

C

Consiglio Nazionale delle Ricerche

A framework for automatic security
controller generation

FF.. MMaarrttiinneellllii,, II.. MMaatttteeuuccccii

IIT TR-03/2009

Technical report

marzo 2009

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A framework for automatic security controller generation ∗

Fabio Martinelli1, Ilaria Matteucci1,2

1Istituto di Informatica e Telematica - C.N.R., Pisa, Italy
2Create-Net, Trento, Italy

e-mail:{Fabio.Martinelli, Ilaria.Matteucci}@iit.cnr.it

Abstract

This paper concerns the study, the development and the synthesis of mechanisms for guaranteeing the security of complex
systems, i.e., systems composed by several interactive components.

A complex system under analysis is described as an open system, in which a certain component has an unspecified
behavior (not fixed in advance). Regardless of the unspecified behavior, the system should work properly, e.g., should
satisfy a certain property. Within this formal approach, we propose techniques to enforce properties and synthesize controller
programs able to guarantee that, for all possible behaviors of the unspecified component, the overall system results secure.

For performing this task, we use techniques able to provide us necessary and sufficient conditions on the behavior of this
unspecified component to ensure the whole system is secure. Hence, we automatically synthesize the appropriate controller
programs by exploiting satisfiability results for temporal logic.

We contribute within the area of the enforcement of security properties by proposing a flexible and automated framework
that goes beyond the definition of how a system should behave to work properly. Indeed, while the majority of related work
focuses on the definition of monitoring mechanisms, we aid in the synthesis of enforcing techniques. Moreover, we present
a tool for the synthesis of secure systems able to generate a controller program directly executable on real devices as smart
phones.

Keywords:Partial model checking, process algebra operators, security policies, controller operator, synthesis of controller
program.

1 Introduction
The diffusion of distributed systems and networks has increased the amount of information and sensible data that circulate
on the net. This is one of the important reasons that stimulates the research towards secure systems.

In our framework, a secure system is a system that satisfies some security properties specifying acceptable executions of
programs. For example, a security property might concern either access control, that specifies what operations individuals
can perform on objects, or availability, that prohibits to an entity the use of a source, as a result of execution of that source
by other entities.

In particular, this paper concerns the synthesis of secure systems.
One remarkable synthesis problem has been described by Merlin and Bochman in [1]: It occurs when one deals with a

system in which there are some unspecified components, e.g., a not completely implemented software. When considering
a partially specified system, represented by the term S(), one may wonder if there exists an implementation Y that can be
plugged into the system by satisfying some properties of the whole system. Hence the problem that must be solved is the
following one:

∃Y S(Y) |= φ

where φ is a logic formula representing the property to be satisfied, Y represents the actual behavior of the undefined
component, S(Y) represent the composed and completely specified system, and |= represents the truth relation of the logical
language used to express the properties. This problem is also named submodule construction. (Note that if we consider S as
an empty system, then the synthesis problem amounts to classical satisfiability in logic, i.e., ∃Y Y |= φ.)

∗Work partially supported by EU-funded project “Software Engineering for Service-Oriented Overlay Computers”(SENSORIA) and by EU-funded
project “Secure Software and Services for Mobile Systems”(S3MS). This work is an expanded and revised version of [51, 52, 53].

1

The problem of the synthesis of secure systems we deal with in this paper is slightly different. Let us consider a system that
we want to be secure. We study it by exploit the open system paradigm and process algebras (see [5]). A system is said to be
open if it has some unspecified components. In accordance to the approach proposed in [2, 3, 4], the open system paradigm
is suitable for doing security analysis by considering the unspecified components of the system as potential attackers.

Hence, given a system S and a security property expressed by a logic formula φ, our goal is to guarantee that S is secure,
i.e., S satisfies the formula φ, against whatever possible intruder or malicious user, hereafter denoted by X , is put in parallel
execution with it, represented by S‖X , where ‖ is the CCS process algebra parallel operator (see [5]). More formally, the
security verification goal is to check that:

∀X S‖X |= φ (1)

What does it happen if the systems is not secure?
As a matter of fact, in the case the requirement 1 does not hold, we might wonder if there exists an implementation Y

that, by controlling the behavior of the unspecified component X , guarantees the overall system satisfies the required security
property, i.e.,

∃Y ∀X S‖(Y . X) |= φ

where . is a symbol denoting the fact that Y controls the behavior of X .
We show how to automatically generate an implementation Y able to guarantee that the open system results secure. This

solves our problem of secure system synthesis.
Through our framework, we are able to enforce a lot of significant security property. For instance, access-control poli-

cies: The set of proscribed partial executions contains those partial executions ending with an unacceptable operation being
attempted. There is no way to “unaccess” the resource and fix the situation afterward. since once a restricted resource has
been accessed, the policy is broken. There is no way to “unaccess” the resource and fix the situation afterward. Also some
bounded availability properties may be characterized as safety ones. An example is “one principal cannot be denied the use
of a resource for more then D steps as a results of the use of that resource by other principals”. Here, the defining set of
partial executions contains intervals that exceed D steps and during which a principal is denied use of a resource. Another
example of a global security property is the Chinese Wall policy. It says that, let A and B two sets of elements. Once one
accesses to an element in A, he cannot access to B and viceversa. Here we consider that A and B are sets of files and we
consider the action open.

The automatic generation procedure, presented in this paper, starts with the application of the partial model checking
function (see [6, 7]) to the above equation, in order to evaluate the formula φ by the behavior of S. In this way we obtain a
new formula φ′ = φ//S

that deals only with the un-trusted part of the system, here X . Thus, we study whether a potential
attacker exists and, in particular, which are the necessary and sufficient conditions that this enemy should satisfy for altering
the correct behavior of the system. Hence, in order to force X to behave correctly, i.e., as prescribed by φ′, we appropriately
use controller operators, denoted Y . X .

The application of partial model checking represents an advantage of our approach for enforcing security properties.
Indeed, in our framework, we are able to control only the possible un-trusted component of a given system yet ensuring the
overall security. Other approaches deal with the problem of monitoring the possible un-trusted component to enjoy a given
property, by treating it as the whole system of interest. However, it is frequent the case where not the entire system needs to
be checked (or it is simply not convenient to check it as a whole). Some components could be trusted and one would like
to have a method to constrain only un-trusted ones (e.g., downloaded applets). Similarly, it could not be possible to build a
monitor for a whole distributed architecture, while it could be possible to have it for some of its components.

Another advantage of our approach is that it allows to automatically synthesize a controller program Y for a controller
operator Y . X , by exploiting satisfiability procedures for temporal logic.

To sum up, in this work we show a method to synthesize a controller program Y for a controller operator . (provided it
holds a mild assumption).

Moreover, here, we propose a general framework to enforce security properties that is able to deal with several problems,
as parameterized systems and composition of security properties.

Finally, we have developed a tool that permits to generate a controller program for a specified controller operator. As a
matter of fact, we have implemented a synthesis tool in the objective language O’caml [8] that, given a system, a security
property, and a controller operator enforcing that property, is able to generate the respective controller program. We have
also a translator from our internal representation to a policy language called ConSpec, developed in the ambit of the S3MS
European project (see [46]). For this policy language we developed a running execution monitoring environment for mobile
phones with Java applications. The results shown in this paper can be directly used in that framework.

2

This paper is organized as follows: Section 2 compare our work with other work already appeared in literature. Section
3 recalls some useful background notions. Section 4 proposes our mechanism for the synthesis of controller program able to
enforce such security properties. Section 5 describes the tool we have developed in order to automatically generate controller
programs, given the system, the properties and which controller operator we are going to use. Section 6 presents some further
results on composition of properties and parameterized systems and Section 7 concludes the paper and proposes some future
work.

2 Logic, Process Algebra and Partial Model Checking
We start by recalling some basic notions about the equational µ-calculus (see [6, 7]) a modal logic suitable for expressing in
a qualitative ways relations among events.

Successively, we describe the CCS process algebra (see [5]), that belongs to formalisms for the description of concurrent
communicating processes (see also [30, 31]). We present the CCS operational semantics in the style proposed by Plotkin
(see [29]), namely Structured Operational Semantics (SOS).

Finally, we show the compositional analysis techniques proposed by Andersen (see [6, 7]) that deals with partially specified
systems by introducing the partial model checking function.

2.1 Equational µ-calculus
Equational µ-calculus is based on fixpoint equations that permit to define recursively properties of systems. A minimal
(maximal) fixpoint equation is Z =µ φ (Z =ν φ), where φ is an assertion, i.e., a simple modal formula without recursion
operators.

Let a be in Act, Z be a variable ranging over a set of variables V . The syntax of the assertions (φ) and of the lists of
equations (D) is given by the following grammar:

φ ::= Z | T | F | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ

D ::= Z =ν φ,D | Z =µ φ,D | ε
where T and F are the logical constant true and false, respectively; ∧ and ∨ are the classical symbols for conjunction and
disjunction. The possibility modality 〈a〉φ expresses the ability to have an a transition to a state that satisfies φ. The necessity
modality [a]φ expresses that after each a transition there is a state that satisfies φ. The fixpoint equation syntax permits us
to keep small the size of the transformed assertions. It is assumed that variables appear only once on the left-hand sides of
the equations of the list, the set of these variables are denoted as Def(D). A list of equations is closed if every variable that
appears in the assertions of the list is in Def(D).

The semantics of equational µ-calculus is given by means of labelled transition systems (LTSs) where transitions are
labelled to describe the actions which cause a change in the state.

LTSs consist of a set of states, a set of labels (or actions) and a transition relation,→, that describes how a process passes
from a state to another, i.e., given two states s an s′ and a label a, s

a−→ s′ means that the process passes from the state s to
the state s′ with an arc labeled a.

Definition 2.1 A triple 〈S, Act,→〉 is called Labelled Transition System (LTS), where S is a set of states, Act is a set of
actions (or labels) and →⊆ S ×Act× S is a ternary relation, known as a transition relation.

Let M = 〈S, Act,→〉 be an LTS, where → is the transition relation, ρ be an environment that assigns subsets of S to
variables that appear in all assertions of D, but which are not in Def(D). Then, the semantics [[φ]]ρ of an assertion φ is the
same as for µ-calculus assertions and the semantics [[D]]ρ of a definition list is an environment which assigns subsets of S to
variables in Def(D). The semantics of the equational µ-calculus is in Figure 1. Informally, the semantics definition of the
fixpoint says that the solution to (Z =σ φ)D is the σ fix-point solution U ′ of [[φ]] where the solution to the rest of the list of
equations D is used as environment. We write M |= D ↓ Z as notation for [[D]](Z) when the environment ρ is evident from
the context or D is a closed list (i.e., without free variables) and without propositional constants; furthermore Z must be the
first variable in the list D.

3

[[T]]ρ = S [[F]]ρ = ∅
[[φ1 ∧ φ2]]ρ = [[φ1]]ρ ∩ [[φ2]]ρ [[φ1 ∨ φ2]]ρ = [[φ1]]ρ ∪ [[φ2]]ρ
[[〈α〉φ]]ρ = {s|∃s′ : s

α→ s′ and s′ ∈ [[φ]]ρ} [[[α]φ]]ρ = {s|∀s′ : s
α→ s′ implies s′ ∈ [[φ]]ρ}

[[ε]]ρ = [] [[X]]ρ = ρ(X)
[[X =σ φD′]]ρ = [[D′]](ρt[U ′/X]) t [U ′/X]

where U ′ = σU.[[φ]](ρt[U/X]tρ′(U)) and ρ′(U) =[[D’]](ρt[U/X]). t represents union of disjoint environments.

Figure 1: Denotational semantics of equational µ-calculus.

2.1.1 Examples and facts

A lot of properties can be defined by using equational µ-calculus. In particular it is useful to express several security
properties, e.g., a safety property that expresses the possibility to open a new file only if the previous one is closed:

Z1 =ν [open]([close]Z1 ∧ [open]F)

As a matter of fact, this formula states that whenever an action open is performed ([open]) the process goes in a state in
which it is not possible to perform another open action ([open]F) and it is possible to close the file opened at the previous
transition step ([close]Z1). It is possible to note that, after performing the action close, the process call the first variable
Z1. This allows to open a new file after closing the previous one.

Another interesting formula is νZ.[K]Z ∧ [Act\K]F1 which expresses the fact that only actions in K can be performed
by a process in any reachable state.

Moreover, access-control property are safety properties. The set of proscribed partial executions contains those partial
executions ending with an unacceptable operation being attempted. There is no way to “unaccess” the resource and fix the
situation afterward.

Also some bounded availability properties may be characterized as safety ones. An example is “one principal cannot
be denied the use of a resource for more then D steps as a results of the use of that resource by other principals”. Here,
the defining set of partial executions contains intervals that exceed D steps and during which a principal is denied use of a
resource.

Moreover the Chinese Wall policy. This policy says that, let A and B two sets of elements. Once one accesses to an
element in A, he cannot access to B and viceversa. Here we consider that A and B are sets of files and we consider the action
open. This can be expressed by the formula φ = φ1 ∨ φ2 where φ1 and φ2 are the following two formulas respectively:

φ1 = LET MAX W = [openA]W ∧ [openB]FINW
φ2 = LET MAX V = [openB]V ∧ [openA]FINV

As a matter of fact φ is a disjunction between two different formulas φ1 and φ2 that cannot be both true at the same time.
Indeed φ1 permits to open only file in A, on the other hand φ2 allows the access to elements in B.

The same consideration can be done for the specification of a liveness property. For instance, the property “a state
satisfying φ can be reached” is expressed by Z =µ 〈 〉Z ∨ φ, where 〈 〉 means 〈Act〉, i.e.,

∨
a∈Act〈a〉 2.

For this calculus we have the following satisfiability result.

Theorem 2.1 ([32]) Given a formula φ, it is possible to decide within exponential time in the length of φ if there exists a
model of φ and it is also possible to give an example of such model.

2.2 Process algebra: CCS

Process algebras (see [30, 31]) are approaches to formally model concurrent systems. They provide a method for the high-
level description of interactions, communications, and synchronization between independent entities.

1We use an extended notation, with K ⊆ Act let [K]φ be
∧

a∈K [a]φ, and 〈K〉φ be
∨

a∈K〈a〉φ. Since Act is finite the indexed disjunctions
(conjunctions) can be expressed by means of disjunction (conjunction).

2In writing properties, here and in the rest of the paper, we use the shortcut notations [] means [Act], i.e.,
∧

a∈Act[a]

4

Prefixing:
a.P

a−→P
Choice: P

a−→P ′

P+Q
a−→P ′

Q
a−→Q′

P+Q
a−→Q′

Parallel: P
a−→P ′

P‖Q a−→P ′‖Q
Q

a−→Q′

P‖Q a−→P‖Q′
P

l−→P ′ Q
l̄−→Q′

P‖Q τ−→P ′‖Q′
Restriction: P

a−→P ′

P\L a−→P ′\L
Relabelling: P

a−→P ′

P [f]
f(a)−→P ′[f]

Constant: P
a−→P ′

A
a−→P ′

Figure 2: SOS system for CCS.

A process calculus of our interest is the CCS (or Calculus of Communicating Systems) developed by Robin Milner.
The main notion of CCS is the communication between processes, that is a synchronous one. Both the processes must
agree on performing the communication at the same time, and communication is modelled by a simultaneous performing of
complementary actions (e.g., send-receive actions). This event is represented by a synchronization action (or internal action)
τ .

The main operator is the parallel composition between processes, namely P‖Q. The intuition is that the parallel compo-
sition of two processes performs an action whenever anyone of the two processes performs an action. Moreover, processes
can communicate. The CCS language assumes a set Act = L ∪ L̄ ∪ {τ} of communication actions built from a set L of
names and a set L̄ of co-names. Putting a line, called complementation, over a name means that the corresponding action
can synchronize with its complemented action. Complementation follows the rule that ¯̄a = a, for any communication action
a ∈ Act. The special symbol, τ , is used to model any (unobservable) internal action. We let a, b, . . . range over Act.

The following grammar specifies the syntax of the language defining all CCS processes:

P,Q ::= 0 | a.P | P + Q | P‖Q | P\L | P [f] | A
where L ⊆ Act; A denotes a process constant equipped with its formal definition A = P and eventually the relabelling
function f : Act 7→ Act must be such that f(τ) = τ

In order to give (operational) semantics of CCS terms (see [5]), we use the Structural Operational Semantics (SOS, for
short) proposed by Plotkin (see [29]). The operational semantics explicitly describes how programs compute in a stepwise
fashion, and the possible state-transformations they can perform. Moreover, this method has a logical flavor and permits to
compositionally reason about the behavior of programs.

It is described by a labelled transition system (E , Act,→), where E is the set of all CCS terms and →⊆ E × Act × E
is a transition relation defined by structural induction as the least relation generated by the set of the structural operational
semantics rules of Figure 2. The transition relation → defines the usual concept of derivation in one step. As a matter of fact
P

a−→ P ′ means that process P evolves in one step into process P ′ by executing action a ∈ Act. The transitive and reflexive
closure of

⋃
a∈Act

a−→ is written →∗.
Informally, the meaning of CCS operators is the following:

0: is the process that does nothing.

Prefix: a (closed) term a.P represents a process that performs an action a and then behaves as P .

Choice: the term P + Q represents the non-deterministic choice between the processes P and Q. Choosing the action of
one of the two components means dropping the other.

Parallel composition: the term P‖Q represents the parallel composition of P and Q. It can perform an action if one of
the two processes can perform that action, and this does not prevent the capabilities of the other process. The third
rule of parallel composition is characteristic of this calculus, it expresses that the communication between processes
happens whenever both can perform complementary actions. The resulting process is given by the parallel composition
of successors of each component, respectively.

Restriction: the process P\L behaves like P but the actions in L∪ L̄ are forbidden. To force a synchronization on an action
between parallel processes, we have to set restriction operator in conjunction with parallel one.

Relabelling: the process P [f] behaves like P , but its actions are renamed through relabelling function f .

Constant: A defines a process and it is assumed that each constant A has a defining equation of the form A
.= P .

Given a CCS process P , Der(P) = {P ′|P →∗ P ′} is the set of its derivatives. A CCS process P is said finite state if
Der(P) is finite. Sort(P) is the set of names of actions that syntactically appear in the process P .

5

c

P Q

a

b c

a a

b

Figure 3: Example of two processes in which “Q simulates P ”.

2.2.1 Behavioral equivalence

In the literature, many different equivalence theories have been proposed, due to the huge number of different settings that
arise in the analysis of concurrent systems.

In general, it is interesting to study when two processes can be considered equivalent, by abstracting from irrelevant
aspects. What a relevant aspect is, mainly depends on the way a process is used, as well as on the identification of the
properties that it should satisfy. Furthermore, certain equivalence notions may preserve some properties, while others may
not. Also, when considering LTS, it is important to consider the behavioral capacity of the system to react with the outside
world, rather than its internal state.

Strong bisimulation We recall the simulation pre-order and the related bisimulation congruence (see [5, 39]).
Let us consider the following example.

Example 2.1 Consider two vendor machines P and Q which behaviors can be represented by their LTSs (see Figure 3).
The first process is forced to perform a b or c action at the beginning of its computation, i.e., when it decides which a action
to follow, while the latter after performing the a action; if this action can influence the choice of the following behavior of
the process then it is reasonable to consider that the second process has a more decisional power.

¥

As we can see from the graphical representation in Figure 3 are not equal. To compare their behavior we introduce the notion
of simulation. According to it, Q can simulate P , but the contrary does not hold. Informally, saying that “Q simulates P ”
means that Q’s behavior pattern is at least as rich as that of P .

More formally, we can define the notion of strong simulation/bisimulation by following Park’s definition [39] as follows.

Definition 2.2 Let (E , Act,→) be an LTS of concurrent processes over the set of actions Act, and letR be a binary relation
over E . Then R is called strong simulation, denoted by ≺, over (E , Act,→) if and only if, whenever (P, Q) ∈ R we have:

if P
a−→ P ′ then ∃ Q′ s.t. Q

a−→ Q′ and (P ′, Q′) ∈ R

Recalling that the converse R−1 of any binary relation R is the set of pairs (Q,P) such that (P, Q) are in R, we give the
following definition.

Definition 2.3 A strong bisimulation is a relation R such that both R and R−1 are strong simulations, i.e., if for each
(P, Q) ∈ R and for each a ∈ Act:

if P
a−→ P ′ then there ∃ Q′ : Q

a−→ Q′ and (P ′, Q′) ∈ R.

if Q
a−→ Q′ then there ∃ P ′ : P

a−→ P ′ and (P ′, Q′) ∈ R.

Strong bisimulation is the finest equivalence that is commonly accepted and enjoys several good properties. First of all, this
equivalence is also a congruence with respect to all CCS operators.

6

QP

a b a

b

τ

Figure 4: Example of two not observationally bisimilar processes.

Observational equivalence or weak bisimulation Up to now, we do not have assumed a distinguished role for the τ
action. This action has been used to model an internal communication within the system, or an internal computation step, not
visible to the outside world. We may want to abstract from those actions when comparing two systems. Within a step-wise
development strategy, this could be appealing, because we would be able to substitute more complex specifications with
simpler ones, without however affecting the overall visible behavior of the system. For example, we can imagine to substitute
a process with two others that perform the same visible task, but omitting some internal communication. The point is that we
cannot simply abstract from the internal actions, since they also can affect the visible behavior of a system.

Look at the following example.

Example 2.2 The processes P and Q in Figure 4 cannot be consider equivalent, since the second performs an internal action
by reaching a state where an action a is no longer possible. Thus, the non visible behavior of the system, represented by the
τ action, can modify its visible behavior.

¥

To compare this kind of processes, Milner, in [5], proposed the notion of observational equivalence, or weak bisimulation.
Let us consider a 6= τ , â = a, and τ̂ = ε. Then, we use the notation P

τ=⇒ P ′ (P ε=⇒ P ′) in order to denote that P

and P ′ belongs to the reflexive and transitive closure of τ . Also, P
â⇒ P ′ if P

ε⇒ Pε
â→ P ′ε

ε⇒ P ′ where Pε and P ′ε denote
intermediate states3.

We can give the following definition:

Definition 2.4 Let (E , Act,→) be an LTS of concurrent processes over the set of actions Act, and letR be a binary relation
over E . Then R is called weak simulation, denoted by ¹, over (E , Act,→) if and only if, whenever (P, Q) ∈ R we have:

if P
a−→ P ′ then ∃ Q′ s.t. Q

a=⇒ Q′ and (P ′, Q′) ∈ R
Recalling that the converse R−1 of any binary relation R is the set of pairs (Q,P) such that (P, Q) are in R, we give the
following definition.

Definition 2.5 A weak bisimulation is a relationR such that bothR andR−1 are weak simulations, i.e., if for each (P, Q) ∈
R and for each a ∈ Act:

if P
a−→ P ′ then there ∃ Q′ : Q

a=⇒ Q′ and (P ′, Q′) ∈ R.

if Q
a−→ Q′ then there ∃ P ′ : P

a=⇒ P ′ and (P ′, Q′) ∈ R.

Two processes P and Q are weakly bisimilar if there exists a bisimulation R such that (P, Q) ∈ R. The maximal weak
bisimulation is ≈ which is the union of every weak bisimulation. It is easy to check that this relation is still a weak bisim-
ulation and moreover is reflexive, symmetric and transitive. Weak bisimulation is a congruence with respect to all CCS
operators, except summation (+).

An important result proved by Milner is the following.

Proposition 2.1 ([5]) Every strong simulation is also a weak one.

Example 2.3 Let us consider the processes E, F and P of Fig. 5. F and P are weakly bisimilar, while E and F (P) are not.

3We can use the short notation P
ε

=⇒ â−→ ε
=⇒ P ′ when the intermediate states are not relevant.

7

E

a c

b

F

a

b c

P

a

b c

ττ

τ τ

E 6≈ F ≈ P

Figure 5: Example of observational equivalence between different processes.

¥

Bisimulation is a very interesting equivalence. It is decidable in polynomial time for finite-state processes, [40]. Moreover,
proving that two processes P and Q are bisimilar can be done by quite elegant proof techniques. Actually, it is sufficient to
provide a bisimulation R such that (P,Q) ∈ R.

Characteristic formulas Finite-state processes can be characterized by equational µ-calculus formulas with respect to
strong and weak bisimulation. This characterization can be derived from the greatest fixpoint characterization of the bisimu-
lation relation.

A characteristic formula is a formula in equational µ-calculus that completely characterizes the behavior of a state-
transition graph or of a state in a graph modulo a chosen notion of behavioral relation. Here, we recall the definition of the
characteristic formula of a finite-state process, by following the approach studied in [41].

Definition 2.6 Given a finite-state process P , its characteristic formula with respect to strong bisimulation is given by the
closed list DP ↓ ZP where for every P ′ ∈ Der(P), a ∈ Act:

ZP ′ =ν (
∧

a∈Act;P ′′:P ′ a→P ′′

〈a〉ZP ′′) ∧ (
∧

a∈Act

([a](
∨

P ′′:P ′ a→P ′′

ZP ′′)))

Strong bisimulation requires that every step of a process is matched by a corresponding step of a bisimilar process. Con-
sidering weak bisimulation, this requirements is relaxed, since internal actions of a process can be matched by zero or more
internal steps of the other process.

Let 〈〈a〉〉 be a weak version of the modality 〈a〉, introduced as abbreviation and defined as follows (see [41]):

〈〈ε〉〉φ def
= µZ.φ ∨ 〈τ〉Z 〈〈a〉〉φ def

= 〈〈ε〉〉〈a〉〈〈ε〉〉φ

Now we are able to give the following definition.

Definition 2.7 Given a finite-state process P , its characteristic formula with respect to weak bisimulation is given by the
closed list DP ↓ ZP where for every P ′ ∈ Der(P), a ∈ Act:

ZP ′ =ν (
∧

a∈Act;P ′′:P ′ a→P ′′

〈〈â〉〉ZP ′′) ∧ (
∧

a∈Act

([a](
∨

P ′′:P ′ â⇒P ′′

ZP ′′)))

The following lemma characterizes the power of these formulas.

Lemma 2.1 ([35]) Let P1 and P2 be two different finite-state processes. If φP2 is characteristic for P2 then:

1. If P1 ≈ P2 then P1 |= φP2;

8

2. If P1 |= φP2 and P1 is finite-state then P1 ≈ P2.

Following a similar reasoning to the one in [41] for defining characteristic formulas with respect to bisimulation, it is possible
to define a characteristic formula for a given process also with respect to strong and weak simulation.

Definition 2.8 Given a finite-state process P , its characteristic formula with respect to strong and weak simulation is given
by the closed list DP ↓ ZP where, respectively:

Strong for every P ′ ∈ Der(P),
ZP ′ =ν

∧

a∈Act

([a](
∨

P ′′:P ′ a→P ′′

ZP ′′))

Weak for every P ′ ∈ Der(P),
ZP ′ =ν

∧

a∈Act

([a](
∨

P ′′:P ′ â⇒P ′′

ZP ′′))

As a matter of fact, we can follow the same reasoning made for strongly similar processes by considering that (P, Q) are
weakly similar, i.e., are in R, if and only if

∀a P
a−→ P ′ ∃Q′ Q

â=⇒ Q′ ∧ (P ′, Q′) ∈ R

Following a similar reasoning made in [41], it is possible to prove that the following proposition holds because of the
definition of the characteristic formula does not depend on Q.

Lemma 2.2 Let P and Q be a finite-state process and let φP,≺ be the characteristic formula of the process P with respect
to strong simulation then:

Q ≺ P ⇔ Q |= φP,≺

The same result holds also if we are considering the weak simulation as behavioral relation.

2.3 Compositional analysis: the partial model checking
In this section we recall the theory on compositionality developed in [7]. The problem under consideration is the following:

What properties must the component of a combined system satisfy in order that the overall system satisfies a given
specification.

This kind of problem can be found, for instance, when a large system is developed. Since the implementation cannot be
immediately extracted from the specification, the implementation phase consists of a large number of small refinements of
the initial specification until, eventually, the implementation can be clearly identified. In [7], Andersen has proposed the
partial model checking mechanism in order to give a compositional method for proving properties of concurrent systems,
i.e., the task of verifying an assertion for a composite process is decomposed into verification tasks for the subprocesses.

The intuitive idea underlying the partial model checking is the following: proving that P‖Q satisfies an equational µ-
calculus formula φ is equivalent to prove that Q satisfies a modified specification φ//P

, where //P is the partial evaluation
function for the parallel composition operator (see [7] or Table 6). The formula φ is specified by use the equational µ-calculus.

Hence, the behavior of a component is partially evaluated and the requirements are changed in order to respect this
evaluation. The partial model checking function (also called partial evaluation function) for the parallel operator is given in
Figure 6. In order to explain better how partial model checking function acts on a given equational µ-calculus formula, we
show the following example.

Example 2.4 Let [τ]φ be the given formula and let P‖Q be a process. We want to evaluate the formula [τ]φ w.r.t. the ‖
operator and the process P . The formula [τ]φ//P

is satisfied by Q if the following three conditions hold at the same time:

• Q performs an action τ going in a state Q′ and P‖Q′ satisfies φ; this is taken into account by the formula [τ](φ//P
).

• P performs an action τ going in a state P ′ and P ′‖Q satisfies φ, and this is considered by the conjunction∧
P

τ−→P ′φ//P ′ ,
where every formula φ//P ′ takes into account the behavior of Q in composition with a τ successor of P .

9

(D↓ Z)//t = (D//t)↓ Zt ε//t = ε
(Z =σ φD)//t = ((Zs =σ φ//s)s∈Der(E))(D)//t Z //t = Zt

φ1 ∧ φ2//s = (φ1//s)∧(φ2//s) φ1 ∨ φ2//s = (φ1//s)∨(φ2//s)
[a]φ//s = [a](φ//s)∧∧

s
a−→s′ φ//s’, if a 6= τ 〈a〉φ //s = 〈a〉(φ//s)∨∨

s
a−→s′ φ//s’, if a 6= τ

[τ]φ //s = [τ](φ//s) ∧∧
s

τ−→s′ φ//s’∧∧
s

a−→s′ [a](φ //s’) T//s = T
〈τ〉φ //s = 〈τ〉(φ//s) ∨∨

s
τ−→s′ φ//s’ ∨∨

s
a−→s′〈−→a 〉(φ//s′) F//s = F

where t is the rest of the consider process and s is the state in which we do the reduction.

Figure 6: Partial evaluation function for parallel operator.

• the τ action is due to the performing of two complementary actions by the two processes. So for every a-successor P ′

of P there is a formula [−→a](φ//P ′).

¥

In [7], the following lemma is given.

Lemma 2.3 Given a process P‖Q (where P is a finite-state process) and an equational specification D ↓ Z we have:

P‖Q |= (D ↓ Z) iff Q |= (D ↓ Z)//P

The reduced formula φ//P depends only on the formula φ and on process P . No information is required about the process Q
which can represent a possible enemy.

Remarkably, this function is exploited in [7] to perform model checking efficiently, where both P and Q are specified.
In our setting, the process Q is not specified. Thus, given a certain system P , it is possible to find the property that the
enemy must satisfy to avoid a successful attack on the system. It is worth noticing that partial model checking function
may be automatically derived from the semantics rules used to define a language semantics. Thus, the proposed technique
is very flexible. According to [7], when φ is simple, i.e., it is of the form X , T, F, X1 ∧ . . . ∧ Xk ∧ [a1]Y1 ∧ . . . ∧ [al]Yl,
X1 ∨ . . . ∨Xk ∨ 〈a1〉Y1 ∨ . . . ∨ 〈al〉Yl, then the size of φ//P is bounded by |φ| × |P |. Referring to [6], any assertion can be
transformed to an equivalent simple assertion in linear time. Hence, we can conclude that the size of φ//P is polynomial in
the size of φ and P .

It is important to note that a lemma similar to Lemma 2.3 holds for each CCS operators.

3 Synthesis of Run-Time Controller Programs
Here, we propose process algebra controller operators as mechanisms to enforce security properties at run time. As a matter
of fact, our framework is based on process algebra, partial model checking and open system paradigm suggested for the
modelling and the verification of system, and here extended to deal with the synthesis problem. Using the open system
approach we develop a theory to enforce security properties. Our goal consists in protecting the system against possible
intruders. Indeed, we should check each process that could interact with the system, considering it as an intruder or a
malicious agent, before executing it. If it is not possible, we have to find a way to guarantee that the whole system behaves
correctly, even when there are intruders.

The technical proofs of the results in this section are in the Appendix.

3.1 Specification and verification of secure systems
Following the approach proposed in [2, 3], we describe a methodology for the formal analysis of secure systems based on the
concept of open systems and partial model checking techniques.

As reminded in the introduction, a system is open if it has some unspecified components. We want to make sure that
the system with the unspecified component works properly, e.g., by fulfilling a certain property. Thus, the intuitive idea
underlying the verification of an open system is the following:

10

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

X

Specification : E‖F‖P‖X

X is a malicious agent

E

P

F

Figure 7: Graphical representation of a possible open system scenario.

An open system satisfies a property if and only if, whatever component is substituted to the unspecified one, the whole system
satisfies this property.

In the context of formal languages, an open system may be simply regarded as a term of this language which may contain
“holes” (or placeholders). These are unspecified components. For instance E‖() and E‖F‖() may be considered as open
systems.

Example 3.1 We suppose to have a system S in which three processes E, F and P work in parallel. In order to be sure that
S works as we expected, we consider that a possible malicious agent X works in parallel with E, F and P as we can see in
Fig. 7. In this case the possible intruder, here denoted by X , is able to interact with the other components in order to make
the system unsafe. For that reason, instead to consider and analyze the system S = E‖F‖P , we study S = E‖F‖P‖X and
we require that S is safe whatever the behavior of X is.

¥

The main idea is that, when analyzing security-sensitive systems, neither the enemy’s behavior nor the malicious users’
behavior should be fixed beforehand. A system should be secure regardless of the behavior that the malicious users or
intruders may have, which is exactly a verification problem of open systems. According to [2, 3], the problem that we want
to study can be formalized as follows:

For every component X S‖X |= φ (2)

where X stands for a possible enemy, S is the system under examination and φ is a (temporal) logic formula expressing
the security property. It roughly states that the property φ holds for the system S, regardless of the unspecified component
which may possibly interact with it. By using partial model checking it is possible to reduce such a verification problem as
in Statement (2) to a validity checking problem as follows:

∀X S‖X |= φ iff X |= φ//S
(3)

In this way we find the sufficient and necessary condition on X , expressed by the logical formula φ//S
, such that the whole

system S‖X satisfies φ if ad only if X satisfies φ//S
.

3.2 Synthesis of process algebra controller operators
According to the Statement (3), in order to protect the system we should check each process X before executing it. If it is
not possible, we have to find a way to guarantee that the whole system behaves correctly. For that reason we develop process
algebra controller operators that force the intruder to behave correctly, i.e., referring to Statement (3), as prescribed by the
formula φ//S

. We denote controller operators by Y . X , where X is an unspecified component (target) and Y is a controller
program. The controller program is a process that controls X in order to guarantee that a given security property is satisfied.
Hence, we use controller operators in such a way the specification of the system becomes:

∃Y ∀X s.t. S‖(Y . X) |= φ (4)

11

Specification : S‖Y . X

X

Y

S

Y . X

Figure 8: A graphical representation of how a controller program Y works.

By partially evaluating φ with respect to S the Statement (4) is reduced as follows:

∃Y ∀X Y . X |= φ′ (5)

where φ′ = φ//S
.

In this way the behavior of the safe and known part of the system is considered directly into the formula φ′. The problem
described by the Statement (5) is about the target system X and the controller program Y . The controller program has to
work only on X and does not care about the rest of the system.

There is not a unique way to control a target system in order to enforce security properties. According to which properties
the system has to satisfy and through the way it has to satisfy them, it is possible to use a controller operator instead of
another. Indeed, it is possible to define several controller operators with different behaviors.

Hence, given a system, that we want to be secure, a security property that we want to enforce and a controller operator
we are going to use in order to do that, we show how synthesize a controller program for the given controller operator (by
assuming it satisfies a mild assumption).

The equation in Statement (5) might not be easy to manage because of the presence of the universal quantification on all
possible behaviors of the target X . For that reason, firstly, we underline that, by . operators, we are goring to enforce safety
properties. Hence we restrict ourselves to consider a subclass of equational µ-calculus formulas that we call Frµ. It consists
of equational µ-calculus formulas without 〈 〉 operator. It is easy to prove that, according to the rule of the partial evaluation
function with respect to parallel operator, this set of formulas is closed under the partial model checking function.

Now, let us consider again the problem in Statement (5). We have the universal quantification on all possible target
behavior. In order to manage it we make the following assumption:

Assumption 3.1 For every X and Y , we have:
Y . X ¹ Y

In the following we present a method to synthesize controller program Y for controller operator whose semantics definition
satisfies the Assumption 3.1.

Firstly we give the following result.

Proposition 3.1 ([42]) Let E and F be two processes and φ ∈ Frµ. If F ¹ E then E |= φ ⇒ F |= φ. The same result
holds also if F and E are strong similar.

Hence, for safety properties expressed by a formula in Frµ, whether it is used a controller operators that satisfies the As-
sumption 3.1 in order to enforce such safety properties, the problem in the Statement (5) can be equivalently reduced as
follows:

∃Y Y |= φ′ (6)

according to the fact that the set Frµ is closed for partial model checking.
The formulation (6) is easier to be managed. In particular, in this way, we have reduced a validity problem to a satisfiability

one in µ-calculus. Hence a possible model Y for φ′ can be find according to the Theorem 2.1. So we are able to prove the
following result

Theorem 3.1 The problem described in Formula (5) is decidable.

12

Note that the trivial solution exists. As a matter of fact the process 0 is a model for all possible formulas in Frµ, i.e., for
every process P , 0 ¹ P , hence, according to the Proposition 3.1, 0 |= φ. Obviously this is the easiest solution, however, it is
possible to find more complex model for φ by exploiting satisfiability procedure, e.g., the one developed by Waluckiewicz in
[43].

By using formulas in Frµ we are able to express several safety properties that are meaningful in the security scenario. For
instance, access control policies, that we have already described before, are safety properties, as also, bounded availability
and Chinese Wall policies, whose we refer as an example of how our mechanism works.

In order to understand how our method works, let us consider, for instance, a controller operator with the following
semantics definition:

E
a→ E′ F

a→ F ′

E . F
a→ E′ . F ′

We are able to prove that

Proposition 3.2 For the controller operator . the Assumption 3.1 holds, i.e.,

Y . X ¹ Y

This provides that, whatever the controller operator . is chosen to enforce a given safety properties, it is possible to find a
solution for the problem in Formula (5) by finding a controller program Y such that:

Y |= φ′

where φ′ is a formula in Frµ.

3.2.1 Feasibility issues for our controllers

The introduction of a controller operator helps to guarantee a correct behavior of the entire system.
Several semantics definitions can be given to describe the behavior of possible controller operators. According to the

semantics it is possible to establish if a controller operator is implementable or not. For instance, consider the following
controller operator, .′:

E
a→ E′ F

a→ F ′

E .′ F a→ E′ .′ F ′
E

a→ E′

E .′ F a→ E′ .′ F
we can note that E may in any moment neglect the external agent F behavior. The behavior of the system may simply follow
the behavior of the controller process. This behavior is easy to implement. Indeed, before every target execution there is
performed a check between the action is going to be performed by the target and the one of the controller operator. If they
match then the action is allowed, otherwise it follows the behavior of E.

As an example of a controller operator whose behavior cannot be always implemented, we consider a controller operator
defined as follows:

E
a→ E′ F

a→ F ′

E .′′ F a→ E′ .′′ F ′
E

a→ E′ F
a

6→ F ′

E .′′ F a→ E′ .′′ F
The operator .′′ cannot be implemented if we are not able to decide a priori which are possible next steps that the target agent
is going to perform. If we do not have the code of F at our disposal (i.e., this is a black box) we cannot simply do it. On
the contrary, if it is possible to know a priori which is the set of possible next steps the target is going to perform, and a is
not among these, then it would be possible to give priority to the first rule in order to allow always the correct action of the
target. Thus, controller .′′ would be our favorite, because it leaves the external agent to execute the correct action, if the first
rule can be applied, and denies the unwanted situation checking them by the second rule. Unfortunately, also having at our
disposal the code of F this is not always the case (remind CCS is Turing powerful).

3.3 Some examples
In this section we show two example of properties that can be enforced by using our framework.

13

3.3.1 The Chinese Wall policy

Now we present how we enforce the Chinese Wall policy, that is a very common security property. The Chinese Wall policy
is expressed by the formula φ = Z ∨W where

Z =ν [openA]Z ∧ [openB]F
W =ν [openB]W ∧ [openA]F

Let us consider S = X . We synthesize a controller program Y for enforcing φ. For instance, we consider the process

Y = Y1 + Y2

Y1 = openA.Y1

Y2 = openBY2

It is possible to note that such Y , at the beginning, permits whatever possible behavior of the unspecified component.
Let us consider, for instance, X = openA.openB .X . In this case, by using the controller operator ., we have that , after

the first openA action the execution is halt because the target X try to perform the action openB that is not allowed after the
openA one. Indeed, the execution steps are the following:

Y . X
openA−→ Y1 . openB .X

Hence, at the beginning, both the possibility, executing the action openA as well as executing the action openB , are allowed.
Since the first step is performed by X , the controller program chooses the component Y1 and the action openB becomes
forbidden from now on. However, after the transition, the target system tries to perform an action openA so the system halts.

3.3.2 Other simple example

Let us consider the process S = a.b.0 and the following equational definition φ = Z where Z =ν [τ]Z ∧ [a]W and
W =ν [τ]W ∧ [c]F. It asserts that, after every action a, an action c cannot be performed. Let Act = {a, b, c, τ, ā, b̄, c̄} be the
set of actions. Applying the partial evaluation for the parallel operator we obtain, after some simplifications, the following
system of equation, that we denoted with D.

Z//S
=ν [τ]Z//S

∧ [ā]Z//S′ ∧ [a]W//S
∧W//S′

W//S′ =ν [τ]W//S′ ∧ [b̄]W//0
∧ [c]F

Z//S′ =ν [τ]Z//S′ ∧ [b̄]Z//0
∧ [a]W//S′

W//S
=ν [τ]W//S

∧ [ā]W//S′ ∧ [c]F
Z//0

= T
W//0

= T

where S
a−→ S′ so S′ is b.0.

The information obtained through partial model checking can be used to enforce a security policy.
We can note the process Y = a.Y is a model of D. Then, for any component X , we have S‖(Y . X) satisfies φ. For

instance, consider X = a.c.0. Looking at the first rule of ., we have:

(S‖(Y . X)) = (a.b.0‖(a.Y . a.c.0)) a−→ (a.b.0‖(Y . c.0))

Since Y is going to perform a and the target X is going to perform the action c, the execution halts and so the system still
preserves its security .

4 A Tool for the Synthesis
We have implemented a tool in order to automatically generate controller programs for enforcing safety properties, i.e.,
properties that are expressed by equational µ-calculus formulas in which there is not diamond neither µ operators.

The tool consists of two main modules, going after the theoretical approach described before. The first one is the MuDiv
tool developed by Nielsen and Andersen, that implements the partial model checking function for process algebra operators
(see [6, 7]) and a second one is the Synthesis module implemented in O’Caml 3.09 (see [8]).

14

−controllers.ml

MuDiv

b) A zoom of the Synthesis module

a) The architecture of the whole tool

Translator

−calc.ml

−fparser.ml
−flexer.ml

Synthesis−convert.ml
−types_for.ml

−goodgraph.ml
−model.ml
−simplify.ml

−main.ml
−printGraph.ml

Synthesis
φ′ = φ//S Y

Y

φ, S

φ′ = φ//S

φ′mod

Figure 9: Architecture of the tool.

The MuDiv tool takes in input a system S and a formula of equational µ-calculus, φ, and calculates φ′ = φ//S
that is the

partial evaluation of φ with respect to the system S.
The second part implements the satisfiability procedure developed by Walukiewicz in [43] for the modal µ-calculus for-

mulas of our interest in this paper (i.e., not presenting neither 〈〉 nor µ operators).
4(see [44]). In particular it generates a model for φ′.

4.1 Synthesis tool
Now we describe more in detail the architecture of our implementation. As we have already said, it takes in input a system S
and a formula φ and gives in output a process Y , described as a labelled graph, that is a model for φ′, the formula obtained
by the partial evaluation of φ by S. According to the theory developed in previous section a such Y guarantees S‖(Y . X)
satisfies φ whatever X is.

The tool is made up of two main parts (see Figure 9.a)): The first part implements the partial model checking function;
the second one, by referring the satisfiability procedure, generates a process Y .

In Figure 9 there is a graphical representation of the architecture of the whole tool that we explain in more detail in the
following section.

4.1.1 Architecture of the tool

As we have already said, the tool is made up of two main parts: The MuDiv module and the Synthesis module.

MuDiv tool The first module of our tool consists of the MuDiv module. It is a tool for verifying concurrent systems. It is
based on the technique of partial model checking described in [7]. The technique uses the equational µ-calculus to express
the modal requirements and parallel composition of finite labelled transition systems to construct the model.

It has been developed in C++ by J.B. Nielsen and H.R. Andersen. The result is a non interactive batch program, where the
input is provided as one or more input files, describing the model and the requirements. The output is the result of the model
check and it is presented on the standard output or written to a file.

4We have implemented the Synthesis module for formulas of the modal µ-calculus because we have chosen to implemented the Walukiewicz procedure
that is given for modal formulas.

15

Policy Size User time System time
Only action a are allowed 7 0m0.005s 0m0.001s
It isn’t allowed open a new file while another file is open 16 0m0.007s 0m0.004s
Chinese Wall 16 0m0.006s 0m0.001s
It isn’t allowed performing three open action sequentially 25 0m0.021s 0m0.008s

Figure 10: Synthesis module experiments results.

Synthesis internal module. The second module of our tool is the Synthesis one. It is able to build a model for a given modal
µ-calculus formula by exploiting the satisfiability procedure. It is developed in O’caml 3.09 (see [8]) and it is described better
in Figure 9.b) in which we can see that it consists of two submodules: the Translator and the Synthesis.

The Translator module. It manages the formula φ′, output of the MuDiv module in order to obtain a formula that can be
read from the Synthesis module. It “translates” φ′ from an equational to a modal µ-calculus formula. This translation is
necessary because the Walukiewicz’s satisfiability procedure was developed for modal µ-calculus formulas instead the
partial model checking was developed for equational µ-calculus ones. It is important to underline that we implemented
the satisfiability procedure described by Walukievicz only for the µ-calculus formulas of our interest.

The Translator module consists in several functions: fparser.ml and flexer.ml permit to read the MuDiv output
file and analyze it as input sequence in order to determine its grammatical structure with respect to our grammar. The
function calc.ml calls flexer.ml and fparser.ml on a specified file. In this way we obtain an equational
µ-calculus formula φ′ according to the type that we have defined in type for.ml. The last function, convert.ml,
translates the equational µ-calculus formula φ′ in the modal one φ′mod.

The Synthesis submodule. It implements a satisfiability procedure for safety properties, described by Walukievicz in [43].
It is basically a tableaux construction. Each node in the graph representing the tableaux is characterized by the set
of formulas that it satisfies. In model.ml we build the entire graph for the given formula φ′mod in a recursive way
by checking if the graph that we have generated is effectively a model or a refutation for φ′mod by goodgraph.ml.
Initially, the input is a node labelled by φ and Empty Graph, that represents the empty graph. Then, in a recursive
way, we build the graph as we have explained before.

It is important to note that the graph that we generate has some transitions that are labelled by an action and some
transitions that come from the semantics of logical operations. If we are able to build the entire graph we use the
function simplify.ml to extract exactly the process that is a model for φ′mod.

In order to synthesize a process Y that is a model of φ′mod according to the semantics of the considered controller
operator, we have implemented the function controllers. ml that enforces the property according to the semantics
of the controller.

Other minimal functions as printGraph.ml and main.ml, permit to print the graph and to create the executable
file (.exe) respectively.

We are also able to translate the output into the ConSpec policy language (see [45]). Hence our tool can be used to
effectively enforce security policies on mobile phones by using the framework proposed in [46].

4.1.2 Performance

For our experiments we have used a PC with a CPU Intel core duo T2600 2.16GHz, 1GB RAM and an operative system
linux Fedora Core 6 kernel 2.6.19.1.

We have observed the behavior of the Synthesis module, i.e., we have analyzed the performance only of this module
because it is the part of the tool that effectively generates the controller program.

We have tested several formulas with different size (i.e. the number of nodes in the graph). The results we have observed
are summarized in Figure 10.

16

4.1.3 A case study

In order to explain better how our tool works we present an example in which a system must satisfy a safety property. We
consider the controller operator that we have considered along all paper, i.e.,

E
a→ E′ F

a→ F ′

E . F
a→ E′ . F ′

Let S be a system. We suppose that all users that work on S have to satisfy the following rule:

You cannot open a new file while another file is open.

It can be formalized by an equation system D as follows:

Z1 =ν [τ]Z1 ∧ [open]Z2

Z2 =ν [τ]Z2 ∧ [close]Z1 ∧ [open]F

By using the . operator, we halt the system if an user try to open a file while another is already open. In this case we
generate a controller program Y for Y . X and we obtain:

Y = open.close.Y

Y is a model for D.
In order to show how it works as controller program for Y . X we suppose to have a possible user X that tries to open

two different files. Hence X = open.open.0. Applying Y . X we obtain:

Y . X = open.close.Y . open.open.0 open−→ close.Y . open.0

Since Y and X are going to perform a different action, i.e., Y is going to perform close while X is going to perform open,
the whole system halts.

5 Further Results
In this section we show how our technique can be used also for synthesizing controller programs able to enforce composition
of properties and to deal with parameterized systems.

5.1 Synthesis of controller programs for composition of properties
We wonder if there exists a way easier than the method described before, to enforce a property described by a formula φ that
can be written as conjunction of sub-formulas φi simpler than itself, i.e., the size of each φi is minor of the size of φ.

Thus, we present a method to enforce this kind of properties by using the controller operator defined in Section 3.2. In
particular we prove that the composition of controller programs for such operator enforce the conjunction of the properties
they enforce. It is important to note that, since we consider the truncation operator, we are working under the additional
assumption that the the properties that we investigate are safety properties, i.e., we consider formulas in Frµ (see Section 3).

Hence we would like that the following relation holds:

∀X S‖X |= φ ≡ φ1 ∧ . . . ∧ φn (7)

where φ1, . . . , φn are safety properties simpler than φ. In order to guarantee that the whole system satisfy φ we have to find
a controller program Y that forces φ to be satisfied i.e., :

∃Y ∀X S‖Y . X |= φ1 ∧ . . . ∧ φn (8)

According to Theorem 2.1, the cost of the satisfiability procedure is exponential in the size of the formula.
Here we present a method to find a controller program Y for φ starting from controller operators of its sub-formulas φi.

As a matter of fact, let φ =
∧n

i=1 φi be the given formula, then by exploiting he Theorem 2.1, we synthesize a controller
program Yi for each of φi formula. Finally, by composing Yi one to each other we obtain Y .

17

This method is less expensive than synthesize directly Y . Indeed, according to the Theorem 2.1, finding a model for a
µ-calculus formula φ has a cost exponential in the size of φ, i.e., let us consider that all the φi have the same size m, then the
size of φ is m× n. Hence synthesize directly Y costs O(cm×n).

On the other hand, the cost of our method is nO(cm) because the cost for synthesizing n models, one for each formula
φi, is nO(cm) and the cost of the composition through the . operator is constant in the size of the formula.

In order to describe our method, first of all, we rewrite Formula (7), by exploiting the semantics definition of the logical
conjunction, as follows:

∀X S‖X |= φ1 and
∀X S‖X |= φ2 and
. . .
∀X S‖X |= φn

By partial model checking we obtain:
∀X X |= φ′1 and
∀X X |= φ′2 and
. . .
∀X X |= φ′n

where for each i from 1 to n, φ′i = (φi)//S
.

Let Y1, . . . , Yn be n processes such that:
∀X Y1 . X |= φ′1 and
∀X Y2 . X |= φ′2 and
. . .
∀X Yn . X |= φ′n

It is possible to prove the following result.

Lemma 5.1 Let φ be a safety property, conjunction of n safety properties, i.e., φ = φ1 ∧ φ2 ∧ . . . ∧ φn where φ1, . . . φn are
safety properties. Let Y1, . . . , Yn be n controller programs such that ∀i such that 1 ≤ i ≤ n Yi |= φi. We have

∀X Yn . (Yn−1 . (. . . . (Y2 . (Y1 . X)))) |= φ

This means that, once we have synthesized controller programs for enforcing several safety properties, we are able to enforce
also the conjunction of them simply applying them successively.

However, in this way, we apply the procedure for enforcing n times. Instead we want apply it only one time to force the
conjunction of formulas. For that reason we prove the following proposition.

Proposition 5.1 Let us consider the controller operator . defined in Section 3.2. It is possible to find Y1, . . . , Yn controller
programs such that. if Y1 . X |= φ′1, . . . , Yn . X |= φn then (Y1 Yn) . X |= φ1 ∧ . . . ∧ φn.

Hence, referring to the Formula (8), in order to find Y we find Y1, . . . , Yn that enforce φ′1, . . . , φ
′
n respectively and we

compose them as in Proposition 5.1. In this way we find Y that force φ′ = φ′1 ∧ . . .∧ φ′n. According to Lemma 2.3 we have:

∀X Y . X |= φ′ ⇔ ∀X S‖Y . X |= φ

Hence we obtain a controller program Y for φ.

5.2 Synthesis of controller programs for parameterized systems
A parameterized system describes an infinite family of (typically finite-state) systems (see [47]). Instances of the family can
be obtained by fixing parameters.

Let us consider a parameterized system S = Pn defined by parallel composition of processes P , e.g.,

P‖P‖ . . . ‖P︸ ︷︷ ︸
n

The parameter n represents the number of processes P present in the system S.

18

Example 5.1 Consider a system with one consumer process C and several producer processes P . Each process P is defined

P
def
= a.P where a ∈ Act, and the process C is ā.C. Let us suppose that the system consists of n producer and one consumer,

then the entire system is (Pn‖C)\{a} and the processes communicate by synchronization on ā and a actions.

Referring to the Formula (2) we may wish to have:

∀n ∀X Pn‖X |= φ (9)

It is possible to note that in the previous equation there are two universal quantifications: The first one is on the number of
instances of the process P , n, and the second one is on the possible behavior of the unknown agent.

In order to eliminate the universal quantification on the number of processes, firstly we define the concept of invariant
formula with respect to partial model checking for parallel operator as follows.

Definition 5.1 A formula φ is said an invariant with respect to partial model checking for the system P‖X if and only if
φ ⇔ φ//P

.

It is possible to prove the following result.

Proposition 5.2 Given the system Pk‖X . If φ is an invariant formula for the system P‖X then

∀X (∀n Pn‖X |= φ iff X |= φ)

In order to apply our theory, we show a method to find the invariant formula. According to [47], let ψi be defined as follows:

ψi =
{

φ1 if i = 1
ψi−1 ∧ φi if i > 1

where for each i, φi = φ//Pi
.

By definition of ψi and by Lemma 2.3, ∀j such that 1 ≤ j ≤ i (X |= φ′j) ⇔ X |= ψi. Hence X |= ψi means that ∀j such
that 1 ≤ j ≤ i Pj‖X |= φ. We say that ψi is said to be contracting if ψi ⇒ ψi−1. If ∀i ψi ⇒ ψi−1 holds, we have a chain
that is a said a contracting sequence. If it is possible to find the invariant formula ψω for a chain of µ-calculus formulas, that
is also said limit of the sequence, then the following identity holds:

∀X (X |= ψω ⇔ ∀n ≥ 1 Pn‖X |= φ) (10)

Now we have a problem equivalent to the problem expressed in Statement 2. Then we apply the theory developed in previous
section to synthesize a controller program for a controller operator.

In some cases it could not be possible to find the limit of the chain. However there are some techniques that can be useful
in order to find an approximation of this limit (see [47, 48]).

6 Related work
In this section we present some of the related work on controller theory and security.

In [9] security automata for enforcing security properties were introduced by Schneider. These automata pick each action
produced by the target system and check if this action is allowed in a given state. A security property that can be enforced in
this way corresponds to a safety property (according to [9], a property is a safety one, if whenever it does not hold in a trace
then it does not hold in any extension of this trace). Starting from the Schneider’s work, Ligatti et al. in [10, 11] have defined
four different kinds of security automata which deal with finite sequences of actions: truncation automaton, suppression
automaton, insertion automaton and edit automaton. The truncation automata basically correspond to Schneider automata.
The other kinds of automata allow also a sort of modification of the output of the target system to make it correct.

Our approach based on process algebra permits us to automatically synthesize a controller program for a chosen controller
operator. We can definite process algebra operators that precisely corresponds to the Ligatti’s et al. automata (e.g., see [51]).
Hence, it is possible to synthesize edit automata for enforcing a specific security policy expressed in temporal logic. The
resulting automata are finite state. This is an advantage of our approach w.r.t. [9] and [10, 11] since the synthesis problem is
not addressed there.

19

Also Bartoletti, Degano and Ferrari in [12] refer to [9] by saying that while safety properties can be enforced by an
execution monitor (that does not alter program execution), liveness properties cannot (a liveness property said that “something
good happens”). In order to enforce safety and liveness properties, they enclose security-critical code in policy framings, in
particular safety framings and liveness framings, that enforce respectively safety and liveness properties of execution histories.
In [13] they have proposed a mixed approach to access control, that efficiently combines static analysis and run-time checking.
They compile a program with policy framings into an equivalent one without framings, but instrumented with local checks.
The static analysis determines which checks are needed and where they must be inserted to obtain a program respecting
the given security requirements. The execution monitor is essentially a finite-state automaton associated with the relevant
security policies. Their work is not focussed on synthesis as ours. In our work we isolate the possible un-trusted components
by partial model checking then we checks at run-time the target.

Much of prior work are about the study of enforceable properties and related mechanisms. In [14] authors deal with a
safety interface that permits to study if a module is safe or not in a given environment. Here all system is checked, instead
in our approach, through the partial model checking function, we are able to monitor only the necessary/untrusted part of the
system.

In [15] the authors provided a preliminary work in which there are presented several techniques for automatically synthe-
sizing systems enjoying a very strong security property, i.e., SBSNNI (see [16]). This is also called P BNDC in [17]. In
both these work the authors did not deal with control theory.

The synthesis of controllers is a framework addressed also in other research areas (e.g., see [18, 19, 20, 21]). Our work on
controller mechanisms starts from the necessity to make systems secure regardless the behavior of possible intruders. Indeed,
in our work we do not generate a controller for a specified problem, on the contrary, we synthesize a controller that is able
to make the system secure against every possible malicious behavior of an unspecified components that interacts with the
considered system.

Many other approaches to the controller synthesis problem are based on game theory (see [22, 23, 24, 25]). As a matter
of fact, different kinds of automata are used to model properties that must be enforced. Games are defined on the automata
in order to find the structure able to satisfy the given properties. For instance in [22], the authors deal with the synthesis of
controllers for discrete event systems by finding a winning strategies for a parity games. In this framework it is possible to
extend the specification of the supervised systems as well as constraints on the controllers by expressing them in the modal
µ-calculus. In order to express un-observability constraints, they propose an extension of the modal mu-calculus in which one
can specify whether an edge of a graph is a loop. This extended µ-calculus still has the interesting properties of the classical
one. The method proposed in this paper to solve a control problem consists in transforming this problem into a problem of
satisfiability of a µ-calculus formula so that the set of models of this formula is exactly the set of controllers that solve the
problem. On the contrary, we synthesize controllers that work by monitoring only the possible un-trusted component of the
system. Moreover they do not addressed any security analysis, i.e., they synthesize controllers for a given process that must
be controlled. On the contrary we synthesize controllers that make the system secure for whatever behavior of unknown
components. Our controllers are synthesized without any information about the process they are going to control.

In [26, 27, 28] the authors developed a theory for the synthesis of the maximally permissive controller. The authors have
proposed general synthesis procedure which always computes a maximal permissive controller when it exists. However they
generate a maximal permissive controller knowing the behavior of the process they are going to control. On the contrary, we
do not know anything a priori on the possible behavior of a possible malicious agent whose behavior we want to control.

7 Conclusion and Future Work
In this paper we have illustrated some results towards a uniform theory for enforcing security properties. In particular, we
have extended a framework based on process calculi and logical techniques, that have been shown to be suitable to model
and verify several security properties, to tackle also synthesis problems of secure systems.

Indeed, we solve the problem of finding a possible implementation of a controller program, that, by monitoring the target,
replaces the unknown component, in such a way that the whole system is secure. Hence, according to the security property
we are considering, we reduce our original problem to a satisfiability problem. In this way, by applying a satisfiability
procedure, we obtain a controller program Y that is a model for the formula we want to enforce and a controller program for
the controller operator provided it holds a mild assumption. However, the satisfiability problem for µ-calculus formulas is
decidable in exponential time in the dimension of the formula.

We present a tool for the synthesis of a controller program. The tool merges our implementation of a satisfiability proce-
dure based on the Walukiewicz’s algorithm and the partial model checking technique. In particular, starting from a system and

20

a formula describing a security property, the tool generates a process that, by monitoring a possible un-trusted component,
guarantees that the system with an unspecified component satisfies the required formula whatever the target is.

An extended version of this work is [49], in which we have also given several semantics definition for controller operators,
starting from the work of Schneider [9]. As a matter of fact, recently the interest on developing techniques to study how to
make a system secure by enforcing security policy has been growing (e.g., see [10, 11, 9]). Schneider in [9] considered an
enforcement mechanism as a program which controls a given security property is respected. He has also given a definition
of security automaton as an automaton that processes a sequence of input actions that has finite or infinite length. It works
by monitoring the target system, i.e., an application whose behavior is unknown, and terminating any execution that is about
to violate the security policy being enforced. Starting form Schneider’s definition, Ligatti et al. described four different
ways to enforce safety policies (see [10, 11]). The truncation automaton can recognize bad sequences of actions and halts
program execution before a security property is violated, but cannot otherwise modify program behavior. The suppression
automaton can suppress individual program actions without terminating the program outright in addition to being able to
halt program execution. The third automaton is the insertion automaton that is able to insert a sequence of actions into
the program actions stream as well as terminate the program. The last one is the edit automaton. It combines the power of
suppression and insertion automaton hence it is able to truncate actions sequences and can insert or suppress security-relevant
actions at will.

In [49], we model the security automata of [10, 11] through process algebra by defining controller operators Y .KX , with
K ∈ {T, S, I, E} where T , S, I and E represent Truncation, Suppression, Insertion and Edit automaton, respectively, Y is
the controller program and X the target system. We give the semantics definition of each of controller operator and prove
that they have the same behavior of the respective security automaton. Moreover, it is possible to apply the theory developed
in this work to such controller operators in order to synthesis controller programs able to enforce safety properties in these
four different ways.

References
[1] P. Merlin and G. V. Bochmann. On the construction of submodule specification and communication protocols. ACM Transactions

on Programming Languages and Systems, 5:1–25, 1983.

[2] F. Martinelli. Formal Methods for the Analysis of Open Systems with Applications to Security Properties. PhD thesis, University of
Siena, December 1998.

[3] F. Martinelli. Analysis of security protocols as open systems. Theoretical Computer Science, 290(1):1057–1106, 2003.

[4] F. Martinelli. Partial model checking and theorem proving for ensuring security properties. In CSFW ’98: Proceedings of the 11th
IEEE Computer Security Foundations Workshop. IEEE Computer Society, 1998.

[5] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van Leewen, editor, Handbook of Theoretical Computer
Science, volume B: Formal Models and Semantics, chapter 19, pages 1201–1242. The MIT Press, New York, N.Y., 1990.

[6] H. R. Andersen. Verification of Temporal Properties of Concurrent Systems. PhD thesis, Department of Computer Science, Aarhus
University, Denmark, 1993.

[7] H. R. Andersen. Partial model checking (extended abstract). In Proceedings of 10th Annual IEEE Symposium on Logic in Computer
Science, pages 398–407. IEEE Computer Society Press, 1995.

[8] X. Leroy, D. R. Damien Doligez, Jacques Garrigue, and J. Vouillon. The Objective Caml system release 3.09, 2004.

[9] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System Security, 3(1):30–50, 2000.

[10] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In I. Cervesato, editor, Foundations of Computer Security:
proceedings of the FLoC’02 workshop on Foundations of Computer Security, pages 95–104, Copenhagen, Denmark, 25–26 July
2002. DIKU Technical Report.

[11] L. Bauer, J. Ligatti, and D. Walker. Edit automata: Enforcement mechanisms for run-time security policies. International Journal of
Information Security, 4(1–2):2–16, Febbruary 2005.

[12] M. Bartoletti, P. Degano, and G. L. Ferrari. Enforcing secure service composition. In CSFW, pages 211–223. IEEE Computer
Society, 2005.

21

[13] M. Bartoletti, P. Degano, and G. L. Ferrari. Checking risky events is enough for local policies. In M. Coppo, E. Lodi, and G. M.
Pinna, editors, ICTCS, volume 3701 of Lecture Notes in Computer Science, pages 97–112. Springer, 2005.

[14] J. Elmqvist, S. Nadjm-Tehrani, and M. Minea. Safety interfaces for component-based systems. In R. Winther, B. A. Gran, and
G. Dahll, editors, SAFECOMP, volume 3688 of Lecture Notes in Computer Science, pages 246–260. Springer, 2005.

[15] F. Martinelli. Towards automatic synthesis of systems without informations leaks. In Proceedings of Workshop in Issues in Theory
of Security (WITS), 2000.

[16] R. Focardi and R. Gorrieri. A classification of security properties for process algebras. Journal of Computer Security, 3(1):5–33,
1994/1995.

[17] R. Focardi and S. Rossi. Information flow security in dynamic contexts, 2002.

[18] E. Badouel, B. Caillaud, and P. Darondeau. Distributing finite automata through petri net synthesis. Journal on Formal Aspects of
Computing, 13:447–470, 2002.

[19] O. Kupferman and M. Vardi. µ-calculus synthesis. In Proc. 25th International Symposium on Mathematical Foundations of Computer
Science, volume 1893 of Lecture Notes in Computer Science, pages 497–507. Springer-Verlag, 2000.

[20] H. Saidi. Towards automatic synthesis of security protocols. March 2002.

[21] H. Wong-Toi and D. L. Dill. Synthesizing processes and schedulers from temporal specifications. In E. M. Clarke and R. P. Kurshan,
editors, CAV, volume 531 of Lecture Notes in Computer Science, pages 272–281. Springer, 1990.

[22] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with partial observation. Theoretical Computer
Science, 303(1):7–34, 2003.

[23] O. Kupferman, P. Madhusudan, P. S. Thiagarajan, and M. Y. Vardi. Open systems in reactive environments: Control and synthesis.
Lecture Notes in Computer Science, 1877:92+, 2000.

[24] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems (extended abstract).

[25] F. Martinelli. Module checking through patrial model checking. Technical Report IIT-TR06/2002, IIT-CNR, 2002.

[26] J. Raclet and S. Pinchinat. The control of non-deterministic systems: a logical approach. In Proc. 16th IFAC Word Congress, Prague,
Czech Republic, July 2005.

[27] S. Riedweg and S. Pinchinat. Maximally permissive controllers in all contexts. In Workshop on Discrete Event Systems, Reims,
France, September 2004.

[28] S. Riedweg and S. Pinchinat. You can always compute maximally permissive controllers under partial observation when they exist.
In Proc. 2005 American Control Conference., Portland, Oregon, June 2005.

[29] G. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI-FN-19, Aarhus University, 1981.

[30] M. Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass., 1988.

[31] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, NJ, 1985.

[32] R. S. Street and E. A. Emerson. An automata theoretic procedure for the propositional µ-calculus. Information and Computation,
81(3):249–264, 1989.

[33] E. Asarin and C. Dima. Balanced timed regular expressions. Electr. Notes Theor. Comput. Sci., 68(5), 2002.

[34] R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini, F. Martinelli, S. Tini, and E. Tronci. Automated analysis of timed security: a case
study on web privacy. Int. J. Inf. Sec., 2(3-4):168–186, 2004.

[35] R. Focardi, R. Gorrieri, and F. Martinelli. Real-time Information Flow Analysis. IEEE JSAC, 2003.

[36] F. Corradini, D. D’Ortenzio, and P. Inverardi. On the relationships among four timed process algebras. Fundam. Inform., 38(4):377–
395, 1999.

22

[37] M. Hennessy and T. Regan. A temporal process algebra. In FORTE ’90: Proceedings of the IFIP TC6/WG6.1 Third International
Conference on Formal Description Techniques for Distributed Systems and Communication Protocols, pages 33–48. North-Holland,
1991.

[38] I. Ulidowski and S. Yuen. Extending process languages with time. In AMAST ’97: Proceedings of the 6th International Conference
on Algebraic Methodology and Software Technology, London, UK, 1997. Springer-Verlag.

[39] D. Park. Concurrency and automata on infinite sequences. In Proceedings 5th GI Conference, volume 104 of Lecture Notes in
Computer Science, pages 167–183, 1981.

[40] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three problems of equivalence. Information and
Computation, 86(1):43–68, 1990.

[41] M. Müller-Olm. Derivation of characteristic formulae. In MFCS’98 Workshop on Concurrency, volume 18 of Electronic Notes in
Theoretical Computer Science (ENTCS). Elsevier Science B.V., 1998.

[42] G. Bruns and I. Sutherland. Model checking and fault tolerance. In AMAST ’97: Proceedings of the 6th International Conference on
Algebraic Methodology and Software Technology, pages 45–59, London, UK, 1997. Springer-Verlag.

[43] I. Walukiewicz. A Complete Deductive System for the µ-Calculus. PhD thesis, Institute of Informatics, Warsaw University, June
1993.

[44] D. Kozen. Results on the propositional µ−calculus. Theoretical Computer Science, 27(3):333–354, 1983.

[45] I. Aktung, K. Naliuka: Conspec – A formal language for policy specification. Electr. Notes Theor. Comput. Sci. 197(1) (2008) 45–58

[46] http://www.s3ms.org/index.jsp[Last visited: 14 July 2008].

[47] S. Basu and C. R. Ramakrishnan. Compositional analysis for verification of parameterized systems. In Ninth International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 2619 of Lecture Notes in Computer
Science, pages 315–330, Warsaw, Poland, April 2003. Springer.

[48] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for staticanalysis of programs by construction or approxi-
mation offixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

[49] Matteucci, I.: Synthesis of Secure Systems. PhD thesis, University of Siena (April 2008)

[50] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction. Handbook of Process Algebra. Elsevier, 2001.

[51] F. Martinelli and I. Matteucci. Through modeling to synthesis of security automata. Electr. Notes Theor. Comput. Sci., 179:31–46,
2007.

[52] I. Matteucci. A tool for the synthesis of controller programs. In T. Dimitrakos, F. Martinelli, P. Y. A. Ryan, and S. A. Schneider,
editors, Formal Aspects in Security and Trust, volume 4691 of Lecture Notes in Computer Science, pages 112–126. Springer, 2006.

[53] I. Matteucci. Automated synthesis of enforcing mechanisms for security properties in a timed setting. Electr. Notes Theor. Comput.
Sci., 186:101–120, 2007.

Appendix: Technical Proof
Proof of Proposition 3.2: We prove that the following relation is a weak simulation:

S = {(E . F, E)|E,F ∈ E}

Assume that E . F
a→ E′ . F ′. For the semantics definition of ., we have that F

a→ F ′ and E
a→ E′. Hence, there exists E′

s.t. E
a=⇒ E′ and (E′ . F ′, E′) ∈ S .

It is not difficult to note that, following a similar reasoning it is also possible to prove that Y . X ¹ X .

2

23

Proof of Lemma 5.1: For induction on the number of the formulas in the conjunction n:

n = 1: In this case φ = φ1. Hence Y = Y1 that is the controller program such that Y . X |= φ.

n ⇒ n + 1: Let φ be a formula such that φ = φ1∧ . . .∧φn+1 and Yn+1 be a controller program such that for all possible X ,
Yn+1 . X |= φn+1. For inductive hypothesis we know that for all possible X , Yn . (Yn−1 . (. . . . (Y2 . (Y1 . X)))) |=
φ1 ∧ . . . ∧ φn. We have to prove that

∀X Yn+1 . (Yn . (Yn−1 . (. . . . (Y2 . (Y1 . X))))) |= φ

For sake of simplicity, we denote by Y n the process Yn . (Yn−1 . (. . . . (Y2 . (Y1 .X)))). We know that for all possible
X , Yn+1 . X |= φn+1, so Yn+1 . Y n |= φn+1. For Proposition 3.1 and Lemma 3.2, Yn+1 . Y n |= φ1 ∧ . . . ∧ φn.
Hence, for the definition of conjunction Yn+1 . Y n |= φ.

2

In order to prove the Proposition 5.1 we prove the following lemma from which the proof of the proposition follows directly.

Lemma 7.1 Let φ, Y1, . . . , Yn be as in Lemma 5.1. We have that ∀X

Yn . (Yn−1 . (. . . . (Y2 . (Y1 . X)))) |= φ ⇒ (Yn Y1) . X |= φ

holds.

Proof : For induction on the number of controller programs n:

n = 1: Trivial.

n ⇒ n + 1: For hypothesis we have that

1. ∀1 ≤ i ≤ n + 1, ∀X Yi . X |= φi;

2. ∀X Yn . (Yn−1 . (. . . . (Y2 . (Y1 . X)))) |= φ ⇒ ∀X (Yn Y1) . X |= φ

We want to prove that

∀X Yn+1 . (Yn . (. . . . (Y2 . (Y1 . X)))) |= φ ⇒ ∀X (Yn+1 Y1) . X |= φ

For sake of simplicity we denote by Y n
. the process (Yn Y1). For hypothesis 1 we can consider Y n as X so,

Yn+1 .Y n
. |= φn+1. For Lemma 5.1 and hypothesis 2 Y n

. .Yn+1 |= φ1∧ . . .∧φn. Since Y n
. .Yn+1 and Yn+1 .Y n

. are
bisimilar so they satisfy the same formulas (see [50]). In particular Yn+1 .Y n

. |= φ1∧ . . .∧φn. Hence Yn+1 .Y n
. |= φ.

For Proposition 3.2, we conclude that
∀X (Yn+1 Y1) . X |= φ

2

Proof of Proposition 5.2: The proof comes directly from the Lemma 2.3. As a matter of fact, according to Lemma 2.3 and to
Definition 5.1:

Pn‖X |= φ if and only if Pn−1‖X |= φ//P
≡ φ

Reiterating this procedure n times we obtain:

∀X (∀n Pn‖X |= φ if and only if X |= φ)

2

24

	tr3.pdf
	Consiglio Nazionale delle Ricerche
	A framework for automatic security controller generation F. Martinelli, I. Matteucci
	Iit

