5,306 research outputs found

    Effects of tai chi on postural control during dual-task stair negotiation in knee osteoarthritis : a randomised controlled trial protocol

    Get PDF
    Stair ascent and descent require complex integration between sensory and motor systems; individuals with knee osteoarthritis (KOA) have an elevated risk for falls and fall injuries, which may be in part due to poor dynamic postural control during locomotion. Tai chi exercise has been shown to reduce fall risks in the ageing population and is recommended as one of the non-pharmocological therapies for people with KOA. However, neuromuscular mechanisms underlying the benefits of tai chi for persons with KOA are not clearly understood. Postural control deficits in performing a primary motor task may be more pronounced when required to simultaneously attend to a cognitive task. This single-blind, parallel design randomised controlled trial (RCT) aims to evaluate the effects of a 12-week tai chi programme versus balance and postural control training on neuromechanical characteristics during dual-task stair negotiation. Sixty-six participants with KOA will be randomised into either tai chi or balance and postural control training, each at 60 min per session, twice weekly for 12 weeks. Assessed at baseline and 12 weeks (ie, postintervention), the primary outcomes are attention cost and dynamic postural stability during dual-task stair negotiation. Secondary outcomes include balance and proprioception, foot clearances, self-reported symptoms and function. A telephone follow-up to assess symptoms and function will be conducted at 20 weeks. The findings will help determine whether tai chi is beneficial on dynamic stability and in reducing fall risks in older adults with KOA patients in community. Ethics approval was obtained from the Ethics Committee of the Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine (#2018KY-006-1). Study findings will be disseminated through presentations at scientific conferences or publications in peer-reviewed journals. ChiCTR1800018028. [Abstract copyright: © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

    Biomechanics of Prosthetic Knee Systems : Role of Dampening and Energy Storage Systems

    Get PDF
    One significant drawback of the commercial passive and microprocessored prosthetic devices, the inability of delivering positive energy when needed, is due to the absence of the knee flexion during stance phase. Moreover, consequences such as circumduction and disturbed gait pattern take place due to the improper energy flow at the knee and the absence of the positive energy delivery during the swing phase. Current generation powered design has solved these problems by delivering the needed energy with heavy battery demanding motors, which increase the mass of the device significantly. Hence, the gait quality of transfemoral amputees has not improved significantly in the last 50 years due to the inefficient energy flow distribution causing the patient to hike his/her pelvis, which leads to back pain in the long run. In this context, state-of-art prosthetics technology is trending toward creating energy regenerative devices, which are able to harvest/ return energy during ambulation by a spring mechanism, since a spring not only permits significant power demand reduction but also provides high power-to-weight ratio. This study will examine the sagittal plane knee moment versus knee flexion angle properties robotically, clinically and theoretically to explore the functional stiffness of a healthy knee as well as a prosthetic knee during the energy return and harvest phases of gait. With this intention, a prosthetic knee test method will be developed for investigating the torque-angle properties of the knee by iteratively modifying the hip trajectory until achieving the closest to healthy knee biomechanics by a 3-Degree of Freedom (DOF) Simulator. This research reveals that constant spring stiffness is suboptimal to varying gait requirements for different types of activity, due to the variability of the power requirements of the knee caused by the passive, viscous and elastic characteristics and the activation dependent properties of the muscles. Exploring this variation is crucial for the design of tran

    Biomechanics of Prosthetic Knee Systems : Role of Dampening and Energy Storage Systems

    Get PDF
    One significant drawback of the commercial passive and microprocessored prosthetic devices, the inability of delivering positive energy when needed, is due to the absence of the knee flexion during stance phase. Moreover, consequences such as circumduction and disturbed gait pattern take place due to the improper energy flow at the knee and the absence of the positive energy delivery during the swing phase. Current generation powered design has solved these problems by delivering the needed energy with heavy battery demanding motors, which increase the mass of the device significantly. Hence, the gait quality of transfemoral amputees has not improved significantly in the last 50 years due to the inefficient energy flow distribution causing the patient to hike his/her pelvis, which leads to back pain in the long run. In this context, state-of-art prosthetics technology is trending toward creating energy regenerative devices, which are able to harvest/ return energy during ambulation by a spring mechanism, since a spring not only permits significant power demand reduction but also provides high power-to-weight ratio. This study will examine the sagittal plane knee moment versus knee flexion angle properties robotically, clinically and theoretically to explore the functional stiffness of a healthy knee as well as a prosthetic knee during the energy return and harvest phases of gait. With this intention, a prosthetic knee test method will be developed for investigating the torque-angle properties of the knee by iteratively modifying the hip trajectory until achieving the closest to healthy knee biomechanics by a 3-Degree of Freedom (DOF) Simulator. This research reveals that constant spring stiffness is suboptimal to varying gait requirements for different types of activity, due to the variability of the power requirements of the knee caused by the passive, viscous and elastic characteristics and the activation dependent properties of the muscles. Exploring this variation is crucial for the design of tran

    Simulation and design of an active orthosis for an incomplete spinal cord injured subject

    Get PDF
    The dynamic simulation of incomplete spinal cord injured individuals equipped with active orthoses is a challenging problem due to the redundancy of the simultaneous human-orthosis actuation. The objective of this work is two-fold. Firstly, a physiological static optimization approach to solve the muscle-orthosis actuation sharing problem is presented. For this purpose, a biomechanical model based on multibody dynamics techniques is used. The muscles are modeled as Hill-type actuators and the atrophy of denervated muscles is considered by adding stiff and dissipative elements. Secondly, the mechanical design of a new active stance-control knee-ankle-foot orthosis (A-SCKAFO) is addressed. The proposed device consists of a passive joint that constrains ankle plantar flexion, along with a powered knee unit that prevents flexion during stance and controls flexion-extension during swing. The knee actuation is selected based on the results obtained through the optimization approach.Peer ReviewedPostprint (published version

    Control of posture with FES systems

    Get PDF
    One of the major obstacles in restoration of functional FES supported standing in paraplegia is the lack of knowledge of a suitable control strategy. The main issue is how to integrate the purposeful actions of the non-paralysed upper body when interacting with the environment while standing, and the actions of the artificial FES control system supporting the paralyzed lower extremities. In this paper we provide a review of our approach to solving this question, which focuses on three inter-related areas: investigations of the basic mechanisms of functional postural responses in neurologically intact subjects; re-training of the residual sensory-motor activities of the upper body in paralyzed individuals; and development of closed-loop FES control systems for support of the paralyzed joints

    Muscle contributions to knee joint stability: Effects of ACL injury and knee brace use.

    Get PDF
    corecore