1,693 research outputs found

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    GLAWI, a free XML-encoded Machine-Readable Dictionary built from the French Wiktionary

    Get PDF
    International audienceThis article introduces GLAWI, a large XML-encoded machine-readable dictionary automatically extracted from Wiktionnaire, the French edition of Wiktionary. GLAWI contains 1,341,410 articles and is released under a free license. Besides the size of its headword list, GLAWI inherits from Wiktionnaire its original macrostructure and the richness of its lexicographic descriptions: articles contain etymologies, definitions, usage examples, inflectional paradigms, lexical relations and phonemic transcriptions. The paper first gives some insights on the nature and content of Wiktionnaire, with a particular focus on its encoding format, before presenting our approach, the standardization of its microstructure and the conversion into XML. First intended to meet NLP needs, GLAWI has been used to create a number of customized lexicons dedicated to specific uses including linguistic description and psycholinguistics. The main one is GLĂ€FF, a large inflectional and phonological lexicon of French. We show that many more specific on demand lexicons can be easily derived from the large body of lexical knowledge encoded in GLAWI

    Towards a Universal Wordnet by Learning from Combined Evidenc

    Get PDF
    Lexical databases are invaluable sources of knowledge about words and their meanings, with numerous applications in areas like NLP, IR, and AI. We propose a methodology for the automatic construction of a large-scale multilingual lexical database where words of many languages are hierarchically organized in terms of their meanings and their semantic relations to other words. This resource is bootstrapped from WordNet, a well-known English-language resource. Our approach extends WordNet with around 1.5 million meaning links for 800,000 words in over 200 languages, drawing on evidence extracted from a variety of resources including existing (monolingual) wordnets, (mostly bilingual) translation dictionaries, and parallel corpora. Graph-based scoring functions and statistical learning techniques are used to iteratively integrate this information and build an output graph. Experiments show that this wordnet has a high level of precision and coverage, and that it can be useful in applied tasks such as cross-lingual text classification

    Flexible RDF data extraction from Wiktionary - Leveraging the power of community build linguistic wikis

    Get PDF
    We present a declarative approach implemented in a comprehensive opensource framework (based on DBpedia) to extract lexical-semantic resources (an ontology about language use) from Wiktionary. The data currently includes language, part of speech, senses, definitions, synonyms, taxonomies (hyponyms, hyperonyms, synonyms, antonyms) and translations for each lexical word. Main focus is on flexibility to the loose schema and configurability towards differing language-editions ofWiktionary. This is achieved by a declarative mediator/wrapper approach. The goal is, to allow the addition of languages just by configuration without the need of programming, thus enabling the swift and resource-conserving adaptation of wrappers by domain experts. The extracted data is as fine granular as the source data in Wiktionary and additionally follows the lemon model. It enables use cases like disambiguation or machine translation. By offering a linked data service, we hope to extend DBpedia’s central role in the LOD infrastructure to the world of Open Linguistics.

    Language technologies for a multilingual Europe

    Get PDF
    This volume of the series “Translation and Multilingual Natural Language Processing” includes most of the papers presented at the Workshop “Language Technology for a Multilingual Europe”, held at the University of Hamburg on September 27, 2011 in the framework of the conference GSCL 2011 with the topic “Multilingual Resources and Multilingual Applications”, along with several additional contributions. In addition to an overview article on Machine Translation and two contributions on the European initiatives META-NET and Multilingual Web, the volume includes six full research articles. Our intention with this workshop was to bring together various groups concerned with the umbrella topics of multilingualism and language technology, especially multilingual technologies. This encompassed, on the one hand, representatives from research and development in the field of language technologies, and, on the other hand, users from diverse areas such as, among others, industry, administration and funding agencies. The Workshop “Language Technology for a Multilingual Europe” was co-organised by the two GSCL working groups “Text Technology” and “Machine Translation” (http://gscl.info) as well as by META-NET (http://www.meta-net.eu)

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail
    • …
    corecore