1,311 research outputs found

    Automated Synthesis of Enforcing Mechanisms for Security Properties in a Timed Setting

    Get PDF
    AbstractIn [Martinelli, F. and I. Matteucci, Modeling security automata with process algebras and related results (2006), presented at the 6th International Workshop on Issues in the Theory of Security (WITS '06) - Informal proceedings; Martinelli, F. and I. Matteucci, Through modeling to synthesis of security automata (2006), accepted to STM06. To appeare in ENTCS] we have presented an approach for enforcing security properties. It is based on the automatic synthesis of controller programs that are able to detect and eventually prevent possible wrong action performed by an external agent. Here, we extend this approach also to a timed setting. Under certain assumptions, we are also able to enforce several information flow properties. We show how to deal with parameterized systems

    Verifying Policy Enforcers

    Get PDF
    Policy enforcers are sophisticated runtime components that can prevent failures by enforcing the correct behavior of the software. While a single enforcer can be easily designed focusing only on the behavior of the application that must be monitored, the effect of multiple enforcers that enforce different policies might be hard to predict. So far, mechanisms to resolve interferences between enforcers have been based on priority mechanisms and heuristics. Although these methods provide a mechanism to take decisions when multiple enforcers try to affect the execution at a same time, they do not guarantee the lack of interference on the global behavior of the system. In this paper we present a verification strategy that can be exploited to discover interferences between sets of enforcers and thus safely identify a-priori the enforcers that can co-exist at run-time. In our evaluation, we experimented our verification method with several policy enforcers for Android and discovered some incompatibilities.Comment: Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yli\`es Falcone. Verifying Policy Enforcers. Proceedings of 17th International Conference on Runtime Verification (RV), 2017. (to appear

    A framework for automatic security controller generation

    Get PDF
    This paper concerns the study, the development and the synthesis of mechanisms for guaranteeing the security of complex systems, i.e., systems composed by several interactive components. A complex system under analysis is described as an open system, in which a certain component has an unspecified behavior (not fixed in advance). Regardless of the unspecified behavior, the system should work properly, e.g., should satisfy a certain property. Within this formal approach, we propose techniques to enforce properties and synthesize controller programs able to guarantee that, for all possible behaviors of the unspecified component, the overall system results secure. For performing this task, we use techniques able to provide us necessary and sufficient conditions on the behavior of this unspecified component to ensure the whole system is secure. Hence, we automatically synthesize the appropriate controller programs by exploiting satisfiability results for temporal logic. We contribute within the area of the enforcement of security properties by proposing a flexible and automated framework that goes beyond the definition of how a system should behave to work properly. Indeed, while the majority of related work focuses on the definition of monitoring mechanisms, we aid in the synthesis of enforcing techniques. Moreover, we present a tool for the synthesis of secure systems able to generate a controller program directly executable on real devices as smart phones

    Logical and deep learning methods for temporal reasoning

    Get PDF
    In this thesis, we study logical and deep learning methods for the temporal reasoning of reactive systems. In Part I, we determine decidability borders for the satisfiability and realizability problem of temporal hyperproperties. Temporal hyperproperties relate multiple computation traces to each other and are expressed in a temporal hyperlogic. In particular, we identify decidable fragments of the highly expressive hyperlogics HyperQPTL and HyperCTL*. As an application, we elaborate on an enforcement mechanism for temporal hyperproperties. We study explicit enforcement algorithms for specifications given as formulas in universally quantified HyperLTL. In Part II, we train a (deep) neural network on the trace generation and realizability problem of linear-time temporal logic (LTL). We consider a method to generate large amounts of additional training data from practical specification patterns. The training data is generated with classical solvers, which provide one of many possible solutions to each formula. We demonstrate that it is sufficient to train on those particular solutions such that the neural network generalizes to the semantics of the logic. The neural network can predict solutions even for formulas from benchmarks from the literature on which the classical solver timed out. Additionally, we show that it solves a significant portion of problems from the annual synthesis competition (SYNTCOMP) and even out-of-distribution examples from a recent case study.Diese Arbeit befasst sich mit logischen Methoden und mehrschichtigen Lernmethoden für das zeitabhängige Argumentieren über reaktive Systeme. In Teil I werden die Grenzen der Entscheidbarkeit des Erfüllbarkeits- und des Realisierbarkeitsproblem von temporalen Hypereigenschaften bestimmt. Temporale Hypereigenschaften setzen mehrere Berechnungsspuren zueinander in Beziehung und werden in einer temporalen Hyperlogik ausgedrückt. Insbesondere werden entscheidbare Fragmente der hochexpressiven Hyperlogiken HyperQPTL und HyperCTL* identifiziert. Als Anwendung wird ein Enforcement-Mechanismus für temporale Hypereigenschaften erarbeitet. Explizite Enforcement-Algorithmen für Spezifikationen, die als Formeln in universell quantifiziertem HyperLTL angegeben werden, werden untersucht. In Teil II wird ein (mehrschichtiges) neuronales Netz auf den Problemen der Spurgenerierung und Realisierbarkeit von Linear-zeit Temporallogik (LTL) trainiert. Es wird eine Methode betrachtet, um aus praktischen Spezifikationsmustern große Mengen zusätzlicher Trainingsdaten zu generieren. Die Trainingsdaten werden mit klassischen Solvern generiert, die zu jeder Formel nur eine von vielen möglichen Lösungen liefern. Es wird gezeigt, dass es ausreichend ist, an diesen speziellen Lösungen zu trainieren, sodass das neuronale Netz zur Semantik der Logik generalisiert. Das neuronale Netz kann Lösungen sogar für Formeln aus Benchmarks aus der Literatur vorhersagen, bei denen der klassische Solver eine Zeitüberschreitung hatte. Zusätzlich wird gezeigt, dass das neuronale Netz einen erheblichen Teil der Probleme aus dem jährlichen Synthesewettbewerb (SYNTCOMP) und sogar Beispiele außerhalb der Distribution aus einer aktuellen Fallstudie lösen kann

    Formal Approaches to Control System Security From Static Analysis to Runtime Enforcement

    Get PDF
    With the advent of Industry 4.0, industrial facilities and critical infrastructures are transforming into an ecosystem of heterogeneous physical and cyber components, such as programmable logic controllers, increasingly interconnected and therefore exposed to cyber-physical attacks, i.e., security breaches in cyberspace that may adversely affect the physical processes underlying industrial control systems. The main contributions of this thesis follow two research strands that address the security concerns of industrial control systems via formal methodologies. As our first contribution, we propose a formal approach based on model checking and statistical model checking, within the MODEST TOOLSET, to analyse the impact of attacks targeting nontrivial control systems equipped with an intrusion detection system (IDS) capable of detecting and mitigating attacks. Our goal is to evaluate the impact of cyber-physical attacks, i.e., attacks targeting sensors and/or actuators of the system with potential consequences on the safety of the inner physical process. Our security analysis estimates both the physical impact of the attacks and the performance of the IDS. As our second contribution, we propose a formal approach based on runtime enforcement to ensure specification compliance in networks of controllers, possibly compromised by colluding malware that may tamper with actuator commands, sensor readings, and inter-controller communications. Our approach relies on an ad-hoc sub-class of Ligatti et al.’s edit automata to enforce controllers represented in Hennessy and Regan’s Timed Process Language. We define a synthesis algorithm that, given an alphabet P of observable actions and a timed correctness property e, returns a monitor that enforces the property e during the execution of any (potentially corrupted) controller with alphabet P, and complying with the property e. Our monitors correct and suppress incorrect actions coming from corrupted controllers and emit actions in full autonomy when the controller under scrutiny is not able to do so in a correct manner. Besides classical requirements, such as transparency and soundness, the proposed enforcement enjoys deadlock- and diverge-freedom of monitored controllers, together with compositionality when dealing with networks of controllers. Finally, we test the proposed enforcement mechanism on a non-trivial case study, taken from the context of industrial water treatment systems, in which the controllers are injected with different malware with different malicious goals

    Runtime Enforcement of Timed Properties

    Get PDF
    International audienceRuntime enforcement is a powerful technique to ensure that a running system respects some desired properties. Using an enforcement monitor, an (untrustworthy) input execution (in the form of a sequence of events) is modified into an output sequence that complies to a property. Runtime enforcement has been extensively studied over the last decade in the context of untimed properties. This paper introduces runtime enforcement of timed properties. We revisit the foundations of runtime enforcement when time between events matters.We show how runtime enforcers can be synthesized for any safety or co-safety timed property. Proposed runtime enforcers are time retardant: to produce an output sequence, additional delays are introduced between the events of the input sequence to correct it. Runtime enforcers have been prototyped and our simulation experiments validate their effectiveness

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    A Framework for an Adaptive Early Warning and Response System for Insider Privacy Breaches

    Get PDF
    Organisations such as governments and healthcare bodies are increasingly responsible for managing large amounts of personal information, and the increasing complexity of modern information systems is causing growing concerns about the protection of these assets from insider threats. Insider threats are very difficult to handle, because the insiders have direct access to information and are trusted by their organisations. The nature of insider privacy breaches varies with the organisation’s acceptable usage policy and the attributes of an insider. However, the level of risk that insiders pose depends on insider breach scenarios including their access patterns and contextual information, such as timing of access. Protection from insider threats is a newly emerging research area, and thus, only few approaches are available that systemise the continuous monitoring of dynamic insider usage characteristics and adaptation depending on the level of risk. The aim of this research is to develop a formal framework for an adaptive early warning and response system for insider privacy breaches within dynamic software systems. This framework will allow the specification of multiple policies at different risk levels, depending on event patterns, timing constraints, and the enforcement of adaptive response actions, to interrupt insider activity. Our framework is based on Usage Control (UCON), a comprehensive model that controls previous, ongoing, and subsequent resource usage. We extend UCON to include interrupt policy decisions, in which multiple policy decisions can be expressed at different risk levels. In particular, interrupt policy decisions can be dynamically adapted upon the occurrence of an event or over time. We propose a computational model that represents the concurrent behaviour of an adaptive early warning and response system in the form of statechart. In addition, we propose a Privacy Breach Specification Language (PBSL) based on this computational model, in which event patterns, timing constraints, and the triggered early warning level are expressed in the form of policy rules. The main features of PBSL are its expressiveness, simplicity, practicality, and formal semantics. The formal semantics of the PBSL, together with a model of the mechanisms enforcing the policies, is given in an operational style. Enforcement mechanisms, which are defined by the outcomes of the policy rules, influence the system state by mutually interacting between the policy rules and the system behaviour. We demonstrate the use of this PBSL with a case study from the e-government domain that includes some real-world insider breach scenarios. The formal framework utilises a tool that supports the animation of the enforcement and policy models. This tool also supports the model checking used to formally verify the safety and progress properties of the system over the policy and the enforcement specifications
    • …
    corecore