10th International Working Conference on Stored Product Protection

# Section: Biology, Behaviour and Detection

# Implications of the Tribolium genome project for pest biology

Beeman, R.W.<sup>\*#1</sup>, Arakane, Y.<sup>2</sup>, Phillips, T.W.<sup>3</sup>, Muthukrishnan, S.<sup>2</sup>
<sup>1</sup>USDA-ARS Center for Grain and Animal Health Research, 1515 College Avenue, Manhattan KS 66502, Email: richard.beeman@ars.usda.gov
<sup>2</sup>Department of Biochemistry, Kansas State University, Manhattan, KS 66506, (YA), (SM)
<sup>3</sup>Department of Entomology, Kansas State University, Manhattan, KS 66506,

\* Corresponding author # Presenting author

DOI: 10.5073/jka.2010.425.324

## Abstract

The universal availability of the complete *Tribolium castaneum* genome sequence assembly and annotation (Richards et al., 2008) and concomitant development of the versatile *Tribolium* genome browser, BeetleBase (Kim et al., 2010, http://beetlebase.org/) open new realms of possibility for stored product pest control by greatly simplifying the task of connecting biology and behavior with underlying molecular mechanisms. This genome has enabled sequence similarity searches that have resulted in a flood of new discovery involving thousands of genes with important functions in digestion, osmoregulation, metamorphosis, olfaction, xenobiotic metabolism, vision, and embryonic and larval growth and development. The value of the *T. castaneum* genome sequence is greatly enhanced by the availability of a sophisticated functional genomic toolkit for laboratory studies of this insect. These tools include high-resolution physical and genetic maps, genomic and cDNA libraries, balancer chromosomes, and effective and reliable techniques for specific knockout of any target gene *via* RNA interference (RNAi). In this paper we briefly discuss just two areas of *Tribolium* biology research that are being revitalized by the availability of the genome sequence, namely olfaction and exoskeleton, or "smell and skin".

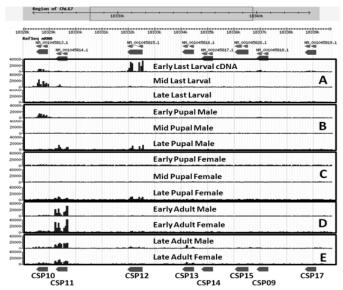
### 1. Pheromone biology, olfaction and genomics

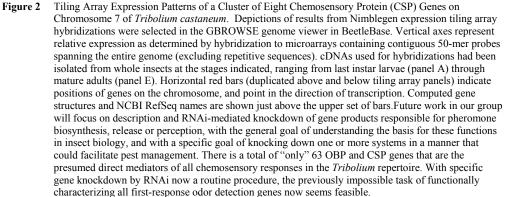
Many common stored product beetles are long-lived as adults (weeks or months) and use male-produced aggregation pheromones to attract both sexes for mating and for achieving critical population densities for effective conditioning of the microhabitat (Phillips et al., 2000). Examples include species of *Tribolium, Tenebrio, Sitophilus, Cryptolestes, Oryzaephilus, Rhyzopertha,* and *Prostephanus.* In contrast, adult beetles with female-produced sex pheromones, including stored-product pests in the families Anobiidae, Bruchidae and Dermestidae, tend to be short-lived (days to weeks), and may require only nectar for sustenance. In *Tribolium confusum* (Duval) and *T. castaneum* (Herbst) the predominant male-produced aggregation pheromone is 4,8-dimethyldecanal (DMD; Suzuki, 1980), which has two chiral carbons whose configurations affect biological activity (Levinson and Mori, 1983; Suzuki and Mori, 1983). A 4:1 mixture of the (4R,8R) and (4R,8S) diastereomers elicits a near-optimal attractive response, showing more than ten-fold greater attractive potency than either the corresponding 1:1 blend or the pure (4R,8R) isomer (Suzuki et al., 1984). Since a 1:1 blend of (4R,8R):(4R,8S) is presumably the recipe used in commercially available Tribolure, there is potential for development of a much-improved blend that could be a powerful research tool in studies of *Tribolium* population biology.

As the name implies, this pheromone may function only for aggregation, while other semiochemical cues might be needed to evoke mounting and copulation. The latter idea was first suggested by Keville and Kannowski (1975), who found evidence that 1-pentadecene and other hydrocarbons elicit copulatory behavior in *Tribolium confusum*. It has been observed that, in contrast to the highly effective *Rhyzopertha dominica* (F.) aggregation pheromone, the synthetically-produced *Tribolium* aggregation pheromone (Tribolure) is a relatively weak attractant, to the extent that it is not useful for mass-trapping of large numbers of beetles. Tribolure-baited traps are, however, extremely useful for population monitoring. The possibility that Tribolure contains an unnatural or nonideal blend of diasteriomers, reducing its effectiveness, has already been mentioned, but the relatively low attractiveness of Tribolure-baited traps might also be a function of the behavior and ecology of *Tribolium*. In addition, it has been

suggested recently (Verheggen et al., 2007) that minor or trace components of a natural *Tribolium* aggregation pheromone blend might exist and might be critical for maximum activity. Candidate trace constituents include several benzoquinone and hydrocarbon secondary metabolites that are known to be produced in *Tribolium* spp. For example, in *T. confusum* two different 1, 4-benzoquinones and several mono-unsaturated hydrocarbons, previously detected in several *Tribolium* species (Howard, 1987; Markarian et al., 1978), were shown to be attractive in behavioral assays and elicited electroantennagram (EAG) responses in isolated antennae (Verheggen et al., 2007). These include some of the same components previously reported by Keville and Kannowski (1975) to be active in eliciting mating behavior. No one has yet reported on attempts to increase the potency of synthetic Tribolure by creating new blends that incorporate these candidate components as minor constituents, but this would seem to be worthy of investigation. It has been observed that Tribolure-baited traps become more attractive after a number of beetles have been captured, perhaps because they are releasing important minor components not included in the commercial pheromone blend (Jim Campbell, unpublished observations).

Chemical, physiological and behavioral studies have revealed much useful information about the olfactory and pheromonal biology of stored-product insects, but, as highlighted above, fundamental questions remain unanswered. The recently completed genome sequence of the red flour beetle, *T. castaneum*, opens a window to a vast, untapped reservoir of opportunity for gaining new knowledge about many aspects of the biology of this pest species, including the biology of olfaction. Establishing or confirming pheromone and secretome biosynthetic pathways (e.g. Kim et al., 2005) will be facilitated by the availability of the genome sequence. In many cases candidate olfaction genes can be readily identified based on sequence conservation, and the powerful technique of RNAi can then be used to knock down candidate genes and enable follow-up functional studies.


Annotation of the *T. castaneum* genome sequence has already revealed unexpectedly large numbers of intact olfactory receptor (OR) and gustatory receptor (GR) genes (259 and 220, respectively, Engsontia et al., 2008), in comparison to other species. For example, *Drosophila melanogaster* has only 62 and 68 OR and GR genes, respectively. In addition to the relatively very large numbers of intact OR/GR genes in the *T. castaneum* genome, there are also 79 OR pseudogenes and 76 GR pseudogenes. RNAi has been done for *TcOR1*, which is one of the 259 *OR* genes in *T. castaneum*, and is a clear ortholog of the *D. melanogaster Or83b* gene, the latter having been demonstrated to be required for function of olfactory reception in *D. melanogaster*. RNAi-mediated knockout of *TcOR1* completely eliminated the attractiveness of the synthetic aggregation pheromone DMD (Tribolure) to adult beetles (Engsontia et al., 2008). So far as we are aware, no other olfaction genes have been subjected to functional analysis in *T. castaneum*, but the success of this experiment and the large number of olfaction genes in this species hint at the wealth of functional information that could be revealed by systematic, high-throughput RNAi knockdown studies.


The primary mediators of odor detection in insects are the odorant binding proteins (OBPs) and their smaller, more highly conserved cousins, the chemosensory proteins (CSPs). According to Foret and Maleszka (2006) there are 46 *OBP* genes in the *T. castaneum* genome, which is within the normal range (20~70) as currently defined by the available insect genome sequences. In contrast, the gene count for insect *CSPs* is considerably lower, totaling less than 10 each in *A. mellifera*, *D. melanogaster* and *A. gambiae*. We could find no published data on complete *CSP* annotations in *T. castaneum*, but allusions to individual *CSP* genes can be found in Maleszka et al. (2007), Lu et al. (2007) and Vieira et al. (2007). According to our BLASTP analysis, there are 14 genes encoding highly conserved CSP proteins in *T. castaneum* (Fig. 1), as well as three additional *CSP*-like genes that encode slightly more divergent proteins.

|                                                                                                          |                                                                                                          | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSP19                                                                                                    | 15950                                                                                                    | MKFFIAFIML-LGAVWCEQUTTKYDNINVDEILASERLLKNYFNGIMDRGACTPDADELKRVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CSP20                                                                                                    | 15902                                                                                                    | MRFFVI-F-FVAC-VSVALARPEDQYTIKYDNVNLKEILQSDRLTENYVNCLLEKKPCTPDGEELKRVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CSP07                                                                                                    | 14534                                                                                                    | MKLISA-VILCAFLVAVSAAENKYTNKYDNVDVDKILNNDRVLTNYIKCLMDEGPCTSEGREIKKTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CSP05                                                                                                    | 14532                                                                                                    | MKTEVI-LE-EGV-FFIIEDKTITRYDNVDVDRILHSKELLLNYINCLLEKGPCSPEGRELKKIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CSP04                                                                                                    | 14531                                                                                                    | MYSYLIPLYLFLFVHYGWSEDTTHKYTTKYDNIDLENVVKNERLLKSYVDCLLEKGRCSPDGLELKKNM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CSP10                                                                                                    | 08682                                                                                                    | MKTFVL-VAFAAV-LGLALARPOEKYTTKYDNIDLEEILKSDRLLKNYFNCLMERGTCSPDGEELKKAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CSP09                                                                                                    | 08677                                                                                                    | MTAIVF-LLALACLKTYVSSQETLVP-QNIDVDEILKNDRLTRNTLDCVLGKGKCTPEGEELKKDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CSP17                                                                                                    | 08676                                                                                                    | MFKVLF-V-VFACVOAYVYAEEXTVP-ONIDIDEILKNDRLTKNYLDCILEKGKCTPEGEELKKDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CSP14                                                                                                    | 08678                                                                                                    | MFATSA-LFAFICIOGLVSAEEXLVP-ONIDLDEILKNDRLTRNXIDCILGKGKCTPEGEEXKRDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CSP18                                                                                                    | 08674                                                                                                    | MLFTVF-LV-LTC-AHVVFLEEXVIP-DNIDIDDILSNERLLKNYVNCLLDKGRCTPEGKKIKSTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CSP12                                                                                                    | 08680                                                                                                    | MKTLVLV-LFVAV-LSVVFAADKYTTKYDNIDLNQILKSDRLLKNYVNCLLDRGKCSPDGQELKNNL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CSP13                                                                                                    | 08679                                                                                                    | MFLAIV-LV-V-CACTNVLSEEXTNQ-YNDELDAALKSERLMKSXFECLLGTGKCTPSGEELKKDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CSP11                                                                                                    | 08681                                                                                                    | MKTLVPL-LFFVIAIASSL-AENSKYTTKYDNVDLDEIIKSDRLLKNYVNCLLEKGKCTPDGAELKRHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CSP02                                                                                                    | 03085                                                                                                    | MKIIIL-AV-LIA-TAVAATYDVYPTKYDNVDIDAILHNKRLFDNYLQCLLKKGKCNEEAAIIRDVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                          |                                                                                                          | * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                          |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                          |                                                                                                          | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CSP19_                                                                                                   | 15950                                                                                                    | PIRLKSDCARCSEKQREMTKKVIHFLSHNKQQMRKERTAKYDPDGIRFEKYKDKFDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CSP20                                                                                                    | 15902                                                                                                    | PDALKTSCAKCIDKCKQGAKTVIQHLYKNKQDWWKQLEAKYDPEHTYVKAHEDELKAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CSP20<br>CSP07                                                                                           | 15902<br>14534                                                                                           | PIALKTSCAKCTDROKOGAKTVIQHLYKNRQDMKKOLEAKYDPEHTYVKAHEDELKAL<br>PIALSSGCTKCNOKOKETAEKVIRHLTOKRARIMERLSKKYDPQGOYKKRYEEHVATSRAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CSP20<br>CSP07<br>CSP05                                                                                  | 15902<br>14534<br>14532                                                                                  | PDALKTSGAKGTDROKOGAKTVIOHLYKORODWRODEGAKVDPEHTVKAHEDELKAL<br>PDALSSGGTKGOROKETAEKVIRHLTOKRARDWEPLSKKYDPOGOZKKRYEEHVATSRA<br>PDALVTNGSKGSEVOKROAGKILTFVLLNYRNEMNIDVAKYDPOGITROYZELDDDYDYSELDSAKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CSP20<br>CSP07<br>CSP05<br>CSP04                                                                         | 15902<br>14534<br>14532<br>14531                                                                         | PIALKTSCAKCTDROROGARTVIQHLYKNRODMKODEAKYDPEHTYVKAHEDELKAL<br>PIALSSCCTKCNOROKETAERVIHHLTOKRARUKEFLSKYYDPOGYXKRYEEHVATSRAA<br>PIALVTNCSKCSEVCKQAGKILTFVLLNYRNERNOTVAKYDPOGYXKRYEEIDDDYDYSE-LDSAKK<br>PIALETICSKCSENOKSCSDFINRYLLDNRPDIWKJEAKYDPOGYXKRYFESQKDEVSKVEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CSP20<br>CSP07<br>CSP05                                                                                  | 15902<br>14534<br>14532<br>14531<br>08682                                                                | PDALKTSCAKCTDROROGAKTVIQHLYKNRODMNKOLEAKYDPEHTYVKAHEDELKAL<br>PDALSSCCTKKONOKOKTTAEKVIHHLTOKRARIMETUSKYYDPOQYKKRYEEHVATSRAA<br>PDALVTNCSKCSEVOKKOAKKILTFVLLNYRDWVOUEAKYDPDGIYRKQYEIDDDSTEKLDSAK<br>PDALETDCSKCSEVOKGSSPIHRYLLDNRPDYROLEAKYDPDGIYRKYPESOKDEVSKVEA<br>PDALHSCCSKCTEKOKESSRKIIHYLLDNRPDYROLEAKYDKDGVYRQKYKDVIEKEGIKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CSP20<br>CSP07<br>CSP05<br>CSP04<br>CSP10<br>CSP10<br>CSP09                                              | 15902<br>14534<br>14532<br>14531<br>08682<br>08677                                                       | PDALKTSCAKCTDKQKQGAKTVIQHLYKNKQDWKQDEAKYDPEHTYKAHEDAL<br>PDALSSCGTKKNAKCKTAEKVIHHLZQKRARUKELSKKYDPQGZKKKYEEWATSRAA<br>PDALVTNCSKCSEVQKWQGKILTFYLLNYKENNVKAKYDPOGITKKKYEESQKDEVSKVEA<br>PDALETDCSKCSEVQKESSPFIMEYLIDNKEDIKKAEAKYDPGGTKKKYFESQKDEVSKVEA<br>PDALHSGSKCTEKQKESSRKIHYLIDNKEDKNEEAKYDFQGTKKKYDEVIEKEGIKL<br>PEALQNCCAKCNEKKSCVRVVIHHLIENKPNNYQEESKYDPQGTKKKYDEVIEKEGIKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CSP20<br>CSP07<br>CSP05<br>CSP04<br>CSP10<br>CSP09<br>CSP17                                              | 15902<br>14534<br>14532<br>14531<br>08682<br>08677<br>08676                                              | PTALKTSCAKCTDKQKQGAKTVIQHLYKNKQDMKKQDEAKYDPEHTYVKAHEDELKAL<br>PTALSSCCTKCNQKQKETAEKVIHHL7QKRARUKETSKYYDPQGYKKRYEEHVATSRAA<br>PTALVINGSKCSEVQKQGGAFTFVLLNYKENNQVAKYDPDGITKKRYEEHVATSQKDEVSKVEA<br>PTALTSCSKCSEVQKQGGAFTHYLLDNKPDYKGLEAKYDPDGTYKKRYFEYEKDSIKL<br>PEALONGCSKCNERKEGVRKVIHYLLDNKPDYKGLEAKYDPGGTXKKRYFEVIEKDSIKL<br>PEALQNCGAKCNERKEGVRKVIHHLIENKPNMQEDESKEDPQGEXKKRYDELLKKDGLAN<br>PTALQNCGAKCNERKEGVRKVIHLIENKPNMQEDESKEDPQGEXKKRYDELLKEDGLAN                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CSP20<br>CSP07<br>CSP05<br>CSP04<br>CSP10<br>CSP10<br>CSP17<br>CSP14                                     | 15902<br>14534<br>14532<br>14531<br>08682<br>08677<br>08676<br>08678                                     | PDALKTSCAKCTDKQKQGAKTVIQHLYKNKQDMKKQDEAKYDPEHTYVKAHEDELKAL<br>PDALSSCGTKCNQKQKETAEKVIHHLZQKRARUKEFLSKYYDPQGQYKKRYEEWATSRAA<br>PDALVTNCSKCSEVQKQGKILTFVLLNYRNEWQUAKYDPDGIYRKQYEIDDDYDYSE-LDSAKK<br>PDALETOCSKCSEXQKSCSDFINRYLIDNKPDTKKQLEAKYDROGYRQKYEVFSQKDEVSKVEA<br>PTALHSGCSKCTEKQKESSRKIHYLIDNKRDMKEESAKYDKDGYRQKYKDVIEKEGIKL<br>PEALQNCCAKCNEKKESVRKVIHHLIENKPNMQELESKEDPQGSTKKKYDELLKKEGIAN<br>PTALQNCCAKCNEKKESVRKVIHHLIENKPNMQELESKEDPKGSTKKKYDELLKEEGLAN<br>PEALQNCCAKCNEKKESVRKVIHHLIKNKPNMQELEAKEDPKGSTKKYNHLLEKEGLQA                                                                                                                                                                                                                                                                                                                                                                |
| CSP20<br>CSP07<br>CSP05<br>CSP04<br>CSP10<br>CSP09<br>CSP17                                              | 15902<br>14534<br>14532<br>14531<br>08682<br>08677<br>08676<br>08678<br>08674                            | PTALKTSCAKCTDRQKQGAKTVIQHLYKNKQDMKKQDEAKIDPEHTVKAHEDELKAL<br>PTALSSCGTKKONKQKSTAEKVIRHLTQKRARIMERISKKIDPGGTKKKYEEHVATSRAA<br>PTALVTNCSKCSEVQKNQGKILTPVLLNYRHKNUTVAKYDPGTTKKKYEEHVATSRAA<br>PTALETICSKCSEVQKNQGKILTPVLLNYRHKNUTVAKYDPGTTKKKYFEVIEKEGLK<br>PTALHSGCSKCTERQKEGSRKIIHYLLDNKRDMNELEAKYDPGGTKKKYFEVIEKEGLK<br>PTALQNCGAKCNEGKKGVRKVIHHLIENKFNNTQETESKYDPGGSTKSKYNEVIEKEGLAN<br>PTALQNCGAKCNEGKKGVRKVIHHLIENKFNNTQETESKYDPGGSTKSKYNELLEKEGLAN<br>PTALQNCGAKCNEGKKGVRKVIHHLIENKFNNTQETESKYDPGGSTKSKYNELLEKEGLAN<br>PTALQNCGAKCNEGKKGVRKVIHHLIENKFNTQETESKYDPSGSTKSKYNELLEKEGLAN                                                                                                                                                                                                                                                                                                         |
| CSP20<br>CSP07<br>CSP05<br>CSP04<br>CSP10<br>CSP19<br>CSP17<br>CSP14<br>CSP18<br>CSP12                   | 15902<br>14534<br>14532<br>14531<br>08682<br>08677<br>08676<br>08678<br>08674<br>08680                   | PTALKTSCAKCTDRQKQGAKTVIQHLYKNKQDMKKQDEAKTDPEHTVKAHEDELKAL<br>FTALSSCGTKCNQKQTAERKVIRHL7QKRARIMERISKYTDPQGJKKKYEEHVATSRAA<br>PTALVINGSKCSEVQKQGAKILTFVLLNYRHNINGVALEAKTDPDGTKKKYEEHVATSQKDEVSKVEA<br>PTALETDCSKCSEKQKSGSDFIMRYLIDNKPDTKALEAKTDPDGTKKKYFEVIEKBGLAN<br>PTALHSGCSKCTEKQKSGSKHIHYLIDNKRDWNELEAKTDPDGTKKKYFEVIEKBGLAN<br>PTALQNCAKCNEKKKSVRKVIHHLIENKRMNQEESKEDPGGTKKKYDELKKKBGLAN<br>PTALQNCAKCNEKKSVRKVIHHLIENKRMNQEESKEDPGGTKKKYDELLEKBGLAN<br>PTALQNCAKCNEKKSVRKVIHHLIENKRMNQEESKEDPGSTKKKYDELLEKBGLAN<br>PTALQNCAKCNEKKSVRKVIHHLINKRYNNQEESKEDPGSTKKKYDELLEKBGLAN<br>PTALQNCAKCNEKKSVRKVIHHLINKRYNNQEESKENDPKGTKKKDELEKSGHAN<br>PTALQNCAKCNEKKSVRKVIHLINKRYNNQEESKENDPKGTKKKDELEKSGHAN<br>PTALSTCSKCSQCKOSKTIINYLINKRYNNMEESKAVDPTGTKVNKADELEKSGHAN                                                                                                                              |
| CSP20<br>CSP07<br>CSP05<br>CSP04<br>CSP10<br>CSP10<br>CSP17<br>CSP14<br>CSP18<br>CSP12<br>CSP13          | 15902<br>14534<br>14532<br>14531<br>08682<br>08676<br>08676<br>08678<br>08674<br>08680<br>08679          | PTALKTSCAKCTEDKOKOGANETVIQHLYKNKOTMAKOTMAKOTMAKOTMAKOTMAKOTMAKOTMAKOTMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CSP20<br>CSP07<br>CSP05<br>CSP04<br>CSP10<br>CSP19<br>CSP17<br>CSP14<br>CSP18<br>CSP12<br>CSP13<br>CSP11 | 15902<br>14534<br>14532<br>14532<br>08672<br>08676<br>08676<br>08678<br>08678<br>08680<br>08679<br>08681 | PTALKTSCAKCTDRQKQGAKTVIQHLYKNKQDWRKQDEAKTDPEHTVKAHEDELKAL<br>FTALSSCGTKCNNCKETAEKVIRHLTQKRARIMENESKKTDPGGJKKKYEEWATSRAA<br>PTALVINGSKCSEVQKNQGKILTFVLLNYRHXNUKALEAKTDPGGTKKKYEEWATSRAA<br>PTALETCSKCSEVQKRQGKILTFVLLNYRHXNUKALEAKTDPGGTKKKYEEVIEKBGIKL<br>PTALHSGCSKCTEKQKEGSRKITHYLIDNKRDWNKIEEAKTDPGGTKKKYDEVIEKBGIKL<br>PTALUNCAKCNEKKESVKNIHHLIENNKRWNQETESKFDPGGTKKKYDELIEKBGIKL<br>PTALQNCAKCNEKKESVKNIHHLINNKRWNQEEAKTDPGGTKKKYDELLEKBGIKL<br>PTALQNCAKCNEKKESVKNIHHLINNKRWNQEEAKTDPGGTKKKYDELLEKBGIVL<br>PTALQNCAKCNEKKESVKNIHHLINNKRWNQEEAKTDPSGTKSKYNHELEKBGIVL<br>PTALQNCAKCNEKKKSVKNIKNIHLINNKRWNQEEAKTDPSGTKSKYNHELEKBGIVL<br>PTALQNCAKCNEKKKSGVRKVIHHLINNKRWNQEEAKTDPSGTKSKYKDELEKBGIVL<br>PTALUTSCSKCSQQCKOSSKTITKYLINKRWNNEEAXYDPGITKNKYADELEKBGIVL<br>PTALKNECAKCNEKKKSGKRVIHKHLINNKRWNNEEAXYDPGGTKKKYZAELEKBGIKI<br>PTALKTECSKCSTQKNSSKKINHHLINKRWNNEEEAYDPGGTKKKYZASLKABGIVL |
| CSP20<br>CSP07<br>CSP05<br>CSP04<br>CSP10<br>CSP10<br>CSP17<br>CSP14<br>CSP18<br>CSP12<br>CSP13          | 15902<br>14534<br>14532<br>14531<br>08682<br>08676<br>08676<br>08678<br>08674<br>08680<br>08679          | PTALKTSCAKCTEDKOKOGANETVIQHLYKNKOTMAKOTMAKOTMAKOTMAKOTMAKOTMAKOTMAKOTMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Figure 1 Alignment of Chemosensory Proteins (CSPs) in Tribolium castaneum. CSP proteins were detected by BLASTP analysis using a 19-residue query sequence derived from a conserved region of CSP7 (underlined) containing two of the cysteine residues involved in disulfide bridging. Multiple sequence alignment was done using T-COFFEE (Notredame et al., 2000). Fourteen of the 17 known CSP proteins are included. The remaining three (CSP06, 08 and 15) are somewhat divergent from the 14 shown. Secretion signal peptides at the amino termini of each protein, indicated in red font and by underlining, were determined with Signal 3.0. Invariant residues are indicated by shading and bold font, and the four diagnostic cysteine residues (forming two disulfide bridges) are indicated by dots above the alignment. The curated version of CSP5 lacked a signal peptide and contained a unique, 14residue insertion, both resulting from an apparent misannotation. We defined a previously unrecognized, 42-nt intron at the Asn (N) residue (boxed) near the terminus of the signal peptide, which reestablished a plausible signal peptide cleavage site and removed the atypical insertion. NCBI protein identities are as follows: CSP18 = NP 001039286.1, CSP17 = NP 001039284.1, CSP09= NP 001039283.1, CSP10= NP 001039278.1, CSP11= NP 001039279.1, CSP12= NP 001039280.1, CSP13=NP 001039281.1, CSP14=NP 001039282.1, CSP19=NP 001039276.1, CSP20= NP 001039274.1, CSP07= NP 001039289.1, CSP05= NP 001039287.1, CSP04= NP 001039285.1, CSP02= NP 001039277.1. The following CSPs are not shown: CSP15= NP\_001039291.1, CSP08= NP 001039290.1 and CSP06= NP 001039288.1.

Eight of the 14 proteins shown in Figure 1 are encoded by a closely linked cluster of *CSP* genes located on chromosome 7. Inspection of the tiling array tracks for this chromosomal region in the *Tribolium* genome browser BeetleBase (http://beetlebase.org/index.shtml) suggests that the various *CSP*s are differentially expressed and highly regulated (Fig. 2). For example, *CSP10* expression is largely restricted to the larval and early pupal stages, whereas *CSP11* is expressed predominantly in the late pupal and adult stages. *CSP12* appears to have two peaks of expression, one in the early part of the last-instar larval stage and another in the late pupal stage. Still other *CSP* genes (*CSP9*, *13-15* and *17*) have very low or no expression throughout the last larval instar and pupal and adult stages. The latter could have vital but highly localized expression domains (individual sensillae or appendages?) preventing detection of such low-abundance transcripts in whole-animal tiling arrays.





## 2. Chitin biology and genomics

The insect exoskeleton is a noncellular biomaterial that functions both as skin and as waterproof armor that is sufficiently flexible to accommodate growth and enable mobility. This complex and fascinating physiological adaptation, together with other chitinous structures such as the digestive "peritrophic matrix" of the midgut, has contributed to the great evolutionary success of arthropods. We and others have identified more than 200 genes in the *Tribolium* genome that appear to be directly involved in the composition, biosynthesis, deposition and turnover of these structures (Tab. 1), offering a wealth of potential new biotargets for selective pest control. The proteins encoded by these genes can be divided into four major categories, including: (1) structural "cuticle proteins" that, together with the polysaccharide chitin itself, contribute most of the bulk and substance of the finished cuticle; (2) enzymes involved in chitin synthesis, modification or degradation; (3) cuticle assembly proteins involved in deposition and layering of chitin and cuticle structural proteins; and (4) cuticle maturation enzymes that control the processes of tanning, crosslinking and pigmentation to confer the final color, rigidity/elasticity and waterproofing to the finished cuticle. Many of the gene models have been validated by sequence analysis of cDNAs, and many have been functionally characterized by RNAi or other methods (e.g. Arakane et al., 2005a & b, 2008, 2009a & b, 2010; Dixit et al., 2008; Hogenkamp et al., 2008; Jasrapuria et al., 2010; Richards et al., 2008; Zhu et al., 2008;).

| Category               | Gene       | Genbank/GLEAN<br>accession # | dsRNA knock-down phenotypes                      | proposed function                                     |
|------------------------|------------|------------------------------|--------------------------------------------------|-------------------------------------------------------|
| Chitin                 | TcCHS-A-8a | AY291475                     | Prevents L-L, L-P and P-A molting                | chitin synthesis                                      |
| synthases              | TcCHS-A-8b | AY291476                     | Prevents adult eclosion                          | chitin synthesis                                      |
| CHS)                   | TcCHS-B    | AY291477                     | loss of PM chitin, starvation                    | chitin synthesis                                      |
| DP-NAG                 | TcUAP1     | GU228846                     | not tested                                       | chitin synthesis                                      |
| yrophos-<br>horylases  | TcUAP2     | GU228847                     | not tested                                       | chitin synthesis                                      |
| phoryneses             | TcCHT2     | GLEAN_09872                  | not tested                                       | chitin degradation                                    |
|                        | TcCHT4     | EF125543                     | No visible phenotype                             | chitin degradation in digestive<br>peritrophic matrix |
|                        | TeCHT5     | AY675073                     | Affects P-A molting                              | chitin degradation                                    |
|                        | TcCHT6     | EFA00965                     | No visible phenotype                             | chitin degradation                                    |
|                        | TcCHT7     | DQ659247                     | arrested pupal wing expansion and pumping motion | chitin degradation                                    |
|                        | TcCHT8     | DQ659248                     | No visible phenotype                             | chitin degradation in digestive<br>peritrophic matrix |
|                        | TcCHT9     | DQ659249                     | not tested                                       | chitin degradation in digestive<br>peritrophic matrix |
|                        | TcCHT10    | DQ659250                     | Prevents L-L, L-P and P-A molting                | chitin degradation                                    |
|                        | TeCHT11    | GLEAN_15665                  | No visible phenotype                             | chitin degradation                                    |
|                        |            | _                            |                                                  | chitin degradation in digestive                       |
|                        | TeCHT12    | GLEAN_09178                  | not tested                                       | peritrophic matrix<br>chitin degradation in digestive |
|                        | TeCHT13    | DQ659252                     | not tested                                       | peritrophic matrix                                    |
| hitinases              | TcCHT14    | GLEAN_09628                  | No visible phenotype                             | chitin degradation in digestive<br>peritrophic matrix |
|                        | TeCHT15    | GLEAN_09629                  | No visible phenotype                             | chitin degradation in digestive<br>peritrophic matrix |
|                        | TeCHT16    | AY873915                     | No visible phenotype                             | chitin degradation in digestive<br>peritrophic matrix |
|                        | TcCHT17    | GLEAN_09625                  | not tested                                       | chitin degradation in digestive<br>peritrophic matrix |
|                        | TeCHT18    | GLEAN_09630                  | not tested                                       | chitin degradation in digestive<br>peritrophic matrix |
|                        | TeCHT19    | GLEAN_09175                  | not tested                                       | chitin degradation in digestive<br>peritrophic matrix |
|                        | TcCHT20    | AY873913                     | not tested                                       | chitin degradation in digestive<br>peritrophic matrix |
|                        | TcCHT21    | AY873916                     | not tested                                       | chitin degradation in digestive<br>peritrophic matrix |
|                        | TcCHT22    | DQ659251                     | not tested                                       | chitin degradation in digestive<br>peritrophic matrix |
|                        | TcIDGF2    | DQ659253                     | No visible phenotype                             | cell proliferation/remodeling                         |
|                        | TcIDGF4    | DQ659254                     | Prevents P-A molting                             | cell proliferation/remodeling                         |
|                        | TcNAG1     | EF592536                     | Prevents L-L, L-P and P-A molting                | chitin degradation                                    |
| A                      | TcNAG2     | EF592537                     | Prevents L-L, L-P and P-A molting                | chitin degradation                                    |
| -Acetyl<br>lucosamini- | TcNAG3     | EF592538                     | compromises L-L, L-P and P-A molting             | chitin degradation                                    |
| ases (NAG)             | TcFDL      | EF592539                     | Prevents L-L, L-P and P-A molting                | N-glycan processing/chitin catabolism                 |
|                        | TcCDA1     | EU019711                     | Prevents L-L, L-P and P-A molting                | chitin modification                                   |
|                        | TcCDA2a    | EU019712                     | Nonarticulation of femoral-tibial joints         | chitin modification                                   |
|                        | TcCDA2b    | EU019713                     | Affects epidermal cuticle<br>morphology          | chitin modification                                   |
|                        | TcCDA3     | EU190485                     | No visible phenotype                             | chitin modification                                   |
| hitin                  | TcCDA4     | EU190486                     | No visible phenotype                             | chitin modification                                   |
| eacetylases            | TcCDA5A    | EU190487                     | No visible phenotype                             | chitin modification                                   |
| CDA)                   | TeCDA5B    | EU190488                     | No visible phenotype                             | chitin modification                                   |
|                        | TeCDA6     | EU190489                     | No visible phenotype                             | chitin modification                                   |
|                        | TeCDA0     | EU190489<br>EU190490         | No visible phenotype                             | chitin modification                                   |
|                        | TeCDA7     | EU190490<br>EU190491         | No visible phenotype                             | chitin modification                                   |
|                        | TcCDA9     | EU190492                     | No visible phenotype                             | chitin modification                                   |

 Table 1
 Tribolium castaneum genes involved in assembly and metabolism of cuticle and peritrophic matrix

| Category                                      | Gene        | Genbank/GLEAN<br>accession # | dsRNA knock-down phenotypes                          | proposed function                                                         |
|-----------------------------------------------|-------------|------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|
| Cutiala                                       | TcRtv       | GLEAN_07384                  | not tested                                           | cuticle assembly                                                          |
| Cuticle<br>assembly                           | TcKNK1      | GLEAN_10653                  | not tested                                           | cuticle assembly                                                          |
| genes                                         | TcKNK2      | GLEAN_12301                  | not tested                                           | cuticle assembly                                                          |
| -                                             | TcKNK3      | GLEAN_02304                  | not tested                                           | cuticle assembly                                                          |
| Peritrophic<br>matrix-<br>associated<br>genes | TcPMP1-A    | GU128096                     | not tested                                           | peritrophic matrix structural protein                                     |
|                                               | TcPMP1-B    | GU128097                     | not tested                                           | peritrophic matrix structural protein                                     |
|                                               | TcPMP1-C    | GU128098                     | not tested                                           | peritrophic matrix structural protein                                     |
|                                               | TcPMP2-A    | GU128099                     | not tested                                           | peritrophic matrix structural protein                                     |
|                                               | TcPMP2-B    | GU128100                     | not tested                                           | peritrophic matrix structural protein                                     |
|                                               | TcPMP2-C    | GU128101                     | not tested                                           | peritrophic matrix structural protein                                     |
|                                               | TcPMP3      | GU128102                     | not tested                                           | peritrophic matrix structural protein                                     |
|                                               | TcPMP5-A    | GU128103                     | not tested                                           | peritrophic matrix structural<br>protein                                  |
|                                               | TcPMP5-B    | GU128104                     | not tested                                           | peritrophic matrix structural<br>protein                                  |
|                                               | TcPMP9      | GU128105                     | not tested                                           | peritrophic matrix structural<br>protein<br>peritrophic matrix structural |
|                                               | TcPMP14     | GU128106                     | not tested                                           | protein                                                                   |
|                                               | TcLac1      | AY884065                     | No visible phenotype                                 | ferroxidase                                                               |
|                                               | TcLac2A     | AY884061                     | Required for larval, pupal and adult cuticle tanning | tanning                                                                   |
| Phenoloxi-<br>dases                           | TcLac2B     | AY884062                     | Required for larval, pupal and adult cuticle tanning | tanning                                                                   |
|                                               | TcLLP       | GLEAN_15880                  | Prevent pupal development                            | unknown vital function                                                    |
|                                               | TcTyrl      | AY884063                     | No visible phenotype                                 | Immune-related melanization?                                              |
|                                               | TcTyr2      | AY884064                     | No visible phenotype                                 | Immune-related melanization?                                              |
|                                               | ТсТН        | EF592178                     | Required for larval, pupal and adult cuticle tanning | cuticle tanning-related                                                   |
|                                               | TcDDC       | EU019710                     | Delays adult cuticle tanning, darkens<br>body color  | cuticle tanning-related                                                   |
|                                               | TcADC       | ABU25221                     | Black body color phenotype                           | cuticle tanning-related                                                   |
|                                               | TcNAT1      | FJ647798                     | Dark pigment around elytral sensillae                | cuticle tanning-related                                                   |
|                                               | Tcebony     | FJ647797                     | Black body color phenotype                           | cuticle tanning-related                                                   |
|                                               | Tctan       | GLEAN_03448                  | not tested                                           | cuticle tanning-related                                                   |
|                                               | TcYellow-b  | GU111762                     | not tested                                           | pigmentation/sclerotization                                               |
|                                               | TcYellow-c  | GU111763                     | not tested                                           | pigmentation/sclerotization                                               |
| Cuticle                                       | TcYellow-e  | GU111765                     | not tested                                           | pigmentation/sclerotization                                               |
| anning -                                      | TcYellow-e3 | GU111764                     | not tested                                           | pigmentation/sclerotization                                               |
| related genes                                 | TcYellow-f  | GU111766                     | Prevents P-A molting                                 | pigmentation/sclerotization                                               |
|                                               | TcYellow-g1 | GU111767                     | not tested                                           | egg cuticle stabilization                                                 |
|                                               | TcYellow-g2 | GU111768                     | not tested                                           | egg cuticle stabilization                                                 |
|                                               | TcYellow-h  | GU111769                     | pigmentation/sclerotization                          | pigmentation/sclerotization                                               |
|                                               | TcYellow-y  | GU111770                     | prevents hindwing melanin production                 | pigmentation/sclerotization                                               |
|                                               | TcYellow-1  | GU111771                     | not tested                                           | pigmentation/sclerotization                                               |
|                                               | TcYellow-2  | GU111772                     | not tested                                           | pigmentation/sclerotization                                               |
|                                               | TcYellow-3  | GU111773                     | not tested                                           | pigmentation/sclerotization                                               |
|                                               | TcYellow-4  | GU111774                     | not tested                                           | pigmentation/sclerotization                                               |
|                                               | TcYellow-5  | GU111775                     | not tested                                           | pigmentation/sclerotization                                               |

| Category                         | Gene        | Genbank/GLEAN<br>accession # | dsRNA knock-down phenotypes | proposed function           |
|----------------------------------|-------------|------------------------------|-----------------------------|-----------------------------|
| Cuticle<br>protein (CP)<br>genes | RR1 CP      | ~50 genes                    | not tested                  | cuticle structural proteins |
|                                  | RR2 CP      | ~50 genes                    | not tested                  | cuticle structural proteins |
|                                  | RR3 CP      | ~10 genes                    | not tested                  | cuticle structural proteins |
|                                  | CPLC        | ~15 genes                    | not tested                  | cuticle structural proteins |
|                                  | other CPs*  | ~15 genes                    | not tested                  | cuticle structural proteins |
|                                  | TcCPAP3-A1  | EF125544                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP3-A2  | EF125545                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP3-B   | EF125544                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP3-C5a | EF125545                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP3-C5b | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP3-D1  | EF125544                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP3-D2  | EF125545                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP3-E   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-A   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-B   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-C   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-D   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-E   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-F   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-G   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-H   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-I   | EF125546                     | not tested                  | cuticle structural protein  |
|                                  | TcCPAP1-J   | EF125546                     | not tested                  | cuticle structural protein  |

\*includes tweedle, CPF and CPFL genes

With respect to category (1) above, insects employ an amazing variety of what appear to be structural protein genes during manufacture of the chitinous matrices. In *T. castaneum* there are approximately 160 cuticle protein genes, encoding approximately 110 RR motif proteins, ~15 "cuticle proteins of low complexity" (CPLCs), 18 "cuticle proteins analogous to peritrophins" CPAPs) and several other minor categories of cuticle proteins, each represented by only one or a few genes (Table 1 and unpublished observations). Why insects should require such a large array of protein structural components for cuticle and peritrophic matrix is still uncertain, but it is becoming clear that the various cuticle proteins are not uniformly expressed, and that different regions of cuticle and peritrophic matrix have different protein composition, probably reflecting the different physical properties and functions needed in different regions of the exoskeleton and digestive sac (Willis, 2010).

A great number and variety of genes are also utilized for chitin-modification and degradation (24 *chitinases*, 4 *N-acetyl glucosaminidases* and 9 *chitin deacetylases*) and for cuticle tanning and pigmentation (26 genes). Of particular interest in the latter category are the 14 *yellow* genes, each of which may be specialized for a unique function. For example, we found that one of the *yellow* genes is required specifically for wing pigmentation (but not that of elytra or body wall) while another *yellow* gene has a specific, vital role in tanning of the cuticle of the adult body wall (Arakane et al., 2010).

#### 3. Summary

In summary, the *T. castaneum* genome project has opened a fast-track to gene discovery in this stored product pest insect for all areas of *Tribolium* biology, two of which are briefly discussed here. These examples reveal the complexity and sophistication of genetic regulation of insect adaptations, but also illustrate the rapid progress towards understanding biological mechanisms made possible by the availability of this genome sequence. Any gene can be quickly categorized as either essential or dispensable by the powerful technique of RNAi. For essential genes, the timing and mode of RNAi-induced death give clues about specific gene functions, supplementing insights gained from protein sequence homology and conserved domain analysis. More subtle and detailed functional inferences can be gleaned by more careful scrutiny of beetles after gene knockdown or by more sophisticated bioassays. Examples include monitoring for changes in responsiveness to pheromone after knockdown of candidate olfaction genes, monitoring for abnormalities in stereotyped premolting behavior after knockdown of

candidate effector genes involved in the endocrine regulation of molting, or monitoring cuticle composition after knockdown of genes with suspected roles in the metabolism or recycling of the exoskeleton. Assessment of gene/protein expression patterns and biochemical studies of purified or recombinant proteins can complement and supplement gene RNAi studies. The resulting improvements in our knowledge of the basic biology of pest insects will fuel the next generation of pest control technologies.

#### Disclaimer

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

#### References

Arakane, Y., Muthukrishnan, S., Kramer, K.J., Specht, C.A., Tomoyasu, Y., Lorenzen,

- M.D., Kanost, M.R., Beeman, R.W., 2005a. The *Tribolium* chitin synthase genes *TcCHS1* and *TcCHS2* are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix, respectively. Insect Molecular Biology 14, 453-463.
- Arakane, Y., Muthukrishnan, S., Beeman, R.W., Kanost, M.R., Kramer, K.J., 2005b.
- *Laccase 2* is the phenoloxidase gene required for beetle cuticle tanning. Proceedings of the National Academy of Sciences 102, 11337-11342.
- Arakane, Y., Specht, C.A., Beeman, R.W., Kramer, K.J., Muthukrishnan, S., 2008. Chitin synthases are required for survival, fecundity, egg-hatch in the red flour beetle, *Tribolium castaneum*. Insect Biochemistry and Molecular Biology 38, 961-964.
- Arakane, Y., Lomakin, J., Beeman, R.W., Muthukrishnan, S., Gehrke, S.H., Kanost M.R., Kramer, K.J., 2009a. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in *Tribolium castaneum*. Journal of Biological Chemistry 284, 16584-16594.
- Arakane, Y., Dixit, R., Begum, K., Park, Y., Specht, C.A., Kramer, K.J., Muthukrishnan, S., Beeman, R.W., 2009b. Analysis of functions of the chitin deacetylase gene family in *Tribolium castaneum*. Insect Biochemistry and Molecular Biology 39, 355-365.
- Arakane, Y., Dittmer, N.T., Kramer, K.J., Muthukrishnan, S., Beeman, R.W., Kanost, M.R., 2010. Identification, mRNA expression and functional analysis of some of the *yellow* family genes in *Tribolium castaneum*. Insect Biochemistry and Molecular Biology, In Press.
- Dixit, R., Arakane, Y., Specht, C.A., Richard, C., Kramer, K.J., Beeman, R.W., Muthukrishnan, S., 2008. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of *Tribolium castaneum* and three other species of insects. Insect Biochemistry and Molecular Biology 38, 440-451
- Engsontia, P., Sanderson, A.P., Cobb, M., Walden, K.K.O., Robertson, H.M., Brown, S., 2008. The red flour beetle's large nose: An expanded odorant receptor gene family in *Tribolium* castaneum. Insect Biochemistry and Molecular Biology 38, 387-397.
- Foret, S., Maleszka, R., 2006. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (*Apis mellifera*). Genome Research 16, 1404-1413.
- Hogenkamp, D.G., Arakane, Y., Kramer, K.J., Muthukrishnan, S., Beeman, R.W., 2008. Characterization and expression of the β-N-acetylglucosaminidase gene family of Tribolium castaneum. Insect Biochemistry and Molecular Biology 38, 478-489.
- Howard, R., 1987. Chemosystematic studies of the Tribolinni (Coleoptera: Tenebrionidae): phylogenetic inferences from the defensive chemicals of eight *Tribolium* spp., *Palorus ratzeburgi* (Wissmann), and *Latheticus* oryzae (Waterhouse). Annals of the Entomological Society of America 80, 398-405.
- Jasrapuria, S., Arakane, Y., Osman, G., Kramer, K.J., Beeman, R.W., Muthukrishnan,
- S., 2010. Genes encoding proteins with peritrophin A-type chitin binding domains in *Tribolium castaneum* are grouped into three distinct families based on phylogeny, expression and function. Insect Biochemistry and Molecular Biology, In Press.
- Keville, R., Kannowski, P.B., 1975. Sexual excitation by pheromones of the confused flour beetle. Journal of Insect Physiology 21, 81-84.
- Kim, H.S., Murphy, T., Xia, J., Caragea, D., Park, Y., Beeman, R.W., Lorenzen, M.D., Butcher, S., Manak, J.R., Brown, S.J., 2010. BeetleBase in 2010: revisions to provide comprehensive genomic information for *Tribolium castaneum*. Nucleic Acids Research 38, D437-D442.

- Kim, J., Matsuyama, S., Suzuki, T., 2005. 4,8-dimethyldecanal, the aggregation pheromone of *Tribolium castaneum*, is biosynthesized through the fatty acid pathway. Journal of Chemical Ecology 31,1381-1400.
- Levinson, H. Z., Mori, K., 1983. Chirality determines pheromone activity for flour beetles. Naturwissenschaften 70, 190-192.
- Lu, D., Li, X., Liu, X., Zhang, Q., 2007. Identification and molecular cloning of putative odorant-binding proteins and chemosensory protein from the Bethylid wasp, *Scleroderma guani* Xiao et Wu. Journal of Chemical Ecology 33, 1359-1375.
- Maleszka, J., Foret, S., Saint, R., Maleszka, R., 2007. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (*Apis mellifera*). Development, Genes and Evolution 217, 189-196.
- Markarian, H., Florentine, G.J., Pratt, J.J., Int., 1978. Quinone production in some species of *Tribolium*. Journal of Insect Physiology 24, 785-790.
- Notredame, C., Higgins, D.G., Heringa, J. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302, 205-217.
- Phillips, T.W., Cogan, P.M., Fadamiro, H.Y., 2000. Pheromones. In: Subramanyam, B., Hagstrum, D.W. (Eds), Alternatives to Pesticides in Stored-Product IPM. Kluwer Academic Publishers, Boston, USA, pp. 273-302,
- Richards, S., et al. (The *Tribolium* Genome Sequencing Consortium), 2008. The genome of the model beetle and pest *Tribolium castaneum*. Nature 452, 949-955.
- Suzuki, T., 1980. 4, 8-Dimethyldecanal: The aggregation pheromone of the flour beetles, *Tribolium castaneum* and *T. confusum* (Coleoptera: Tenebrionidae). Agricultural Biological Chemistry *44, 2519-2520.*
- Suzuki, T., Kozaki, J., Sugawara, R., Mori, K., 1984. Biological activities of the analogs of the aggregation pheromone of *Tribolium castaneum* (Coleoptera: Tenebrionidae). Applied Entomology and Zoology 19, 15-20.
- Suzuki, T., Mori, K., 1983. (4R,8R)-4,8-dimethyldecanal: the natural aggregation pheromone of the red flour beetle, *Tribolium castaneum* (Coleoptera: Tenebrionidae). Applied Entomology and Zoology 14, 228-230.
- Verheggen, F., Ryne, C., Olsson, P.O.C., Arnaud, L., Lognay, G., Högberg, H.E., Persson, D., 2007. Electrophysiological and behavioral activity of secondary metabolites in the confused flour beetle, *Tribolium confusum*. Journal of Chemical Ecology 33, 525-539.
- Vieira, F.G., Sánchez-Gracia, A., Rozas, J., 2007. Comparative genomic analysis of the odorant-binding protein family in 12 *Drosophila* genomes: purifying selection and birth-and-death evolution. Genome Biology 8, R235.
- Willis, J., 2010. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochemistry and Molecular Biology, In Press.
- Zhu, Q., Arakane, Y., Beeman, R.W., Kramer, K.J., Muthukrishnan, S., 2008. Functional specialization among insect chitinase family genes revealed by RNA interference. Proceedings of the National Academy of Sciences, USA, 105, 6650-6655.