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Abstract 23 

Lower-limb exoskeletons and exosuits (“exos”) are traditionally designed with a strong focus on 24 

mechatronics and actuation, whereas the “human-side” is often disregarded or minimally 25 

modelled. Muscle biomechanics principles and skeletal muscle response to robot-delivered loads 26 

should be incorporated in design/control of exos. In this narrative review, we summarize the 27 

advances in literature with respect to the fusion of muscle biomechanics and lower-limb 28 

exoskeletons. We reported methods to measure muscle biomechanics directly and indirectly and 29 

summarized the studies that incorporated muscle measures for improved design and control of 30 

intuitive lower-limb exos. Finally, we delved into articles that studied how the human-exo 31 

interaction influenced muscle biomechanics during locomotion. To support neurorehabilitation 32 

and facilitate everyday use of wearable assistive technologies, we believe that future studies should 33 

investigate and predict how exoskeleton assistance strategies would structurally remodel skeletal 34 

muscle over time. Real-time mapping of the neuromechanical origin and generation of muscle 35 

force resulting in joint torques should be combined with musculoskeletal models to address time 36 

varying parameters such as adaptation to exos and fatigue. Development of smarter predictive 37 

controllers that steer rather than assist biological components could result in a synchronized 38 

human-machine system that optimizes the biological and electromechanical performance of the 39 

combined system. 40 
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Introduction 45 

 Lower-limb exoskeletons and exosuits are worn in parallel with the body to assist, 46 

augment, or otherwise affect mobility. Collectively referred to as “exos”, exoskeletons and 47 

exosuits are often used in gait rehabilitation or as a mobility aid. 1 Exos deliver mechanical 48 

assistance to targeted biological joint(s) and thus interact directly with the wearer’s 49 

musculoskeletal system. To effectively unload or augment the biological joint, knowledge of joint 50 

biomechanics is typically incorporated into the design or control of the exo. Generally speaking, 51 

the research field has a good comprehension of lower-limb joint-level biomechanics including: 52 

dynamic (quasi-)stiffness, 2–6 distribution of work across the joints, 7–9 and how factors such as 53 

speed, terrain, and load change the joint dynamics. 10–12 However, skeletal muscles are the actual 54 

actuators that generate movement. 13,14 Therefore, there are clear advantages to movement support 55 

technology which interacts at the muscle level. 56 

 The quantity of published research, which combines muscle/tendon biomechanics with 57 

exos is small, but exhibits a slow upwards trends in recent years. Figure 1 illustrates the long-58 

standing and increasing interest in muscle/tendon biomechanics research. The increase in exo 59 

research is comparatively more recent, likely due to technological advancements improving the 60 

feasibility of exo research. 15 Emerging in 2005, published research combining the fields of exos 61 

and muscle/tendon biomechanics has slowly increased, although it still trails behind both of its 62 

components.  63 

 Understanding of muscle-level biomechanics has improved with time, facilitated by 64 

improvements in technology and modelling. Well established techniques, like ultrasound, were 65 

able to capture muscle mechanics in intact humans in vivo during stationary tasks. 16–18 66 

Improvements in technology allowed capture of muscle mechanics in dynamic situations such as 67 



walking. 19–21 Advances in high-density electromyography (HD-EMG) and blind source separation 68 

enabled measuring the firing activity of contractile microstructures (i.e., motor units) in human 69 

muscles in vivo, 22,23  which was critical to understanding how whole-body movement is 70 

accomplished via fibre contraction at the microscale. 24 Computational muscle-level models 71 

combined with a rise in open-source platforms and models, and an increase in computing power 72 

also served to advance our understanding of muscle-level biomechanics at macro- and microscale. 73 

Improvements in implementing trajectory optimization for musculoskeletal modelling facilitated 74 

faster modelling and simulations, which allowed researchers to more easily simulate and 75 

investigate numerous models. 25 In 2015, a modelling toolbox called CEINMS, integrated 76 

electromyographic (EMG) driven and EMG-informed algorithms into the musculoskeletal 77 

modelling environment of OpenSim. 26 The resulting open-source neuromusculoskeletal 78 

modelling platform was able to better simulate, test, and understand how muscle activity controls 79 

movement. Researchers have also developed tools to facilitate advanced optimal control (Moco in 80 

OpenSim) and customizable control (SCONE) in neuromuscular simulations. 27,28 Furthermore, 81 

recent advancements have combined computationally fast musculoskeletal models with 82 

reinforcement learning to explore muscle mechanics during real-life tasks. MyoSuite, an open-83 

source framework with reinforcement learning capable musculoskeletal models, enables in silico 84 

design of robotic devices and controllers, thereby speeding up the design of personalized exos for 85 

in vivo real-world applications. 29,30 With a better understanding of muscle-level biomechanics we 86 

gleaned insights into the mechanisms of mobility and biomechanical principles about which 87 

exoskeletons can be designed and controlled.  88 

Traditionally, the key players in exo design and control have been mechatronic and 89 

actuation aspects, while the human aspects have often been disregarded or minimally incorporated. 90 



Many exoskeletons, both old and new, exclusively use techniques other than muscle-level 91 

biomechanics for their controllers and design. A number of review articles discuss the state-of-92 

the-art for non-muscle-level exoskeleton control and design, 1,31–33 so we only briefly summarize 93 

them here. Generally, exo design and control focuses on the robotic part of the human-robot 94 

system, placing high importance on the output torque of the device (Figure 2). Oftentimes, exos 95 

use position or torque tracking to enforce a pre-defined kinematic or kinetic profile, and the human 96 

must yield and adapt to the robot’s actuation rather than working symbiotically. 34–37 Impedance 97 

control considers the interaction between human and robot, resulting in a controller that is 98 

responsive to the human while still enforcing predetermined dynamics. 37–40 Volitional controllers, 99 

such as proportional myoelectric controllers, further shift the controller focus from the robot to the 100 

human component of the human-robot system by using human measures to inform the output. 41–101 

43 However, proportional myoelectric controllers measure the emergent behaviour of the 102 

underlying muscle actions and therefore do not fully capture the muscle mechanics. Human-in-103 

the-loop optimization acts to tune the exo parameters to optimize for a chosen output parameter 104 

which is often human energy expenditure or muscle activity. 44–46 Although a powerful and state-105 

of-the-art technique, human-in-the-loop optimization can be time intensive and risks falling into 106 

local minima traps. Some consideration to muscle properties have also been included in design – 107 

most noticeably exos which employ contractile elements mimicking musculoskeletal properties, 108 

such as the McKibben pneumatic actuator (commonly referred to as an “artificial muscle”). 41,47 109 

However, McKibben actuators require a compressed air source, thus limiting the locations the exo 110 

can be used in. In addition to little incorporation of muscle-level biomechanics in exo design and 111 

control, no exo has taken into consideration the short- and long-term response of skeletal muscle 112 



to robot-delivered mechanical loads. Inclusion of muscle-level biomechanics may overcome some 113 

shortfalls in current exo design and control. 114 

 The design and control of exos has been increasingly inspired by muscle-level 115 

biomechanics over time. Earlier exoskeletons had heavy and bulky form factors, with a focus on 116 

providing enough power to compensate for 100% of biological joint torque-generating capacity. 117 

48,49 Time and experience led to smaller, and less-bulky exos, with a wide variety of actuation 118 

methods. The development of light-weight yet strong materials, more compact powerful batteries 119 

and motors, and innovative design all contributed to reducing the bulk and weight of exos. 120 

Artificial pneumatic muscles which attempted to mimic biological muscle properties and were 121 

originally developed for prosthesis use, became a popular actuation method for exos.41,47,50,51 122 

Linear springs, acting in-line with muscle-tendon units such as the triceps surae complex, have 123 

also been used in exo design as a form of musculotendon mimicry. 52,53 Straps and cables, a more 124 

recent form of exo actuation, are often inspired by biological tendons. 54,55 While these techniques 125 

are guided by muscle properties, none of them rely on muscle-level biomechanics, which is the 126 

next logical step for exo development. 127 

 Inclusion of muscle-level biomechanics in exo design/control has the potential to break 128 

through some of the barriers to wide-spread exo success. Despite technological advancements, 129 

there is substantial room for improvement in exo design/control, particularly for real world 130 

environments. In this narrative review, we will discuss how muscle-level biomechanics has been 131 

and could be effectively implemented in exo control and design. We introduce the techniques and 132 

hardware used to understand muscle-level biomechanics and then discuss how muscle-level 133 

biomechanics can inform design and personalization. Next, we consider control choices and 134 

integrating real-time muscle-level biomechanics estimators within robotic control logics. After 135 



presenting how muscle-level biomechanics affects the human-machine interaction, we end the 136 

review with recommendations and predictions of research within muscle-level biomechanics and 137 

lower-limb exos. Throughout the manuscript, we classified techniques as “Direct” if they 138 

measured a muscle property through sensors, and “Indirect” if the technique used a 139 

musculoskeletal model with or without sensor input to estimate a muscle property.   140 

Measuring muscle biomechanics 141 

 Incorporation of muscle biomechanics into exo design, control, or personalization requires 142 

a method to measure or estimate muscle biomechanics. The measurement or estimation technique 143 

usually needs to provide relevant biomechanical data in vivo, real-time (not for evaluation 144 

purposes), and during dynamic movement. Furthermore, sensors should be compatible with the 145 

physical structure of the exo. In this section, we reviewed muscle measurement methods and 146 

sensors to measure or estimate muscle biomechanics that meet the requirements for use with 147 

exoskeletons. 148 

 Direct measures  149 

While various sensing methods measure parameters that can provide information about muscle-150 

level kinetics and kinematics, the depth and accuracy of measurements are different. We presented 151 

the methods in order from the deepest to most superficial measurements. 152 

Sarcomere Microendoscopy  153 

Sarcomere microendoscopy can directly measure the second-harmonic frequencies of light 154 

generated in the muscle fibres to visualize muscle sarcomeres and their contractile dynamics. 155 

Llewellyn et al.56 showed that second-harmonic generation with 920 nm illumination can 156 

effectively visualize sarcomeres in human extensor digitorum muscle in vivo. They showed that 157 



visualizing sarcomere contractile dynamics in millisecond scale resolution can overcome cardiac 158 

and respiratory motion artifacts which is possible through high-speed data acquisition.  159 

As sarcomere length determines force production capacity in muscles, microendoscopy can reveal 160 

muscle biomechanics in vivo while being minimally invasive. Sanchez et al.57 developed a 161 

wearable microendoscope to visualize sarcomere twitch dynamics in individual motor units of 162 

major skeletal muscles including soleus and vastus lateralis. Although sarcomere microendoscopy 163 

is still an invasive method and it has never been used in conjunction with exoskeletons, it is a 164 

potential measurement method which can deepen the knowledge of muscle biomechanics to 165 

inform design, control, and individualization of lower limb exoskeletons. For instance, because 166 

many movement disorders exhibit or originate from disruptions in sarcomere structure and 167 

performance, rehabilitative exos could be designed based on how they affect motor unit contractile 168 

dynamics and the structure of sarcomeres in short- and long- term. Similarly, different types of 169 

exos can take advantage of the evaluation of user adaptation and how adaptation results in desired 170 

or undesired remodelling in the muscle, which is advantageous for real-word applications. 171 

 Sarcomere microendoscopy demonstrated how joint angle affects sarcomere length and 172 

contractile dynamic. Cromie et al.58 measured sarcomere length in carpi radialis brevis while wrist 173 

was in flexion and extension. The results showed substantial sarcomere length variability in an 174 

individual fibre. More studies addressed how joint angle changes sarcomere length and affects 175 

muscle force generating capacity in lower limbs. 59,60 As the changes in the sarcomere length at 176 

different angles were in the range of 2 to 4 μm for the soleus and the measurement precision of the 177 

method is ~30 nm, the measurement is therefore suitable for tracking the length of sarcomeres in 178 

lowerlimb movement. 60 Additionally, Lichtwark et al.61 showed that fascicle length change can 179 

represent sarcomere length change.  180 



 Furthermore, sarcomere microendoscopy can equip research in the field of lower limb exos 181 

to investigate muscle adaptation. Pincheria et al.62 determined how three weeks of eccentric 182 

exercise training changes sarcomeres in biceps femoris long head. They estimated sarcomere 183 

length and number as well as fascicle length before and after the training. The results showed an 184 

increase in the sarcomere length while the sarcomere numbers in series did not change, as well as 185 

a heterogeneous change in fascicle length. 186 

Ultrasound imaging  187 

 Ultrasonography enables deriving muscle architectural (e.g., volume, pennation angle, 188 

physiological cross-sectional area) and functional parameters (e.g., fascicle kinematics), which are 189 

critical to understanding muscle biomechanics. As muscles are in series with tendons, other 190 

common biological measurements like joint kinematics and kinetics, or EMG cannot provide 191 

enough details to measure the separate kinetics and kinematics of muscles and tendons without 192 

many assumptions and models. Muscle-tendon biomechanics can provide useful information for 193 

individualization, fatigue recognition, real-time and overground joint torque estimation etc., which 194 

can enhance control and design in lower-limb exos. 195 

Fukunaga et al.63 used real-time ultrasonography to determine fascicle length and pennation angle 196 

of human vastus lateralis muscle in vivo and non-invasively at rest and during static contraction. 197 

Ultrasonography enabled in vivo measuring of parameters that can inform muscle level kinetics 198 

and kinematics such as physiological cross-sectional area of muscles, 64 investigating differences 199 

in longitudinal strain of the Achilles tendon, 65 as well as studying force-velocity behaviour of the 200 

medial gastrocnemius muscle-tendon unit. 66 Manual tracking of muscle architectures with 201 

ultrasonography is subjective and time-consuming, which led to algorithms developed for 202 

automated tracking of fascicle length, 67 for which the accuracy and repeatability is assessed, 68 203 



and the source code and standalone version of the semi-automated fascicle tracking algorithm was 204 

made open-source. 69 205 

 Recently, studies used muscle ultrasonography during gait to estimate parameters like 206 

volitional motion or ability and muscle power, which can be useful for exo control. For instance, 207 

Nuckols et al.70 used ultrasound imaging to estimate the onset of soleus concentric contraction just 208 

before push off, when the soleus begins to generate positive power, in real time during various gait 209 

conditions. They showed that an exo control strategy based on muscle positive power could adapt 210 

to the individuality of contraction timing (e.g., healthy and post stroke patient) and how it changed 211 

with changes in gait (e.g., speed and incline). Nuckols et al. also compared gait segmentation based 212 

on automated ultrasound detection of the soleus contraction onset with ground reaction forces and 213 

found the error was within 1% of the gait cycle. Other approaches to link human mechanics to exo 214 

control strategies include optimization and grid search (i.e. parameter sweeping) which explore 215 

and determine appropriate exo control parameters for a specific gait condition. 71 However, both 216 

techniques are time-consuming and not necessarily generalizable to differences in gaits and 217 

terrains. Direct EMG or matching to kinetics and kinematics of joints are also approaches that try 218 

to intuitively adapt to human gait, but their performance is not as good as optimization or grid 219 

sweep. One possible reason is that joint kinetics and kinematics and EMG cannot completely 220 

determine the dynamic state of muscles that are the real actuators of human gait. 221 

Moreover, muscle architecture can be input into data-driven (e.g., using machine learning) or 222 

mechanistic (e.g., musculoskeletal modelling) models that can estimate motion intention. 223 

Jahnandish et al.72 performed image enhancement and model fitting to extract ultrasound features 224 

of rectus femoris muscle, namely thickness, angle between aponeuroses, pennation angle, fascicle 225 

length, and image echogenicity. The echogenicity, defined as the ability to send and receive an 226 



ultrasound wave, was measured by averaging the intensity of all pixels in the region of interest. 227 

Then, they estimated knee joint angle and angular velocity during non-weight-bearing knee 228 

flexion/extension based on the trained model with an average root mean square error value of 7.45° 229 

and 0.262 rad/s, which is close to a similar study which used sEMG. Muscle thickness and image 230 

echogenicity showed the highest correlation with both angle and angular velocity. Also, some 231 

studies showed that inputs from both s-EMG and ultrasound images (fascicle length and pennation 232 

angle) can increase accuracy of ankle joint moment prediction by machine learning73 models or 233 

neural and musculoskeletal74 models.  234 

While studies used ultrasound B-mode probes to extract fascicle kinematics based on 2D 235 

images, Yan et al.75 developed a measurement system to use ultrasound wearable A-mode probes 236 

(1D measurement) to estimate the acoustic nonlinearity parameter of skeletal muscles in vivo. The 237 

acoustic non-linearity parameter changes in tissues due to diseases or residual stress, which 238 

suggested that similar changes may occur with contraction in muscles. Yan et al. showed high 239 

correlation between the acoustic nonlinearity parameter of biceps brachii muscle and elbow joint 240 

torque, with an average coefficient of determination (R2) of 0.861. Hence, they proposed the 241 

acoustic nonlinearity parameter as supplementary information for force control of exoskeletons. 242 

Shear wave tensiometry  243 

An emerging research technique to directly and non-invasively measure superficial tendon and 244 

ligament kinetics is shear wave tensiometry. 76 The non-invasive device is placed on the skin, 245 

directly over the target tendon or ligament. A vibrational stimulus is delivered to the tendon (via 246 

the skin) which propagates through the tendon at a speed dependent on the tendon axial load due 247 

to real-time characteristics of the tendon modulating the propagation of the vibration. The shear 248 



wave speed can be calculated knowing the distance between two miniature accelerometers placed 249 

along the tendon direction and measuring the arrival time of the propagated signal. 250 

Shear wave tensiometry shows promising capabilities for applications in lower limb exos. 251 

First, it is applicable to lower limb exos, as the impulses are detectable throughout the gait cycle 252 

and can track dynamically varying wave speed. 77 Several studies used shear wave tensiometry to 253 

track the dynamics of standing balance and measure gait kinetics in clinical and able-bodied 254 

populations, including children, adults, and older adults78–82. Second, in more dynamic tasks like 255 

running and jumping, Schmitz et al.83 proposed adding redundant accelerometers and using a 256 

Kalman filter to mitigate random sensor noise due to the high rate of loading and impact events. 257 

Harper et al.84 developed a wearable shear wave tensiometer with dynamic range to track 258 

unconstrained locomotion. A later work combined this with inertial measurement units85 to 259 

measure the work and power output of Triceps Surae outdoors. Schneebeli et al.86 used intraclass 260 

correlation coefficient (ICC3.1) to test the test-retest (ICC3.1 0.87–0.99), inter-section (ICC3.1 261 

0.75–0.93) and intra-session (ICC3.1 0.85–0.96) reliability of shear wave tensiometry, which 262 

shows promising use in clinical and research settings. 263 

High Density Electromyography (HD-EMG)  264 

 Non-invasive and flexible or woven textile bi-dimensional grids of electrodes can measure 265 

muscle high density electromyograms (HD-EMGs). 87 HD-EMG is an interferent electrical signal 266 

generated by the superposition of action potentials generated by hundreds of skeletal muscle fibres 267 

during contraction. Because skeletal muscle fibres are directly innervated by alpha motor neurons 268 

(neural cells residing in the spinal cord), the HD-EMGs carry information about alpha motor 269 

neuron activity, which is directly associated to the control of movements. 88 Blind source 270 

separation can be used to disentangle the interferent HD-EMG and decode both discharge timings 271 



of motor neurons as well as the resulting action potentials travelling along innervated skeletal 272 

fibres. HD-EMG holds great potential to explore the neuro-mechanics of movement in individuals 273 

wearing exoskeletons. Many studies have addressed HD-EMG in upper limb gesture recognition 274 

and exoskeleton controllers, but the literature in lower limb exoskeletons is scarce. 275 

 Some studies investigated HD-EMG during locomotion and demonstrated that spatial 276 

patterns of electromyograms can reveal how muscles adapt to different locomotion modes. Schlink 277 

et al.23 compared different signal processing methods to reduce motion artifacts in HD-EMG 278 

during human locomotion and proposed canonical correlation analysis filtering during fast walking 279 

and running. Schlink et al.89 also showed that spatial patterns of electromyograms are 280 

heterogeneous and differ among lower limb muscles and locomotion speeds, which could be due 281 

to preferential recruitment of faster motor units under greater loads. Moreover, they showed that 282 

fatigue alters spatial myoelectric patterns in the medial gastrocnemius during locomotion, while 283 

lower limb biomechanics remains similar, a potential strategy to avoid overuse injuries. 90  Exos 284 

can use HD-EMG to recognize fatigue or locomotion mode to tune assistance (e.g., timing and 285 

magnitude of torque). Also, HD-EMG can reveal muscle recruitment strategies, impairments, and 286 

adaptations of users as valuable information for exoskeleton design. 287 

Force myography (FMG) 288 

 FMG refers to a broad category of methods that non-invasively measure muscle 289 

biomechanics by quantifying how muscle external geometry changes. FMG usually includes an 290 

array of sensors to detect muscle deformation or stiffness due to contraction, and methods that 291 

process the collected data to extract the desired parameters. FMG can vary in type of sensors (e.g., 292 

force or pressure sensors, strain sensors, bending sensors), sensor arrangement, and data 293 

processing method (e.g. signal processing and feature extraction, machine learning techniques), 294 



with specific limitations associated with each technique. 37 However, sensor characteristics and 295 

device configuration can adversely affect the reliability of FMG signals. For instance, many 296 

researchers calibrated the pre-load forces when the device is donned based on the user’s oral 297 

feedback. 91 Moreover, some methods are based on cross-sectional area increase of the muscles. 92 298 

These methods can be used in some applications like gesture recognition but cannot estimate 299 

individual muscle force without making assumptions on the contribution of the individual muscles 300 

to the cross-sectional area increase. Also, some techniques are only applicable to static situations 301 

as they cannot handle motion artifacts. 93  302 

Some recent studies developed and used soft and wearable strain sensors to monitor muscle 303 

contractions. 92,94 Alvares et al.94 used sensors based on strain-mediated contact in anisotropically 304 

resistive structures (SCARS) to measure changes in muscle deformation which correlate with 305 

muscle input and knee torque.  306 

Many studies include FMG in hand rehabilitative and assistive exoskeletons to enhance 307 

user intention in upper body, 95–99 but FMG in lower limb applications is limited. Jiang et al.100 308 

proposed a wearable gait phase determination system based on FMG. The proposed force 309 

myography band could correctly detect more than 99.9% of gait phases over 12965 gait phase 310 

segments with an average temporal error of 55.2 ms. With upper limb applications motivating 311 

hardware and processing improvements in FMG, there is an increased likelihood of interesting 312 

applications for lower limb exos in the future. 313 

Indirect measures 314 

 Aside from the direct measurements mentioned above, real-time musculoskeletal models 315 

have been used to estimate biomechanical parameters in vivo, such as muscle-tendon forces, 101  316 



kinematics, joint torques, 102,103 joint stiffness , 5,6 and compressive loads, 104 which can be used in 317 

exoskeleton controls, 105–108 without using invasive measurement sensors. 318 

 One research direction is to use optimization to estimate individual muscle forces from the 319 

net joint torques (often got from inverse dynamics109,110), named static optimization. 111–114 320 

Specifically, researchers developed real-time computing platforms that utilize the static 321 

optimization method in estimating muscle forces. 115,116 However, optimization-based muscle 322 

force estimation for lower limbs often requires force plates to measure ground reaction forces, 323 

which limits this potential in out-of-lab applications. Trajectory optimization can avoid this issue 324 

by modelling the ground contacts, however, the objective function is normally movement-type 325 

specific and may not reflect an individual person or patient. 25,117  Furthermore, the computation 326 

time is long and prevented it from being used in the real-time control of wearable robotic devices.  327 

To solve this problem, muscle force estimation using sEMG driven musculoskeletal (MSK) 328 

models have been developed, which requires joint angles and sEMG signals as input. At first, due 329 

to computational complexity, studies were focused on only one joint and its corresponding 330 

muscles118,119 and an infinitely stiff tendon model was also used in the muscle models to save in 331 

computational time; 120 Later, these types of studies were expanded to multiple joints and muscles 332 

as well as incorporating an elastic tendon to cover more complex movements; 102,121 Recently, the 333 

open source Calibrated EMG-Informed NeuroMusculoSkeletal Modelling Toolbox (CEINMS) 334 

was developed to lower the entry to this field. 26,103 Furthermore, experimental EMG paired with 335 

inverse dynamics allowed for the personalization of muscle-tendon models to the user as they 336 

represent the inputs/outputs pair. 26 Not only can this method estimate muscle forces, but studies 337 

also demonstrated that it could accurately estimate joint torque and extrapolate results for unknown 338 

tasks (not used for the muscle-tendon model parameters personalisation), and even other degrees 339 



of freedom. 122 Since musculoskeletal models were directly driven by the sEMG signals, calculated 340 

muscle forces and joint torques can be prior to the electromechanical delay of actual 341 

musculoskeletal systems, which provides a big advantage in exoskeleton control as it gives a 342 

windows of opportunity where optimal assistance can be provided to the user. 106,107 By knowing 343 

the force of each muscle that wraps over a joint, joint stiffness5,6,123,124  and compressive loads can 344 

be estimated. 104,125–129 As these parameters are more closely relevant to either human-robot 345 

interactions or injury risks, they are more suitable to be directly used as control parameters in 346 

exoskeletons. Even though the above-mentioned studies have shown very promising results on 347 

reproducing joint torques, validating the actual muscle forces in vivo on human subjects poses 348 

ethical challenges, making it difficult to directly measure and validate these forces. However, 349 

experimental studies conducted on cats have provided valuable insights into the effectiveness of 350 

various approaches, such as static optimization, trajectory optimization, and surface 351 

electromyography (sEMG). 130–133 The similarities in muscle structures and types between humans 352 

and cats support the belief that these methods can be reliable in interpreting human movements as 353 

well. While there may be some species-specific differences, the fundamental principles underlying 354 

muscle mechanics and control are expected to be comparable. In general, indirect measurement 355 

methods provide very useful muscle biometric information using very simple sensor setups, 356 

compared to direct methods, which has advantages in real-life applications. 357 

Muscle and tendon biomechanics for exoskeleton design or personalization 358 

 A main objective of exos is to interact with the human wearing them. Thus, this interaction 359 

will influence the design and control of the exo. For a long time, the human neuromusculoskeletal 360 

system was ignored in the conception of exoskeletons resulting in devices that were powerful but 361 

bulky and with little to no benefit for the user. 49 To overcome this challenge, exoskeleton 362 



emulators for iterative design were established; the most established of which is the human-in-the-363 

loop technique. 46 Although emulators can result in the creation of optimal design and control,52 364 

they require a large amount of human data (3600 recorded conditions in the cited study).  365 

Direct measurements  366 

 Direct measurements of muscle biomechanics can provide useful information to inspire 367 

novel designs or to help tune exoskeletons. Ultrasound imaging can reveal the effects of exo 368 

stiffness on force production in muscles and tendons. Farris et al.134 evaluated the effect of parallel 369 

elastic assistance of ankle exoskeleton in hopping on soleus muscle-tendon-unit mechanics using 370 

in vivo ultrasound imaging. They showed that parallel assistance to soleus muscle reduces muscle 371 

force, but average positive fascicle power does not significantly change. This can help with tuning 372 

the stiffness of lower limb exos to optimize metabolic cost. Takahashi et al.135 investigated foot-373 

ankle interplay during walking by adding stiffness to the foot through shoes and insoles. They used 374 

ultrasound imaging to show that a stiffer foot results in decreased shortening velocity and increased 375 

force output in soleus muscle. The results suggested added foot/shoe stiffness as a potential design 376 

parameter to improve locomotion economy in tasks where muscles should generate more muscle 377 

force (e.g., walking with load carriage) or operate with less economy (e.g., fast walking speeds 378 

close to the walk-to-run transition). Also, Nuckols et al.136 showed how exoskeleton stiffness alters 379 

soleus muscle contractile dynamics and affects metabolic rate during walking. They used 380 

ultrasound imaging to show that exoskeletons with higher rotational stiffness increase fascicle 381 

length and velocity and decrease fascicle force. However, the change in contractile dynamics 382 

results in a bowl-shape metabolic cost. Hence, measuring contractile behaviour can help to design 383 

or tune exos to steer more economical force production in the muscles. Moreover, Beck et al.137 384 



showed how artificially fast balance-correcting exoskeleton torque can improve balance by 9% 385 

and how it affects fascicle mechanics.  386 

Moreover, direct measurements can help exo personalisation through design and evaluation 387 

of assistance profile. Nuckols et al.138 demonstrated that ultrasound imaging can measure muscle 388 

dynamics to develop exosuit assistance profiles that are tailored to the individual and adaptive to 389 

dynamic walking tasks. Also, Schmitz et al.139 used shear wave tensiometer to directly measure 390 

force in the Achilles tendon during walking assisted with ankle exosuit while carrying load. They 391 

performed a pilot experiment in an unconstrained outdoor environment to evaluate nine different 392 

exosuit assistance profiles based on reduction in the peak force in Achilles tendon. The most 393 

efficient exosuit assistance profile could reduce metabolic cost by 9.6%. 394 

Indirect measurements  395 

Human-exoskeleton simulation can acquire the same benefits of emulators without requiring 396 

a high volume of human data. As previously presented, there is a wealth of literature on 397 

neuromusculoskeletal modelling based on cadaveric studies or human experiments. Nevertheless, 398 

one of the main and active challenges is the simulation of how human and mechanical devices 399 

interact. One of the main axes of simulation-research is based on predictive simulation using 400 

optimal control, which can reproduce the interaction between the human-exoskeleton system and 401 

the environment. Optimal control can also predict the effect of exos on humans or human 402 

biomechanical variables in unknown conditions. Fournier et al. began with a biomechanical 403 

simulation of healthy and spinal cord injury kinematics at varied walking speeds, 140 then added a 404 

simulated exoskeleton to the human neuromusculoskeletal system, which allowed them to predict 405 

ground reaction forces. Predictive simulation and optimal control can also be used to predict the 406 

effect of exos with different mechanical properties, for example Sreenivasa et al.141 looked into 407 



the optimal stiffness of an ankle-foot orthosis for reducing muscle effort in children with gait 408 

abnormality and Febrer-Nafría et al.142 optimized parameters such as angle shape for the kinematic 409 

assistance delivered through an active knee exoskeleton to a spinal cord injury (SCI) patient. In 410 

both cases, after testing their simulation with pre-recorded human data, they created an 411 

optimization routine that tracked real kinematics or torque parameters and/or tried to minimize 412 

power, muscle activation or jerk.  413 

Simulation can also be used to create a set of requirements for exos. Afschrift et al. 414 

investigated a capability gap (torque that a weakened muscle can produce against the torque task 415 

requirement computed using inverse dynamics), which allowed identification of the minimum 416 

level of assistance required for people with muscle weakness (reduction of maximal force 417 

capability in the muscle) to realise certain tasks. 143 This is an effective technique to determine the 418 

minimum power of the actuator in the exo for people with muscle weakness. Following the same 419 

philosophy, a study simulated ideal actuators to find the best single degree of freedom (DOF) or 420 

multi-DOF joint to actuate to minimize metabolic cost during running.  144 Results showed that at 421 

low running speeds (2 m/s) all joints provided the same metabolic reduction but at higher speeds, 422 

the hip could create better metabolic savings. For multi-DOF, a combination of hip, knee and ankle 423 

offered the highest metabolic reduction. Another interesting simulation study145 showed how 424 

coupled joint assistance (using the same actuator/assistance on multiple DOF) had the same or 425 

similar effect on metabolic savings as multi-actuator assistance and provide better metabolic 426 

reduction than assisting only one DOF. This provided important guidelines in exoskeleton design 427 

to save on hardware components i.e., going from one actuator per DOF to one actuator crossing 428 

multiple joints thus providing cheaper devices.  429 



There remains three main issues and challenges that delay the broad adoption of these 430 

simulation tools. The first one, which is common to not only neuromusculoskeletal modelling 431 

simulation but simulators in general, is the gap between simulation and reality which limits the 432 

transferability of simulation results to the real system. The issue of transferability was observed in 433 

a study146 where results obtained in simulation promised a higher metabolic reduction (69%) than 434 

what was obtained in the real system (25.9%). Using simplified musculoskeletal models (3 DOF 435 

9 muscles model146) can contribute to poor transferability. The second challenge is the idealization 436 

of exo components and structures. For instance, exoskeletons are usually modelled as a simplified 437 

mechanical structure that is rigidly connected to the human skeletal system, with the force 438 

produced by the actuator ideally transmitted directly to the skeletal system without loss due to 439 

friction, soft tissue connection, and shear forces. 146,147 An interesting study148 tried to tackle part 440 

of this problem by implementing a spring and damper contact model between the human and the 441 

skeletal system, which resulted in accurately reproduced kinematics of the real exoskeleton 442 

system. Nevertheless, their model needed to be calibrated with multiple experimental recordings 443 

of the real human and exoskeleton. The third shortcoming is the current inability to simulate the 444 

change (or learning) of the neural system due to the exos assistance. The lack of modelled learning 445 

limits the ability to effectively design assistance for neurorehabilitation of patients such as stroke 446 

survivors. An interesting solution would be to replace optimization for simulating the neural 447 

command by a machine learning algorithm wherein a neural network trained on the simulation 448 

could adapt to the different assistances. 149 449 

Muscle biomechanics for exoskeleton control 450 

 Muscle biomechanics can provide useful information to estimate valuable control signals 451 

for different applications including fatigue, volitional ability, and joint torque. Understanding 452 



generation of joint torques is a useful for exoskeleton control. Direct or indirect measurement of 453 

joint torque can allow creation of a symbiotic system between the human and exo by providing 454 

assistance proportional to the force produced by the user (Figure 3). Although joint torque can be 455 

estimated through inverse dynamics, estimation through muscle biomechanics may be more 456 

suitable for exoskeletons applications, particularly applications in uncontrolled (non-laboratory) 457 

environments.  458 

Direct measurements 459 

Despite attempts and innovations to directly measure muscle biomechanics during gait or 460 

other lower-limb movements to estimate useful control signals for muscle in the loop controllers 461 

(e.g., estimating joint torque or fatigue), we could find only one study that actually used a direct 462 

measurement of muscle biomechanics to estimate a parameter for the control parameter. Sheng et 463 

al.150 used real-time ultrasound-based muscle fatigue assessment to robustly control their hybrid 464 

(functional electrical stimulation and electrical motor) knee exoskeleton to switch between its 465 

modes and avoid extensive stimulation of the fatigued muscle.  466 

Neuromusculoskeletal modelling  467 

One indirect way of accessing joint torque is by using a neuromusculoskeletal model fed by 468 

EMG. Using neuromusculoskeletal modelling in combination with an exoskeleton is a recent 469 

technique, which was primarily delayed by the limitation of achieving real-time computation of 470 

the complex model (multi-DOF and multi-musculotendon unit). 109,122 Fleischer and Hommel151 471 

were the first to present the possibility of using a real-time neuromusculoskeletal model for the 472 

control of an unilateral knee exoskeleton. Durandau et al.105 further developed the methods to 473 

apply it to a lower-limb exoskeleton for the knee and ankle and tested it on patients (SCI and 474 

stroke). The results showed the possibility of using this kind of system for rehabilitation purposes, 475 



where muscle effort is reduced while also reducing neural control variability. Furthermore, the 476 

same system is used for a bilateral ankle exoskeleton during diverse walking conditions106 showing 477 

the possibility to reduce the muscular effort in variable walking speed and showing better 478 

adaptability than the current state-of-the-art speed adaptative controller52,152 although the 479 

metabolic reduction is less. Finally, neuromusculoskeletal models offer the possibility to compute 480 

biomechanical variables other than joint torque, such as stiffness, which can also benefit robotic 481 

control. Yao et al.153 combined real-time muscle stiffness computation (tibialis anterior) and joint 482 

torque to control a non-ambulatory ankle exoskeleton. The joint torque estimation is used as an 483 

input command to the torque controller and the muscle stiffness is used to modulate the stiffness 484 

coefficient of the admittance controller used for the torque controller. Nevertheless, this method 485 

relies on EMG sensors which are subject to noise and muscle crosstalk as well as interference from 486 

electromechanical devices (i.e. an exoskeleton).  487 

Neural control models can be used to drive musculoskeletal models for exoskeletons, which 488 

reduces reliance on EMG sensors. Ruiz et al.154–156 explored the possibility of using a motor 489 

primitive-based neural control model for controlling leg exoskeletons together with 490 

musculoskeletal models. They conducted experiments to evaluate the performance of the 491 

neuromusculoskeletal model-based controller. A full-leg exoskeleton that had motors at the ankle, 492 

knee and hip was used as the hardware platform. Participants were asked to perform a locomotion 493 

track involving ground-level walking, ascending stairs, and descending stairs and several 494 

transitions between these tasks. They showed that the assistance significantly decrease time to 495 

perform tasks. Dzeladini et al.157 showed that a reflex-based neuromuscular controller (NMC) for 496 

an ankle orthosis can reduce the net metabolic cost compared to the transparent mode without 497 

disturbing the walking dynamics at slow and normal speeds. Later, they extended the 498 



neuromuscular control framework into a hip and knee robotic exoskeleton and tested it on SCI 499 

patients. 158,159 Their results showed that NMC enabled SCI subjects to walk at several speeds, 500 

including near healthy speeds, in a healthy-like manner. Shafer et al.160 implemented a simple 501 

reflex-based neuromuscular controller for an ankle exoskeleton to study the effects of the reflex 502 

control parameters, such as the reflex gains and reflex time delay on users. They found that the 503 

reflex-based assistance could systematically reduce users’ biological ankle moment, however, it 504 

didn’t reduce their overall metabolic cost. Until now, most studies have looked at the immediate 505 

effect on the neuromusculoskeletal system, but long-term effects have not yet been investigated. 506 

The direct effect of assistance on the neural system has also been overlooked. 507 

 508 

Changes to Muscle Biomechanics when using Lower-Limb Exoskeletons 509 

In this section, we summarized the changes to muscle biomechanics as a result of using 510 

exoskeleton assisted movement. Studies investigated these changes during actuation of lower-limb 511 

joints during either walking, seated knee flexion/extension, hopping, squatting, or sit-to-stand 512 

tasks. The influence on plantar flexion and dorsiflexion is commonly studied when using ankle 513 

exoskeletons, and are summarized in Table 1, whereas the following sections address actuation of 514 

either the knee or hip joints. We also briefly discuss the studies that used commercial lower limb 515 

exoskeletons or robotic gait trainers such as Lokomat and Lopes.  516 

Active actuation of knee or hip joint 517 

Many studies showed that knee exoskeletons can reduce activity of associated muscles. 518 

Some studies that actuated the knee joint provided additional passive supports at either ankle or 519 

hip. 161–168 The results showed reductions in soleus, 163 rectus femoris, tibialis anterior, 520 

gastrocnemius lateralis, and semitendinosus162 during gait, and during swing phase, the biceps 521 



femoris, 161 tibialis anterior, and semitendinosus162 when walking with powered as compared to 522 

minimal impedance mode. In minimal impedance mode, also called “free” or “transparent” mode,  523 

the exo attempts to be transparent to the user and minimally impact walking biomechanics either 524 

by providing no torque or actively controlling for minimal interaction torque. Active knee 525 

assistance with passive hip support reduced muscle activity of hip and knee extensors. 166 This 526 

general decrease in EMG activity was further associated with a decreasing trend over the time with 527 

assisted walking due to adaptation. 166 528 

Studies also evaluated knee exoskeletons in other tasks such as squatting167 or knee flexion-529 

extension. 165,168 A knee exoskeleton also reduced knee extensor muscle activity when using a 530 

controller that is capable of injecting the minimal amount of energy needed to support oscillations 531 

of the knee. 165 532 

Passive springs placed anteriorly on the hip stored and released energy thereby reducing plantar 533 

flexor activity during walking. 169 Actuated hip exoskeletons increased muscle activity of tibialis 534 

anterior, rectus femoris, and gastrocnemius medialis in the minimal impedance mode, whereas 535 

that of the semitendinosus reduced. 164 However, providing assistance reduced the muscle activity 536 

of the tibialis anterior, rectus femoris, and gastrocnemius medialis but increased activity of the 537 

semitendinosus. 164 538 

Actuation across multiple joints, and use of Robotic Gait Trainers, and commercial 539 

exoskeletons  540 

An exoskeleton with active knee and ankle actuation reduced muscle activity for both healthy 541 

and participants with stroke in the knee flexors and extensors, and ankle plantar and dorsiflexors. 542 

105 Increased assistance reduced the variability of muscle activity in this study. Lower limb 543 

exoskeletons with hip and knee actuation and passive ankle support reduced muscle activity of the 544 



vastus medialis, gastrocnemius medialis,170,171 tibialis anterior, rectus femoris, soleus170 when 545 

compared to walking with a minimal impedance mode. Activity of semitendinosus and biceps 546 

femoris increased when walking slowly with the exoskeleton. 170 Furthermore, muscle synergy 547 

patterns were shown to be altered when wearing such exoskeletons 172. Otálora and colleagues173 548 

showed that actuation of the hip, knee, and ankle joints reduced activity in the knee flexors and 549 

extensors, and tibialis anterior.  550 

Gait training devices such as the LOPES and Lokomat provide different degrees of actuation 551 

of the lower limb and, unlike exoskeletons, can also provide body weight support. Walking in the 552 

LOPES in zero-impedance mode showed a decrease in muscle activity of the muscles involved in 553 

push off whereas an increase in activity of muscles that contribute to acceleration and deceleration 554 

of the swing leg. 174,175 The activation timing was rather unchanged. 174 The virtual pivot point 555 

model implemented in LOPES II through admittance control also showed decreased muscle 556 

activity in rectus femoris, hamstring, medial gastrocnemius, and gluteus maximus muscles. 175 557 

Literature about how the Lokomat impacted post training muscle activity has been inconclusive. 558 

The Lokomat imposes able-bodied joint trajectories through impedance control, with varying 559 

levels of exo guidance force. At higher levels of guidance force the joint trajectories are more rigid 560 

and it is increasingly difficult for the muscles of the user to influence or affect the trajectory of the 561 

Lokomat. The results depended on guidance level, 176,177 speed, 176,178 or body weight support. 562 

177,179 Walking on the Lokomat increased the activity of biceps femoris in healthy participants, 563 

176,177,179 vastus lateralis 176,179 erector spinae, tibialis anterior, 179 tibialis anterior and rectus 564 

femoris. 177 However, another study identified a general lowering of muscle activity compared to 565 

treadmill walking in participants with stroke as well as healthy walkers. 180 For participants with 566 

SCI, Lokomat training reduced vastus lateralis and rectus femoris activity during stance phase, 567 



and increased gastrocnemius medialis during swing phase. 181 The Lokomat was also used to 568 

differentially assist either side during gait, and showed an inverse relation to muscle activity on 569 

the other side. 178 The activity in the trunk muscles during training with the Lokomat was similar 570 

to quiescent supine lying. 182 Using a robotic trainer that only assisted the hip increased activity of 571 

knee flexors. 183 572 

Commercially available exoskeletons have been rigorously studied in literature. 182,184–194 For 573 

instance, studies reported reduction in rectus femoris, 186,187 gluteus medius, medial hamstring, 574 

tibialis anterior, soleus, 187 gluteus maximus, rectus femoris, vastus lateralis, and gastrocnemius 575 

and an increase in biceps femoris186 when walking with the Ekso GT, which assists the user in a 576 

predefined trajectory. However, the change in muscle activity depended on gait phase, whether the 577 

user had voluntary control in the exoskeleton, and the speed of reference walking without 578 

exoskeleton. 186 Voluntary control increased burst duration compared to fast walking. 186 579 

The Ekso has often used to train participants with neurological impairments. 182,184–186,188–193 580 

Participants with multiple sclerosis showed a new muscle synergy when walking with the 581 

exoskeleton. 193 Incomplete SCI participants showed non-reciprocal firing patterns and reduced 582 

muscle activations especially that of the rectus femoris190 and tibialis anterior. 186 A reduced 583 

variability in muscle activity was seen when walking with the exoskeleton. 190 Alamro182 observed 584 

an increase in trunk EMG when walking with Ekso-assisted compared to the Lokomat for SCI 585 

participants. Trunk EMG activation remained similar between Ekso overground and treadmill 586 

walking.  587 

Stroke participants were studied at all three phases; acute, sub-acute, and chronic with the 588 

Ekso. 184,185,188,189,191,192 Participants with acute stroke showed reduction in soleus and rectus 589 

femoris activity on affected side during stance phase with the exoskeleton. 184 Vastus Lateralis and 590 



rectus femoris showed the largest dissimilarity in activation with the exoskeleton on the affected 591 

side. 184 Using the Ekso for training in sub-acute stroke improved bilateral symmetry of tibialis 592 

anterior and decreased co-contractions of the proximal muscles, suggesting improvement in 593 

proximal muscle activity. 189 Activation timing for the semitendinosus was improved in the paretic 594 

leg after training. 191 The Ekso trained group also showed more physiological motor control in the 595 

semitendinosus and rectus femoris. 191 Chronic stroke participants who trained with the Ekso 596 

showed reduced affected side rectus femoris activity during swing phase, 188 increase in rectus 597 

femoris, reduction in affected biceps femoris, increase in unaffected biceps femoris, reduced soleus 598 

and tibialis anterior activity was seen. 185 The synergy modules necessary to reconstruct lower 599 

limb muscle activities were more similar to healthy walking post Ekso training. 192 600 

This section overviewed the impact on muscles as a result of assistance provided by exos. In 601 

sum, we see a reduction in muscle activity across joints, and tasks, as well as changes to muscle 602 

synergies. This understanding must be accounted for when designing novel controllers that interact 603 

with the muscle directly.  604 

Discussion and future predictions 605 

Exos have been designed with the goal of enhancing human movement. However, current 606 

technologies have shown only modest results in healthy individuals and limited clinical impact. A 607 

central element hampering progress is that exos do not interact directly with underlying skeletal 608 

muscles, but instead deliver external mechanical loads that directly influence the biological 609 

skeletal system. As such, current systems do not consider how biological muscles, tendons, joints, 610 

react to mechanically delivered torques. In this context, research in exos has overlooked the effect 611 

of robotic assistance, especially at extreme ends of the spatiotemporal scale (e.g., cell growth over 612 

months or years). 88,195 This is a critical aspect of human-exo physical interaction as skeletal 613 



muscles will remodel new structural properties if exposed long enough to exo-delivered torques. 614 

The current inability to predict how exo assistance strategies would remodel skeletal muscle 615 

structurally hampers progress in longitudinal neurorehabilitation and in day-to-day adoption of 616 

wearable assistive technologies.  617 

In the future we envision research advances aimed at ‘closing-the-loop’ between exos and 618 

human skeletal muscle biology. 88 In this context, we envision that future exos should be capable 619 

of delivering coordinated mechanical torques to alter, in a controlled way, skeletal muscle form 620 

and function over time scales ranging from seconds (e.g., a movement cycle) to months (e.g., the 621 

recovery stage following a neuromuscular injury) and beyond (e.g., across ageing stages).  622 

We envision this will require developments in three key directions: (1) recording both 623 

neural and mechanical function underlying muscle contraction (e.g., motor neuron discharges and 624 

innervated skeletal fibre force) in the intact moving human in vivo, (2) fusing recorded neuro-625 

mechanical data with numerical models to predict skeletal muscle adaptation in response to exos-626 

delivered torques over time and (3) developing predictive controllers to steer skeletal muscle form 627 

and function with enough certainty to induce a targeted, positive change in the future. This will 628 

open to a new class of muscle-centred exos that directly respond to biological cues to maintain 629 

integrity of skeletal muscles over the lifespan. 630 

Acknowledgements 631 

This work has has received funding from the European Research Council (ERC) under the 632 

European Union’s Horizon 2020 research and innovation programme as part of the ERC Starting 633 

Grant INTERACT (Grant agreement No. 803035) as well as by the EU RIA Project SOPHIA 634 

(Grant agreement No. 871237).   635 



Figures 636 

 637 

Figure 1. The number of studies published over time on exos, muscle/tendon biomechanics, and 638 

both exos & muscle-tendon biomechanics from 1965 to 2022. The data were found through the 639 

PubMed database (https://pubmed.ncbi.nlm.nih.gov). All data searches were in English and for 640 

lower limb extremities (KEYWORD: gait OR walking OR (lower AND (limb OR extremities))) 641 

in human (KEYWORD: human OR participant OR patient). Specific data searches were: A) exos 642 

(KEYWORD: (exoskelet* OR exosuit)), B) Muscle/tendon biomechanics (KEYWORD: (muscle 643 

mechanics) OR ((muscle OR tendon) AND (biomechanics))), and C) muscle/tendon biomechanics 644 

and exos (KEYWORD: (muscle mechanics) OR ((muscle OR tendon) AND (biomechanics)) AND 645 

(exoskelet* OR exosuit)). 646 

 647 

 648 



 649 

Figure 2. Visual representation of the “focus” of high level exo controllers in terms of the robot-650 

human system. Controllers on the left of the scale prioritize the robot part of the system, while the 651 

controllers to the right of the scale focus on the human part. 652 

 653 



 654 

Figure 3. A general exoskeleton controller using a biomechanical model. 655 

  656 



Tables 657 

Table 1: Summary of changes to muscle-tendon biomechanics when participants wore an ankle 658 

exoskeleton. 659 

Actuation Type Task Muscle/Tendon(s) Condition varied Changes to muscle biomechanics 

Passive Hopping Plantar flexors Ankle joint 
stiffness 

Decreased activity, force, and force 
rate134,196,197 
Operating at less optimal fibre length 
and increased fibre velocity134,198 

Increased fascicle excursion, and overall 
no change in averaged positive fascicle 
power134 

Active 

Walking 

soleus Ankle joint 
Stiffness 

Reduced muscle force, increased fascicle 
length and velocity 136 

Plantar flexors Inclination of 
walking surface 

Increase in inclination results in lower 
reductions in muscle activity199 

Plantar flexors Exoskeleton work Increasing work reduced activity, and 
increased muscle synergy weights200 

soleus Exoskeleton torque Increasing torque reduced activity, and 
increased muscle synergy activations200 

Plantar flexors 
Adaptation to 
walking with 
exoskeleton 

Decreased activity201 

soleus Controller type 

Gait timing controllers are better than 
myoelectric controller proportional to 
soleus activity202  myoelectric controller 
proportional to gastrocnemius medialis 
reduces soleus activity203 

- 
Speed, step length, 
and walking 
incline 

Increased apparent efficacy with 
increasing speed or step length204 and 
drops when the surface incline 
increases199 

Walking 
with load Achilles tendon 

With and without 
exo, carrying 
additional load 

Increase in tendon force with increase in 
load carried, but reduced with exo 
assistance139 

Walking in 
participants 
with chronic 
stroke 

Bilateral latissimus 
dorsi, erector spinae, 
external oblique, 
hip flexors and 
extensors, 
knee flexors and 
extensors, plantar 
flexors and dorsiflexors. 

With and without 
exo 

Improved similarity of synergies in 
either side205 

 660 
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