111 research outputs found

    Improving cyber security in industrial control system environment.

    Get PDF
    Integrating industrial control system (ICS) with information technology (IT) and internet technologies has made industrial control system environments (ICSEs) more vulnerable to cyber-attacks. Increased connectivity has brought about increased security threats, vulnerabilities, and risks in both technology and people (human) constituents of the ICSE. Regardless of existing security solutions which are chiefly tailored towards technical dimensions, cyber-attacks on ICSEs continue to increase with a proportionate level of consequences and impacts. These consequences include system failures or breakdowns, likewise affecting the operations of dependent systems. Impacts often include; marring physical safety, triggering loss of lives, causing huge economic damages, and thwarting the vital missions of productions and businesses. This thesis addresses uncharted solution paths to the above challenges by investigating both technical and human-factor security evaluations to improve cyber security in the ICSE. An ICS testbed, scenario-based, and expert opinion approaches are used to demonstrate and validate cyber-attack feasibility scenarios. To improve security of ICSs, the research provides: (i) an adaptive operational security metrics generation (OSMG) framework for generating suitable security metrics for security evaluations in ICSEs, and a list of good security metrics methodology characteristics (scope-definitive, objective-oriented, reliable, simple, adaptable, and repeatable), (ii) a technical multi-attribute vulnerability (and impact) assessment (MAVCA) methodology that considers and combines dynamic metrics (temporal and environmental) attributes of vulnerabilities with the functional dependency relationship attributes of the vulnerability host components, to achieve a better representation of exploitation impacts on ICSE networks, (iii) a quantitative human-factor security (capability and vulnerability) evaluation model based on human-agent security knowledge and skills, used to identify the most vulnerable human elements, identify the least security aspects of the general workforce, and prioritise security enhancement efforts, and (iv) security risk reduction through critical impact point assessment (S2R-CIPA) process model that demonstrates the combination of technical and human-factor security evaluations to mitigate risks and achieve ICSE-wide security enhancements. The approaches or models of cyber-attack feasibility testing, adaptive security metrication, multi-attribute impact analysis, and workforce security capability evaluations can support security auditors, analysts, managers, and system owners of ICSs to create security strategies and improve cyber incidence response, and thus effectively reduce security risk.PhD in Manufacturin

    Review of Path Selection Algorithms with Link Quality and Critical Switch Aware for Heterogeneous Traffic in SDN

    Get PDF
    Software Defined Networking (SDN) introduced network management flexibility that eludes traditional network architecture. Nevertheless, the pervasive demand for various cloud computing services with different levels of Quality of Service requirements in our contemporary world made network service provisioning challenging. One of these challenges is path selection (PS) for routing heterogeneous traffic with end-to-end quality of service support specific to each traffic class. The challenge had gotten the research community\u27s attention to the extent that many PSAs were proposed. However, a gap still exists that calls for further study. This paper reviews the existing PSA and the Baseline Shortest Path Algorithms (BSPA) upon which many relevant PSA(s) are built to help identify these gaps. The paper categorizes the PSAs into four, based on their path selection criteria, (1) PSAs that use static or dynamic link quality to guide PSD, (2) PSAs that consider the criticality of switch in terms of an update operation, FlowTable limitation or port capacity to guide PSD, (3) PSAs that consider flow variabilities to guide PSD and (4) The PSAs that use ML optimization in their PSD. We then reviewed and compared the techniques\u27 design in each category against the identified SDN PSA design objectives, solution approach, BSPA, and validation approaches. Finally, the paper recommends directions for further research

    Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges

    Full text link
    [EN] If last decade viewed computational services as a utility then surely this decade has transformed computation into a commodity. Computation is now progressively integrated into the physical networks in a seamless way that enables cyber-physical systems (CPS) and the Internet of Things (IoT) meet their latency requirements. Similar to the concept of ¿platform as a service¿ or ¿software as a service¿, both cloudlets and fog computing have found their own use cases. Edge devices (that we call end or user devices for disambiguation) play the role of personal computers, dedicated to a user and to a set of correlated applications. In this new scenario, the boundaries between the network node, the sensor, and the actuator are blurring, driven primarily by the computation power of IoT nodes like single board computers and the smartphones. The bigger data generated in this type of networks needs clever, scalable, and possibly decentralized computing solutions that can scale independently as required. Any node can be seen as part of a graph, with the capacity to serve as a computing or network router node, or both. Complex applications can possibly be distributed over this graph or network of nodes to improve the overall performance like the amount of data processed over time. In this paper, we identify this new computing paradigm that we call Social Dispersed Computing, analyzing key themes in it that includes a new outlook on its relation to agent based applications. We architect this new paradigm by providing supportive application examples that include next generation electrical energy distribution networks, next generation mobility services for transportation, and applications for distributed analysis and identification of non-recurring traffic congestion in cities. The paper analyzes the existing computing paradigms (e.g., cloud, fog, edge, mobile edge, social, etc.), solving the ambiguity of their definitions; and analyzes and discusses the relevant foundational software technologies, the remaining challenges, and research opportunities.Garcia Valls, MS.; Dubey, A.; Botti, V. (2018). Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges. Journal of Systems Architecture. 91:83-102. https://doi.org/10.1016/j.sysarc.2018.05.007S831029

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Vulnerability modelling and mitigation strategies for hybrid networks

    Get PDF
    Hybrid networks nowadays consist of traditional IT components, Internet of Things (IoT) and industrial control systems (ICS) nodes with varying characteristics, making them genuinely heterogeneous in nature. Historically evolving from traditional internet-enabled IT servers, hybrid networks allow organisations to strengthen cybersecurity, increase flexibility, improve efficiency, enhance reliability, boost remote connectivity and easy management. Though hybrid networks offer significant benefits from business and operational perspectives, this integration has increased the complexity and security challenges to all connected nodes. The IT servers of these hybrid networks are high-budget devices with tremendous processing power and significant storage capacity. In contrast, IoT nodes are low-cost devices with limited processing power and capacity. In addition, the ICS nodes are programmed for dedicated functions with the least interference. The available cybersecurity solutions for hybrid networks are either for specific node types or address particular weaknesses. Due to these distinct characteristics, these solutions may place other nodes in vulnerable positions. This study addresses this gap by proposing a comprehensive vulnerability modelling and mitigation strategy. This proposed solution equally applies to each node type of hybrid network while considering their unique characteristics. For this purpose, the industry-wide adoption of the Common Vulnerability Scoring System (CVSS) has been extended to embed the distinct characteristics of each node type in a hybrid network. To embed IoT features, the ‘attack vectors’ and ‘attack complexity vectors’ are modified and another metric “human safety index”, is integrated in the ‘Base metric group’ of CVSS. In addition, the ICS related characteristics are included in the ‘Environmental metric group’ of CVSS. This metric group is further enhanced to reflect the node resilience capabilities when evaluating the vulnerability score. The resilience of a node is evaluated by analysing the complex relationship of numerous contributing cyber security factors and practices. The evolved CVSSR-IoT-ICS framework proposed in the thesis measures the given vulnerabilities by adopting the unique dynamics of each node. These vulnerability scores are then mapped in the attack tree to reveal the critical nodes and shortest path to the target node. The mitigating strategy framework suggests the most efficient mitigation strategy to counter vulnerabilities by examining the node’s functionality, its locality, centrality, criticality, cascading impacts, available resources, and performance thresholds. Various case studies were conducted to analyse and evaluate our proposed vulnerability modelling and mitigation strategies on realistic supply chain systems. These analyses and evaluations confirm that the proposed solutions are highly effective for modelling the vulnerabilities while the mitigation strategies reduce the risks in dynamic and resource-constrained environments. The unified vulnerability modelling of hybrid networks minimises ambiguities, reduces complexities and identifies hidden deficiencies. It also improves system reliability and performance of heterogeneous networks while at the same time gaining acceptance for a universal vulnerability modelling framework across the cyber industry. The contributions have been published in reputable journals and conferences.Doctor of Philosoph

    Programming China: the Communist Party’s autonomic approach to managing state security

    Get PDF
    Programming China: The Communist Party’s Autonomic Approach to Managing State Security, introduces the new analytical framework called China's “Autonomic Nervous System” (ANS). The ANS framework applies complex systems management theory to explain the process the Chinese Communist Party calls “social management”. Through the social management process, the Party-state leadership interacts with both the Party masses and non-Party masses. The process involves shaping, managing and responding and is aimed at ensuring the People’s Republic of China’s systemic stability and legitimacy—i.e. (Party-) state security. Using the ANS framework, this thesis brings cohesion to a complex set of concepts such as “holistic” state security, grid management, social credit and national defence mobilisation. Research carried out for the thesis included integrated archival research and the author’s database of nearly 10,000 social unrest events. Through ANS, the author demonstrates that in the case of the People’s Republic of China we may be witnessing a sideways development, where authoritarianism is stabilised, largely through a way of thinking that both embodies and applies complex systems management and attempts to “automate” that process through technology designed based on the same concepts. The party's rule of China, thus, evolves away from traditional political scales like reform versus retrenchment or hard versus soft authoritarianism. The ANS framework should be seen not as an incremental improvement to current research of China’s political system but as a fundamentally different approach to researching and analysing the nature of Chinese politics

    Internet of Things 2.0: Concepts, Applications, and Future Directions

    Full text link
    Applications and technologies of the Internet of Things are in high demand with the increase of network devices. With the development of technologies such as 5G, machine learning, edge computing, and Industry 4.0, the Internet of Things has evolved. This survey article discusses the evolution of the Internet of Things and presents the vision for Internet of Things 2.0. The Internet of Things 2.0 development is discussed across seven major fields. These fields are machine learning intelligence, mission critical communication, scalability, energy harvesting-based energy sustainability, interoperability, user friendly IoT, and security. Other than these major fields, the architectural development of the Internet of Things and major types of applications are also reviewed. Finally, this article ends with the vision and current limitations of the Internet of Things in future network environments

    Programming China: the Communist Party’s autonomic approach to managing state security

    Get PDF
    Programming China: The Communist Party’s Autonomic Approach to Managing State Security, introduces the new analytical framework called China's “Autonomic Nervous System” (ANS). The ANS framework applies complex systems management theory to explain the process the Chinese Communist Party calls “social management”. Through the social management process, the Party-state leadership interacts with both the Party masses and non-Party masses. The process involves shaping, managing and responding and is aimed at ensuring the People’s Republic of China’s systemic stability and legitimacy—i.e. (Party-) state security. Using the ANS framework, this thesis brings cohesion to a complex set of concepts such as “holistic” state security, grid management, social credit and national defence mobilisation. Research carried out for the thesis included integrated archival research and the author’s database of nearly 10,000 social unrest events. Through ANS, the author demonstrates that in the case of the People’s Republic of China we may be witnessing a sideways development, where authoritarianism is stabilised, largely through a way of thinking that both embodies and applies complex systems management and attempts to “automate” that process through technology designed based on the same concepts. The party's rule of China, thus, evolves away from traditional political scales like reform versus retrenchment or hard versus soft authoritarianism. The ANS framework should be seen not as an incremental improvement to current research of China’s political system but as a fundamentally different approach to researching and analysing the nature of Chinese politics

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic
    corecore