35 research outputs found

    The 2010 Nucleic Acids Research Database Issue and online Database Collection: a community of data resources

    Get PDF
    The current issue of Nucleic Acids Research includes descriptions of 58 new and 73 updated data resources. The accompanying online Database Collection, available at http://www.oxfordjournals.org/nar/database/a/, now lists 1230 carefully selected databases covering various aspects of molecular and cell biology. While most data resource descriptions remain very brief, the issue includes several longer papers that highlight recent significant developments in such databases as Pfam, MetaCyc, UniProt, ELM and PDBe. The databases described in the Database Issue and Database Collection, however, are far more than a distinct set of resources; they form a network of connected data, concepts and shared technology. The full content of the Database Issue is available online at the Nucleic Acids Research web site (http://nar.oxfordjournals.org/)

    OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011

    Get PDF
    The concept of homology drives speculation on a gene’s function in any given species when its biological roles in other species are characterized. With reference to a specific species radiation homologous relations define orthologs, i.e. descendants from a single gene of the ancestor. The large-scale delineation of gene genealogies is a challenging task, and the numerous approaches to the problem reflect the importance of the concept of orthology as a cornerstone for comparative studies. Here, we present the updated OrthoDB catalog of eukaryotic orthologs delineated at each radiation of the species phylogeny in an explicitly hierarchical manner of over 100 species of vertebrates, arthropods and fungi (including the metazoa level). New database features include functional annotations, and quantification of evolutionary divergence and relations among orthologous groups. The interface features extended phyletic profile querying and enhanced text-based searches. The ever-increasing sampling of sequenced eukaryotic genomes brings a clearer account of the majority of gene genealogies that will facilitate informed hypotheses of gene function in newly sequenced genomes. Furthermore, uniform analysis across lineages as different as vertebrates, arthropods and fungi with divergence levels varying from several to hundreds of millions of years will provide essential data for uncovering and quantifying long-term trends of gene evolution. OrthoDB is freely accessible from http://cegg.unige.ch/orthodb

    Carbon dioxide receptor genes and their expression profile in \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e

    Get PDF
    Background: Diabrotica virgifera virgifera, western corn rootworm, is one of the most devastating species in North America. D. v. virgifera neonates crawl through the soil to locate the roots on which they feed. Carbon dioxide (CO2) is one of the important volatile cues that attract D. v. virgifera larvae to roots. Results: In this study, we identified three putative D. v. virgifera gustatory receptor genes (Dvv_Gr1, Dvv_Gr2, and Dvv_Gr3). Phylogenetic analyses confirmed their orthologous relationships with known insect CO2 receptor genes from Drosophila, mosquitoes, and Tribolium. The phylogenetic reconstruction of insect CO2 receptor proteins and the gene expression profiles were analyzed. Quantitative analysis of gene expression indicated that the patterns of expression of these three candidate genes vary among larval tissues (i.e., head, integument, fat body, and midgut) and different development stages (i.e., egg, three larval stages, adult male and female). Conclusion: The Dvv_Gr2 gene exhibited highest expression in heads and neonates, suggesting its importance in allowing neonate larvae to orient to its host plant. Similar expression patterns across tissues and developmental stages for Dvv_Gr1 and Dvv_Gr3 suggest a potentially different role. Findings from this study will allow further exploration of the functional role of specific CO2 receptor proteins in D. v. virgifera

    Carbon dioxide receptor genes and their expression profile in \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e

    Get PDF
    Background: Diabrotica virgifera virgifera, western corn rootworm, is one of the most devastating species in North America. D. v. virgifera neonates crawl through the soil to locate the roots on which they feed. Carbon dioxide (CO2) is one of the important volatile cues that attract D. v. virgifera larvae to roots. Results: In this study, we identified three putative D. v. virgifera gustatory receptor genes (Dvv_Gr1, Dvv_Gr2, and Dvv_Gr3). Phylogenetic analyses confirmed their orthologous relationships with known insect CO2 receptor genes from Drosophila, mosquitoes, and Tribolium. The phylogenetic reconstruction of insect CO2 receptor proteins and the gene expression profiles were analyzed. Quantitative analysis of gene expression indicated that the patterns of expression of these three candidate genes vary among larval tissues (i.e., head, integument, fat body, and midgut) and different development stages (i.e., egg, three larval stages, adult male and female). Conclusion: The Dvv_Gr2 gene exhibited highest expression in heads and neonates, suggesting its importance in allowing neonate larvae to orient to its host plant. Similar expression patterns across tissues and developmental stages for Dvv_Gr1 and Dvv_Gr3 suggest a potentially different role. Findings from this study will allow further exploration of the functional role of specific CO2 receptor proteins in D. v. virgifera

    Carbon dioxide receptor genes and their expression profile in \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e

    Get PDF
    Background: Diabrotica virgifera virgifera, western corn rootworm, is one of the most devastating species in North America. D. v. virgifera neonates crawl through the soil to locate the roots on which they feed. Carbon dioxide (CO2) is one of the important volatile cues that attract D. v. virgifera larvae to roots. Results: In this study, we identified three putative D. v. virgifera gustatory receptor genes (Dvv_Gr1, Dvv_Gr2, and Dvv_Gr3). Phylogenetic analyses confirmed their orthologous relationships with known insect CO2 receptor genes from Drosophila, mosquitoes, and Tribolium. The phylogenetic reconstruction of insect CO2 receptor proteins and the gene expression profiles were analyzed. Quantitative analysis of gene expression indicated that the patterns of expression of these three candidate genes vary among larval tissues (i.e., head, integument, fat body, and midgut) and different development stages (i.e., egg, three larval stages, adult male and female). Conclusion: The Dvv_Gr2 gene exhibited highest expression in heads and neonates, suggesting its importance in allowing neonate larvae to orient to its host plant. Similar expression patterns across tissues and developmental stages for Dvv_Gr1 and Dvv_Gr3 suggest a potentially different role. Findings from this study will allow further exploration of the functional role of specific CO2 receptor proteins in D. v. virgifera

    Implications of the Tribolium genome project for pest biology

    Get PDF
    Implications of the Tribolium genome project for pest biology The universal availability of the complete Tribolium castaneum genome sequence assembly and annotation (Richards et al., 2008) and concomitant development of the versatile Tribolium genome browser, BeetleBase (Kim et al., 2010, http://beetlebase.org/) open new realms of possibility for stored product pest control by greatly simplifying the task of connecting biology and behavior with underlying molecular mechanisms. This genome has enabled sequence similarity searches that have resulted in a flood of new discovery involving thousands of genes with important functions in digestion, osmoregulation, metamorphosis, olfaction, xenobiotic metabolism, vision, and embryonic and larval growth and development. The value of the T. castaneum genome sequence is greatly enhanced by the availability of a sophisticated functional genomic toolkit for laboratory studies of this insect. These tools include high-resolution physical and genetic maps, genomic and cDNA libraries, balancer chromosomes, and effective and reliable techniques for specific knockout of any target gene via RNA interference (RNAi). In this paper we briefly discuss just two areas of Tribolium biology research that are being revitalized by the availability of the genome sequence, namely olfaction and exoskeleton, or β€œsmell and skin”

    Superoxide dismutase 2 knockdown leads to defects in locomotor activity, sensitivity to paraquat, and increased cuticle pigmentation in Tribolium castaneum

    Get PDF
    Citation: Tabunoki, H., Gorman, M. J., Dittmer, N. T., & Kanost, M. R. (2016). Superoxide dismutase 2 knockdown leads to defects in locomotor activity, sensitivity to paraquat, and increased cuticle pigmentation in Tribolium castaneum. Scientific Reports, 6, 8. doi:10.1038/srep29583Insects can rapidly adapt to environmental changes through physiological responses. The red flour beetle Tribolium castaneum is widely used as a model insect species. However, the stress-response system of this species remains unclear. Superoxide dismutase 2 (SOD2) is a crucial antioxidative enzyme that is found in mitochondria. T. castaneum SOD2 (TcSOD2) is composed of 215 amino acids, and has an iron/manganese superoxide dismutase domain. qRT-PCR experiments revealed that TcSOD2 was present through all developmental stages. To evaluate TcSOD2 function in T. castaneum, we performed RNAi and also assessed the phenotype and antioxidative tolerance of the knockdown of TcSOD2 by exposing larvae to paraquat. The administration of paraquat resulted in significantly higher 24-h mortality in TcSOD2 knockdown larval groups than in the control groups. The TcSOD2 knockdown adults moved significantly more slowly, had lower ATP content, and exhibited a different body color from the control groups. We found that TcSOD2 dsRNA treatment in larvae resulted in increased expression of tyrosinase and laccase2 mRNA after 10 days. This is the first report showing that TcSOD2 has an antioxidative function and demonstrates that T. castaneum may use an alternative antioxidative system when the SOD2-based system fails

    Superoxide dismutase 2 knockdown leads to defects in locomotor activity, sensitivity to paraquat, and increased cuticle pigmentation in Tribolium castaneum

    Get PDF
    Citation: Tabunoki, H., Gorman, M. J., Dittmer, N. T., & Kanost, M. R. (2016). Superoxide dismutase 2 knockdown leads to defects in locomotor activity, sensitivity to paraquat, and increased cuticle pigmentation in Tribolium castaneum. Scientific Reports, 6, 8. doi:10.1038/srep29583Insects can rapidly adapt to environmental changes through physiological responses. The red flour beetle Tribolium castaneum is widely used as a model insect species. However, the stress-response system of this species remains unclear. Superoxide dismutase 2 (SOD2) is a crucial antioxidative enzyme that is found in mitochondria. T. castaneum SOD2 (TcSOD2) is composed of 215 amino acids, and has an iron/manganese superoxide dismutase domain. qRT-PCR experiments revealed that TcSOD2 was present through all developmental stages. To evaluate TcSOD2 function in T. castaneum, we performed RNAi and also assessed the phenotype and antioxidative tolerance of the knockdown of TcSOD2 by exposing larvae to paraquat. The administration of paraquat resulted in significantly higher 24-h mortality in TcSOD2 knockdown larval groups than in the control groups. The TcSOD2 knockdown adults moved significantly more slowly, had lower ATP content, and exhibited a different body color from the control groups. We found that TcSOD2 dsRNA treatment in larvae resulted in increased expression of tyrosinase and laccase2 mRNA after 10 days. This is the first report showing that TcSOD2 has an antioxidative function and demonstrates that T. castaneum may use an alternative antioxidative system when the SOD2-based system fails

    The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti

    Get PDF
    The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti.Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis.Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies
    corecore