20 research outputs found

    Autonomous and reversible adhesion using elastomeric suction cups for in-vivo medical treatments

    Get PDF
    Remotely controllable and reversible adhesion is highly desirable for surgical operations: it can provide the possibility of non-invasive surgery, flexibility in fixing a patch and surgical manipulation via sticking. In our previous work, we developed a remotely controllable, ingestible, and deployable pill for use as a patch in the human stomach. In this study, we focus on magnetically facilitated reversible adhesion and develop a suction-based adhesive mechanism as a solution for non-invasive and autonomous adhesion of patches. We present the design, model, and fabrication of a magnet-embedded elastomeric suction cup. The suction cup can be localised, navigated, and activated or deactivated in an autonomous way; all realised magnetically with a pre-programmed fashion. The use of the adhesion mechanism is demonstrated for anchoring and carrying, for patching an internal organ surface and for an object removal, respectively

    Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review

    Get PDF
    In nature, aquatic organisms have evolved various attachment systems, and their attachment ability has become a specific and mysterious survival skill for them. Therefore, it is significant to study and use their unique attachment surfaces and outstanding attachment characteristics for reference and develop new attachment equipment with excellent performance. Based on this, in this review, the unique non-smooth surface morphologies of their suction cups are classified and the key roles of these special surface morphologies in the attachment process are introduced in detail. The recent research on the attachment capacity of aquatic suction cups and other related attachment studies are described. Emphatically, the research progress of advanced bionic attachment equipment and technology in recent years, including attachment robots, flexible grasping manipulators, suction cup accessories, micro-suction cup patches, etc., is summarized. Finally, the existing problems and challenges in the field of biomimetic attachment are analyzed, and the focus and direction of biomimetic attachment research in the future are pointed out

    Applications of Bioinspired Reversible Dry and Wet Adhesives: A Review

    Get PDF
    <jats:p>Bioinspired adhesives that emulate the unique dry and wet adhesion mechanisms of living systems have been actively explored over the past two decades. Synthetic bioinspired adhesives that have recently been developed exhibit versatile smart adhesion capabilities, including controllable adhesion strength, active adhesion control, no residue remaining on the surface, and robust and reversible adhesion to diverse dry and wet surfaces. Owing to these advantages, bioinspired adhesives have been applied to various engineering domains. This review summarizes recent efforts that have been undertaken in the application of synthetic dry and wet adhesives, mainly focusing on grippers, robots, and wearable sensors. Moreover, future directions and challenges toward the next generation of bioinspired adhesives for advanced industrial applications are described.</jats:p&gt

    Bionanotechnology to Save the Environment

    Get PDF
    Nanotechnology is the science of manipulating atoms and molecules in the nanoscale thousand times smaller than the width of a human hair. The world market for products that contain nanomaterials is expected to increase enormously in the future. The use of nanotechnology has stretched across various streams of science, from electronics to medicine and has also found applications in the field of cosmetics. How will this revolution impact our lifestyle and our planet? Very often the progresses of science, human knowledge and evolution of our lifestyle has been associated with devastating effects on our forests, oceans and more in general on our planet. The real challenge in the years to come is the sustainability of human evolution. The reader of this interesting book will discover how nanotechnology, and in particular nanomaterials derived from plant biomass and fishery’s waste, can improve the quality of our environment by reducing carbon emissions, improving the recycling of materials and even, in the long run, became a profitable business. Green nanotechnologies can be applied to a huge number of products ranging from intelligent textiles to smart drugs or functional polymers which can have a big impact on our daily lives, but nevertheless help us in saving our biodiversity and our planet. However, to fully achieve all these benefits, companies and scientists should be supported by National and International Agencies and Institutions in order to facilitate and support scientific development in this field allowing from one side the protection of intellectual property, but on the other giving accessibility of these technologies to emerging countries for improving the quality of life and the environment all over the world equally

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    Engineering Dynamics and Life Sciences

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”
    corecore