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Abstract

Lexical databases are invaluable sources of knowledge about words and their
meanings, with numerous applications in areas like NLP, IR, and AI. We pro-
pose a methodology for the automatic construction of a large-scale multilingual
lexical database where words of many languages are hierarchically organized in
terms of their meanings and their semantic relations to other words. This resource
is bootstrapped from WordNet, a well-known English-language resource. Our
approach extends WordNet with around 1.5 million meaning links for 800,000
words in over 200 languages, drawing on evidence extracted from a variety of re-
sources including existing (monolingual) wordnets, (mostly bilingual) translation
dictionaries, and parallel corpora. Graph-based scoring functions and statistical
learning techniques are used to iteratively integrate this information and build an
output graph. Experiments show that this wordnet has a high level of precision
and coverage, and that it can be useful in applied tasks such as cross-lingual text
classification.
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1 Introduction
Motivation. With the increasing degree of Internet penetration all over the world,
the English language represents a constantly decreasing fraction of the Web. China
and the EU each have greatly surpassed the U.S. in the number of Internet users,
and other regions are expected to follow. Multilingual knowledge bases address
this development by capturing relationships between words and concepts and
hence making the semantic connections between words in different languages ex-
plicit. Lexical information of this sort can be useful for various forms of natural
language processing [21], information retrieval (e.g. query expansion [19], cross-
lingual IR [14], and question answering [34]), knowledge management (e.g. on-
tology construction [37] and ontology mapping [23]), artificial intelligence (e.g.
textual entailment [4] and visual object recognition [28]), as well as human con-
sultation. For example, knowing that the French words ‘étudiant’, ‘élève’, ‘écolier’
are synonymous can aid in query expansion, and knowing that ‘lycée’, ‘école’, ‘uni-
versité’, ‘académie’ are all specific types of educational institutions is helpful for
question answering.

Contribution. In this paper, we present new methods for automatically creat-
ing a large-scale multilingual lexical database that organizes over 800,000 words
from over 200 languages in a hierarchically structured semantic network, provid-
ing over 1.5 million links from words to word meanings. This universal word-
net (UWN) is bootstrapped from the Princeton WordNet, a well-known lexical
database for the English language [15] that we shall simply refer to as ‘WordNet’,
in contrast to the generic term ‘wordnet’. WordNet consists of about 150,000 terms
(words or short phrases) and about 120,000 word senses (concepts). It links terms
with the senses that they denote (their meanings), thus providing a fairly compre-
hensive database of synonymy and polysemy. Additionally, it connects senses by
semantic relationships like hypernymy, which is similar to the subclass relation
and hence induces a hierarchical organization, as well as meronymy (part/whole
relation), etc. For instance, ‘university’ and ‘high school’ are hyponyms of ‘educa-
tional institution’ (see also Figure 1.1), and ‘classroom’ is a meronym (part) of ‘school-
house’. Similar wordnets do exist for about 50 different languages, but none of
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entitypor: “entidade”

cmn: “ ”制度 institution

educational
institution

university

heb: “ישות.”

deu: “Bildungs-
einrichtung”

cym: “prifysgol”

...

Figure 1.1: Semantic relations (in this case hypernymy): A university is a kind
of educational institution, an educational institution is an institution, and so on.
For each of these meanings, correspondings terms in many languages should be
linked.

them are nearly as complete as the original English WordNet – many are small
and unmaintained. Moreover, for many actively used languages, no such lexical
databases exist at all. Our work addresses this gap and goes beyond the notion
of monolingual wordnets by constructing an integrated multilingual wordnet that
maps terms (words, phrases) of many languages to their meanings in the language-
independent space of senses (concepts). This allows, for example, finding Greek
hypernyms of the German word ‘Schulgebäude’ (‘school building’). This level of se-
mantic connections and support for IR and AI tasks can never be reached by a
mere translation dictionary between two languages.

Overview. Our method for building UWN starts with a limited number of ex-
isting (monolingual) wordnets to derive a large set of senses, i.e., possible word
meanings, represented in a graph G0 of terms and senses. This graph is extended
by extracting information from a range of sources like (mostly bilingual) transla-
tion dictionaries, (monolingual) thesauri, and parallel corpora, as well as applying
automatic procedures. Statistical methods are then used to link terms in different
languages to adequate senses (the words’ meanings) by analysing this graph, as il-
lustrated in Figure 1.2. The left side depicts the input graph created from monolin-
gual wordnets and translation dictionaries. The right side shows the output graph
where several words in different languages have been connected to the sense nodes
that represent their possible meanings. The difficulty is determining which senses
apply to which translations, e.g. a simple English word such as ‘class’ has 9 senses
listed in WordNet, ‘form’ has 23 senses, and there are extreme examples such as
the word ‘break’, for which 75 different senses are enumerated. We attempt to
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deu: “Reihe”

spa: “trayectoria”

academic course

part of a meal

route of travel

series of events

ita: “piatto”

fra: “suite”

eng: “course”

deu: “Kurs”

eng: “class”

deu: “Reihe”

spa: “trayectoria”

academic course

part of a meal

route of travel

series of events

ita: “piatto”

fra: “suite”

eng: “course”

deu: “Kurs”

eng: “class”

Figure 1.2: Arcs in the input graph G0 (left) and the desired output graph Gi

(right). Lines with arrows represent meaning arcs from term nodes to sense nodes,
while each line without an arrow represents two reciprocal translation arcs.

discern disambiguation information in a series of graph refinements. To this end,
we construct a rich set of numeric features for assessing the validity of a graph’s
edges. We train a support vector machine (SVM) over this feature space with a
small number of hand-labelled edges. Then the SVM can automatically discrim-
inate edges that are likely to be valid from spurious ones. The algorithm runs
iteratively, i.e. several graphs Gi may be constructed, each refining the previous
graph Gi−1 by recomputing features and re-applying the SVM learner.

The rest of the paper is organized as follows. Section 2 reviews WordNet and
related work. Section 3 describes the initial graph construction phase. Section
4 presents the feature space and learning model for graph refinement. Section
5 shows experimental results that confirm the high recall and precision of our
method, and demonstrates the benefit for cross-lingual text classification.
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2 WordNet and Related Work
The original WordNet [15] was manually compiled at Princeton University to
evaluate hypotheses about human cognition, but rapidly became one of the most
widely used lexical resources for English natural language processing.

WordNet has sparked a number of endeavours aiming at similar databases for
other languages, most importantly perhaps the EuroWordNet [41] and BalkaNet
projects [40] that targeted many European languages. Individual institutes have
made similar efforts for further languages, often under the auspices of the Global
WordNet Association. Unfortunately, the work on such resources has not resulted
in a unified multilingual wordnet, as there are different sense identifiers, formats,
licences, etc.

Previous attempts to address this situation are still in their infancy. Marchetti
et al. [27] proposed a Semantic Web tool for managing and interlinking wordnets
in order to create a multilingual grid, however they do not focus on the problem
of actually populating this grid. Another ambitious project started in 2006, the
Global Wordnet Grid [16], only contains very limited sets of concepts for English,
Spanish, and Catalan, as of August 2009.

A central problem in establishing wordnets is the laborious manual compi-
lation process, which typically leads to insufficient coverage for practical appli-
cations. Several authors have attempted to automatically or semi-automatically
construct a wordnet for a not yet covered language using existing wordnets [30,
2, 8, 17, 12, 22]. Our approach adopts some of the basic ideas of their work,
but goes beyond simple heuristics by computing more sophisticated features that
can account for very subtle differences between correct and incorrect terms-sense
mappings. Prior approaches have not been able to produce both high coverage
and high precision. Many of them experienced difficulties with polysemous terms
and were applied to nouns only, while our technique works particularly well for
commonly used polysemous terms. Isahara et al. [22] attempted to use multiple
existing wordnets to combine information from multiple translation dictionaries,
however with precision scores of 54% at best. None of these studies have explored
the ideas of letting automatically established mappings for different languages re-
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inforce each other or of exploiting evidence from multilingual translation graphs.
Finally, none of the previous approaches have been applied to the task of building
a large-scale multilingual wordnet.

There are not many alternative approaches to multilingual lexical databases.
The PANGLOSS ontology [25] was built in the 1990s to facilitate machine trans-
lation. Interesting linking heuristics were used; however no learning techniques
were employed, and the final coverage was limited to around 70,000 entities in
two languages. Cook [7] created a semantic network that incorporates Word-
Net and links nouns in three languages to wordnet nodes based on simple heuris-
tics as well as manual work. The heuristics yield high-quality results but apply
to monosemous nouns only and hence fail to account for most commonly used
words, as these tend to be polysemous. A much larger lexical resource has been
presented by Etzioni et al. [14], who use translation dictionaries and two versions
of Wiktionary to create a very large translation graph, which is then exploited
for cross-lingual image search. Their central aim, however, is to derive a transla-
tion resource rather than constructing a semantic network with terms and senses
equipped with additional relations like hypernymy, meronymy, etc. More recently,
Adar et al. [1] have shown how to utilize the cross-linkage between Wikipedia
articles in different languages for aligning Wikipedia infoboxes. This task is con-
cerned with individual named entities (persons, organizations, etc.) only; it does
not address general terminologies and term-sense mappings. Finally, knowledge
bases like YAGO [37] and DBPedia [3], while drawing on Wikipedia’s interwiki
links to provide multilingual entity labels, do not possess a multilingual top-level
ontology.
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3 Initial Graph Construction
Lexical knowledge bases can be treated as labelled graphs. We consider weighted
labelled multi-digraphs G = (V,A, `,Σ`) where:

• V is a set of nodes
• A ⊆ V × V × Σ` × [0, 1] is a set of weighted labelled arcs
• ` : V ∪ A→ Σ` is a labelling function that yields the respective label for a

given node or arc
• Σ` is the labelling alphabet for nodes and arcs, i.e. the set of possible labels,

defined as the union of the sets given below

Node labels are taken from the following sets:

a) T ×L: for term nodes representing words or expressions, where T is the set
of NFC-normalized Unicode character strings [10], and L is the set of ISO
639-3 language identifiers

b) S × C: for sense nodes representing meanings, where S is the set of sense
identifiers provided by WordNet and C is the set of lexical categories (noun,
verb, adjective, etc.)

Arc labels are taken from:

a) {translation}×C ×C: for term-to-term arcs that connect term nodes to
their translations into other languages, with source and target lexical cate-
gories in C (e.g. noun, verb, etc., or most commonly unknown)

b) {meaning} × N × {0, 1}: for arcs representing links from terms to their
meanings, with natural numbers representing sense frequencies or 1 if un-
available (see Section 3.1), as well as an indicator for distinguishing candi-
date arcs from imported arcs

c) {lexicalization}: for arcs that connect sense nodes back to their terms
(the inverse of meaning arcs)

d) {related}: for term-to-term arcs that provide generic indications of se-
mantic relatedness, e.g. between ‘teach’ and ‘university’
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e) {hypernymy}: for arcs between two sense nodes n1, n2 when n2 denotes
a generalization of the sense associated with n1, e.g. n1 could denote high
schools and n2 could denote educational institutions in general

f) {meronymy, antonymy, . . . }: for other lexico-semantic relationships pro-
vided by WordNet

For brevity, we shall use Γi(n,A) = {n′ | ∃l, w : (n′, n, l, w) ∈ A} to denote the
in-neighbourhood, and Γo(n,A) = {n′ | ∃l, w : (n, n′, l, w) ∈ A} for the out-
neighbourhood of a node, given a set of arcs A. In the following, we will work
with multiple graphs of the form just described. The initial input graph G0 will
be the result of an extraction and synthesis of data from existing sources, while
further graphs Gi (i ≥ 1) constructed later on will extend G0 with statistically
derived information that eventually yield the multilingual UWN graph.

3.1 Information Extraction and Acquisition
The initial graphG0 = (V,A0, `0,Σ`) is populated by extracting information from
a range of different sources. Most imported arcs have a weight of 1, while a large
number of so-called candidate arcs will be established with a weight of 0.

Existing Wordnet Instances. To bootstrap the construction, we rely on exist-
ing wordnets to provide term-to-sense meaning arcs for a limited set of languages,
as well as sense-to-sense arcs (e.g. hypernymy) as described earlier. Apart from
Princeton WordNet 3.0, such information is also taken from the Arabic, Catalan,
Estonian, Hebrew, and Spanish wordnets1, as well as from the human-verified
parts of MLSN [7]. Edges have a weight of 1 except in some cases where map-
pings between different versions of WordNet [9] are applied to obtain uniform
sense identifiers. Sense frequency information for the sense-annotated SemCor
corpus [15] is incorporated as an annotation into meaning arc labels. Such infor-
mation reveals to us how often for example the word ‘school’ was used to refer to
a school building in the corpus.

Translation Dictionaries. A considerable number of term-to-term translation

arcs with weight 1 are imported from over 100 open-source translation dictionar-
ies that are freely available on the Web2. As only few such resources consist of
well-structured XML, making their information amenable to machine process-
ing frequently requires custom preprocessing steps. These involve separating the
actual terms from annotation information such as part-of-speech (e.g. adverb),
semantic domain (e.g. chemistry), etc. We treat translation information as n : n

1See http://www.globalwordnet.org/
2For example from the FreeDict project,

http://www.freedict.org
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relationships between words, adding source or target part-of-speech labels to the
translation arcs whenever they are given.

Wiktionary. The community-maintained Wiktionary project3 offers a plethora
of lexical information but relies on simple text-based mark-up rather than an ex-
plicit, precise database schema. We thus use rule-based information extraction
techniques to mine translation and other arcs from eight different language
versions of Wiktionary.

Multilingual Thesauri and Ontologies. Translations are also obtained from
concept-oriented resources such as the GEneral Multilingual Environmental The-
saurus (GEMET4), OmegaWiki5, as well as from OWL ontologies [5]. For each
sense (concept) C, we consider its set of label terms T (C) in the resource, and
then add a translation arc to the graph for each ti, tj ∈ T (C) (i 6= j), unless
they are from the same language, in which case we create a related arc instead.

Parallel Corpora. Text from conventional multilingual corpora, translation
memories, film subtitles, and software localization files can be word-aligned to
harness additional translation information for many language pairs. We make use
of GIZA++ [29] and Uplug [38] to produce lexical alignments for a subset of the
OPUS corpora [39], which includes the OpenSubtitles corpus. Since word align-
ments tend to be unreliable, we compile alignment statistics and add translation

arcs to the graph between pairs of nodes where the respective term pair is encoun-
tered with a high frequency (above a specified threshold).

Monolingual Thesauri. Monolingual thesauri from the OpenOffice software
distribution6 provide related arcs between the terms of a single language, reveal-
ing e.g. that ‘college’ is semantically related to ‘university’.

Manually Classified Arcs. As our approach is based on supervised learning,
we also depend on a limited amount of manually classified meaning arcs from
terms to senses, obtained via a collaborative Web editing environment. Such arcs
are either labelled as positive (correct, adequate) or negative (incorrect, inade-
quate).

3.2 Graph Enrichment and Pruning
After the initial information extraction, we apply additional preprocessing heuris-
tics to the input graph.

First of all, we assume the translation relation is symmetric and add in-
verse translation arcs to ensure such links are reciprocal. Additionally, while the

3http://www.wiktionary.org
4http://www.eionet.europa.eu/gemet/
5http://www.omegawiki.org
6http://wiki.services.openoffice.org/wiki/Dictionaries
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relation is not transitive, we use so-called triangulation heuristics to reduce the
sparsity of translations. For instance, when the Italian word ‘scuola’ has an En-
glish translation ‘school’ and a French translation ‘école’, and the latter two both
have a Malay translation ‘sekolah’, then we can infer that this Malay word is also
a likely translation for the Italian term. Translation arcs between two term nodes
n1, n2 are added when

|{n′|n′ ∈ Γo(n1, A0) ∩ Γi(n2, A0)}| ≥ mmin

where mmin = 5 was chosen empirically for high accuracy.
Subsequently, the graph is pruned by merging duplicate and near-duplicate

arcs as follows. We define a partial ordering≤` over arc labels that captures when
an arc label is considered more specific than another one. We assume that specific
labels should be preferred over generic ones, e.g. when we have two translation
arcs, one without and one with lexical category information, we choose to keep
only the latter although the translation might also hold for other lexical categories.
This then allows us to iterate over all arcs a = (n1, n2, l, w) ∈ A0, discarding a
whenever there exists another arc a′ = (n1, n2, l

′, w′) with l ≤` l′, w ≤ w′.

3.3 Candidate Arc Creation

academic course

part of a meal

route of travel

series of events

ita: “piatto”

eng: “course”

trans-
lation academic course

part of a meal

route of travel

series of events

ita: “piatto”

eng: “course”

trans-
lation

?

?

?
?

Figure 3.1: Candidate Arc Creation: Terms are linked to senses of their transla-
tions.

As a final preprocessing step that concludes the construction ofG0, we create a
large set of zero-weighted arcs that denote potential relationships between words
and meanings that will later be evaluated. As candidate meanings we consider all
senses of translations of a given term, as illustrated in Figure 3.1. We determine
all 2-hop paths of the form {(n0, n1, l, w), (n1, n2, l

′, w′)} ⊂ A0, where n0 is a
term node, the arc label l is a translation one, and n2 is a sense node. For each
such path, a new candidate arc (n0, n2, lm, 0) is created, linking a term to one of
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its potential senses, where lm identifies the arcs as zero-weighted meaning ones
and as candidates. For instance, in Figure 1.2, the Italian word ‘piatto’ has a trans-
lation arc to ‘course’, which in turn has four outgoing meaning arcs in G0, so four
candidate arcs will be created for ‘piatto’. The arc to the sense described as ‘part
of a meal’ would be an adequate candidate arc for ‘piatto’ that should later receive
a higher weight, while the other senses, e.g. ‘academic course’ are inadequate, and
should no longer be present in the final output graph.
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4 Iterative Graph Refinement
In each iteration, a new graph Gi = (V,Ai, `i,Σ`) is constructed that is topolog-
ically identical to Gi−1 and thus to G0. However, the weights of all candidate
meaning arcs are re-assessed to reflect a refined measure of confidence in them
being correct. To this end, our approach is to learn a statistical model for assessing
the validity of candidate arcs. We employ a supervised classifier that is trained by
the small set of hand-labelled arcs included in G0, which are labelled either as
correct (positive training samples) or incorrect (negative training samples). For
a given candidate arc, it predicts a weight in [0, 1] that represents the degree of
confidence in the respective arc being correct, given the previous graph Gi−1.

The classifier operates over an appropriately defined feature space. In our ap-
proach, the feature space is recomputed with each new graph Gi of the refinement
process. This is in the spirit of relaxation labelling methods and belief propagation
methods for graphical models [18]. Directly applying standard relational learning
algorithms to the huge graph in our task would face tremendous scalability prob-
lems, since we need to capture certain non-straightforward dependencies between
different arcs and nodes even when they are several hops apart. Therefore, we em-
bed information about the neighbourhood of an arc into its feature vector. In the
ideal case, the weight of an arc, given its feature vector, will then be conditionally
independent of the weights of other arcs, allowing us to use a more traditional
learner. In each iteration i, the previous graph Gi−1 is used as the basis to derive
a feature vector x ∈ Rm for each candidate arc in Gi (where m is the number of
features). Details will be given in Section 4.1.

Using the feature vectors for the hand-labelled training set, we train an RBF-
kernel SVM classifier. SVMs are based on the idea of computing a separating
hyperplane that maximizes the margin between positive and negative training in-
stances in the feature space or in a high-dimensional kernel space [13]. For each
feature vector x, SVM classification yields values f(x) ∈ R, which correspond
to distances from the separating hyperplane in the kernel space. To obtain arc
weights, we adopt Platt’s method of estimating posterior probabilities using a sig-
moid function w := P (w = 1|x) = 1

1+exp(af(x)+b)
, where parameter fitting for
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a and b is performed using maximum likelihood estimation on the training data
[31, 26]. This allows us to obtain new arc weights in w ∈ [0, 1] for all candidate
arcs from term to sense nodes, concluding the construction of the new graph Gi.

4.1 Feature Computation
For each candidate meaning arc (n0, n2, l, w) in Gi, we quantify evidence from
the graph as an m-tuple of numerical scores x = (x1(n0, n2), . . . , xm(n0, n2)) ∈
Rm, such that the learning algorithm be able to assess whether the arc should
be accepted. We expect to see strong evidence for this arc if n2, a sense node,
denotes one of the senses of n0, a term node. Given the previous graph Gi−1,
we compute scores xi(n0, n2) as listed in Table 4.1. In Equation 4.1, two nodes
are directly compared by means of a cosine-based context similarity score, which
will be explained in Subsection 4.1.3. The underlying idea for Equations 4.2 and
4.3 (where φ1, φ2, γ are arc and path weighting functions) is that a word’s most
likely senses can be determined by considering likely senses n′2 of its translations
and related terms n1 ∈ Γo(n0, Ai−1). Equation 4.2 considers each successor node
n1, and looks at how similar the successors of n1 are to n2. For instance, in the
simplest case, if we use an identity test as a similarity function for comparing
those successors n′2 to n2, then this score effectively computes a weighted count
of the number of two-hop paths from n0 to n2. For example, in Figure 1.2, there
are multiple paths from the German word ‘Kurs’ to the ‘academic course’ sense node.
Equation 4.3 is similar, but normalizes with respect to the number of alternative
choices in the denominator. In the simplest case, the dissim function will simply
count how many alternative senses there are, so if n1 has n2 as one of its senses,
and 4 other senses, it would return 4, and lead to a summand of 1

1+4
for n1, which

reflects the probability of reaching n2 from n1. Equation 4.3 is also applied in
the opposite direction to quantify reachability information from a sense node to a
term node.

More sophisticated scores are obtained by applying additional weighting and
normalization. The scores depend on a number of auxiliary formulae, in particular
combinations of arc weighting functions φ1, φ2, as described in Section 4.1.1,
path weighting functions γ, described in Section 4.1.2, and measures of semantic
relatedness, described in Section 4.1.3. For example, in Equation 4.3 we may
wish to not count all alternative senses, instead producing a weighted score where
alternative senses are not fully considered if they are very similar or if their lexical
category tags do not match.
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4.1.1 Arc Weighting Functions
The different versions of φ1 listed in Table 4.2 estimate the relevance of a con-
nection from a term n0 to a translation or related term n1. Equation 4.6 filters out
related arcs, while Equation 4.7 considers the size of the out-neighbourhood of
n0, counting the number of terms that have outgoing meaning arcs. Equation 4.8
is similar to Equation 4.3 and normalizes with respect to a weighted in-degree of
n1 for terms from the same language.

Instantiations of φ2 estimate the relevance of connections from translations or
related terms n1 to sense nodes n2. For this, Equation 4.10 considers the weights
of meaning arcs, while Equation 4.11 uses sense corpus frequencies. Equations
4.9 and 4.12 are helper functions.

Table 4.1: Feature computation formulae, where sim∗n0,φ2
(n1, n2) yields

the maximum weighted similarity between successors of n1 and n2, and
dissimn0,φ2(n1, n2) produces weighted sums of dissimilarities between successors
of n1 and n2

xi(n0, n2) = sim(n0, n2) (4.1)

xi(n0, n2) =
∑

n1∈Γo(n0,Ai−1)

φ1(n0, n1) sim∗n0,φ2
(n1, n2) (4.2)

xi(n0, n2) =
∑

n1∈Γo(n0,Ai−1)

φ1(n0, n1)
sim∗n0,φ2

(n1, n2)

sim∗n0,φ2
(n1, n2) + dissimn0,φ2(n1, n2)

(4.3)

sim∗n0,φ2
(n1, n2) = max

n′2∈Γo(n1,Ai−1)
γ(n0, n1, n

′
2) φ2(n1, n

′
2) sim(n2, n

′
2)

(4.4)

dissimn0,φ2(n1, n2) =
∑

n′2∈Γo(n1,Ai−1)

γ(n0, n1, n
′
2) φ2(n1, n

′
2)(1− sim(n2, n

′
2))

(4.5)

4.1.2 Cross-Lingual Lexical Category Heuristics
Several features described in Table 4.1 integrate a function γ that assigns weights
to paths in the graph. Apart from the trivial choice of setting it to a constant value,
we use γlc as a version that considers lexical categories (part-of-speech tags) as-
sociated with nodes in the graph. Many of the previous studies on automatically
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Table 4.2: Arc weighting functions plugged into the formulae in Table 4.1, where
φslc

3 compares the part-of-speech of sense nodes, freq(n1, n2) yields the frequency
of term n1 with sense n2 in the SemCor corpus (or 1 if n1 does not occur in the cor-
pus), andNs is the set of all sense nodes in the graph. `i−1 is the labelling function
of Gi−1, which, among other things, captures languages and lexical categories.

Filtering φf
1(n0, n1) =

{
1 ∃(n0, n1, l, w) ∈ Ai−1 : l 6= related

0 otherwise

(4.6)

Normalization φnm
1 (n0, n1) =

1

|{n1 ∈ Γo(n0, Ai−1) | Γo(n1, Ai−1) ∩Ns 6= ∅}|
(4.7)

Weighted In-Degree φbt
1 (n0, n1) =

sim∗
n0,φln

1
(n1, n0)

sim∗n0,φln
1

(n1, n0) + dissimn0,φln
1

(n1, n0)

(4.8)

Language Matching φln
1 (n0, n

′
0) =

{
1 `i−1(n0), `i−1(n′0) give same language
0 otherwise

(4.9)

Thresholding φtα
2 (n1, n2) =

{
1 ∃(n1, n2, l, w) ∈ Ai−1 : w > α

0 otherwise
(4.10)

Corpus Freq. φcf
2 (n1, n2) =

freq(n1, n2)∑
n′2∈Γo(n1,Ai−1)

φslc
3 (n2, n′2) freq(n1, n′2)

(4.11)

Sense Lex. Cat. φslc
3 (n2, n

′
2) =

{
1 `i−1(n2), `i−1(n′2) give same lexical category
0 otherwise

(4.12)

building wordnets dealt with nouns exclusively, whereas all lexical categories are
respected in our approach, so some means of preventing, for example, a noun from
being mapped to a verb sense is required.

γlc(n0, . . . , nk) is supposed to estimate whether the nodes along the path from
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n0 to nk have the same or at least compatible lexical categories. It is computed as

γlc(n0, . . . , nk) = max
c∈C

k−1∏
i=1

µc(ni, ni+1).

Here, µc(ni, ni+1) estimates whether a local transition from ni to ni+1 is possible
with category c ∈ C with the following heuristics.

1. In some cases, there may be a translation arc with matching lexical cate-
gories. As explained earlier in Sections 3 and 3.1, some dictionaries provide
part-of-speech information that is extracted and included as part of the arc’s
label.

2. When this fails, we compare possible categories of ni and ni+1. Categories
for sense nodes can be derived from their node labels. For term nodes,
we first check if the term has any incoming or outgoing translation arc
labelled with c, or any meaning arc to a sense node labelled with c.

3. If this fails, we attempt to use learnt models for surface properties of term
strings, which often reveal likely lexical categories. For each lexical cat-
egory and language, we check whether criterion 3 above provides us with
sufficient examples to create a training set and a withheld validation set (dis-
joint from the training set) of part-of-speech labelled terms. If so, we learn
surface form properties as described below.

4. If none of the aforementioned steps apply, a default score of 0.5 may be
used, which means that we assume the chance of a compatible lexical cate-
gory to be 50%.

The surface form learning is carried out by growing a C4.5 decision tree [13]
with the following features:

1. Prefixes and suffixes of a word up to a length of 10 (without case conver-
sion): In many languages, affixes mark the part-of-speech tag of a word. For
instance, in Italian, lemma forms of virtually all verbs end in ‘-are’, ‘-ere’,
or ‘-ire’.

2. Boolean features for first character capitalization and complete capitaliza-
tion: In many languages, capitalized words tend to be nouns (e.g. acronyms
such as ‘USA’, proper nouns like ‘London’, all nouns in German, Luxembur-
gish).

The reliability of the decision tree depends largely on the language. For each lexi-
cal category and language, we evaluated on the respective validation set, obtaining
F1-scores between 0.03 and 0.99. Later on, for a given term to be analysed, we
use the confidence estimate c from the decision tree’s leaves only in the following
cases:
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1. the F1-score on the validation set was high
2. c > 0.5 and the precision on the validation set was high
3. c < 0.5 and the recall on the validation set was high

4.1.3 Measures of Semantic Relatedness
The feature vector computation also uses a set of different semantic relatedness
measures. To see the potential benefit of this technique, consider the following
example. The single sense of ‘schoolhouse’ is related to the educational institution
sense of the word ‘school’, but not to the sense of ‘school’ that refers to groups
of fish. So, if a term node has translation arcs to both ‘school’ and ‘schoolhouse’,
their semantic relatedness tells us that the educational senses of ‘school’ are much
more likely to be correct than the one referring to fish. We consider four different
measures of semantic relatedness.

• simid(na, nb) is the identity indicator function, i.e. yields 1 if na = nb, and
0 otherwise.
• simn(na, nb) considers the graph neighbourhood. For a given path in the

graph, we compute a proximity score multiplicatively from relation-specific
arc weights (e.g. 0.8 for hypernymy, 0.7 for holonymy). The similarity is
then defined to be the maximum score for all paths between na and nb if this
maximum is above or equal a pre-defined threshold αn = 0.35, and 0 other-
wise. It can be obtained efficiently using a variant of Dijkstra’s shortest-path
algorithm [11].
• simc(na, nb) uses the cosine similarity of context strings for nodes. For

senses, context strings are constructed by concatenating English sense de-
scriptions (WordNet glosses) and terms linked to the original sense and
neighbouring senses. For terms, the set of all English translations is used.
Two context strings are compared by stemming using Porter’s method, cre-
ating TF-IDF vectors xa, xb, and computing the cosine of the angle between
them, i.e. xTaxb(||xa|| ||xb||)−1.
• simm(na, nb) = max{simn(na, nb), simc(na, nb)} combines the power of

simn, and simc, which are each based on rather different characteristics of
the senses.

4.2 Iterative Procedure
Our iterative learning procedure makes use not only of the small set of manually
classified meaning arcs supplied as training instances, but also benefits from the
enormous numbers of originally unlabelled instances. There is often some form of
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mutual reinforcement of correct and highly weighted (but not known to be correct)
arcs and there is some gradual down-weighting of incorrect arcs in the course of
the iterations. Thus, our method can be seen as a form of semi-supervised learn-
ing. As a stopping criterion, we use either a withheld validation set of manually
classified arcs (not used for training) or apply cross-validation with the training
data, and check if a loss function L(Gi) shows a reduction L(Gi−1)− L(Gi) ≥ ε
(where epsilon may also be slightly negative). In practice, we observed that 2-4
iterations suffice to stabilize the precision and recall measures on the graph.

Having determined the most profitable iteration i∗ = arg maxi L
′(Gi) with a

loss function L′ (possibly different from L), we can transform Gi∗ into the final
UWN graph G′i∗ using the following steps:

(i) We retain from Gi∗ only arcs whose labels designate them as candidate
meaning arcs or as from a specific set of language-independent sense-to-
sense arcs from Princeton WordNet.

(ii) Optionally, we threshold using two parameters wmin,ŵmin, retaining only
arcs with either w > wmin, or w > ŵmin and ¬∃n′2, l′, w′ : (n0, n

′
2, l
′, w′) ∈

A,w′ > w. This enforces a minimal weight wmin or possibly a slightly
lower weight ŵmin in the absence of alternative arcs for n0.

(iii) Finally, we remove all nodes of degree 0.

Omitting step (ii) leads to a statistical form of lexical database where edge
weights provide the degree of confidence of a link. Weighted edges can be useful
in certain application settings. Including this step yields a more conventional, un-
weighted lexical database where only high quality links are retained. Our specific
choices of loss functions and thresholds are given in the section on experimental
results.
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5 Experimental Evaluation

5.1 Implementation and Setup
We used the Java programming language to develop a platform-independent knowl-
edge base processing framework. For efficiency reasons, the weighted labelled
multi-digraphs were stored in custom binary format databases, with optimized
index and data caching as well as Bloom filtering for reduced disk access, i.e.
avoiding unnecessary reads when no data is available. This framework allowed
us to flexibly plug together information extraction modules, knowledge base pro-
cessors, as well as exporters and analysis modules into knowledge base process-
ing pipelines. Our graph refinement procedure is integrated as a link processor
that assesses links between two entities and produces new weights. For statisti-
cal learning, it relies on the LIBSVM implementation [6] using an RBF kernel
K(x, y) = exp(− 1

m
||x− y||2) where m is the number of features.

Following Section 3, G0 was constructed with 448,069 existing meaning arcs
(from the input wordnets, mainly English, Spanish, Catalan), 10,805,400 translation

arcs (from the dictionaries, Wiktionary, thesauri and parallel corpora), and 10,343,601
candidate meaning arcs (generated following Section 3.3, on average 7.7 per term
node). It contained roughly 129,500 sense nodes and 1.3 million term nodes with
candidate arcs (5 million overall). We added 2,445 human-classified meaning

arcs for training, out of which 610 were positive examples. The training set was
compiled by manual annotation of candidate meaning arcs as either positive or
negative for randomly selected French and German terms, rather than for ran-
domly selected instances. This means that the risk of overfitting is reduced and
the learner is channelled to focus explicitly on the distinction between negative
and positive examples for a given word rather than coincidental differences be-
tween different words. We used a validation set of 2,901 French/German can-
didate meaning arcs, classified manually as positive or negative using the same
methodology, and selected F1 scores for this validation set on the output graph for
wmin = 0.6, ŵmin = 0.5 as the loss function.
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Table 5.1: Iterations of algorithm with validation set scores (for wmin = 0.7,
ŵmin = 0.6)

Graph Precision Recall F1 # accepted
meaning arcs

G0 N/A 0.00% 0.00% 0
G1 83.96% 67.42% 74.79% 1,540,206
G2 83.70% 68.48% 75.33% 1,594,652
G3 83.89% 68.64% 75.50% 1,595,763
G4 83.90% 67.88% 75.04% 1,573,395

Table 5.2: Precision of UWN Result Graph
Dataset Sample Size Precision (Wilson)
French 311 89.23%± 3.39%
German 321 85.86%± 3.76%
Mandarin Chinese 300 90.48%± 3.26%

5.2 Results for Meaning Arcs
The algorithm ran for four iterations until it failed to improve the F1-score, as
shown in Table 5.1. The input graph G0 does not cover any of the validation arcs,
and thus has a recall and F1-score of 0%. English is the most widely represented
language within the input graph, both with respect to the input wordnets and for
the translations, so the first iteration provided for the most significant gains and
already delivered excellent results. In the next iteration, G1 served as the input
graph, leading to an improved F1-score for G2 because a larger range of terms are
equipped with non-zero meaning arcs inG1 compared toG0. These improvements
decrease very quickly, since the additional amount of information available to the
feature computation process, compared to previous iterations, keeps diminishing.

At this point, we have the choice of preferring high precision, e.g. G2 has
91.59% precision at 44.55% recall for wmin = 0.9, ŵmin = 0.75, or high recall,
e.g. G3 gives us 73.92% precision at 80.30% recall for wmin = 0.3, ŵmin = 0.25.
Our loss function balances precision and recall, making G3 the most profitable
graph. Figure 5.1 shows the tradeoff between precision and recall on G3. For the
final UWN output graph, we chose wmin = 0.6, ŵmin = 0.5 as it provided good
coverage at a reasonable precision.

Figure 5.2 provides an excerpt from this graph, highlighting how words in dif-
ferent languages have been disambiguated to link to the appropriate senses of the
English word ‘school’, e.g., in French, the term ‘banc’ is used to refer to a school
of fish. We recruited human annotators for three languages, and asked them to
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Figure 5.1: Precision-Recall curve on validation set for G3 when wmin = ŵmin

deu: Schulgebäude

school 
(group of fish)

school
(institution)

school
(building)

deu: Schulhaus

deu: Fischschwarm

ces: hejno

fra: banc

ind: sekolah

jpn: 学校

kor: 학교

lao: ໂຮງຮຽນ

kat: სკოლა

Figure 5.2: Excerpt from UWN graph with meaning arcs from terms to three sense
nodes
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Table 5.3: Coverage of final UWN graph with respect to accepted candidate
meaning arcs as well as terms.

Language Meaning Arcs Distinct Terms
Overall 1,595,763 822,212
By Language
German 132,523 67,087
French 75,544 33,423
Esperanto 71,247 33,664
Dutch 68,792 30,154
Spanish 68,445 32,143
Turkish 67,641 31,553
Czech 59,268 33,067
Russian 57,929 26,293
Portuguese 55,569 23,499
Italian 52,008 24,974
Hungarian 46,492 28,324
Thai 44,523 30,815
Others 795,782 427,216

By Lexical Category
Nouns 1,048,003 589,536
Verbs 221,916 88,189
Adjectives 289,328 147,257
Adverbs 36,095 26,254

evaluate randomly chosen arcs in the respective language from this output graph,
relying on Wilson score intervals to generalize our findings in a statistically signif-
icant manner, as listed in Table 5.2. These randomly chosen arcs are not related to
the training or validation sets, which moreover did not contain any Mandarin Chi-
nese terms, so the results show that our learning approach applies cross-lingually.
It must be pointed out that it is not possible to reliably evaluate the accuracy of
a wordnet using pre-existing wordnets, as they do not fulfil the closed world as-
sumption, i.e. a term-sense arc not occurring in an existing wordnet does not
warrant the conclusion that the link is false. This is particularly true for current
non-English wordnets, which often have limited coverage and sense inventories
based on older versions of WordNet.

Table 5.3 shows the coverage of the output graph. Keeping in mind that the
final UWN graph retains only candidate meaning arcs, these figures do not in-
clude any meaning arcs imported from the input wordnets, and only count term
nodes that are connected to sense nodes via these new candidate meaning arcs.
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Table 5.4: Average degree with respect to meaning arcs of term nodes (out-degree)
and sense nodes (in-degree)

Term Node
Out-Degree

Term Node
Out-Degree
Excluding

Monosemous

Sense Node
In-Degree

(Multilingual)

Nouns 1.78 3.20 12.76
Verbs 2.52 4.24 16.12
Adjectives 1.96 3.63 15.19
Adverbs 1.37 2.53 9.97
Total 1.94 3.38 13.56

There are terms in more than 200 languages in UWN. The most well-represented
languages result quite directly from the selection of translations in the input graph
G0. We found that terms with translations to many languages had high chances
of being included. Our approach thus addresses a long-standing problem in auto-
matic construction of wordnets, namely that of insufficient coverage of commonly
used words, which tend to be more polysemous. Using sophisticated features, it
carefully benefits from cross-lingual evidence to find meanings of such terms,
while previous approaches had trouble coping with the polysemy of commonly
used words. The break-down by part-of-speech shows that the majority of terms
are nouns. The terms in UWN have meaning links to a total of 80,620 distinct
sense nodes. Table 5.4 shows average degrees with respect to meaning arcs for
term nodes (out-degree) and sense nodes (in-degree), revealing the level of poly-
semy of terms according to UWN. The middle column shows average out-degrees
when term nodes with only one meaning arc are excluded.

5.3 Results for Semantic Relations
We further evaluated to what extent relationships imported from Princeton Word-
Net apply to UWN. The intuition is that relations between senses, e.g. hypernymy,
apply independently of the language of the terms associated with the respective
senses. For several types of relations, at least 100 randomly selected links be-
tween two senses were assessed, where both senses have associated German lan-
guage terms (linked via meaning arcs). Table 5.5 shows that the overall precision
is high. Incorrect relationships resulted almost entirely from incorrect meaning
arcs.

In addition to relations between senses, WordNet also provides relations be-
tween specific words with respect to senses of those words. Such relations cannot
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Table 5.5: Quality assessment for imported relations
Relation Precision (Wilson interval)

hypernymy 87.1% ± 4.8%
instance 89.3% ± 4.4%
similarity 92.0% ± 3.8%
category 93.3% ± 4.5%
meronymy (part-of) 94.4% ± 4.1%
meronymy (member-of) 92.7% ± 4.0%
meronymy (substance-of) 95.6% ± 3.5%
antonymy (as sense opposition) 94.3% ± 3.9%
derivation (as semantic similarity) 94.5% ± 4.0%

Table 5.6: Evaluation of semantic relatedness measures, using Pearson’s sample
correlation coefficient. We apply our three semantic relatedness measures on the
UWN graph and compare with the agreement between human annotators as well
as scores for two alternative measures as reported by Gurevych et al. [20], one
based on Wikipedia, the other on GermaNet.

Dataset GUR65 GUR350 ZG222
Pearson r Cov. Pearson r Cov. Pearson r Cov.

Inter-Annot. Agr. 0.81 (65) 0.69 (350) 0.49 (222)
Wikipedia (ESA) 0.56 65 0.52 333 0.32 205
GermaNet (Lin) 0.73 60 0.50 208 0.08 88
UWN (simn) 0.77 60 0.62 242 0.43 106
UWN (simc) 0.77 60 0.68 242 0.52 106
UWN (simm) 0.80 60 0.68 242 0.51 106

be applied directly to UWN, however, in some cases, we can infer from them
more generic relationships between senses. For instance, when WordNet tells us
that the word ‘scholastic’ is derivationally related to the word ‘school’, we can inter-
pret this as a generic indicator of semantic relatedness. Antonymy relationships
between words such as between ‘good’ and ‘bad’ are re-interpreted as a generic
form of semantic opposition between senses. These, too, were evaluated in Table
5.5.

5.4 Semantic Relatedness
We studied semantic relatedness assessment as an application of UWN in conjunc-
tion with Princeton WordNet’s sense relations and descriptions. The objective is
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to automatically estimate the degree of relatedness between two words, producing
scores that correlate well with the average ratings by human evaluators. For in-
stance, ‘curriculum’ is much more closely related to a word like ‘school’ than ‘water’.
Given two term nodes t1, t2, we estimate their relatedness as

rel(t1, t2) = max
s1∈Γo(t1,A)

max
s2∈Γo(t2,A)

w(t1, s1)w(t2, s2)sim(s1, s2)

using semantic relatedness measures for sense nodes described in Section 4.1.3
and w(t, s) denoting the meaning arc weight. Three German-language datasets
are compared with state-of-the-art scores obtained for GermaNet, the manually
compiled German wordnet, and Wikipedia, as reported by Gurevych et al. [20].
In Table 5.6, the first row lists the inter-annotator agreement between different hu-
man evaluators and the number of term pairs rated for each dataset. The following
rows show that UWN can be more useful than hand-crafted resources, with respect
to both the correlation with human judgments (Pearson product-moment correla-
tion coefficient) and the coverage (the number of term pairs from the dataset where
both terms are found in the respective lexical database).

5.5 Cross-Lingual Text Classification
Another applied task we considered was cross-lingual text classification. This is a
very challenging task, where text documents are supposed to be classified, usually
by topic, given only class-labelled training documents for a completely different
language.

We preprocess a document by removing stop words and performing part-of-
speech tagging as well as lemmatization using the TreeTagger [35]. In addition
to the original term frequencies, we map each term to the respective sense nodes
listed by UWN or by Princeton WordNet (for English words), embracing a rather
simple approach that foregoes disambiguation: For every single occurrence of a
term t, we take all sense nodes ns with a matching part-of-speech tag, and normal-
ize by dividing by the sum of their meaning arc weights. Thus, if a term has four
equally relevant sense nodes in UWN, then each receives a local weight of 1

4
. Ad-

ditionally, these senses pass on their weight to neighbouring nodes immediately
connected via hypernymy arcs. Summing up the weights of local occurrences of
a token t (either an original document term or a sense node) within a document d,
one arrives at document-level occurrence scores n(t, d), from which one can then
compute TF-IDF feature vectors using the following formula:

n(t, d) log

(
|D|

|{d ∈ D | n(t, d) ≥ 1}|

)
(5.1)
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Table 5.7: Cross-lingual text classification in terms of micro-averaged precision,
recall, and F1-score.

Precision Recall F1

English-Italian
Terms only 69.90% 66.81% 68.32%
Terms and senses 83.24% 70.49% 76.34%

English-Russian
Terms only 57.86% 46.67% 51.66%
Terms and senses 67.87% 74.94% 71.23%

Italian-English
Terms only 71.97% 77.06% 74.43%
Terms and senses 76.59% 79.67% 78.10%

Italian-Russian
Terms only 59.65% 57.15% 58.37%
Terms and senses 68.03% 79.26% 73.21%

Russian-English
Terms only 68.36% 66.34% 67.34%
Terms and senses 73.56% 80.29% 76.78%

Russian-Italian
Terms only 67.85% 57.48% 62.24%
Terms and senses 71.38% 72.21% 71.79%
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where D is the set of training documents.
This approach was tested using a cross-lingual dataset derived from the Reuters

RCV1 and RCV2 collections of newswire articles [32, 33]. These articles are
mostly business related, and have topical class labels such as ‘accounts/earnings’,
‘economic performance’ or ‘funding/capital’. For several pairs of languages, we created
independent datasets by randomly selecting 10 topics covered by both languages
in order to arrive at

(
10
2

)
= 45 separate binary classification tasks, each based

on 150 training documents in one language, and 150 test documents in a second
language, likewise randomly selected with balanced class distributions.

Table 5.7 compares the standard bag-of-words TF-IDF representation for terms
(using only genuine term frequencies as n(t, d) in Equation 5.1) with the extended
representation that includes mappings to sense nodes as frequencies. The scores
shown were produced with linear kernel SVMs using the SVMlight implementa-
tion in its default settings, which are known to work well for text classification
[24] – LIBSVM produced similar margins between the two approaches but over-
all slightly lower absolute scores. Since many of the Reuters topic categories are
business-related, using only the original document terms, which include names
of companies and people, already works surprisingly well. By considering sense
nodes, both precision and recall are boosted significantly. This shows e.g. that
English terms in the training set are being mapped to the same senses as the cor-
responding Russian terms in the test documents. The margins could be boosted
even further by invoking more intelligent word sense disambiguation strategies or
using more advanced sense expansion strategies. [11].
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6 Conclusion
We have presented a novel approach to building a large-scale universal word-
net (UWN) that contains 1.5 million meaning relationships from over 800,000
terms in over 200 languages. UWN is available at http://www.mpii.de/
yago-naga/uwn/. Our experiments have shown that UWN is useful in applied
tasks. In addition to the existing applications of WordNet, such as question an-
swering, text classification, semantic relatedness assessment, and so on, which are
now possible for a greater range of languages, we also anticipate UWN being used
for tasks that explicitly make use of multilingual connections in the network, e.g.
cross-lingual information retrieval or cross-lingual text classification.

We have created a public querying and editing website for UWN that in the
long run may allow us to address issues such as correcting inaccurate arcs and
adding new senses to cope with language-specific subtleties (in particular lexical
gaps, incongruence). Since the confidence estimates derived from the learnt mod-
els correlate quite well with the evaluated precision on the arcs, manual efforts
could be channelled to focus explicitly on arcs with borderline confidence val-
ues and terms without accepted meaning arcs. An update submitted to the Web
interface or an additionally imported translation dictionary for one language can
subsequently lead to a sufficient amount of accumulated evidence to sway the
model towards accepting mappings in entirely different languages. Hence, it is
safe to expect continued growth and refinement in the future.

Finally, we envision new data-driven techniques that automatically expand the
sense inventory of UWN. Snow et al. [36] have shown that this is feasible by
extending WordNet using monolingual corpora. Using our universal wordnet as
the underlying core, improved algorithms are conceivable.
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[9] J. Daudé, L. Padró, and G. Rigau. Making wordnet mappings robust. In
Proc. 19th Congreso de la Sociedad Española para el Procesamiento del
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