748 research outputs found

    Size, accumulation and performance for research grants:examining the role of size for centres of excellence

    Get PDF
    The present paper examines the relation between size, accumulation and performance for research grants, where we examine the relation between grant size for Centres of Excellence (CoE) funded by the Danish National Research Foundation (DNRF) and various ex post research performance measures, including impact and shares of highly cited articles. We examine both the relation between size and performance and also how performance for CoEs evolves over the course of grant periods. In terms of dynamics, it appears that performance over the grant period (i.e. 10 years) is falling for the largest CoEs, while it is increasing for those among the smallest half. Overall, multivariate econometric analysis finds evidence that performance is increasing in grant size and over time. In both cases, the relation appears to be non-linear, suggesting that there is a point at which performance peaks. The CoEs have also been very successful in securing additional funding, which can be viewed as a 'cumulative effect' of center grants. In terms of new personnel, the far majority of additional funding is spent on early career researchers, hence, this accumulation would appear to have a 'generational' dimension, allowing for scientific expertise to be passed on to an increasing number of younger researchers

    Soleus stretch reflex during cycling

    Get PDF
    The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions during the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle and background soleus EMG as recorded during the power phase of active pedaling. The magnitude of the stretch reflex was not statistically different from that during the static condition throughout the power phase of the movement. The results of this study indicate that the stretch reflex is not depressed during active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms

    Achilles tendon length changes during walking in long-term diabetes patients

    Get PDF
    Background Diabetes leads to numerous side effects, including an increased density of collagen fibrils and thickening of the Achilles tendon. This may increase tissue stiffness and could affect stretch distribution between muscle and tendinous tissues during walking. The primary aim of this study was to examine stretch distribution between muscle and tendinous tissues in the medial gastrocnemius muscle-tendon unit in long-term diabetes patients and control subjects during walking. Methods Achilles tendon length changes were investigated in 13 non-neuropathic diabetes patients and 12 controls, whilst walking at a self selected speed across a 10 m force platform. Electromyographic activity was recorded in the medial gastrocnemius, soleus and tibialis anterior muscles, goniometers were used to detect joint angle changes, and ultrasound was used to estimate tendon length changes. Findings Achilles tendon length changes were attenuated in diabetes patients compared to controls, and were inversely correlated with diabetes duration (r = -0.628; P < 0.05), as was ankle range of motion (r = -0.693; P < 0.01). Tendon length changes were also independent of walking speed (r = -0.299; P = 0.224) and age (r = 0.115; P = 0.721) in the diabetic group. Interpretation Stretch distribution between muscle and tendon during walking is altered in diabetic patients, which could decrease walking efficiency, a factor that may be exacerbated with increasing diabetes duration. Diabetes-induced changes in mechanical tendon properties may be at least partly responsible for attenuated tendon length changes during walking in this patient group.No Full Tex

    Control of posture with FES systems

    Get PDF
    One of the major obstacles in restoration of functional FES supported standing in paraplegia is the lack of knowledge of a suitable control strategy. The main issue is how to integrate the purposeful actions of the non-paralysed upper body when interacting with the environment while standing, and the actions of the artificial FES control system supporting the paralyzed lower extremities. In this paper we provide a review of our approach to solving this question, which focuses on three inter-related areas: investigations of the basic mechanisms of functional postural responses in neurologically intact subjects; re-training of the residual sensory-motor activities of the upper body in paralyzed individuals; and development of closed-loop FES control systems for support of the paralyzed joints
    corecore