103,522 research outputs found

    Designing low carbon buildings : a framework to reduce energy consumption and embed the use of renewables

    Get PDF
    EU policies to mitigate climate change set ambitious goals for energy and carbon reduction for the built environment. In order meet and even exceed the EU targets the UK Government's Climate Change Act 2008 sets a target to reduce greenhouse gas emissions in the UK by at least 80% from 1990 levels by 2050. To support these targets the UK government also aims to ensure that 20% of the UK's electricity is supplied from renewable sources by 2020. This article presents a design framework and a set of integrated IT tools to enable an analysis of the energy performance of building designs, including consideration of active and passive renewable energy technologies, when the opportunity to substantially improve the whole life-cycle energy performance of those designs is still open. To ensure a good fit with current architectural practices the design framework is integrated with the Royal Institute of British Architects (RIBA) key stages, which is the most widely used framework for the delivery of construction projects. The main aims of this article are to illustrate the need for new approaches to support low carbon building design that can be integrated into current architectural practice, to present the design framework developed in this research and illustrate its application in a case study

    Application of Building Typologies for Modelling the Energy Balance of the Residential Building Stock

    Get PDF
    Building typologies can serve as a basis for analysing the national housing sector. During the TABULA project which was introducing or further developing building typologies in thirteen EU countries, six of the European partners have carried out model calculations which aim at imaging the energy consumption and estimating the energy saving potentials of their national residential building stocks (IWU / Germany, NOA / Greece, POLITO / Italy, VITO / Belgium, STU-K / Czech Republic, SBi / Denmark). The results show that the model calculations can provide plausible projections of the energy consumption of the national residential buildings stock. The fit of model calculations and national energy statistics is satisfactory, deviations can often be explained and corrected by adapting standard boundary conditions of the applied calculation models to more realistic values. In general, the analysis shows that building typologies can be a helpful tool for modelling the energy consumption of national building stocks and for carrying out scenario analysis beyond the TABULA project. The consideration of a set of representative buildings makes it possible to have a detailed view on various packages of measures for the complete buildings stock or for its sub-categories. The effects of different insulation measures at the respective construction elements as well as different heat supply measures including renewable energies can be considered in detail. The quality of future model calculations will depend very much on the availability of statistical data. For reliable scenario analysis information is necessary about the current state of the building stock (How many buildings and heating systems have been refurbished until now?) and about the current trends (How many buildings and heating systems are being refurbished every year?). The availability and regular update of the relevant statistical data will be an important basis for the development and evaluation of national climate protection strategies in the building secto

    Passive Design of Buildings for Extreme Weather Environment

    No full text
    Buildings account for nearly 40% of the end-use energy consumption and carbon emissions globally. Buildings, once built, are used at least for several decades. The building sector therefore holds a significant responsibility for implementing strategies to increase energy efficiency and reduce carbon emissions and thus contribute to global efforts directed toward mitigating the adverse effects of climate change. The work presented in this paper is a part of continuing efforts to identify, analyze and promote the design of low energy, sustainable buildings with special reference to the Kazakhstan locality. Demonstration of improved environmental conditions and impact on energy savings will be outlined through a case study incorporating a passive design approach and detailed computational fluid dynamics analysis for an existing building complex. The influence of orientation and configuration is discussed with reference to energy efficiency and associated wind comfort and safety. The effect of these aspects on energy consumption and comfortable wind environment has been assessed using CFD analysis and proved to be affective. Single building and multiple building configurations have been analyzed and compared. According to the findings, multiple building configurations have better wind conditions when compared with a single standing building. With respect to orientation the former one should be modeled with the fully surrounded side of a “box” opposite to the predominant wind direction whereas the latter one should be located with the rear side opposite to the wind direction. Thus, results indicated that there is a considerable influence of passive design and orientation on energy efficiency, wind comfort and safety. Careful consideration and application of the findings can potentially lead to considerable decrease of energy consumption and, therefore, allow saving money and the environment at the same time

    Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings

    Get PDF
    Directive 2002/91/EC of the European Parliament and Council on the Energy Performance of Buildings has led to major developments in energy policies followed by the EU Member States. The national energy performance targets for the built environment are mostly rooted in the Building Regulations that are shaped by this Directive. Article 3 of this Directive requires a methodology to calculate energy performance of buildings under standardised operating conditions. Overwhelming evidence suggests that actual energy performance is often significantly higher than this standardised and theoretical performance. The risk is national energy saving targets may not be achieved in practice. The UK evidence for the education and office sectors is presented in this paper. A measurement and verification plan is proposed to compare actual energy performance of a building with its theoretical performance using calibrated thermal modelling. Consequently, the intended vs. actual energy performance can be established under identical operating conditions. This can help identify the shortcomings of construction process and building procurement. Once energy performance gap is determined with reasonable accuracy and root causes identified, effective measures could be adopted to remedy or offset this gap

    A review of daylighting design and implementation in buildings

    Get PDF

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally

    Improving building energy efficiency: case study

    Get PDF
    The main purpose of this study was to conduct a study for improving energy efficiency of an important building in Rome, the Headquarters of the Italian State Monopoly. The study was conducted by comparing conventional analysis tools with innovative ones, in order to evaluate the possible solutions, both structural and plant, aimed at the use of renewable sources and at energy saving. After making a thermo graphic survey, the first and useful step for a good energy audit, conduct building energy was simulated, at first in steady state by the use of a software widely used at the professional level, then in transient state by the use of TRNSYS, a finite difference method software which is able to simulate more accurately conduct building energy. The next step was to propose possible redevelopment of a structural and energy plant that promotes the building energy rating higher, finding the right balance between the energetic and economic aspect. Among the interventions plant, two possible workarounds have been proposed and designed in detail: - installation of a photovoltaic system; - installation of a solar cooling system. Both solutions lead to a reduction of electricity consumption with a significant impact in economic and environmental term

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore