33 research outputs found

    Aerial river management by smart cross-border reforestation

    Get PDF
    In the face of increasing socio-economic and climatic pressures in growing cities, it is rational for managers to consider multiple approaches for securing water availability. One often disregarded option is the promotion of reforestation in source regions supplying important quantities of atmospheric moisture transported over long distances through aerial rivers, affecting water resources of a city via precipitation and runoff (‘smart reforestation’). Here we present a case demonstrating smart reforestation's potential as a water management option. Using numerical moisture back-tracking models, we identify important upwind regions contributing to the aerial river of Santa Cruz de la Sierra (Bolivia). Simulating the effect of reforestation in the identified regions, annual precipitation and runoff reception in the city was found to increase by 1.25% and 2.30% respectively, while runoff gain during the dry season reached 26.93%. Given the city's population growth scenarios, the increase of the renewable water resource by smart reforestation could cover 22–59% of the additional demand by 2030. Building on the findings, we argue for a more systematic consideration of aerial river connections between regions in reforestation and land planning for future challenges. © 2019 The Author

    Modelação multiescala de qualidade do ar urbana para cidades mais saudáveis

    Get PDF
    Ambient air pollution is nowadays a serious public health problem worldwide, especially in urban areas due to high population density and intense anthropogenic activity. Among the main urban air pollution sources, the road traffic sector is one of the major concerns and the largest contributor to nitrogen dioxide (NO2) concentrations, though regional background chemical conditions must also be considered. In this context, the use of modelling tools is crucial to understand atmospheric and social dynamics in multiple scales, as well as to support in defining the best air quality improvement strategies. The main objective of this thesis is to develop and apply a multiscale modelling system able to simulate air quality and health impacts in cities. For this purpose, the modair4health multiscale air quality and health risk modelling system was developed and operationalized. It includes the online model WRF-Chem, which provides air quality and meteorological fields from regional to urban scales, and the Computational Fluid Dynamics (CFD) model VADIS, which uses the urban WRF-Chem outputs to calculate flows and dispersion of traffic emissions-related air pollutants in urban built-up areas. A health module, based on linear and non-linear World Health Organization approaches, was also integrated in modair4health to assess the health impacts resulting from air quality changes, and the overall health damage costs are calculated based on economic studies. The application and assessment of the modair4health system allowed to identify the most appropriate configurations and input data, which were used to apply the system over the case study testing air quality improvement scenarios. One of the busiest road traffic areas of the city of Coimbra (Fernão de Magalhães Avenue) in Portugal was selected as case study. The application considered a 4 domains setup: three nested domains (25, 5 and 1 km2 resolutions) for the WRF-Chem, and the 4th domain (4 m2 resolution) over the target local study area and NO2 for the VADIS. WRF-Chem was applied along the year 2015 and VADIS was simulating two particular periods: one week in winter and another one in summer. Short-term health impacts were estimated and the non-linear approach led to lower health outcomes that seem better adjusted to the local reality. Finally, to assess the modair4health capabilities for decision-making support, two traffic management scenarios were tested over the case study: replacement of 50% of the vehicle fleet below EURO 4 by electric vehicles (ELEC), and introduction of a Low Emission Zone (LEZ). Air quality and health positive impacts were higher for the ELEC scenario. This study represents a scientific advance in multiscale air quality and health modelling. The modair4health system can be easily adapted and applied to other simulation domains, providing urban air pollution levels and subsequent health impacts for different case studies and supporting the assessment of air pollution control policies.A poluição atmosférica é atualmente um sério problema mundial de saúde pública, especialmente em áreas urbanas, devido à elevada densidade populacional e intensa atividade antropogénica. O setor dos transportes rodoviários é uma das principais preocupações e o que mais contribui para concentrações de dióxido de azoto (NO2) na atmosfera, embora as condições químicas de fundo regional devam também ser consideradas. Neste contexto, a utilização de ferramentas de modelação é crucial para compreender a dinâmica atmosférica e humana a diferentes escalas, e apoiar na definição das melhores estratégias para melhoria da qualidade do ar (EMQA). Esta tese tem como objetivo principal o desenvolvimento e aplicação de um sistema de modelação multiescala que permita simular qualidade do ar e impactos na saúde em cidades. Para isso, foi desenvolvido e operacionalizado o sistema modair4health - multiscale air quality and health risk modelling. Este sistema inclui o modelo online WRF-Chem, que fornece campos meteorológicos e de qualidade do ar da escala regional à urbana, e o modelo CFD VADIS, que utiliza os resultados do WRF-Chem para calcular o impacto das emissões do tráfego rodoviário no escoamento e dispersão de poluentes em áreas urbanas. Para avaliar os impactos na saúde humana, foi também integrado um módulo baseado nas abordagens linear e não-linear da Organização Mundial de Saúde (OMS), e os custos são calculados com base em estudos económicos. A aplicação e avaliação do sistema modair4health permitiram identificar as configurações e dados de entrada mais apropriados, que foram posteriormente utilizados para testar EMQA sobre o caso de estudo, que corresponde a uma das áreas de maior tráfego rodoviário da cidade de Coimbra (Avenida Fernão de Magalhães). O WRF-Chem foi configurado com 3 domínios aninhados (resoluções de 25, 5 e 1 km2), simulados para o ano 2015; enquanto que para o VADIS, foi definido um quarto domínio (resolução de 4 m2) sobre o caso de estudo para simular concentrações de NO2 em dois períodos específicos: uma semana no inverno e outra no verão. Para quantificar os impactos na saúde, as duas abordagens da OMS foram aplicadas ao caso de estudo para avaliar efeitos a curto-prazo. A abordagem não-linear apresentou resultados de saúde mais baixos que aparentemente estão melhor ajustados à realidade local. Por fim, foram avaliadas as potencialidades do sistema no apoio à tomada de decisão, testando dois cenários de gestão do tráfego rodoviário: substituição de 50% da frota de veículos abaixo de EURO 4 por veículos elétricos (ELEC), e introdução de uma Zona de Emissões Reduzidas (LEZ). O cenário ELEC potencia melhorias mais significativas na qualidade do ar e saúde. Este estudo representa um avanço científico na modelação multiescala da qualidade do ar e saúde. O sistema modair4health pode ser facilmente adaptado e aplicado a outros casos de estudo para avaliar a qualidade do ar urbana e impactos na saúde, bem como para testar medidas de controlo da poluição atmosférica.Programa Doutoral em Ciências e Engenharia do Ambient

    Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer

    Get PDF
    Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. Much effort is focused on the reduction of surface levels of ozone owing to its health and vegetation impacts, but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve owing to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner. The review shows that there remain a number of clear challenges for ozone such as explaining surface trends, incorporating new chemical understanding, ozone–climate coupling, and a better assessment of impacts. There is a clear and present need to treat ozone across the range of scales, a transboundary issue, but with an emphasis on the hemispheric scales. New observational opportunities are offered both by satellites and small sensors that bridge the scales

    Characterization of atmospheric pollution dynamics in Spain by means of air quality modelling

    Get PDF
    Atmospheric pollution causes large impacts on human health and societal economic interests and it is a threat for the ecosystems and the climate of the Earth. Improving the understanding of pollution dynamics is necessary to desing efficient air quality strategies that reduce the impacts of air pollution. This Ph.D. Thesis identifies the typical atmospheric conditions at synoptic scale that affect the Iberian Peninsula (IP) and uses them to explain the dynamics of the most relevant gaseous pollutants in Spain (nitrogen dioxide NO2, sulphur dioxide SO2, and ozone O3) by means of air quality modelling. Circulation type classifications (CTC) summarise the continuum of atmospheric circulation into a discrete number of typical circulation types (CTs). For the 1983-2012 climatic period, a CTC is derived to be useful in the characterization of air quality dynamics over the IP. Sensitivity tests to classification techniques (principal components, correlation analysis, clustering) and other factors affecting the CTC (temporal and spatial resolution, domain size, etc.) are performed to objectivize the choice of the automatic set-up that maximizes its quality. The six identified CTs -described in terms of frequency, persistence, transitions, and location of pressure systems- are consistent with CTs found in the literature. The temporal stability of the CTC, evaluated following a cross-validation process that compares the results of the climatic and yearly CTs, leads to the identification of a representative year (2012). A representative day for each CT in 2012 is identified using an objective score that minimizes the differences of the daily and the average surface pressure CT grid. The study of NO2, SO2, and O3 dynamics performed on the representative day of each CT focuses on the biggest Spanish urban areas (Madrid and Barcelona) and heavy industrial/electricity-generation areas such as Asturias (northern Spain) and the Algeciras bay (southern Spain). The state-of-the-art CALIOPE Air Quality Forecast System (CALIOPE-AQFS) that provides high-resolution data on emissions, meteorology, and pollutant concentration over Spain is the main tool used in the characterisation of pollution dynamics. The modelling system is also used to quantify the contribution of specific sources of pollutants -coal-fired power plants and on-road transport- by means of a brute-force approach and an emission-based source apportionment, respectively. The CTs control the transport patterns of SO2/NO2/O3 in Spanish continental and Atlantic areas, whereas in Mediterranean coastal areas and over complex-terrains a combination of synoptic and mesoscale dynamics (sea-land and mountain-valley breezes) explains the pollutant concentration patterns. The power plants' contribution to surface concentration (up to 55 µgSO2 m-3 and 32 µgNO2 m-3) occurs mainly close to the source (< 20 km) related to vertical diffusion when the emission is injected within the planetary boundary layer. However, the SO2/NO2 plumes can reach distances higher than 250 km. The daily maximum O3 concentration attributed to the on-road transport emissions from Madrid and Barcelona contribute up to 24% and 8% to total O3 concentration, respectively, but it is particularly significant (up to 80-100 µg m-3 in an hour) to the O3 concentration peak during the central hours of the day in April-September. The long-range transport of O3 to the IP is controlled by the CTs and its concentration is very significant in the area of influence of Madrid and Barcelona, particularly under cold CTs (70-96%). This Ph.D. Thesis has proven that CALIOPE-AQFS (1) is useful to characterise the 3-D dynamics of primary and secondary pollutants in Spain under typical CTs; (2) is able to attribute and quantify air pollution to its sources via brute force and source apportionment; and (3) has the potential to help in the design of specific, science-based abatement strategies that minimize air pollution impacts.La contaminación atmosférica genera perjuicios en la salud humana, en los intereses económicos de la sociedad y constituye una amenaza para los ecosistemas y el clima de la Tierra. Avanzar en la comprensión de la dinámica de la contaminación facilita el diseño de estrategias de calidad del aire que reduzcan sus impactos. Esta Tesis Doctoral identifica objetivamente patrones típicos de circulación atmosférica (PT) que afectan a la Península Ibérica (PI) a escala sinóptica para explicar la dinámica de los principales contaminantes gaseosos en España (dióxido de nitrógeno NO2, dióxido de azufre SO2 y ozono O3) mediante modelización de la calidad del aire. Las clasificaciones sinópticas (CS) discretizan el continuo de la circulación atmosférica en un catálogo de PT. Para el período climático 1983-2012, se establece una CS útil para el estudio de la dinámica de la contaminación atmosférica en la PI. Tests de sensibilidad para técnicas automáticas de clasificación (análisis de componentes principales, de correlación y clustering) y para otros factores que afectan a la CS (resolución temporal y espacial, tamaño del dominio, etc.) objetivizan la elección de la configuración que maximiza su calidad. Los seis PT identificados - descritos en términos de frecuencia, persistencia, transiciones y ubicación de los sistemas de presión - son consistentes con la literatura. La evaluación de la estabilidad temporal de la clasificación, mediante un proceso de validación cruzada que compara los PT climáticos con PT identificados en CS anuales, permite identificar un año representativo (2012). Un día representativo de cada PT es elegido gracias a un algoritmo que minimiza las diferencias de la malla de presiones diaria respecto de la del PT promedio. El estudio de la dinámica de NO2, SO2 y O3 se realiza en el día representativo de cada PT focalizando en las principales áreas urbanas de España (Madrid y Barcelona) y en importantes áreas industriales y/o de generación eléctrica (Asturias, bahía de Algeciras). El sistema de CALIdad del aire OPeracional para España (CALIOPE) que proporciona datos de alta resolución sobre emisiones, meteorología y concentración de contaminantes es la principal herramienta utilizada en el estudio. CALIOPE permite cuantificar la contribución de determinadas fuentes de emisión, centrales térmicas de carbón y transporte rodado, mediante un enfoque de fuerza bruta y de asignación de fuentes, respectivamente. Los PT controlan el transporte de SO2/NO2/O3 en áreas atlánticas y continentales de España mientras que en zonas costeras mediterráneas y/o de topografía compleja, una combinación de procesos sinópticos y de mesoescala (brisas marinas y de valle) explica los patrones de contaminación. La contribución de SO2 y NO2 de las centrales térmicas a la concentración en superficie (hasta 55 µg m-3 y 32 µg m-3, respectivamente) se produce principalmente cerca de la fuente (<20 km) por difusión vertical de la emisión cuando ésta se inyecta en la capa límite planetaria. Sin embargo, los penachos de SO2/NO2 pueden alcanzar distancias superiores a los 250 km. La contribución máxima diaria de O3 atribuido a emisiones del transporte rodado de Madrid y Barcelona alcanza el 24% y el 8%, respectivamente pero es particularmente significativa (hasta 80-100 µg m-3 en una hora) a mediodía durante el pico de concentración de O3. El transporte a larga distancia de O3 hacia la PI es controlado por los PT y su contribución es muy importante en el área de influencia de Madrid y Barcelona, en particular bajo los PT fríos (70-96%). Esta Tesis Doctoral ha demostrado que CALIOPE es (1) útil para caracterizar la dinámica 3-D de contaminantes primarios y secundarios en España bajo diferentes PT; (2) capaz de atribuir y cuantificar la contaminación a sus fuentes a través de fuerza bruta y atribución de fuentes; y (3) potencialmente útil en el diseño de estrategias de mitigación específicas que minimicen los impactos de la contaminación atmosférica.Postprint (published version

    Proceedings of Abstracts 10th International Conference on Air Quality Science and Application

    Get PDF
    This 10th International Conference in Air Quality - Science and Application is being held in the elegant and vibrant city of Milan, Italy. Our local hosts are ARIANET and ARPA Lombardia both of whom play a leading role in assessing and managing air pollution in the area. The meeting builds upon the series that began at the University of Hertfordshire, UK in July 1996. Subsequent meetings have been held at the Technical University of Madrid, Spain (1999), Loutraki, Greece (2001), Charles University, Prague, Czech Republic (2003), Valencia, Spain (2005), Cyprus (2007), Istanbul, Turkey (2009) Athens, Greece (2012) and Garmisch-Partenkirchen, Germany (2014). Over the last two decades controls to limit air pollution have increased but the problem of poor air quality persists in all cities of the world. Consequently, the issue of the quality of air that we breathe remains at the forefront of societal concerns and continues to demand the attention of scientists and policy makers to reduce health impacts and to achieve sustainable development. Although urbanisation is growing in terms of population, transport, energy consumption and utilities, science has shown that impact from air pollution in cities is not restricted to local scales but depends on contributions from regional and global scales including interactions with climate change. Despite improvements in technology, users still demand robust management and assessment tools to formulate effective control policies and strategies for reducing the health impact of air pollution. The topics of papers presented at the conference reflect the diversity of scales, processes and interactions affecting air pollution and its impact on health and the environment. As usual, the conference is stimulating cross-fertilisation of ideas and cooperation between the different air pollution science and user communities. In particular, there is greater involvement of city, regional and global air pollution, climate change, users and health communities at the meeting. This international conference brings together scientists, users and policy makers from across the globe to discuss the latest scientific advances in our understanding of air pollution and its impacts on our health and environment. In addition to the scientific advances, the conference will also seek to highlight applications and developments in management strategies and assessment tools for policy and decision makers. This volume presents a collection of abstracts of papers presented at the Conference. The main themes covered in the Conference include: Air quality and impact on regional to global scales Development/application/evaluation of air quality and related models Environmental and health impact resulting from air pollution Measurement of air pollutants and process studies Source apportionment and emission models/inventories Urban meteorology Special session: Air quality impacts of the increasing use of biomass fuels Special session: Air quality management for policy support and decisions Special session: Air pollution meteorology from local to global scales Special session: Climate change and human health Special Session: Modelling and measuring non-exhaust emissions from traffic Special session: Transport related air pollution - PM and its impact on cities and across EuropeFinal Published versio

    Short-Lived Climate Forcers (Chapter 6)

    Get PDF
    Short-lived climate forcers (SLCFs) affect climate and are, in most cases, also air pollutants. They include aerosols (sulphate, nitrate, ammonium, carbonaceous aerosols, mineral dust and sea spray), which are also called particulate matter (PM), and chemically reactive gases (methane, ozone, some halogenated compounds, nitrogen oxides, carbon monoxide, non-methane volatile organic compounds, sulphur dioxide and ammonia). Except for methane and some halogenated compounds whose lifetimes are about a decade or more, SLCF abundances are spatially highly heterogeneous since they only persist in the atmosphere from a few hours to a couple of months. SLCFs are either radiatively active or influence the abundances of radiatively active compounds through chemistry (chemical adjustments), and their climate effect occurs predominantly in the first two decades after their emission or formation. They can have either a cooling or warming effect on climate, and they also affect precipitation and other climate variables. Methane and some halogenated compounds are included in climate treaties, unlike the other SLCFs that are nevertheless indirectly affected by climate change mitigation since many of them are often co-emitted with CO2 in combustion processes. This chapter assesses the changes, in the past and in a selection of possible futures, of the emissions and abundances of individual SLCFs primarily on global to continental scales, and how these changes affect the Earth’s energy balance through radiative forcing and feedback in the climate system. The attribution of climate and air-quality changes to emissions sectors and regions, and the effects of SLCF mitigations defined for various environmental purposes, are also assessed

    Socio-economic Impacts—Fisheries

    Get PDF
    Fishers and scientists have known for over 100 years that the status of fish stocks can be greatly influenced by prevailing climatic conditions. Based on historical sea surface temperature data, the North Sea has been identified as one of 20 ‘hot spots’ of climate change globally and projections for the next 100 years suggest that the region will continue to warm. The consequences of this rapid temperature rise are already being seen in shifts in species distribution and variability in stock recruitment. This chapter reviews current evidence for climate change effects on fisheries in the North Sea—one of the most important fishing grounds in the world—as well as available projections for North Sea fisheries in the future. Discussion focuses on biological, operational and wider market concerns, as well as on possible economic consequences. It is clear that fish communities and the fisheries that target them will be very different in 50 or 100 years’ time and that management and governance will need to adapt accordingly
    corecore