challenging experiments. With this article, we provide a detailed step- by-step guide for the construction of advanced optical manipulation systems. First, we explain how to build a single-beam optical tweezers on a home-made microscope and how to calibrate it. Improving on this design, we realize a holographic optical tweezers, which can manipulate independently multiple particles and generate more sophisticated wavefronts such as Laguerre-Gaussian beams. Finally, we explain how to implement a speckle optical tweezers, which permit one to employ random speckle light fields for deterministic optical manipulation.Comment: 29 pages, 7 figure

    Analytical and experimental investigations of low level acceleration measurement techniques

    Get PDF
    Construction techniques for accelerometer with low level threshold sensitivit

    Joint Elastic Side-Scattering Lidar and Raman Lidar Measurements of Aerosol Optical Properties in South East Colorado

    Get PDF
    We describe an experiment, located in south-east Colorado, USA, that measured aerosol optical depth profiles using two Lidar techniques. Two independent detectors measured scattered light from a vertical UV laser beam. One detector, located at the laser site, measured light via the inelastic Raman backscattering process. This is a common method used in atmospheric science for measuring aerosol optical depth profiles. The other detector, located approximately 40km distant, viewed the laser beam from the side. This detector featured a 3.5m2 mirror and measured elastically scattered light in a bistatic Lidar configuration following the method used at the Pierre Auger cosmic ray observatory. The goal of this experiment was to assess and improve methods to measure atmospheric clarity, specifically aerosol optical depth profiles, for cosmic ray UV fluorescence detectors that use the atmosphere as a giant calorimeter. The experiment collected data from September 2010 to July 2011 under varying conditions of aerosol loading. We describe the instruments and techniques and compare the aerosol optical depth profiles measured by the Raman and bistatic Lidar detectors.Comment: 34 pages, 16 figure
    corecore