
Universität Leipzig
Fakultät für Mathematik und Informatik

Institut für Informatik

Flexible RDF data extraction from Wiktionary
Leveraging the power of community build linguistic wikis

Masterarbeit
im Studiengang Master Informatik

eingereicht von: Jonas Brekle (Matrikel: 1498088)

eingereicht am: 4. September 2012

betreuender Professor: Prof. Dr. Ing. habil. Klaus-Peter Fähnrich

Betreuer: Dipl. Inf. Sebastian Hellmann

We present a declarative approach implemented in a comprehensive open-
source framework (based on DBpedia) to extract lexical-semantic resources
(an ontology about language use) from Wiktionary. The data currently in-
cludes language, part of speech, senses, definitions, synonyms, taxonomies
(hyponyms, hyperonyms, synonyms, antonyms) and translations for each
lexical word. Main focus is on flexibility to the loose schema and configura-
bility towards differing language-editions of Wiktionary. This is achieved by
a declarative mediator/wrapper approach. The goal is, to allow the addi-
tion of languages just by configuration without the need of programming,
thus enabling the swift and resource-conserving adaptation of wrappers by
domain experts. The extracted data is as fine granular as the source data in
Wiktionary and additionally follows the lemon model. It enables use cases
like disambiguation or machine translation. By offering a linked data ser-
vice, we hope to extend DBpedia’s central role in the LOD infrastructure to
the world of Open Linguistics.

I thank Sebastian Hellmann for the courageous supervision and a professional re-
search environment; furthermore Theresa for her support. Without them, this work
would not have been possible.

Contents I

Contents

1. Introduction 3
1.1. Motivation . 3
1.2. Problem . 3
1.3. Solution . 4
1.4. Structure . 5

2. Background 6
2.1. Semantic Web . 6
2.2. RDF . 9
2.3. Linked Data . 10
2.4. SPARQL . 12
2.5. Scenarios . 14
2.6. Wikitext . 15
2.7. DBpedia . 15

3. Related Work 17

4. Problem Description 20
4.1. Processing Wiki Syntax . 20
4.2. Wiktionary . 20
4.3. Wiki-scale Data Extraction . 22

5. Specification 24

6. Design and Implementation 27
6.1. Extraction Templates . 27
6.2. Algorithm . 29
6.3. Language Mapping . 30
6.4. Reference Matching . 31
6.5. Formatting functions in Result Templates 32
6.6. Schema Mediation by Annotation with lemon 33
6.7. Configuration . 34
6.8. Utility Tools . 38
6.9. Graph Layout . 39

7. Evaluation 40
7.1. Example Data . 40
7.2. Possible Application . 41
7.3. Quantity Measurement . 42
7.4. Quality Measurement . 42
7.5. Maintenance Experience . 43
7.6. Limitations . 44

Contents II

8. Conclusion 45
8.1. Vision . 45
8.2. Suggested changes to Wiktionary . 45
8.3. Discussion . 46
8.4. Next Steps . 46
8.5. Open Research Questions . 47

8.5.1. Publishing Lexica as Linked Data 47
8.5.2. Algorithms and methods to bootstrap and maintain a Lexical Linked

Data Web . 47

A. Literature 48

1 INTRODUCTION 3

1. Introduction

In the following I will present a short overview on the problem and how we solve it.

1.1. Motivation

The topic of this thesis will be the flexible extraction of semantically rich data from
Wiktionary. The resulting data set is a lexical resource for computer linguistics. Never-
theless, the focus is not on linguistics, but on data integration: information extraction
from wikis can be conducted in two ways—in perspective of either text mining, where
the Wiki is seen as a corpus or alternatively interpreting the Wiki as a collection of
semi-structured documents. The latter is our perspective and how DBpedia was de-
signed, as it enables the definition of extractors, that interpret wiki pages. Also opposed
to text mining, DBpedia allows to tailor the extracted data step by step closer to the in-
tended semantic of the wikitext. Additionally weak signals (facts that don’t have much
support, that are only stated once) can be taken account of. DBpedia creates an ontol-
ogy from Wikipedia, that is roughly said, a database of world knowledge. Opposed
to Wikipedia, the DBpedia knowledge base can be queried like a database, combining
information from multiple articles. To conduct an analogous transformation on Wik-
tionary, we analysed the major differences and found that Wiktionary is on one hand
richer in structured information, but on the other hand this structure varies widely. So
we propose a declarative framework, built on top of DBpedia, to convert Wiktionary
into a linguistic ontology about languages, about the use of words, about their proper-
ties and relations. We will show the unique properties such a knowledge base has and
what possible applications are. The declarative extraction rules can be maintained by
a community of domain experts, that don’t necessarily need programming skills. As
will be shown, this is crucial for the approach to succeed on a long term. DBpedia has
proven such an approach to be working and scaling. The goal of DBpedia is to pro-
vide a tool for unsupervised but highly configurable ontology construction. By using
and extending DBpedia Wiktionary can be automatically transformed into a machine
readable dictionary — with substantial quantity and quality.

1.2. Problem

The exploitation of community-built lexical resources has been discussed repeatedly.
Wiktionary is one of the biggest collaboratively created lexical-semantic and linguistic
resources available, written in 171 languages (of which approximately 147 can be con-
sidered active1), containing information about hundreds of spoken and even ancient
languages. For example, the English Wiktionary contains nearly 3 million words2. For a
lexical word a Wiktionary page provides a hierarchical disambiguation to its language,
part of speech, sometimes etymologies and most prominently senses. Within this tree
numerous kinds of linguistic properties are given, including synonyms, hyponyms,

1http://s23.org/wikistats/wiktionaries_html.php
2See http://en.wiktionary.org/wiki/semantic for a simple example page.

http://s23.org/wikistats/wiktionaries_html.php
http://en.wiktionary.org/wiki/semantic

1 INTRODUCTION 4

hyperonyms, example sentences, links to Wikipedia and many more. [23] gave a com-
prehensive overview on why this dataset is so promising and how the extracted data
can be automatically enriched and consolidated. Aside from building an upper-level
ontology, one can use the data to improve NLP solutions, using it as comprehensive
background knowledge. The noise should be lower when compared to other automatic
generated text corpora (e.g. by web crawling) as all information in Wiktionary is en-
tered and curated by humans. Opposed to expert-built resources, the openness attracts
a huge number of editors and thus enables a faster adaptation to changes within the
language.

The fast changing nature together with the fragmentation of the project into Wik-
tionary language editions (WLE) with independent layout rules. We identified this as
a serious problem in the automated transformation into a structured knowledge base:
Although the value of Wiktionary is known and usage scenarios are obvious, only some
rudimentary tools exist to extract data from it. Either they focus on a specific subset of
the data or they only cover one or two WLE. The development of a flexible and power-
ful tool is challenging to be accommodated in a mature software architecture and has
been neglected in the past. Existing tools can be seen as adapters to single WLE —
they are hard to maintain and there are too many languages, that constantly change.
Each change in the Wiktionary layout requires a programmer to refactor complex code.
The last years showed, that only a fraction of the available data is extracted and there
is no comprehensive RDF dataset available yet. The key question is: Can the lessons
learned by the successful DBpedia project be applied to Wiktionary, although it is funda-
mentally different from Wikipedia? The critical difference is that only word forms are
formatted in infobox-like structures (e.g. tables). Most information is formatted cover-
ing the complete page with custom headings and often lists. Even the infoboxes itself
are not easily extractable by default DBpedia mechanisms, because in contrast to DB-
pedia’s one entity per page paradigm, Wiktionary pages contain information about several
entities forming a complex graph, i.e. the pages describe the lexical word, which occurs
in several languages with different senses per part of speech and most properties are
defined in context of such child entities.

1.3. Solution

Opposed to the currently employed classic and straight-forward approach (implement-
ing software adapters for scraping), we propose a declarative mediator/wrapper pat-
tern. The aim is to enable non-programmers (the community of adopters and domain
experts) to tailor and maintain the WLE wrappers themselves. We created a simple
XML dialect to encode the “entry layout explained" (ELE) guidelines and declare triple
patterns, that define how the resulting RDF should be built. This configuration is inter-
preted and run against Wiktionary dumps. The resulting dataset is open in every aspect
and hosted as linked data3. Furthermore, the presented approach can be extended
easily to interpret (or triplify) other MediaWiki installations or even general document

3http://wiktionary.dbpedia.org/

http://wiktionary.dbpedia.org/

1 INTRODUCTION 5

collections, if they follow a global layout.

1.4. Structure

In section 2 we will introduce the domain of information extraction from wikis and RDF
and related concepts, that form the basis of this thesis. Related work will be examined
in section 3]. An overview over competing approaches and their properties is given.
In section 4 and 5 we give an overview on requirements of the developed software,
that arise in context of the DBpedia project. In addition resulting specifications and
software architecture will be presented. In the following section 6 we will present some
implementation details, that turned out to be essential for the success of the approach.
Finally in section 7 the created dataset will be evaluated and compared with existing
datasets.

2 BACKGROUND 6

2. Background

In the following, a short overview on underlying technologies is given.

2.1. Semantic Web

The world wide web is one of the most important inventions of our time. It enables the
global access to documents and real time communication between individuals. This
could be achieved by an interoperable infrastructure of independent networks, that can
route any communication between two points. From our current perspective on the last
three decades, this even seems technologically simple and maintainable at a reasonable
cost. Furthermore the resulting benefits to our economy and society are beyond all
expectations. A hole new industry was created and most industries are substantially
influenced in their processes. The costs of communications dropped and both public
and private communications switched to the new medium mostly. The world wide web
is enabled by a set of related technologies, which can be summarized to the following
core concepts:

• IP addressing, TCP transmission and routing

• client/server communication protocols like HTTP

• interlinked documents containing data (e.g. XML based) or services (e.g. interac-
tive content) valuable for humans

The first mentioned technology provides for the global reachability of web servers; the
second for accessing documents and data in them and the last for structuring informa-
tion on them, so it can be processed for presentation or other purposes. While these
technologies are well established and scale up to a huge amount of data, the users—
humans—can barely cope with this amount of data offered. If one considers the WWW
an information system, it only offers basic retrieval methods (a full text index via search
engines) and most critical, it is fragmented into heterogeneous subsystems. Those,
however, can offer very good retrieval methods. But there are several fundamental
issues about the way data is handled today: Global interoperability is not supported on
content level. Data currently is controlled by applications and each application keeps
it to itself4. From a perspective of data integration, semantics are often vague or un-
defined. It may be unclear which entity a document refers to. Documents are only
interlinked by untyped relations. These are strong limitations: If the dataset is too huge
for a human to read and machines do not have deeper insight into it, the dataset as a
whole can be seen as inaccessible. Of course the way the WWW works today seems
to be well suited. Programmable web servers e.g. with PHP made the web interac-
tive, enabling social interaction or collaborative editing. But future development is
still blocked by the human-centric nature of the web. If all the knowledge humanity
acquired and wrote down in e.g. Wikipedia would be also available to information

4http://www.w3.org/2001/sw/

http://www.w3.org/2001/sw/

2 BACKGROUND 7

systems in a structured way, even more knowledge could be inferred automatically
and e.g. artificial intelligence, expert systems or search would be boosted dramatically.
According to [3], the key to solving this issue lies in the establishment of Linked Data,
which will be explained in the next section. The use of machine readable data and an-
notation of text with such data is crucial for information technology to enter the next
level. So to conclude: The problem is the amount of knowledge and the lack of for-
malization e.g. machine readability. Even data that is already structured often lacks a
defined semantic or the semantic is not formalized. The web as we know it is a web
of documents, the target is the web of data. Instead of just linking documents to each
other, entities of the universe of discourse should be linked. Consider this example: A com-
pany stores costumer information about you in its relational database; facebook keeps
record of your activities in their distributed database and you yourself have a blog on
your own web server. Why shouldn’t all this personal information be linked5? This
should be achieved by a global identifier for you, that is reused. Why do we have to
supply contact information over and over again, although its database 101 that redun-
dancy is bad. The answer is incompatibility on many levels. The ideal would be that
all data is interoperable by design. The same approach of using unique identifiers can
be applied to all entities (not just social profiles as in the example). Shortly after the
invention of concepts for the WWW, Tim Berners-Lee et al. came up with the idea of
the Semantic Web: an WWW where intelligent agents can act on behalf of users, to find
information or communicate. They have a shared syntax and vocabulary, use ontolo-
gies as background knowledge and thus get deeper to the intended semantic of things.
The Semantic Web (SW) is a set of complementary technologies, which are depicted in
figure 1. It is a layered model to represent, query and manage information.
The effort was initiated in 2001 by Tim Berners-Lee, who defined it as

“an extension of the current web in which information is given well-defined
meaning, better enabling computers and people to work in cooperation.” [3]

There are several ways to augment information for better machine readability: One is
the annotation of old fashioned documents with well defined shared vocabularies. An
example for annotations is RDFa6. It allows to add structured information to arbitrary
HTML documents. The second way is the creation of stand alone ontologies: “An on-
tology is a specification of a conceptualization” [8].

A conceptualization refers to some model of the world, created by a subject, for some
purpose, that is shared by a group of individuals.

“A body of formally represented knowledge is based on a conceptualiza-
tion: the objects, concepts, and other entities that are assumed to exist in

5The reader may object privacy issues; but the focus of this thesis is on data integration. These two topics
have to be considered separately: Just because data is interoperable, it is not accessible. Even more: If
you avoid redundancy, you gain control over your data. How this control can be achieved is topic to
current research but already very promising. Cf. WebID: http://www.w3.org/wiki/WebID

6http://www.w3.org/TR/xhtml-rdfa-primer/

http://www.w3.org/wiki/WebID
http://www.w3.org/TR/xhtml-rdfa-primer/

2 BACKGROUND 8

Figure 1: Semantic Web technologies

some area of interest and the relationships that hold among them [7]. A
conceptualization is an abstract, simplified view of the world that we wish
to represent for some purpose. Every knowledge base, knowledge-based
system, or knowledge-level agent is committed to some conceptualization,
explicitly or implicitly.” [8]

A specification refers to a formal notion of the conceptualized knowledge.

“When the knowledge of a domain is represented in a declarative formal-
ism, the set of objects that can be represented is called the universe of dis-
course. This set of objects, and the describable relationships among them,
are reflected in the representational vocabulary with which a knowledge-
based program represents knowledge. Thus, in the context of AI, we can
describe the ontology of a program by defining a set of representational
terms. In such an ontology, definitions associate the names of entities in
the universe of discourse (e.g., classes, relations, functions, or other objects)
with human-readable text describing what the names mean, and formal ax-
ioms that constrain the interpretation and well-formed use of these terms.
[...] Formally, an ontology is the statement of a logical theory. [...] On-
tologies are often equated with taxonomic hierarchies of classes, but class
definitions, and the subsumption relation, but ontologies need not be lim-
ited to these forms. [...] In short, a commitment to a common ontology is a
guarantee of consistency.” [8]

The usage of shared, formal ontologies (which implies the agreement on a vocabu-
lary and hence a common language) and the development of open standards provides

2 BACKGROUND 9

contracts for agents that act on behalf of a information interest of humans. The reuse of
existing web standards (like URIs or the HTTP protocol) shall promote a fast adoption.
The target is to make knowledge globally interoperable between different schemata and
both humans and machines alike. Therefore knowledge becomes usable for software
systems which allows for pioneering usage scenarios (cf. [14]).

2.2. RDF

The central technology to enable these ideas is RDF7. RDF itself is a universal data
model, that dictates how information may be modelled on a structural level. The syn-
tax is ruled by standards like RDF/XML8 or N39, that describe how RDF is serialized
to text. RDF is an acronym for Resource Description Framework. The basic idea is
the identification of the things and relations within the universe of discourse (not just
websites), with a URI10. About those resources, statements can be made in the form of
subject predicate object—analogously to a natural language sentence. These statements
are also called triples. For example the triple

1 <http://example.com/Alice> rdf:type foaf:Person

may encode the fact that “Alice is a person” (if the vocabulary has been defined accord-
ingly). Notice: subject, predicate and object are URIs, but the predicate uses the prefix
rdf, which is an abbreviation for an actual URI. The definition of this prefix would be:

1 @PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

The used class Person has been taken from the foaf vocabulary11, which offers terms
for people in a social environment. The triple can be interpreted as a directed graph:
subject and object are nodes; the predicate is a typed edge.

Figure 2: The triple as a graph

Multiple triples can be grouped in a graph, which is in turn identified by a URI. Such
a graph can be used as an ontology. Thus ontologies in RDF format are actually graph
databases which are inherently easily accessible for algorithms as opposed to natu-
ral language which always introduces ambiguity and noise. It is surprisingly easy to
model even complex data or schemata in graphs. Additionally the formalized knowl-
edge becomes easily accessible. Implicit information can be inferred (e.g. transitive

7http://www.w3.org/RDF/
8http://www.w3.org/TR/rdf-syntax-grammar/
9www.w3.org/DesignIssues/Notation3

10http://tools.ietf.org/html/rfc3986
11http://xmlns.com/foaf/0.1/

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-syntax-grammar/
www.w3.org/DesignIssues/Notation3
http://tools.ietf.org/html/rfc3986
http://xmlns.com/foaf/0.1/

2 BACKGROUND 10

relations or inherited properties) or contractions can be detected12.
In contrast to tree based models like XML, a relation does not have to be allocated to
one of the participating entities. This eliminates a frequent modelling dilemma. Fur-
thermore, such a flat net resembles the decentral nature of the web: The information is
distributed and when merging two knowledge bases—at least at this level—there is no
problem with schema normalization (cf. [14]). Of course there can be different schemas,
but according to the classification of heterogeneity in [28] the problem can be reduced
to its core—semantic heterogeneity, but for example schematic heterogeneity as in rela-
tional systems or XML can be solved by design. Object matching can be avoided where
possible or wanted, reusing vocabularies and URIs in the ontology creation process.13

To complete the introduction of RDF, it is necessary to present the notion of data values.
For example the number 5 or the string “abc” are not assigned URIs. It would make no
sense as they are no independent entities within the universe of discourse. They are the
value of properties and so they are assigned the special node type Literal14. They can
not be subject for further statements. There are three types of literals:
• plain literals,
• plain literals with optional language tag and
• typed literals, that are augmented with a data type, that is given by a URI.

The NTriples serialization of a literal could be:
1 ex:Alice foaf:birthday "22.09.1986"^^xsd:date

In the example a typed literal is used to represent a date. The XSD vocabulary15 for
basic data types is used.

RDF can be stored either in text files or within special databases called triple stores,
where common database techniques like indexing, query languages or backups are
used. Some widely known triple stores are Virtuoso16, Sesame 17 or Jena18. Storage
backends vary widely from relational over graphs to in-memory.

2.3. Linked Data

Linked Data is the simplest and yet most important mechanism to retrieve RDF data: As
described, entities are identified by URI’s. When choosing the URL’s one should pick
a namespace under her authority, so that she can provide some data about the entity
under the URL. As defined by W3C19, the requirements for Linked Data are as follows:

1. Use URIs as names for things
12Access Control, Logic and Proof: http://www.w3.org/2000/01/sw/#access
13In practice the problem still persists due to administrative autonomy. Existing vocabularies are not

reused due to lack of information, strategic decisions or suspected semantic mismatches. Schema and
object matching in the semantic web is subject to ongoing research.

14http://www.w3.org/TR/rdf-concepts/#section-Graph-Literal
15http://www.w3.org/2001/XMLSchema#
16http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
17http://www.openrdf.org/
18http://jena.apache.org/
19http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/2000/01/sw/#access
http://www.w3.org/TR/rdf-concepts/#section-Graph-Literal
http://www.w3.org/2001/XMLSchema#
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
http://www.openrdf.org/
http://jena.apache.org/
http://www.w3.org/DesignIssues/LinkedData.html

2 BACKGROUND 11

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information, using RDF

4. Include links to other URIs, so that they can discover more things

What is the rational behind doing so?

“The first Linked Data principle advocates using URI references to iden-
tify, not just Web documents and digital content, but also real world objects
and abstract concepts. These may include tangible things such as people,
places and cars, or those that are more abstract, such as the relationship type
of knowing somebody, the set of all green cars in the world, or the colour
green itself. This principle can be seen as extending the scope of the Web
from online resources to encompass any object or concept in the world. The
HTTP protocol is the Web’s universal access mechanism. In the classic Web,
HTTP URIs are used to combine globally unique identification with a sim-
ple, well-understood retrieval mechanism. Thus, the second Linked Data
principle advocates the use of HTTP URIs to identify objects and abstract
concepts, enabling these URIs to be dereferenced (i.e., looked up) over the
HTTP protocol into a description of the identified object or concept.” [12]

The lookup of URI can even be enhanced with a mechanism called Content Negotiation:
Based on the HTTP accept header that is set by the application requesting, different
types of formatting can be used in the response. If for example a human browses RDF
data using a web browser, a HTML version of the RDF data can be generated easily. If
an application requests RDF data it would set the accept header to application/rdf-
+xml and get XML, which is easy to read by machines, but not humans. The mecha-
nism is also transparent, it happens server side at request time. Modern RDF stores like
Virtuoso have built in support for Linked Data with Content Negotiation.

These four basic principles together make a fundamental difference regarding the ar-
chitecture of Linked Data seen as a database. Instead of custom communication proto-
cols, well established web standards are used. This makes it interoperable at a technical
level and easy to adopt. And it is backward compatible to very simple solutions: If one
wants to publish Linked Data, no triple store is required at all, one could as well use a
file server, with the documents available materialized. Also Linked Data implicitly is
a basic distributed database: Because the query language is limited to a simple GET (for
now), one can easily distribute data on different physical servers, while having constant
access costs. Also mirroring and load balancing is easy by deploying any default web
proxy, because Linked Data integrates transparently with established web technologies.
But besides these technical benefits, the most important is, that linked data changes the
way people administrate data. The integration aspect is being catered for by design
and more important: The design also promotes data producers to regard integration
issues at production time. If tool support grows fast enough, initial adoption costs and
fears could be reduced. This would result in an overall decrease of integration efforts,

2 BACKGROUND 12

which in turn would prosper knowledge intensive applications. As presented in the
introduction, solving knowledge intensive problems will be one of the key challenges
of the next decades.

To embed the technology centric RDF standard into general publishing decision (for
example by governments), Tim Berners-Lee suggested a simple rating system regarding
openness and interoperability:

Table 1: Five star rating of Linked Data
F Available on the web (whatever format) (optionally with an open

licence, to be Open Data)
FF Available as machine-readable structured data (e.g. excel instead

of an image scan of a table)
FFF two stars plus: Use of a non-proprietary format (e.g. CSV instead

of excel)
FFFF All the above plus: Use open standards from W3C (RDF and

SPARQL) to identify things, so that people can point at your stuff
FFFFF All the above plus: Link your data to other people’s data to provide

context

It gives data producers a roadmap to high quality data and consumers objective hint
about published datasets.

2.4. SPARQL

How can one query RDF data in a more sophisticated way than just the retrieval of sin-
gle resources? One may want to search data that matches certain constraints or access
a full text index over the data. SPARQL20 is a recursive acronym SPARQL Protocol and
RDF Query Language which is a query language for RDF graphs and a protocol for its
use over a web service. It enables the matching of graph patterns (containing variables)
in RDF graphs, thus it allows for the search and extraction of certain subgraphs. It de-
veloped from several other languages like SquishQL21, RDQL22, RQL23 or SeRQL24 (cf.
[11]), and is an official W3C recommendation since 2008.
A very short overview about the features of the language shall be given in the follow-
ing:

There are four types of SPARQL Queries:

• SELECT to extract parts of a subgraph that match a certain criteria

• ASK to check, if a subgraph exists in the graph

20http://www.w3.org/TR/rdf-sparql-query/
21cf. [9]
22http://www.w3.org/Submission/RDQL/
23http://139.91.183.30:9090/RDF/RQL/
24cf. [4]

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/RDQL/
http://139.91.183.30:9090/RDF/RQL/

2 BACKGROUND 13

• CONSTRUCT to creates a graph, which might be constructed by a search pattern

• DESCRIBE to gather information about matching resources. What is returned
is not standardised, but mostly certain properties will be used to generate the
description

A SPARQL SELECT query consists of the following parts:

• Prolog
to declare prefixes and the base URI. Relative URIs, within the query are inter-
preted relative to the base URI. Prefixes are abbreviations for frequent or long
URIs

• Projection
similar to SQL: Variables (columns from SQL), which should be visible in the
result or "*" for all used variables

• Result modifiers

– DISTINCT for deduplication

– REDUCED can remove duplicates, if it benefits the execution time.

– ORDER BY sorts by an expression (mostly a variable)

– LIMIT and OFFSET restrict a certain interval of results

• GraphPattern
declares a subgraph to be searched for, consists of triples or optional graph pat-
terns and more. But instead of explicitly declaring a graph, variables can be used
to represent resources or literals, therefore the name pattern. Possible bindings
for the variables are the result of the query.

• Filter
can be part of a GraphPattern and restricts variable bindings by evaluation certain
expressions upon them. When the expression is evaluated to false, the result is
omitted from the overall result.

An example query:
1 PREFIX ex: <http://example.org/ns#>
2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
3 SELECT ?subj ?name
4 WHERE {
5 ?subj rdf:type foaf:Person .
6 ?subj foaf:age ?age
7 OPTIONAL { ?subj foaf:name ?name }
8 FILTER(?age > 25)
9 }

The query is evaluated against this dataset:
1 ex:Alice a foaf:Person
2 ex:Alice foaf:age "24"
3 ex:Bob a foaf:Person
4 ex:Bob foaf:age "26"

2 BACKGROUND 14

The query finds all persons who are older than 25. In detail the query does the fol-
lowing: First, two prefixes are declared, one for the FOAF vocabulary and one for our
custom namespace; the prefixes are then used to abbreviate URIs within the GraphPat-
tern. The WHERE part declares a GraphPattern, containing the variable ?subj that is
bound with all resources that are a Person from the FOAF vocabulary. In the seventh
line the corresponding name is optionally bound to a variable. Optional implies that
even if this triple can not be satisfied, the remaining pattern matches. In the example
the name is not given, so the result will contain no value for the ?age variable. In the
eighth line the age is restricted be greater than 25. The triple store will try to match the
query against the data and returns an answer in an XML based result format25. In our
example there will be one result, containing a bound and an unbound variable:

subj age
ex:Bob

2.5. Scenarios

Now that we introduced many basics of the semantic web, one may ask: “What is it all
good for? Why cant we solve this with traditional approaches?”

Consider this example: Alice works as a journalist. She often has to investigate in spe-
cific fields of history or science—fields she is no expert in—to support her articles. One
day she has the information need for “Olympia winners before 1972 from countries with
less than 10 million inhabitants”. How long will it take her? A few hours maybe. Then
her boss comes and asks her to change that article to “Olympia winners whose height is
10% above their countries average, who were born on Mondays”. This may seem unrealistic,
but apparently the information is available somewhere in the internet—most probably
even in Wikipedia alone. And one could find it—but it would take ages. Except if this
information would be available in RDF. Then it would take only seconds. This example
should show that the computational access to information exposes a vast amount of
new knowledge that was hidden inside existing data. Very complex knowledge inten-
sive searches can be solved easily if the data is well structured.

Two problems come into play when trying to solve this scenario, which is an example
for the research area of question answering:

1. understanding the question

2. finding the answer

In context of the semantic web, the first step could be solved by formalizing the ques-
tion into a SPARQL query (by some black box of natural language processing magic),
step two would require the information to be available in RDF.

The solution of the first one could be even assisted by the outcome of this thesis, as it
provides for a large language resource, that can disambiguate query terms. The second
25http://www.w3.org/TR/rdf-sparql-XMLres/

http://www.w3.org/TR/rdf-sparql-XMLres/

2 BACKGROUND 15

Figure 3: An excerpt of the Wiktionary page house with the rendered HTML.

one can be tackled by a related (and yet larger and more important) project, which is
presented in the section after the next.

2.6. Wikitext

Pages in Wiktionary are formatted using the wikitext markup language26, which is de-
signed to be lightweight (easy to learn, quick to write—by humans). Upon request of
a page, the MediaWiki engine renders this to an HTML page and sends it to the user’s
browser. An excerpt of the Wiktionary page house and the resulting rendered page are
shown in Figure 3.

The markup == is used to denote headings, # denotes a numbered list (* for bullets),
[[link label]] denotes links and {{}} calls a template. Templates are user-defined
rendering functions that provide shortcuts aiming to simplify manual editing and en-
suring consistency among similarly structured content elements. In MediaWiki, they
are defined on special pages in the Template: namespace. Templates can contain any
wikitext expansion, HTML rendering instructions and placeholders for arguments. In
the example page in Figure 3, the senseid template27 is used, which does nothing be-
ing visible on the rendered page, but adds an id attribute to the HTML li-tag (which
is created by using #).

2.7. DBpedia

To describe the Wikipedia and DBpedia project, we found it is highly sufficient to sim-
ply quote from each of their self-portrayals:

"Wikipedia is a free, collaboratively edited, and multilingual Internet ency-
clopedia supported by the non-profit Wikimedia Foundation. Its 22 million
articles (over 4 million in English alone) have been written collaboratively
by volunteers around the world. Almost all of its articles can be edited

26http://www.mediawiki.org/wiki/Markup_spec
27http://en.wiktionary.org/wiki/Template:senseid

http://www.mediawiki.org/wiki/Markup_spec
http://en.wiktionary.org/wiki/Template:senseid

2 BACKGROUND 16

by anyone with access to the site, and it has about 100,000 regularly ac-
tive contributors. As of August 2012, there are editions of Wikipedia in 285
languages. It has become the largest and most popular general reference
work on the Internet, ranking sixth globally among all websites on Alexa
and having an estimated 365 million readers worldwide. It is estimated that
Wikipedia receives 2.7 billion monthly pageviews from the United States
alone."28

DBpedia in turn wants to exploit this rich but unstructured dataset:

"The DBpedia project is a community effort to extract structured informa-
tion from Wikipedia and to make this information accessible on the Web.
The resulting DBpedia knowledge base currently describes over 2.6 million
entities. For each of these entities, DBpedia defines a globally unique identi-
fier that can be dereferenced over the Web into a rich RDF description of the
entity, including human-readable definitions in 30 languages, relationships
to other resources, classifications in four concept hierarchies, various facts
as well as data-level links to other Web data sources describing the entity.
Over the last year, an increasing number of data publishers have begun to
set data-level links to DBpedia resources, making DBpedia a central inter-
linking hub for the emerging Web of data. Currently, the Web of interlinked
data sources around DBpedia provides approximately 4.7 billion pieces of
information and covers domains such as geographic information, people,
companies, films, music, genes, drugs, books, and scientific publications."
[18]

In addition “DBpedia allows you to ask sophisticated queries against datasets de-
rived from Wikipedia and to link other datasets on the Web to Wikipedia data”[1], be-
cause all extracted data becomes part of the semantic web and is accessible via powerful
query languages or tools. DBpedia is one of the most successful semantic web projects
and has become a central linking hub of Linked Data. The architecture of DBpedia is
build around so called Extractors. The most important extractor is the infobox extractor;
it tries to interpret tabular data that can be found on many Wikipedia pages. For ex-
ample the page of Leipzig29, contains a table on the right, that presents some essential
facts and statistics. See figure 4 for example.

The underlying wikitext that creates the infobox on the right looks like this:
1 {{Infobox German location
2 |Art = Stadt
3 |image_flag = Flag of Leipzig.svg
4 |Wappen = Coat of arms of Leipzig.svg
5 |lat_deg = 51 |lat_min = 20 | lat_sec=0
6 |lon_deg = 12 |lon_min = 23 | lon_sec=0
7 |Lageplan = Lage der kreisfreien Stadt Leipzig in Deutschland.png
8 |Bundesland = Sachsen
9 |Regierungsbezirk = Leipzig

10 [...]

28http://en.wikipedia.org/wiki/Wikipedia
29http://en.wikipedia.org/wiki/Leipzig

http://en.wikipedia.org/wiki/Wikipedia
http://en.wikipedia.org/wiki/Leipzig

3 RELATED WORK 17

Figure 4: Wikipedia article about Leipzig with infobox

This information is already structured and by mapping the keys of the given proper-
ties to a RDF vocabulary it is simple to extract triples. The inner workings shall not be
presented here. An important sub project of DBpedia is the mappings wiki30, it provides
a community maintained repository of those mappings from template argument keys
to RDF properties.

3. Related Work

In the last five years, the importance of Wiktionary as a lexical-semantic resource has
been examined by multiple studies. Meyer et al. ([22, 21]) present an impressive
overview on the importance and richness of Wiktionary. In [33] the authors present the
JWKTL framework to access Wiktionary dumps via a Java API. In [23] this JWKTL frame-
work is used to construct an upper ontology called OntoWiktionary. The framework is
reused within the UBY project [10], an effort to integrate multiple lexical resources (be-
sides Wiktionary also WordNet, GermaNet, OmegaWiki, FrameNet, VerbNet and Wikipedia).
The resulting dataset is modelled according to the LMF ISO standard[15]. [24] and [30]
discuss the use of Wiktionary to canonize annotations on cultural heritage texts, namely
the Thompson Motif-index. Zesch et. al. also showed, that Wiktionary is suitable for
calculating semantic relatedness and synonym detection; and it outperforms classical
approaches [34, 32]. Furthermore, other NLP tasks, such as sentiment analysis, have
been conducted with the help of Wiktionary [5].
Several questions arise, when evaluating the above approaches: Why aren’t there more
NLP tools reusing the free Wiktionary data? Why aren’t there web mashups of the
data31? Why didn’t Wiktionary became the central linking hub of lexical-semantic re-
sources, yet?

30http://mappings.dbpedia.org/
31For example in an online dictionary from http://en.wikipedia.org/wiki/List_of_online_

dictionaries

http://mappings.dbpedia.org/
http://en.wikipedia.org/wiki/List_of_online_dictionaries
http://en.wikipedia.org/wiki/List_of_online_dictionaries

3 RELATED WORK 18

name active available RDF #triples ld languages
JWKTL X dumps 7 - 7 en, de
wikokit X source + dumps X n/a 7 en, ru
texai 7 dumps X ∼ 2.7 million 7 en
lemon scraper X dumps X ∼16k per lang 7 6
blexisma 7 source 7 - 7 en
WISIGOTH 7 dumps 7 - 7 en, fr
lexvo.org X dumps X ∼353k X en

Table 2: Comparison of existing Wiktionary approaches (ld = linked data hosting).
None of the above include any crowd-sourcing approaches for data extraction.
The wikokit dump is not in RDF.

From our point of view, the answer lies in the fact, that although the above papers
present various desirable properties and many use cases, they did not solve the under-
lying knowledge extraction and data integration task sufficiently in terms of coverage,
precision and flexibility. Each of the approaches presented in table 2 relies on tools to
extract machine-readable data in the first place. In our opinion these tools should be
seen independent from their respective usage and it is not our intention to comment on
the scientific projects built upon them in any way here. We will show the state of the
art and which open questions they raise.

JWKTL is used as data backend of OntoWiktionary as well as UBY32 and features a
modular architecture, which allows the easy addition of new extractors (for example
wikokit [17] is incorporated). The Java binaries and the data dumps in LMF are publicly
available. Among other things, the dump also contains a mapping from concepts to
lexicalizations as well as properties for part of speech, definitions, synonyms and sub-
sumption relations. The available languages are English, German (both natively) and
Russian (through wikokit). According to our judgement, JWKTL can be considered the
most mature approach regarding software architecture and coverage and is the current
state of the art. Texai33 and Blexisma34 are also Java based APIs, but they are not main-
tained any more and were most probably made obsolete by changes to the Wiktionary
layout since 2009. There is no documentation available regarding scope or intended
granularity. A very fine grained extraction was conducted using WISIGOTH [29], but
unfortunately there are no sources available and the project is unmaintained since 2010.
Two newer approaches are the lexvo.org service and the algorithm presented in [19]. The
lexvo.org service offers a linked data representation of Wiktionary with a limited granu-
larity, namely it does not disambiguate on sense level. The source code is not available
and only the English Wiktionary is parsed. As part of the Monnet project35, McCrae et

32http://www.ukp.tu-darmstadt.de/data/lexical-resources/uby/, http://www.ukp.
tu-darmstadt.de/data/lexical-resources/uby/

33http://sourceforge.net/projects/texai/
34http://blexisma.ligforge.imag.fr/index.html
35See http://www.monnet-project.eu/. A list of the adopted languages and dump files can be

found at http://monnetproject.deri.ie/lemonsource/Special:PublicLexica

http://www.ukp.tu-darmstadt.de/data/lexical-resources/uby/
http://www.ukp.tu-darmstadt.de/data/lexical-resources/uby/
http://www.ukp.tu-darmstadt.de/data/lexical-resources/uby/
http://sourceforge.net/projects/texai/
http://blexisma.ligforge.imag.fr/index.html
http://www.monnet-project.eu/
http://monnetproject.deri.ie/lemonsource/Special:PublicLexica

3 RELATED WORK 19

al. [19] presented a simple scraper to transform Wiktionary to the lemon RDF model [20].
The algorithm (like many others) makes assumptions about the used page schema and
omits details about solving common difficulties as shown in the next section. At the
point of writing, the sources are not available, but they are expected to be published
in the future. Although this approach appears to be the state of the art regarding RDF
modelling and linking, the described algorithm will not scale to the community-driven
heterogeneity as to be defined in section 4. All in all, there exist various tools that im-
plement extraction approaches at various levels of granularity or output format. In the
next section, we will show several challenges that, in our opinion, are insufficiently
tackled by the presented approaches. Note that this claim is not meant to diminish the
contribution of the other approaches as they were mostly created for solving a single re-
search challenge instead of aiming to establish Wiktionary as a stable point of reference
in computational linguistics using linked data.

4 PROBLEM DESCRIPTION 20

4. Problem Description

In order to conceive a flexible, effective and efficient solution, in this section we survey
the challenges associated with Wiki syntax, Wiktionary and large-scale extraction.

4.1. Processing Wiki Syntax

As introduced in section 2, a wiki is a set of pages, formatted in wikitext. For display
in a browser, they can be rendered to HTML. Operating on the parsed HTML pages,
rendered by the MediaWiki engine, does not provide any significant benefit, because the
rendered HTML does not add any valuable information for extraction. Processing the
database backup XML dumps36 instead, is convenient as we could reuse the DBpedia
extraction framework37 in our implementation. The framework mainly provides input
and output handling and also has built-in multi-threading by design. If the English
Wiktionary community decides to change the layout of sense definitions at some point
in the future, only a single change to the template definition is required. Templates
are used heavily throughout Wiktionary, because they substantially increase maintain-
ability and consistency. But they also pose a problem to extraction: On the unparsed
page only the template name and it’s arguments are available. Mostly this is sufficient,
but if the template adds static information or conducts complex operations on the argu-
ments (which is fortunately rare), the template result can only be obtained by a running
MediaWiki installation hosting the pages. The resolution of template calls at extraction
time slows down the process notably and adds additional uncertainty.

4.2. Wiktionary

Wiktionary has some unique and valuable properties:
• Crowd-sourced

Wiktionary is community edited, instead of expert-built or automatically gener-
ated from text corpora. Depending on the activeness of it’s community, it is up-
to-date to recent changes in the language, changing perspectives or new research.
The editors are mostly semi-professionals (or guided by one) and enforce a strict
editing policy. Vandalism is reverted quickly and bots support editors by fixing
simple mistakes and adding automatically generated content. The community
is smaller than Wikipedia’s but still quite vital: Between 50 and 80 very active
editors with more than 100 edits per month for the English Wiktionary in 201238.
• Multilingual

The data is split into different Wiktionary Language Editions (WLE, one for each
language). This enables the independent administration by communities and
leaves the possibility to have different perspectives, focus and localization. Si-
multaneously one WLE describes multiple languages; only the representation

36http://dumps.wikimedia.org/backup-index.html
37http://wiki.dbpedia.org/Documentation
38http://stats.wikimedia.org/wiktionary/EN/TablesWikipediaEN.htm

http://dumps.wikimedia.org/backup-index.html
http://wiki.dbpedia.org/Documentation
http://stats.wikimedia.org/wiktionary/EN/TablesWikipediaEN.htm

4 PROBLEM DESCRIPTION 21

language is restricted. For example, the German Wiktionary contains German de-
scriptions of German words as well as German descriptions for English, Spanish
or Chinese words. Particularly the linking across languages shapes the unique
value of Wiktionary as a rich multi-lingual linguistic resource. Especially the WLE
for not widely spread languages are valuable, as corpora might be rare and ex-
perts are hard to find.
• Feature rich

As stated before, Wiktionary contains for each lexical word39 a disambiguation
regarding language, part of speech, etymology and senses. Numerous additional
linguistic properties may be given for each part of speech usage or sense. Such
properties include word forms, taxonomies (hyponyms, hyperonyms, synonyms,
antonyms) and translations. Well maintained pages (e.g. frequently used words)
often have more sophisticated properties such as derived terms, related terms and
anagrams.
• Open license

All the content is dual-licensed under both the Creative Commons CC-BY-SA 3.0
Unported License40 as well as the GNU Free Documentation License (GFDL).41 All the
data extracted by our approach derives these licences.
• Big and growing

English contains 2.9M pages, French contains 2.1M, followed by Chinese with
1.2M and later German with 0.2 M pages. The overall size (12M pages) of Wik-
tionary is in the same order of magnitude as Wikipedia’s size (20M pages)42. The
number of edits per month in the English Wiktionary varies between 100k and 1M
— with an average of 200k for 2012 so far. The number of pages grows: In the
English Wiktionary with approx. 1k per day in 2012.43

The most important resource to understand how Wiktionary is organized are the Entry
Layout Explained (ELE) help pages. As described above, a page is divided into sections
that separate languages, part of speech etc. The table of content on the top of each
page also gives an overview of the hierarchical structure. This hierarchy is already very
valuable as it can be used to disambiguate a lexical word. The schema for this tree is
restricted by the ELE guidelines44. The entities of the ER diagram illustrated in Figure 5
will be called block from now on. The schema can differ between WLEs and normally
evolves over time.

39A lexical word is just a string of characters and has no disambiguated meaning yet
40http://en.wiktionary.org/wiki/Wiktionary:Text_of_Creative_Commons_

Attribution-ShareAlike_3.0_Unported_License
41http://en.wiktionary.org/wiki/Wiktionary:GNU_Free_Documentation_License
42http://meta.wikimedia.org/wiki/Template:Wikimedia_Growth
43http://stats.wikimedia.org/wiktionary/EN/TablesWikipediaEN.htm
44For English see http://en.wiktionary.org/wiki/Wiktionary:ELE.

http://en.wiktionary.org/wiki/Wiktionary:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://en.wiktionary.org/wiki/Wiktionary:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://en.wiktionary.org/wiki/Wiktionary:GNU_Free_Documentation_License
http://meta.wikimedia.org/wiki/Template:Wikimedia_Growth
http://stats.wikimedia.org/wiktionary/EN/TablesWikipediaEN.htm
http://en.wiktionary.org/wiki/Wiktionary:ELE

4 PROBLEM DESCRIPTION 22

Figure 5: Example page http://en.wiktionary.org/wiki/semantic and un-
derlying schema (only valid for the English Wiktionary, other WLE might look
very different.)

4.3. Wiki-scale Data Extraction

The above listed properties that make Wiktionary so valuable, unfortunately pose a se-
rious challenge to extraction and data integration efforts. Conducting an extraction for
specific languages at a fixed point in time is indeed easy, but it eliminates some of the
main features of the source. To fully synchronize a knowledge base with a community-
driven source, one needs to make distinct design choices to fully capture all desired
benefits. MediaWiki was designed to appeal to non-technical editors and abstains from
intensive error checking as well as formally following a grammar — the community
gives itself just layout guidelines. One will encounter fuzzy modelling and unexpected
information. Editors often see no problem with such noise as long as the page’s visual
rendering is acceptable. Overall, the issues to face can be summed up as

1. the constant and frequent changes to data and schema,

2. the heterogeneity in WLE schemas and

3. the human-centric nature of a wiki.

From the perspective of requirements engineering, they result in a number of require-
ments, that do not easily fit together. Figure 6 illustrates the different requirements.

The requirement Expressiveness is the sum of all functional requirements. The other
two are non-functional as they regard the long term sustainability of the development
process. Approaches with hard coded algorithms mostly cover only the first require-
ment. If a modular architecture is used, it might be easy to cover the Flexibility to new

4 PROBLEM DESCRIPTION 23

Figure 6: Competing requirements in wiki scale data extraction

WLE; an extractor for each WLE might be hard coded. Although it might be arguable
whether the growing code base stays maintainable, with sufficient effort of software
developers, such an approach theoretically could scale. However, development costs
could be reduced drastically, if the extraction is maintained by users. The two non-
functional requirements conflict with expressiveness as they are implemented with a
declarative pattern in our case and we argue that it is essential to do so, because only
a declarative approach can hide the complexity. But the more features the declarative
language supports, the harder it becomes for non experts to use it. In section 6 it will
be shown which trade off is chosen.

5 SPECIFICATION 24

Figure 7: The extractor interface.

5. Specification

In the following we will describe the used architecture.
Existing extractors as presented in section 3 mostly suffer from their inflexible nature

resulting from their narrow use cases at development time. Very often approaches were
only implemented to accomplish a short term goal (e.g. prove a scientific claim) and
only the needed data was extracted in an ad-hoc manner. Such evolutionary develop-
ment generally makes it difficult to generalize the implementation to heterogeneous
schemas of different WLE. Most importantly, however, they ignore the community na-
ture of a Wiktionary. Fast changes of the data require ongoing maintenance, ideally by
the wiki editors from the community itself or at least in tight collaboration with them.
These circumstances pose serious requirements to software design choices and should
not be neglected. All existing tools are rather monolithic, hard-coded black boxes. Im-
plementing a new WLE or making a major change in the WLE’s ELE guidelines will
require a programmer to refactor most of its application logic. Even small changes like
new properties or naming conventions will require software engineers to align settings.
The amount of maintenance work necessary for the extraction correlates with change
frequency in the source. Following this argumentation, a community-built resource
can only be efficiently extracted by a community-configured extractor. This argument
is supported by the successful crowd-sourcing of DBpedia’s internationalization [16]
and the non-existence of open alternatives with equal extensiveness.
Given these findings, we can now conclude four high-level design goals:
• declarative description of the page schema;
• declarative information/token extraction, using a terse syntax, maintainable by

non-programmers;
• configurable mapping from language-specific tokens to a global vocabulary;
• fault tolerance (uninterpretable data is skipped).

The extractor is built on top of the the DBpedia framework, and thus it is required to
conform to a simple interface, shown in figure 7.

Extractors are registered with the framework via a configuration file, and instanti-
ated with a requested context. The context can be the DBpedia ontology or the selected
language etc. Extractors are then subsequently invoked for every page of the Media-
Wiki XML dump. The framework passes the page—in parsed form of an AST, the
subjectURI—the URI of the resource this page should be referring to (e.g. http://-
dbpedia.org/resource/$PAGENAME)— and the pageContext— a helper for URI
generation. The interface defines the extractor to return a Graph in turn, which is ba-
sically a set of triples (or quads in this case). Internally the extractor will inspect the

5 SPECIFICATION 25

Figure 8: Architecture for extracting semantics from Wiktionary leveraging the DBpe-
dia framework

AST and generate triples, when he finds information he interprets as relevant. This
straightforward interface makes the DBpedia framework so modular. Input and out-
put handling (parsing and serialization) is left to the framework, and the resulting RDF
data can be directly inserted into a triple store.

We solve the shown requirements with an additional extractor, which internally fol-
lows a rather sophisticated workflow, shown in figure 8.

The Wiktionary extractor is invoked by the DBpedia framework to handle a page. It
uses a language-specific configuration file, that has to be tailored to match the WLE’s
ELE guidelines to interpret the page, to extract the desired information. At first, the
resulting triples still adhere to a language-specific schema, that directly reflects the con-
figured layout of the WLE. A generic lossless transformation and annotation using the
lemon vocabulary is then applied to enforce a global schema and reduce semantic het-
erogeneity. Afterwards the triples are returned to the DBpedia framework, which takes
care of the serialization and (optionally) the synchronization with a triple store via DB-
pedia Live45 [25]. The process of interpreting the declarative wrapper is explained more
detailed in Figure 9.

The actual algorithm is quite complex and will be explained in-depth in the next
section. The basic idea is the separation in three phases:

• preprocessing to skip pages that do not represent a lexical word

• the actual extraction with the three steps of analysing the page structure, match-

45http://live.dbpedia.org/live

http://live.dbpedia.org/live

5 SPECIFICATION 26

Figure 9: Overview of the extractor work flow.

ing templates and generating triple from the result

• post-processing to normalize schemata and polishing the output

The extractor itself is split into two components: a generic template matcher, that
takes a (possibly partially consumed) wiki page and a template. It then tries to bind
the variable parts of the template to actual content from the page. When a template is
successfully matched, the matched part of the page is consumed—removed from the
page. This component is called the VarBinder. The VarBinder is a stateless tool that
has no knowledge of the overall page layout

6 DESIGN AND IMPLEMENTATION 27

6. Design and Implementation

In the following we will present a bunch of noteworthy implementation details. First of
all, the implementation is done in Scala46 , because the DBpedia extraction framework
is written in Scala as well, but by the nature of Scala, extensions can also be written in
Java or any other JVM language47. The source code is available via the official DBpedia
Mercurial repository48 in the wiktionary branch.

6.1. Extraction Templates

As mentioned in section 4.2, we define a block as the part of the hierarchical page that
is responsible for a certain entity in the extracted RDF graph. For each block, there can
be declarations on how to process the page on that level. This is done by so called
extraction templates (called ET; not to be confused with the templates of wikitext). Each
possible section in the Wiktionary page layout (i.e. each linguistic property) has an ET
configured, explained in detail below. The idea is to provide a declarative and intuitive
way to encode what to extract. For example consider the following page snippet:

1 ===Synonyms===
2 * [[building]]
3 * [[company]]

Since the goal is to emit a triple for each link per line, we can write the ET in the follow-
ing style:

1 ===Synonyms===
2 (* [[\$target]]
3)+

Lets analyse what features are available to build ET:
Template matching: To match a template against a page, the VarBinder is employed

by the Extractor. Page and template are compared node by node, as you can see in
figure 10:

Figure 10: Matching an extraction template against a page

46http://www.scala-lang.org/
47http://en.wikipedia.org/wiki/List_of_JVM_languages
48http://dbpedia.hg.sourceforge.net/hgweb/dbpedia/extraction_framework/

http://www.scala-lang.org/
http://en.wikipedia.org/wiki/List_of_JVM_languages
http://dbpedia.hg.sourceforge.net/hgweb/dbpedia/extraction_framework/

6 DESIGN AND IMPLEMENTATION 28

Internally a Stack49 is used; if the head nodes of both stacks are equal, they are
consumed, if not an Exception is thrown to notify about a mismatch.

Variables: In the extraction template, there can be special nodes (e.g. variables). If
a variable is encountered, all nodes from the page are being recorded and saved as a
binding for that variable. All variables that are recorded within an extraction template
are collected and returned as a result of the template being matched against the page.

Figure 11: recording a variable

Some short notes about variables:
• The pattern to recognize them is \$[a-zA-Z0-9].
• They stop recording the page when they encounter the token that follows the

variable in the extraction template, as you can see in figure 11.
• If there is no node following them, they consume everything.
• If they record too many nodes (e.g. the whole page), they are assumed to be faulty

and an exception is thrown.
Repetition: They implement the possibility to have subtemplates that can be re-

peated. Their syntax is intuitive by grouping a subtemplate with brackets and one
of three modifiers:
• * for 0..n matches,
• + for 1..n matches and
• ? for 0..1 matches.

To implement repetitions, the VarBinder extracts the nodes from within the brackets,
treats them as a subtemplate and simply tries to match the subtemplate multiple times
against the page. It stops if either the maximum number of repetitions is reached (only
for the ?-modifier) or the subtemplate does not match any more. Thus it expands the
repetition as far as possible. How do variables relate to subtemplate? If a variable is used in
a repetition and bound twice, it doubles the number of varbindings. Variables outside
the subtemplate are then duplicated. Formalized: The flattened version of the (directed)
binding tree is the set of all paths starting at the root.

Error tolerance: Due to the human-centric nature of a wiki, pages often contain un-
expected information: An additional image, an editor note or a rare template. To com-
pensate this, we decided to add the possibility to weaken the conditions for a template
mismatch. When a node is encountered on the page, that is not expected from the
template, the template is not immediately aborted, but instead the VarBinder keeps

49http://www.scala-lang.org/api/current/scala/collection/mutable/Stack.html

http://www.scala-lang.org/api/current/scala/collection/mutable/Stack.html

6 DESIGN AND IMPLEMENTATION 29

Figure 12: using variables in repetitions

record of the error and this unexpected node is skipped. To limit these skips, a window
over the last s nodes is observed, to calculate an error threshold maxError. This allows
the template to recover from local errors if it continues to match later. Additionally the
edge case of templates with length 0 or 1 and 1 unexpected node, should be avoided to
succeed by the minCorrect parameter that prevents templates from matching too easily.

Figure 13: Error tolerance with a sliding window (s = 3,minCorrect = 1,maxError = 1)

The example in figure 13 shows how confined errors (the single one) are ignored but
major errors (like the two consecutive ones) will prevent the template from matching.
This implements a sliding window as only the last s nodes are considered and this win-
dow progresses with the page being consumed. These are the most important features
of extraction templates.

Back to our example: The found variable bindings are {($target -> "building"),
($target -> "company")}. How do we transform these bindings into RDF triples?
We simply invert the idea of extraction templates to result templates (called RT). We in-
sert the value of variables into subject, predicate and object of a RDF triple:

1 <triple s="http://some.ns/$entityId" p="http://some.ns/hasSynonym" o="http://some.ns/
$target" />

Notice the reuse of the $target variable: The data extracted from the page is inserted
into a triple. The variable $entityId is a reserved global variable, that holds the page
name i.e. the word. The created triples in N-Triples syntax are:

1 <http://some.ns/house-1> <http://some.ns/hasSynonym> <http://some.ns/building> .
2 <http://some.ns/house-1> <http://some.ns/hasSynonym> <http://some.ns/company> .

The used RT can be more complex, as explained below.

6.2. Algorithm

The algorithm of processing a page works as follows:
Input: The parsed page is obtained from the DBpedia Framework (essentially a lexer is

6 DESIGN AND IMPLEMENTATION 30

used to split the wikitext into tokens).

1. Filter irrelevant pages (user/admin pages, statistics, list of things, files, templates,
etc.) by applying string comparisons on the page title. Return an empty set of
triples in that case.

2. Build a finite state automaton50 from the page layout encoded in the WLE specific
XML configuration. This automaton contains a state for each block. This schema
also contains so called indicator templates for each block, that—if they match at the
current page token—indicate that their respective block starts. This way indicator
templates trigger state transitions in the automaton, thus automaton recognizes the
page layout and keeps track of the current block. In this regard the mechanism
is similar to [19], but in contrast our approach is declarative — the automaton is
constructed on-the-fly and not hard-coded. The current state represents the current
position in the disambiguation tree.

3. The page is processed token by token:

a) Check if indicator templates match. If yes, the corresponding block is entered.
The indicator templates also emit triples like in the extraction template step be-
low. These triples represent the block in RDF—for example the resource
http://wiktionary.dbpedia.org/resource/semantic-English
represents the English block of the page semantic.

b) Check if any extraction template of the current block match. If yes, transform
the variable bindings to triples.51 Localization specific tokens are replaced
as configured in the so called language mapping (explained in detail in section
6.3).

4. The triples are then transformed. In our implementation transformation means, that
all triples are handed to a static function, which returns a set of triples again.
One could easily load the triples into a triple store like JENA and apply arbitrary
SPARQL Construct and Update transformations. This step basically allows post-
processing, e.g. consolidation, enrichment or annotation. In our case, we apply
the schema transformation (by the mediator) explained in detail in section 6.6.

5. The triples are sorted and de-duplicated to remove redundancy in the RDF dumps.

Output: Set of triples (handed back to the DBpedia Framework).

6.3. Language Mapping

The language mappings are a very simple way to translate and normalize tokens, that
appear in a WLE. In the German WLE, for example, a noun is described with the Ger-
50Actually a finite state transducer, most similar to the Mealy-Model.
51In our implementation either declarative rules are given in the XML config or alternatively static meth-

ods are invoked on user-defined classes (implementing a special interface) for an imperative transfor-
mation. This can greatly simplify the writing of complex transformation.

http://wiktionary.dbpedia.org/resource/semantic-English

6 DESIGN AND IMPLEMENTATION 31

man word Substantiv. Those tokens are translated to a shared vocabulary, before emit-
ting them (as URIs for example). The configuration is also done within the language
specific XML configuration:

1 <mapping from="Substantiv" to="Noun">
2 <mapping from="Deutsch" to="German">
3 ...

The mapping consists currently of mappings for part of speech types and languages,
but arbitrary usage is possible. Section 6.5 shows how this mapping is used.

6.4. Reference Matching

A Wiktionary specific requirement is the resolution of intra-page references: All Wik-
tionaries use some way to refer to parts of the traits of the word. For example on the
page house senses are defined:

1 # A structure serving as an [[abode]] of human beings.
2 # {{politics}} A deliberative assembly forming a component of a legislature, or, more

rarely, the room or building in which such an assembly normally meets.
3 # [[house music|House music]].

Later on relations to other words are noted — but in context of a sense. For example
house in context of abode has the translation Haus in German. So the following notion is
used:

1 ====Translations====
2 {{trans-top|abode}}
3 ...
4 * German: {{t+|de|Haus|n}}, {{t+|de|Häuser|p}}
5 ...

The problem is to match the gloss that is given in the trans-top template argument
against the available senses. The senses have been assigned URIs already; now those
are needed to serve as the subject for the translation triples. There is no simple way
to determine which sense URI belongs to which gloss. As described in [23] as relation
anchoring, a string based measure is used52. There is a simple data structure that is
initialized per page, to this matching mechanism. Which measure is used can be con-
figured in the global configuration. Available measures are: Levenshtein and trigram
set similarity with dice, jaccard or overlap coefficient. A sense can be registered with
the Matcher by passing its definition sentence. An id is generated for that sense. Later
on, glosses (short forms of the definition) that refer to a sense can be passed to look up
which sense matches best and the corresponding id is returned. Opposed to existing
approaches, we make no assumptions on how such references are noted. The English
Wiktionary uses glosses; the German one uses explicit numbers (that don’t need to be

52Opposed to the approach described in [23], we try to focus on explicit information. Determining the
sense URI of a translation triple is already error prone, but so called target anchoring is not performed.
Target anchoring refers to the disambiguation of the target word (or entity): this target of course has
also a disambiguation tree, and it is possible to bend the link to point to a node deeper in that tree
instead of just the root node. We consider this highly assumptious and it introduces noise. We leave
that to postprocessing. Also it is not implementable easily within the DBpedia framework, because
data extracted on other pages is not available to an extractor at runtime.

6 DESIGN AND IMPLEMENTATION 32

matched), the Russian and French uses a combination of both—sometimes senses are
explicitly referred to by their numbers, sometimes with a gloss. So we came up with a
customizable way to use the reference matcher. section 6.5 shows how this mechanism
is used.

6.5. Formatting functions in Result Templates

The question arises, how this mapping is then used within the application. It is cer-
tainly not reasonable to replace all occurrences of those from tokens. This would lead
to a number of false positive matches and screwed output. It is crucial to offer a possi-
bility to configure in which context output should be handled like that. Therefore, we
introduced formatting functions in result templates: When you define the triples that
are generated, you can apply functions to e.g. variables. An example:

1 <triple s="http://some.ns/uri($entityId)" p="http://some.ns/hasLanguage" o="http://some
.ns/map($target)" />

In this RT, two functions are used: uri and map. They are wrapped around variables
and during rendering the RT to triples, they are evaluated. The following functions are
available:

uri(str) URL encode
map(str) replace if mapping found
assertMapped(str) don’t emit triple if not in mapping vocabulary
assertNumeric(str) don’t emit triple if argument is not numeric
getId(str) look up a gloss and get the id of the best matching sense
getOrMakeId(str) as getId but generate id if below a similarity threshold
makeId(str) save a sense and generate an id
saveId(str, str) save a sense with a given id

The functions with Id in their name relate to the matching introduced in section 6.4.
Continuing the example of senses and translations, one would configure the RT to save
definition sentences into the Matcher, when generating triples about definitions and
later looking up (matching) the gloss, when generating triples about the translation
section:
The RT for the definitions may be:

1 <triple s="http://some.ns/$entityId-makeId($definition)" p="http://some.ns/
hasDefinition" o="$definition" oType="literal" />

and for the translations:
1 <triple s="http://some.ns/$entityId-getId($gloss)" p="http://some.ns/hasTranslation" o=

"http://some.ns/uri($target)" />

The idea is that, if the matching is correct, the subject URIs are equal (e.g. http://
some.ns/house-1) in both triples: There are two triples about one resource, thus the
information is successfully merged.

http://some.ns/house-1
http://some.ns/house-1

6 DESIGN AND IMPLEMENTATION 33

Figure 14: Schema normalization.

1 <http://some.ns/house-1> <http://some.ns/hasDefinition> "A structure serving as an
abode of human beings." .

2 <http://some.ns/house-1> <http://some.ns/hasTranslation> <http://some.ns/Haus> .

6.6. Schema Mediation by Annotation with lemon

The last step of the data integration process is the schema normalization. The global
schema of all WLE is not constructed in a centralized fashion—instead we found a way
to both making the data globally navigable and keeping the heterogeneous schema
without loosing information. lemon [20] is an RDF model for representing lexical in-
formation (with links to ontologies—possibly DBpedia). We use part of that model to
encode the relation between lexical entries and lexical senses. lemon has great potential
of becoming the de facto standard for representing dictionaries and lexica in RDF and
is currently the topic of the OntoLex W3C Community group53. The rationale is to
add shortcuts from lexical entities to senses and propagate properties that are along the
intermediate nodes down to the senses. This can be accomplished with a generic tree
transformation algorithm, regardless of the depth of the tree and used links. Applica-
tions assuming only a lemon model, can operate on the shortcuts and, if applied as an
overlay and leaving the original tree intact, this still allows applications, to operate on
the actual tree layout, too. The (simplified) procedure is presented in Figure 1454. The
use of the lemon vocabulary and model as an additional schema layer can be seen as
our mediator. This approach is both lightweight and effective as it takes advantage of
multi-schema modelling.

53http://www.w3.org/community/ontolex/
54Note, that in the illustration it could seem like the information about part-of-speech would be missing

in the lemon model. This is not the case: From the part-of-speech nodes, there is a link to corresponding
language nodes, which is omitted for brevity. These links are also propagated down the tree.

http://www.w3.org/community/ontolex/

6 DESIGN AND IMPLEMENTATION 34

6.7. Configuration

As presented in section 4, the most important requirement of the approach is config-
urability. The extractor itself is as generic as possible, it is not tailored to linguistics or
even Wiktionary. It has a commitment to wiki syntax, but is also able to process plain
text as it can be interpreted as wikitext without markup, thus the extractor may be suit-
able for most flat file formats. However the configuration makes up the heart of the
extractor: it is a big XML file interpreted at runtime and describes how to interpret the
page. We will go through the available options and show their relevance to the given
requirements.

At first, the configuration is splitted into a generic part and a language specific part.
The generic part is always loaded and does not need to be localized to a WLE. It con-
tains options like the namespace, in which all URIs are created and an option that speci-
fies which language configuration should be used. The language specific configuration
is loaded, based on that option, at runtime. It has to be tailored to a WLE by the main-
tainer of the dataset.

Both configuration types are stored in the config folder. The naming convention
is straight forward, confix.xml holds the generic config, the other files are language
configurations:

config
config.xml
config-de.xml
config-en.xml
...

The generic configuration has two parts—a properties list and a mapping. The prop-
erties are the mentioned namespace, the language, the loglevel (to configure debug
verbosity) and options to configure the matcher. The mapping is — as explained in
section 6.3 — a way to replace tokens found on the page to a global vocabulary. But
opposed to language specific tokens, in the generic configuration, globally used tokens
are configured. It is used to provide a mapping from ISO 639-1 and -2 codes to the
Wiktionary vocabulary.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <config>
3 <properties>
4 <property name="logLevel" value="0"/>
5 <property name="language" value="ru"/>
6 <property name="ns" value="http://wiktionary.dbpedia.org/"/>
7 <property name="matchingStrategy" value="levenshtein"/>
8 <property name="matchingThreshold" value="0.5"/>
9 </properties>

10 <mappings>
11 <!-- ISO 639-1 -->
12 <mapping from="aa" to="Afar" />
13 <mapping from="ab" to="Abkhazian" />
14 <mapping from="ae" to="Avestan" />
15 ...

The language specific configuration is probably the most important part of this thesis.
The created XML dialect directly reflects the expressiveness of the extraction approach.
As explained in section 4, the expressiveness is limited by the complexity of the declar-

6 DESIGN AND IMPLEMENTATION 35

ative language. However, the declarative language should remain simple to keep it
easily usable by non experts. The interpreter should be as generic as possible. In the
following we will present which trade off was chosen and how the layout of a WLE is
modelled in our XML dialect.
The configuration for English shall serve as an example here55. The XML is structured
as

<config>
<ignore>
<mappings>
<postprocessing>
<saveVars>
<templateRepresentativeProperties>
<page>

The <ignore> section configures which pages shall be skipped and not used for ex-
traction. This is used to skip help pages or user profiles, but it can also be used to skip
pages like conjugation tables, as they are not handled yet. An example for this section
could be

1 <ignore>
2 <page startsWith="Help:" />
3 <page endsWith=" (Conjugation)" />
4 ...

There are two options to determine if a page should be skipped: Prefix or suffix matches
in the page title.
The mappings section has been explained in 6.3, it is used to translate language specific
terms for languages or part of speech types and can be invoked by formatting functions
in result templates as explained in 6.5.
<postprocessing> configures whether and how the extracted triples of a page should
be handled. It is possible to pass them to so called Postprocessors (that are JVM
classes, visible in classpath, that need to implement a certain interface Postprocessor).
This Postprocessor can be configured by arbitrary XML nodes. The interpretation of
those is left to the class itself. An example for Postprocessors is the lemon overlay.
It is invoked like this:

1 <postprocessing enabled="true" ppClass="org.dbpedia.extraction.mappings.wikitemplate.
wiktionary.postprocessor.LemonOverlay">

2 <config>
3 <blockProperty uri="http://www.monnet-project.eu/lemon#sense"/>
4 <inputTargetClass uri="http://wiktionary.dbpedia.org/terms/Sense"/>
5 <followProperties>
6 <property uri="http://wiktionary.dbpedia.org/terms/hasPoSUsage"/>
7 <property uri="http://wiktionary.dbpedia.org/terms/hasLangUsage"/>
8 <property uri="http://wiktionary.dbpedia.org/terms/hasSense"/>
9 </followProperties>

10 <collectProperties>
11 <property uri="http://purl.org/dc/elements/1.1/language"/>
12 <property uri="http://www.w3.org/2000/01/rdf-schema#label"/>
13 <property uri="http://wiktionary.dbpedia.org/terms/hasMeaning"/>
14 <property uri="http://wiktionary.dbpedia.org/terms/hasTranslation"/>
15 <property uri="http://wiktionary.dbpedia.org/terms/hasExampleSentence"/>

55http://dbpedia.hg.sourceforge.net/hgweb/dbpedia/extraction_framework/file/
tip/wiktionary/config/config-en.xml

http://dbpedia.hg.sourceforge.net/hgweb/dbpedia/extraction_framework/file/tip/wiktionary/config/config-en.xml
http://dbpedia.hg.sourceforge.net/hgweb/dbpedia/extraction_framework/file/tip/wiktionary/config/config-en.xml

6 DESIGN AND IMPLEMENTATION 36

16 ...
17 </collectProperties>
18 <outputStartClass uri="http://www.monnet-project.eu/lemon#LexicalEntry"/>
19 <outputAggregatedClass uri="http://www.monnet-project.eu/lemon#LexicalSense"/>
20 </config>
21 </postprocessing>

<saveVars> allows to cache variables between template matches. Normally the only
variables visible in result templates, are the ones bound in the extraction templates. We
extended this with a cache, so certain variables can be kept. If a variable is set to be
saved like

1 <saveVars>
2 <var name="pos"/>
3 <var name="language"/>
4 <var name="definition"/>
5 </saveVars>

it’s last value stays available to be used in further result templates. In other words:
After being bound, the variable stays visible, it gets a global scope. This memory allows
a kind of context sensitivity by means of a look back. The mechanism is currently not used.
templateRepresentativeProperties works as a very simple template resolution
mechanism. To resolve templates (render them to readable text), actually a running
MediaWiki instance is necessary. But often this is superfluous: It might be sufficient to
simply choose an argument of that template to represent it readable. For example the
English template term is used to format links to other words e.g. derived from
{{term|hus}}, from {{proto|Germanic|husan}}, ...; it is printed as the
word itself, which is the first argument. Other informations can be ignored. So we
came up with this simple but effective mechanism to declare which property is used to
represent templates:

1 <templateRepresentativeProperties>
2 <templateRepresentativeProperty tplName="term" pKey="1"/>
3 <templateRepresentativeProperty tplName="proto" pKey="2"/>
4 ...
5 </templateRepresentativeProperties>

Finally we come to the most important section, the page section. It describes the overall
layout of a page within a WLE. As defined in section 4.2, a page is hierarchically divided
into blocks. The need arises to configure

1. the hierarchy of the blocks,

2. how the start of a block is recognized and

3. which extraction templates are used in each block.

The first is achieved by nesting <block> nodes into each other:
1 <page>
2 <block name="language">
3 <block name="pos>
4 ...
5 </block>
6 </block>
7 </page>

6 DESIGN AND IMPLEMENTATION 37

The second is realised by reusing templates. As introduced above, templates are match-
ed against the page; additionally to extracting triples, they are used here, to react when
they match. A block can have several indicator templates and while the extractor pro-
cesses the page, it tries to match these. If they match, they trigger the start of a block.
In the next step we will see how such a template is actually configured. The syntax
for extraction templates and indicator templates is exactly the same56. The indicator
templates are stored in each block:

1 <block name="language">
2 <indicators>
3 <indicator>
4 <template ... (see below)
5 </indicator>
6 </indicators>
7 ...
8 </page>

The third is done by the templates section within each block:
1 <block name="language">
2 <indicators />
3 <templates>
4 <template name="example">
5 <wikiTemplate>===Etymology===
6 $etymology
7 </wikiTemplate>
8 <resultTemplates>
9 <resultTemplate>

10 <triples>
11 <triple s="$block" p="http://wiktionary.dbpedia.org/terms/hasEtymology" o="

$etymology" oType="literal"/>
12 </triples>
13 </resultTemplate>
14 </resultTemplates>
15 </template>
16 </template>
17 </templates>
18 </page>

The basics were explained in section 6.1, now we put them together: the <template>
node is divided into two parts — the extraction template in <wikiTemplate> and the
result templates.
The extraction template has been explained already. It is put in the <wikiTemplate>
node. The only thing to keep in mind here is whitespace—whitespaces count. Also
every indention or line break will be interpreted as wiki text and expected to match.
Make sure you don’t accidentally change the template, because it most likely won’t
match any more. Also set your text editor to show control characters like spaces, tabs
or newlines (cf. the ¶ symbol).
Additionally to the result template basics introduced above, for a <template> there can
be multiple RT and each consists of a set of triple templates. The rational is to respect
missing bindings: If a variable is inside an optional repetition, it may not be present in
the variable bindings. If those bindings are then converted to triples by a result template,
missing variables will result in the current triple to fail. To avoid inconsistent triples
(because some are missing), no triple shall be emitted. Thus RT are atomic—either all
triples inside are emitted or none. This allows to model triples separately for varying

56The interpreting code is reused.

6 DESIGN AND IMPLEMENTATION 38

page content within one template. Another way to respect diverse layouts, is to declare a
triple optional:

1 <resultTemplate>
2 <triple s="http://some.ns/$entityId" p="http://some.ns/hasSense" o="http://some.ns/

$entityId-$sense" />
3 <triple s="http://some.ns/$entityId-$sense" p="http://some.ns/hasSource" o="$source"

optional="true" />
4 </resultTemplate>

This disregards errors while rendering the RT to triples. A missing variable, will be
ignored and the template finishes successfully.
A very important feature is the global $block variable together with the oNewBlock
configuration option within indicator templates: Global variables have already been in-
troduced by the $entityId variable and the possibility to save variables between tem-
plates. The $entityId variable is static, it keeps its value over time. Saved variables
are local variables that become global. Now we introduce the $block variable, that
holds the URI of the current block. For example, if the extractor currently processes the
language block of a word, the value could be http://some.ns/Haus-German. This
value can then be used to construct URIs that reuse this as a prefix:

1 <triple s="$block" p="http://some.ns/hasPosUsage" o="$block-$pos" oNewBlock="true" />

The object URI could be http://some.ns/Haus-German-Noun for example. But
furthermore, if this RT is used within an indicator template, the need arises to indicate
the start of a new block. When we introduced indicator templates above, we lied: Not the
successful match of template triggers the state change, but only the successful render-
ing of its result template, including a triple with the oNewBlock option. The rational
is, that to trigger that transition, the new block URI has to be known and there is no
simple way to determine it from a set of unremarkable triples that are produced by the
indicator template. Of course the $block variable can be used independently from the
oNewBlock option in ordinary RT.

6.8. Utility Tools

To provide a complete deployment environment for the Wiktionary RDF dataset, it is
also necessary to cater for tools to load the data into a database. We chose Virtuoso for
this purpose and we created a set of tools that relate to data loading and cleaning. The
set of available tools is presented in this table:

script parameters result note
prepare <lc> cleaned

nt-file
Applies rapper to the nt-file of the language code to clean com-
mon encoding problems, generates statistics and bzip’s the file.

virtuoso-
load

<init>
<lc>+

loaded
language
dumps in
Virtuoso

Init (either true or false) specifies whether the database should
be purged first. Then for each language code, the corresponding
nt-file is loaded into Virtuoso, while setting up the graph layout
accordingly.

publish-
download

<lc>+ nt-files
uploaded

Expects passwordless ssh access to the DBpedia download
server, gzips them, uses scp to upload the files and names
them with the current date.

http://some.ns/Haus-German
http://some.ns/Haus-German-Noun

6 DESIGN AND IMPLEMENTATION 39

make_jarzip - executable
jar file of
the extrac-
tor

Creates a zip file that contains an executable jar of the DB-
pedia Wiktionary source code, containing all dependencies (to
the framework and to configuration resources). Enables the
easy distribution of the software for people without Mercurial
knowledge.

statistics <nt-file> printed
statistics

Generates statistics about an nt-file (e.g. triple count, property
usage, sense counts)

translation-
extract

- translations
CSV file

Retrieves all translation pairs from a SPARQL endpoint and
serializes them in a fixed CSV format. The translation source
word is disambiguated by language, part of speech and sense.

translation-
loader.sql

- relation
of transla-
tions

execute from SQL console to load translations CSV file into a
fixed relational table

The first four tools are used for deployment, the statistics tool is informative and the
last two are descended from a specific use case that can also serve as a best practice for
similar tasks. The task in this case was to export translations to a relational schema. We
chose to do it via CSV as an intermediate step, as this format is both easy to serialize
and easy to load from SQL. If the need arises to do something similar (for example with
synonyms), this script is easy to adapt.

6.9. Graph Layout

Each WLE corresponds to a graph of its extracted triples. E.g. the English Wiktionary
has been converted into the graph http://en.wiktionary.dbpedia.org/. A very
interesting trait of this thesis is the merging of multiple Wiktionaries into on global re-
source: Each WLE describes various languages (in one reader language). For exam-
ple, both the German and the English Wiktionary contain informations about Spanish
words. Thus, without parsing the Spanish Wiktionary, you get an comprehensive Span-
ish language resource. The interesting part is, that URIs fall together — when the Ger-
man and the English Wiktionary describe the same word, the resulting triples describe
the same RDF resource, because the URIs are constructed canonically. When you merge
both graphs, you get a multilingual linguistic knowledge base — at no additional cost.
To avoid the decision if all graphs are only available merged or independent, for our
deployment we chose to use the Graph Group feature of Virtuoso. This enables the con-
figuration of special graphs that are substituted by the group of their member graphs
when used in a query. This feature can be used to virtually import multiple graphs into
one global graph:
Both the global and local graphs are visible simultaneously. The Linked Data view is
based on the global graph. In SPARQL queries, it is up to the user, which graph to
choose.

http://en.wiktionary.dbpedia.org/

7 EVALUATION 40

Figure 15: A graph for each WLE, virtually imported into one global graph

7. Evaluation

The extraction has been conducted as a proof-of-concept on four major WLE, the En-
glish, French, Russian and German Wiktionary. The datasets combined contain more
than 80 million facts57 about five million lexical words58. The data is available as N-
Triples dumps59, Linked Data60, via the Virtuoso Faceted Browser61 or a SPARQL end-
point62. The extraction has been conducted on August 15th 2012 and the used XML
dumps were the latest as of that day63.

7.1. Example Data

Just for reference, we present some sample data. It is extracted from the English Wik-
tionary entry for goggles64:

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
3 @prefix wt: <http://wiktionary.dbpedia.org/terms/>.
4 @prefix wr: <http://wiktionary.dbpedia.org/resource/>.
5 @prefix dc: <http://purl.org/dc/elements/1.1/>.
6 @prefix doap: <http://usefulinc.com/ns/doap#>.
7 @prefix lemon: <http://www.monnet-project.eu/lemon#>
8
9 wr:goggles doap:creator <http://en.wiktionary.org/w/index.php?title=goggles&action=

history> .
10 wr:goggles lemon:sense wr:goggles-English-Noun-1en .
11 wr:goggles rdfs:label "goggles"@en .
12 wr:goggles rdfs:seeAlso <http://ko.wiktionary.org/wiki/goggles> .
13 wr:goggles rdfs:seeAlso <http://fi.wiktionary.org/wiki/goggles> .
14 wr:goggles rdfs:seeAlso <http://sv.wiktionary.org/wiki/goggles> .
15 wr:goggles rdfs:seeAlso <http://io.wiktionary.org/wiki/goggles> .
16 wr:goggles rdfs:seeAlso <http://te.wiktionary.org/wiki/goggles> .
17 wr:goggles rdfs:seeAlso <http://zh.wiktionary.org/wiki/goggles> .
18 wr:goggles rdfs:seeAlso <http://de.wiktionary.org/wiki/goggles> .
19 wr:goggles rdfs:seeAlso <http://my.wiktionary.org/wiki/goggles> .
20 wr:goggles rdfs:seeAlso <http://pl.wiktionary.org/wiki/goggles> .
21 wr:goggles rdfs:seeAlso <http://en.wiktionary.org/wiki/goggles> .
22 wr:goggles rdfs:seeAlso <http://ta.wiktionary.org/wiki/goggles> .
23 wr:goggles rdfs:seeAlso <http://kn.wiktionary.org/wiki/goggles> .

57SPARQL: SELECT COUNT(*) WHERE ?s ?p ?o
58SPARQL: SELECT COUNT(?s) WHERE ?s a lemon:LexicalEntry
59http://downloads.dbpedia.org/wiktionary
60for example http://wiktionary.dbpedia.org/resource/dog
61http://wiktionary.dbpedia.org/fct
62http://wiktionary.dbpedia.org/sparql
63In detail: en - 08/12, fr - 08/12, ru - 08/06, de - 08/11
64http://en.wiktionary.org/wiki/googles

http://downloads.dbpedia.org/wiktionary
http://wiktionary.dbpedia.org/resource/dog
http://wiktionary.dbpedia.org/fct
http://wiktionary.dbpedia.org/sparql
http://en.wiktionary.org/wiki/googles

7 EVALUATION 41

24 wr:goggles rdfs:seeAlso <http://vi.wiktionary.org/wiki/goggles> .
25 wr:goggles rdfs:seeAlso <http://fr.wiktionary.org/wiki/goggles> .
26 wr:goggles rdfs:seeAlso <http://et.wiktionary.org/wiki/goggles> .
27 wr:goggles rdf:type lemon:LexicalEntry .
28 wr:goggles rdf:type wt:LexicalEntity .
29 wr:goggles wt:hasLangUsage wr:goggles-English .
30 wr:goggles-English dc:language wt:English .
31 wr:goggles-English wt:hasPoSUsage wr:goggles-English-Noun .
32 wr:goggles-English wt:hasEtymology "Probably from goggle from the appearance it gives

the wearer."@en .
33 wr:goggles-English wt:hasPronunciation "/\u02C8\u0261\u0251.\u0261\u0259lz/"@en .
34 wr:goggles-English-Noun wt:hasPoS wt:Noun .
35 wr:goggles-English-Noun wt:hasSense wr:goggles-English-Noun-1en .
36 wr:goggles-English-Noun-1en dc:language wt:English .
37 wr:goggles-English-Noun-1en wt:hasPoS wt:Noun .
38 wr:goggles-English-Noun-1en rdfs:label "goggles"@en .
39 wr:goggles-English-Noun-1en wt:hasMeaning "Protective eyewear set in a flexible frame

to fit snugly against the face."@en .
40 wr:goggles-English-Noun-1en rdf:type lemon:LexicalSense .
41 wr:goggles-English-Noun-1en rdf:type wt:Sense .
42 wr:goggles-English-Noun-1en wt:hasEtymology "Probably from goggle from the appearance

it gives the wearer."@en .
43 wr:goggles-English-Noun-1en wt:hasTranslation wr:Schutzbrille-German .
44 wr:goggles-English-Noun-1en wt:hasTranslation wr:occhiali_protettivi-Italian .
45 ...

7.2. Possible Application

Now that we have this fine granular data, we can imagine many usage scenarios:

• reference, annotation (annotate corpora with unique identifiers)

• grammatical analysis (part of speech tagging, stemming, disambiguation)

• machine translation: The provided translations are defined on the senses, which
enables context aware translation.

Most of these use cases require more data to be extracted then currently supported.
But the data is already present within Wiktionary. Only the configuration has to be
extended.
For example machine translation can be augmented with the provided data. To retrieve
the translation pairs—with the given context—a simple SPARQL query is sufficient:

1 PREFIX wt:<http://wiktionary.dbpedia.org/terms/>
2 PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX dc:<http://purl.org/dc/elements/1.1/>
4 SELECT DISTINCT ?sword ?slang ?spos ?ssense ?tword ?tlang
5 FROM <http://wiktionary.dbpedia.org/>
6 WHERE {
7 ?swordRes wt:hasTranslation ?twordRes .
8 OPTIONAL {
9 ?swordRes rdfs:label ?sword .

10 ?swordRes dc:language ?slang .
11 ?swordRes wt:hasPoS ?spos .
12 }
13 OPTIONAL { ?swordRes wt:hasMeaning ?ssense . }
14 OPTIONAL {
15 ?twordBaseRes wt:hasLangUsage ?twordRes .
16 ?twordBaseRes rdfs:label ?tword .
17 }
18 OPTIONAL { ?twordRes dc:language ?tlang . }
19 }

7 EVALUATION 42

This query retrieves all translation pairs with a disambiguation towards language, part
of speech and sense definition of the source word. The data may look like:

"Hahn" wt:German wt:Noun "das männliche Tier verschiedener Vogelarten"@de "cock" wt:English
"Hahn" wt:German wt:Noun "eine mechanische Vorrichtung [...]"@de "tap" wt:English
...

The example data shows, the disambiguated translation oh the German word Hahn,
which has two meanings, which each a different translation. Analogously e.g. syn-
onym pairs can be queried. This data is highly valuable, as it does not rely on noisy
disambiguation algorithms, but is explicitly entered by human editors.

7.3. Quantity Measurement

We used some simple counting queries to measure the dimensions of the RDF data. This
includes the number of its entries in the dictionary or, when seen as a graph, the number
of edges and vertices or the number of distinct used predicates.

language #words #triples #resources #predicates #senses
en 2,142,237 28,593,364 11,804,039 28 424,386
fr 4,657,817 35,032,121 20,462,349 22 592,351
ru 1,080,156 12,813,437 5,994,560 17 149,859
de 701,739 5,618,508 2,966,867 16 122,362

Table 4: Statistical quantity comparison of three Wiktionary extraction result datasets.

The statistics show, that the extraction produces a vast amount of data with broad cov-
erage, thus resulting in the largest lexical linked data resource. (Note that even non-
existing but referenced pages, result in the creation of a word. E.g. translations often
reference pages that do not exist yet—red pages).

7.4. Quality Measurement

The measurement of data quality is a difficult topic, as there is no gold standard — no
optimum to compare with. One could compare it with competing extractors, but what, if
you succeed them? What, if your scope is too different? It is necessary to use absolute mea-
sures, either automatically calculated (which can be misleading) or by human rating
(which requires substantial effort).
All presented index numbers are chosen at will, to give some idea about the coverage
of the RDF data, but none of them is able to indicate the quality of the extraction —
the completeness of the configuration — on a scale from zero to one. The numbers
depend on the quality of the source data (which can not simply be assessed) and are not
necessarily normed to one. It can be argued, that the last measure, triples per line, may
the one most robust against source dependency. This tendency of the measure to vary
with the quality of the source is desired to be low. It can be argued that this value should
be close to one or even higher for a perfect extraction configuration, because each line

7 EVALUATION 43

language t/w #wws s/wws t/l
en 13.35 591,073 1.39 2.70
fr 7.52 750,206 1.26 1.73
ru 11.86 211,195 1.40 2.25
de 8.01 176,122 1.43 1.06

Table 5: Statistical quality comparison of three Wiktionary extraction result datasets.
t/w: Triples per word. The simplest measure of information density. #wws:Words
with senses. The number of words, that have at least one sense extracted. An in-
dicator for the ratio of pages for which valuable information could be extracted
(but consider stub pages, that are actually empty). s/wws: Senses per word with
sense. Gives an idea of the average senses per word while ignoring unmain-
tained pages. t/l:Triples per line. The number of triples divided by the number
of line breaks in the page source (plus one). Averaged across all pages.

should contain some information (which results in a triple). Empty lines are disregarded
and lines that produce multiple triples are rare. Therefore any value considerably lower
than one, indicates that there are many uninterpreted lines. But again, these measures
might be misleading as they are influenced by many unknown factors. One should
not use them to compare two language editions of Wiktionary or a new configuration
against one for a different language which is considered good. A safe way to use them
is when comparing two versions of a configuration file with each other.
Both measurement types can be conducted with the statistics tool, which is part of
the source code. It operates on the N-Triples dump of one language.
A reliable data quality assessment is only possible by human rating of randomly sam-
pled entries. The procedure would include the random selection of a sufficiently large
subset of extracted data (e.g. 200 words within one WLE), then these are assigned to
a group of semi-experts to validate them against a check list of common errors (e.g.
missing data, incorrect data, wrong data type, etc.).

7.5. Maintenance Experience

One of the claims of this thesis is the easy maintenance of the configuration and it is cru-
cial that non-professionals can edit them. To evaluate this trait, we let a colleague with
no special foreknowledge build the configuration for the Russian WLE. He took a few
days to get familiar with the topic (and doing his normal work as well), and then was
able to create a quite good configuration himself. To fully evaluate this claim we need
to wait until the project is picked up in the wild and interview adopters. Unfortunately
this is not possible within the temporal constraints of this thesis.

7 EVALUATION 44

7.6. Limitations

There are limitations to the extractor: Some from the tailoring towards Wiktionary,
some from the simple design of the VarBinder. Firstly, the extractor is meant to be
as generic as possible, and should not contain direct assumptions about the page. But
the schema of the page is modelled as the mentioned nested blocks. They directly reflect
the layout of Wiktionary. Nesting describes the separation of one page into hierarchi-
cally organized sections—like the sections of this thesis. This concept is very basic and
yet powerful, most texts fit into it. If the use case does not need nesting, it’s fine, but if
the layout is fundamentally different—maybe formats that are not directly text, think
of binary formats or similar—the extractor may be unsuitable. Secondly the complex-
ity of the configuration is limited to remain simple. A first example for limitations: A
variable is ended by the node that follows it. Thus, this nodes can never be part of that
variable. In RegEx there are more powerful options to end capturing groups. There-
fore one may encounter situations where this limitation hinders the perfect extraction
and requires dirty workarounds (in comparison to RegEx). A second example: If in-
dicator templates or normal templates as well are too generic (They are not specific
enough to only match when they are meant to match.) one may end with incorrect
data. This is particularly annoying when the actual Wiki layout does not allow to be
more specific. For example in the Vietnamese Wiktionary, language sections and part
of speech sections are indicated (started) with almost the same pattern: {{-viet-}}
vs. {{-noun-}} The corresponding indicator template would be: {{-$lang-}} vs.
{{-$pos-}}. The templates would match both occurrences alike, because they are too
generic. The template that is tried to be matched first (the outer one, regarding the nest-
ing) would steal all the matches. A dirty workaround would be to explicitly write all
possible variants without using variables, but it would be very verbose. One could also
try to enhance the framework by extending the mapping mechanism to support some
kind of classification (e.g. all mappings for part of speech tokens are classified pos) and
modify e.g. the assertMapped RT formatting function, to support an additional ar-
gument that restricts the classification. For reference there is to say, that there are still
RDF serialization bugs in DBpedia, that can cause triples to be missing, when they are
cleansed by rapper.

8 CONCLUSION 45

8. Conclusion

Finally we want to present our vision of the future development of the project, of the
underlying data source Wiktionary and of the LLOD cloud in general.

8.1. Vision

Making unstructured sources machine-readable creates feedback loops. The argument, that
extracting structured data from an open data source and making it freely available in
turn, encourages users of the extracted data to contribute to the unstructured source,
seems reasonable. It is firstly not easily possible to continuously apply changes to the
automatically extracted data when the source and the configuration changes arbitrar-
ily. One could imagine a kind of a patch queue, but also how hard it is to maintain
it. On the other hand, for humans it is much easier to curate a wiki. The co-evolution
of ontologies is still an open research problem. Back to the claim: Users of the RDF
version of Wiktionary could be NLP researchers or companies. Some of them have con-
siderable human resources, that maintain internal databases of linguistic knowledge
and some are willing to publish their data and integrate it with existing sources; but
the clear incentive is to get the data back again — enriched. With a mature extraction
infrastructure that can be deployed autonomously by adopters or centrally by us at the
same time, it becomes reasonable for such third parties to contribute. This increase in
participation, besides improving the source, also illustrates the advantages of machine
readable data to common Wiktionarians, which are in turn more motivated to cooper-
ate. Such considerations are fundamental; without community interaction and mutual
benefits, extraction from community edited sources becomes dull scraping. There is an
implicit requirement for a social effort to successfully transfer the desired properties
of the source to the extracted data. Such a positive effect from DBpedia supported the
current Wikidata65 project.

8.2. Suggested changes to Wiktionary

Although it’s hard to persuade the community of far-reaching changes, we want to
conclude how Wiktionary can increase it’s data quality and enable better extraction.
• Homogenize Entry Layout across all WLE’s.
• Use anchors to markup senses: This implies creating URIs for senses. These can

then be used to be more specific when referencing a word from another article.
This would greatly benefit the evaluation of automatic anchoring approaches like
in [23].
• Word forms: The notion of word forms (e.g. declensions or conjugations) is not

consistent across articles. They are hard to extract and often not given.

65http://meta.wikimedia.org/wiki/Wikidata

http://meta.wikimedia.org/wiki/Wikidata

8 CONCLUSION 46

8.3. Discussion

Our main contributions are

1. an extremely flexible extraction from Wiktionary, with simple adaption to new
Wiktionaries and changes via a declarative configuration,

2. the provisioning of a linguistic knowledge base with unprecedented detail and
coverage and

3. a mature, reusable infrastructure including a public Linked Data service and SPAR-
QL endpoint (by reusing well established projects like DBpedia and Virtuoso).

In addition, all resources related to our Wiktionary extraction, such as source code, ex-
traction results, pointers to applications etc. are available from our project page66 under
an open license.
As a result, we hope it will evolve into a central resource and interlinking hub on the
currently emerging web of linguistic data, the Linguistic Linked Open Data cloud.

8.4. Next Steps

Wiktionary Live: Users constantly revise articles. Hence, data can quickly become out-
dated, and articles need to be re-extracted. DBpedia-Live enables such a continuous
synchronization between DBpedia and Wikipedia. The WikiMedia foundation kindly
provided us access to their update stream, the Wikipedia OAI-PMH67 live feed. The
approach is equally applicable to Wiktionary. The Wiktionary Live extraction will enable
users to query Wiktionary like a database in real-time and receive up-to-date data in a
machine-readable format for the first time ever. This will strengthen Wiktionary as a
central resource and allow it to extend its coverage and quality even more.
Wiki based UI for the WLE configurations: To enable the crowd-sourcing of the ex-
tractor configuration, an intuitive web interface is desirable. Analogue to the mappings
wiki68 of DBpedia, a wiki could help to hide the technical details of the configuration
even more. Therefore a JavaScript based WYSIWYG XML editor seems useful. There
are various implementations, which can be easily adapted.
Linking: An alignment with existing linguistic resources like WordNet and general
ontologies like YAGO or DBpedia is essential. That way Wiktionary will allow interop-
erability across a multilingual semantic web.
Quality Assessment: As described in the evaluation section, a data quality evaluation
analogously to DBpedia and Zaveri’s DBpedia evaluation69 needs to be conducted.

66http://wiktionary.dbpedia.org
67Open Archives Initiative Protocol for Metadata Harvesting,

cf. http://www.mediawiki.org/wiki/Extension:OAIRepository
68http://mappings.dbpedia.org/
69http://aksw.org/Projects/DBpediaDQ

http://wiktionary.dbpedia.org
http://www.mediawiki.org/wiki/Extension:OAIRepository
http://mappings.dbpedia.org/
http://aksw.org/Projects/DBpediaDQ

8 CONCLUSION 47

8.5. Open Research Questions

We found two important open research questions associated with lexicas and the Se-
mantic Web:

8.5.1. Publishing Lexica as Linked Data

The need to publish lexical resources as linked data has been recognized recently [27].
Although principles for publishing RDF as Linked Data are already well established [2,
12], the choice of identifiers and first-class objects is crucial for any linking approach.
A number of questions need to be clarified, such as which entities in the lexicon can
be linked to others. Obvious candidates are entries, senses, synsets, lexical forms, lan-
guages, ontology instances and classes, but different levels of granularity have to be
considered and a standard linking relation such as owl:sameAs will not be sufficient.
Linking across data sources is at the heart of linked data. An open question is how
lexical resources with differing schemata can be linked and how linguistic entities are
to be linked with ontological ones. There is most certainly an impedance mismatch to
bridge.
The success of DBpedia as “a crystallization point for the Web of Data” [18] is predi-
cated on the stable identifiers provided by Wikipedia and those are an obvious prereq-
uisite for any data authority. Our approach has the potential to drive this process by
providing best practices, live showcases and data in the same way DBpedia has pro-
vided it for the LOD cloud. Especially, our work has to be seen in the context of the
recently published Linguistic Linked Data Cloud [6] and the community effort around
the Open Linguistics Working Group (OWLG)70 and NIF [13]. Our Wiktionary con-
version project provides valuable data dumps and linked data services to further fuel
development in this area.

8.5.2. Algorithms and methods to bootstrap and maintain a Lexical Linked Data
Web

State-of-the-art approaches for interlinking instances in RDF knowledge bases are mainly
build upon similarity metrics [26, 31] to find duplicates in the data, linkable via owl:-
sameAs. Such approaches are not directly applicable to lexical data. Existing linking
properties either carry strong formal implications (e.g. owl:sameAs) or do not carry
sufficient domain-specific information for modelling semantic relations between lexical
knowledge bases.

70http://linguistics.okfn.org

http://linguistics.okfn.org

References 48

A. Literature

References

[1] Sören Auer, Chris Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. DBpedia: A nucleus for a web of open data. In Proceedings of the
6th International Semantic Web Conference (ISWC), volume 4825 of Lecture Notes in
Computer Science, pages 722–735. Springer, 2008.

[2] Sören Auer and Jens Lehmann. Making the web a data washing machine - creating
knowledge out of interlinked data. Semantic Web Journal, 2010.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. The Scientific
American, 2001.

[4] Jeen Broekstra and Arjohn Kampman. SeRQL. An RDF Query and Transformation
Language. ISWC, 2004.

[5] P. Chesley, B. Vincent, L. Xu, and R. K. Srihari. Using verbs and adjectives to
automatically classify blog sentiment. In AAAI Spring Symposium: Computational
Approaches to Analyzing Weblogs, 2006.

[6] C. Chiarcos, S. Hellmann, S. Nordhoff, S. Moran, R. Littauer, J. Eckle-Kohler,
I. Gurevych, S. Hartmann, M. Matuschek, and C. M. Meyer. The open linguis-
tics working group. In LREC, 2012.

[7] Michael Genesereth and Nils Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, 1987.

[8] Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928, December 1995.

[9] R.V. Guha, Ora Lassila, Eric Miller, and Dan Brickley. Enabling Inference. W3C
Query Language meeting, 1998.

[10] I. Gurevych, J. Eckle-Kohler, S. Hartmann, M. Matuschek, C. M. Meyer, and
C. Wirth. Uby - a large-scale unified lexical-semantic resource based on lmf. In
EACL 2012, 2012.

[11] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of RDF query lan-
guages. ISWC, 2004.

[12] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space. Synthe-
sis Lectures on the Semantic Web: Theory and Technology. Morgan and Claypool,
2011.

[13] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Linked-data aware uri
schemes for referencing text fragments. In EKAW 2012, Lecture Notes in Com-
puter Science (LNCS) 7603. Springer, 2012.

References 49

[14] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, and York Sure. Semantic Web.
Springer, 2008.

[15] ISO 24613:2008. Language resource management — Lexical markup framework. ISO,
Geneva, Switzerland.

[16] D. Kontokostas, C. Bratsas, S. Auer, S. Hellmann, I. Antoniou, and G. Metakides.
Internationalization of Linked Data: The case of the Greek DBpedia edition. Jour-
nal of Web Semantics, 2012.

[17] A. A. Krizhanovsky. Transformation of wiktionary entry structure
into tables and relations in a relational database schema. CoRR, 2010.
http://arxiv.org/abs/1011.1368.

[18] Jens Lehmann, Chris Bizer, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - a crystallization point for
the web of data. Journal of Web Semantics, 7(3):154–165, 2009.

[19] J. McCrae, P. Cimiano, and E. Montiel-Ponsoda. Integrating WordNet and Wik-
tionary with lemon. In C. Chiarcos, S. Nordhoff, and S. Hellmann, editors, Linked
Data in Linguistics. Springer, 2012.

[20] J. McCrae, D. Spohr, and P. Cimiano. Linking Lexical Resources and Ontologies
on the Semantic Web with lemon. In ESWC, 2011.

[21] C. M. Meyer and I. Gurevych. How web communities analyze human language:
Word senses in wiktionary. In Second Web Science Conference, 2010.

[22] C. M. Meyer and I. Gurevych. Worth its weight in gold or yet another resource – a
comparative study of wiktionary, openthesaurus and germanet. In CICLing. 2010.

[23] C. M. Meyer and I. Gurevych. OntoWiktionary – Constructing an Ontology from
the Collaborative Online Dictionary Wiktionary. In M.T. Pazienza and A. Stellato,
editors, Semi-Automatic Ontology Development: Processes and Resources. IGI Global,
2011.

[24] K. Moerth, T. Declerck, P. Lendvai, and T. Váradi. Accessing multilingual data on
the web for the semantic annotation of cultural heritage texts. In 2nd Workshop on
the Multilingual Semantic Web, ISWC, 2011.

[25] Mohamed Morsey, Jens Lehmann, Sören Auer, Claus Stadler, , and Sebastian Hell-
mann. Dbpedia and the live extraction of structured data from wikipedia. Program:
electronic library and information systems, 46:27, 2012.

[26] Axel-Cyrille Ngonga Ngomo and Sören Auer. Limes - a time-efficient approach
for large-scale link discovery on the web of data. In Proceedings of IJCAI, 2011.

[27] A. G. Nuzzolese, A. Gangemi, and V. Presutti. Gathering lexical linked data and
knowledge patterns from framenet. In K-CAP, 2011.

References 50

[28] Aris M. Ouksel and Amit P. Sheth. Semantic interoperability in global information
systems: A brief introduction to the research area and the special section. SIGMOD
Record, 28(1):5–12, 1999.

[29] Franck Sajous, Emmanuel Navarro, Bruno Gaume, Laurent Prévot, and Yannick
Chudy. Semi-automatic Endogenous Enrichment of Collaboratively Constructed
Lexical Resources: Piggybacking onto Wiktionary. In Advances in Natural Language
Processing, volume 6233 of Lecture Notes in Computer Science, pages 332–344. 2010.

[30] K. Mörth G. Budin T. Declerck, P. Lendvai and T. Váradi. Towards linked language
data for digital humanities. In C. Chiarcos, S. Nordhoff, and S. Hellmann, editors,
Linked Data in Linguistics. Springer, 2012.

[31] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and maintaining links
on the web of data. In ISWC, 2009.

[32] T. Weale, C. Brew, and E. Fosler-Lussier. Using the wiktionary graph structure for
synonym detection. In Proc. of the Workshop on The People’s Web Meets NLP, ACL-
IJCNLP, 2009.

[33] T. Zesch, C. Müller, and Iryna Gurevych. Extracting Lexical Semantic Knowledge
from Wikipedia and Wiktionary. In LREC, 2008.

[34] Torsten Zesch, C. Müller, and I. Gurevych. Using wiktionary for computing se-
mantic relatedness. In AAAI, 2008.

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig und nur unter Verwen-
dung der angegebenen Quellen und Hilfsmittel angefertigt habe, insbesondere sind
wörtliche oder sinngemäße Zitate als solche gekennzeichnet.
Mir ist bekannt, dass Zuwiderhandlung auch nachträglich zur Aberkennung des Ab-
schlusses führen kann.

Leipzig, den 31.08.2012

	Introduction
	Motivation
	Problem
	Solution
	Structure

	Background
	Semantic Web
	RDF
	Linked Data
	SPARQL
	Scenarios
	Wikitext
	DBpedia

	Related Work
	Problem Description
	Processing Wiki Syntax
	Wiktionary
	Wiki-scale Data Extraction

	Specification
	Design and Implementation
	Extraction Templates
	Algorithm
	Language Mapping
	Reference Matching
	Formatting functions in Result Templates
	Schema Mediation by Annotation with lemon
	Configuration
	Utility Tools
	Graph Layout

	Evaluation
	Example Data
	Possible Application
	Quantity Measurement
	Quality Measurement
	Maintenance Experience
	Limitations

	Conclusion
	Vision
	Suggested changes to Wiktionary
	Discussion
	Next Steps
	Open Research Questions
	Publishing Lexica as Linked Data
	Algorithms and methods to bootstrap and maintain a Lexical Linked Data Web

	Literature

