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ABSTRACT 

 

A Generalized Method for Predictive Simulation-Based Lower Limb Prosthesis Design 

February 2021 

 

MARK ANDREW PRICE 

 

B.S.M.E., GEORGIA INSTITUTE OF TECHNOLOGY 

 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS, AMHERST 

 

Directed by: Professor Frank C. Sup IV 

 

Lower limb prostheses are designed to replace the functions and form of the missing 

biological anatomy. These functions are hypothesized to improve user outcome measures which are 

negatively affected by receiving an amputation – such as metabolic cost of transport, preferred 

walking speed, and perceived discomfort during walking. However, the effect of these design 

functions on the targeted outcome measures is highly variable, suggesting that these relationships 

are not fully understood. Biomechanics simulation and modeling tools are increasingly capable of 

analyzing the effects of a design on the resulting user gait. In this work, prothesis-aided gait is 

optimized in simulation to reduce both muscle effort and peak loads on the residual limb using a 

generalized prosthesis model. Compared to a traditional revolute powered ankle joint model, a two 

degree-of freedom generalized model reduced muscle activations by 50% and peak loads by 15%. 

Simulated prosthesis behaviors corresponding to the optimal gait patterns were translated into a two 

degree-of-freedom ankle-foot prosthesis design with powered bidirectional linear translation and 

plantarflexion. The prototype is capable of delivering up to 171 N-m of plantarflexion torque and 499 

N of translation force, with 15° dorsi-/35° plantarflexion and 10 cm translation range of motion. The 

mass and height of the ankle-foot are 2.29 kg and 19.5 cm, respectively. The mass of the entire system 

including the wearable offboard system is 8.58 kg. This platform is designed to emulate the behavior 

of the simulated prosthesis, as well as be configurable to emulate alternate behaviors obtained from 
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simulations with different optimization objectives. The prototype is controlled to replicate simulated 

walking patterns using a high level finite state controller, mid-level stiffness controller, and low level 

load controller. Closed loop load control has bandwidth of 15 Hz in translation and 7.2 Hz in flexion. 

Load tracking during walking with a single able-bodied human subject ranges from 93 to 159 N in 

translation and  4.6 to 21.3 N-m in flexion. The contribution of this work is to provide a framework for 

predictive simulation-based prosthesis design, evidence of its practical implementation, and the 

experimental tools to validate future predictive simulation studies.  
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CHAPTER 1  

INTRODUCTION 

 

Lower limb prostheses are designed with the intent of improving user outcome measures for 

tasks affected by receiving an amputation. These outcome measures include metabolic cost of 

transport, preferred walking speed, limb loading as a risk factor for comorbidities, perceived 

instability, perceived discomfort, and others. The design process dictates translating these desired 

effects into specific functional requirements. This requires knowledge of the causal relationships 

between prosthesis functions and user outcomes. In practice, these causal relationships are often 

modeled from analysis of simplified models for gait. For example, the dynamic walking model 

characterizes human walking as an extrapolation from the passive dynamics of the skeletal system 

[1]. These analyses have highlighted reduced toe-off propulsion work as a critical factor adversely 

affecting outcome measures such as cost of transport and gait symmetry [1], [2]. This rationale has 

been used to support design decisions to focus on providing positive toe-off propulsion work [3], [4]. 

Additionally, it is often assumed that the prosthesis performance ideally should imitate biological 

motor function which was removed via amputation. The performance of prosthetic devices is often 

assessed in terms of kinematic and kinetic similarity to the biological joint being replaced [4]–[8], in 

addition to the user outcome measures. In this case, the causal relationship between a functional 

requirement (similarity to the amputated anatomy) and user outcomes is largely hypothesized 

through logical reasoning, rather than explicitly and empirically supported. 

However, experimental outcomes regarding these hypothesized causal relationships are 

inconclusive. For example, tests using a tethered prosthesis “emulator” with off-board power [9] 

observed no relationship between prosthesis joint power and metabolic cost [10]. Other tests with a 

commercial powered ankle which provides a near-biological ankle torque and kinematic profile 
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(Empower, Ottobock) found no significant improvement in limb loading osteoarthritis risk factors 

compared with passive elastic prostheses when tested on young, active individuals [11].  However, 

other tests of this system do show improvement in metabolic cost [4] and osteoarthritis risk factors 

[12] in different test subject populations. These mixed results indicate that our understanding of the 

functional requirements to obtain a desired outcome among a diverse user population is not 

complete. 

One path toward improving this understanding is to use simulations of realistic 

musculoskeletal models to identify the effects of specific design elements on user outcomes. A 

particularly promising tool is the predictive simulation of human movement, which uses optimal 

control strategies to calculate muscle forces in an attempt to recreate the neural process that 

distributes loads across the muscles [13]. Predictive simulations have generated model motions which 

are highly similar to experimentally recorded motions without tracking experimental data [14]–[17]. 

This technique has been applied to prosthesis-aided gait to investigate the effect of design and muscle 

control strategies on metabolic energy cost [18], [19] and joint loading [20]. By creating the framework 

to conduct virtual experiments, predictive simulation allows for the causal relationships between 

prosthesis function and user outcome to be more deeply explored than can practically be 

accomplished with physical prototypes. To extend the application further, the ability to estimate 

prosthesis design outcomes through predictive simulation invites the possibility of algorithmically 

optimizing the design variables. With a generalizable prosthesis model, such an optimization could 

serve to define the functional requirements of the prosthesis by outputting the optimal prosthesis 

behavior for the targeted outcome measures. This eliminates the need for simplified assumptions 

about causal relationships between prosthesis performance and user outcomes – this relationship is 

described in a complex musculoskeletal model which can be evaluated numerically. 
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The core motivation behind this work is that the prosthesis design process lacks a method 

which can directly target user outcomes to drive design decisions. Advances in computational 

biomechanics have introduced predictive simulation of human gait as a potential tool to accomplish 

this goal. In this dissertation, a design framework is presented which utilizes predictive biomechanical 

simulations as a prosthesis design tool for optimizing prosthesis performance for targeted user 

outcomes. 

 

The high level goal of this work is to create a simulation and experimental validation feedback 

loop to enable user outcome-focused simulation-aided prosthesis design which ignores typical 

assumptions about the proper form and function of an artificial limb. More specifically, this can be 

composed into two specific aims: 

1. Create a design method which takes optimal simulated generic prosthesis behaviors and 

translates them into an actual powered prosthesis design. 

2. Create a toolset to enable the refinement of the design method based on experimental 

testing to validate simulated trends. 

These aims support the creation of a larger design process illustrated in Figure 1.1. The overall 

design method is a feedback loop which progresses from optimal control simulations with a 

generalized model, to the implementation of simulated behaviors on hardware for experimental 

validation, to the refinement of the simulation constraints and objective function based on findings 

from the experimental validation step. The scope of the presented work is limited to creating the 

infrastructure required to make this larger design process possible – specifically the pipeline from 

simulation to experiments. 
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Figure 1.1. The scope of the presented work within the overall proposed design method. 

 

This document proceeds with an analysis of current prosthesis design approaches and 

outlines the gaps which the presented work seeks to fill in Chapter 2. Chapter 3 follows with a 

simulation study which demonstrates the ability of a generalized prosthesis model to reduce selected 

user outcomes relative to existing design forms when applied to an optimal control framework. 

Chapter 4 builds upon the simulated outcomes with a prototype design capable of recreating 

simulated prosthesis behaviors. Chapter 5 concludes the work with the design and implementation 

of a control architecture capable of recreating simulated walking patterns, demonstrated with 

treadmill walking trials with an able-bodied human subject. 
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CHAPTER 2  

LITERATURE REVIEW: DESIGN OPTIMIZATION IN LOWER LIMB PROSTHESES 

In the previous chapter, an iterative, simulation-based design process was proposed. To 

motivate the need for such a design process to be created, this chapter focuses on exploring the 

current and developing methods being used to design prosthetic devices and analyze their 

performance. Gaps in the existing methods are demonstrated along with the emerging tools which 

may be capable of filling them. 

This chapter is adapted from a review paper titled Design Optimization in Lower Limb Prostheses: 

A Review, written with second author Professor Philipp Beckerle of TU Darmstadt and third author 

Professor Frank Sup of the University of Massachusetts, Amherst [21]. This paper was published in 

IEEE Transactions on Neural Systems and Rehabilitation Engineering in August 2019. 

Abstract— This review aims to develop a knowledge base and identify promising research 

pathways toward designing lower limb prostheses for optimal biomechanical and clinical outcomes. 

It is based on a literature search representing the state-of-the-art in lower limb prosthesis joint design 

and biomechanical analysis. Current design solutions are organized in terms of fulfilling four key 

functional roles – body support, propulsion, task flexibility, and loading relief. Biomechanical analyses 

of these designs reveal that the hypothesized outcomes are not consistently observed. We suggest 

that these outcomes may be improved by incorporating tools that can predict user performance 

metrics to optimize the device during the initial design process. We also note that the scope of the 

solution space of most current designs is limited by focusing on anthropomorphic design approaches 

that do not account for the person’s altered anatomy post-amputation. The effects of prosthetic joint 

behavior on whole-body gait biomechanics and user experience are likewise under-explored. Two 

research paths to support the goal of better predicting user outcomes are proposed: experimental 

parameterization of designs and model-based simulations. However, while work in these areas has 
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introduced promising new possibilities, connecting both to improve real-world performance remains 

a challenge.  

 

Lower limb prosthesis design has evolved from creating devices that solely provide weight-

bearing support to devices that perform specific behaviors to aid locomotion. The continuing 

improvement of prosthesis functionality has the potential to impact the quality of life of millions of 

people in the coming decades. Statistically, the number of persons living with limb loss in the United 

States is projected to number approximately 3.6 million by 2050 [22]. 65% of people living with limb 

loss in the US in 2005 had undergone a lower limb amputation, 61% of which removed at least the 

foot [22]. People who have had a lower limb amputation typically experience significantly reduced 

mobility and experience several impediments when completing the basic activities of daily life [23].  

A major objective of prosthesis design research is to minimize both immediate and long-term 

detrimental effects. The evolution of prostheses driven by this research has led to quantifiable 

improvements in user performance metrics such as metabolic cost [4] and joint loading [24]. 

Researchers have investigated ways to improve a user’s ability to walk on level ground [5], [25], [26], 

traverse inclines and declines [25], [27], [28], navigate stairs [25], [26], [29], turn while walking [30]–

[32], transition between sitting and standing [33], [34], and run [35]. Efforts are ongoing by researchers 

to parameterize, quantify, and correlate the design factors of prostheses to desired user outcomes, 

thereby improving our understanding of what makes prosthetic devices effective. However, 

knowledge gaps between intended and actual user outcomes remain that require further exploration 

to more effectively address the needs of the prosthesis user [10], [36]–[38].  

The objective of this paper is to act as a resource for current and prospective prosthesis 

designers and researchers interested in future directions to best fill these knowledge gaps. In this 

review, we highlight the biomechanical challenges intrinsic to lower-limb prosthesis design, 
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contextualize and summarize the major works to-date, identify key knowledge gaps, and highlight 

research paths which we expect to enable designers to meet user outcome-based functional needs. 

Literature for this review was obtained by investigating related papers on prosthesis design, modeling 

and simulation of human biomechanics with prostheses, and evaluation of prostheses with users. To 

this end, reference databases including IEEExplore, ScienceDirect, PubMed, and Google Scholar 

databases were searched and analyzed.  

 

Problems resulting from a lower limb amputation can manifest as immediate effects (i.e., 

asymmetrical gait compensations) and progress into long-term consequences (i.e., secondary 

impairments or other co-morbidities) [23], [39], [40]. This section discusses the causes of these 

problems and their interactions with prostheses. 

 Gait compensations and asymmetry 

Lower limb amputation significantly alters the mechanics of walking from able-bodied 

mechanics. Muscle-tendon units interact with the skeletal system by generating, storing, dissipating, 

and transferring energy between segments [41]–[43], stabilizing joints [44], and enforcing 

compressive loading in individual bones through external tension [45]. These functions are critical for 

performing motor tasks, and they are removed with the amputation of a biological joint. Further, the 

use of a prosthesis adds an additional passive “joint” to the limb at the socket-residuum interface [46]–

[49]. Methods to directly integrate the prosthesis into the residual bone exist and are becoming more 

common, but conventional sockets are still prevalent [50]. 

As a consequence, people walking with the aid of a prosthesis develop compensatory habits 

for the lost functionality which alters their dynamics. The resulting motion and muscle engagement 

changes can cause asymmetrical joint loading [51], [52]. These trends typically manifest as 

minimization of weight-bearing time for the prosthesis, increased work performed by the muscles on 
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the sound side limb, and increased muscle work at the hip of the residual limb to compensate for lost 

distal muscle function [23], [53]. Widely used conventional passive prostheses are designed with 

elastic foot segments to restore some of the energy storage and return capability that the biological 

muscles once provided. However, elastic energy storage and return prostheses release less than half 

of the mechanical energy of intact biological muscles during level walking [54]. Depending on the age 

and physical condition of the user, walking with a passive prosthesis typically requires more metabolic 

energy when compared to walking with intact biological limbs [38], [55]. The development of powered 

prostheses has resulted in devices capable of restoring or even exceeding power output produced by 

biological muscles [4], [10]. However, these devices do not necessarily reduce the metabolic cost of 

walking to able-bodied levels for all users, nor do they restore symmetry to the motion [10]. This 

suggests that lost muscle power is not the only factor in causing gait abnormalities. Powered devices 

also have greater distal mass relative to passive devices. Increased distal mass has been shown to 

contribute to reduced metabolic efficiency [56], which may mitigate some of the benefits of added 

power. This increased mass is similar to the biological limb mass, however – commonly between 2 

and 2.5 kg for powered transtibial prostheses [4], [57], [58] compared to between 2.5 and 5 kg for the 

average full shank and foot [59].  

The loading of the residual limb via the non-rigid socket interface can also be a significant 

cause for discomfort and energy losses [4], [23], [45], [60]. The socket interface introduces loads to 

the residual soft tissue and bone that are not experienced during walking with an intact limb [45]. 

Inefficient energy transfer caused by losses due to socket motion or tissue absorption may also limit 

desired prosthesis contributions to whole body mechanics [4]. Socket fit and alignment are also 

largely qualitative measures and not typically assessed when evaluating prosthesis performance. 

Without deterministic analyses of socket fitment, it is difficult to assess the effect of fitment on user 
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outcomes. However, these parameters are strongly associated with walking ability and user 

discomfort [23], [36], [60]. 

 Secondary impairments and co-morbidities 

People who have received an amputation are at risk for several secondary impairments. For 

example, the prevalence of knee osteoarthritis in the intact limb of unilateral lower extremity 

amputees has been observed to be significantly higher than experienced by able-bodied persons [23], 

[39], [61]. Symptomatic knee osteoarthritis has been observed to be 17 times more common in 

unilateral amputees than in age-matched non-amputees [61]. This painful degeneration of the intact 

joints further detracts from one’s quality of life beyond the original amputation. Additional secondary 

conditions associated with lower limb loss include a reduction of bone density in the residual limb 

[23], muscle atrophy [23], [40], weight gain [23], chronic back pain [23], [40], [62], skin irritation [62], 

[63], and pressure ulcers [63]. Mitigating the risk of developing secondary impairments is an important 

design goal for a prosthesis to fulfill its purpose of restoring a user’s quality of life.  

Many of these impairments result simply from a reduced level of physical activity overall due 

to discomfort, pain, or difficulty walking. Loss of bone density, muscle atrophy, and weight gain post-

amputation are all linked to a decline in physical activity [23]. Back pain, some skin problems, and 

osteoarthritis are linked to another phenomenon: loading conditions for both the residual limb and 

sound limb which are not experienced by able-bodied persons. Prosthesis users tend to increase 

loading of the sound limb to make up for lost muscle power and reduce discomfort associated with 

loading the socket [23]. The development of back pain, for example, has been linked to an increased 

anterior pelvic tilt common in people with lower limb amputation [23]. The development of 

osteoarthritis has been linked to increased sound knee loading after heel-strike [23], [24]. Specifically, 

people with unilateral lower limb loss tend to have a large peak knee external adduction moment 

(EAM) in the sound side limb after heel-strike [24]. Knee EAM typically has a “double hump” profile 
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after heel strike, the first of which is more closely associated with the development of osteoarthritis 

due to its higher loading rate and typically higher magnitude [64]. Poor socket fit and alignment have 

also been proposed to exacerbate the causes of many of these impairments, if not cause them directly 

[23]. 

A few dominant approaches have emerged to address the challenges described in this section. 

The next section identifies these approaches with representative examples, the hypotheses behind 

them, and the common metrics used to assess designs and user outcomes. 

 

The primary design goal of most current lower limb prostheses is to restore gait symmetry 

and effort to able-bodied levels. Targets such as reducing abnormally high loads in the joints or the 

residual limb, improving the ability to perform specific tasks, and increasing balance and stability are 

 

Figure 2.1. An overview of commercial and research lower limb prostheses categorized by functional emphasis. A) 

Total Knee® 1900, Össur [68]: Passive polycentric knee prosthesis. B) C-Leg 4®, Ottobock [65]: Microprocessor-

controlled hydraulically damped knee prosthesis. C) SACH, Ohio Willow Wood [87]: Passive ankle-foot for low-

activity users with a cushioned heel and minimal energy return. D) Vari-Flex®, Össur [86]: Passive ankle-foot for 

low- to high-activity users with elastic energy storage and return. E) Vanderbilt Leg [5], [25], [27], [35]: Motor 

powered knee and ankle prosthesis which injects propulsive energy during walking. F) Power Knee®, Össur [113]: 

Motor powered knee joint prosthesis. G) CESR foot [3], [80]: Semi-active ankle-foot with actively controlled clutch 

mechanism for release of stored elastic energy at toe-off. H) Empower®, Ottobock [4], [26], [100], [103]: Motor 

powered ankle-foot prosthesis which generates positive ankle flexion work at toe-off. I) Michigan Tech 2-DoF 

ankle-foot [30], [116]: Motor powered ankle-foot with control over dorsi-/plantarflexion and inversion/eversion 

joint angles. J) 2-DoF ankle-foot prosthesis emulator [114]: Powered ankle-foot test platform with offboard motor 

actuation to control over dorsi-/plantarflexion and inversion/eversion joint torques.  K) UMass Adaptive 

Alignment Prosthesis [45], [123]: Motor powered ankle-foot prosthesis with ankle flexion coupled with sagittal 

plane translation to reduce socket moment loads. L) TU Darmstadt & Blatchford shank adapter [32]: Motor 

powered parallel elastic actuator controlling shank torsion stiffness and foot alignment to reduce socket loads 

during turning maneuvers. 
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also considered, however. The design approaches corresponding with these various desired 

outcomes can generally be categorized according to what the prosthesis is being designed to 

functionally provide: a) Support, b) Propulsion, c) Flexibility, and/or d) Relief. Examples of prostheses 

and research prototypes are illustrated according to these categories in Figure 2.1. 

 Support 

Providing weight-bearing support is a fundamental function of a lower limb prosthesis. This 

function is performed by replacing the missing skeletal structure with a mechanical surrogate which 

provides static structural support. However, there are other design features which specifically serve 

to provide active support for balance or stability, almost all of which are commercially available. For 

example, active damping is commonly used in joints of both ankle and knee prostheses to stabilize 

the joint under load in hydraulic [65], pneumatic [66], and magnetorheological forms [67].  

Prosthetic knees have also been designed to have a polycentric joint trajectory using linkages, 

rather than a revolute joint (Figure 2.1A) [68]. This motion more accurately mimics the range of motion 

of the biological knee and can be designed to allow the knee to naturally lock at full extension, offering 

more reliable support [69]. However, the addition of the ability to passively lock the knee during stance 

removes the ability of the knee to flex at heel strike, as the biological knee typically does. Semi-active 

devices use active components to vary the passive properties of the prosthesis, aiding the function of 

support when it is most needed. Microprocessor knees, the most notable examples being the 

introduction of the Ottobock C-Leg® and Össur Rheo Knee®, are a now common example of this 

approach to dynamically alter the viscous damping of the artificial knee (Figure 2.1B)  [70]–[72]. The 

ability of microprocessor knees to adjust to task-specific behaviors such as variable stride cadences, 

knee joint stiffness requirements for traversing slopes or stairs, and transitioning between sitting and 

standing has been associated with increased balance and confidence with users [73]. A similar 

principle has been demonstrated for a prosthetic ankle-foot in [74], which changes the rollover shape 
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of the foot from a locked, shallow curve while standing to a more flexible curve while walking. This 

design attempts to address the task-dependent stability needs inherent in the loss of feedback and 

control from the foot and ankle.  

Support design features are primarily dissipative in nature. Design elements which prioritize 

work produced at the joint tend to focus on providing propulsion. 

 Propulsion 

The loss of “push-off” torque provided by the ankle plantarflexors during the step-to-step 

transition in the biological ankle has been hypothesized to be the primary factor driving asymmetrical 

muscle compensations, increased metabolic cost of walking, and reduced preferred speed [75], [76]. 

This hypothesis is based on observations of the high percentage of the mechanical work required 

during gait being generated at the ankle joint during gait, the magnitude of which increases with 

walking velocity [75]–[77]. The loss of propulsion work is also hypothesized to lead to a compensatory 

increase in leading limb collision work to provide the necessary forward and up acceleration to the 

center of mass, and thus be responsible for  abnormally large joint loadings in the sound side limb 

[12], [24]. Under this hypothesis, mitigating the risk of developing secondary impairments and 

restoring gait efficiency are goals which can both be achieved by restoring ankle push-off to able-

bodied levels. 

Designs which provide propulsion use passive, semi-active, or fully active approaches. 

Fundamental to the passive and semi-active approaches is the concept of energy recycling [72], [78]. 

Active approaches focus on energy injection but also use energy recycling design elements to improve 

efficiency [79]. 

2.3.2.1. Energy Recycling 

Designs employing an energy recycling approach attempt to recapture some of the energy 

that would otherwise be dissipated through friction, damping within the joints, or inelastic collision 
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with the ground [80], [81]. This energy is used to provide some of the positive work during the step-

to-step transition that the biological ankle would normally provide, as well as generally reduce the 

amount of energy dissipated to the environment [80], [81]. This principle is applied primarily to 

passive and semi-active prostheses, but is also used in active prostheses to improve the overall energy 

efficiency of the design [82], [83].  

Design work on passive prostheses primarily focuses on the efficient recovery of energy 

absorbed after heel-strike [84]. The typical approach is to incorporate elasticity into the design so that 

the user can store energy with their body weight, and then release it at toe-off [84]. Energy storage 

and return (ESAR) prostheses apply this by containing elastic heel and keel (hindfoot and forefoot) 

sections that each store and release energy at various stages during stance (Figure 2.1D) [85], [86]. 

These are prescribed as an alternative to solid ankle-cushioned heel (SACH) prosthetic feet, which 

offer cushioned heel-strike shock absorption with little energy recovery (Figure 2.1C) [85], [87]. The 

bulk of commercially available lower limb prostheses are implementations of these basic designs. Due 

to an aesthetic demand for anthropomorphic appearance, the geometry of these devices is limited to 

a similar size and shape of the biological foot. While these devices do restore some energy to the 

residual limb during walking, it is substantially less than is provided by the plantarflexor muscles 

during walking [54], [78]. However, running prosthetic feet represent specialized passive energy 

recycling designs exist which do not fully comply with anthropomorphic norms. These devices use 

high amounts of elastic displacement and a comparatively small base of support to maximize energy 

storage and return efficiency during running. This design style, while being impractical for heel-toe 

walking due to the lack of a heel, allows users to run while expending similar metabolic energy costs 

to able-bodied runners, and reach comparable sprint times to able-bodied runners at high levels of 

competition [88]. 
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It is possible to increase the amount of energy provided during push-off using semi-active 

devices. Such devices control the storage and release of energy using motorized clutches and springs 

(Figure 2.1G) [3], [24], actuated pneumatic cylinders [89], or powered lead screws to modify the active 

length of a leaf-spring [90]. Commercially, semi-active devices are used to assist with propulsion by 

modifying the static angle of the prosthetic ankle to different set points for different scenarios [91], 

[92]. While passive and semi-active prostheses are capable of recycling a percentage of energy, they 

cannot produce net positive work over the entire gait cycle.  

Active prostheses can also be designed to recycle energy through passive springs or clutches 

that supplement the active elements. Series and parallel elastic elements have been shown to 

decrease the peak power requirements of the actuator and biological joints [82], [93]. However, these 

benefits come with trade-offs in the form of reduced control bandwidth [94] and increased system 

complexity contributing to higher fault sensitivity [95]. It is common practice to use series-elastic as 

well as parallel elastic elements in powered prostheses to reduce demands on the actuator [5], [6], 

[26], [83], [96], [97]. ESAR prosthetic feet have also been used in conjunction with powered prosthetic 

joints [4], [5], [45]. In these cases, energy recycling is used as a supplementary feature to the primary 

contribution active prostheses provide: an injection of external energy.  

2.3.2.2. Energy Injection 

The biological ankle produces a net positive work over the gait cycle, the magnitude of which 

increases with walking speed [76]. The inability of passive and semi-active designs to replicate 

biological muscle work at the ankle joint has been hypothesized to be the cause of gait deficiencies in 

people walking with passive prostheses and is based on the importance of the step-to-step transition 

for overall energy cost of walking in dynamic walking models [1], [98]. Researchers have been 

motivated to inject power into the artificial joint from an external source. Most commonly used are 

electromechanical motors [79], but power has been also sourced using pneumatic artificial muscles 
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[99]. Positive net work is achieved by engaging the prosthesis actuators at the end of the stance phase, 

providing push-off force and torque to the residual limb. A standard approach is to produce a plantar-

flexion torque about a revolute joint, and mimic the active and passive dynamics of the biological 

ankle [5], [6], [26], [97], [99]–[101]. However, alternatives exist which do not depend on strictly 

recreating the biological ankle function in the sagittal plane. For example, linkages are used to achieve 

polycentric rotational motion to increase efficiency and alter the passive impedance [8], [102], or to 

align the residual limb with ground reaction forces [45]. A device also exists which is explicitly designed 

to vary the amount of propulsion work above and below biological levels to test the hypothesis that 

reduced propulsion work is the cause for gait deficiencies in people with lower limb amputation [9]. 

Commercial availability of powered ankles is limited, with only one on the market (Empower® - 

formerly BiOM®, Ottobock [4], [103] – Figure 2.1H) and another undergoing commercialization (Walk-

Run Ankle®, SpringActive, Inc. [104]). Other commercial ankles with active elements ultimately 

perform semi-active functions to modulate the behavior of the passive elements. 

Active energy injection approaches have been developed for the knee joint as well. Most of 

the propulsive work in able-bodied walking is performed by the ankle, but some net positive work is 

also required at the knee [105]. Other activities such as running, jumping, upslope walking, and stair 

climbing require significant amounts of net positive knee work in able-bodied individuals [53], [106], 

[107]. Active knee prostheses in research have similar dominant characteristics to active ankles – 

flexion-extension actuation with an emphasis on emulating able-bodied biomechanics, often 

leveraging passive elements for efficiency purposes (Figure 2.1E) [5], [96], [108]–[112]. Polycentric 

linkage joints, common in passive and semi-active knees due to their natural locking properties, are 

not seen in these powered designs. This is likely due to the presence of linkage singularity points which 

cause the joint to lock - a feature in passive designs which becomes a complex control problem in 

active designs. The primary design focus for these examples is to actively control the knee torque and 
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generate net positive work. Commercially, one propulsive powered knee is currently available (Power 

Knee®, Össur - Figure 2.1F [113]). 

 Flexibility 

Prostheses that are designed to provide flexibility attempt to restore the range of capabilities 

that the biological limb could provide, or increase robustness to variability in the environment. For 

example, some designs include passive or powered degrees of freedom in the inversion/eversion axis 

of the ankle, targeting walking stability as a design objective. It is hypothesized that controlling this 

additional degree of freedom can reduce side-to-side sway, improve balance confidence [114], and 

improve a user’s ability to perform walking tasks like turning, which is accompanied by ankle 

inversion/eversion rotations in able-bodied individuals [30]. For example, a prosthesis has been 

designed with active control of the inversion/eversion of the foot by using a four-bar linkage 

mechanism, with a passive spring providing plantarflexion torque [115]. By actuating a prosthesis 

emulator with two separate toes, inversion/eversion can be controlled (Figure 2.1J)  [114]. A cable-

driven prototype which can steer the entire foot in the flexion axis, as well as the inversion/eversion 

axis, has also been developed (Figure 2.1I) [30], [116]. Passive compliance non-flexion axes are also 

used in commercial prostheses to assist with walking on uneven ground [117], [118]. 

 Relief 

Reaction moments and soft tissue loading between the socket and residual limb are believed 

to be a major cause of reported discomfort and decline in mobility over time [23], [60]. Relief from 

undesirable loads on the residual limb and on the body as a whole is conventionally provided at the 

socket-limb interface. Soft cushioned gel socket liners are used to reduce peak loads [119], but may 

also reduce a user’s sense of stability and sensory feedback resulting in higher ground reaction forces 

[120]. The use of vacuum-assisted socket suspensions has also been shown to distribute pressure 
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away from concentration points [121]. Experimental socket designs for reducing tissue stress as well 

as discomfort due to tissue volume change and temperature are discussed in more detail in [49].  

Socket loads may also be reduced by adding compliance and damping to the prosthesis-

socket connection or the prosthetic structure, as has been done for both vertical [117], [122] and 

torsional loads [118] in commercial prostheses. Refining this concept, recent research has led to 

elastically actuated devices that modulate transverse plane torsional stiffness during gait, which 

allows for adaptation to the current motion patterns [31], [32]. Besides considering user requirements 

when designing this feature, the concept from [18] uses a parallel elastic actuator to further align foot 

orientation while turning during walking. Relief may also be a design goal for the prosthetic joint itself, 

as demonstrated by [45] (Figure 2.1K). This example has been designed to actively align ground 

reaction forces with the residual limb to reduce the flexion moment exerted on the residual limb by 

the socket, and has resulted in reduced socket moment and pressures in a pilot study with one 

participant [123]. Load reduction is achieved through translation of the foot segment, which does not 

replicate any function of the able-bodied biological ankle, but instead introduces a new axis of motion 

to address limb loading problems associated with the presence of a non-rigid socket-limb interface 

[45].  

 

This section looks at experimental analyses that have been performed on these devices to 

assess the validity of the various hypotheses informing their designs. These studies attempt to 

address elements of a broader research question: How do prosthesis design factors affect 

experimental user outcomes? The previous section detailed some specific hypotheses for answers to 

this question – for example, increasing propulsion work at the ankle to decrease the metabolic cost 

of transport and normalize gait mechanics. This section details the biomechanics analysis and 

experimental methods used to evaluate these hypotheses then summarizes the various results with 
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respect to desired user outcomes. The analysis studies detailed in this section are listed in Table 1 and 

are grouped by outcome measure investigated. The "gait mechanics" outcome measure refers to joint 

kinematics, kinetics, and power, as well as ground reaction forces. While the majority of studies 

consider global biomechanical measures such as gait mechanics, metabolic cost, or muscle activity, 

more specific information like joint contact forces or task-specific muscle contributions are less often 

taken into account. Despite being an important aspect of lower limb prosthetics, the user experience 

is rarely examined. Additionally, a large amount of the literature supporting the projects described in 

Section 2.4 has been published in primarily a technical context and reports mechanical device 

performance rather than biomechanical analysis. The analyses listed in Table 2.1 comprise a subset 

of the projects discussed in the previous section.  

 Experimental and Analytical Tools 

Analyzing the real outcomes of a prosthesis design requires testing with human participants. 

Typical experiments involve the use of marker-based motion capture techniques, which allow for the 

calculation of joint kinematics and participant-specific model creation [105]. Motion capture testing 

also often includes the use of force and moment sensors embedded in the walking surface, which 

allow for the calculation of net forces and torques at the joints through inverse dynamics analysis 

[105]. Participants can also be outfitted with a respiration device which measures oxygen and carbon 

dioxide levels, allowing metabolic energy expenditure to be calculated [3], [4], [10]. Electromyography 

(EMG) electrodes may be placed above (or, in some cases, into) muscles of interest to measure their 

level of activity [105]. Other types of sensors may be placed inside or around the socket to measure 

pressure or motion between the socket and residual tissue, including the use of X-ray fluoroscopy 

[124]–[127]. 

From these experimental measures, other model- and simulation-based analyses can be 

performed which offer some insight into the effect of the design on a person. Induced acceleration 
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analysis (IAA) is a method used to isolate the effect of individual muscles or forces on segments in the 

model, including segments that may not be directly connected to the source of the force [42], [43], 

[128]. This method is implemented by setting all forces and torques to zero for a given frame in the 

reconstructed kinematics and then individually re-activating each in isolation to observe the effect on 

the model. For example, this technique has previously been used to identify the role of individual 

lower limb muscles in energy generation, absorption, and transfer during cycling [43], the role of 

individual ankle plantarflexors to body support, forward propulsion, and swing initiation during 

walking [42], and the high magnitude of inter-segment energy transfer in the gait of children [129]. 

However, IAA remains a controversial method to some members of the biomechanics community, 

who argue that cannot meaningfully describe the role of muscles in a system because it does not 

attempt to model the adaptation of the system when a muscle force is changed [130]. 

The use of optimal muscle control problems is another model-based analysis method and can 

be applied to estimate the individual redundant muscle contributions to measured joint torques. 

These estimates are based on minimizing measures of total muscle effort, metabolic cost, task 

Table 2.1. Outcome measures of prosthesis designs 

Tested outcome measure Reference 

Gait mechanics [4], [10]–[12], [18], [24], [28], [29], [123], [134], [135], [138]–[142], [144] 

Metabolic cost of transport [4], [10], [18], [38], [136], [138], [140] 

Muscle activity [10], [18], [134]–[138] 

Muscle contributions to tasks [136], [137] 

Preferred walking speed [4] 

Joint contact forces [136] 

Socket loads [31], [123], [139], [141] 

Knee external adduction moment [11], [12], [24], [144] 

Leading leg collision work [4], [10], [138] 

User experience [10], [32], [36], [38] 
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performance, or other objectives, subject to kinematic constraints. The objectives related to effort 

measures are formulated to represent a realistic approximation of the active muscle load distribution 

patterns in actual locomotion tasks and have been shown to result in muscle controls which generally 

agree with measured EMG data [16], [131]. Various optimization techniques have been employed in 

numerous studies to determine individual muscle excitations for activities such as walking, jumping, 

and cycling [132], and also used predictively to generate theoretically optimal motions [13], [14], [16], 

[133]. Extracting individual muscle activations and contributions to the dynamics of remote segments 

allows for the identification of compensations not directly observable from the recorded kinematics 

and net forces. As with other simulation methods, however, model accuracy is a key factor in 

producing meaningful information. 

These tools have been used to assess the ability of various prosthesis designs to achieve the 

desired results in human users. These objectives can again be broadly categorized into short-term 

gait restoration and long-term secondary impairment and comorbidity mitigation goals. Propulsion 

oriented designs have been a major focus of prosthesis analysis work. Analysis of designs which 

provide flexibility or relief through the prosthetic joints and structures is less common. 

 Gait Restoration 

Gait restoration outcomes are targeted by designs across the passive-active spectrum. Metrics 

such as similarity to biological gait mechanics, preferred walking speed relative to able-bodied levels, 

reduction of muscle contributions, and reduction in the metabolic cost of walking are commonly used 

to evaluate the effectiveness of a prosthesis in restoring gait (Table 2.1).  

Optimally, passive prostheses focusing on propulsion attempt to maximize energy recycling 

efficiency, in theory reducing the amount of energy required from the muscles to compensate for lost 

torque generation. This requires an understanding of the relationship between the design parameters 

and the musculoskeletal system response, which researchers have begun to address. For example, 
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the effect of prosthesis stiffness on gait patterns and energy storage efficiency has been analyzed 

using inverse dynamics and EMG data with human motion capture tests with varying prosthesis 

stiffness values [134]–[136]. It was found that decreasing prosthesis stiffness led to increased energy 

storage and return and decreased hamstring muscle activity in the residual limb. This decreased 

muscle activity was offset by increased muscle activity in other areas providing body support.  

In a follow-up study to [134], the experimental data was used to find the individual muscle 

activations in a mathematical model of the musculoskeletal system by solving an optimal muscle 

control problem to track the measured kinematics [137]. Induced acceleration analysis was used to 

identify the contribution of each muscle individually, as well as the contribution of the prosthesis and 

gravity, to the propulsion/braking force as well as the body support force on the ground. Among other 

results, the prosthetic foot was found to provide an increased contribution to body support forces 

and decreased contribution to propulsion as stiffness decreased, despite showing an increase in total 

energy stored and returned as stiffness decreased [137]. Variations in individual muscle contributions 

to body support, propulsion/braking, trunk power, and residual leg power were also observed relative 

to the stiffness of the prosthesis [137]. These results suggest that optimal stiffness may vary 

depending on the individual compensation needs of the user. Additionally, experiments with powered 

devices have shown that optimal device impedance changes between different tasks (e.g., standing 

vs. walking) and even different phases within one task (e.g., phases of gait) [5], [25]. 

Current powered ankle prosthesis designs show promising results for some gait restoration 

metrics and mixed results for others. The Ottobock Empower® ankle has been shown to increase the 

preferred walking speed and decrease the metabolic cost of walking for amputees relative to their 

daily use ESAR prosthesis [4]. The study theorizes that this relationship is due to the increase in trailing 

leg push-off work observed, coupled with an observed reduction in leading leg collision work. 
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However, the metabolic cost of walking with the powered ankle is shown to still be higher on average 

than the cost of able-bodied walking at and above the participants’ preferred speeds.  

In contradiction to the hypothesis that metabolic cost reduction is caused by increased push-

off work, researchers using a tethered prosthesis emulator with off-board power [9] observed no 

relationship between prosthesis joint power and metabolic cost. Additionally, they did not observe a 

relationship between prosthesis joint power and intact limb collision work [10]. This experiment 

tested amputees walking at a set speed with varying prosthesis net-power settings, rather than 

between powered and unpowered prostheses for slow to fast walking speeds. It was also found that 

the timing of prosthesis push-off from the emulator device also has a significant effect on the 

metabolic cost of walking [138]. The combined results from the emulator studies suggest that factors 

other than the magnitude of net work or work rate generated by the ankle actuator contribute to user 

gait performance metrics. Further complicating the problem, it has been observed that the metabolic 

cost of walking does not necessarily increase after transtibial amputation in exceptionally young and 

fit users with passive prostheses [38]. This result can be reproduced through optimal muscle control 

Figure 2.2. Comparison of results from [4] and [10]. Note that in [4], the Empower® prosthesis was compared with the 

daily use passive prosthesis of the subjects, whereas in [10], the work output was varied for the same powered 

prosthesis for all trials. The results of  [4] have been used to conclude that metabolic cost is dependent on the presence 

of push-off power, but this conclusion has been contested by the results of an experiment that more successfully 

isolated the presence of push-off power. Other factors such as normalized prototype acclimation time have not been 

accounted for. 
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simulation [18], suggesting that user-specific factors other than the prosthesis design altogether may 

have a significant effect on metabolic rate as well. Metabolic rate results from [10] are compared with 

corresponding results from [4] in Figure 2.2.  

Some analysis of prosthesis design elements which are not propulsion-focused exists as well. 

Literature exists which supports the ability of semi-active ankle designs, such as the commercial Össur 

Proprio-Foot®, to encourage able-bodied kinematics and lower socket pressures [28], [29], [139]. 

Semi-active knees with viscous damping have also been shown to reduce metabolic cost, as well as 

biological joint moments and power [140]. Stiffness effects have also been investigated for shock 

absorption purposes. For example, a study which investigates longitudinal compliance in prosthesis 

pylons observed no clinically relevant changes to the kinetics of gait for the range of commercially-

available, longitudinal compliances [141], [142]. Similarly, work has been done to investigate the role 

of torsional compliance on the ability to perform turning tasks. Study participants have reported a 

reduction in perceived load and effort in performing turns while walking with an adaptive shank 

prosthesis capable of adjusting torsional compliance and foot alignment [32]. Increased torsional 

compliance in a separate adjustable torsional compliance device has also been demonstrated to 

reduce measured peak torsion moments when performing large angle turns without adversely 

affecting normal walking [31], [143]. Additionally, active alignment of ground reaction forces has been 

shown to reduce in-socket flexion loads and related pressures on the residual limb in a pilot study 

with a single participant [123]. However, the effects of these flexibility- and relief-focused approaches 

on broader outcome measures such as metabolic cost, preferred walking speed, walking stability, 

individual muscle engagement, and osteoarthritis risk factors are not well-characterized.  

 Secondary Impairment Mitigation 

As with short-term gait restoration, the focus of many studies analyzing the ability of 

prosthesis designs to mitigate long-term problems is with restoring propulsion. These studies have 
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produced mixed results in supporting the hypothesis that near-biological levels of push-off work 

reduce elevated osteoarthritis risk factors like knee EAM. Results that support this hypothesis include 

significant correlations found between push-off work and knee EAM in a semi-active design [24], the 

presence of powered ankle plantarflexion and knee EAM [12], and the presence of combined powered 

ankle and knee toe-off assistance and knee EAM [144]. However, peak EAM values for trials with 

powered ankle plantarflexion in [144] were comparable to the case where no assistance was provided 

at all in absence of linearly increasing ankle stiffness through stance. The correlation in [12] was 

observed only for two of five walking speeds.  

 

Figure 2.3. Comparison of results between two studies with different user populations. The use of additional push-off 

work from an Empower® ankle with young amputees not showing risk factors for knee OA did not decrease the 

external knee adduction moment in the sound limb in [11] (right figure), which it did for a more typical amputee 

population in [24] using a semi-active energy recycling prosthetic foot (left figure). 
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A comparison of results is shown in Figure 2.3 from two different studies with one using an 

energy recycling prosthesis [24] and other using a powered foot-ankle (Ottobock Empower®) [11]. 

While a peak EAM was observed for the energy recycling foot, no significant decrease in peak EAM or 

EAM impulse was observed with the use of a powered ankle-foot prosthesis compared to a passive 

elastic prosthesis in active young individuals within the first few years of walking with a prosthesis. 

This group also showed EAM values within a normal range for able-bodied persons with both 

prostheses, suggesting that osteoarthritis risk factors for amputees, and therefore prosthesis design 

priorities, change with individual health and age.  

Because many comorbidities arise due to a decline in overall health and changes in lifestyle 

[23], another key design goal is to encourage the user to wear the prosthesis often and use it actively. 

This goal prioritizes outcome measures such as user satisfaction and other human factors. Some 

analyses of user experience measures have been performed: For example, prosthesis power was 

found to decrease user satisfaction with the emulator device above and below the net work setting 

nearest to the biological ankle [10]. In another study with young, highly athletic ESAR prosthesis users 

[38], ratings of perceived exertion, ease of and satisfaction with walking, and pain intensity reflected 

high levels of satisfaction across all metrics on average. A design method has additionally been 

proposed which incorporates user survey data involving ratings of perceived security, body schema 

integration, support, socket satisfaction, mobility, aesthetics, and general satisfaction into the design 

process [36]. However, a systematic review of studies that provided satisfaction questionnaires to 

users found that comparisons between studies could not be directly made due to a lack of 

standardized variables and terminology [145]. 

The results of these studies suggest that decreasing secondary impairment risk factors 

depends on more factors than increasing propulsion work. The knowledge gap, as with gait 

restoration objectives, is the characterization of how design factors affect the risk factors. Work to 
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address this gap is ongoing, and new approaches are emerging to support this effort. The next section 

details the work supporting these approaches and identifies opportunities for future work building 

on them, with the goal of developing a framework within which user outcome-based design 

optimization can be achieved. 

 

 Experimental parameterization of designs 

Creating an accurate mapping between design parameters and clinical outcomes is a 

significant research challenge. Efforts have been made to isolate individual design parameters and 

experimentally determine their effects on users’ biomechanics and experiences. This type of analysis 

has been performed for passive prosthesis stiffness [134], [137], [146], as well as for parameters of 

active propulsion designs such as net work and push-off timing [10], [138]. However, there are many 

other parameters and relevant user outcomes for which a considerable research potential remains. 

Examples include prosthesis size/geometry, nonlinear stiffness response, damping ratio, actuator 

power density and distal mass distribution, range of motion, deflection or actuation in additional 

degrees of freedom, and time-variant or actively controlled mechanical properties. User outcome 

measures include socket loading, user stability, metabolic cost, preferred speed of walking, peak knee 

adduction moment, and user needs and experience (e.g., satisfaction with a device).  

It is possible that some design parameters are more crucial for specific user outcome 

measures. Identification of population-specific responses to design parameters is also an important 

research area, as there is a significant amount of variability currently being introduced by comparing 

young versus old, traumatic versus dysvascular amputation, and months versus years of walking on 

a prosthesis. Well-modeled relationships between design parameters and outcomes would enable 

the design process to prioritize specific outcomes differently and arrive at different solutions 

accordingly.  
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Experimental approaches also have substantial challenges. Quantifying the parametric effects 

on the biomechanics of the user requires a significant effort to be made to isolate the parameters 

being investigated. Variables such as the user’s age, weight, time post-amputation, activity level, and 

preferred walking speed are difficult to control for due to a typically limited number of volunteer 

participants. Acclimation to a new prototype design is also difficult to control for between studies due 

to individually varying comfort levels and familiarity with different prostheses. Additionally, it is 

difficult to determine when a participant has acclimated to a device due to a lack of defined metrics 

or thresholds. Consistency between subjects is further complicated by the qualitative nature of 

prosthesis alignment and socket fit assessments and the varying availability of professional prosthesis 

fitting and installation staff. Aside from the logistical challenges, the existing work illustrates that the 

biomechanical response to a single parameter variation can be highly complex and coupled to other 

factors that are not measured [10], [137], [138], [146]. For example, increasing push-off work for a 

powered ankle may increase metabolic rate in one user while decreasing it in another [10]. 

 Model-based simulation 

Model-based biomechanics simulations are increasingly being used to analyze the 

performance of prosthetic designs on the overall musculoskeletal system. Models of gait based on 

simple passive dynamic walker models have been used to motivate ankle propulsion work as a critical 

function of below knee prostheses [1], [2], [147]–[149]. In these models, the stance leg is assumed to 

act as the rigid rod of an inverted pendulum, with a powered transition period taking place between 

steps required to accelerate the center of mass forward and upward onto another inverted pendulum 

trajectory. Other simple gait models include additional degrees of freedom in the leg to more closely 

resemble human gait mechanics, such as the spring-loaded inverted pendulum (SLIP) [150], [151], 

telescoping leg [152], [153], and muscle-actuated knee joint models [153], [154].  
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Recently, more elaborate musculoskeletal models have become prevalent in simulating 

human locomotion, including physiologically accurate muscle dynamics and insertion points [48], 

[137]. A dynamic walking model is shown in Figure 2.4A, and more complex human musculoskeletal 

models are shown in Figures 2.4B and 2.4C. This increased level of detail is due, in part, to the 

increasing availability of commercial modeling and simulation software such as AnyBody (AnyBody 

Technology A/S), Visual3D (C-Motion, Inc.), and SIMM (Motion Analysis), as well as open source 

software such as such as OpenSim [155]–[157]. These platforms facilitate modeling and simulation 

work by integrating customizable musculoskeletal models and analysis tools. Furthermore, as 

modeling and simulation become more prevalent as analysis tools, they are increasingly being 

integrated into the design process.  

Researchers have begun to use model-based simulation to optimize designs of assistive 

devices for simulated user outcomes. For example, gait simulations based on tracking experimental 

kinematics were used to optimize passive ESAR foot parameters for minimal metabolic cost and knee 

contact force with a simulated annealing algorithm in [136]. Other projects have used simulation to 

 
 

Figure 2.4. A) Human walking model based on simple dynamic walking mechanics [1] compared with B) a model 

incorporating realistic muscle behaviors and a rigid socket connection developed in SIMM (Motion Analysis Corp.), and 

C) a model incorporating realistic muscle behaviors and socket motion using OpenSim [48]. In the dynamic walking 

model, the mechanics of walking are modeled as a series of inverted pendulum trajectories with a double-stance step-

to-step transition period. In the musculoskeletal models, muscles are modeled with physiological activation dynamics 

and attachment points, rendered here as red lines. 
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identify ways in which prosthetic devices may diverge from the biological anatomy to improve 

performance. The actuation trajectory of the powered ankle in [45] was designed by simulating the 

gait of a user by tracking able-bodied gait kinematics for the biological joints of the model and 

measuring the calculated moment through the socket-limb connection. It was found that allowing 

ankle motion in a non-anatomical translation arc reduced simulated socket-limb interaction moments 

[45]. Similarly, a parameter search to design an asymmetric transfemoral prosthesis was performed 

in [158], in which the artificial knee center of rotation and the mass distribution of the prosthesis limb 

segments were altered to enforce symmetrical passive walking dynamics in forward simulations. It 

was found that symmetry in the passive walking dynamics could be restored by designing the 

prosthesis parameters to be asymmetrical with the sound limb, with different limb segment lengths, 

mass distributions, and knee axes of rotation [158]. 

With the exception of the last example, which removes active control from the problem 

entirely, these examples make use of human data to provide a realistic reference for simulations to 

track when solving for actuator or muscle controls. However, this limits the scope of the design 

problems which can be solved and forces the designer to make the assumption that the resulting 

motion will be the same as some previously recorded motion with a different prosthesis or an able-

bodied person. Research in predictive simulations of human gait, alternatively, solves the optimal 

control problem for objectives in which the resulting motion is not (or is loosely) prescribed in an 

attempt to simulate the way a person “would” perform a task, considering the new dynamics of the 

human walking with the device. With accurate and efficient predictive simulations of human gait, 

virtual experiments could be conducted with hypothetical prosthesis designs. This could eliminate the 

physical requirement of a working prototype to estimate its effect on gait or be used with simulators 

to perform human-in-the-loop experiments even before a prototype is built [159]–[161]. 
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Predictive simulations of human walking have been able to capture many of the characteristic 

features of human gait primarily through optimization of muscle activations for minimum effort [13]. 

This approach is based on the hypothesis that humans naturally pursue the most energetically 

efficient means of locomotion [14], based on data which show that preferred walking and running 

patterns approximately minimize metabolic energy cost [162]–[164]. Minimization objectives for this 

approach include summed muscle activations raised to a power [13], calculations of metabolic cost 

based on muscle models [14]–[16], summed muscular mechanical energy expenditure [17], and 

summed muscle stresses [133].  

This approach has also been applied to gait with a powered prosthesis, in which prosthesis 

energy cost and metabolic energy cost are used as competing objectives in the minimization [19]. The 

results of this study suggest that an ideal powered prosthesis could reduce the metabolic cost of 

walking below able-bodied levels. The same group later simulated multiple ankle flexion controllers 

as implemented in specific research prostheses and found that they do not improve the metabolic 

cost as much as the unrestricted optimal control result, suggesting that control design may factor into 

the modest metabolic efficiency gains seen in existing prototypes [165]. In [18], predictive gait 

simulations were used with a passive prosthesis model to determine that metabolic cost may not 

necessarily increase after limb loss if intact muscle strength is maintained.  

However, it is still unknown whether simulation conditions which yield accurate estimates of 

able-bodied gait may require modification to accurately simulate and address issues specific to 

walking with a prosthesis. For example, predictive simulations using a passive prosthesis model have 

included minimization of joint moment asymmetry as an objective [20]. This approach highlights an 

attribute of gait specific to people with amputations and finds that simulated joint moment 

asymmetry can be substantially reduced at the expense of muscle effort while maintaining similar 

kinematics. Additionally, accurately reproducing the features of able-bodied gait is still a major 
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challenge, indicating that perhaps additional objectives or conditions for simulating walking with a 

prosthesis are necessary as well – for example, physical discomfort or perceived instability. Defining 

the objective function in the context of prosthesis design could also function as part of the design 

process by indicating the relative priority of functional design criteria.  

However, a major component of this work is being able to identify when results reflect an 

artifact of the model or simulation method rather than a real physiological trend. Gait patterns due 

to personal biomechanics and socket fit show strong inter-individual variations, which predictive 

simulation cannot compute without personalized models. Additionally, simulations with prototype 

prostheses require assumptions to be made about the mass distribution or other mechanical 

properties of the design which may not match the final device [166]. It is, however, a significant 

challenge to establish model and simulation fidelity sufficient to draw generalized conclusions and 

make design decisions.  

One approach toward improving simulation accuracy focuses on increasing the quality and 

level of detail of the models themselves. For example, a key attribute of the coupled system human-

prosthetic system is the mechanics of the socket-residuum interface, due to the potentially large effect 

it might have on gait mechanics and muscle control decisions. This attribute is often represented as a 

rigid connection [18]–[20], [54], [136].  

Efforts to measure and model socket-residual limb behavior are ongoing. One approach has 

been to indirectly calculate the kinematics of the socket relative to the underlying bone from marker-

based motion capture data based on assumptions about joint constraints imposed on the system 

[48]. This method attempts to calculate socket motion non-invasively and without the harmful side 

effects of repeated X-ray exposure, but is limited in that possibly non-physiological constraints on the 

socket joint must be imposed to calculate a unique solution. This work has not yet resulted in the 

construction of a mechanical model of the socket. Other approaches attempt to model the tissue 
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mechanics directly by fitting parameters to match recorded data. For example, a two-dimensional 

socket-limb model with elastic and friction parameters was developed and optimized to agree with 

experimental pressure and kinematic data obtained from previously published experiments in [13]. 

Other researchers have attempted to model the tissue mechanics of the residual limb using a finite 

element approach, optimizing the material properties to match force response measurements 

recorded from indenter devices used on a user’s residual limb [117]–[119].  

All of these methods face challenges in modeling for a highly variable set of conditions per 

individual, including tissue mass, limb length, and suspension type, some of which also exhibit 

strongly nonlinear behavior. They also face challenges in the limited amount of data available for 

socket forces and kinematics across a wide population. 

Another major challenge with simulation-based approaches is resource feasibility. As model 

realism increases so does model complexity in the form of more degrees of freedom, more muscles, 

more complex measures of values such as metabolic cost, and more complex or denser contact 

models – including soft tissue models such as the socket-residuum interface. The trade-off between 

model complexity and computational cost is a key concern and is especially significant in 

computationally expensive operations like predictive simulation, of which the cost of each iteration 

scales with model complexity, number of constraints, and granularity of time resolution. Predictive 

able-bodied gait simulation studies often use one standard deviation for each coordinate of 

experimental walking kinematics and ground reaction forces as a simulation accuracy benchmark 

[15], [20], [133]. However, regardless of complexity, computational models are subject to uncertainty 

in fundamental parameters such as body segment lengths and inertial properties [167]–[169]. Efforts 

have been made to identify the sensitivity of simulation results to model parameters [167], [168], 

which could allow for more efficient models tuned for specific simulation tasks. 
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Improvements in computing power and algorithm efficiency have made predictive simulation 

a more practical tool [170], but pushing the boundary of this trade-off to allow more efficient 

simulations with a high degree of accuracy, as well as identifying the level of accuracy required to 

obtain practically useful results, remains an important direction for future work. This is especially true 

for potential future applications in which simulations occur in real-time or in embedded systems (e.g., 

control and adaptation). 

Currently, no method exists for a prosthesis design to be generated or optimized using 

predictive simulations of its effect on human mobility tasks and outcome measures. To do so and test 

the resulting prototype on human users would provide valuable insight into the validity of the method 

as well as potential mechanisms for prosthetic influence on user outcomes. Such experiments could 

also provide data to assess and modify predictive simulation methods. Development of realistic multi-

objective predictive simulations could also help to identify the causes for gait abnormalities by 

reproducing them with modifications to the optimization objectives. 

 

Research work in lower limb prostheses has focused heavily on restoring propulsive work to 

the affected limb. The inconsistency of results and broader analysis of biomechanical effects illustrate 

the degree to which a more detailed understanding of the causal relationships between design factors 

and outcome measures is needed. Traditional gait restoration metrics such as metabolic cost and 

kinematic similarity to able-bodied gait are not sufficient to fully capture the efficacy of a prosthesis 

in enabling optimal gait patterns. Limb loading, socket fit, walking stability, and individual muscle 

compensations are all likely contributors to discomfort, excessive effort, and user dissatisfaction in 

general. The characterization of how prosthesis design factors affect the outcome measures remains 

the primary knowledge gap in targeting design objectives. Efforts are ongoing to experimentally 

evaluate these relationships by isolating design parameters and observing user outcomes. Many of 
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these efforts have focused on global biomechanical measures such as metabolic cost or gait 

mechanics, but measures of user experience or more specific biomechanical information such as task-

specific muscle contributions are also important aspects to the design problem. It is possible that 

many of these performance measures may be better improved by de-emphasizing 

anthropomorphism in prosthesis design because the biomechanical and sensory system of a person 

with a lower limb prosthesis is distinct from that of an able-bodied person. However, the limits to 

which deviation from anthropomorphic norms are functionally useful or acceptable to the user are 

unknown and likely vary by user and application. Modeling and simulation efforts offer the potential 

to conduct virtual experiments, but establishing accuracy and trustworthiness of the resulting 

solutions remains a significant challenge, and simulation results cannot replace experimental 

measures and user feedback. 

A range of research opportunities to advance the ability to design for optimal user outcomes 

exists between two suggested research paths: experimental parameterization of designs and model-

based simulations. Progress in both paths could improve the accuracy of a broad scope of predicted 

user outcomes using prosthesis design models, which may allow these outcomes to be factored early 

into the design process. Opportunities for work in these paths exist across domains including 

engineering design, biomechanics simulation and modeling, experimental biomechanics, user 

experience surveys, and engineering analysis. The advancement and synthesis of these fields may 

create the framework to optimize lower limb prostheses for desired user outcomes. 

With respect to the work presented in this thesis, optimal control simulations provide a unique 

toolset to explore unconventional and unrestricted design ideas and their theoretical effects on 

selected user outcomes. The lack of existing approaches which fully exploit the flexibility of this 

approach is what motivates the simulation approach discussed in the following chapter, in which the 
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behavior of a generalized prosthesis model is optimized to simultaneously improve two user 

outcomes – reducing both muscle effort and peak socket loads on the residual limb. 
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CHAPTER 3  

DYNAMIC OPTIMIZATION OF GAIT WITH A GENERALIZED LOWER-LIMB PROSTHESIS MODEL 

Potential avenues to explore the prosthesis design space outside of the traditional process via 

simulation studies were identified in Chapter 2. This chapter defines the scope and goals of a specific 

simulation study designed to result in the identification of prosthesis behaviors which improve 

selected user outcomes. 

This chapter is adapted from a conference paper titled Dyanamic Optimization of Gait with a 

Generalized Lower-Limb Prosthesis Model, written with second author Brian Umberger of the University 

of Michigan and third author Professor Frank Sup of the University of Massachusetts, Amherst [171]. 

This paper was presented at the International Conference of Rehabilitation Robotics in Toronto, July 

2019. In this chapter, we simulate walking with a below-knee prosthesis capable of outputting loads 

and displacements freely in the sagittal plane.  

Abstract — Predictive simulation of gait is a promising tool for robotic lower limb prosthesis 

design, but has been limited in its application to models of existing design types. We propose a 

modeling approach to find optimal prosthesis dynamics in gait simulations without constraining the 

prosthesis to follow kinematics allowed by a specific joint mechanism. To accomplish this, we render 

a transtibial prosthetic device as the composition of its resultant forces and moments as they act upon 

the prosthetic foot and socket and allow 3 degree-of-freedom planar motion. The model is 

implemented into a human musculoskeletal model and used to solve dynamic optimizations of 

muscle and prosthesis controls to minimize muscle effort and loading on the residual limb during 

walking. The emphasis on muscle effort vs. limb loading is varied in the minimization objective and 

the resulting optimal prosthesis dynamics are compared. We found that muscle effort and socket 

loading measures were reduced for our prosthesis model compared to a revolute joint prosthesis 

model. We interpret large displacements in the linear axes to transfer energy to the plantarflexion 
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action before toe-off and reduce loading at the socket-limb interface. Our results suggest this 

approach could assist in the design of non-biomimetic prostheses but requires experimental 

validation to assess our modeling assumptions, as well as progress toward increased fidelity of 

predictive simulation approaches more generally. 

 

Advances in robotic lower-limb prostheses have demonstrated the potential to improve their 

users’ locomotor performance [79]. Improvements such as decreased metabolic cost of transport [4], 

increased preferred walking speed [4], decreased muscle contributions to positive work performed 

on the center of mass [3], decreased external knee adduction moment in the intact limb [24], 

decreased pressures on the residual limb [123], and increased kinematic symmetry [123] have been 

observed with the use of powered robotic prostheses in comparison to passive prostheses. However, 

despite the ability of current designs to closely mimic the dynamics of the missing anatomy, these 

metrics have not been fully restored to able-bodied levels [3], [4], [10]. The performance gap has 

motivated recent research attempting to uncover the underlying biomechanical factors and design 

parameters that determine the effect of a prosthesis on user outcomes.  

One result of this ongoing work is an increased focus on computational simulation of human 

biomechanics to estimate user response to a prosthesis. Optimal control simulations of human 

walking can be obtained by minimizing performance criteria, such as the metabolic energy 

expenditure or summed muscle activations of a human musculoskeletal model [13], [14]. This 

approach enables researchers to conduct virtual experiments with hypothetical designs and analyze 

the effects of changing design parameters on gait. For example, gait simulation studies have analyzed 

the effect of powered prosthesis work rate on metabolic energy expenditure and suggest that an ideal 

powered ankle prosthesis could reduce the metabolic cost of transport in transtibial amputees below 

able-bodied levels [19], [172]. In addition to effort measures, other minimization objectives have been 
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considered. For example, it was observed that joint loading asymmetry in amputees could be reduced 

at the cost of increased metabolic expenditure in simulation [20]. 

However, current research is limited to the optimization of gait with existing prosthesis design 

forms, constrained to follow the dynamics allowed by the mechanism model. This has left an 

opportunity to research the full design space to better understand optimal prosthesis dynamics. For 

example, assumptions of a revolute ankle joint may result in sub-optimal prosthesis dynamics due to 

constraining the behavior from adapting to changes in the overall human dynamical system 

introduced by the addition of a non-rigid socket-limb interface. Our present work proposes to search 

the prosthetic design space without constraints of a preconceived design solution by directly 

optimizing prosthesis dynamics as they interact with the connecting limb segments, irrespective of 

the mechanism required to generate those dynamics. This modeling approach is illustrated in Fig. 1. 

The objective of this work is to demonstrate that a generalized (mechanism-agnostic) 

prosthesis model can be developed to simulate the gait of a prosthesis user based on optimal control 

methods. The approach can be used to address how prosthetic devices could behave differently from 

anatomical joints when motion constraints in the sagittal plane are removed. Further, it could be used 

to study how human-prosthesis dynamics change when priority is placed on different optimization 

objectives (i.e., socket loading, joint loading, metabolic energy, prosthetic performance).  

The chapter is organized in five sections starting with this introduction and followed by Section 

3.2 which describes the modeling and simulation methodology used to generate planar prosthesis 

dynamics, as well as the specific parameters being investigated in this study. Section 3.3 presents the 

optimal control solutions, Section 3.4 discusses notable results, and we provide conclusions and 

describe future work in Section 3.5. 
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This study consists of a series of dynamic optimizations of human walking. Optimal control 

problems were formulated to generate a full stride of gait at a prescribed walking speed with the 

generalized prosthesis model incorporated into the musculoskeletal model. This section describes the 

specifics of the model implementation and the form of optimal control problem being solved. 

 Human-Prosthesis Musculoskeletal Model 

The human-prosthesis model is shown in Figure 3.1. The model was created with the OpenSim 

open-source musculoskeletal modeling and simulation platform [155]. The human-prosthesis model 

is a 12 segment, two-dimensional musculoskeletal model with 15 degrees-of-freedom (DOF) in the 

 

Figure 3.1. OpenSim rendering of the human-prosthesis model used for this study. Locations of the joint axes for 

the socket joint and prosthetic foot bending are indicated in the full-body illustration. Both legs have identical 

sets of 6 muscles: Gluteus maximus (GMAX), iliopsoas (IL), hamstrings (HAM), rectus femoris (RF), biceps femoris 

short head (BFsh), and vasti (VAS). The sound side limb has three additional muscles which cross the biological 

ankle: Gastrocnemius (GAS), soleus (SOL), and tibialis anterior (TA). The prosthesis model (PROS) has three model 

actuators which react against both the socket and the prosthetic foot. 
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sagittal plane. The biological joints are actuated using 15 Hill-type muscle models based on a 

computational implementation developed in [173].  

The model includes a right-side unilateral transtibial amputation and prosthesis socket. This 

socket is connected to the residual tibia with a 2-DOF joint (flexion and axial translation, or “pistoning”). 

Each of these coordinates is subject to a passive elastic force relationship, consisting of a linear spring-

damper with stiffness values (flexion: 600 Nm/rad, pistoning: 35,000 N/m) corresponding to peak 

socket displacement values relative to subject mass taken from data in [48]. We included this joint in 

the model due to the potential for motion at the socket to influence the optimal planar dynamics of 

the prosthesis. 

A passive prosthetic foot is modeled as two rigid segments connected by a pin joint. Foot 

flexion is approximated with lumped stiffness and damping parameters acting at the pin joint (450 

Nm/rad). This simplification of the continuous flexion of a foot prosthesis is included for 

computational efficiency, as commonly seen in the literature [18], [20], [165]. Foot-ground contact is 

modeled using Hunt-Crossley contact mechanics between the ground plane and contact spheres on 

the bottom of the feet [156].  

The prosthetic ankle joint is represented as a 3-DOF planar connection between the socket 

and the prosthetic foot. This generalized prosthesis model is described as “mechanism-agnostic” 

because it does not include any model segments, but instead contains a virtual ideal force or moment 

actuator aligned with each DOF. These actuators are governed by: 

 𝐹𝑥(𝑡) = 𝑘𝑥𝑢𝑥(𝑡) (3.1) 

 𝐹𝑦(𝑡) = 𝑘𝑦𝑢𝑦(𝑡) (3.2) 

 𝑀𝑧(𝑡) = 𝑘𝑧𝑢𝑧(𝑡) (3.3) 

 −1 ≤ 𝑢(𝑡) ≤ 1.   (3.4) 
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where 𝑘 is a scalar gain applied to the control signal 𝑢(𝑡) to define the saturation limit for the 

output force or moment in the corresponding coordinate frame. In this frame, the x-axis is the 

anterior-posterior axis of the foot, the y-axis is the inferior-superior axis, and the z-axis is the flexion 

axis of the ankle. The control signals act as inputs to the model actuators and are included in the 

controls vector along with the muscle excitations. These outputs act on both the prosthesis socket 

and the prosthetic foot connector in opposite directions. This simulates the net resultant forces 

exerted on the adjacent segments by an undefined prosthetic joint, allowing the simulation to 

optimize prosthesis output dynamics irrespective of mechanism constraints. This model was also 

implemented with the two linear translation coordinates locked, and is referred to as a revolute ankle 

prosthesis model in the simulation experiments. 

 Objective Cost Functions 

Solutions for gait were found by minimizing a weighted sum of performance objectives. The 

overall objective function includes terms for muscle effort, socket-residuum loads, net positive work 

injected into the system by the prosthesis, and tracking of able-bodied walking kinematics. Each of 

these terms is normalized against the value obtained from a gait solution which tracked able-bodied 

joint kinematics using the revolute prosthesis model, with the exception of the net work objective, 

which was normalized against the approximate net positive work generated at the biological ankle 

during level walking near 1.3 m/s (approx. 8 J for our 76 kg model [174]). 

The minimum effort term is described by 

 𝐹effort =
1

𝑁𝑚𝑡𝑓
∑ [∫ 𝐴𝑖(𝑡)3𝑡𝑓

0
𝑑𝑡]𝑖  (3.5) 

where 𝑁𝑚 is the number of muscles in the model, 𝐴𝑖(𝑡) is the activation of muscle 𝑖 as a 

function of time 𝑡, and 𝑡𝑓 is the time in seconds to complete one full gait cycle. We use a muscle 

activation approach for this objective as in [13], [133]. We include this term to minimize the muscle 

fatigue of the user.  
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The socket loading term is described by 

 𝐹loading =
1

2𝑡𝑓
∫ [𝑀flex(𝑡)10 + 𝐹pist(𝑡)10]𝑑𝑡

𝑡𝑓

0
 (3.6) 

where 𝑀flex(𝑡) and 𝐹pist(𝑡) are the flexion moment and pistoning force exerted on the residual 

limb by the socket at time 𝑡, respectively. We include this term to minimize discomfort or pain caused 

by high load magnitudes at the socket – an additional factor in walking with a prosthesis which may 

not be accounted for with energy optimality criteria. This objective is constructed to approximate a 

min-max function with high exponents while maintaining differentiability [175]. 

 The able-bodied tracking objective is described by  

 𝐹track =
1

𝑁𝑞𝑡𝑓
∑ [∫ [

𝑞𝑗(𝑡)−𝑞𝑗
∗(𝑡)

𝜎𝑗(𝑡)
]

2

𝑑𝑡
𝑡𝑓

0
]𝑗  (3.7) 

where 𝑁𝑞 is the number of tracked coordinates in the model, 𝑞𝑗(𝑡) is the value of coordinate 𝑗 

at time 𝑡, 𝑞𝑗
∗(𝑡) is the value of tracked reference coordinate 𝑗 at time 𝑡, 𝜎𝑗(𝑡) is the between-subjects 

standard deviation of coordinate 𝑗 at time 𝑡, and 𝑡𝑓 is the time in seconds to complete one full gait 

cycle. Reference coordinates and standard deviations were used from [176], and include hip, knee, 

and ankle kinematics as well as ground reaction forces. Ankle flexion was not tracked on the 

prosthesis side due to the non-anatomical mechanics of the model joint. We include this term to 

influence the solution toward average, non-pathological gait-like behaviors, weighted two orders of 

magnitude smaller than 𝐹effort to prevent tracking from dominating the optimal control solution [177]. 

An objective function that more accurately represents the motor control strategies sought by 

prosthesis users should not require this term, and instead would contain additional terms for control 

objectives not considered here (e.g., joint loading, stability, smoothness of motion). 

The prosthesis work minimization objective is described by 

 𝐹work =
1

𝑡𝑓
∑ ∫ [𝜏𝑘(𝑡)𝜃�̇�(𝑡)]

2𝑡𝑓

0
𝑑𝑡𝑘  (3.8) 
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where 𝜏𝑘 is the kinetic output of virtual actuator 𝑘 at time 𝑡 (either force or moment) and 𝜃�̇� is 

the velocity (linear or angular) of the corresponding kinematic coordinate at time 𝑡. We include this 

term to penalize an unrealistically high energy output from the prosthesis that results in marginal 

improvements in the other objectives. It is weighted three orders of magnitude smaller than 𝐹effort to 

ensure that its effect on the biomechanics in the solution is minimal, similar to the optimal human 

cost condition in [19]. 

The entire objective function is described by 

 𝐹 = 𝐹effort + 𝛼𝐹loading + 𝜖1Ftrack + 𝜖2𝐹work (3.9) 

where 𝜖1 = 10−2 and𝜖2 = 10−3. We parametrically vary socket loading weighting 𝛼 on a 

logarithmic scale from 𝜖2 to 10 to assess the effect of increasing or decreasing loading minimization 

on the output prosthesis dynamics. This range is designed to simulate minimal consideration for 

socket loading on one extreme to socket loading being the dominant objective by one order of 

magnitude on the other. 

 Optimization Structure and Constraints 

We minimize these objectives using a direct collocation approach [13], [178], using MATLAB to 

interface with OpenSim and run the open-source IPOPT [179] solver, as in [170]. We render a full gait 

cycle with 51 nodes. Constraints exist at each node to satisfy the system dynamical equations. 

Additional constraints enforce periodicity of the resulting motion as well as the average walking 

velocity. The net power generated by the summed prosthesis actuators was constrained to be less 

than 300W at each node, and the planar range of motion was constrained to ±5cm (linear) and ±60° 

(flexion). 

To simulate variability present in the biomechanics of actual human subjects, an array of 

simulations with modified simulation parameters was run for each objective function condition. Three 

walking speeds were enforced: 1.1, 1.3 (nominal), and 1.5 m/s. Additionally, three socket stiffness 
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multipliers were used in the model: 0.75, 1 (nominal), and 1.5. This combination of parameters results 

in 9 different simulations run for each objective function condition, for a total of 45 solutions. An 

identical set of simulations was run using the revolute prosthesis model. 1-way ANOVA was used to 

assess the effect of the simulation variables on the objective values. 

The tracking solution used to normalize the objective values was supplied as the initial guess 

for the generalized prosthesis model at nominal conditions and 𝛼 = 0.1. The resulting simulation was 

then used as the initial guess for all remaining conditions. Some simulations did not converge to gait-

like locomotion (i.e. hopping on one leg, unable to satisfy system dynamics constraints) and were 

omitted from the results. 38 solutions were used for the generalized prosthesis model, and 37 

solutions were used for the revolute model. 

 

The normalized objective values for muscle effort and socket loading are shown for all three 

conditions in Figure 3.2. The peak socket loading objective was more sensitive to the objective weights 

when using the revolute ankle prosthesis model compared to the generalized prosthesis model, with 

mean values ranging from 4% to approximately 1200% of the normalized baseline compared to a 

range of 4% to 49%. Mean muscle effort ranged from 22% to 40% of baseline for the revolute model, 

and from 17% and 28% of baseline for the generalized prosthesis model. Averaging all solutions, the 

generalized model reduced the socket loading objective from the revolute model by 91% (p=0.02), and 

reduced the muscle effort objective by 43% (p=0.002). Actual peak socket load magnitudes were 

reduced from the revolute model by 15% on average. Peak socket loading is strongly increased by 

reduced socket stiffness (p<0.001), and muscle effort is increased by increased walking speed 

(p=0.003). The effects of socket stiffness on muscle effort and walking speed on socket loading were 

not statistically significant (p=0.1 and p=0.25, respectively). 
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Gait mechanics for the biological joints are shown in Figure 3.3. Peak hip flexion remains 

consistent with able-bodied patterns, but peak extension does not cross past the neutral position, 

reducing the hip range of motion by approximately 10°. Knee flexion is reduced during swing by 

approximately half. Peak ankle plantarflexion is observed at heel-strike instead of at toe-off, 

accompanying a spike in braking force and vertical ground reaction force at heel strike and a reduction 

in the second peak of the vertical ground reaction force.  

 

Figure 3.2. Objective values for solution arrays with five socket loading weight 

conditions (n=38 generalized, n=37 revolute). Error bars indicate +/- 1 SD. 
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Work loops and powers for each prosthesis degree of freedom are shown in Figure 3.4. The 

linear displacements range across approximately 10cm in both axes (corresponding with the 

simulation bounds). The prosthesis aligns the socket anterior to the foot connector as stance 

progresses and returns to a neutral position during swing for all objective conditions. The vertical 

distance between the foot and the socket decreases rapidly before toe-off as the joint plantarflexes. 

The magnitude of the peak vertical force decreases as α increases. Flexion ranges across 

approximately 80° and reaches the bound of 60° of dorsiflexion near heel-strike. The flexion axis 

exhibits a burst of power generation shortly before toe-off as with the biological ankle. This is 

accompanied by a simultaneous burst of negative power in the y-axis nearly equal in magnitude. 

These peaks are reduced as the socket loading weighting increases in the objective function. Peak 

power magnitudes at toe-off are reduced by 29% in the y-axis and 36% in flexion from 𝛼 = 1 to 𝛼 =

 

Figure 3.3. Biological joint kinematics from able bodied subjects (n=8) and simulation solutions (n=38). Shaded 

envelopes indicate +/- 1 SD. Prosthetic ankle joint is omitted due to 3-dof behavior in the sagittal plane. Positive 

angle values refer to flexion and negative refer to extension. Dorsiflexion and plantarflexion are positive and 

negative respectively for the ankle. Anterior and superior are positive for the GRFs. The gait cycle begins at heel-

strike for each limb. 
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10. A smaller positive power burst is seen in the x-axis as the socket displaces posterior from its 

forward position at toe-off.  

 

The net mechanical work performed by the prosthesis over one stride for each objective 

condition is illustrated in Figure 3.5. The optimized prosthesis dynamics output approximately 20 J of 

positive net work, and about 40 J of energy is absorbed by the vertical displacement axis and 

transferred to the flexion axis, which exhibits about 60 J of positive net work across conditions. Net 

work at the x-axis is between -1 and -5 J across conditions. No visible trend is observable between 

objective conditions in the net work over the stride despite trends in the peak powers.  

 

Figure 3.4. Mean work loops and prosthesis actuator powers for each actuated coordinate of the prosthesis model 

for each objective condition. Positive flexion indicates dorsiflexion, positive x-displacement anterior displacement 

of the socket, and positive y-displacement indicates superior displacement of the socket. A black circle marks heel-

strike and a black ‘x’ marks toe-off of the affected limb for each work loop. A dashed line marks toe-off in the power 

plots. 
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In this study, we have presented optimal control solutions for gait and generalized prosthesis 

dynamics for multiple performance criteria. We found that a prosthesis model which is not 

anatomically constrained allowed for significant reduction in both the socket loading and muscle 

effort criteria over a flexion-only prosthesis model. However, the model biomechanics deviated from 

able-bodied gait patterns in ways which suggest that our minimization objective drives solutions 

toward an abnormal amount of asymmetry. Despite this, useful trends are observable in the 

prosthesis dynamics, including the presence of motion patterns in the translation axes to reduce 

socket loading, as well as apparent power coupling between flexion and vertical translation to reduce 

actuator demands. 

 Muscle effort vs. socket loading minimization 

The objective function values of the solutions trend toward a Pareto-like distribution, as 

expected. Large amounts of variance are present in the objective values due to the perturbation of 

the speed and socket stiffness conditions. As observed experimentally, increasing walking speed is 

 

Figure 3.5. Prosthesis model net mechanical work over one stride for solution arrays with five socket load objective 

function weightings. Error bars indicate +/- 1 SD. 
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associated with increasing metabolic cost [163]. Reducing socket stiffness by 25% of nominal 

increased peak socket loads by a factor of 17 for the generalized model. While our socket model is 

simplistic, this result supports the idea that a poor socket fit is a major factor contributing to 

discomfort in walking with a prosthesis. 

 Deviation of joint mechanics from able-bodied 

In comparing the joint mechanics, major deviations from able-bodied biomechanics are 

present in the simulated gait. The lack of plantarflexion before toe-off and large amount of 

plantarflexion induced by heel-strike in the biological ankle joint is likely a result of muscle activity 

being heavily penalized in comparison to prosthesis activity, which drives asymmetry. The large peak 

ground reaction forces at heel strike of the unaffected limb compared to the relatively smooth ground 

reaction forces on the prosthesis side further indicate this loading asymmetry. Shallow knee flexions 

during swing can be similarly explained: The solution is driven to minimize the muscle activations 

required to achieve ground clearance, regardless of how unstable this gait pattern might be in unideal 

conditions. However, the amount of knee flexion of either limb while in swing should have little effect 

on the prosthesis dynamics during stance. We do not expect the simulated biomechanics to closely 

match able-bodied biomechanics due to the non-anatomical nature of the prosthesis model. 

However, the loading asymmetry of these biomechanics highlights that more realistic optimal control 

objectives for gait with the aid of a prosthesis likely require additional terms to account for factors 

such as stability, movement smoothness, or joint loading.  

 Functional analysis of prosthesis dynamics 

The prosthesis energetics and work loops suggest specific roles for each coordinate axis 

through the gait cycle. The x-axis absorbs a small amount of net work over the gait cycle but exhibits 

a large translation magnitude. This serves to align the socket pylon toward the toe of the foot as stance 

progresses, suggesting that the primary role of this motion is in reducing the flexion moment on the 
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socket. The substantial positive work at the flexion axis suggests that net positive ankle flexion work 

remains an important factor in reducing muscle effort, as suggested by other simulation studies [19], 

[172]. The negative net work accompanied by large deflections in the y-axis suggests that this motion 

serves to reduce peak pistoning loads at the socket. The near inverse power curves of flexion and the 

y-axis suggest that these coordinates are coupled. Energy transfer between them may be an efficient 

way to reduce the required work output of the ankle flexion actuator. The work loops also reveal a 

behavior pattern in which the device alternates between periods of high and low stiffness with sharp 

transitions between the two, suggesting a finite-state impedance control approach may be practical. 

 Study limitations 

The presented work has some key limitations. First, optimizing prosthesis dynamics for gait 

alone may leave the resulting design poorly adapted to other tasks. Similarly, the variability included 

in this study does not fully encapsulate the variability shown between actual subjects, ignoring 

variables such as subject mass, height, and residual limb length. A robust approach may require the 

simulation of multiple tasks and a wider range of model variability. Additionally, as with any 

simulation-based approach, this work is heavily dependent on model and simulation accuracy for 

useful results. Our use of a single initial guess risks converging to local minima, and accounts for the 

lack of successful convergence of some conditions. Our simulation is constrained to motion in the 

sagittal plane and includes a simple approximation of socket mechanics, and these limitations may 

prevent the simulations from capturing important factors in the optimal biomechanics of walking with 

a prosthesis. Additionally, uncertainty toward the correct objective function is a knowledge gap 

persistent in the predictive simulation of gait which further work is needed to address. As our 

understanding of optimality criteria best representative of walking with a prosthesis improves, 

confidence in predictive simulation outputs should also improve. Experimental work with prototype 
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designs capable of recreating simulated prosthesis dynamics would additionally provide feedback to 

refine the simulation assumptions and improve the accuracy of the results. 

 

The presented prosthesis simulation approach optimizes prosthesis behavior in search of 

specified outcomes designed into the objective function without being constrained to the behavior of 

a specific joint mechanism. By solving optimal control problems for the human-prosthesis system, the 

effect of changes to the prosthesis dynamics on the biomechanics of the user are considered. The 

primary contribution of this work is the introduction of a tool for generating prosthesis design targets 

which are not based on assumptions of what a prosthetic joint should look like. The results of this 

study support the idea that optimal prosthesis performance may not align with biomimetic norms 

when the full system dynamics are considered. 

Future work for this project will focus on designing and prototyping a robotic prosthesis test 

platform for experimental evaluation of simulated prosthesis dynamics on human subjects. 

Additionally, work remains to refine the predictive simulation objective function and socket-residuum 

model to increase the fidelity of gait simulations for persons with lower limb amputations.  
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CHAPTER 4  

NON-ANTHROPOMORPHIC PROSTHESIS DESIGN GENERATED FROM SIMULATED GAIT 

OPTIMIZATION  

The simulated prosthesis behavior provides guidelines for the design of new prototypes. 

However, simulation studies such as conducted in the previous chapter require equivalent 

experiments with human participants in order to validate their findings. In this chapter, the simulation 

method of the previous chapter is applied to generate design requirements for a prototype test 

platform capable of recreating a wide range of simulated prosthesis behaviors for experimental 

validation. These specifications are used to design the mechatronic system for the prosthesis test 

platform. 

This chapter is partially adapted from a conference paper titled Non-anthropomorphic 

Prosthesis Design Generated from Simulated Gait Optimization, written with second author Professor 

Frank Sup of the University of Massachusetts, Amherst. This paper was accepted to the IEEE RAS/EMBS 

International Conference on Biomedical Robotics & Biomechatronics in New York City, November 

2020. The sections detailing the concept development, load sensor design, structural analysis, 

actuator performance testing, and discussion sections dealing with the above were added for this 

document due to the conference publication being submitted as a work-in-progress. 

Abstract— Simulations of walking biomechanics offer a tool for optimizing prosthesis 

performance while including estimates of the effects of the prosthesis on the rest of the body. We 

have previously used this technique to optimize the output behaviors of a generalized prosthesis 

model in the sagittal plane. In this paper, we present the design of a prototype prosthesis testbed for 

validating generalized prosthesis model predictive simulation results with experimental feedback. 

Design specifications are generated from simulated prosthesis dynamics and comparison with 

existing powered prostheses. A complete mechatronic system design based on these specifications is 
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presented. The design consists of two sub-systems: the ankle-foot prosthesis and a wearable off-

board actuation and control system. The overall system is designed to function as a validation tool for 

prosthesis simulation experiments generally, and to provide experimental feedback to the simulation-

based prosthesis design loop. 

 

People with lower-limb loss experience reduced mobility and an elevated risk for developing 

secondary health conditions or disabilities. With currently available passive prosthesis technology, 

lower-limb loss commonly results in higher energy costs for locomotion [55], chronic back pain [23], 

knee osteoarthritis [23], [39], [61], muscle atrophy [23], skin irritation [63], and pressure ulcers at the 

site in contact with the prosthesis socket [63]. More complex and powered devices have been shown 

to reduce some of these effects [4], [12], but user outcomes are inconsistent and usually do not 

improve to able-bodied levels. The persistence of these adverse effects necessitates the development 

of new prosthesis designs capable of mitigating them. To meet this design challenge, researchers may 

need to take advantage of new design tools. 

Biomechanical simulations have shown promise as a tool to understand better the optimal 

behavior of a prosthesis and how the wearer might interact with the device. These simulations 

estimate whole-body effects for a specific prosthesis and control approach, potentially providing more 

information about the user outcomes of the device than an analysis based on previously collected 

experimental data with a different design. Simulating hypothetical designs with musculoskeletal 

models enables the designer to conduct virtual experiments and rapidly refine the design targets 

before developing a physical prototype. For example, Fey et al. optimized the stiffness of an energy 

storage and return (ESR) foot model to minimize simulated metabolic cost and knee contact loads 

during walking [136]. Handford and Srinivasan simulated a powered ankle-foot prosthesis, which 

decreased the computed metabolic cost of transport below that of an able-bodied person when 
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optimized for maximum energy output and minimum weight and allowing for asymmetric joint 

kinematics [19]. Beyond optimizing known designs, biomechanics simulations can be used to optimize 

unconstrained device behaviors. The previous chapter demonstrates how simulations can be 

constructed which remove assumptions about the mechanical construction of the prosthesis, thereby 

generating performance targets for new designs of an unspecified form.  

However, simulated outcomes can be misleading and require experimental validation. Work 

addressing the gap between simulation and experimental performance has been conducted in [165] 

by simulating the controller performance of devices for which experimental data exists, including the 

commercial Empower ankle-foot prosthesis [180], passive SACH foot [181], and an ankle-foot 

prosthesis emulator [9]. However, the device behaviors generated from the methods used in Chapter 

2 are highly unconventional and have no experimental counterpart. In this paper, we present the 

design of an experimental prototype for the validation of generalized prosthesis optimization studies, 

using simulation outputs to generate design specifications. 

 

Mechatronic design targets were interpreted from dynamic optimizations of human walking 

with a generalized prosthesis model. This section describes the model and optimization method, the 

resulting simulated prosthesis behaviors, and the translation of those behaviors into design 

specifications. 

 Dynamic Optimization of Gait 

The human-prosthesis musculoskeletal model was adapted from the model used in the 

previous chapter and is shown in Figure 4.1. It has 12 body segments, 14 degrees-of-freedom (DOF), 

and 15 Hill-type muscle models [173]. The residual tibia is connected to the prosthesis socket with a 

2-DOF viscoelastic joint to simulate a soft tissue interface. The prosthetic foot is modeled to flex about 
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a pin joint simulating the elasticity of an ESR foot. Specific details about this model are discussed in 

Chapter 3. 

While the previous prosthesis model was free to move in the sagittal plane, the model used for this 

study was constrained to have one linear translation axis and one rotation axis (plantar-/dorsiflexion). 

It was observed in Chapter 2 that planar translation appeared to primarily reduce socket loading by 

absorbing shock and realigning ground reaction forces to reduce the socket flexion moment arm, 

while powered plantarflexion served to reduce muscle effort. Because the vertical and horizontal 

translation components both act primarily on the same objective, we hypothesized that coupling 

these degrees of freedom  would retain most of the muscle effort and socket loading reduction 

observed for free planar motion while greatly simplifying the mechanical design of the device.  

 
Figure 4.1. OpenSim rendering of the human-prosthesis model used for the simulation portion of this study. 

Locations of the joint axes for the socket joint and prosthetic foot bending are indicated in the full-body 

illustration. Both legs have identical sets of 6 muscles: Gluteus maximus (GMAX), iliopsoas (IL), hamstrings (HAM), 

rectus femoris (RF), biceps femoris short head (BFsh), and vasti (VAS). The sound side limb has three additional 

muscles which cross the biological ankle: Gastrocnemius (GAS), soleus (SOL), and tibialis anterior (TA). The 

prosthesis model (PROS) has two model actuators which react against both the socket and the prosthetic foot. 
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The objective function was constructed as a combination of muscle effort, socket loading, 

able-bodied gait kinematics tracking, and net prosthesis work minimization. Muscle effort and socket 

loading are the primary minimization objectives, while the tracking and prosthesis work objectives are 

used to influence the simulation toward standard gait-like behaviors. Muscle effort is calculated by 

summing cubed muscle activations cubed across the duration of the gait cycle, and socket loading is 

calculated by summing socket flexion and pistoning loads raised to the 10th power to approximate a 

minmax operation. This function is described by 

 𝐹 = 𝐹effort + 𝛼𝐹loading + 𝜖1Ftrack + 𝜖2𝐹work (4.1) 

where 𝛼 = 10−1 𝜖1 = 10−2 and 𝜖2 = 10−3. The definition of these terms and their scalar weight 

assignments are discussed in more detail in Chapter 3. 

Dynamics for a full gait cycle were simulated using a direct collocation approach [13], [182] 

with 51 nodes, with constraints enforcing the system dynamics on the model states at each node. The 

periodicity of the motion was enforced by requiring the start and end states to be identical. Additional 

constraints set the average walking velocity, limited the total prosthesis power output to 300W at each 

node, and limited the prosthesis range of motion to ±5cm of translation and ±60° of ankle flexion. 

Objectives were minimized by using MATLAB to interface with OpenSim and run the IPOPT interior-

point solver [183].  

A set of translation angles (represented by θ in Figure 4.1) were tested in simulation to find 

the optimal linear coupling, ranging from horizontal to vertical at 30° increments above and below the 

horizontal axis, then further refined to 10° increments around the angle with the lowest objective 

function value. For this second phase of the angle optimization, a set of three walking speeds and 

three socket stiffness values were simulated for a total of 9 simulations per translation angle. 

Solutions were obtained from two different initial guesses to reduce the likelihood of converging to 

local minima, of which the lowest objective value was chosen for each condition. 
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 Simulation Results and Design Specifications 

The minimum objective function value was found for a translation angle of 10° above 

horizontal. The highest objective cost was found for the vertical translation angle, which increased the 

muscle effort value by nearly 10 times the 10° translation angle model. In comparison with the 3-DOF 

prosthesis model used in Chapter 2 with the same objective function weights, the muscle effort 

objective value and summed peak socket loads for the 2-DOF design are 15.9±24.6% and 9.2±25.3% 

smaller, respectively (mean ± 1SD). Relative to the revolute prosthesis simulated in Chapter 2, this is 

a 45.2% decrease in muscle effort and a 13.0% decrease in summed peak socket loads, on average. 

Note that the socket load metric reported in this paper is the sum of the actual peak loads rather than 

the 10th power minmax approximation.  

In these simulations, the 2-DOF design outperformed the 3-DOF design, though the change is 

smaller than the variance in the output. This suggests that the 3-DOF solution may have been 

vulnerable to converging to local minima. Regardless, the 2-DOF simulation is a marked improvement 

over a simulated revolute design, and so the simulation results were converted into design 

requirements for a prototype matching the simulated 2-DOF behaviors.  

The kinematics and kinetics for the selected prosthesis model are illustrated in Figure 4.2. The 

translation axis utilizes the full allowed range of motion of 10 cm. The average rotational motion 

ranges from approximately 15° dorsiflexion to 30° plantarflexion. Peak plantarflexion moment 

sustained during stance is 120 N-m. The peak translation force of 260 N occurs shortly after heel-

strike. In addition to the peak loads, loads above 50 N-m and 100 N are maintained for nearly the 

entire stance phase, indicating that these values should be within the continuous operation regions 

of their respective actuators. After removing outlier spikes and backdriven motion, maximum velocity 

is approximately 3.0 rad/s (172°/s) and 0.8 m/s for flexion and translation, respectively. The motion 

can be described as an anterior translation of the residual shank shortly after heel-strike which is held 
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constant for most of the stance phase. Plantarflexion moments of a magnitude typically associated 

with toe-off are maintained throughout stance, with an approximately linear elastic behavior after 

about 25% stance. Despite a clear trend in linear translation displacements, no consistent elastic 

behavior is observed in the force vs. displacement curves for this coordinate. 

These results provide the minimum actuation requirements for a prototype design. Structural 

and size specifications may be derived by examining existing devices. Table 4.1 contains the build 

height and mass of other powered ankle prostheses. For the prototype to provide a useful comparison 

to similar devices, the height is limited to 20 cm, and the mass is limited to 2.5 kg. [184] [45] [185] [58] 

[114] [186] [187] [6] 

 

 System Definition 

The top-level system is designed around the intended application for the device: to be used 

as a validation tool and laboratory test-bed for general prosthesis model simulation studies such as 

 

Figure 4.2. Simulated prosthesis kinematics and kinetics for the stance phase in both degrees of freedom. Each trajectory 

corresponds with a simulation condition. Individual trajectories are shown instead of mean/SD to more clearly show how 

behaviors differ over time. A circle marks heel-strike and a black ‘x’ marks toe-off. Positive translation corresponds with 

anterior and upward translation of the residual limb with respect to the artificial foot. Positive flexion corresponds with 

ankle dorsiflexion. 
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the one conducted in the previous section. While a single simulation solution may be simplified by 

coupling degrees of freedom without significant alteration to the device behavior – similar to [45] – 

changes to the model or optimization construction may result in highly variable device behaviors. An 

experimental device designed to validate the generalized prosthesis optimization method needs to 

be able to reproduce the simulation outputs closely; hence the prototype is designed with 

independent translation and flexion degrees of freedom. 

Because the proposed prototype system requires two actuators instead of one, along with 

additional supporting electronics and higher power source requirements, it is unlikely that the size 

and weight requirements can be met with the full system embedded in the prosthesis. Other multi-

DOF wearable robots have successfully employed off-board cable-driven actuation and control 

systems to make the wearable device as light and compact as possible [114], [186], [187]. The planar 

2-DOF prosthesis is designed with cable-driven actuation, though in order to facilitate convenient 

over-ground testing, the off-board system is designed to fit into a backpack worn by the user. 

Table 4.1. Size and Mass of Powered Ankle Prostheses 

Device Mass [kg] Build Height [cm] 

Ottobock Empower® [184] 1.9 25-30 

UMass 4-Bar Ankle-Foot [45] 1.9 18 

p2 Ankle [185] 1.0 12 

Vanderbilt Ankle [58] 2.3 21 

2-DOF Emulator [114]* 0.72 8 

3-DOF Emulator [186]* † 1.2 - 

Mich. Tech 2-DOF [187]* † 1.1 - 

AMP-Foot 3 [6] ~3 26 

 

* Does not include off-board motors, cables, or electronics 

† Build height information not in cited reference 
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 Concept Development 

Concepts for the prosthesis mechanism and corresponding remote actuator were developed 

independently for each degree-of-freedom. The main design priorities for these actuator-mechanism 

assemblies were their ability to reproduce the simulation motion, minimizing prosthesis mass, and 

minimizing mechanism complexity. Early concepts involving linkage mechanisms were ruled out due 

to the size of the linkage required to reproduce the both the translation and rotation ranges of motion 

indicated by the simulations, as well as the variability in the output loads depending on linkage angle. 

Design concepts focus on representing each mechanism as either a simple revolute or prismatic joint, 

and the variables primarily reduce to: Uni- or bi-directional operation, the method of converting motor 

rotation into cable tension, and the method of converting cable tension to either linear or rotational 

motion at the end effector.  

These variables reduce the design concepts into permutations of a few key options listed in 

Table 4.2. Illustrations of these concepts are shown in Figure 4.3.  

 

 

Table 4.2. Prosthesis Concept Design Variables 

Actuator mechanism 
Controllable 

directions 

Translation 

mechanism 

Flexion 

mechanism 

Linear actuator 1 Cable to pulley Cable to lever 

Powered winch 2 Rack/pinion 
Cable to pulley 

to lever 

  Lead screw  
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The final design concept was determined based on the functional requirements implied by 

the simulation results. A uni-directional actuator was chosen for the flexion axis because nearly all of 

the simulated output torque is in the plantarflexion direction. A bi-directional actuator was chosen for 

the translation axis because forces in both directions of similar magnitude were simulated. 

Additionally, this axis of motion has no anatomical analogue, so its behavior may differ significantly 

for different simulation conditions. Bi-directional control allows for greater flexibility in how the 

translation motion may be used, despite the added complexity and friction brought by the addition 

of another Bowden cable. 

 

 

Figure 4.3. Ankle-foot mechanism concepts for both actuated degrees-of-freedom. 
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It was determined that plantarflexion torques of the appropriate magnitude could be 

generated without the aid of a pulley system located on the prosthesis if the load magnification could 

be added to the transmission ratio on the actuator side of the transmission chain. Moving load from 

the distal segment to a more proximal one results in less effort required by the muscles, so the final 

flexion mechanism concept involves the cable connecting directly to a lever at the rear of the 

prosthetic foot, and a ballscrew linear actuator mechanism in the backpack to achieve the required 

transmission ratio at high efficiency. 

Because the cable motion is already linear, the pulley mechanism to redirect this motion along 

the translation axis was chosen. Other concepts transform linear cable motion to rotational motion 

and then back to linear motion, resulting in added complexity, mass, and energy losses. A powered 

winch was chosen as the actuator concept, because the high efficiency of a ballscrew mechanism 

comes at the cost of a significantly more complex design and added mass, and the translation load 

magnitudes do not require the aggressive gear reduction required by the plantarflexion loads, as 

discussed in more detail in Section 4.3.4. 

 Ankle-foot Design 

These combined mechanism concepts comprise a modular overall prosthesis system design. 

The combined mechanism in comparison with the simulation range of motion is illustrated in Figure 

4.4, and the completed mechanical assembly of the ankle-foot prototype is shown in Figure 4.5. The 

translation component consists of a sliding stage on linear bearings. Pulleys at the front and back 

direct the Bowden cables in toward the sliding stage from the actuator unit above, providing active bi-

directional control. A frame is constructed around and above the sliding stage to support the socket-

pylon attachment point above. The frame allows 10 cm of linear translation. The translation angle can 

be adjusted up to ±8° at the pyramid connector at each end of the mating pylon, and angled 

connectors may also be used for more pronounced angles.  
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The flexion component consists of a fixed-axis revolute joint mounted below the sliding stage. 

Plantarflexion moment is generated via upwards cable tension on a lever extending from the rear of 

an artificial foot. A parallel elastic element comprised of elastic bands provides dorsiflexion. The 

artificial foot and lever are additively manufactured as one piece, allowing the series elastic behavior 

of the plantarflexion actuator to be designed alongside the rollover elasticity of the foot. The Bowden 

cable attachment point is cantilevered 15 cm behind the flexion axis to avoid self-collision through the 

full range of translation motion. Rubber stops are located at the rear to limit plantarflexion to 25° (or 

35° if desired translation angle is horizontal). Dorsiflexion is limited to 15° by the length of the linear 

actuator and is adjustable up to 38° is less plantarflexion is required. The flexion assembly connects 

to the translation assembly with a pyramid connector bolt pattern, allowing it to be used as a 1-DOF 

revolute powered ankle-foot. 

 

 

Figure 4.4. Ankle-foot prosthesis mechanism range of motion compared with corresponding simulation 

coordinates. Red dashed lines represent Bowden cable connections. A passive elastic component is used to 

dorsiflex the artificial ankle. From left to right: -5cm translation/15° dorsiflexion, neutral position, +5cm 

translation/25° plantarflexion. 
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The structural frame for both components was CNC machined from aluminum 6061. Some 

parts were 3D-printed from sintered nylon powder (Formiga P110) or carbon-fiber-reinforced nylon 

filament (Markforged Mark 2) to reduce weight and combine parts in locations away from critical 

loads. Sintered nylon is used for parts where a lower stiffness is required (artificial foot, flexure 

clamps), and carbon fiber-reinforced nylon is used for sections of the structural frame.  

The structure is designed to safely accommodate a 100 kg person walking up to 1.5 m/s. Finite 

element static load analyses were performed on solid models of the structural components using 

Creo Simulate (PTC Inc., Boston). Peak simulated vertical ground reaction force and plantarflexion 

moment loads were scaled up by a factor of 33% in estimation of the loads exerted by a 100 kg person 

(the model mass is about 75 kg). Additionally, torques up to 50 N-m about the anterior-posterior axis 

were added to a combined force-moment loading condition to account for the possibility of side loads. 

 

Figure 4.5. The ankle-foot prosthesis assembly is cable-actuated in both the translation and flexion degrees of 

freedom. Cable force is transmitted directly to an integrated lever on the artificial foot to plantarflex the joint. 

Cables are routed through pulleys and connected to both sides of a linear stage to transmit force in both directions. 

A standard pyramid connector is used to connect the prototype to the user. 
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Material was added or removed from key structural parts until a yield safety factor of 2 was achieved 

(von Mises stress < 138 MPa). Parts with non-critical load paths were designed to with the same safety 

factor using sintered nylon material properties (von Mises stress < 25 MPa).  

Flexural stiffness was estimated for the rear lever and forefoot of the nylon foot using settings 

for calculating large deflections – linearly increasing the load from 0 to maximum in 5 stages and 

propagating load histories through each deformation step. The foot dimensions were manually 

modified until the lever stiffness was between 25 and 35 N-m/deg, and the foot stiffness was between 

10 and 15 N-m/deg with no material yielding. Examples of static structural and flexural analysis results 

are shown in Figure 4.6. 

 

Figure 4.6. Finite element structural analyses and flexural stiffness tuning. All stress units are MPA. (A) Tuned material 

cutout size and depth in a CNC machined aluminum part, (B) Structural piece with low loading stress designed as a 

sintered nylon part with attached flexure clamp and pulley mount features, (C) Large deformation simulation of leaf 

spring lever of the artificial foot and (D) a linear deflection response as load is linearly increased with time. 
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Ankle flexion angle is measured with a 1024 count miniature magnetic rotary encoder (RM08, 

RLS) mounted on the flexion axis shaft. The translational position is measured with an incremental 

magnetic encoder with a 20 µm resolution linear magnetic scale (RLC2IC, RLS). A 3-axis accelerometer 

(ADXL335, Analog Devices) is mounted to a custom circuit board at the rear of the prosthesis for the 

detection of heel-strike during walking. A PIC microcontroller (dsPIC33FJ64MC202, Microchip) located 

on the custom board processes the sensor data and routes it to the wearable off-board system for 

logging and controller feedback via signal cable tether. 

 Wearable Off-board System Design 

The off-board system consists of two motorized actuator assemblies and a RaspberryPIC 

GoPack, a custom embedded system [188]. The GoPack is the central signal and control hub for the 

entire system. It takes sensor data from the prosthesis and motors as inputs and sends motor 

commands as outputs. Each actuator exerts forces on the prosthesis via Bowden cables. The elasticity 

of the load transmission chain is used to estimate loads at each degree of freedom by measuring 

prosthesis displacements and comparing it to the motor displacements. The design of this load 

sensing method are discussed in more detail in the next subsection. 

The GoPack is comprised of a 16-bit PIC microcontroller (dsPIC33FJ64MC204, Microchip) 

mounted to a custom circuit board, which communicates with an attached Raspberry Pi 3 running 

MATLAB Simulink. Power is supplied from two 4-cell lithium polymer batteries, which is routed 

through the custom board and reduced to 5V and 3.3V to supply power to the sensors and integrated 

circuits. Low-level signal processing and sampling is performed by the PIC microcontroller, and high-

level processing, data logging, and control is performed in Simulink on the Raspberry Pi 

microcomputer. Both motor supply circuits are routed through a relay that is opened or closed by a 

handheld emergency stop switch.  
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Both actuators are powered by 200W brushless DC motors (EC-4pole 30 + MR encoder, 

Maxon) using Maxon motor drivers (ESCON 50/5, Maxon). Transmission ratios have been calculated 

using the motor torque and speed parameters provided by the manufacturer [189], assuming a 40V 

power supply and a 15A current limit dictated by the motor drivers. Meeting both torque and velocity 

requirements requires a different reduction ration in each degree of freedom, with plantarflexion 

requiring a more substantial reduction to meet the load demands. To achieve a large reduction with 

high efficiency, the plantarflexion actuator consists of a linear actuator assembly using a miniature 

ball screw (MRT 8X2.5, Nook) rated at 95% efficiency under typical friction conditions. Additional 

reduction of 2.5:1 is provided by a timing belt and pulley assembly. Assuming a Bowden cable 

transmission efficiency of 80%, the total transmission efficiency is estimated to be 76%. Therefore, the 

estimated maximum plantarflexion moment and velocity are 286 N-m (95 N-m continuous) and 1.53 

rad/s, respectively. Maximum velocity under maximum load is estimated to be 1.36 rad/s, for a peak 

output power of 389 W. 

The linear translation actuator consists of a bi-directional winch assembly. A 23:1 planetary 

gearhead (GP 32 HP, Maxon) is mounted to the motor and coupled to the winch shaft. The winch drum 

is 3D printed from sintered nylon powder, and the winch structure is machined aluminum 6061. Idlers 

mounted to torsion springs apply tension to both cables to prevent slack from forming and causing 

uncontrolled motion. The gearhead efficiency is reported as 75%, and using the same Bowden cable 

efficiency, the total efficiency of the assembly is estimated to be 60%, resulting in a maximum 

translation force and velocity of 476 N (159 N continuous) and 0.73 m/s, respectively. Maximum 

velocity under maximum load is estimated to be 0.65 m/s for a peak output power of 309.4 W. 

The full off-board system is designed to mount to acrylic panels that fit inside a backpack with 

padded sides, measuring 44.5 x 30.5 x 15.2 cm (Hardshell Camera Backpack, Endurax). This assembly 

is illustrated in Figure 4.7.  
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 Load Sensor Design 

In order to reduce the number of components and the mass of the device, translation force 

and plantarflexion torque are estimated by modeling the elasticity of the system and measuring the 

deflection of the end effector relative to the motor position as opposed to implementing traditional 

strain gauge load cells. This elasticity is designed into the flexion transmission chain as a leaf spring 

lever at the rear of the prosthetic foot. Force sensing in the translation axis is primarily for introducing 

additional compliance to its behavior rather than seeking specific force targets, due to the indication 

of the simulation results that translation is primarily used to position the residual limb advantageously 

rather than generate substantial positive work. Therefore, no additional series elastic component has 

been introduced to the translation kinematic chain. The vectran cable itself does stretch under load, 

however, allowing for some estimation of cable tension.  

 

Figure 4.7. The off-board control and actuation system is designed to fit into a backpack, with Bowden cables 

exiting from the bottom. The actuator systems can be controlled via WiFi, making the entire wearable system self-

contained and wireless. 
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The elasticity of the series spring built into the prosthetic foot has been characterized from 

tensile tests conducted with an Instron testing machine. Futher tests were conducted with the 

assembled system using static weights in both actuated degrees-of-freedom. A linear stiffness was 

approximated from the resulting load-displacement curve using a least-squares fit for both axes. 

However, because of the large magnitude of unloading hysteresis present in the translation axis 

measurement resulting in a poor linear fit, the linear regression for the whole dataset was discarded 

in favor of a linear approximation of only the loading response. The results from these tests are 

illustrated in Figure 4.8. 

 

Figure 4.8. (A) The Instron test machine setup to measure series elasticity in the foot prosthesis leaf spring lever. (B) 

Load/deflection curves from that test. (C) Load deflection curves for the overall plantarflexion transmission system, 

and (D) the overall translation transmission system. 
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This method of load sensing is based on transforming cable tension into the load being 

measured. For the translation axis, output force and cable tension are the same value. However, 

plantarflexion torque and cable tension have a nonlinear relationship based on the angle of incidence 

between the cable and the flexion moment arm. This relationship is dependent on the ankle flexion 

angle, and is defined by 

 𝜏 = 𝑇𝐿 sin(𝛽)  (4.2) 

 𝛽 = 110° + 𝛼 + 𝜃 (4.3) 

 𝛼 = sin−1 (
𝑥−𝐿 cos 𝜃

√(𝑥−𝐿 cos 𝜃)2+(𝑦−𝐿 sin 𝜃)2
) (4.4) 

where τ is the output torque, T is the cable tension, L is the distance of the tip of the foot lever arm 

from the flexion axis of rotation, θ is the ankle flexion angle, and x and y are the horizontal and vertical 

distance of the Bowden cable exit point to the flexion axis of rotation, respectively. The geometry of 

this relation and the effect of ankle flexion angle on torque are illustrated in Figure 4.9. 

 

Figure 4.9. Left: Plantarflexion torque angle of incidence geometry variables. Right: Plantarflexion torque percentage 

of ideal torque as a function of ankle plantarflexion angle. 

 

The dimensions and mass of the final assembly were measured to confirm that they fall within 

specifications. Benchtop tests were also conducted to assess force/torque measurement accuracy 
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and maximum actuator load, speed, and power. Maximum actuator tests were performed to compare 

against the designed specifications and assess the accuracy of the transmission efficiency calculations.  

 Evaluation methods 

The prototype dimensions and mass were measured with a tape measure and laboratory 

scale (Tor-Rey Electronics), respectively. 

Load measurement accuracy was characterized as root mean squared (RMS) error between 

applied and measured loads by applying known forces to each prosthesis motion axis using free-

hanging weights. Weights were sequentially added and removed to record the presence of any 

loading-unloading hysteresis. The prosthetic foot was bolted to the benchtop and weights were hung 

from the front of the linear translation stage at its maximum forward translation to measure ankle 

plantarflexion torque. The prosthesis was cantilevered horizontally from the benchtop with its 

translation axis aligned vertically, and weights were hung from the base of the sliding linear stage to 

measure translation force. This test was performed with both the anterior and posterior side of the 

device facing up to accurately measure bidirectional force. For each test, the motors under load were 

controlled to maintain a fixed position and the prosthesis was allowed to deflect. 

Peak load, speed, and power were determined by attaching the prosthesis to a compliant load 

and generating a step input beyond the maximum capability of the actuator. The calibrated on-board 

load sensors and prosthesis encoders were used to record load and velocity values for these tests, 

respectively. The system was powered by a laboratory power supply providing 40V – about 83% of the 

nominal voltage rating of the motors. Each degree of freedom was tested individually. For the 

plantarflexion test, the prosthesis frame was attached to the benchtop through an extension spring, 

and the foot was bolted rigidly to the table. For the translation test, the device was cantilevered over 

the edge of the benchtop and the linear stage was anchored via extension spring to the floor. The 
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degree of freedom not in use was controlled to maintain a fixed position for each test. Photographs 

of the benchtop experiment conditions are shown in Figure 4.10. 

 

 Evaluation results 

The overall height of the ankle-foot prototype is 19.5 cm, and the overall mass is 2.29 kg. The 

off-board assembly, including cables, has a mass of 6.29 kg and a combined weight of 8.58 kg with the 

ankle-foot. 

RMS error for translation force and plantarflexion torque were 49.5 N and 6.8 N-m, 

respectively. Static loads were limited to approximately 230 N and 50 N-m primarily due to physical 

size limitations of the testing setup. Hysteresis is observable in both measurements and is the main 

contributing factor to load measurement error. Measured vs. actual load comparisons are illustrated 

in Figure 4.11. 

 

Figure 4.10. Sensing and actuation benchtop experiments for load sensing evaluation (left) and maximum actuator 

characteristics (right). The prosthesis configurations for tests on the translation axis (left), and the flexion axis 

(right) are also shown. 
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Peak translation force and plantarflexion torque were 499 ± 3 N and 171 ± 6 N-m (mean ± 

S.D.), respectively. Peak prosthesis translation and flexion velocity under maximum load were 0.544 ± 

0.026 m/s and 0.958 ± 0.204 rad/s, respectively. Peak translation and plantarflexion power were 267 

± 15 W and 113 ± 20 W, respectively. The response curves over time for these measures are illustrated 

in Figure 4.12. The device specifications are presented in comparison to the design targets in Table 

4.3. 

  

 

Figure 4.11. Measured vs. actual load comparison for (A) translation force and (B) plantarflexion 

torque. 

 

Figure 4.12. Experimentally determined maximum actuator characteristics. 
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 Sensor performance 

RMS errors for the load sensors are similar to the linear fit RMS errors associated with the 

calibration data, indicating that any further improvement in the sensing accuracy would require a 

change in the sensing method or improvements to the mechanical system. Hysteresis is introduced 

into the measurement both from the elastic behavior of the vectran cable and the friction between 

the cables and their conduits. Hysteresis should in theory be more exaggerated for measurements of 

static loads, because the measurement depends on the cable sliding against the conduit interior in 

order to register a deflection, and testing with static loads allows the cable to come to rest and for 

static friction to take hold. Additionally, according to the belt friction equation, friction force will 

increase exponentially with the cumulative bending angle of the cable conduit, making the load 

measurement uncertainty dependent on the amount of bending in the cables. 

Table 4.3. Prosthesis Design Specifications 

Specification Target value Actual value 

Mass (kg) <2.5 2.29 

Build height (cm) <20 19.5 

Flexion range of motion (rad) 0.26 dorsi. to 0.52 plantar. 0.26 dorsi. to 0.61 plantar. 

Translation range of motion (m) -0.05 to +0.05 -0.05 to +0.05 

Maximum plantarflexion torque (N-m) 120 171 

Maximum translation force (N) 260 499 

Continuous plantarflexion torque (N-m) 50 57 

Continuous translation force (N) 100 166 

Maximum flexion velocity (rad/s) 3.00 0.96 

Maximum translation velocity (m/s) 0.80 0.54 

 

*Green shading indicates the target was successfully met. 
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Despite these sources of error, the translation cable transmission has a relatively linear 

stiffness when being loaded, with almost all of the error occurring during unloading. This indicates 

that it may be a reliable force measurement for “rising edge” type measurements such as the step 

response test used to measure the maximum actuator capabilities. In less predictable circumstances, 

the force measurement should be treated as a qualitative indicator. The additional linear series 

elasticity designed into the plantarflexion cable transmission contributes to make the measurement 

much more reliable for quantitative measurements, especially as load magnitudes increase to the full 

range expected during walking (i.e. over 100 N-m). 

For more accurate load measurement, it is recommended to investigate a strain gauge based 

solution in future design iterations. It may be possible to strategically mount strain gauges directly to 

the prosthesis structure which can isolate material strain in response to the desired loads. Any sensing 

method which requires cable stretch or motion through the conduits in order to detect deflection will 

be subject to uncontrollable nonlinearities due to friction.  

 Actuator performance 

Translation actuator performance was in line with the design estimations. Maximum 

translation force exceeded the predicted value by 23 N, or 4.8% of the estimated maximum. This 

deviation is within the error tolerance of the force sensor. Velocity under load was 16% lower than the 

design estimate. Peak power was 14% lower than the design estimate, indicating that the actual 

transmission efficiency is approximately 52%. 

However, plantarflexion actuator performance indicates far lower transmission efficiency 

than estimated, with peak torque reduced from the estimated value by 40% and peak velocity under 

load reduced by 30%. Peak power was reduced by 71%, indicating an actual transmission efficiency of 

approximately 22%. These values indicate significantly more friction losses than originally anticipated. 

This may be due to the complexity of the linear actuator design leaving many potential sites for energy 
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losses – e.g. misalignment of the guide rails, sliding contact between the moving output cylinder with 

the structural frame, bending of the structural frame under load causing misalignment. The efficiency 

of the ballscrew mechanism itself may be 95%, but the overall mechanism underperforms the 

estimated  75% efficiency of the planetary gearhead used with the winch actuator unless a highly rigid 

structure machined to tight tolerances is created to support it. Given the added mass and volume 

such a structure would require, it is recommended to use a winch design for both actuators in future 

iterations, adding to the existing winch structure to accommodate a second actuator for relatively little 

increase in mass and required space. 

Estimation errors of actuator performance notwithstanding, some compromises between the 

specifications and the prosthesis as designed have been made. While the chosen motors can perform 

most of the simulated behaviors, the output load was given preference over speed in cases where 

both specifications could not be met. One reason this was done was to prevent thermal damage to 

the motors in situations where high loads are persistent. The other reason is that simulated prosthesis 

velocities sometimes far exceeded typical joint velocities during walking, and excessively fast actuation 

of the prosthesis could be surprising or cause instability for the user, even if such speeds are 

theoretically optimal in a simulation environment.  

These problems could be avoided with limits on the controller outputs and selecting more 

powerful motors. However, increasing the motor power would increase the mass of the system, 

impacting its wearability. A fully wearable system is more practical for overground testing, which 

allows for a greater range of tasks to be more easily tested than an experimental setup confined to a 

treadmill. This flexibility is desired for this design due to the open-ended nature of the possible 

simulations the device was designed to imitate. The Maxon EC-4pole motors were chosen for their 

size and mass preserving the wearability of the system as well as their performance characteristics, 

achieving most of the simulation demands. 
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 Overall system evaluation 

A functional 2-DoF ankle-foot prosthesis with wearable off-board actuation and wireless 

control has been successfully designed and built. The size and range of motion specifications derived 

from optimal control simulations have been met. The powered system is capable of exerting the loads 

required to replicate simulated walking behaviors. Actuation speed under full load is below the 

maximum speeds indicated by simulations, which may require a revised analysis of the optimal 

prosthesis behavior with the real actuation limits accounted for. Increased actuator performance may 

be possible with increased supply voltage or replacement of the linear actuator with a winch 

mechanism. Further increased actuator power may also be possible with more powerful motors at 

the cost of increased mass borne by the user, which may offset any potential user outcome 

improvements and necessitate a ground-mounted off-board system. 

The prototype may be further optimized, but the current iteration is capable of undergoing 

preliminary tests recreating simulated walking behaviors.  

 

A wearable prosthesis test-bed for validation of non-anthropomorphic prosthesis simulations 

has been created. This work represents the first step in a simulation-to-experiment workflow and is 

designed to provide a critical step in a larger process of iteratively refining gait and prosthesis 

simulations to produce more predictive biomechanics and more effective prosthesis behaviors. With 

the prototype capabilities established, the final step to creating a functional test platform is the design 

and implementation of the control system. 
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CHAPTER 5  

EMULATING SIMULATED OPTIMAL GAIT PATTERNS WITH A NON-ANTHROPOMORPHIC 

PROSTHESIS TEST PLATFORM 

 

Robotic prostheses cannot (yet) read their users’ minds. They require external controllers to 

process information, make decisions about what is happening, and tell the hardware what to do. All 

three of these requirements come with their own challenges, but addressing the last is perhaps the 

most fundamental. What should a prosthesis do? 

As discussed in previous chapters, many past approaches suggest an answer: A transtibial 

prosthesis should replicate the primary function of the ankle during straight-ahead walking, and 

provide push-off assistance just before toe-off during each stride [5], [6], [26], [97], [99]–[101]. 

However, closely mimicking the behavior of the biological ankle has not resulted in capturing all of the 

benefits of the biological ankle [3], [4], [10].  

One reason for this may be inflexibility or delays in the control methods used, such as the 

popular event detection-based finite state machine scheme [5], [190], [191], which can struggle to 

adapt quickly to changing speed or activity type (i.e. walking to stair climbing, turning, start-stop). 

Some groups have begun to focus on new techniques to smoothly transition between control modes 

and predict user intent through use of virtual constraints which are enforced by modeling gait 

progression as a continuous phase variable [192], attaching inertial sensors to other limb segments 

for greater robustness in detecting gait events [193], and machine learning techniques with wearable 

sensors [194]. However, while these methods do improve control performance and accuracy, they 

cannot alone account for the mechanical changes in the biomechanical system. 

Accounting for mechanical system changes introduced by fitting an artificial limb to the 

residual tissue requires rethinking the control targets altogether. Similar to experiments with 
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modifying passive prosthesis stiffness to observe the effects on walking human subjects, Collins et al. 

have designed a series of powered prosthesis emulators which control the magnitude of specific 

performance parameters: work rate [9], inversion-eversion torque magnitude [114], and center of 

pressure progression through stance [186]. These devices enable experiments where specific 

prosthesis contributions can be controlled across a range to investigate the effects on measures such 

as metabolic cost. However, this approach requires some estimates and assumptions as to which 

contributions will have a strong effect on the outcome measures. 

Identification of these contributions may be assisted by using optimal control simulations of 

gait to generate theoretically optimal prosthesis behaviors. In this scenario, the control target of the 

prosthesis is neither biomimetic behavior nor parametric variation of that behavior, but emulation of 

simulated behavior. This control approach is based in the philosophy that a change in the 

biomechanical system necessitates new limb mechanics, and as such, limb control targets should be 

derived by optimizing the limb behavior for the task of interest, not by trying to replicate the behavior 

of the intact limb. However, it is important not to simply recreate the simulated prosthesis motions, 

which will not be robust to any variation from the simulated body mechanics, and potentially be 

unsafe to wear. Instead, similar to other prosthesis controllers referenced above, the controller must 

be responsive to interaction forces and torques as well, ideally emulating the simulated kinetic-

kinematic relationship while in contact with the ground. In this chapter, I present the design of such a 

control approach, implemented and tested on the non-anthropomorphic prosthesis test platform 

described in the previous chapter. 

 

Predictive walking simulations were performed on the model shown in the previous chapter, 

updated to reflect the actual mass and maximum actuator capabilities of the prototype. The objective 

of these simulations was to determine the optimal prosthesis behaviors with fewer unknowns and 
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assumptions made about the device geometry and capabilities. The simulated forces, torques, and 

trajectories were used to design a control strategy for the prototype and assign control parameters 

to mimic the simulated behavior. 

 Simulation Methodology 

As in Chapter IV, a musculoskeletal model of a transtibial amputee was implemented in 

OpenSim. This model has the same number of body segments and muscles, and retains the 2-DoF 

viscoelastic socket joint. However, the generalized prosthesis model was reconfigured to reflect the 

inertial properties of each independent segment of the prototype device. The placeholder foot 

prosthesis was replaced with a model of the custom nylon prototype foot consisting of 3 segments – 

2 segments with a torsion spring connection representing the main body of the foot as before, and 

an additional segment for the back lever and cable anchor point, also connected to the first segment 

with a torsion spring. The stiffness values for these two elastic connections match the elasticity 

information determined in the previous chapter. 

To reflect the cable-actuated nature of the prototype, the ideal torque actuator was replaced 

with a linear contractile element fixed along the route of the cable from the prosthesis frame to the 

foot lever segment. As with the prototype, dorsiflexion torque is provided by a passive elastic element 

connecting the foot to the front of the prosthesis frame. Because the translation force acts directly 

along the axis of motion in the prototype, the ideal force actuator along the linear translation axis 

remains unchanged. A comparison of the two models is shown in Figure 5.1. 
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Optimal control simulations were performed using the same methodology as in Chapters 3 

and 4. The objective function retains the same terms as before with the addition of a “smoothness” 

term, added to counteract the tendency of this model to briefly leave the ground in mid-stance. This 

term is defined as: 

 𝐹smooth =
1

𝑡𝑓
∫ [

𝑑3𝐶𝑜𝑀𝑥

𝑑𝑡3 ]
2

𝑡𝑓

0
𝑑𝑡 +

1

𝑡𝑓
∫ [

𝑑3𝐶𝑜𝑀𝑦

𝑑𝑡3 ]
2

𝑡𝑓

0
𝑑𝑡 (5.1) 

where 𝑡𝑓 is the time in seconds to complete one full gait cycle, and 
𝑑3𝐶𝑜𝑀𝑥

𝑑𝑡3  and 
𝑑3𝐶𝑜𝑀𝑦

𝑑𝑡3  are the third 

derivatives of the model center of mass position in the horizontal and vertical axes, respectively. The 

objective function becomes 

  𝐹 = 𝐹effort + 𝛼𝐹loading + 𝜖1Ftrack + 𝜖2𝐹work + 𝜖3𝐹smooth (5.2) 

where 𝛼 = 10−1, 𝜖1 = 10−2, 𝜖2 = 10−3, and 𝜖3 = 10−6.  

This objective was minimized using the IPOPT solver with OpenSim interfacing through 

MATLAB to calculate the model states and derivatives in accordance with the direct collocation 

 

Figure 5.1. Comparison of the 2-DoF generalized prosthesis model and the 2-DoF prototype model as implemented in 

OpenSim. Torques acting about the flexion axis are exerted as forces along the lines of action of the actuation cable 

and elastic bands. The artificial foot model includes the modeled compliance of both the main foot section and the 

rear lever. Each moving segment of the prototype has been modeled with its actual inertia.  

 

Figure _.  
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method. The array of walking speed and socket stiffness values was increased to include an additional 

walking speed of 0.9 m/s, to accommodate the fact that prosthesis users tend toward slower walking 

speeds than their able-bodied counterparts (average approx. 1.4 m/s). The full set of simulation 

conditions is:  

Walking speed = [0.9, 1.1, 1.3, 1.5] m/s 

Socket stiffness = [75%, 100%, 150%] nominal.  

 Interpreting Control Targets from Simulated Behavior 

Simulated prosthesis motion, force/torque, and power output, are shown in Figure 5.2. As 

before, the translation axis tends toward saturating the range of motion. The addition of coordinate 

limit forces to replace strict bounds on the range of motion during optimization resulted in force 

saturation at the position bounds as well. However, ankle flexion behavior remains relatively the same 

as in previous simulations, with peak torque near 100 N-m and peak power below 200 W.  

Force-displacement work loops and velocity-force motor performance curves are shown in 

Figure 5.3. The simulated prosthesis behavior remains largely inside the continuous operation 

parameters of the selected actuators, with most exceptions in the translation axis occurring in 

opposition to the range of motion limit forces. Distinct modes of behavior can be observed between 

the two higher and lower walking speeds.  

The simulated results provide both load and kinematic targets for a controller to match. In 

order to replicate the simulated device mechanics, the controller must target the relationship between 

load and position, rather than either value in isolation. This can be accomplished by designing an 

impedance controller, which aims to simulate the response of a passive mechanical system with 

configurable parameters, most commonly in the form of a linear spring-damper connection between 
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the joints of a device or between the end-effector of a device and the environment [195]. However, 

the load-displacement relationships in the simulation results indicate a non-linear stiffness and a 

positive net-work. Both of these deviations from the ideal linear passive spring-damper relationship 

can be accounted for by controlling the set-point position of the virtual spring. This results a form of 

force-sensitive position control, which can be made to match desired kinetic and kinematic behaviors 

simultaneously. This form of control also provides robustness to user variation from the simulated 

motion, in that the device will not force close trajectory tracking when interaction forces are high, and 

is governed by consistent mechanical rules not defined by contact or lack of contact with external 

forces. 

The virtual stiffness and set-point trajectory for an ideal impedance controller were optimized 

using the fmincon function in Matlab to match the simulated force profiles as closely as possible. This 

 

Figure 5.2. Simulation results for the updated prosthesis model averaged between walking speeds for the stance 

phase. Positive values correspond with anterior translation of the residual limb and plantarflexion of the artificial 

ankle.  
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was accomplished by separating stance into multiple phases with the position setpoint moving in a 

linear trajectory roughly approximating the simulated prosthesis kinematics during each phase. 

Trajectories were optimized for each simulated walking speed, with the reference trajectory averaged 

across socket stiffness conditions. The optimization parameters and their optimized values are 

provided in Tables 5.1 and 5.2. Controller targets with respect to the simulated behavior are shown in 

Figure 5.4.  

This impedance control scheme fits into a broader control architecture which enables the 

device to activate, deactivate, and adjust the walking behavior to the user’s gait. It also requires the 

 

Figure 5.3. Simulated actuator dynamics. Left: The force/position relationship through stance for each speed. Right: 

Actuator output load and velocity at each time point in the simulation overlaid with the continuous region of each 

motor scaled by the designed transmission ratio. 
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design of a lower level force/torque controller to accurately match the simulated impedance. The 

design of this broader architecture is discussed in the next section. 

  

Table 5.1. Optimized Impedance Control Parameters - Plantarflexion 

Walking speed (m/s) 0.9 1.1 1.3* 1.5* 

K1 (N-m/deg) 2.68 5.03 1.90 3.67 

Setpoint 1 (deg) 3.21 2.78 1.08 -0.28 

K2 (N-m/deg) 6.67 8.49 11.40 9.08 

Setpoint 2 - Start (deg) 0.95 5.42 -4.28 -1.05 

Setpoint 2 – End (deg) 17.74 19.47 24.17 25.28 

K3 (N-m/deg) 5.59 4.15 5.35 5.52 

Setpoint 3 – Start (deg) 23.75 30.00 27.31 21.42 

Setpoint 3 – End (deg) 36.47 40.00 17.14 13.78 

K4 (N-m/deg) 11.90 15.00 - - 

Setpoint 4 – Start (deg) 30.00 28.54 - - 

Setpoint 4 – End (deg)  23.97 24.63 - - 

Phase 2 Stance % 9.36 14.50 19.50 19.27 

Phase 3 Stance % 27.50 30.60 93.50 94.50 

Phase 4 Stance % 96.14 96.50 - - 

 

* The upper two walking speeds did not require a 4th phase of stance to 

accurately fit the torque profile 



86 

  

Table 5.2. Optimized Impedance Control Parameters - Translation 

Walking speed (m/s) 0.9 1.1 1.3* 1.5* 

K1 (N/m) 2000 2000 2000 2000 

Setpoint 1 (m) -0.05 -0.05 -0.05 -0.05 

K2 (N/m) 8000 8000 10000 10000 

Setpoint 2 - Start (m) 0 0 0 0 

Setpoint 2 – End (m) 0.35 0.35 0.22 0.25 

K3 (N/m) 6000 10000 10000 12000 

Setpoint 3 – Start (m) 0.04 0.04 0.04 0.04 

Setpoint 3 – End (m) -0.1 -0.1 -0.1 -0.08 

Phase 2 Stance % 5 5 27 27 

Phase 3 Stance % 75 75 75 68 

 

* Position setpoint saturates at +0.05/-0.08 m. Values which exceed these 

bounds were optimized to control the speed with which the position 

reference reaches saturation. 
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Figure 5.4. Optimized impedance control targets. Stiffness and setpoint trajectories are modified to match the 

simulated plantarflexion torque profile based on the joint angle. 
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The prosthesis controllers are designed in a hierarchical structure. At the top level, walking 

events are detected using the onboard sensors and used to identify the phases of progression 

through the gait cycle as they happen. This information is used to switch between mid-level controller 

states assigned to the corresponding gait phases. These individual controller states are designed to 

replicate the simulated prosthesis interaction force and motion for each gait phase by emulating the 

simulated joint mechanical impedance. The impedance controller operates by commanding an output 

force or torque determined by the mechanism deflection from a virtual setpoint in imitation of a 

spring-damper system. The virtual setpoint and impedance properties are designed to produce 

behavior which matches the simulated behavior. The desired force and torque are output using a low-

level force/torque PD controller. This control architecture is illustrated in Figure 5.5. 

 

Figure 5.5. Overall prosthesis control architecture. 
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 Top-level: Walking controller 

The walking gait cycle for one leg can be broadly separated into two phases: stance phase and 

swing phase. Because the prosthesis is not in contact with the ground during swing phase, its 

influence on the rest of the wearer’s biomechanics is far smaller than during stance phase. The walking 

controller thus takes the form of a finite state machine where the simulated prosthesis interaction 

with the ground is closely emulated during stance phase, and is controlled to avoid dragging on the 

ground and to reset for the beginning of stance during the swing phase. 

The onboard sensors allow for gait events to be detected in two ways: 1) rapid changes in 

prosthesis acceleration, and 2) interaction force and torque exceeding or falling below certain 

thresholds. For this application, the largest spike in prosthesis jerk (time derivative of acceleration) 

occurs at heel-strike, or the very beginning of stance. Plantarflexion torque reaches its maximum 

during late stance, and then falls to near-zero after toe-off at the beginning of swing. This falling edge 

of the torque measurement is used to mark the end of the stance phase. Stance phase duration is 

calculated from the time difference between heel-strike and toe-off events. This duration is used to 

estimate the progression through stance for the subsequent step. The stance duraction calculation 

repeats for each step, adjusting the speed of the progression through the impedance trajectories for 

the current step based on the observed duration of the previous step. Active control of the device is 

signaled to begin by the heel-strike event, and the impedance control targets are dictated by the 

estimated progression through stance. This finite state machine logic is implemented via Stateflow in 

Simulink and is illustrated in Figure 5.6. 
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Figure 5.6. Walking controller finite state machine. Vertical jerk and plantarflexion torque thresholds are used to 

detect the transition between stance and swing phases. Subphase transitions occur based on estimated progression 

through stance or swing. 

Impedance control parameters are also adjusted based on the estimation of walking speed to 

match the corresponding simulation behavior. For this system, walking speed can be estimated from 

either the stride time (if the average stride length of the wearer is known), or by integrating the 

forward acceleration as measured by the inertial sensor. However, this latter method will not function 

on a treadmill, where average forward velocity is zero. 

 Mid-level: Stiffness controller 

The stiffness controller is designed to make the prototype behave with the dynamics of a 

linear spring system in each degree of freedom. Output force and torque are commanded based on 

the following control law: 

 𝐹 = 𝐾(𝑥 − 𝑥0) (5.3) 

where F is the commanded load, K is the linear stiffness of the virtual spring, x is the measured 

prosthesis position for the corresponding axis, and x0 is the virtual setpoint. Inertial terms are not 

included, making each actuator response resemble that of a massless spring with a tunable stiffness 
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connecting the moving parts of the prototype. This configuration allows the natural inertial properties 

of the device to govern its dynamic response.  

A damping term was originally included to control the overall mechanical impedance rather 

than only the virtual stiffness. Damping was eventually not included due to the natural damping of 

the physical system proving large enough for oscillations to not be a concern for stiffnesses up to the 

actual stiffness of the cable transmission. 

 Low-level: Load and position controllers 

The force and torque commanded by the impedance controller is output by the low-level load 

controller. This controller is designed with a PD architecture and outputs a commanded motor 

velocity. This architecture has been shown to have smoother and higher bandwidth performance for 

series-elastic actuators than direct motor current or voltage control [196]. Closed loop velocity control 

is implemented internally by the Maxon ESCON 50/5 motor drivers. Torque control is linearized by 

applying the cable tension to torque correction factor derived in Chapter 4. Desired torque is 

converted into desired cable tension, which is used as the controller input, and which has a more 

linear relationship with motor velocity. A block diagram for this controller is illustrated as the “Load 

control loop” in Figure 5.5. 

The PD control architecture is based on wearable cable-actuator robotics work in [197], where 

force or torque is provided as proportional feedback, but motor velocity is used as derivative feedback 

rather than the time derivative of the load measurement. This control technique has demonstrated 

superior performance with cable-driven SEAs due to the lower noise in the motor velocity signal 

obtained from encoder feedback compared to an analog load signal. Additionally, as with using motor 

velocity control over current control, motor velocity feedback is preferred because the dynamics of 

SEA load are dominated by deflection of the series elastic component, which is in turn controlled by 
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motor position. This control scheme takes advantage of the smoother response allowed by designing 

a compliant mechanism. 

Low-level position control is also accomplished using a PD controller architecture. This 

controller is not implemented during stance but is used to provide dorsiflexion when in the swing 

phase due to the torque sensing method being unable to sense net dorsiflexion torque. This controller 

is also used when the prosthesis needs to rigidly hold a set position, such as during benchtop testing 

or when being calibrated. When in use as a prosthesis, moving the impedance controller setpoint is 

preferred when a position needs to be commanded, because the resulting behavior more under the 

control of the wearer, making it safer and more comfortable. 

 

Benchtop tests were conducted to characterize device performance in force/torque 

measurement accuracy, force/torque step response time, frequency bandwidth, and peak load, 

speed, and power. Higher level control performance was assessed by performing treadmill walking 

trials with one able-bodied subject using a boot adapter. Results reflect the mean values ± 1 standard 

deviation unless otherwise specified. 

 Benchtop evaluation 

To perform force and torque step response tests, the prosthesis frame and foot was rigidly 

fixed to the benchtop (Figure 5.7). Desired plantarflexion torque was commanded as a square wave 

with a 5 second period from 0 to 100 N-m. Desired translation force was commanded with the same 

load profile from -300 to 300 N. 10 trials were performed for each degree of freedom for this and the 

following benchtop tests.  

Bandwidth tests were performed with the device fixed in the same configuration. Desired 

force and torque were commanded as a logarithmic chirp from 0.1 to 30 Hz over 20 seconds. 

Plantarflexion torque oscillated between 20 and 70 N-m, and translation force oscillated between -



93 

200 and 200 N. The measured and desired torque were converted into the frequency domain using a 

fast Fourier transform, and the magnitude ratio and phase difference across the frequency range 

were used to create a Bode plot. The bandwidth was determined using -3dB as the magnitude cutoff 

and 45° as the phase margin cutoff.  

 

 Walking evaluation 

The walking performance of the device was evaluated by conducting treadmill walking trials 

at each of the four simulated speeds (0.9, 1.1, 1.3, and 1.5 m/s) to showcase the separate control 

modalities. One able-bodied user (75.1 kg, 1.91 m tall, 29 years, male) wore the prosthesis using a set 

of adapter boots designed to immobilize the anatomical ankle and safely transmit the device loads 

 

Figure 5.7. Benchtop testing setup for closed-loop force and torque control. A rigid metal frame constrained both 

degrees-of-freedom by fixing both the artificial foot and the top attachment point of the device to the benchtop.  
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through to the body. Kinematics and loads were measured for each degree of freedom during walking 

and compared with the target load/position relationships. Similarity to the simulated behavior being 

emulated was measured as RMS error between measured and target mechanical impedance. The 

experimental setup for the walking evaluation trials is shown in Figure 5.8.  

 

 

 

Figure 5.8. Top: Able-bodied subject preparing to walk on a treadmill wearing boot adapters. The treadmill was set 

for walking at the four simulated speeds. Additional handrails were added to the treadmill to accommodate the 

added height of the adapters. The subject was connected to the ceiling with a safety harness to prevent falls. 

Bottom: Treadmill walking gait sequence over one cycle. From left to right: Heel strike, mid-stance, toe-off, and 

mid-swing. 
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Results from the benchtop tests are illustrated in Figure 5.9. The 98% rise and fall times for 

the translation actuator were 0.057 ± 0.000 s (mean ± 1SD) each, with overshoot of 3.8% and 4.3%, 

respectively. Rise and fall times for plantarflexion torque were 0.191 ± 0.001 s and 0.179 ± 0.001 s, 

with overshoot of 2.2% and 0.0%, respectively. Note that dorsiflexion torque cannot be measured as 

the system is designed, making a true measurement of plantarflexion torque overshoot below zero 

infeasible. Translation force and plantarflexion torque control amplitude fell below -3dB for a 

bandwidth of 15.0 Hz and 7.2 Hz, respectively. The phase margin falls below 45° at 19.5 and 11.3 Hz 

for translation force and flexion torque, respectively. The control bandwidth for both actuators is gain-

limited.  
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Figure 5.9. Closed loop force and torque controller (a) step responses and (b) frequency responses. Rise and fall 

times for the translation actuator are both 0.057 s, and range from 0.179 to 0.191 s for the flexion actuator. 

Bandwidth was limited by the gain margin for both actuators, at 15.0 Hz in translation and 7.2 Hz in flexion. Shaded 

bounds represent ±1SD in all plots. 
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Figure 5.10. Actual and desired prosthesis dynamics during walking for walking at 0.9 m/s. The difference between 

actual prosthesis position and the virtual setpoint defines the commanded loads. Shaded bounds represent ±1SD 

in all plots. 

 

 

Figure 5.11. Actual and desired prosthesis dynamics during walking for walking at 1.1 m/s. The difference between 

actual prosthesis position and the virtual setpoint defines the commanded loads.  

 



98 

 

 

 

Figure 5.12. Actual and desired prosthesis dynamics during walking for walking at 1.3 m/s. The difference between 

actual prosthesis position and the virtual setpoint defines the commanded loads. 

 

 

Figure 5.13. Actual and desired prosthesis dynamics during walking for walking at 1.5 m/s. The difference between 

actual prosthesis position and the virtual setpoint defines the commanded loads. 
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During walking trials, the subject walked at the selected speeds using the adapters without 

incident. Due to the artificially extended leg length, the subject used shorter strides than their 

preferred stride length to avoid the trailing foot falling off the back of the treadmill, leading to a more 

flat-footed gait than normal. Otherwise, top-level walking control performed as designed, recognizing 

heel-strike and proceeding through impedance control trajectories as illustrated in Figure 5.10s – 5.13. 

Force and torque tracking average RMS errors reached a maximum of 159 N and 21.3 N-m, 

respectively. The largest errors were recorded during the fastest walking speed and the lowest errors 

were recorded during the slowest walking speed. Translation force was repeatedly saturated during 

these trials across walking speeds, with values in excess of 500 N recorded in both directions. 

Maximum torque was recorded during the 1.3 m/s trial at 121.1 ± 3.5 N-m. Average RMS tracking 

errors are reported for each walking speed in Table 5.3. 

 

 

The presented control scheme translates key results of optimal control simulations into real 

prosthesis behavior. The impedance control parameter matching method is capable of distilling 

simulated prosthesis forces and motions into a self-contained, responsive physical model which 

interfaces between the user and their environment. This capability has been demonstrated through 

walking trials on the prototype simulation test platform. The optimized impedance control trajectories 

are reliably and repeatably reproduced as controller targets at the beginning of each step, with slight 

Table 5.3. Walking trial load tracking errors 

Walking speed (m/s) 0.9 1.1 1.3 1.5 

RMSE - Translation 93 135 119 159 

RMSE - % Max force 15.8% 24.4% 19.5% 22.6% 

RMSE - Flexion 4.6 N-m 18.1 N-m 16.3 N-m 21.3 N-m 

RMSE -% Max torque 5.3% 17.4% 13.4% 20.5% 
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step-to-step variations accounted for by user variation in step timing. The impedance controller has 

been demonstrated to accurately track desired torques corresponding to changing stiffness and 

setpoint parameters across four different walking control modalities.  

However, as revealed by both the benchtop and walking tests, the control performance is 

mostly limited by the actuation and sensing capabilities rather than the control method itself. The 

primary source for load tracking error during walking was lag between the actual and desired 

trajectory. Load sensing hysteresis may be a factor in this control lag, considering that it primarily 

occurs for plantarflexion torque as it sharply falls at the end of stance. However, closed-loop torque 

control bandwidth and step response time determine the ability of the device to quickly respond to 

changing load demands, such as the rapid changes in target torque at the beginning and end of 

stance. In comparison with other powered ankle devices, the 1-DoF emulator device achieved 17 Hz 

closed loop bandwidth with a large offboard motor [9], and the Empower prototype achieved 9.4 Hz 

with its linear actuator mounted directly to the artificial foot [198] (versus the 7.6 Hz plantarflexion 

torque bandwidth achieved with this device). Despite this, the torque bandwidth still exceeds 

estimates of the biological ankle plantarflexion torque bandwidth [199]. Additionally, the magnitude 

of the plantarflexion loads are large enough that motor saturation is a relevant factor, considering 

that plantarflexion torque is approximately 85% of ideal at the maximum plantarflexion angle. 

Perhaps unsurprisingly, torque tracking was far more consistent for the 0.9 m/s trial, in which load 

magnitude and rate of change was lower. 

Translation closed loop bandwidth is more than double and its step response speed is more 

than triple the corresponding plantarflexion values, which is expected given the design decisions 

made in the previous chapter. It is important to consider the large hysteresis associated with the 

translation force measurement, but since these tests are determined by the speed of increasing load 

in each direction, hysteresis should not significantly impact the results. These parameters are nearly 
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on par with the emulator project and exceed the performance of the Empower prototype. However, 

this fast response is primarily because the actuator is designed for relatively low loads as indicated by 

the optimal control simulations. As a result, the translation control was occasionally overpowered 

despite motor saturation through the force of the subject’s weight and inertia alone. In fact, both 

degrees of freedom are very easily backdriven while wearing the adapters and the motors are inactive. 

The boot adapters increase the leverage the wearer exerts on the device, adding 30.5 cm of height to 

the subject. However, even under standard use conditions, simulated translation loads are generally 

not sufficient to overpower the user. Considering that one of the primary objectives is to minimize 

user effort, and the other is to minimize peak socket loads, the inability to “fight” the user is likely not 

a true design limitation. The translation degree of freedom provides some assist to help propel and 

align the user for minimum socket loading which can be overridden if the user resists that motion. 

The preliminary walking trials indicate some inconsistency in the user’s response to these forces, 

achieving full range of motion at some speeds and a substantially reduced range at others, suggesting 

that a training period may be necessary to acclimate to the unconventional motion and exploit the 

benefits it offers. 

Future refinements on this control approach should focus on improved continuity between 

phase transitions and step-to-step consistency. Future optimizations of the impedance control 

parameters should be constrained to enforce continuous changes in output loads between phases. 

Additionally, optimal impedance parameters may vary based on the user height and mass, indicating 

that ranges of these factors may also be necessary in simulations for deriving average controller 

parameters. Methods being developed by other groups should be investigated and implemented 

where appropriate, such as automatically adjusting an offset to the the torque controller output to 

counter changing elasticity and friction conditions in the cable transmission system [197]. Additionally, 

the current method of changing phase based on estimated progression through stance may prove 
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inflexible to users with different preferred walking patterns. Changes in the inertial signals or load 

measurements instead of time-based events to signal phase transitions during stance may be more 

robust to inter-user variation. 

Additionally, it is recommended to add a brake to the translation actuator which engages in 

response to the motors being disabled as a failsafe. The current emergency stop functionality of 

cutting power to the motors is not sufficient to ensure safety to the wearer due to the high 

backdrivability of the device, which is very unstable to walk on when the motors are disengaged. 

 

Simulations of theoretically optimal dynamic behavior for a prosthesis has been translated 

into an impedance control scheme for a functioning prototype. Preliminary walking trials were 

performed with an able-bodied subject on a treadmill, demonstrating separate optimal control 

patterns for four different walking speeds. Walking trials have revealed key insights into the function 

and behavior of anatomical and non-anatomical axes of motion. It is recommended to allow future 

subjects a training period to acclimate to an additional, non-anatomical joint added to their interface 

to the ground, and to adjust device failsafes to ensure passive stability should the operation of the 

device be interrupted. 
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CHAPTER 6   

SUMMARY, DISCUSSION, AND FUTURE DIRECTIONS 

The primary objective of the work presented in this dissertation was to develop a functional 

framework and toolset for biomechanical simulation-guided lower limb prosthesis design. This 

objective is motivated by the idea that stripping away assumptions about conventional prosthesis 

form and function is a necessary step to better meet the needs of prosthesis users. In this work, this 

is accomplished by simulating the full bio-mechatronic system of a person walking with an artificial 

limb capable of generating whatever loads and motions are required, and optimizing this system for 

targeted user outcome objectives. The optimized behavior of this generalized prosthesis model is 

used as the basis to generate design specifications for hardware capable of reproducing the same 

behavior. The prototype design presented is capable of reproducing a range of simulated behaviors, 

and is designed to be adaptable to future simulations with different constraints and design objectives, 

with the objective of serving as a test platform to validate that simulated improvements in user 

outcomes are also observed experimentally.  

The presented work fits into the context of a larger design framework. The development of an 

effective simulation-based prosthesis design method not only requires validation of the simulation 

results, but also the refinement of the simulation itself based on feedback from the validation 

experiments. This work fills a gap in this design loop to provide experimental feedback to the 

simulation process. A key limitation of the presented work is that this feedback step was not 

performed. The prototype is capable of recreating more typical revolute prosthesis behavior by 

locking the translation axis at the neutral position and adjusting the walking controller to follow a 

biomimetic plantarflexion torque profile. Experimentally measuring the simulated outcome measures 

with the prototype device with human subjects who regularly use a below-knee prosthesis and using 
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the resulting findings to refine the optimization objectives and simulation assumptions are essential 

next steps in this research. 

Aside from investigations of socket loading and metabolic effort, there is a broad range of 

useful studies that are now possible with the development of the prototype. Objective function values 

such as joint contact loading, biological joint moments, metrics of walking stability such as projected 

base of support, or three-dimensional considerations like out-of-plane destabilizing loads could be 

considered in future optimizations. Parametric variation of these objectives would result in a range of 

prosthesis control targets which can be tested experimentally. Comparing a systematic variation of 

simulated outcome measures against actual outcomes may aid in adjusting objective function weights 

to more accurately capture the neural process that leads to actual prosthesis-augmented gait 

patterns. 

Additionally, the importance of user feedback in future studies should not be ignored. It has 

been shown that the theoretical optimal prosthesis output is very often not the output setting 

preferred by the actual wearers.  No quantitative biomechanical measure can provide a more accurate 

assessment of how well a device is satisfying the needs of the wearer than the opinion of the wearer 

themself. Surveying user preference for different prosthesis behaviors corresponding to different 

objective function weights may help determine the correct weights and terms to include for simulating 

control strategies for specific tasks. Further refinement with individual subjects may allow for the 

development of optimal subject-specific designs based on modifications to a general design that 

performs well for a statistical sample, at least for certain categories of users (activity level, suspension 

type, etc.). Human-in-the-loop experiments should also be considered, in which the user is given direct 

control over the amount which each optimization objective is reflected in the device behavior to gain 

further insights about what factors take priority during certain gait tasks for self-selected gait patterns. 
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This work also leaves open the possibility for alternative test platform designs. With further 

refinement of the existing design, a 3-DoF sagittal plane test platform may be possible. As simulations 

move into three dimensions, additional test platforms which can accommodate the loads and motions 

outside of the saggital plane will also be necessary. The effect of the added mass of the actuator pack 

should be investigated so as to develop specific size and weight limits for these designs, as it seems 

likely that the 2-DoF actuator pack presented in this work may have been able to accommodate larger 

motors with further refinement of the actuator configuration and structure design. 

While a complete loop of the design framework developed in this dissertation was not 

performed, the tools required to execute this design method have been successfully developed and 

demonstrated. The work represents an outcomes-focused design philosophy which seeks to  

challenge conventional assumptions about the proper form and function of artificial limbs. The 

opportunities to explore this philosophy with the tools developed here are wide-ranging.   
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