2,779 research outputs found

    Autonomous and scalable control for remote inspection with multiple aerial vehicles

    Get PDF
    © 2016 Elsevier B.V.A novel approach to the autonomous generation of trajectories for multiple aerial vehicles is presented, whereby an artificial kinematic field provides autonomous control in a distributed and highly scalable manner. The kinematic field is generated relative to a central target and is modified when a vehicle is in close proximity of another to avoid collisions. This control scheme is then applied to the mock visual inspection of a nuclear intermediate level waste storage drum. The inspection is completed using two commercially available quadcopters, in a laboratory environment, with the acquired visual inspection data processed and photogrammetrically meshed to generate a three-dimensional surface-meshed model of the drum. This paper contributes to the field of multi-agent coverage path planning for structural inspection and provides experimental validation of the control and inspection results

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Supporting UAVs with Edge Computing: A Review of Opportunities and Challenges

    Full text link
    Over the last years, Unmanned Aerial Vehicles (UAVs) have seen significant advancements in sensor capabilities and computational abilities, allowing for efficient autonomous navigation and visual tracking applications. However, the demand for computationally complex tasks has increased faster than advances in battery technology. This opens up possibilities for improvements using edge computing. In edge computing, edge servers can achieve lower latency responses compared to traditional cloud servers through strategic geographic deployments. Furthermore, these servers can maintain superior computational performance compared to UAVs, as they are not limited by battery constraints. Combining these technologies by aiding UAVs with edge servers, research finds measurable improvements in task completion speed, energy efficiency, and reliability across multiple applications and industries. This systematic literature review aims to analyze the current state of research and collect, select, and extract the key areas where UAV activities can be supported and improved through edge computing

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Aerial robotics in building inspection and maintenance

    Get PDF
    Buildings need periodic revision about their state, materials degrade with time and repairs or renewals have to be made driven by maintenance needs or safety requirements. That happens with any kind of buildings and constructions: housing, architecture masterpieces, old and ancient buildings and industrial buildings. Currently, nearly all of these tasks are carried out by human intervention. In order to carry out the inspection or maintenance, humans need to access to roofs, façades or other areas hard to reach and otherwise potentially hazardous location to perform the task. In some cases, it might not be feasible to access for inspection. For instance, in industry buildings operation must be often interrupted to allow for safe execution of such tasks; these shutdowns not only lead to substantial production loss, but the shutdown and start-up operation itself causes risks to human and environment. In touristic buildings, access has to be restricted with the consequent losses and inconveniences to visitors. The use of aerial robots can help to perform this kind of hazardous operations in an autonomous way, not only teleoperated. Robots are able to carry sensors to detect failures of many types and to locate them in a previously generated map, which the robot uses to navigate. Some of those sensors are cameras in different spectra (visual, near-infrared, UV), laser, LIDAR, ultrasounds and inertial sensory system. If the sensory part is crucial to inspect hazardous areas in buildings, the actuation is also important: the aerial robot can carry small robots (mainly crawler) to be deployed to perform more in-depth operation where the contact between the sensors and the material is basic (any kind of metallic part: pipes, roofs, panels…). The aerial robot has the ability to recover the deployed small crawler to be reused again. In this paper, authors will explain the research that they are conducting in this area and propose future research areas and applications with aerial, ground, submarine and other autonomous robots within the construction field.Peer ReviewedPostprint (author's final draft

    Asynchronous displays for multi-UV search tasks

    Get PDF
    Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion
    corecore