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Synchronous video has long been the preferred mode for controlling remote robots with other modes such as 
asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two 
basic problems for controlling multiple robots using synchronous displays: operator overload and 
information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must 
search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave 
unattended views while dealing with others  that were noticed.  The related fusion problem arises because 
robots’ multiple fields of view may overlap forcing the operator to reconcile different views from different 
perspectives and form an awareness of the environment by “piecing them together”. We have conducted a 
series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first 
experiments involved static panoramas in which operators selected locations at which robots halted and 
panned their camera to capture a record of what could be seen from that location. A subsequent experiment 
investigated the hypothesis that the relative performance of the panoramic display would improve as the 
number of robots was increased causing greater overload and fusion problems.  In a subsequent Image 
Queue system we used automated path planning and also automated the selection of imagery for presentation 
by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE 
display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs.  The 
panoramic displays which addressed only the overload problem led to performance similar to synchronous 
video while the Image Queue and SUAVE displays which addressed fusion as well led to improved 
performance on a number of measures.  In this paper we will review our experiences in designing and testing 
asynchronous displays and discuss challenges to their use including tracking dynamic targets.  

I. Introduction 
ONTROLLING multi-robot systems (MrCS) has become a prominent area of research in human-robot 
interaction (HRI). These efforts have included theoretical and applied development of the Neglect Tolerance 

model and Fan-out model to characterize the control of independently operating robots1,2, predefined rules to 
coordinate cooperating robots as in Playbook3 and Machinetta4, and techniques for influencing teams obeying 
biologically inspired control laws5,6,7. While our efforts to increase span of control over unmanned vehicle (UV) 
teams appear to be making progress, the asymmetry between what we can command and what we can comprehend 
has been growing. Automation can reduce excessive demands for human input, but exploiting the information being 
collected and returned poses a greater problem. A human is frequently included in the loop of a MrCS expressly to 
monitor and interpret video being gathered by UVs. This can be a difficult task for even a single camera8 and begins 
exceeding operator capability well before reaching ten cameras9,10. With increasing autonomy of robot teams and 
plans for biologically inspired swarms of much greater size the problem of absorbing and benefiting from their 
product has become more pressing than improving ways to command them.  

We identify two basic problems for exploiting video from multiple robots: operator overload and information 
fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search multiple 
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video streams for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended 
views while occupied with targets in attended views.   

The related fusion problem arises because robots’ multiple fields of view may overlap forcing the operator to 
reconcile views from different perspectives to form an awareness of the environment by “piecing them together”.  
Simply performing the mental rotations needed to match a single camera view to map coordinates has been found to 
be difficult and error prone for UAV video11.  Taken together the problems of multi-camera monitoring and fusion 
of viewpoints can pose insurmountable difficulties to operators who must develop and maintain situation awareness 
(SA) through remote camera views. 

Our original motivation for investigating asynchronous displays for MrCS was to address bandwidth restrictions 
introduced into RoboCup Rescue competition to more realistically simulate obstacles to multi-robot control.   
Although the panorama mode was designed to drastically  reduce bandwidth  and allow operation despite 
intermittent communications, our system was so effective we decided to test it under conditions  favorable to  
conventional  streaming video interfaces.   We hypothesized that a solution to the difficulty of monitoring multiple 
camera views might be to make the task asynchronous by removing the requirement for simultaneity and supporting 
sequential viewing.  In foraging tasks such as urban search and rescue (USAR) targets (victims) are presumed to 
remain static while foragers (robots) explore the environment to find them.  Because performing the search task 
requires only that a target be detected in some image, the many redundant frames of video covering a region 
containing a target from a variety of distances and angles are unnecessary for performing the task.  The operator 
needs only a single frame covering the area containing the target.  The problem for this approach then becomes one 
of choosing some set of images that best cover the regions explored by the robots.  Because targets are presumed 
static these images can be taken at any time but need to be selected so as to include as much of the explored region 
as possible.  This approach separates the problem of controlling the robots from that of searching the environment 
by focusing operator attention on views of regions of space rather than camera views of robots.  Once a set of high 
coverage images has been selected, the operator can peruse them sequentially to find targets.  This transforms a 
difficult mentally-loading forced-pace task of monitoring multiple changing views into a self-paced task in which 
the operator can spend as much time as needed to search each image.   The information fusion problem arises out of 
the need to understand the relationship among the regions portrayed in the imagery in order to maintain SA.  This is 
similar to the fusion problem of integrating video from the cameras of multiple moving robots.  The display design 
problem is to develop mechanisms for storing and retrieving imagery that supports information fusion.   

In this paper we review a series of four experiments investigating the use of asynchronous displays for a multi-
UGV USAR task and a fifth experiment using similar techniques for aerial search.  The first two experiments 
involve static panoramas in which operators selected locations at which robots halted and panned their camera to 
capture a record of what could be seen from that location.  In these experiments operators controlled the robots by 
specifying waypoints with the final waypoint determining the images that were selected to “cover” the space.  The 
locations at which panoramas had been taken were displayed and accessed through a map being constructed as the 
robots searched the space.  The second experiment investigated the hypothesis that the relative performance of the 
panoramic display would improve as the number of robots was increased causing greater overload and fusion 
problems.  The Image Queue system extended search of asynchronous imagery to automated path planning also 
automating the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A 
second experiment incorporated automatic target recognition (ATR) in the selection of imagery. A final experiment 
compared viewing strategies using the SUAVE display, an asynchronous variant of the picture-in-picture technique 
for fusing video from multiple UAVs.   

A. Issues in Asynchronous Control 
 
Alberts et al.12 introduced the distinction between network centric and platform centric orientations to help 

explain the advantages they felt might accrue to highly networked military forces.  In conventional forces a platform 
and its sensors operate with relative independence.  A pilot, for example, would be able to see very close aircraft 
through his canopy, nearby aircraft through onboard radar, and hear with less precision about more distant aircraft 
over his radio.  A commander directing the mission would only see what was available through her own sensors plus 
reports coming in from other aircraft.  In a network centric version the aircraft could share their targets so each pilot 
would see what everyone else was sensing as well as data from his own instruments.  This sharing of data cuts the 
bond between platform and information allowing the commander to focus on the mission rather than “who reported 
what”.  The pilots still must fly their planes, however, this local platform-specific task is now divorced from the 
commander’s problem of maintaining global situation awareness.  According to 12 the focus on task rather than 
platform should improve SA for both the commander and team.  An alternative perspective13 holds that involvement 
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in navigation and path planning are crucial to developing and maintaining SA and that separating these functions 
from target search could lead to reduced SA.  

Both aspects of SA are present in the USAR task.  In the panorama experiments operators needed to plan paths 
and coordinate robots as well as search panoramas for victims.  In the Image Queue experiments, by contrast, path 
planning was automated so operators needed to develop SA by associating viewpoints on a map with imagery they 
were viewing.  The issue is further clouded by the effects of reduced workload from automation on operators’ ability 
to direct resources to information fusion and SA.  In reviewing results we will focus on differences in victim 
detection rates and errors that may help understand how divorcing platform from search has affected SA. 

II. Experimental Environments 

A. USARSim and MrCS 
 
Four of the five experiments were conducted using the USARSim robotic simulation with simulated Pioneer P3-

AT robots performing Urban Search and Rescue (USAR) foraging tasks. USARSim is a high-fidelity simulation of 
urban search and rescue (USAR) robots and environments developed as a research tool for the study of human-robot 
interaction (HRI) and multi-robot coordination. Validation data showing close agreement in detection of walls and 
associated Hough transforms for a simulated Hokuyo laser range finder are described14. Validation studies showing 
close agreement in behavior between USARSim models and real robots being modeled are reported15,16,17,18,19 as 
well as agreement for a variety of feature extraction techniques between USARSim images and camera video 
reported by Carpin et al.20. 

MrCS (Multi-robot Control System), a multi-robot communications and control infrastructure with 
accompanying user interface, developed for experiments in multirobot control and RoboCup competition was used 
in these experiments. MrCS provides facilities for starting and controlling robots in the simulation, displaying 
multiple camera, and laser output, as well as maps, and supporting inter-robot communication through Machinetta, a 
distributed multi-agent coordination infrastructure.  

The operator selects the robot to be controlled from the colored thumbnails at the top right of the screen. These 
thumbnails also show the live video streams from all robots. To view more of the selected scene shown in the large 
video window the operator uses pan/tilt sliders to control the camera of the selected robot. The current locations and 
paths of the robots are shown on the Map Viewer (bottom left). Under manual control, robots are tasked by 
assigning waypoints on a heading-up map on the Map Viewer or through the teleoperation widget (lower right).  

 

            
   Figure 1. Base MrCS Display          Figure 2. Panorama Display  

  
The asynchronous displays reviewed in this paper are extensions of this basic interface.  In the panorama studies 

(Figure 2) thumbnail video is eliminated and operators control solely through the map by specifying waypoints and 
the viewing angles to be captured at the terminal waypoint.  Panoramas are retrieved from icons located at terminal 
waypoints and displayed in a window at the bottom right.  This view can be panned and tilted (as on the live robot) 
to view the full extent of the panorama which is indicated by the size of the “pie slice” showing the range of viewing 
angles requested by the operator.  

The Image Queue replaces operator specified paths and selection of imagery with automated path planning and 
selection of imagery to be viewed.  The Image Queue (Figure 3) augments the basic interface with a filmstrip viewer 
designed to present the operator with a filtered view of what has passed before the team’s cameras. A filtered view is 



 
American Institute of Aeronautics and Astronautics 

 
 

4 

beneficial because the video taken contains a high proportion of redundant images from sequential frames and 
overlapping coverage by multiple robots. The filter attempts to reduce redundancy by only showing highly relevant 
images from the video stream. Relevance is scored by computing a utility for every image that determines its 
priority in the queue displayed in the filmstrip viewer. To achieve this we store every frame from all video streams 
in a database together with associated robot poses and laser scans taken at the time of capture. Visual coverage is 
computed by referencing the image in the map as seen in Figure 4. Images with larger areas receive higher utility 
scores. Areas that have already been seen by other images in the filmstrip viewer do not count towards utility. In 
colloquial terms this kind of utility picks images that cover large areas with minimal overlap. Figure 4 illustrates this 
concept of utility with a simple example. While the Image Queue filmstrip replaces live video feeds in the 
thumbnails the ability to select a robot from the map to teleoperate and view streaming video remains to allow 
operators to intervene to free entangled robots. 

 

 
Figure 4. An illustration of the utility of individual 
frames from a video stream. The frame taken at 1) has the 
largest visual coverage and highest utility while the frame at 
2) has no utility since it is entirely overlapped by 1). Frame 
3) has some utility since it provides coverage in an area not 
covered by 1). 

Figure 3.  Image Queue Display with “filmstrip” on right 

 
 

Figure 5. SUAVE Display showing imagery textured on height map 
 

B. SUAVE 
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Simple UAV Environment (SUAVE) described at a previous InfoTech21 is an experimental system developed to 
investigate the use of model-inspection techniques to exploit real-time video feeds. SUAVE uses a previously 
acquired height map to present imagery.  As UAVs stream video, individual geo-referenced frames are selected and 
projected onto the height map replacing the old texture.  To search the video returned by the UAVs the operator 
inspects the terrain model for targets.   Our method resembles picture-in-picture (PiP) presentation22,23,24,25 , in which 
the terrain model is scaled and transformed so that video may be viewed in context but is truly asynchronous relying 
on inspection of sampled imagery rather than viewing video to find and mark targets.  The reported experiment uses 
a height map and video obtained from the Virtual Battle Space II (VBS2) military simulation. 

 

III. Experiments 
 Table 1 shows the studies being reviewed.  All experiments used control conditions in which operators were 

presented with live video streams for comparison with asynchronous data presentations.  The Panorama-2 
experiment additionally tests effects related to the number of robots.  The Image Queue-2 experiment includes ATR 
results in the utility function selecting imagery.  Cuing for ATR recognized targets is tested within the ATR 
condition.  SUAVE and the steaming video control were counterbalanced.  The third SUAVE-22 condition tests the 
effects of doubling the number of UAVs to increase the resolution of the model (SUAVE). 

Table 1. Reviewed Experiments 
Study N Design rob

ots 
Comparisons 

Panorama-126 21 repeated measures 4 panorama vs. streaming video  
Panorama-227 29 2 groups  

repeated measures 
4,8
,12 

panorama vs. streaming video (groups) 
number of robots (repeated measure) 

Image Queue-128 32 2 groups 12 Image Queue vs. streaming video 
Image Queue-229 30 repeated measures 

2 groups 
12 Image Queue vs. streaming video 

ATR cued vs. no cue (within Image Queue) 
SUAVE30 12 repeated measures 11,

22 
SUAVE vs. streaming video/ SUAVE-22 (last condition) 

 

IV. Results 

A. Targets and Coverage 
 Performance on primary task measures of area covered and targets found were strikingly similar across 

synchronous and asynchronous displays.  In Panorama-1 under conditions allowing uninterrupted, noise free, 
streaming video from 4 robots the  synchronous interface led to only somewhat better (5 vs. 4 victims) search 
performance. A repeated measures ANOVA found this difference significant when detection was defined by a mark 
within a 2 m radius of the target F(1,19)=9.54, p=.006..  This similarity in performance was replicated in Panorama-
2.   For victims marked within 2 m, the average number of victims found in the panorama condition was 5.36 using 
4 robots, 5.50 for 8 robots, but dropping back to 4.71 when using 12 robots.  Participants in the Streaming condition 
were slightly more successful at this range, F1,29 = 3.563, p < .028, finding 4.8, 7.07 and 4.73 victims respectively.  
As Figure 6 shows this difference is due to a spike in performance for streaming video at 8 robots.    Number of 
robots had a significant effect on every dependent measure collected except waypoints per mission.    

Similar results were found for found for the Image Queue.  For Image Queue-1 participants in both conditions 
were successful in searching through the environment. On average participants in the streaming video condition 
found 9.10 victims while those in the Image Queue condition found 8.51 (Figure 7) without a significant difference 
between conditions (F1,28 = .733, p = .387). The area explored (Figure 7) for both conditions did also not differ 
significantly (F1,28 = 2.147, p = .154). 

In Image-Queue-2 Participants were again successful in searching the environment with no significant 
differences between conditions (F1,28 = .181, p = .674) or groups (F1,28 = .103, p = .751). On average, participants in 
the streaming video condition found 9.03 victims, while those in the Image Queue conditions found 8.73. The area 
explored by the 12 robots also showed no significant differences among displays (F1,28 = 0.479, p = .495). 
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                 Figure 7. Image Queue-1 Victims and Coverage 
 
Differences were found in SUAVE when targets marked within 50 meters were scored as correct, the resulting 

ANOVA showed a significant advantage for the SUAVE condition (F1,11  = 14.438, p = 0.003).  When accuracy is 
relaxed to a 100 meter  radius,  however,  this  advantage  is  erased  
with participants in the video stream condition successfully marking  
5.50 targets while those in the SUAVE condition mark 5.67 (Figure 
8) (F1,11 = 0.035, p = 0.854).  A general finding across these 
experiments was that asynchronous displays did not lead to marking 
more targets as might be expected given the reduction in operator 
load in changing from a forced-pace to self-paced task.  Conversely, 
despite drastic reductions in information presented and loss of 
connection between  
robots and camera views operators were able to perform just as well  
searching asynchronously. 

B. Accuracy 
 
Every mark a participant made for a victim was compared to ground truth to determine whether there was in 

fact a victim at the location. A mark made further than the criterion distance from any victim or multiple marks for 
one victim were counted as false positives. Victims that were missed, but present in the video feed, and not marked 
were counted as false negatives.   Because the number of victims “found” is confounded with the accuracy with 
which they have been marked we considered data for radii of different sizes in the Panorama and SUAVE 
experiments.  A radius of 2 m was adopted in the Image Queue experiments because data showed low rates of false 
positives (marking a victim beyond the 2 m radius) of between 1 (Image Queue) and 2.4 (streaming video) while 
successful markings were 8.5 and 9.1 suggesting that the 2 m criterion does well at associating most marks with 
victims. 

No differences in accuracy were found in either of the Panorama studies where results remained the same across 
the range of radii used to define marked targets.  Significant advantages favoring the asynchronous displays, 
however, were found in both Image Queue experiments and for SUAVE.  For the Image Queue false negatives may 
include targets that have been observed by robots but not presented as well as those actually missed by the operator.  
In Image Queue-1 the data showed a significant advantage for both types of errors. There were significantly fewer 
false positives (F1,28 = 13.032, p = .001) as well as fewer false negatives (F1,28 = 5.526, p = .026) with an average 
in the Image Queue condition of 7.48 while participants in the streaming video condition missed 9.34 victims on 
average (Figure 9). 

For Image Queue-2 the number of false positives showed no significant difference between the Image Queue 
conditions and streaming video (F1,28 = .053, p = .819). A one-way ANOVA, however, found a significant advantage 
for the no-cue group over the cued group (F1,28 = 4.974, p = .034) within the Image Queue conditions. The Image 
Queue did, however, show a significant improvement over the streaming video condition (F1,28 = 7.292, p = .012) for 
false negatives, with the average number of missed victims dropping to 7.17 from the 8.67 missed in the streaming 
video condition.   

Figure 8. Targets Marked 50 and 100 m 
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As shown in Figure 8 SUAVE also substantially improved operators’ accuracy allowing them to mark within 50 
m rather than the 100 m radius needed when marking directly from video. 

 

 
Figure 9. Image Queue-1 Errors in Marking   Figure 10. Image Queue-2 Errors in Marking (note: 

because separate groups were used for the cueing condition two 
groups are shown for the Streaming Video control according to 
this division of participants)  

 

C. Workload 
An initial premise of our investigation of asynchronous displays was that changing forced-pace search tasks into 

self-paced asynchronous ones would reduce operator workload and lead to better performance.  Another empirical 
aspect of workload is additional actions that may be required by one system and not the other.  Because finding 
targets using the streaming video display requires associating the robot in the thumbnail with the one on the map an 
operator may need to teleoperate the in-focus robot to help locate it increasing his workload.  No differences were 
found in NASA-TLX workload ratings for either of the Panorama experiments.  In Image Queue-1 a repeated 
measures ANOVA showed a significant difference for teleoperation instances between the streaming video and 
Image Queue conditions  (Figure 11) . Participants in the streaming video condition teleoperated on average 21.24 
times while participants in the Image Queue conditon teleoperated only an average of 4.97 times (F1,28 = 150.719, 
p < .001).  The full scale NASA-TLX workload measure also revealed a significant advantage in workload (F1,28 = 
7.347, p = .001). Examining individual dimensions of workload we found significant differences for temporal 
demand (F1,28 = 6.503, p = .016) and effort (F1,28 = 
4.576, p = .040) . 

For Image Queue-2 a repeated measures ANOVA 
showed a significant difference (F1,28 = 176.845, p < 
.001) for the count of teleoperation times between the 
streaming video and Image Queue condition with 
participants in the streaming video condition 
teleoperating an average  of 16.07 times while they 
chose to teleoperate only 0.87 times in the Image 
Queue condition. While the full-scale NASA-TLX 
workload measure revealed no advantage for either 
the Image Queue or streaming video conditions, the 
no-cue version of the Image Queue was judged 
significantly less taxing than the cued version (F1,28 = 
5.364, p = .028).   Workload  followed  a similar  pattern     Figure 11.  Teleoperation and NASA-TLX 
in the SUAVE experiment with  the  full  scale  NASA-TLX   
workload measure  finding  no  advantage  for  either  condition.  
 (F1,11   =0.139, p = 0.716). 
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V. Discussion 

 
Our review of five recent experiments investigating the use of asynchronous displays to combine video from 

multiple robots shows promise in the approach but also a need for further research. While asynchronous displays did 
not lead to finding more targets they did in most cases lead to greater accuracy in marking targets and somewhat 
lower workload.  In principle, integrative displays such as Image Queue or SUAVE should be fully scalable 
improving performance while imposing no additional load on the operator as the number of robots increases.  In the 
case of Image Queue additional robots should increase the probability of obtaining higher utility imagery making the 
operator’s search more productive in reviewing the same number of images.  For SUAVE adding more UAVs could 
either increase the spatial resolution of the display by using more cameras at higher resolutions or increase its 
temporal resolution by refreshing areas more frequently.  This should improve the “quality” of imagery being 
reviewed without requiring any additional effort on the part of the operator.  Our studies, however, have not yet 
found this expected scaling advantage for asynchronous displays.  Although operator workload in Panorama-2 
would be expected to increase with N robots due to the need to set waypoints and specify viewing cones, this 
disadvantage should have been offset by scalable gains in visual search of stored panoramas.  Instead, operators 
showed the same decline in performance with 12 robots as those monitoring streaming video and failed to benefit 
going from 4 to 8 as users of the conventional display did.  A similar failure to show an expected improvement was 
found in the SUAVE experiment where going from 12 to 22 UAVs (which should have improved both coverage and 
resolution) had no effect on performance.  While we remain confident in the rationale for scalability of 
asynchronous displays we have not yet demonstrated it in our experiments. 

Suitability for multi-operator control is another potential advantage for asynchronous displays such as the Image 
Queue.  Operators attempting to control or monitor robot teams in real time would be faced not only with the 
daunting task of controlling and coordinating their own robots but with coordinating with others trying to perform 
the same difficult tasks.  Asynchronous control such as the Image Queue provides convenient ways to divide tasks 
functionally among operators, such as allocating exploration and target identification to different operators.  Shifting 
focus from platforms and camera video to the network and regions being explored allows searchers to concentrate 
on their primary search task rather than on driving or monitoring robots.  Just as our Image Queue operators were 
called upon to teleoperate robots out of trouble from time to time, we envision future systems which are controlled 
at both network and platform levels.  To realize this kind of control architecture, we propose a call center approach 
in which some operators address independent control needs for monitoring and exploration of UVs, while other 
operators address independent location-based images in a queue for victim marking and other perceptual tasks.  
While this approach seems theoretically plausible it remains untested. 

A final challenge to the use of asynchronous displays is making them suitable for dynamic targets and 
environments.  Our current asynchronous displays trade-off temporal resolution for spatial resolution.  You can 
either see what is going on at a few dispersed points in the environment by viewing streaming video or view a wider 
swath of the environment but not know the temporal relations among the imagery you are viewing.  We are 
currently investigating several potential solutions to these problems including coordinating path planning to 
incorporate techniques from the pursuit-evasion, monitoring boundaries to build probabilistic models of target 
locations, and providing operators control allowing them to trade-off temporal and spatial resolution. 
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