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Abstract 

In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to 

reduce residential building energy consumption.  First, a flow sensor was developed 

for residential gas and electric storage water heaters.  The sensor utilizes unique 

temperature changes of tank inlet and outlet pipes upon water draw to provide 

occupant hot water usage.  Post processing of measured pipe temperature data was 

able to detect water draw events.  Conservation of energy was applied to heater 

pipes to determine relative internal water flow rate based on transient temperature 

measurements.  Correlations between calculated flow and actual flow were 

significant at a 95% confidence level.  Using this methodology, a CPS water heater 

controller can activate existing residential storage water heaters according to 

occupant hot water demand.  The second CPS approach integrated an open-source 

building simulation tool, EnergyPlus, into a CPS simulation platform developed by 

the National Institute of Standards and Technology (NIST).  The NIST platform 

utilizes the High Level Architecture (HLA) co-simulation protocol for logical 

timing control and data communication.  By modifying existing EnergyPlus co-

simulation capabilities, NIST’s open-source platform was able to execute an 

uninterrupted simulation between a residential house in EnergyPlus and an 

externally connected thermostat controller.  The developed EnergyPlus wrapper for 

HLA co-simulation can allow active replacement of traditional real-time data 

collection for building CPS development.  As such, occupant sensors and simple 

home CPS product can allow greater residential participation in energy saving 

practices, saving up to 33% on home energy consumption nationally.    
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Chapter 1:  Introduction 

Energy usage in the United States is an essential part of daily life.  Often taken for 

granted, energy is regularly used in common sectors such as transportation, 

industrial plants, and commercial/residential buildings.  A report by Lawrence 

Livermore National Laboratory and the United States Department of Energy (DOE) 

suggests that 81% of national consumed energy sources from natural gas, coal, and 

petroleum [1].  Each of these fossil fuel sources leaves a large carbon footprint, 

releasing abundant amounts of CO2 into our atmosphere upon use [2], leading to 

increasing atmospheric temperatures [3, 4]. Based on the two 59-point data sets of 

CO2 and temperature [5], represented in Figure 1.1, linear regression analysis 

indicates a linear correlation of 0.95. Alternatively speaking, the probability that 59 

data points of two uncorrelated variables reaching the same level of correlation is 

0.05%, resulting in significant linear correlation evidence between atmospheric 

CO2 and temperature. 
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Figure 1.1: Carbon dioxide (CO2) production form fossil fuels is dissipated into the 
atmosphere. Atmospheric CO2 (measured in parts per million (ppm)) significantly 

correlates to increasing atmospheric temperatures [5].  

Residential homes in particular posses energy saving potential to reduce the 

national carbon footprint. Represented in Figure 1.2, 69% of home energy 

consumption sources from fossil fuels [1], where 35% of the consumed energy is 

wasted. Potential energy losses contributing to this waste can be attributed to Carnot 

efficiencies of heating devices, home energy loss due to environment temperature 

differences, and inefficient or unnecessary activation of home appliances.   

Appliance efficiencies and energy loss can be improved with newer building 

materials and more efficient appliances.  However, buildings and their incorporated 

systems are rarely updated, where homes are not fully replaced for an average of 

65-70 years [6, 7].  Automobiles, for comparison, are complex systems that have 
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become increasingly efficient over the years [8].  These new efficient automobile 

technologies can more regularly be incorporated because vehicles have a relatively 

shorter lifespan of 5-10 years [9, 10].  At these rates, a more immediate energy 

saving impact for the residential sector can be achieved by appropriately controlling 

activation of home appliances. 
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The recent paper by Nguyen and Aiello [11] suggested that energy conscious 

behaviors in residential homes can lead to significant energy savings without need 

for home replacements.  Such behaviors can achieve 33% and 50% energy savings, 

respectively compared to the design point and compared to those demonstrating 

wasteful behaviors, shown in Figure 1.3.  Unfortunately, the typical home occupant 

does not consciously control appliances, such as water heaters or HVAC, for 

optimized energy usage [12] as it involves high amounts of effort.  Incorporating 

automated intelligence into home appliances can allow existing and potentially 

wasteful devices to exhibit energy conscious savings.  Using information from 

Figure 1.2, and assuming all residential homes are capable of reducing consumed 

energy by 33% through home intelligence, an upwards of 3.6 quadrillion BTUs of 

energy can be saved nationally on an annual basis in the United States’ residential 

sector.  This amount of energy savings would effectively lower fossil fuel demand, 

lowering the nation’s carbon footprint.   
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Figure 1.3: Differentiation between energy conscious and wasteful behaviors, as 

compared to the design point of select appliances [11].   

 

1.1         Cyber-Physical Systems 

Cyber-Physical Systems (CPS) are described as systems involving interactions 

between computation and physical components [13].  CPS are constantly taking 

input through sensors to monitor our physical world.  Sensor information provides 

a knowledge basis for computational decision-making processes, where the results 

then allow action, operation, and control of other physical elements such as 

actuators, or more specifically, building appliances.  This cycle of CPS operation, 

represented in Figure 1.4, can be used to integrate and interconnect systems to 

provide new functionalities for several economic sectors.  To name a few, the 

monitoring and control functions of CPS extend to transportation, manufacturing, 

healthcare, buildings, and energy [14-17].   
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Figure 1.4: CPS development and use cycle, constantly collecting input, making 

decisions, and controlling output. 

Currently, CPS face several challenges including safety, security, performance, 

reliability, data transfer, and cost.  Solutions to these challenges are currently being 

developed, but differ between domains, services, applications, and devices.  For 

building CPS, progress has been made in attempt to develop reliable and high-

performance systems called Energy Management Systems (EMS).  EMS have been 

developed to automatically control lighting and HVAC in commercial buildings 

based on occupant activity.  For example, Distech Controls has a variety of building 

management technologies capable of managing and optimizing energy efficiency 

and building comfort to save 30% of a building’s energy consumption [18].  

Though effective, these systems are expensive, causing a residential market 

penetration barrier for residential use.   

Residential CPS development is difficult because buildings have many 

interconnected factors to account for.  Figure 1.5 shows how home operation can 

be affected by many components such as home location, construction, and 

occupancy.  These factors can vary depending on climate, age of the house, and 
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occupants themselves, making robust CPS more complex.  Often, this diversity of 

home operation cannot be captured in a single CPS component, but it may be 

required for CPS testing and validation.  Such CPS experimentation necessitates 

interdisciplinary knowledge and real-time data collection, which requires 

significant amounts of time and resources [19].  Building CPS are not mainstream 

because high market costs stem from time and resources required for commercial 

CPS development and deployment. 

 
Figure 1.5: Many variables are involved in building energy consumption, and are 

often interconnected.     

Some CPS products have made attempts to penetrate the residential market.  

Google’s Nest Thermostat [20] is advertised as a smart thermostat which 

intelligently controls home HVAC.  Though reasonably priced, the learning 

algorithms for HVAC operation rely on a certain level of remote controllability to 

properly function.  Some complaints have been made about this cumbersome and 
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manual process, and others claim they do not benefit from the advertised energy 

savings.   

The market for smart homes is still in the early stages [19].  Other smart home 

approaches have been discussed  [21-25], but have not been implemented.  This 

thesis explores two CPS approaches for integration and home energy savings.  First, 

a sensor is developed to provide residential hot water usage information 

automatically for existing gas or electric storage water heaters.  Capitalizing on 

unique temperature traits of water heater inlet and outlet pipes, the temperature-

based sensor can non-invasively detect internal flow.  The market for such a sensor 

is analyzed, and determined to be appropriate for home CPS energy savings.  Next, 

a detailed description is discussed for correlating water heater temperature change 

rate to internal water flow rate, as well as description for automated water draw 

detection methodology.  Lastly, 33% less water heater energy consumption is 

achieved through a simple experiment based on automated sensor results. 

The second approach for residential CPS improvement involves the integration of 

a building simulation software into a test platform to assist in CPS deployment.  

Existing CPS simulation platforms are evaluated for simple and low-cost CPS 

development.  Next, an open-source building simulation software is chosen for its 

complex energy calculations necessary to evaluate building CPS performance and 

reliability.  Integrating building simulations in a CPS platform allows for effective 

testing and validation of developing home CPS.  To validate the described 

approach, a modeled HVAC system is simulated in the platform, and controlled by 
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an external thermostat component.  Showing no effect on building simulation 

results, the use of this open-source process can lead to cheaper, more effective home 

CPS.  

1.2         Water Heater Flow Sensing 

Water heating is a very integral part of our daily lives.  We use hot water to shower, 

clean our clothes, and wash our dishes.  Though often kept out of sight, the DOE 

found water heaters account for 18% of total home energy consumption [26], shown 

in Figure 1.6.   

 
Figure 1.6: Distribution of residential energy consumption, as stated by the US 
Department of Energy.  Water heating and HVAC contribute significantly [26].   

Water heating is accomplished either by storage water heaters, tankless on-demand 

water heaters, heat pump water heaters, or solar water heaters [27].  Storage water 

heaters are most common but suffer from heat loss.  Many people appreciate the 

efficiency of tankless water heaters, but may be required to purchase two due to 

limited flow rate.  Heat pump water heaters are much more efficient than storage 
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water heaters, but affect heating load on a home due to cold air exhaust.  Choice of 

these heater varieties can depend on income, available space, local climate, and 

desire for energy savings.  Table 1 below compares benefits and drawbacks of each 

type.   

Table 1: Types of residential water heaters.  Storage water heaters make up the 
majority of the market [27]. 

Type Operation Basis Pros Cons Amount 
in Use 
[%] 

Storage Internal heating 
elements from gas 
or electric sources.  
Constantly retains 
set-point. 

Lower cost  Constant 
standby heat 
loss 

97% 

Tankless Heats water on 
demand with high 
power heating 
elements 

8-34% more 
efficient thank 
storage water 
heaters 

Limited flow 
rate 

3% 

Heat 
Pump 

Draws heat from air 
to heat stored water. 

2-3 times more 
efficient than 
storage water 
heaters 

Location 
dependent 
performance 

<1% 

Solar Uses solar energy to 
heat stored water.   

50% more 
efficient than 
gas or electric 
water heaters 

Climate and 
weather 
dependent 
performance 

<1% 

The most common home water heaters by far are storage gas or electric water 

heaters, controlling about 97% of the market [28].  These water heaters rely on 

regular heating to constantly maintain available hot water.  Though storage heaters 

are usually set to maintain 50°C-55°C, select appliances require different output 

water temperatures, shown in Table 2.  Stored hot water causes two forms of heat 
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loss.  First, the heated storage tank suffers from standby heat loss throughout the 

day due to tank and environment temperature difference.  Second, the excessively 

hot water is often mixed with colder water for desired output temperature causing 

losses through entropy generation.  For an individual home, avoiding excessive and 

unnecessary heating can reduce these forms of heat loss and reduce consumed 

energy.   

Table 2: Select home appliances require hot water at different (approximate) 
temperatures. Storage water heaters maintain temperatures to account for high 

temperature demand [29].  

Appliance Water Temperature 
Needed [°C] 

Average Family 
Weekly Usage 

Clothes Washer 55 7  

Dish Washer 50 2-3  

Shower 40 7-14 

Sinks (hot water) 40 ~50 

 

Recent advancements in storage water heater research has led to more efficient 

products [30, 31].  Improved insulation, for example, can reduce heat losses by up 

to 45% [32].  Lifecycles are long (about 10 years), preventing home occupants from 

upgrading current systems.  Making matters worse, newer storage systems are 

expensive, ranging between $500 and several thousand dollars, making a slow 

return on investment.  

A more realistic and immediate impact can be achieved with an inexpensive add-

on CPS device for existing water heaters.  For such a device to effectively reduce 

the two forms of gas and electric water heater waste, existing unit activation should 
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be controlled.  Both water flow rate and draw regularity information can act as the 

basis for accurate water heater control.  Draw regularity knowledge provides an 

activation schedule to avoid unnecessary heating and standby heat loss, while flow 

rate knowledge can provide necessary information to minimize excessive heating.  

Extraction of these two pieces of information is accomplished through flow rate 

sensing.   

The current market of flow sensors vary between categories of either affordable and 

invasive (complex installation) [33-35], or expensive and non-invasive [36-42], 

compared in Table 3.  Invasive sensors are placed in a passage of fluid flow and 

directly measure the flow rate.  For example, Munir et al. used an in-line propeller 

for microcontroller flow detection [34].  Though accurate, the installation of a flow 

sensor to an existing piping network of a water heater often involves water drainage 

as well as replacement of tubes and fittings, which can be labor intensive and costly. 

Table 3: Comparison of existing pipe flow sensors for water heater applications. 

Type Operation Basis Pros Cons References 

In Line Directly measure 
fluid flow in 
piping network 

Low cost, 
high 
accuracy 

Requires 
installation and 
potential water 
heater drainage 

[33-35] 

Ultrasonic 
Sensor 

Uses ultrasonic 
sound to get flow 
rate 

Non-
invasive, 
high 
accuracy 

High costs [40] [41] 

Pressure 
Sensor 

Detects pressure 
fluctuations upon 
water draw in 
piping network 

Semi-
invasive 

Not water heater 
specific. 
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Non-invasive sensors have more simple installation.  Placed on the outer perimeter 

of a pipe, Tawackolina et al. evaluated an ultrasonic flow sensor for heat dependent 

accuracy [40], and Tasaka et al. investigated ultrasonic Doppler velocity profilers 

and their practical applications [41].  However, the technology used is often 

expensive (an order of magnitude of $1000 [42] for ultrasonic sensors) creating an 

impractical and undesirable reality of an acceptable return on investment.  

Additionally, these non-invasive methods typically have higher accuracy with more 

particles or bubbles in the fluid which do not regularly occur in simple water flow.   

A unique characteristic of a water heater is that inlet and outlet pipes experience 

large temperature changes upon hot water draw events, as cold water replaces the 

drawn hot water.  Though Nguyen notes principles for how heat transfer can affect 

a thermal micromachined flow sensor [35], the small size is not directly applicable 

for water heater use.  For the larger application, the principle of energy conservation 

can be used to translate the pipe temperature change information into the flow rate 

of water moving through the water heater.  As such, an economically viable 

compact package can measure flow rate using temperature sensors, without 

involving an invasive installation process.  To the best of the author’s knowledge, 

the proposed temperature-based approach has not been attempted, making this a 

unique concept to be investigated and explored.   

Development of an affordable and easily installed flow rate detector can create a 

more widespread accessibility of usage pattern information for CPS control of 

currently installed gas or electric home water heaters.  The second chapter of this 
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thesis creates a foundation by presenting flow rate detection based on temperature 

changes of water heater pipes.  Automated water draw detecting algorithms are 

developed for streamlined flow calculation processes.  Incorporating relative flow 

rate knowledge and occupant hot water demand, a CPS can control water heating 

for increased energy saving capabilities.   

1.3         Building Simulation Integrated within CPS 
Testing Environment 

Effective home CPS are not readily available to consumers at a reasonable price.  

Time and resources required to harness building diversity from Figure 1.5 increase 

costs of CPS and de-incentivizes others from developing more CPS.  A simple, 

low-cost CPS development method can allow for more robust designs.  To 

accomplish such a feat, building simulations can be used to replace traditional 

processes of physical and real-time building data collection.  Further, incorporating 

a building simulation with a developing CPS requires co-simulation friendly 

environments. 

Currently there are several simulation environments available for CPS 

development.  Poudel et al. developed a CPS testbed which can conduct electrical 

power control experiments in real-time [43].  Though their testbed integrates 

MATLAB/Simulink models [44], simulation is only limited to the power grid 

domain, and it cannot be applied directly to building CPS.  Garraghan et al. 

proposed a service-oriented approach called SEED (simulation environment 

distributor) which is designed to simulate large scale CPS [45].  However, SEED 
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is not a very user-friendly approach to CPS simulation, requiring knowledge of 

programming and virtual networks.  Magnusson et al. developed a full simulation 

system call Simics [46], allowing a framework for firmware co-simulation.  Their 

commercial product can connect many diverse devices, but are tuned more to 

software based systems, as opposed to physical components like those found in 

buildings.   

Institute of Electrical and Electronics Engineers (IEEE) suggests a co-simulation 

standard known as the High Level Architecture (HLA) [47].  This set of rules 

provides a structure allowing simulations to describe their individual application 

for interoperability.  The HLA describes individual simulation entities as federates 

and a collection of interconnected federates as a federation.  A federation 

complying with the HLA allows data and information to be made available between 

all federates.  Since the HLA is only a protocol, or standard, for data exchange, it 

requires a software to facilitate actual federation data transfer called Run-Time 

Infrastructure (RTI).  RTI provides synchronous data exchange while accurately 

controlling time step progression between federates.  Shown in Figure 1.7, 

implementation of the HLA/RTI can vastly improve interoperability and co-

simulation between federates. 
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Figure 1.7: Rather having individual connectivity between simulation entities 
(federates), the RTI environment can more simply connect federates for co-

simulations. 

The National Institute of Standards and Technology (NIST) developed an open-

source CPS experiment and testing environment called Universal CPS 

Environment for Federation (UCEF) [48] which utilizes HLA.  Its graphical user 

interface is designed to make co-simulations and experiments for CPS product 

simple and available.  UCEF can integrate various simulation entities (federates) 

sourced from different development environments, which has traditionally been 

challenging to accomplish.  UCEF leverages the IEEE’s HLA standard for its 

communication protocol, implemented by the Portico RTI [49], to achieve logical 

time progression and data transfer within a federation.  So far, UCEF is still under 

development phase and only supports Java federates, but yields high potential for 

low-cost CPS experimentation and validation processes.   

An open-source building simulation tool called EnergyPlus [50] can complement 

UCEF functionality by exchanging building simulation information.  EnergyPlus is 

a widely used tool created by the DOE, and can model building energy consumption 

by performing complex calculations at sub-hourly time steps.  The software 
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calculation capabilities incorporate building parameters from Figure 1.5 such as 

user activity, HVAC systems, building composition, and more.  Known for its 

robust capabilities, EnergyPlus building simulations can replicate building 

information typically measured for CPS development.  Replacing traditionally 

collected physical data with a simulated model in EnergyPlus, UCEF co-simulation 

can accelerate home CPS development.   

The third chapter of this thesis integrates EnergyPlus into UCEF for CPS co-

simulation.  An EnergyPlus model will communicate building information to the 

RTI using a UCEF Java federate.  To verify co-simulation capability, an HVAC 

set-point algorithm implemented in another Java federate will receive environment 

temperature from EnergyPlus and return HVAC set-points to EnergyPlus.  

Intelligent set-point control of an HVAC system can significantly reduce energy 

consumption in a residential building, providing a good use case for the developed 

platform.  Further, other simulators integrated with UCEF can expand HVAC 

controllability to include pre-heating or pre-cooling a collection of homes to reduce 

excessive power draw during peak demand [24].  Enabling UCEF co-simulation 

with EnergyPlus can allow for an established process to develop low-cost CPS for 

reduced residential energy consumption.  
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Chapter 2:  Water Heater Flow Sensing 

Water heaters account for approximately 18% of residential home energy 

consumption.  Gas and electric water heaters are most common, but are often 

overheated, causing standby heat loss and potential entropy generation in attempt 

to reach desired output temperature.  Sufficient inlet and outlet pipe temperature 

changes are experienced by these water heaters upon hot water draw events.  

Energy conservation is evaluated for water heater inlet and outlet pipes to correlate 

temperature change rate to internal water flow rate.  Calculated flow information 

provides a CPS water heater controller with sufficient information to control water 

heater activation for reduced energy consumption.  Differentiating between high 

and low flow rates can assist control for water heater activation.  This chapter 

explores a flow rate sensor using temperature measurements as well as 

methodologies for automated water draw detection for CPS water heater control.   

2.1         Flow Rate Approach 

Energy conservation evaluation around a water heater pipe surface can convert 

temperature change to flow rate.  Calculating relative flow rate can qualitatively 

differentiate high and low draws.  A water heater pipe is explored and evaluated for 

heat transfer, where axial conduction along a pipe is assumed negligible for 

calculation simplicity.   

Exploring temperature patterns of a water heater, it was found that with no flow, 

the inlet and outlet pipes will gain energy and rise in temperature due to close 
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proximity of the heated and stored water.  During a water draw event, when an 

occupant draws hot water, water flowing through the cold inlet and hot outlet pipes 

will respectively cool down or heat up the pipe temperature.  The rate of 

temperature change depends on the flow intensity and thermal insulation.  For 

calculation purposes, the cold inlet pipe will exclusively be analyzed.  The energy 

balance equation for this scenario is given in Eq (1), 

 
𝑴

𝒅𝑻

𝒅𝒕
= −𝑼(𝑻 − 𝑻𝒘) − 𝑼ஶ(𝑻 − 𝑻ஶ) 

(1) 

where 𝑇 is the measured pipe surface temperature, 𝑇ஶ is the measured ambient air 

temperature, and 𝑡 is time.  𝑇௪ is the internal water temperature of the cold inlet 

pipe assumed to equal 𝑇 for no draw events, and assumed constant at 15°C for draw 

events.  𝑀 represents the thermal mass, defined as the multiplication of material 

density, 𝜌, specific heat, 𝐶௉, and cross-sectional area, 𝐴, divided by axial unit 

length, dx.  These properties were taken for a ¾ inch copper pipe at room 

temperature (300K).  𝑈 and 𝑈ஶ represent the overall heat transfer coefficients for 

the internal and external thermal resistances [51], respectively, shown in Figure 2.1. 
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Figure 2.1: Representation of the thermal resistances, R1, R2, R3, and R4, involved 

within a water heater pipe heat transfer.  The bolded outer surface of the pipe is 
where temperature, T, is to be measured, effectively splitting the resistances 
between internal resistance (R1 & R2) and external resistance (R3 & R4). 

For water draw events, R2 can be assumed negligible compared to R1.  With the 

order of magnitudes of convection heat transfer coefficient, ℎ௪, at 100 W/m2∙K, 

pipe thermal conductivity, 𝑘௣௜௣௘, at 100 W/m∙K (assuming copper piping), and pipe 

radii, 𝑟ଵ and 𝑟ଶ from Figure 2.1, approximately being 20 mm and 25 mm 

respectively, Eq (2) validates the assumption through scale analysis. 

 𝐥𝐧 (𝒓𝟐/𝒓𝟏)

𝒌𝒑𝒊𝒑𝒆
= 𝑹𝟐 ≪ 𝑹𝟏 =

𝟏

𝒉𝒘𝟐𝝅𝒓𝟏
 

(2) 

Therefore, the internal overall heat transfer coefficient, 𝑈, can be simplified into 

Eq (3). 

 𝑼 = 𝟏/(𝑹𝟏 + 𝑹𝟐) ~ 𝟏/𝑹𝟏 = 𝒉𝒘𝟐𝝅𝒓𝟏 (3) 
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When water is not being drawn, standby heat loss dominates energy transfer.  In 

this no-draw natural cooling case, the first term on the right hand side of Eq (1) is 

negligible as the internal water, 𝑇௪, is assumed to be equivalent to the measured 

pipe surface temperature, 𝑇.  Integrating Eq (1) yields an expression of 𝑈ஶ for this 

non-draw case: 

 
𝑼ஶ = −

𝑴(𝑻𝟐 − 𝑻𝟏)

∫ (𝑻 − 𝑻ஶ)𝒅𝒕
𝒕𝟐

𝒕𝟏

 
(4) 

where the denominator is numerically determined using the trapezoidal rule on each 

discrete measured data point over the course of the natural cooling time period, 𝑡ଵ 

to 𝑡ଶ.  Integration methods are chosen over derivative methods in attempt to 

mitigate errors stemming from small variations in temperature measurements.  

Once determined, 𝑈ஶ is assumed to be constant for all water heater events.   

During each detected hot water draw event, the last unknown, 𝑈, in Eq (1) is solved 

by integrating over the discrete water draw data set, between 𝑡ଵ and 𝑡ଶ.  Separating 

variables, knowing measured pipe temperature, 𝑇, is the only variable changing 

over time, yields Eq (5). 

 
𝑻𝟐 − 𝑻𝟏 =  ൬

𝑼

𝑴
+

𝑼ஶ

𝑴
൰ න 𝑻 𝒅𝒕

𝒕𝟐

𝒕𝟏

+ ൬
𝑼

𝑴
𝑻𝒘 +

𝑼ஶ

𝑴
𝑻ஶ൰ (𝒕𝟐 − 𝒕𝟏) 

(5)  

By measuring temperature over a water draw period, 𝑈 can be determined from Eq 

(5).  The convection heat transfer coefficient, ℎ௪, can then be derived from 𝑈, using 
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Eq (3), and is related to the flow rate.  The Dittus-Boelter equation for cooling [52], 

represented in Eq (6), relates ℎ௪ to the Reynolds number.   

 
𝑵𝒖𝒘 =

𝒉𝒘𝑫

𝒌𝒘
= 𝟎. 𝟎𝟐𝟑 𝑹𝒆𝟒/𝟓 𝑷𝒓𝟎.𝟑 

(6) 

where 𝑁𝑢௪ is the Nusselt number, 𝐷 is the internal pipe diameter, 𝑘௪ is the thermal 

conductivity of the water, 𝑃𝑟 is the Prandtl number of the water, and 𝑅𝑒 is the 

Reynolds number of the flow which contains the desired flow rate term, 𝑚̇, in Eq 

(7).  The variable 𝜇 represents water viscosity.   

 
𝒎̇ = 𝑹𝒆

𝝅𝑫𝝁

𝟒
 

(7) 

After solving for 𝑈 in Eq (5), the desired value of flow rate for a water draw event 

is calculated using equations (4), (6), and (7).  This process allows a water draw 

temperature data set to be related to flow rate through a storage water heater cold 

inlet pipe. 

2.2         Automated Detection Approach 

Determining appropriate water draw data sets is automated by evaluating measured 

temperature slopes.  The detection method performed assumes isolated draw events 

with sufficient reheating time (about 25 minutes, determined imperially) after 

cooling due to water draw.  This post processing event detection utilizes the unique 

water heater trait of an assumed heated cold inlet pipe (approximately 45°C) facing 

rapid cooling from forced internal convection of cold inlet water (approximately 

15°C) upon water draw.   
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Data extraction for such draw events is initiated when measured inlet pipe 

temperature data suddenly decreases at a rate of 1°C per second or greater.  This 

starting criterion was determined imperially.  To achieve automation, extraction 

persists until a point of increasing slope is detected.  This ending criterion 

represents the idea that the flow has stopped, and the internal heat from the water 

tank has propagated back up the pipe through free convection (assuming not all the 

hot water has been replaced during the draw event).  Each set of extracted draw 

event data is then processed using flow rate calculations mentioned previously in 

2.1        . 

After draw events are detected, remaining no-draw events are split into two 

categories of natural heating and natural cooling.  Natural heating occurs after a 

water draw, where the decreased pipe temperature naturally recovers to a heated 

state based on internal tank temperature (increasing slope).  Then, natural cooling 

occurs as the heated pipes after natural heating respond to the tank’s standby heat 

loss (decreasing slope).  These no-draw events are much less extreme compared to 

draw events and occur over a longer time period (typically greater than 3 minutes).  

Spline fitting of every 10 data points (or less if the data set between draw events 

was sparse) was used to differentiate increasing and decreasing slope to avoid 

temperature sensor precision error.  The 10-point scope was determined imperially 

to avoid notable error.  Discussed event detection code is found in Appendix A.   

2.3         Circuit Design for Data Collection and Control 
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Pipe temperature data collection was accomplished through implementation of a 

deployable package consisting of temperature sensors, a wireless microprocessor, 

and water heater activation control.  This package was made available for both gas 

and electric storage water heaters, but required development of two circuit board 

designs for respective heater control.  Both circuit boards contain three temperature 

sensors connected to a wireless microprocessor.  The electric board design (shown 

in Figure 2.2) intercepts the electricity going towards electric water heaters, which 

then powers the board.  Raw circuit designs can be found in Appendix B along with 

a parts list.  To control heater activation, it utilizes relay switches controlled by the 

microprocessor to connect or disconnect intercepted electricity  

 
Figure 2.2: Circuit design of storage water heater controller for electric powered 

systems. 

The gas board design exploits small voltage control which opens and closes existing 

gas solenoid valves fed to the tank.  Powered by a wall outlet, the microprocessor 

intercepts voltage readings of existing controllers, and sends the activating signal 
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accordingly depending on activation schedules.  The gas board is shown below in 

Figure 2.3.   

 
Figure 2.3: Circuit design of storage water heater controller for gas powered 

systems. 

For each design, three TMP36 temperature sensors were used to monitor the 

temperature change of the cold inlet and hot outlet pipes as well as the ambient air.  

These sensors have an accuracy of ±2°C, precision of ±0.5°C, and a temperature 

specification of -40°C to 125°C [53].  Application of TMP36 sensors was suitable 

for experimentation due to a wide temperature range, high precision for quantitative 

measurements, and low cost for practical deployment.   

To easily and non-invasively measure pipe temperatures, two of the TMP36 sensors 

were incorporated into 3D printed clamps.  These clamps were sized for water 

heater pipes and placed on the cold inlet and hot outlet pipes approximately 6 inches 

from the water heater.  This location was determined to both reduce the effect of 
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water tank temperature during its heat generation process, and to ensure heated 

pipes after prolonged no-draw events.  Sensor measurements were taken by a 

Particle Photon [54] microprocessor, which sent measured data over a wireless 

internet connection to an off-site computer for the more intensive data processing.  

Readings were taken, sent, and stored at a time interval of 5 seconds throughout the 

day.  Figure 2.4 shows the deployed electric circuit board with two clamps for water 

heater pipes. 

 
Figure 2.4: Deployable package in the form of a printed circuit board purposed to 
collect and wirelessly send temperature data.  Lower right and left clamps are used 

to enhance thermal contact of temperature sensors. 

 

2.4         Experimental Setup 

An experiment was developed to validate automated event detection and flow rate 

analysis.  The test bed used for analysis consisted of a 10 gallon electric water heater 

connected to a sink used to draw hot water from the water heater, shown in Figure 

2.5.  The described deployable package measured water heater pipe temperature 6 
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inches away from the tank.  Collected data was sent to an off-site computer for post 

processing analysis. 

 
Figure 2.5: Experimental setup measuring cold inlet and hot outlet pipe 

temperature and ambient air temperature.  A controlled amount of hot water was 
drawn at a regular schedule through a sink connected to tank.  The deployable 

package wirelessly sent the measured data to an off-site server. 

To simulate home usage, hot water was periodically drawn.  A beaker was used to 

measure the actual amount of water drawn over the duration of the draw events.  

Volume of water collected over the duration of water draw produced actual average 

flow rate of water, acting as a ground truth for experimental calculations.  Water 

draws were performed and recorded over the course of several days.  There was at 

least 25 min between each draw to allow for the stored hot water to reheat the pipe 

and internal water.  Draw durations ranged from 5 to 90 seconds and draw 

intensities ranged from 3 to 13 L/min due to limitations of the faucet. 

2.5         Results & Discussion 

Discrete temperature data was collected using the deployable package.  Post-

processing event detection methodology was able to identify 100% of isolated 
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water heater events within the experimental flow range of 3 to 13 L/min.  Figure 

2.6 shows resulting event detection classification for two water draw events.  

Sufficient time allocated between all draw events, allowing the cold inlet pipe to 

reheat from a no-draw natural heating event, may cause limitations to the evaluation 

methods.   

 

Figure 2.6: Classification of 3 different water heater events.  Cold inlet and hot 
outlet pipe temperatures respectively drop and rise as water is being drawn from 
the water heater (water draws shown in red shading).  Vice versa, the same pipe 
temperatures respectively raise and drop as natural heating events occur (white 
shading).  Non-labeled events (green shading) represent times where the water 

heater and pipes are assumed to be naturally cooling. 

A single draw event is shown in Figure 2.7, showing temperature data was 

accurately extracted for a water draw event as intended.  All detected start times 

matched the actual start times within a resolution of ±5 seconds (the time interval 
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of data collection).  Draw event data sets such as the one shown below are 

automatically filtered through the energy conservation equations for flow rate 

correlations. 

 

Figure 2.7: Demonstration of extracted water draw event data used to calculate 
flow rate, where cold inlet pipe temperature rapidly decreases.  Actual draw 

duration is 60 seconds (from 𝒕𝟏 to 𝒕𝟐) and draw intensity is 8 L/min. 

For flow intensity correlations, an analysis was first performed to determine how 

draw duration affects accuracy of the flow calculations.  Multiple draw event 

durations at identical 12 L/min draw intensities were compiled.  Comparing draw 

durations, Figure 2.8 presents greater consistency after about 40 seconds of water 

draw.  This time dependent result is due to integration process of the flow 

derivation.  Integration can be sensitive to ending time, 𝑡ଶ, and actual draw duration 

will not be accurately reflected in the ending time determined in event detection 

analysis.  Natural convection of cold water residually cools the cold inlet pipe after 

the water has stopped flowing internally causing this duration uncertainty.  As water 
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draw durations increase, these residual effects will be less influential on flow 

calculations.   

 

Figure 2.8: Water was drawn at constant flow rates for various durations.  A longer 
draw time (greater than about 40 seconds) will result in less flow rate deviation. 

Short duration of water draws (<40 seconds) will not significantly contribute to 

actual hot water usage for two reasons.  First, it takes time for actual drawn hot 

water to travel from the tank to the destination (assuming water in intermediary 

pipes start as cold).  If hot water does not exit at the draw location, it is not utilized 

and need not be considered for desired hot water flow detection.  Second, most 

significant energy usage in a water heater is dominated by larger draw events such 

as a shower or washing machine, making shorter draws negligible for energy 

savings.   

Another analysis was performed to quantifiably differentiate flow rate intensities 

based on pipe temperature change, shown in Figure 2.9.  Each draw lasted 60 

seconds to eliminate short draw duration error as previously discussed.  Based on 
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conventional statistical analysis, a correlation factor was found to be 0.67 based on 

the number of samples.  Results indicate the chance of having better linear 

correlation is 2%.  As such, correlation between the actual and calculated flow rate 

is significant at a 95% confidence level.  Discrepancies in direct flow accuracy are 

presumably due to assumptions made throughout the derivation process.  High 

contributing assumptions include, but not limited to: 

1. Negligible weather conditions 

2. Constant value 𝑇ஶ during draw events 

3. Overall constant values of 𝑇௪, 𝑀, and 𝑈ஶ 

Weather and exterior conditions can alter temperature profiles over the course of a 

day.  Incoming water, 𝑇௪, can be affected by these conditions, causing propagated 

error during calculations.  𝑀 and 𝑈ஶ are calculated assuming material properties at 

300K.  Depending on temperature, these properties are also subjected to change. 

 

Figure 2.9: Comparison of calculated and actual flow rates for various draw 
intensities.  Each draw was one minute in duration. 
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This section discussed a low cost, non-invasive, deployable package which collects 

and wirelessly sends temperature measurements for CPS related analysis.  

Automated algorithms were developed to detect when an occupant used hot water.  

Energy conservation calculations were then used with draw event data to relate pipe 

temperature change to a relative flow rate used by the occupant.  Based on these 

hot water usage patterns, water heater activation was controlled to achieve 33% 

energy savings.  Such CPS can be easily incorporated into existing homes to help 

reduce home energy consumption. 
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Chapter 3:  EnergyPlus Integration into UCEF 

Building CPS development requires interdisciplinary knowledge to accurately 

relate inherently complex and interconnected physical building attributes.  For this 

reason, current CPS often rely on occupant remote controllability as opposed to 

automated control.  The EnergyPlus building simulation software can consider 

complex physical building interactions, replacing physical real-time measurements 

in CPS testing and validation processes.  NIST’s UCEF is a platform allowing data 

transfer between simulation tools.  The open-source EnergyPlus building 

calculations can be used to co-simulate in a UCEF environment for simple CPS 

development.  An existing EnergyPlus interface is used to exchange data between 

the HLA/RTI environment. 

3.1         Approach 

EnergyPlus currently has an existing co-simulation interface through the Functional 

Mock-up Interface (FMI) standard created by Modelisar [55].  The standard 

accomplishes interoperability by connecting simulation platforms to an external 

model by use of a zip file (with extension *.fmu) known as a Functional Mock-up 

Unit (FMU).  The zip file contains three elements: an Extensible Markup Language 

(XML) file, compiled C code binaries, and optional documentation for data 

exchange.  The XML file establishes interfacing data, the C code manages data 

exchange, and the documentation can define and specify operation.   
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FMI and HLA are not currently compatible.  The two standards have different 

notions of time management, and UCEF does not support data exchange using FMI.  

To bridge the two standards, we create an FMU with capabilities for bi-directional 

communication between EnergyPlus and a UCEF Java federate.  The Java federate 

will be customized to wrap EnergyPlus for data exchange to an RTI federation.  

This data communication, represented in Figure 3.1, is done through TCP/IP socket 

communication between our FMU and Java federate. 

 
Figure 3.1: EnergyPlus has capability to interface with an FMU.  Using TCP/IP 

socket communication inside a simple FMU allows for connectivity to a UCEF Java 
federate for HLA/RTI data exchange. 

Connecting EnergyPlus to an FMU involves specific modification of an EnergyPlus 

input data file (IDF).  An IDF defines parameters to perform building energy 

simulations, such as building materials, components, and equipment.  Using an IDF 

component called FunctionalMockupUnitImport, co-simulation is linked between 

EnergyPlus and the FMU.  This component initializes the FMI master and slave 

architecture where slaves are coordinated and executed by the master program.  

EnergyPlus acts as the master in this configuration, which initializes the FMU as 

an executable slave instance. EnergyPlus version 8.7 was used.  
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Upon simulation start, EnergyPlus locates and unpacks the linked FMU zip file to 

begin processes represented in Figure 3.2.  Execution of the FMU’s customized C 

binaries is controlled by EnergyPlus to run select FMI functions [56] that have been 

modified and implemented to exchange data with the HLA RTI.  EnergyPlus first 

calls the fmiInstantiateSlave function to parse through the unpacked XML file, 

properly allocating memory for the interface data.  Next, the fmiInitializeSlave 

function uses TCP/IP sockets to establish connection to a server hosted in the UCEF 

Java federate.  After TCP/IP connection is verified, EnergyPlus time step 

calculations begin.   

 
Figure 3.2: EnergyPlus as a master program for FMI calls select functions 

throughout simulation to perform specific tasks.  At each time step, three tasks are 
called to transfer EnergyPlus data.   
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At each time step, EnergyPlus sends data to the FMU as a real data type using the 

function fmiSetReal.  The FMU will then utilize socket connection in the fmiDoStep 

function to send the EnergyPlus data (as a concatenated string) to the Java federate.  

The format of this string is standardized and represented as follows:  

HEADER\r\nTIMESTAMP\r\nNAME\r\nVALUE\r\n…. 

NAME\r\nVALUE\r\n\r\n 

The “HEADER” defines handling procedures of the string.  Data sent from FMU 

to the Java federate will either contain the header “UPDATE” or “TERMINATE”.  

An “UPDATE” header is used at each EnergyPlus time step to signify incoming 

information to the Java federate.  A “TERMINATE” header informs the Java 

federate that EnergyPlus simulation has ended.  Data received by the FMU from 

the Java federate will either contain “SET” or “NOUPDATE” headers.  “SET” 

indicates federation interactions will change EnergyPlus variables for the following 

time step, and “NOUPDATE” indicates no variables will change.  After the header, 

the “TIMESTAMP” communicates simulation time (in seconds) for logical time 

management.  Next, for each “UPDATE” and “SET” header, “NAME” and 

“VALUE” respectively represent each variable name and corresponding value of 

interfacing data defined through the XML file.  Each piece of information is 

separated by a carriage return followed by a line feed (“\r\n”).  Two consecutive 

cartridge returns and line feeds at the end signify the end of the string.   

EnergyPlus will remain in the fmiDoStep function until the Java federate responds 

with a concatenated string.  After a string is returned, the FMU will parse through 
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the returned string in fmiDoStep.  The fmiGetReal function passes received 

information back into the EnergyPlus model as a real data type.  The described data 

exchange pipeline is represented in Figure 3.3.  The master EnergyPlus program 

will exchange data with the Java federate at each time step.  After the final time 

step, the FMU slave instance is disconnected, and the simulation ends.  The 

described functions written in C is found in Appendix C. 

 
Figure 3.3: UML diagram representing data communication between the master 

EnergyPlus program and a UCEF Java federate via FMU slave instance. 

The Java federate developed in UCEF communicates information between the 

FMU slave instance and the RTI.  This federate begins by hosting a TCP/IP server 

for the FMU client connection.  During simulation, the federate parses each 

received string from the FMU and passes its information to the RTI federation.  The 

federate then waits for messages from the RTI that should be sent to EnergyPlus.  

A concatenated string containing the content of these messages, is then returned to 

the FMU client. 

3.2         Experimental Validation 
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A series of simulations were executed to validate EnergyPlus communication with 

an HLA RTI federation.  A simple three-room house model, shown in Figure 3.4, 

was created in an EnergyPlus IDF, which can be referenced in Appendix D.  The 

home was located in San Francisco, CA, USA using weather information from June 

2017.  The home was equipped with a dual set-point HVAC system operating at a 

temperature range between 21℃ and 23℃.  The first simulation executed the simple 

EnergyPlus model without the implemented FMU external interface.  

Environmental temperature, zone temperature, and HVAC energy usage 

information were recorded at each time step.  Resulting HVAC energy consumption 

using these “naive” set-points was intended to resemble non-energy conscious 

behaviors.   

 
Figure 3.4: A simple EnergyPlus house model consisting of a single room home 

located in San Francisco, CA. 

The second simulation directly ran environment temperature data from simulation 

one through a thermostat controller algorithm.  The algorithm (written in Java) 
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adjusts heating and cooling temperature set-points based on user comfort and 

environment temperature.  Assuming occupant comfort ranges between 20℃ and 

25.5℃, HVAC operation dynamically changes to minimize work required to heat 

or cool a home.  EnergyPlus and UCEF were not used in this second simulation.  

Rather, environment temperature recorded in the first simulation was directly fed 

through the thermostat controller to return dynamic dual set-points.  The results of 

this second experiment act as a ground truth for EnergyPlus and UCEF 

connectivity.   

The final simulation implemented the FMI external interface with the IDF 

described in the first simulation.  Updated IDF is found in Appendix E.  The 

FunctionalMockupUnitImport class enforced data exchange with the developed 

FMU, linking EnergyPlus to the modified Java federate.  The federation was 

created using UCEF, binding EnergyPlus and the secondary thermostat controller 

algorithm through RTI.  Shown in Figure 3.5, environment temperature from 

EnergyPlus was sent through RTI to the thermostat controller at each time step.  

Before time step progression, the controller returned a heating and cooling set-point 

to the HVAC system in EnergyPlus.  HVAC set-points and zone temperature were 

recorded.   
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Figure 3.5: Representation of the data transfer using Run Time Infrastructure 

between the EnergyPlus Java federate (left) and the thermostat controller Java 
federate (right). 

3.3         Results & Discussion 

The first simulation recorded sub-hourly temperature and HVAC energy 

consumption data of a simple EnergyPlus model.  Dual set-point of an HVAC 

system between 21℃ and 23℃ caused activation.  Heating activated in the morning 

and evening, and cooling activated mid-day, shown in Figure 3.6.  HVAC operation 

between the narrow temperature range represents excess consumed energy by a 

non-energy conscious occupant.  The following simulations attempt to incorporate 

intelligent CPS to control the model HVAC system. 
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Figure 3.6: Naively created HVAC set-points and zone temperature (left) and 

corresponding heating and cooling power consumption (right). 

A thermostat controller output dynamic set-points based on environment 

temperature and defined user comport (between 20°C and 25.5°C).  Direct input of 

data from the second simulation and EnergyPlus/RTI input of the third simulation 

yielded identical results, shown in Figure 3.7.  Matching outputs of the two 

simulations validates continuous and accurate EnergyPlus integration with UCEF. 
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Figure 3.7: HVAC heating and cooling set-points based on an external thermostat 
controller.  Direct connection and RTI connection yield consistent results. 

Figure 3.7 also shows internal zone temperature of the EnergyPlus model.  

Dynamic thermostat controller outputs cause no HVAC activation for this 

simulation day.  Compared to the naive set-points of the first simulation occupant, 

EnergyPlus co-simulation with the intelligent thermostat controller removed 

unnecessary energy consumption.  Results verify UCEF integration does not impact 

simulated results. 

This section discussed bi-directional communication between the EnergyPlus 

building simulation software and a co-simulation CPS environment called UCEF.  

Existing EnergyPlus interfacing capabilities were exploited to be connected to an 

HLA data exchange protocol for improved logical time step progression.  As UCEF 

and EnergyPlus are each open-source software, development of building related 

CPS is made simply and inexpensively.  Such capabilities allow for more 

availability for CPS development to improve home energy savings.   
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Chapter 4:  Conclusion & Future Work 

Two advancements in building CPS were accomplished to reduce residential 

energy consumption.  First, a domestic water heater sensor was developed to 

provide occupant usage information to CPS.  The conducted water heater 

experiment implemented a low cost, non-invasive, deployable package to collect 

and wirelessly send temperature measurements.  Post processing methods were 

developed to relate temperature change rate of cold inlet and hot outlet pipes with 

hot water usage.  Water draw events were effectively detected within a resolution 

of ±5 seconds.  Flow rate correlations were significant at a 95% confidence level.  

Results suggest we can use these methods to detect patterns and qualitatively 

differentiate amount of flow through a water heater for CPS water heater control. 

The second advancement was an open-source integration of a building simulation 

software with UCEF for the design and validation of CPS.  By developing a simple 

FMU with a TCP/IP connection to a modified Java federate, calculated data at each 

time step was communicated between an EnergyPlus model and an HLA 

federation.  This successful integration allows co-simulation between EnergyPlus 

models and CPS tools in the form of HLA federates.  Simulated results validate 

UCEF-based federations can exchange data with EnergyPlus models without 

negative impact on results.  More complex control algorithms and other simulation 

tools integrated into EnergyPlus creates an environment that can produce 

sophisticated CPS that reduce energy consumption in residential buildings.  
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Integration of EnergyPlus into UCEF as a new federate type enhances the 

platform’s capabilities through added support of building simulations. 

4.1         Future Work: Water Usage Sensor 

Several additional concepts can be further investigated for more robust hot water 

sensing evaluations.  First, event detection may need an added mechanism to take 

into account non-isolated draws.  For example, it is possible for a household to have 

two overlapping draw events such as a concurrent shower and washing machine.  

Currently, two simultaneous events may not be able to be distinguished, but 

classification of two individual events can lead to further awareness.   

Second, integration calculations can become more detailed with addition of more 

variables such as temperature adjusting material properties.  Also, certain constants 

such as 𝑈ஶ and 𝑀 can be self automated for seamless transitions in environment, 

such as weather conditions.  Improvements may further develop by giving cold inlet 

and hot outlet pipe information a weight towards transient vs steady state cases.  

More accurate results can be achieved with these fine-tuned assumptions. 

Lastly, incorporation of machine learning can lead to further optimizations.  For 

example, as more diverse data becomes available, pattern recognition processes can 

be used to predict future hot water usage as well as possible flow irregularities, as 

in the case for leak detection.  Additionally, as these predictions occur, water 

heaters can externally be controlled to activate and heat only when water is needed, 

saving up to ⅓ of home water heating energy [57].   
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4.2         Future Work: EnergyPlus Integration with UCEF  

Additional concepts can be further investigated for more robust development.  

Modifications of FMU configuration files may be necessary for different simulation 

designs requiring different building model information.  Currently, the IDF and the 

XML file need to be created manually based on the desired interface data.  UCEF 

has support for the automatic generation of configuration files based on the content 

of fields in its graphical user interface.  A user should be able to enter desired 

EnergyPlus variable information directly into the UCEF interface to automatically 

generate and update the IDF and XML file, rather than having to write the files 

themselves.  Future work could address this usability feature through extensions to 

the UCEF graphical interface. 

The presented approach using TCP/IP sockets could be further leveraged to 

integrate other FMI tools into UCEF.  FMUs connected to other programs can 

utilize the TCP/IP concatenated string protocol to communicate with the Java 

federate in UCEF.  Expanding co-simulation diversity to FMI connected tools can 

vastly improve UCEF simulator and emulator inventory.  UCEF integration can 

increase development effectivity by allowing for improved logical timing control 

of these FMI tools.  
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Parts List  

Parts per Board Description/Part 
Number 

Quantity 
(Gas) 

Quantity 
(Electric) 

Printed Circuit Board Custom 1 1 
Spacers 1” 6 6 
Acrylic Clear 1 1 
Large Terminal Block 3POS 7.5MM 

30DEG 
1 2 

Microprocessor Particle Photon 1 1 
Temperature Sensors TMP36 3 3 
Capacitors 0.1μF 3 3 
Power Converter 110/220V AC to 

5V 2A 10W 
1 1 

Small Terminal Block 2POS 2.54MM 
PCB 

2 0 

Power Relays T9AS1D12-5 0 2 
Current Sensor ACS758KCB 0 1 
MOSFET 2N7000 0 1 
Inverter SN7404N 0 1 
Diodes 1N4148TA 0 1 
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