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Abstract

With the advent of Industry 4.0, industrial facilities and critical infrastructures are
transforming into an ecosystem of heterogeneous physical and cyber components, such
as programmable logic controllers, increasingly interconnected and therefore exposed to
cyber-physical attacks, i.e., security breaches in cyberspace that may adversely affect the
physical processes underlying industrial control systems.

The main contributions of this thesis follow two research strands that address the
security concerns of industrial control systems via formal methodologies. As our first con-
tribution, we propose a formal approach based on model checking and statistical model
checking, within the Mopest ToOLSET, to analyse the impact of attacks targeting non-
trivial control systems equipped with an intrusion detection system (IDS) capable of
detecting and mitigating attacks. Our goal is to evaluate the impact of cyber-physical
attacks, i.e., attacks targeting sensors and/or actuators of the system with potential con-
sequences on the safety of the inner physical process. Our security analysis estimates
both the physical impact of the attacks and the performance of the IDS.

As our second contribution, we propose a formal approach based on runtime en-
forcement to ensure specification compliance in networks of controllers, possibly com-
promised by colluding malware that may tamper with actuator commands, sensor read-
ings, and inter-controller communications. Our approach relies on an ad-hoc sub-class
of Ligatti et al.’s edit automata to enforce controllers represented in Hennessy and Re-
gan’s Timed Process Language. We define a synthesis algorithm that, given an alphabet
P of observable actions and a timed correctness property ¢, returns a monitor that en-
forces the property e during the execution of any (potentially corrupted) controller with
alphabet P, and complying with the property e. Our monitors correct and suppress in-
correct actions coming from corrupted controllers and emit actions in full autonomy
when the controller under scrutiny is not able to do so in a correct manner. Besides
classical requirements, such as transparency and soundness, the proposed enforcement
enjoys deadlock- and diverge-freedom of monitored controllers, together with composition-
ality when dealing with networks of controllers. Finally, we test the proposed enforce-
ment mechanism on a non-trivial case study, taken from the context of industrial water
treatment systems, in which the controllers are injected with different malware with

different malicious goals.
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Chapter 1

Introduction

Industrial Control Systems (ICSs) are physical and engineered systems whose operations
are monitored, coordinated, controlled, and integrated by a computing and commu-
nication core [129]. They represent the backbone of Critical Infrastructures for safety-
critical applications such as electric power distribution, nuclear power production, and
water supply. Historically, ICSs relied on proprietary technologies and were imple-
mented as stand-alone networks in physically protected locations. However, in re-
cent years the situation has changed considerably: commodity hardware, software and
communication technologies are used to enhance the connectivity of these systems and
improve their efficiency.

This computer-based evolution has triggered a dramatic increase in the number of
attacks targeting such systems [140, 13, 79]. Some notorious examples of the so called
cyber-physical attacks are: (i) the Stuxnet worm, which reprogrammed Siemens PLCs to
destroy centrifuges in the nuclear facility of Natanz in Iran [88]; (ii) the Industroyer at-
tack on the Ukrainian power grid caused power outages; (iii) the recent TRITON/TRISIS
malware that targeted and shut down a petrochemical plant in Saudi Arabia [83]. The
gravity of such attacks has been addressed in the 2018 World Economic Forum meeting

in Davos.

These attacks have shown that malicious activities from the cyber space target-
ing ICSs can have adverse physical consequences. For instance, attacks on a power grid
can cause blackouts, affecting critical infrastructures such as medical systems or water
systems or even having a catastrophic effect on the economy and public safety [37], at-
tacks on ground vehicles can cause road traffic accidents [68], attacks on GPS systems
can mislead navigation systems and make drivers reach destinations desired by the
attackers [151].

Thus, the physical impact of cyber-physical attacks puts ICSs security apart from
information security [65, 66] and demands for ad-hoc solutions. Paradigmatic exam-
ples of such solutions are intrusion detections systems that look into the “physics” of
the systems under scrutiny [61] to catch attacks that affect the controlled plant. In par-
ticular, these ad-hoc solutions must explicitly address the timing and the duration of
cyber-physical attacks. The timing of the attack is a critical issue as the physical state of
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a system changes continuously over time and, as the system evolves, some states might
be more vulnerable to attacks than others [85]. For instance, an attack launched when
the target state variable reaches a local maximum (or minimum) may have a great im-
pact on the whole system behaviour [86]. Furthermore, concerning the duration of the
attack, it may take minutes for a chemical reactor to rupture, hours to heat a tank of

water or burn out a motor, and days to destroy centrifuges [88].

Many good surveys on the security of industrial control systems have been re-
cently published (e.g., [61, 63]). They all agree that the main security challenges in
ICSs arise when the computation is corrupted either by false sensor signals or by mali-
cious control commands addressed to physical processes. Basically, these two kinds of
malicious activities can be achieved by compromising one of the following basic com-
ponents of ICSs: physical devices, i.e., sensors devices and actuator devices; controllers,
i.e., those cyber-components that are devoted to control physical processes, such as
programmable logic controllers (PLCs); communications network, connecting controllers
with physical devices and other controllers.

1.1 Our objectives

The goal of the thesis is to apply formal methodologies to the security of industrial
control systems, in particular, we have pursued two lines of research: (i) testing the
effectiveness of static analysis techniques, i.e., model checking [41] and statistical model
checking [100], when preforming an impact analysis of an ICS exposed to cyber-physical
attacks and (ii) the protection of control systems via a formal approach based on runtime
enforcement to ensure specification compliance in networks of possibly compromised

controllers.

Impact analysis Risk assessment is a critical step in the implementation of a cyber-
defence strategy that finds and prioritizes the vulnerabilities in a system. Prioritization
is done based on the likelihood that vulnerabilities are exploited and the impact that
can occur in the case of an actual attack. Thus, an important part of risk assessment
is to reason about the impact of attacks. In information systems, attacks have for most
practical purposes binary impacts (information was manipulated/eavesdropped, or
not). On the other hand, attacks manipulating the sensor or control signals of ICSs
can be tuned by the attacker to cause a continuous spectrum in damages [136]. For
instance, the impacts of water transmission systems can range from stopping water

supply to even compromising water quality [109, 136].

Motivated by the risk assessment application, we propose a formal approach based
on model checking and statistical model checking to perform an impact analysis of ICSs
exposed to cyber-physical attacks. The goal of our analysis is twofold: (i) a static eval-
uation of the physical impact of the attacks, in terms of safety and possible deadlocks; (ii)
a static evaluation of the performance of intrusion detections systems designed to detect
cyber-physical attacks.
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In our threat model, we consider attacks targeting sensors and/or actuators via either
the corresponding physical device or the communication network used by the device. Fur-
thermore, as we are interested in the impact of attacks, we consider an attacker that has
already obtained access to the ICS, and we do not consider how vulnerabilities are ex-
ploited, and how the attack is hidden. Instead, we focus on the final objective of the
attack to maliciously affect the physical part. This is achieved by manipulating: (i) the
sensor measurements, i.e, reading and possibly replacing the genuine sensor measure-
ments with fake ones, (ii) and/or the controller commands, i.e., reading, dropping and

possibly replacing the genuine controller commands with malicious ones.

It is worth noting here that faults and attacks targeting sensors and/or actuators
have inherently distinct characteristics [141]. Faults are considered as physical events
that affect the system behaviour where simultaneous events do not act in a coordi-
nated way, whereas cyber attacks may be performed over a significant number of at-
tack points and in a coordinated way and might even force the operator to perform
erroneous countermeasures [20].

Concerning the formal verification techniques, as said earlier, we consider two
widely adopted approaches for the verification of hybrid systems (and hence ICSs): model
checking [41] and statistical model checking [100]. Both of them are automated techniques
that, given a finite-state model of a system and a formal specification, check whether
that property holds for that model. The model describes the possible system behaviours
in a mathematically precise manner. On the other hand, the specification is typically
expressed in a propositional temporal logic and prescribes what the system should do,
and what it should not do. In practice, both techniques achieve the safety verification of
CPSs by solving the reachability problem: can an unsafe state be reached by an execution

of the system (possibly under attack) starting from a given initial state?

The model checking approach, originally developed by Clarke and Emerson [40],
systematically explores all states of the system model to determine if the specifications
are satisfied by the model. In general, the reachability problem for hybrid systems is
stubbornly undecidable, although boundaries of decidability have been extensively
explored in the past couple of decades [9, 77, 90, 147, 134]. Despite the undecidabil-
ity results, a number of model checking tools for hybrid systems have been recently
proposed [59, 56, 26, 132, 47, 36,73, 89, 121].

Statistical model checking (SMC) simulates the system model for finitely many ex-
ecutions with the classical Monte Carlo simulation [74], and uses hypothesis testing to
infer whether the samples provide a statistical evidence for the satisfaction or violation
of the specification. As a consequence, SMC does not guarantee a 100% correct analysis,
but it allows to bound the error of the analysis, i.e., the maximum probability of false
negatives and probabilistic uncertainty. Furthermore, as it does not consider all reach-
able states, and therefore it addresses the size barrier of model checking techniques,
enabling the analysis of large models such as ICSs.
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Protection of controllers One of the key components of ICSs are Programmable Logic
Controllers, better known as PLCs. They control mission-critical electrical hardware
such as pumps or centrifuges, effectively serving as a bridge between the cyber and
the physical worlds. PLCs have an ad-hoc architecture to execute simple repeating
processes known as scan cycles. Each scan cycle consists of three phases: (i) reading
of sensor measurements of the physical process; (ii) execution of the controller code to
compute how the physical process should evolve; (iii) transmission of commands to
the actuator devices to govern the physical process as desired.

Due to their sensitive role in controlling industrial processes, successful exploita-
tion of PLCs can have severe consequences on ICSs. In fact, although modern con-
trollers provide security mechanisms to allow only legitimate firmware to be uploaded,
the running code can be typically altered by anyone with network or USB access to the
controllers (see Figure 1.1). Published scan data shows how thousands of PLCs are
directly accessible from the Internet to improve efficiency [128]. Thus, despite their
responsibility, controllers are vulnerable to several kinds of attacks, including PLC-
Blaster worm [137], Ladder Logic Bombs [67], and PLC PIN Control attacks [3].

As a consequence, extra trusted hardware components have been proposed to en-
hance the security of PLC architectures [111, 114]. For instance, McLaughlin [111] pro-
posed a policy-based enforcement mechanism to mediate the actuator commands trans-
mitted by the PLC to the physical plant. Mohan et al. [114] introduced a different archi-
tecture, in which every PLC runs under the scrutiny of a monitor which looks for devia-
tions with respect to safe behaviours. Both architectures have been validated by means
of simulation-based techniques. However, as far as we know, formal methodologies have

not been used yet to model and formally verify security-oriented architectures.

We propose a formal approach based on runtime enforcement to ensure specification
compliance in networks of controllers possibly compromised by colluding malware that
may tamper with actuator commands, sensor readings, and inter-controller communi-

cations.

Runtime enforcement [135, 102, 51] is a powerful verification/validation technique
aiming at correcting possibly-incorrect executions of a system-under-scrutiny (SuS). It
employs a kind of monitor that acts as a proxy between the SuS and the environment
interacting with it. At runtime, the monitor fransforms any incorrect executions exhib-
ited by the SuS into correct ones by either replacing, suppressing or inserting observable
actions on behalf of the system. The effectiveness of the enforcement depends on the
achievement of the two following general principles [102]:

* transparency, i.e., the enforcement must not prevent correct executions of the SuS;
* soundness, i.e., incorrect executions of the SuS must be prevented.

Our goal is to enforce potentially corrupted controllers using secure proxies based on
a sub-class of Ligatti’s edit automata [102]. These automata will be synthesised from
enforceable timed correctness properties to form networks of monitored controllers, as in
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Supervisory Control Network

& c

(R

o b
Field Communications Network
A A

Figure 1.1: A network of compromised PLCs: y; denote genuine sensor measurements,
y? are corrupted sensor measurements, 1 corrupted actuator commands, and ¢} denote
corrupted inter-controller communications.

Figure 1.2. The proposed enforcement will enjoy both transparency and soundness
together with the following features:

* determinism preservation, i.e., the enforcement should not introduce nondetermin-
ism;
e deadlock-freedom, i.e., the enforcement should not introduce deadlocks;

* divergence-freedom, i.e., the enforcement should not introduce divergencies;

* mitigation, i.e., the enforcer takes over the control of the system when controller is
not able to do so;

* compositionality, i.e., the enforcement features should hold in networks of con-

trollers.

As expected, when a controller is compromised, these objectives can be achieved only
with the introduction of a physically independent secure proxy, as advocated in [111,
114], which does not have any Internet or USB access, and which is connected with
the monitored controller via secure channels. This may seem like we just moved the
problem over to securing the proxy. However, this is not the case because the proxy
only needs to enforce a timed correctness property of the system, while the controller
does the whole job of controlling the physical process relying on potentially dangerous
communications via the Internet or the USB ports. Thus, any upgrade of the control
system will be made to the controller and not to the secure proxy. Of course, by no
means runtime reconfigurations of the secure proxy should be allowed.

1.2 Contribution

1.2.1 An impact analysis for the security of control systems

In order to test the effectiveness of both model checking and statistical model checking,
we consider the MopgesT TooLseT [73] which comprises several state-of-the-art analysis

backends, in particular it provides (i) a safety model checker, called prohver, that relies on
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Supervisory Control Network
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Field Communications Network
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Figure 1.2: A network of monitored controllers.

the hybrid solver PHAVer [56] and (ii) a statistical model checker, called modes. The toolset
relies on a unified modelling language, called HMobDEsT [72], a process-algebra based
language that has an expressive programming language-like syntax to design complex

systems.

Concerning model checking, we implement a simple but realistic and nuanced
control system which has been proposed by Lanotte et al. [94] to highlight different
classes of attacks on sensors and actuators, in a way that is basically independent on
the size of the system. We use prohver to analyse three simple but significant cyber-
physical attacks targeting sensors and/or actuators of our case study by compromising
either the corresponding physical device or the communication network used by the
device. The three attacks have already been carefully studied in [94] focussing on the
time aspects of the attacks (begin, duration, efc.) and the physical impact on the system
under attack (deadlock, unsafe behaviour, efc.). We then compare its effectiveness in
verifying impact of attacks on ICSs, when compared to other state-of-the-art models
checkers, such as PRISM [89], UPPAAL [19] and Real-Time Maude [121].

As regards statistical model checking, we analyse a non-trivial quadruple-tank wa-
ter system proposed by Johansson [81]. We equip the original system with an intrusion
detection system (IDS) that monitors the consistency of both sensor signals and actua-
tor commands, based on a discrete-time state-space model of the control system under
scrutiny. Our IDS is also capable of dynamically reconfiguring the control algorithm
in order to mitigate the physical impact of detected attacks. We then perform an impact
analysis of Johansson’s tank system and test the effectiveness of modes when doing a
security and safety analysis of a significantly larger control system (consisting of 4
physical variables, 2 sensors and 2 actuators) when exposed to three carefully-designed
cyber-physical attacks targeting sensors and/or actuators via either the corresponding
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physical device or the communication network used by the device.

1.2.2 Runtime enforcement for control systems security

We introduce a formal language to specify controller programs. For this very purpose,
we resort to process calculi, a successful and widespread formal approach in concur-
rency theory for representing complex systems, such as mobile systems [30] and cyber-
physical systems [92], and used in many areas, including verification of security pro-
tocols [1, 2] and security analysis of cyber-physical attacks [95]. Thus, we define a sim-
ple timed process calculus, based on Hennessy and Regan’s Timed Process Language
(TPL) [75], for specifying controllers, finite-state edit automata, and networks of com-

municating monitored controllers.

Then, we define a simple description language to express timed correctness properties
that should hold upon completion of a finite number of scan cycles of the monitored
controller. This will allow us to abstract over controllers implementations, focusing on
general properties which may even be shared by completely different controllers. In
this regard, we might resort to one of the several logics existing in the literature for
monitoring timed concurrent systems, and in particular cyber-physical systems (see,
e.g., [17, 58]). However, the peculiar iterative behaviour of controllers convinced us to
adopt a simple but expressive sub-class of regular expressions, the only properties that
under precise conditions can be enforced by finite-state edit automata (see Beauquier
et al.’s work [18]). Then we will show how we can express a wide class of interesting

correctness properties for controllers in terms of our regular properties.

After defining a formal language to describe controller properties, we provide a
synthesis function ( — | that, given an alphabet P of observable actions (sensor read-
ings, actuator commands, and inter-controller communications) and a regular property
e combining events of P, returns an edit automaton (¢ )”. In this work we are inter-
ested in a deterministic enforcement, thus, we focus on syntactically deterministic reg-
ular properties which will give rise to enforcers with a deterministic behaviour. More
broadly, the resulting enforcement mechanism will ensure the required features men-
tioned before: transparency, soundness, determinism preservation, deadlock-freedom,
divergence-freedom, mitigation and compositionality.

We propose an implementation of our enforcement mechanism based on field-
programmable gate arrays (FPGAs) [150], which are good candidates for implementing
secure proxies as they introduce a negligible overhead in the whole behaviour of the
PLCs and are assumed to be secure when the adversary does not have physical ac-
cess to the device. Furthermore, we propose a non-trivial case study, taken from the
context of industrial water treatment systems implemented as follows: (i) the physi-
cal plant is simulated in Simulink [110]; (ii) the open source PLCs are implemented in
OpenPLC [11] and executed on Raspberry Pi; (iii) the enforcers run on connected FP-
GAs. In this setting, we test our enforcement mechanism when injecting the PLCs with
5 different malware, with different goals.
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1.3 OQOutline

The thesis is structured as follows. In Chapter 2 we present industrial control systems,
programmable logic controllers, their vulnerabilities and associated security measures.
In Chapter 3 we provide the technical material about: (i) hybrid model checking, hybrid
automata and temporal logics; (ii) statistical model checking and (iii) runtime enforce-
ment and edit automata. The rest of this thesis is divided into two parts. The first part
contains an impact analysis for the security of control systems. In Chapter 4 we implement
in HMoDEST an engine system and we put under stress the safety model checker prohver
for a security analysis. In Chapter 5 we implement in HMobEsT a quadruple-tank water
system and test effectiveness of statistical model checking modes. Chapter 6 discusses
related and future work. The second part of this thesis contains the contributions of our
second objective, runtime enforcement for control systems security. In Chapter 7 we present
(i) a formal language for monitored controllers, (ii) our case study taken from the con-
text of industrial water treatment systems, (iii) a language of regular properties to ex-
press controller behaviours and (iv) the algorithm to synthesise monitors from regular
properties, together with formal results. In Chapter 8 we propose an implementation of
our enforcement mechanism. Chapter 9 discusses related and future work. Chapter 10
contains an overview of the papers published by the author of this thesis. Finally, the
Appendix contains an introduction to the syntactic constructs of the HMobpEsT language
and the technical proofs of the results in Chapter 7.



Chapter 2

Industrial control systems and

their vulnerabilities

In this chapter we provide an overview of industrial control systems, their vulnerabili-
ties and associated security measures. This chapter has the following structure. In Sec-
tion 2.1 we introduce the main components of ICSs and take a closer look at the widely
used devices for control, programmable logic controllers. In Section 2.2 we present
some of the most notorious attacks that have targeted ICSs. In Section 2.3 we anal-
yse cyber-physical attack targetting ICSs in terms of: their stage, the attack locations,
the attack motivation, the attacker’s goal and knowledge. In Section 2.4 we overview

security measures tailored for ICSs.

2.1 An introduction to industrial control systems

Industrial control systems (ICSs) integrate computing and associated instrumentation
to control physical processes. More broadly, ICSs are called cyber-physical systems (CPSs),
which are the emerging applications of embedded computer and communication tech-
nologies to a variety of physical domains. CPSs are related to other popular terms such
as the Internet of Things (10T) and Industry 4.0, but the term CPS does not directly refer-
ence either implementation approaches nor particular applications. It focuses instead
on the fundamental intellectual problem of conjoining the engineering traditions of the
cyber and physical worlds [98]. In the last decade, these systems have increased in
number due to both advances in digital electronics and the desire for more information
about and control of physical systems. CPSs span many domains, such as: aerospace,
automotive, chemical production, civil infrastructure, energy, healthcare, manufactur-
ing and transportation. Some of the benefits of the integration of the computing sys-
tems and the the physical world are: optimized productivity, safety, efficiency and pre-
dictability.

Finally, due to interaction with the physical world, CPSs present often the follow-
ing characteristics: real-time, safety-critical and non-reversibility or non premption of
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operations. In real-time systems, the time in which computations are performed is im-
portant in order to ensure the correctness of the system. The failure of a safety-critical
system may have adverse physical consequences, such as serious harm to people, dam-
age to equipment and environmental harm. As regards non-reversibility, once a com-
mand affecting the physical part has been executed it is impossible to roll back that

operation, whereas in cyber systems roll back operations are typically available.

Control systems A control system regulates the behaviour of physical devices via
control loops. Such systems range from simple water controllers that regulate pumps
to control the water level in a tank to industrial control systems that regualate the electric-
ity of nationwide networks of power grids. Control systems were originally designed
with analogue sensing and control, which allowed the seamless integration of control
signals into a continuous-time physical process. With the advent of microprocessors
and computers, discrete-time control systems have emerged, where sensing and con-
trol signals have to be sampled at discrete-time. Finally, networks have allowed digital
controllers to be further away from the sensors and actuators (e.g., pumps, valves, etc.).
Thus, today a control system is typically composed of the (i) physical process, (ii) a
communication network that supports (iii) the sensor measurements and actuator data
that are exchanged with (iv) controller(s) and supervisor(s), which are the cyber com-
ponents (also called logics) of a control system. Figure 2.1 shows the main components
of a control systems in a feedback loop, a typical control architecture.

-
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Figure 2.1: Main components of control systems in a feedback loop.

The dynamic behaviour of the controlled physical process of a control system is often
represented by means of a discrete-time state-space model consisting of two equations of
the form

Xpr1 = Axg+ Buy + wy
Yk = Cxp+e

where x;, € R" is the current (physical) state, u;, € R™ is the input (i.e., the control ac-
tions implemented through actuators) and y; € R is the output (i.e., the measurements
from the sensors). The uncertainty wy, € R" and the measurement error e; € IRP represent
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perturbation and sensor noise, respectively, and A, B, and C are matrices modelling the
dynamics of the physical system. Here, the next state xj 1 depends on the current state
xr and the corresponding control actions uy, at the sampling instant k € IN. The state
xx cannot be directly observed: only its measurements y; can be observed.

Industrial control systems ICSs are highly interconnected, interactive and typically
span over multiple locations. In critical infrastructure contexts, ICSs are often called
Supervisory Control and Data Acquisition (SCADA) systems where they perform vi-
tal functions in national critical infrastructures. For instance, the oil and gas industry
use integrated SCADA systems to manage refining operations at plant sites, remotely
monitor the pressure and flow of gas pipelines, and control the flow and pathways of
gas transmission. Water utilities can remotely monitor well levels and control the wells
pumps; monitor flows, tank levels, or pressure in storage tanks; monitor pH, turbid-
ity, and chlorine residual; and control the addition of chemicals to the water. Other
applications are: electric power distribution, transportation and chemical processing.

Management

Corporate network

Production control & scheduling

Supervisory control network

¢ ¢ $

PLCs/RTUs PLCs/RTUs PLCs/RTUs
ield communications ield communications Field communications
network network network
Actuators/ Actuators/ Actuators/
Sensors Sensors Sensors

Figure 2.2: Architecture of modern ICSs.

As regards the architecture of ICSs, generally, such large distributed control sys-
tems may rely on thousands of field communications networks of local control loops. The
local control loops are seamlessly guided via the Supervisory control network by the pro-
duction control and scheduling layer which responds to the upper management layer, see
Figure 2.2. Typical ICS devices that are devoted to the control of local plant sites are
Programmable logic controllers (PLCs) and remote transmission units (RTUs). PLCSs
and RTUs transmit acquired telemetry data to the upper layers and execute control
logic.
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Figure 2.3: Examples of PLCs

On the other hand, Human-Machine Interfaces (HMls) devices allow the produc-
tion control and scheduling layer to communicate with machineries and production
plants. Huge amount of complex data are translated into accessible information and
displayed on HMIs for the operator that controls the production process. Basically,
HMIs are screens that consist of buttons, alarms, reports and trends for monitoring,

analysing and controlling the process.

Figure 2.4: Examples of HMIs

2.1.1 A closer look to programmable logic controller

Programmable logic controllers (PLCs) are one of the primary devices for controlling
industrial control systems. PLCs are specialized industrial computers that do not have
the same computing power of classical computers and, therefore, they tend to have lim-
ited resources. Indeed, PLCs run only on firmware, which is a specific class of software
that provides low-level control of device hardware. Furthermore, PLCs are physically
hardened, suitable for the harsh production environment. Typically, they have a power
supply, one or more communication modules, for communications to ICS servers, HMI
or other PLCSs, a control processor, an input module for sensory components and out-
put modules to connect to actuators, see Figue 2.5.

The CPU module of a PLC is its central part, and usually has a microprocessor
to handle all the program tasks, which is a programmable memory to store the user
program, the main program task, and a temporary memory to store the program’s data
during execution. Thus, a PLC works by continuously scanning the user program, this
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Figure 2.5: Typical components of a PLC.

is called scan cycle and consists of three important steps: (i) reading of sensor measure-
ments of the physical process, where the state of the actual inputs is copied to a portion
of the CPU memory called input image table; (ii) execution of the controller code, to
determine how the physical process should change according to both sensor measure-
ments and potential interactions with other controllers, which are also stored in the in-
put image table; (iii) transmission of commands to the actuator devices to implement the
calculated changes, which travel from the output image table to the physical outputs.
The scan cycle of a controller must be completed within a specific time, called maximum
cycle limit, which depends on the controlled physical process; if this time limit is vio-
lated the controller stops and throws an exception [137]. As regards the programming
languages used to write user programs, according to an international standard set of
languages defined in IEC 61131-3, PLCs support five languages: ladder diagram, func-
tion block diagram, structured text, instruction list, and sequential function chart [82].

Supervisory Control Network
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Figure 2.6: A field network of PLCs.

Finally, concerning PLCs remote interactions, as said earlier, field communications
network allow the interaction between PLCs. On the other hand, the supervisory control
network allows the PLCs to report various informations, such as the physical state of
the plant, to the higher levels, e.g. HMIs (see Figure 2.6). Typical industrial network
protocols are: DNP3, Modbus/TCP, EtherNet/IP, PROFINET, ICCP, and IEC 104 [118].
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2.2 High profile attacks targeting ICSs

The modernization of control systems over the past decade has raised many concerns
about the vulnerabilities in control systems to security attacks. In particular, modern
ICSs rely on reprogrammable devices which communicate remotely even via the Inter-
net which makes them exposed to new types of threats and increases the possibility
that an ICS could be compromised with cyber-attacks. These attacks can induce the
failure of ICSs and cause economic losses or even worse, due to their safety-critical na-
ture, their failure can cause irreparable harm to the physical system being controlled,
contaminate ecological environment, and harm the people who depend on it.

In what follows we present attacks that were specifically designed for ICSs and
that made it to the news due to their sophistication and their disruptive physical im-
pact. In particular we present: the attack that targeted the SCADA system in Australia,
the Stuxnet worm, the attack that damaged a blast furnace in Germany, the attacks that
disrupted the Ukrainian power grid and the Triton malware that has affected petro-

chemical plants in Saudi Arabia.

Attack on an Australian SCADA system - 2007 The sewage treatment facility in
Queensland, Australia, was attacked and its SCADA system was manipulated to re-
lease raw sewage into local rivers for three months [136]. This was the first publicly
reported attack on a SCADA system, where the attacker was a contractor who wanted
to be hired for a permanent position maintaining the system. He used commercially
available radios and stolen SCADA software to make his laptop appear to be a pump-
ing station. During a three-month period the attacker released more than 750,000 gal-
lons of untreated sewage water into parks, rivers, and hotel grounds, causing loss of
marine life, jeopardising public health, and costing more than $200,000 in clean-up and

monitoring costs.

Stuxnet-2013 The Stuxnet worm reprogrammed PLCs to damage nuclear centrifuges
in the nuclear facility of Natanz in Iran [88]. This attack, which is paradigmatic ex-
ample of a weaponized malware, was reportedly state-sponsored and showed an un-
precedented sophistication for cyber attacks. Stuxnet was designed to infect as many
computer as possible, but on many computers had no effect. When it found its in-
tended target, in this case computers in the nuclear facility of Natanz, used multiple
zero day exploits, bypassed intrusion detection systems, disguised itself as legitimate
software and then covered its tracks by removing trace files from systems if they were
no longer needed or considered incompatible. The first attack vector propagated in-
side the air-gapped nuclear facility via infected USB drives. Once inside, it took over
the PLCs. The control logic of the malware recorded and replayed the sensor values of
the rotor vibration and pressure to hide the ongoing attack and, at same time, shut off
exhaust valves of the centrifuges leading to pressure build-up and ultimately damag-
ing the centrifuges. The second attack vector tampered with the Centrifuge Drive Sys-

tem (CDS), which controlled the rotor speeds of the centrifuge system. Now Stuxnet
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Figure 2.7: Attack vectors in Stuxnet attack on Natanz facility.

used copies of stolen digital certificates and posed as a legitimate driver software for
the Windows Operating System. The centrifuges were damaged by increasing the ro-
tor speed beyond a critical value where the harmonics (distortions in power systems)
were triggered, these harmonics damaged the rotor walls. Furthermore, the centrifuges
used an in-built protection system called Cascade Protection System which isolated the
troubled centrifuge tubes. Thus, once the rotors were damaged, the Cascade Protec-
tion System isolated the damaged centrifuges. Beyond a certain number of isolated
centrifuges, the system would shut off the valves of the remaining centrifuges. This
would induce an increase in pressure to the non-isolated centrifuges and ultimately
these centrifuges would break as well [8].

Attack on a German steel mill - 2014 In 2014 an attacker gained access to the con-
trol systems via the steelworks business network and forced the shut down of a blast
furnace in a German steelworks [99]. The attacker used "spear phishing" techniques
to steal logins and gain access to the mill’s control systems. The attacker then caused
the failure of some parts of the plant which prevented the normal shutdown of a blast
furnace and, ultimately, the unscheduled shutdown of the furnace caused the damage.

Attacks on the Ukrainian power grid - 2015/2016 Other high-profile attacks against
ICS (and most likely state-sponsored) occurred in December 2015 and 2016 on the
Ukrainian power grid. These attacks caused power outages during the winter sea-
son by disrupting three energy distribution companies. These attacks included, spear
phishing attacks to infiltrate the corporate network, disabling/destroying SCADA and
IT infrastructure, destruction of files stored on servers and Telephony Denial of Service
(TDoS) attack that flooded the call centres to block the real customer calls from getting
through. Finally, the attacks in 2016 leveraged the Industroyer malware [37] to auto-
mate the 2015 attack, in those attacks no human intervention was required to remotely
operate the human-machine interfaces.

Triton - 2017 The recent Triton malware targeted a petrochemical plant in Saudi Ara-
bia [83]. The attack goal was to disable safety instrumented systems to cause physical
damage to the plant. However, it has never reached its intended goals as the attack was
detected during the injection of the malware into the controller memory, a supposedly



16 Chapter 2. Industrial control systems and their vulnerabilities

Ukrainian Plant's central

plant's private SCADA system
Spear phishing: ~ network

BlackEnergy Access to \(,_ >
malware @ SCADA System [ -

T

I Power Gains control

substatlons over power

switches

Residential and o
industrial areas
! ! Affected by @ Switches

power outages __ Substations

5 &  ON/OFF
<
@ @ Power switches

Figure 2.8: Cyberattack on the Ukrainian power grid.

early stage ot the attack. In that initial phase of the malware the devices went into the
fail-safe mode, causing operations to pause at multiple facilities and hence triggering a
shutdown.

These are the most remarkable attacks, nonetheless, there has been a dramatic
increase in the number of attacks [79] with the introduction of Industry 4.0, i.e., the
growing connectivity and integration of these systems. Furthermore, Stuxnet and In-
dustroyer stand out as they show that the motivation and capability exists for creating
computer attacks capable to achieve military goals and indicate an arms race in state-
sponsored cyber attacks.

2.3 Anatomy of cyber-physical attacks targeting ICSs

In this section, we take a closer look at cyber-physical attacks. In particular, we consider
these kind of attacks in the context of ICSs and we examine: (i) the stages of the attack,
(ii) the attack locations of an ICS, i.e., the parts of the system that may be manipulated
during an attack, (iii) the motivation of the attacker, (iv) the attacker’s goal and (v) the
attacker’s knowledge, that is needed to successfully execute an attack.

In general, we can define cyber-physical attacks as follows:

Definition 1. Cyber attacks that (a) require an expert knowledge in the domain of the physical
components, (b) disrupt the normal operations of control systems through the cyber-space and

(c) bring the plant into a unsafe/incorrect state possibly with catastrophic physical consequences.

Attack stages There are several stages that lead to a successful attack on a ICS, an at-

tacker needs the means to manipulate it and a deep knowledge of both the physical and
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Figure 2.9: Triton malware cripples safety systems in petrochemical plant.

the cyber part. Gollmann et al. [66] identified the following stages: access, discovery,

control, damage, clean-up.

* access: the attacker finds a way inside the ICS network. Potential ways in are the

vulnerable links across the field, control and the corporate networks. Further-
more, social engineering technique can exploit the employees to provide unau-
thorized access to the attacker, for instance, via spear phishing techniques. This
is the stage that most resembles traditional IT hacking;

discovery: refers to discovering information about a plant to reconstruct its lay-
out and how it carries out its functions. Without a detailed knowledge it’s likely
that the attacker cannot achieve more than nuisance. Blindly trying to destroy
a process will probably only result in exercising the emergency shutdown logic.
The attacker may study general information on the dynamics of the physical pro-
cesses of interest. Furthermore, engineering documentation of the plant can be
essential as plants tend to be highly proprietary, and, even if there are engineer-
ing standards, ad hoc choices might be involved in the design of the plant;

control: the attacker tries to discover the dynamic behaviour of the plant in terms
of simple physical equations, such as differential equations, to understand what
each actuator does and what side effects are possible. With the knowledge of the
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plant the attack has a better chance to reach its goals. Indeed the transitioning
of the process from one state to another is in most cases not instantaneous and
adjusting one part of the process for malicious purposes may have side effects on
other parts of the process an trigger alarms;

* damage: the attacker has gained access to the ICS, has a rough idea of the plant
and the control architecture and is ready to take action. There are several choices:
equipment damage, e.g., bouncing the pumps of the floor until they break, produc-
tion damage, e.g. altering the production rate and compliance violation, e.g., exceed-
ing pollution limits;

e clean-up: when an ICS attack is successful, a piece of equipment will be damaged
or the plant has suddenly operated outside the normal operational ranges. Thus,
someone will be sent to investigate. The clean-up phase is about creating a foren-
sic footprint for investigators by manipulating the process and the logs in such a
way that the analyst draws the wrong conclusions. The goal is to get the attack

blamed on operator error or equipment failure instead of a cyber event.

Attack locations In the damage stage the attacker has gained access to the system and
has a rough idea of the plant and the control architecture, thus, is ready to affect the
targeted ICSs. To do so, the attacker can manipulate: the physical devices, the commu-
nications network and the controllers that are devoted to control physical processes as
depicted in Figure 2.10:
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Figure 2.10: Attack locations of ICSs.

e Physical devices, i.e., actuators and sensors: (Al) a compromised actuator exe-
cutes a control action that is different to what the controller intended and (A2)
a compromised sensor can inject into the system a fake measurements which can
induce the controller to act maliciously;

e Communications network, at different levels: at the level of field communica-
tions network, connecting controllers with physical devices and other controllers,
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(A3) the attacker delays or drops control commands to cause a denial of control to
the system or (A4) she can delay or drop sensor measurements intended to the
controller which loses observability of the system; (A6) at the level supervisory
control network, connecting SCADA and HMI systems to controllers;

¢ Controllers: (A5) a compromised controller can send incorrect signals to the actu-
ator; (A6) a compromised supervisor can send malicious configurations changes
to the controller.

Attacker’s motivation Attackers that target standard information systems can be mo-
tivated by monetary profits and steal personal/secrete information, mine crypto cur-
rencies [155], ask for a ransom to unlock data [112], run bot servers [14]. On the other
hand, attackers that target specifically ICSs and the disruption of their physical process
may play with the system’s physical parameters out of curiosity [69]. Disgruntled em-
ployees with an expert knowledge on the ICSs may seek revenge [136]. Finally, groups
of attackers with political purposes, such as hacktivists or state-sponsored attackers,
may launch more sophisticated attacks [88, 37, 83].

Attacker’s goal Once the attacker has gained access to the system she may have three
objectives according to [65]: (i) equipment damage, such as overstress of equipment, to
reduce their expected life cycle, or violation of safety limits [88]; (ii) production dam-
age, the attacker can compromise the product quality, the product rate or the operating
costs [37]; (iii) compliance violations, such as increasing environmental pollution [136],
so that the target plant could be fined, and recurrent offences could lead to plant shut-
down.

Attacker’s knowledge Successful attacks that target ICSs require a deep understand-
ing of both the cyber components and the physical processes involved. Attacker com-
promising the cyber components of ICSs, must be aware of their ad hoc architecture of
control hardware and software. For instance, as mentioned in the Introduction, PLCs
execute simple repeating processes known as scan cycles. Any scan cycle of a PLC must
be completed within a maximum cycle limit which depends on the controlled physical
process; if this time limit is violated the PLC stops and throws an exception [137]. Thus,
a malware that aims to take control of the plant has no interest in delaying the scan cy-
cle and risking the violation of the maximum cycle limit whose consequence would be

the immediate controller shutdown.

With regards the knowledge of the physical process, the attacker must take in to
account the timing and the duration of the attack in order for her malicious actions to
have an physical impact. Timing is a critical factor, as the physical state of a system
changes continuously over time and, as the system evolves, some states might be more
vulnerable than others. For instance, an attack launched when the target state variable
reaches a local maximum (or minimum) may have a great impact, whereas the system

might be able to tolerate the same attack if launched when that variable is far from its
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local maximum or minimum. Furthermore, the duration is another critical factor, as it
may take minutes for a chemical reactor to rupture, hours to heat a tank of water or to
burn a motor, and days to destroy a centrifuges. Finally, stealthiness is a necessary con-
dition to complete a malicious activity on a ICSs which may require a certain amount
of time. Therefore the attacker must carefully choose her actions to avoid to be detected

and a the same time reach her objectives.

2.4 Security measures for ICSs

As ICSs operate by integrating the cyber space with the physical plant, cyber-attacks
targeting ICSs can cause tangible effects in the physical world. Consequently, as said
in the Introduction, this is a major concern and puts cyber-physical systems security
apart from information security. Specifically, standard security measures focused tra-
ditionally on the protection of information. Such security measures do not consider
how attackers that manage to bypass some basic security mechanisms can affect the
control algorithms and ultimately, the physical world [31].

In general, information security measures try to address at least one of the three
CIA (confidentiality, integrity and availability) security goals. Let us analyse how these

standard security goals are related to ICSs.

e confidentiality requires unauthorized persons not to have access to information
related to the control system. The confidentiality of critical information such as
passwords, encryption keys are vital for the protection of the ICS. Furthermore,
the confidentiality of the physical state of the plant is important as well, some
physical states might be more vulnerable than others;

e integrity requires data generated, transmitted, displayed, stored within a control
system being genuine and intact without unauthorized intervention, including
both its content, which may also include the header for its source, destination
and time information besides the payload itself;

¢ quailability requires that any device within the system should be ready for use
when is needed. As most of controlled processes are critical and continuous in
nature, such as power grids, unexpected outages of systems that control indus-
trial processes are not acceptable.

These security goals are not mutually exclusive, for instance, an attacker that breaches
the integrity can change the control commands to induce a device malfunction and
ultimately affect the availability of the system. In addition, ICSs bring new security
goals such as: timeliness and graceful degradation [46, 152]:

e timeliness expresses the time-criticality of control systems, i.e., a command from
the controller to the actuator should be executed in real-time by the latter, and
the timeliness of any related data, such as measurements, being delivered in its
designated time period, as the data is only valid in that time period;
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e graceful degradation requires the system being capable of keeping the attack im-
pact local and withholding tinted data flow within tinted region without further
escalating into a full scale, full system cascading event.

Furthermore, unlike information systems where it is vital to protect the central
server and not the edge client. In process control, an edge device, such as a PLC, is not
necessarily merited less important than a central host such as data historian server. A
compromised PLC can damage significant parts of the plant [88].

In what follows we overview the challenges in implementing standard security
best practices and also the stat-of-the-art proposals in implementing and designing se-

curity measures for ICSs.

Security best practices As a first step in the protection of ICSs, security engineers
must follow the security best practices of classical IT systems, such as: follow a secure
development lifecycle to minimise software vulnerabilities, implement access control
mechanisms, provide strong cryptographic protections along with a secure key man-
agement system, use state of the art intrusion detection software, etc. Several standards
have been developed [138, 25, 119, 116, 29], for instance, the U.S. National Institute of
Standards and Technology (NIST) has a Guide to ICS Security [138], a guideline to
smart grid security [119] and a guideline for IoT security and privacy [25].

Lot 1ab1 Hod Tabume

However, there are several challenges in implementing security best practices for
ICSs. First of all, ICSs rely on embedded device with limited resource that often can’t
implement basic security mechanisms such as cryptographic functions. Furthermore,
ICS plants need to operate 24/7, thus, cannot be stopped to update vulnerable com-
ponents, such as old legacy devices. In addition, the life cycle of ICSs is larger than
classical IT systems, for instance industrial asset owners expect their control systems to
last for at least 25 years [12]. As a consequence, even if these devices were deployed
with security mechanisms at the time, new vulnerabilities will eventually emerge. Fi-
nally, updating the security of devices is challenging as devices tend to be certified
and any changes in software or operational practices must be followed by an extensive
safety revision or re-certification [43]. Thus, to secure ICSs, it is necessary (i) to design
systems that support continuous security updates and (ii) to retrofit security solutions
for existing legacy systems.
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2.4.1 State of the art

In what follows we present an overview of what has been proposed to secure ICSs
beyond standard security best practices which do not address properly the security
challenges of ICSs because they do not consider the physical component of ICSs. In
particular, we discuss: (i) techniques for the detection of attacks, (ii) the mitigation of
adverse effects of attacks and (iii) risk assessment.

Detecting attacks In the last years, security researchers have proposed several in-
trusion detection algorithms for ICSs. A number of proposed algorithms, very much
like classical IT system, monitor the network to identify anomalies in the information
exchanged between devices. Unlike classical IT networks, ICSs networks tend to have
static topologies, regular traffic patterns, and a limited number of applications and pro-
tocols running on them. Consequently, anomaly detection algorithms that use models
of the network traffic and white listing access control are easier to design [38, 144].
However, such anomaly detection algorithms may not spot attackers that tamper with
the sensor and the control values. In particular, an attacker that has obtained control
of a sensor, an actuator, or a PLC (or their corresponding communication network) can
insert legitimate commands or measurements between authorized systems and in full
compliance with protocol specification and can bring an ICS to perform a function that
is outside the owner’s intended purposes. Hence, these attacks may not affect the traffic
flow but may cause sever damage to the plant [71].

To detect compromised controllers tampering with actuation commands, it has
been proposed to rely on some form of control redundancy to verify that the control
actions are actually those intended [62, 111, 114]. This is necessary because the attacker
can use the controller to send dangerous control signals to the actuator, while hiding
the attack by sending false sensor measurements to the supervisory levels [88, 62]. On
the other hand, to detect compromised sensors and/or actuators or the communication
network used by such devices, a growing line of work has proposed to use models of
the physical evolution of the controlled plant [61], called Physics-Based Attack Detection.
Specifically, the physical evolution of the state of a system follows immutable laws
of nature, for example, if the intake valve is opened, then the water level in the tank
should rise. Therefore, the physical properties can be used to create time-series models
that can confirm that the control commands sent to the field were executed correctly
and that the information coming from sensors is consistent with the expected behaviour
of the system. Indeed, attackers may hide specific information technology methods
used to exploit the control system, but they cannot hide their final goal: the need to
cause a physical adverse effect.

This approach is inspired by the field of fault diagnosis, which has been using for a
long time physical models to detect defective devices [123]. The main difference is that
fault diagnosis techniques do not usually consider strategic adversaries, and if used
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for security purposes, they might force the operator to perform erroneous countermea-

sures [20].

In the past couple of years, an increasing number of publications appearing in se-
curity conferences have proposed physics-based attack detection algorithms address-
ing water control systems [70], power grids [104], boilers in power plants [148], chemi-
cal process control [31] and many others [61]. Here it is worth showing the architecture
of control systems enhanced with a detection component that looks into the “physics”
of the system, see Figure 2.11. There, the detection system receives as inputs the sen-
sor measurements y; from the physical system and the control commands u; sent to

the physical system and then uses them to identify any suspicious activity within the

-
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Figure 2.11: Control systems equipped with physics-based attack detection.

Mitigating attacks Once a threat is detected mitigation mechanisms must thwart the
ongoing attack. In classical IT systems web servers send CAPTCHAs to the client
whenever they find that connections resemble bot connections, firewalls drop connec-
tions that conform to their rules, the execution of anomalous processes can be slowed
down by intrusion detection systems. Ultimately, if an attack cannot be stopped, the
system can be unplugged. Shutting down a compromised ICS might not be as feasi-
ble because, for instance, equipment could be already irreparably damaged and there
might not be any safety procedure that can prevent the catastrophic effects of the at-
tack [99, 88].

Control engineers have dealt for long with the protection of the system against ran-
dom and/or independent faults but not with faults induced by a strategic attacker [123].
As a consequence, researchers have advocated for ad-hoc reactive response mechanisms
against cyber-physical attacks that protect ICSs when an attack has been detected [153].
Specifically, the goal is to design systems where even if attackers manage to bypass
some basic security mechanisms, they will still face several control-specific security

devices that will minimize the damage done to the plant [31].
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Concerning the mitigation of attacks, in this thesis we focus on compromised con-
trollers. The interested reader can find more material regarding the remaining compro-
misable locations in [42, 61]. Regarding the security of controllers, and in particular
PLCs, as said in the Introduction, controllers are already vulnerable to a number of
attacks [137, 67, 3] and thousands of them are directly accessible from the Internet to
improve efficiency [128]. Thus, to protect controller in ICSs, an extra trusted hardware
component has been proposed, that acts as proxy between the PLC and the environment
interacting with it [111, 114, 124]. In particular, the proxy should be physically indepen-
dent, not have any Internet or USB access, and connected with the monitored controller
via secure channels.

The proxy only needs to keep the system safe, while the controller does the whole
job of controlling the physical process relying on potentially dangerous communica-
tions via the Internet or the USB ports. For instance, McLaughlin [111] proposed the
introduction of an enforcement mechanism, called C2, which acts according to regu-
lar expression-like security policy and the current state of the plant. C2 may (a) drop a
PLC request, (b) retry a PLC request once, (c) approximate a request on a continuous
device, (d) notify the PLC that a previous operation was denied. Mohan et al. [114]
proposed their Secure System Simplex Architecture (S3A) to check not just the physical
state of the plant but also the cyber state of the PLCs of the system, such as real-time
constraints, memory usage, and communication patterns. A violation of the physical
model or the computational model will lead to the transfer of control a secure safety
controller. Pearce et al. [124] proposed an enforcer that corrects both inputs and out-
puts according to a policy represented as a value discrete timed automata (VDTA) which
models safe execution of the the system under scrutiny. The enforcement policies are
the following: (i) random corrections, where a value is chosen randomly from a list of
input/output values that satisfy the VDTA; (ii) minimum distance corrections, where
a value is chosen such that satisfies the VDTA and the value also has the minimum
binary distance compared to the current value; (iii) ad-hoc corrections, which are val-
ues selected by the engineers out of the list of possible safe values, to ensure practical
runtime enforcement.

Risk assessment Risk assessment finds and prioritizes the vulnerabilities in a sys-
tem. An important part of risk assessment is to reason about the impact of attacks which
allows to prioritize vulnerabilities. In information systems, vulnerabilities are com-
monly found and exploited via practical analyses. For instance, phishing simulation
tools identify risky employee behaviour, professional hackers find and exploit security
vulnerabilities in the network or web applications. Practical analyses that identify and
actively exploit weaknesses in ICSs often are not feasible, as pointed out by [15]. In-
deed, real-world ICSs are often not open to security researchers, furthermore, actively
attacking real ICSs could impact system availability and the attack could even cause
costly damage [15]. Consequently, to allow security research and study the impact of
cyber-physical attacks targeting ICSs, a number of approaches have been proposed [15,
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139,143,113, 109, 122]. In practice, these works aim to provide the tools for the analysis
of a comprehensive list of cyber-physical threat scenarios across a wide range of attack
vectors throughout an ICS by somehow emulating (i) the cyber layer information flow
and (ii) the physical processes of ICSs and, last but not least, (iii) cyber-physical attacks.

Simulation-based tools have been first proposed [15, 139], which simulate typical
ICS components, such as programmable logic controllers, industrial networks and the
physical plant, and simulate to custom attacks that can alter the values and the nor-
mal flow of commands and sensor values. For instance, Antonioli et al. [15] proposed
MiniCPS, based on Mininet [97], the lightweight real-time network emulator. Taormina
et al. [139] modelled the interaction between the physical and cyber layer of water dis-
tribution systems in epanetCPA to study the hydraulic response of water networks
during attacks.

Testbeds have also been proposed for research purposes in the field of cyber se-
curity of ICSs [109, 122]. Testbeds are small but representative replicas of real-world
systems. For instance, Mathur et al. [109] designed SWat, a 6-stage water treatment
process which is inspired by large and modern water treatment plants found in large
cities. SWaT supports man-in-the-middle attacks between any two parties (e.g. two
PLCs) that can eavesdrop on all exchanged sensor and command data and re-write

sensor or command values.

Finally, recent works [143, 113, 94] have proposed to perform impact analyses of
ICSs equipped with control-specific protection mechanism, such as IDSs that leverage
the physics of the plant. Such analyses address the specific features of cyber-physical
attacks. For instance, an attacker may have knowledge of the detection mechanism
and may leverage this knowledge to evade the detection scheme [143]. Indeed, attack-
ers who want to remain undetected can attempt to hide their manipulations by closely
following the system’s intended behaviour, while injecting just enough false informa-
tion to reach their goals. Thus, an impact analysis of an ICS equipped with an intrusion
detection system (that leverages the physics of the plant) checks whether an attacker
can inflict large damage to the ICS while remaining stealthy, i.e., undetected by the
intrusion detection system [113].
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Chapter 3

Technical background: formal

verification methodologies

In this chapter we provide an overview of the technical material required to under-
stand our contributions. This chapter has the following structure. In Section 3.1 we
introduce model checking for hybrid systems considering: hybrid automata, (ii) the
metric temporal logic (MTL) and (iii) the stat-of-the-art tools for hybrid model check-
ing. In Section 3.2 we overview the inner workings of statistical model checking. In
Section 3.3 we present the key concepts of the formal approach in runtime enforcement
and we present Ligatti et al.’s edit automata.

3.1 Model checking of hybrid systems

Industrial control systems and more generally cyber-physical systems are classified as
hybrid systems, that is, systems that can both flow continuously and jump discretely. A
widely adopted mathematical model for hybrid systems is the hybrid automaton, which
represents discrete components using finite estate machines and continuous compo-
nents using real-numbered variables [41]. On the other hand, formal specification for
hybrid system are based on temporal logics coupled with continuous time constraints,
such as metric temporal logic (MTL) .

3.1.1 Hybrid automata

Here we use the widely adopted definition hybrid automata of [41], in order to ensure
that this work is somewhat self contained we provide a fairly detailed presentation of
the syntax and semantics of hybrid automata. The reader who is already familiar with

such notions can skip the following subsection.

Before presenting hybrid automata, we need to introduce terms and constraints.
Let X = {x1,...,x,} be a set of of real-numbered variables. Given a valuation function
v:X — RandY C X, the valuation function vy : Y — R is defined as vjy(x) = v(x)

forevery x € Y.
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A term over a finite set of variables X = {x1,...,x,} is an expression of the form
f(x1,...,x4). Giveny = f(x1,...,x,) and a valuation v over X, [y[, denotes the real
number obtained by evaluating the term at v. Two well-known types of functions are
worth mentioning here: affine functions, i.e., if f(x1,...,x,) = a1x1 + ... a,x, + b, for
a;,b € Rand 1 <i < n, and linear functions, i.e., affine functions where the parameter
b = 0. We denote Term(X) as the set of all terms over the variable X. A constraint over
X is a finite formula ¢ defined according to the following grammar:

¢ u= Ox<c | AP | PV

where 6 € Term(X), <€ {<,<,=,>,>} and ¢ € R. Finally, Constr(X) is the class of
constraints over the set variables X.

As regards the evaluation of constraints, given a valuation v : X — R and a con-
straint ¢ € Constr(X), we write v = ¢ and say that v satisfies ¢, which is defined
inductively as follows:

v E Oxcif[f]yac
v E i AgifvE¢rando = ¢
[ |: (P]\/(Pzifv’:(]ﬁlorv):(Pz

Everything is in place to present the formal definition hybrid automata.

Syntax A hybrid automaton is a tuple H = (Loc, Lab, Edg, X, Init, Inv, Flow, Final) where:
e Loc={h,...,L;n} is a finite set of locations;
¢ Lab is finite set of labels, including the silent label 7;
* Edg C Loc x Lab x Loc is a finite set of edges;

e X = {x1,...,x,} is a set of real-numbered variables. The number 7 is called
the dimension of H. Furthermore, X denotes the set {1, ..., X, } which represent
first derivatives during continuous change, whereas X’ for the set {x},...,x},} of
primed variables which represent values at the conclusion of discrete change;

e Init : Loc — Constr(X) returns the initial condition Init(/) of location I. The
automaton can start in / with initial valuation v € [Init(!);

e Inv : Loc — Constr(X) returns the evolution domain restriction Inv(!) (also
called the invariant) of location /. The automaton can stay in / as long as the
values v of its variables lie in [Inv(I)];

* Flow : Loc — Constr(X U X) is the flow constraint, which constrains the evo-
lution of the variables in each location. Basically, the flow constraint defines the
continuos dynamics of a hybrid automaton, i.e., the values of the variables X
change according to the Flow(!) of the current location / as time moves forward.
Formally, in a location 1, if the valuation of the variables is v at time t = 0, then
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at time t > 0, the value of the variables if ¢(t) where ¢ : R — RX is such that the
flow relation Flow(I)(¢(t),¢(t)) holds for the flow ¢(t) and its time derivative

¢(t) and ¢(0) = vo.

e Jump : Edg — Constr(X U X’) returns the jump condition Jump(e) of edge e.
Jump conditions are often conjunctions of a guard and a reset constraint. Guards
are the constraints defined over variables in X, and resets are the constraints de-

fined over the variables in X’ (in terms of variables in X, respectively).

* Final : Loc — Constr(X) gives the final condition Final(!) of location /. Depend-
ing on the analysis question at hand, final conditions can either specify the unsafe
states of the system or the desired states of the system.

In practice, a hybrid automaton is a graphs whose edges represent discrete transitions
and whose vertices represent continuous activities. Note that the labels on the edges
can be used to synchronize hybrid automata in a compositional design. For simplicity
we omit the formal definition of synchronized hybrid automata, the interested reader
may find the definition of composition of hybrid automata in [41]. Having presented
the syntax of hybrid automata, in Figure 3.1 we show an automaton modelling a single
gas-burner that is shared for heating alternatively two water tanks.

toggle

(z1 =100 Az < 80) V (z2 = 0 Az > 20)

turnoff; turnoff,
b 100 80 N
T = Ty = .
z1—2*$1+5x2 1 =—Z1+5902/\ 2 T = —x1 + 522 A
%y = —x5 + 521 s = —To + bz Ty =2 — x5+ 523
0<z; <100A0 < zy <100 80 < z; <100 A 80 < x5 < 100 0<az <100A0 <z <100
turnony turnony
z1 = 80 z9 = 100

(z2 =100 A zy < 80)V (z1 =0 Az > 20)

Figure 3.1: A hybrid automaton modelling a gas-burner.

The automaton has three locations [y, l; and I, and two variables x; and x5, the
temperature in the two tanks (& and %, denote the first derivative of x; and x, respec-
tively). The gas-burner can be either switched off (in [y) or turned on heating one of the
two tanks (in [; or /). The dynamics in each location is given by a combination of the
predicates that involve the derivatives of x; and x;. On every edge of the automaton,
we have omitted the condition x} = x1 A x = x».

Basically, starting in location [;, the burner heats up tank 1 until it reaches a tem-
perature of 100 degrees. Since the temperature of tank 2 is below 80 degrees, the au-
tomaton takes edge toggle to location I,. Note that edge turnoff; cannot be taken since
the evolution 80 < x1,x; < 100 domain of the target location is not satisfied by x;. In
location I, the burner heats up tank 2 until it reaches 100 degrees. Since x is still above
80 degrees, the automaton takes edge turnoff, to location Iy, where the burner is off. It
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briefly remains here until x; falls to 80 degrees, at which point it takes edge turnon; to
location /1, where the burner heats up tank 1. The automaton converges towards a limit
cycle of heating tank 1, heating tank 2, and briefly turning off the burner.

Semantics The behaviour of a hybrid automaton or how its state evolves over time is
described by the semantics. In practice, at any time instant, the state of a hybrid system
is given by a location / and values for all variables of X. The state can change in two
ways: (i) by a discrete and instantaneous transition that changes both the location !
and the values of the variables according to the transition relation. (ii) By a time delay
that changes only the values of the variables X according to the Flow(I) of the current
location /. The automaton may stay at a location ! only if the location invariant Inv (/) is

true, that is, some discrete transition must be taken before the invariant becomes false.

As regards the formal definition of the semantics of hybrid automata, for each hy-
brid automaton there is an associated transition system which formally defines the
states and the transitions of the corresponding hybrid automaton. Formally, given
the hybrid automaton H = (Loc, Lab, Edg, X, Init, Inv, Flow), its semantics is given in
terms of the transition system Ts(H) = (S, S, So, X, —) where S = {(I,v) € Loc x RX |
v € [Inv()]}, So = {(I,v) € Loc x RX | v € [Init(])]} and S¢ = {(l,v) € Loc x RX |
v € [Final(l)]}. The set actions associated to Ts(H) is ¥ = Lab U {(time,r)}, where
time ¢ Lab and r € RZC. Finally, the transition relation — contains all the tuples
((1,v),0,(l',7")) such that either:

e discrete transition. there exists e = (I,0,1') € Edge such that (v,v’) € [Jump(e)],
or

e continuous transition. | = I’ and o = (time, r) for r € RZ0 such that there exists a
continuously differentiable function & : [0,7] — RX where &(0) = vand &(r) = v’
and (&(t),&(t)) € [Flow(I)] for all t € [0,7] and &(t) € [Inv(1)] for all t € [0,7].
In particular, ¢ is called a trajectory from v to v’. Usually Flow(!) is a differential
equation, in which case ¢ is a solution of that differential equation.

Reachability and the safety problem A state g = (v,1) € S is reachable if there exists
a finite path qo0y .. .0,_19, where g9 € Sp and g, = g and g;0;9;11 €— foralli € n.
The set of reachable states of Ts is Reach(Ts). Finally, when S specifies the unsafe states
of the automaton, the transition system Ts is said to be safe if Reach(Ts) N Sy # @.

Definition 2 (Safety problem). Given a a hybrid automaton H, the safety (verification)
problem for hybrid automata automata asks whether Ts(H) is safe.

Despite the somewhat simple formulation of the safety problem, many verification
problems for hybrid systems reduce to the safety problem for hybrid automata. On the
other hand, the safety problem is decidable only for restricted classes of hybrid au-
tomata. The main classes for which safety verification is decidable are timed automata,
initialized rectangular automata, and o-minimal hybrid automata [77]. Here we focus

only on initialized rectangular automata.
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Initialized rectangular automata In order to present initialized hybrid automata we
need to define rectangular predicates. A rectangular predicate over X is an expression of
the formaa < x < b, for x € X, <€ {<,<} and a < b define a non-empty (possibly
unbounded) interval with a,b € Q U {—o0, +0c0}.

Rectangular automata are a subclass of hybrid automata with the following three
restrictions:

1. the flow constraint in each location ! is a conjunction of rectangular predicates
over X;

2. the initial, final, and evolution domain conditions are conjunctions of rectangular
predicates over X;

3. the jump condition of every edge is a conjunction of rectangular predicates over
X' and expressions of the form x" = x for x € X.

A hybrid automaton is initialized whenever every flow condition if it is changed
for a variable x by a discrete transition e, then this variable is (non-deterministically)
reinitialized to a new value in Update; that is independent of the previous value. For-
mally, for every edge e = (I,0,1") and for every variable x such that {v(x) | v €
[Flow(I)]} # {v(x) | v € [Flow(I')]}, it holds that the set Update; (v) = {v'(x’) |
(v,7") € [Jump(e)]} does not depend on the valuation v, i.e., Update} (v) # Update; (v')
forall v,v’.

Far

z = 1000A z = 2’
approach

—-50 <z < —40 =50 <z <30

x > 1000

1900 < z’ < 4900
=50 <z < -30

z > —100

Figure 3.2: Initialized rectangular automaton of a train on a circular track with a gate.

As an example of a initialized rectangular automaton, in Figure 3.2 we show the
automaton that models a train on a circular track with a gate [76]. In particular, the
variable x represents the distance of the train from the gate. Initially, the speed of the
train is between 40 and 50 meters per second. At the distance of 1000 meters from the
gate, the train issues an approach event and may slow down to 30 meters per second. At
the distance of 100 meters past the gate, the train issues an exit event. The circular track
is between 2000 and 5000 meters long.
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3.1.2 Temporal logics

Temporal logics allow to express and check richer properties beyond safety. They are an
extensions of propositional logics with operators that refer to the behaviour of systems
over time which were originally developed by philosophers for investigating how time

is used in natural languages.

Temporal logics are often classified according to whether time is assumed to have a
linear or a branching structure and can specify a broad range of relevant properties such
as: functional correctness (does the system do what is supposed to do), safety (something
bad never happens), liveness (something good will eventually happen), fairness (does,
under certain conditions, an event occur repeatedly?) and real-time properties (is the

system acting in time?).

Metric temporal logic In this work we focus on Metric Temporal Logic (MTL) a par-
ticular kind of linear temporal logic (LTL) for hybrid systems where modalities are

decorated with continuous timing constraints.

Syntax Let P be a countable set of Boolean propositions and I C [0, o) be an interval
of reals with endpoints in IN U {co}, then the syntax of MTL is defined by the following

grammar 1 :

¢ u= true | p | ¢ | oVe | QUi

Semantics As regards the semantics of MTL formulas, we show the the pointwise se-
mantics where MTL formulas are interpreted over timed words [41]. The satisfaction
of a formula is considered at a certain position of a model. MTL models are (finite or
infinite) timed words w = (ay,t,),...,(an, t,) wherea; € 2P and t; € R, for 1 <i < n.
Formally, given a (finite or infinite) timed word w = (a3, t), ..., (an, ty) over the alpha-
bet 2" and an MTL formula ¢, the satisfaction relation w, i |= ¢ (w satisfies ¢ at position

i) is defined as follows:

w,i = true

w,ikEp iff i<|w]| anda;=p

w,i = ¢ iff w,ifE¢

w,ifE=¢ Vg iff wilE=¢orw,if= ¢

w,i = ¢1Uppy iff thereexistsa jsuchthati <j<|w | w,j= ¢o,t; —t; €1,
and w,k |= ¢ forall k withi < k < j

Of course, further Boolean connectives (A, = and <= ) can be defined fol-
lowing standard conventions. Furthermore, two temporal abbreviations are usually
used: ¢ (eventually) and [ (globally). In particular, O;¢ = truel¢ states that there is

INote that we show a fragment of MTL focusing on the future operators, the complete syntax containing
also the past operators can be found in [41]
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a location in the future in which ¢ holds and the timing constraint I is satisfied, and
Or¢p = -0 ¢ states that ¢ must hold in every location where the timing constraint I
is satisfied.

Remark 1. When adopting the pointwise semantics it is common to think of atomic proposi-
tions in MTL as referring to events (corresponding to location changes) rather than to locations
themselves.

MTL formulas can express a number of useful properties, such as bounded-time
reachability, e.g., O<4start, stating that within four time units the process must start.
Alternatively, one can expresses bounded-time recurrence, e.g., (JO<4start, stating that
whatever the current state, within four time units the process will start. MTL can also be
used to express bounded-time response properties, such as O(start = (<aacquire).

3.1.3 Tools

Despite the restricted decidability of the safety problem, a number of formal verifica-
tion tools for hybrid systems have been proposed, such as: SpaceEx [59], PHAVer [56]
and SpaceEx AGAR [26], for linear/affine dynamics (i.e. continuous transitions expressed
via linear/affine functions), and HSolver [132], C2E2 [47] and FLOW* [36], for non-linear
dynamics. Note that in order to to verify system where safety is undecidable, many of
these tools adopt approximation techniques to obtain an estimation of the set of reach-
able states. Among these, the hybrid solver PHAVer addresses the exact verification of
safety properties of hybrid systems with piecewise constant bounds on the derivatives,
so-called rectangular hybrid automata [77]. Affine dynamics are handled by on-the-fly over-
approximation and partitioning of the state space based on user-provided constraints
and the dynamics of the system. Furthermore, performance comparisons have turned
out in PHAVer’s favor [106]. Indeed, to force termination and manage the complexity
of the computations, methods to conservatively limit the number of bits and constraints
are adopted.

3.2 Statistical model checking

Statistical Model Checking (SMC) [100] is a technique combining model checking [16] with
the classical Monte Carlo simulation [74], aiming at providing support for quantitative
analysis, as well as addressing the size barrier, to allow the analysis of large models.
Unlike model checking, statistical model checking does not guarantee a 100% correct
analysis, but it allows to bound the error of the analysis. In SMC, two statistical param-
eters & and ¢, lying in the real interval [0, 1], must be specified by the user. The param-
eter o fixes the maximum probability of false negatives. On the other hand, € fixes the
probabilistic uncertainty of the analysis. Thus, an analysis in SMC returns a confidence
interval [p—e, p+e€], in which p is the estimated probability that the model satisfies
the checked property, where p satisfies the following constraint Pr(| p —p |[> €) < a,
where p is the true probability of the model satisfying the checked property.
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The number of runs that the simulator must perform to guarantee the level of re-
quired precision depends on both « and €, and it is computed using ad-hoc statistical
techniques [100]. For instance, according to the Chernoff bound [120], « is related to the
number of simulations N by a = 2¢~2N e giving N = (In2 — Ina)/(2€?). Finally, the
confidence interval (for given &) may be derived with each new simulation measure-
ment and the simulation generation is stopped when the confidence interval width is
less than 2e. A well known technique for that purpose is the Chow-Robbins sequential
test [39].

3.3 Runtime enforcement

Runtime enforcement [135, 102, 51, 32] and runtime verification [53, 50, 101] are dynamic
verification techniques that extract information from a running system and check dynam-
ically if the observed behaviours satisfy properties of interest. In particular, runtime en-
forcement extends runtime verification and adopts an intrusive monitoring approach
to ensure that the visible behaviour of the system under scrutiny (SuS) is always in

agreement with some specification.

3.3.1 Runtime enforcement: a formal approach

The seminal work of Schneider [135] has introduced the notion of security automata to
enforce security policies by terminating the system in case of a violation of the moni-
tored property. Ligatti et al. have extended Schneider’s work via edit automata [102],
an enforcement mechanism capable of suppressing and inserting actions on behalf of
the SuS. Furthermore, a number of other formalisations have been proposed, such as,
transducers [10, 21], shields [84] or enforcement-automata [23, 51, 32].

In the formal approach, the monitors are often synthesized from a property to be
enforced. The properties may be represented via automata-based formalisms [49, 51,
84, 127]. For instance, Falcone et al. [49, 51] proposed Streett automata to be translated
into the respective enforcement automata. Pinisetty et al. [126] express the desired
properties in terms of Discrete Timed Automata (DTA). On the other hand, in logic-based
approaches, the properties are expressed as formulas of some logic. For instance, Mar-
tinelli and Matteucci [108] rely on the modal p-calculus (a reformulation of yHML).
Cassar et al. use sHML, the safety subset of the branching time logic pHML [32].
Though is not always the case that there is a clear separation between the property to be
enforced and the enforcing monitor, for instance, in both of Ligatti’s and Schneider’s
work properties are encoded in terms of the languages accepted by the enforcement
model itself, i.e., as edit/security automata [32].

One important question in runtime enforcement is enforceability, i.e. , what kind of
property can be enforced by a monitor at runtime? For instance, Schneider’s security

automata, can enforce only safety properties, as the automaton can only terminate the
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system when the property is about to be violated. Edit automata are capable of en-
forcing instances of safety and liveness properties, along with other properties such as
infinite renewal properties [103]. Monitors synthesized from Street automata [49, 51] can
enforce most of the property classes defined within the Safety-Progress hierarchy [107].

The effectiveness of the enforcement depends on the achievement of the two fol-

lowing general principles [102]:
e transparency, i.e., the enforcement must not prevent correct executions of the SuS;
* soundness, i.e., incorrect executions of the SuS must be prevented.

Finally, enforcers may be distinguished in uni-directional or bi-directional. Uni-
directional enforcers transform only the output behaviour of the SuS to ensure its cor-
rectness [135, 102, 49, 23]. Bi-directional enforcers correct the entire behaviour of the
SuS, i.e, transforms both the outputs produced by the SuS and the inputs produced by
the environment [126, 84, 32, 7].

3.3.2 Ligatti et al.’s edit automata

An edit automaton [102] is a finite or infinite state machine (Q, qo,, w, ) that is defined
with respect to some system S. In particular, the system is defined as S = (A, ) where
A is a set of actions and X a set of possible executions, where an execution o € X is
a finite sequence of actions a; -ap - ...-ay, fora; € Aand 1 < i < n. The 5-tuple
(Q, 90,9, w, ) that specifies an edit automaton contains: the set of all possible states Q,
the initial state g9 and three partial functions:

* §: Ax Q — Q,specifies the transition function of the edit automaton;

e w: AxQ — {—,+}, indicates whether or not the action in question is to be
suppressed (—) or emitted (+);

e v:AXQ— X x Q, specifies the insertion of a finite sequence of actions into the
program’s action sequence, where the first component in the returned pair (Z)

indicates the finite and non-empty sequence of actions to be inserted.

In order to maintain the determinacy, the partial functions ¢ and w have the same do-
main while ¢ and -y have disjoint domains. The operational semantics is defined ac-
cording to the following rules:

c=a-0 6(aq)=q9 waq) =+

(Allow) .
(0,9) = (c',q)
oc=a-0 éaq)=4q w(aqg)=-
(Suppress) —
(0,q9) = (¢'.q")
(Insert) —— o y(aq) =0"4q
nser .

[

(0,9) — (0,q")
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Rule (Allow) is used for allowing actions emitted by the system under scrutiny. By
Rule (Suppress) incorrect actions emitted by the system under scrutiny, are suppressed.
Rule (Insert) is used to insert some finite and non-empty sequence of actions ¢’ before

an action 4.



PART I: An impact analysis for

the security of control systems
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Threat model of part I In the first part of the thesis we focus on attacks targeting sen-
sors and/or actuators via either the corresponding physical device (A1l and A2) or the
communication network used by the device (A3 and A4), i.e., man-in-the-middle attacks
(see the figure below). Such attacks may manipulate the sensor measurements and/or
the controller commands:

e attacks on sensors, i.e., reading and possibly replacing the genuine sensor mea-
surements y; with fake ones y¢;

¢ attacks on actuators, i.e., reading, dropping and possibly replacing the genuine

controller commands u; with malicious ones .

PR !
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Finally, recall that we assume that the attacker has already obtained access to the
control system, and we do not consider the particular mechanisms of how vulnera-
bilities are exploited, and how the attack is hidden. Thus, we only consider the final
objective of the attack, i.e., to maliciously affect the physical part.
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Chapter 4

A Model Checking Approach

This chapter has the following structure. In Section 4.1 we first describe and then im-
plement in HMoDEST an engine system [94]. In Section 4.1.1 we put under stress the
safety model checker prohver for a security analysis of the considered case study un-
der three different cyber-physical attacks. Note that, as we describe in a quite detailed
manner our implementation, we do not explain here the main syntactic constructs of
the modelling language HMopesT. The interested reader can find an overview of such

constructs in the Appendix.

4.1 A simple engine with a cooling system

We now describe the case study introduced in [94], which is called Sys.

Sys is an ICS in which the temperature of an engine is maintained within a cer-
tain range by means of a cooling system controlled by a controller. The system is also
equipped with an IDS that does runtime safety verification. While Sys is a quite simple
control system example, it is actually far from trivial and designed to describe a wide
number of attacks.

Let’s describe both the physical and the cyber component of Sys. The physical
environment of Sys is constituted by:

* a variable temp, initialised to 0, for the current temperature of the engine, the evo-
lution equation of the temperature is temp;  ; = temp, + cooly + wy, where wy €
[—0.4,4+0.4] denotes the uncertainty associated to temp; thus the variable temp is
increased (respectively, is decreased) of one degree per time unit if the cooling
system is inactive (respectively, active) up to a bounded uncertainty wy;

* a sensor measuring the temperature of the engine, with a measurement equation
sensy = temp, + ex, where e € [—0.1,+0.1] denotes the noise associated to the

sensor;

* an actuator to turn on/off the cooling system.
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We remark here that, for simplicity, in the description of the case study we use a
discrete-time model, although in its implementation we will adopt a continuous no-
tion of time.

As regards the cyber component, Sys is provided with two parallel components:
Ctrl and IDS. The former models the controller activity, consisting in reading the tem-
perature of the engine and in governing the cooling system; whereas the latter models a
simple intrusion detection system that attempts to detect and signal abnormal behaviours

of the system.

Ctrl senses the temperature of the engine via the sensor (reads the sensor) at each
time slot. When the sensed temperature is above 10 degrees, the controller activates the
coolant via the actuator (sending a command to the actuator). The cooling activity is
maintained for 5 consecutive time units. After that time, the controller synchronises
with the IDS component, and then waits for instructions The IDS component checks
whether the sensed temperature is still above 10. If this is the case, it sends an alarm of
“high temperature”, and then says to Ctrl to keep cooling for a further 5 time units;
otherwise, if the temperature is not above 10, the IDS component requires Ctrl to stop

the cooling activity.

In Figure 4.1, the left graphic collect 100 simulations of our engine in MATLAB,
lasting 250 time units each, showing that the value of the state variable temp when the
cooling system is turned on (resp., off) lays in the interval (9.9,11.5] (resp., (2.9,8.5]);
these bounds are represented by the dashed horizontal lines. The right graphic of the
same figure shows three possible evolutions in time of the state variable temp: (i) the
first one (in red), in which the temperature of the engine always grows as slow as pos-
sible and decreases as fast as possible; (ii) the second one (in blue), in which the tem-
perature always grows as fast as possible and decreases as slow as possible; (iii) and a
third one (in yellow), in which, depending whether the cooling is off or on, temperature
grows or decreases of an arbitrary offset laying in the interval [0.6,1.4].

eg)

actual temperature (dt

0 20 40 60 80 100 0 10 20 30 40 50
experiments time

Figure 4.1: Simulations in MATLAB of Sys.
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Implementation in HModest

In this section, we provide our implementation in HMoDEsT of the case study presented
in the previous section. The whole system is divided in three high level processes
running in parallel (see Figure 4.2):

* Plant(), modelling the physical aspects of the system;
* Logics(), describing the logical (or cyber) component;
* Network(), representing the network connecting Plant() and Logics().

The process Plant() consists of the parallel composition of four processes: Engine(),
Actuators(), Sensors() and Safety() (see Figure 4.3). The former models the dynamics
of the variable femp depending on the cooling activity. The temperature evolves in a
continuous manner, and its rate is described by means of differential inclusions of the
form a < % < b implemented via the construct invariant. The on action triggers the
coolant and drives the process Engine() into a state CoolOn() in which the temperature
decreases at a rate comprised in the range [-DT—UNCERT, —-DT+UNCERT]. On the
other hand, in the presence of an off action the engine moves into a CoolOff() state in
which the coolant is turned off, so that the temperature increases at a rate ranging in
[DT—UNCERT, DT+UNCERT].

The second parallel component of Plant() is the process Sensors() that receives
the requests to read the temperature, originating from the Logics(), and serves them
according to the measurement equation seen in the previous section. This is mod-
elled by updating the variable sens with an arbitrary real value laying in the interval
[temp — NOISE, temp + NOISE].

// global clock and global action declarations
clock global_clock;
action on, off;

// global variable declarations
var sens = 0; der(sens) = 0;
bool safe = true;

bool is_deadlock = false;

/ /process declarations
process Plant() {
var temp = 0;

};;r{ 0 Engine() :: Sensors() :: Actuators() :: Safety() }
}
process Logics() {

par { = Ctrl() = IDS() |

process Network() {

p;:a.rG i+ Proxy_actuator() :: Proxy_sensor() }

}

// main
par { : Plant() : Logics() :: Network() }

Figure 4.2: Implementation in HMODEsT of Sys.
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The process Actuators() relays the commands of the controller Ctrl() to the Engine()

to turn on/ off the cooling system.

The last component of Plant() is the process Safety() which records the stress level of
each physical variable (see Figure 4.3). Roughly, the stress level associated to the tem-
perature is given by an integer number stress which keeps track of the consecutive time
instants in which the controlled variables violate safety ranges. If this number exceeds
5 then the system is supposed to be in an unsafe state. Here, is worth mentioning that
the variable stress could be implemented either as a bounded integer variable, which
would increase the discrete complexity of the underlying hybrid automaton, or as a
continuous variable with dynamics set to zero (i.e., der(stress) = 0) that would increase
the continuous complexity of the automaton. We have adopted the second option as it
ensures better performances. The Safety() process sets the global Boolean variable safe
to false only when the system reaches the maximum stress, i.e., stress = 5, and reset it
to true otherwise. Thus, this variable says when the ICS is currently in a state that is
violating the safety conditions. Similarly, the global Boolean variable is_deadlock is set to
true whenever the system invariant is violated; in that case the whole ICS stops.

const real DT =1;

const real UNCERT =0.4; // uncertainty of variable temp
const real NOISE =0.1; // sensor noise

clock c;

process Engine() {
process CoolOn() {
invariant( der(temp) >= (-DT — UNCERT) && der(temp) <= (-DT + UNCERT) )
alt { = on; CoolOn() :: off; CoolOff() }

}

process CoolOff() {
invariant( der(temp) >= (DT — UNCERT) && der(temp) <= (DT + UNCERT) )
alt { = on; CoolOn() :: off; CoolOff() }

}
CoolOff()

process Sensors() {
do { // detect temperature and write it in variable sens
read_sensor {= sens = any(z, z >= temp — NOISE && z <= temp + NOISE), c = 0 =};
invariant(c <= 0) when(c >= 0) ack_sensor
}
}

process Actuators(){
do{ : cool_on_actuator {= ¢ =0 =}; invariant(c <=0) when(c>=0)on // cool on
:: cool_off_actuator {= ¢ =0 =}; invariant(c <=0) when(c >=0) off // cool off
}
}

process Safety () {
var stress = 0; der(stress) = 0; // no continuous dynamics for stress
do { invariant(c <= 0) when(c >=0)
alt{ :: when(temp >=0 && temp <= 20) // invariant is preserved
alt{ : when(temp > 9.9 && stress <= 3) {= stress = stress+1 =}
. when(temp <= 9.9) {= stress = 0, safe = true =}
. when(temp > 9.9 && stress >= 4) {= stress = 5, safe = false =}
// safety is violated
}
:: when(temp > 20 | | temp < 0) {= is_deadlock = true =}; stop // system deadlock

invariant(c <=1) when(c>=1) {=c =0 =} // move to the next time unit

Figure 4.3: Plant() sub-processes.
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The process Logics() consists of the parallel composition of two processes: Ctrl()
and IDS() (see Figure 4.4). Concerning the behaviour of the former, senses the temper-
ature by triggering a read_sensor_ctrl action to request a measurement and waits for an
ack_sensor_ctrl action to read the measurement in the variable sens. Depending on the
value of sens the controller decides whether to activate or not the cooling system. If
sens < 10 the process sleeps for one time unit and then check the temperature again.
If sens > 10 then the controller activates the coolant by emitting the set_cool_on action
that will reach the Engine() (via the Network()’s proxy). Afterwards the control passes to
the process Check() that verifies whether the current cooling activity is effective in drop-
ping the temperature below 10. The process Check() maintains the cooling activity for 5
consecutive time units. After that, it synchronises with the process IDS() via the action
sync_ids, and waits for instructions from IDS(): (i) keep cooling for other 5 time units and
then check again, or (ii) stop the cooling activity and returns. These two instructions are
represented by means of the actions keep_cooling and stop_cooling, respectively.

The second component of the process Logics() is the process IDS(). The IDS() pro-
cess waits for the synchronisation action sync_ids from Check(). Then, it triggers the
action read_sensor_ids to request a measurement and waits for the ack_sensor_ids action
to read the measurement. If sens < 10 it signals to Ctrl() to stop cooling (via the ac-
tion), otherwise, if sens > 10, it signals to keep cooling and fires an alarm by setting a
global Boolean variable alarm to true (for verification reasons we immediately reset this

variable to false).

The process Network() consists of the parallel composition of Proxy_actuator() and
Proxy_sensor() (see Figure 4.5). The former provides the remote actuation. Basically,
it forwards the actuators commands originating from the process Ctrl() to the process
Actuators(). The process Proxy_sensor() waits for requests of measurement originating
from processes Ctrl() or IDS() (we use different actions for each of them) and relay these
requests to the process Sensor() that implements the measurement equation. When
the temperature has been detected an ack signal is returned and propagated up to the

requesting process.

Verification. We conduct our safety verification using a notebook with the following
set-up: (i) 2.8 GHz Intel i7 7700 HQ, with 16 GB memory, and Linux Ubuntu 16.04
operating system; (ii) Mobgest TooLser Build 3.0.23 (2018-01-19).

In order to assess the correct functioning of our implementation, we verify a num-
ber of properties of our system Sys by means of the safety model checker prohver. Here,
it is important to recall that prohver relies on the hybrid solver PHAVer which computes
an overapproximation of the reachable states to ensure termination and accelerate conver-
gence [56]. As a consequence, the probability returned by the verification of a generic
property Pmax({reprop) is an upper bound of the exact probability, and hence it is signif-

icant only when equal to zero (i.e., when the property is not satisfied). However, as our



1

>
3
4
5
6
q

9

10

44 Chapter 4. A Model Checking Approach

clock ¢;
process Ctrl() {
process Check() {
dof invariant(c <= 0) when(c >=0) tau;
invariant(c <=5) when(c>=5){=c =0 =}; // keep cooling for 5 time units
invariant(c <=0) when(c >=0) sync_ids; // activate IDS
alt { // wait for mqtrugtlons
i keep_cooling {=c =0 =} // keep cooling a further 5 time units
1 stop_cooling {=c =0 =};
invariant(c <=0) when(c >=0) set_cool_off; // turn off the coolant
invariant(c <=1) when(c>=1){=c =0 =}; // move to the next time slot
invariant(c <= 0) when(c >= 0) break // returns the control to Ctrl()
}
}
}
// main Ctrl()
do { invariant(c <= 0) when(c >= 0) read_sensor_ctrl; // request temperature sensing
ack_sensor_ctrl {= ¢ =0 =};
invariant(c <= 0) when(c >=0)

alt { = when(sens <=10) tau{=c =0 =}; // temperature is ok
invariant(c <=1) when(c>=1){=c =0 =} // move to the next time slot
:: when(sens > 10) set_cool_on {=c =0 =}; // turn on the cooling

invariant(c <= 0) when(c >= 0) Check() // check whether temperature drops
}
}
}

process IDS() {
do{ sync_ids {= ¢ =0 =};

invariant(c <=0) when(c >= 0) read_sensor_ids; // request temperature sensing

ack_sensor_ids;

invariant(c <= 0) when(c >=0)

alt { : when(sens <= 10) stop_cooling // temperature is ok

= when(sens > 10) keep_cooling; // temperature is not ok, keep cooling

invariant(c <= 0) when(c >=0) {= alarm = true =}; // fire the alarm
invariant(c <= 0) when(c >=0) {= alarm = false =}

Figure 4.4: Logics() sub-processes.

control system Sys presents a linear dynamics it is possible to compute the exact proba-
bility by launching our analyses with the NO_CHEAP_CONTAIN_RETURN_OTHERS flag (see [57])
which enables the exact computation of the reachable sets, with obvious implications
on the time required to complete the analyses. As our case study does not present a
probabilistic behaviour, the results of our analyses will always range in the set {0,1}

(unsatisfied /satisfied) with a 100% accuracy.

Furthermore, as a formula Ue is satisfied if and only if $—e is unsatisfied, we can

use prohver to verify properties expressed in terms of formulae of the form Ujg rjeprop
r <>[0,T] eprop- Actually, in our analyses we will always verify properties of the form
Ujo,71¢prop, relying on the quicker overapproximation when proving that the property is
satisfied, and resorting to the slower exact computation when proving that the property

is not satisfied.

Thus, we have formally proved that in all possible executions that are (at most)
100 time instants long the temperature of the system Sys oscillates in the real interval

[2.9,11.5] (after a short initial transitory phase):

Oo,100) (global _clock > 5 = (temp > 2.9 A temp < 11.5)).
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process Network() {

clock c;
process Proxy_actuator() {
do{ alt { :: set_cool_on{=c =0 =};

invariant(c <=0) when(c >= 0) cool_on_actuator
set_cool_off {=c =0 =};
invariant(c <=0) when(c >= 0) cool_off_actuator

}
}

process Proxy_sensor(){

do{ alt { :: read_sensor_ctrl {=c =0 =};
invariant(c <=0) when(c >= 0) read_sensor;
ack_sensor;

invariant(c <=0) when(c >= 0) ack_sensor_ctrl
:: read_sensor_ids {=c =0 =};

invariant(c <= 0) when(c >= 0) read_sensor;

ack_sensor;

invariant(c <= 0) when(c >= 0) ack_sensor_ids

}
}

par{ : Proxy_actuator() :: Proxy_sensor() }

}

Figure 4.5: Network() process.

More generally, our implementation of Sys satisfies the following three properties:
* Ujo,100) (—deadlock), saying that the system does not deadlock;
* Djo,100) (safe), saying that the system does not violate the safety conditions;
* Ujo,100) (malarm): saying that the IDS does not fire any alarm.

The verification of these three properties requires around 15 minutes each, thanks to

the underlying overapproximation.

In the next section, we will verify our control system in the presence of three dif-
ferent cyber-physical attacks targeting either the sensor sens or the actuator cool. The

reader can consult our models at nttp://profs.scienze.univr.it/~merro/MODEST-FORTE/ .

4.1.1 Analyses and results

In this section we use the safety model checker prohver to perform a static security anal-
ysis of Sys. In particular, we implement three simple cyber-physical attacks targeting

our system Sys:

* a DoS attack on the actuation mechanism that may push the system to violate the

safety conditions and hence in the invariant conditions;

* a DoS attack on the sensor that may deadlock the system without being noticed
by the IDS;

* an integrity attack on the sensor, again undetected by the IDS, that may drive the

system into an unsafe state but only for a limited period of time.

These attacks are implemented by tampering with either the physical devices (ac-

tuators and/or sensors) or the communication network (man-in-the-middle). In order to
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implement an attack on the sensor (resp., actuator) we suppose the attacker is able to
compromise the Sensors() (resp., Actuators()) process. Whereas the attacks targeting the
communication network compromise either the Proxy_sensor() or the Proxy_actuator()
process, depending whether they are targeting the sensor or the actuator. In general,
attacks on the communication network do not require a deep knowledge on the physi-

cal dynamics of the control system.

Attack 1. The first attack targets the actuator cool in a very simple manner. It operates
exclusively in a specific time instant 1, when it tries to drop the command to turn on
the cooling system coming from the controller. Figure 4.6 shows the implementation of
this man-in-the-middle attack compromising the Proxy_actuator() process.

process E_Proxy_actuator(){
clock c;
dof alt{ :: set_cool_on {= ¢ =0=};

invariant(c <= 0) when(c >=0)

alt{ // drop the cool_on command in the time instant m
2 when(global_clock == m) tau
// in the other time instants forward correctly
2 when(global_clock <m | | global_clock > m) cool_on_actuator

. set_cool_off {= ¢ =0=};
invariant(c <= 0) when(c >= 0) cool_off_actuator

Figure 4.6: DoS attack to the actuator.

We recall that the controller will turn on the cooling system only if it senses a tem-
perature above 10 (as NOISE = 0.1, this means temp > 9.9). It is not difficult to see
that this may happen only if m > 7 (in the time instant 7 the maximum temperature
that may be reached by the engine is 7 - (DT + UNCERT) = 7- (1 +0.4) = 9.8 degrees).
Since the process Ctrl() never re-sends commands to the actuator, if the attacker is suc-
cessful in dropping the command to turn on the cooling system in the time slot m then
the temperature will continue to rise, and after 2 time instants, in the time instant m + 2,
the system will violate the safety conditions. This is noticed by the IDS() that will fire
alarms every 5 time instants, until the system deadlocks because temp > 20.

We have verified the same properties stated in the previous section for the system
Sys in isolation. None of those properties holds when the attack above operates in an
instant m > 7. In particular, for m > 7 the system becomes unsafe in the time instant
m + 2, and the IDS() detects the violation of the safety conditions with a delay of only

2 time instants. Summarising:
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N
3
N

% N % X 8 % % v

Attack 1: tested properties | m
Olo,100] (—deadlock)
Do,100] (safe)
Ujo,100] (—alarm)
Ojom+1] (safe)
Olo,m2) (safe)
Dlo,m+3] (—alarm)

(

RSN XX S XA

Do 4] (malarm)

As shown in this table, for m < 7 this is a lethal attack as it causes a deadlock of the
system, however, it is not a stealthy attack. On the other hand, for m > 7 the attack is
not lethal but it will bring the system into an unsafe state. Furthermore, an alarm will

be fired, thus the attack is not stealthy in this case as well.

The properties above have been proved for all discrete time instants m, with 0 <
m < 96. The longest among these analyses required 20 minutes when overapproximat-
ing and at most 7 hours when doing exact verification.

Attack 2. The second attack compromises the sensor in order to provide fake mea-
surements to the controller. The compromised sensor operates as follows: (i) in any
time instant smaller than or equal to 1 the sensor works correctly, (ii) in any time in-
stant greater than 1 the sensor returns the temperature sensed at time 1. Figure 4.7
provides an implementation of the compromised sensor.

process E_Sensors(){
clock c;
do{
alt{ :when(global_clock <=1) //normal behaviour
req_sensor {= sens = any(z, z >= temp-NOISE && z <= temp+NOISE), c = 0 =};
invariant(c <=0) when(c >= 0) ack_sensor
:: when(global_clock > 1) / /attack

req_sensor {= ¢ =0 =}; //the measurement remains unchanged
invariant(c <= 0) when(c >= 0) ack_sensor

Figure 4.7: DoS attack to the sensor.

In the presence of this attack, the process Ctrl() will always detect a temperature
below 10 and never activate the cooling system or the IDS. The system under attack
will move to an unsafe state until the system invariant will be violated and the system
will deadlock. Indeed, in the worst case scenario, after [ gr—gcrrr | = [ 12 | = 8 time
instants the value of temp will be above 9.9 degrees, and after further 4 time instants the
system will violate the safety conditions. Furthermore, in the time instant = [%1 =15
the invariant may be broken and the system may deadlock because the state variable
temp reaches 20.4 degrees.

The results of our security analysis are summarised in the following table:
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Attack 2: tested properties

Olo,100 (—alarm)
Do, 100) (safe)
Dlo,100] (—deadlock)
Hjo11] (safe)
D[0,12] (safe)
Do,14 (—deadlock)
Oo,15) (~deadlock)

% N 8 X % x <

As shown in this table, this is a lethal attack as it causes a deadlock of the system. It is

also a stealthy attack as it remains unnoticed until the end.

Concerning the performance of the analysis, the longest among these analyses re-
quired 35 minutes when overapproximating and at most 5 hours when doing exact
verification. Notice that this attack does not require any specific knowledge of the sen-
sor device (such as the measurement equation). Thus, the same goal could be obtained
by means of a man-in-the-middle attack that compromises the Proxy_sensor() process.

Attack 3. Our last attack is a variant of the previous one as it provides the controller
with a temperature decreased by an offset (in this case 2), for n consecutive time in-
stants. Unlike the previous attack, in case of encrypted communication, this attack
cannot be mounted in the network as it requires the knowledge of the measurement
equation. Figure 4.8 shows the implementation of a compromised sensor device acting
as required. Basically, when global_clock <= n the compromised sensor returns a mea-
surement affected by the offset; on the other hand, when global_clock > n the sensor

works correctly and returns the authentic measurement.

process E_Sensors() {
clock c;
do { req_sensor {=c =0 =J;
invariant(c <=0) when(c >=0)
alt { = when(global_clock <=n) //send corrupted measurement
{= sens = any(z, z >= (temp — 2 — NOISE) && z <= (temp — 2 + NOISE)),
c=0=}
:: when(global_clock > n) //send authentic measurement
{= sens = any(z, z >= (temp — NOISE) && z <= (temp + NOISE)), c =0 =}
b

invariant(c <= 0) when(c >= 0) ack_sensor

Figure 4.8: Integrity attack to the sensor device.

The effects of this attack on the system depends on its duration ».

e For n < 7 the attack is harmless as the variable temp may not reach a (critical)
temperature above 9.9; thus, all properties seen for the system in isolation remain

valid when the system is under attack.
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e For n = 8, the variable termp might reach a temperature above 9.9 and the attack
would delay the activation of the cooling system of one time instant. As a con-
sequence, the system might get into an unsafe state in the time instants 12 and
13, but no alarm will be fired (stealthy attack). This is proved by verifying the
following properties:

= Dlo,100) ((global_clock < 12 v/ global_clock > 14) = safe) v/
— Dio,100) ((global_clock <12 A global_clock > 12) = safe) %
= Dlo,100) ((global_clock <13 A global_clock > 13) = safe) %
= Dyo,100) (malarm) ¢

e For n > 8 the system may get into an unsafe state in a time instant between 12
and n + 12. The IDS will fire the alarm but it will definitely miss a number of
violations of safety conditions as after the instant # 4 6 it does not fire any alarm,
although we prove there are unsafe states. This is a temporary attack as the system
behaves correctly after the time instant n + 12. Summarising;:

= Dyo,100) (—deadlock) v/
= Dlo,100) ((global_clock < 12 Vv global_clock > n +12) = safe) v/

= Dio,100) ((global_clock > 12 A\ global_clock < n +12) = safe) %

= Ujo,100]

= Dyo,100) ((global_clock < n+1 V global_clock > n+6) = —alarm) v/

(
((
((
((global_clock > n+6 A global_clock < n+12) = safe) %
((
((

= Dio,100) ((global_clock > n+1 A global_clock < n+6) = —alarm) %.

The properties above have been proved for all discrete time instants n, with 0 <
n < 85. The longest among these analyses required 1 hour when overapproximating
and at most 7 hours when doing exact verification.

4.2 Summary and discussion

Summary In this chapter we have implemented in HMobesT an ICS in which the
temperature of an engine is maintained within a certain range by means of a cooling
system controlled by a controller [94]. The system was also equipped with an IDS. Then
we have proposed three significant cyber-physical attacks targeting the sensor or the ac-
tuator of the system: (i) a DoS attack on the actuator that operates as a man-in-the-middle
on the connecting network; (ii) a DoS attack on the sensor that is achieved by compro-
mising the sensor device; (iii) an integrity attack on the sensor, again by compromising
the sensor device. Finally, we have tested the limits of the safety model checker pro-
hver when doing static security analysis by means of three properties. These properties
checked whether: (i) the system reached a deadlock state; (ii) the system reached an
unsafe state; (iii) the IDS fired an alarm.
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Discussion We have conducted a number formal security analyses in the context of
CPSs via model-checking. Besides the safety model checker prohver, we have tried
to verify the engine system [94] using other model-checking tools, such as PRISM [89],
UPPAAL [19], and Real-Time Maude [121].

PRISM supports the verification of both CTL and LTL properties. This has allowed
us to express proper formulae to verify violations the safety conditions, avoiding the
implementation of the Safety() process. However, using integer variables to represent
state variables with a fixed precision requires the introduction of extra transitions (to
deal with nondeterministic errors) which significantly complicates the PRISM model.

In this respect, UPPAAL appears to be more effective than PRISM, as we have been
able to concisely express the error occurring in integer state variables using the select()
construct, in which the user can fix the granularity adopted to approximate a dense
interval. This discrete representation provides an under-approximation of the system
behaviour; although, a finer granularity translates into an exponential increase of the
complexity of the system, with obvious consequences on the verification performance.

Then, we have tried to model our simple engine in Real-Time Maude, a completely
different framework for real-time systems, based on rewriting logic. The language sup-
ports object-like inheritance features that are quite helpful to represent complex sys-
tems in a modular manner. We have used communication channels to implement our
attacks on the physical devices. Furthermore, we have used rational variables for a
more concise discrete representation of state variables. We have been able to verify LTL
and T-CTL properties, although the verification process resulted to be quite slow due
to a proliferation of rewriting rules when fixing a reasonable granularity to approxi-
mate dense intervals. As the verification logic is quite powerful, there is no need to

implement an ad hoc process to check for safety.

At the end, as expected, a common aspect of the analyses conducted using these
four model-checking tools (PRISM, UPPAAL, Real-Time Maude and prohver) was the
performance limitations due to the well-known state explosion problem. Thus, when
we have decided to step to the security analysis of a larger control systems, we have
moved to statistical model checking, making a (small) compromise on the accuracy of
the verification results. In this respect, the two main options were UPPAAL-SMC [44]
and modes. In [96], we have tested UPPAAL-SMC for the security analysis of the simple
engine verified in [91] using prohver, as shown in the previous section of this chapter.
From these two experiences, we have realized that HMODEST provides us with a bet-
ter and clearer representation of complex cyber-physical systems and cyber-physical
attacks. Thus, in the following chapter we move to statistical model checking and we

will show a security analysis of significantly larger ICS.
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Chapter 5

A Statistical Model Checking
Approach

In this chapter we test the effectiveness of statistical model checking for carrying out
a static security analysis of an ICS in isolation and when exposed to cyber-physical
attacks with different impacts. In particular, we use the statistical model checker modes
of the Mobpgest TooLser. This chapter is structured as follows. In Sections 5.1 we first
describe and then implement Johansson’s tank system [81]. In Section 5.1.1, we do an
SMC-based security analysis of three cyber-physical attacks.

5.1 A quadruple water tank system

In this section, we describe Johansson’s tank system, a laboratory application (see Fig-
ure 5.1) where the cyber layer automatically controls, by means of two sensors and two
pumps, the level of four interconnected water tanks. The water tank system maintains
the water level of all four tanks within a fixed range. In order to achieve this goal, the
system injects water into the four tanks by means of two pumps (Pump A and Pump B).

The controller manages the injection of water by commanding the pumps.

Pump AL Pump B

y J

Figure 5.1: Johansson’s quadruple-tank water system.
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We enriched Johansson’s original system with an intrusion detection system (IDS)
to monitor malicious activities, and called again the resulting system Sys. The physi-
cal component, i.e., the four interconnected water tanks, is described by means of four
nonlinear differential equations. These equations relate the voltage applied to the pumps
(va,vB) to the four water levels (hy, hy, h3,hy). However, as modes cannot deal with
nonlinear differential equations, we rely on a standard control-theoretic approach to
approximate nonlinear differential equations with linear difference equations [45]. Thus,
we adopt Johansson’s discrete linear space model for his system [81], with a sampling
time of Ty = 10 seconds. The model is obtained by instantiating the two linear differ-
ence equations described in the Introduction with the following matrices:

0.8526 0 0.3144 0
0 0.8952 0 0.0888
0 0 0.6580 0
0 0 0 0.7165

A=

0.7695  0.0829
0.0149 0.5946

B_ c— 1 0 0 O
0 0.3910
0.2655 0

In these equations, x;, x2, x3 and x4 represent the state variables containing the
values of the water levels governed by the commands u4 and up. Notice that, due to
the linearization process, the state variables x;, for i € [1..4], and the commands 14 and
up are related to the nonlinear physical variables and the voltage of the pumps in the
following way: x; = h; — h?, fori € [1.4]and uy = vq — Y, up = vg — Y. Here, h?, N
and oY are the operating points around which the nonlinear model has been linearized.
Thus, whenever the value of h; is h?, the value of x; is 0 (a similar reasoning can be
done for u 4 and up). The evolution of each state variable x; is affected by some system
uncertainty w;, with i € [1..4], representing the uncertainty of the physical model. Fur-
thermore, the variable y;, for i € [1..2], provides the measurement of x; to the controller;
each variable y; is affected by a measurement noise ¢;. As concerns the initial condition
of the variables, without loss of generality, we assume that the system is in a steady
state, which means that i; = h? (i.e., x; = 0 litres), for i € [1..4], in the linear model.

Let us now define the cyber component of Sys. It consists of two components run-
ning in parallel: the Supervisor and the IDS. The Supervisor monitors the evolution of
the whole system; it consists of two parallel controllers:

¢ the first one governs the commands u 4, according to the value of y4, in order to
adjust the water flow given by Pump A (used to fill Tanks 1 and 4);

e the second one regulates the commands up, according to the value of y,, in order
to adjust the water flow given by Pump B (used to fill Tanks 2 and 3).

Note that controllers do not monitor directly Tank 3 and Tank 4. Indeed, Pump A
regulates the inflow of Tank 1 and Tank 4, and if the water in Tank 1 lies in the interval
[—0.5,0.5] then the water in Tank 4 will lie in [—0.14,0.14]. In other words, y; provides
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enough information to control Tanks 1 and 4 (a similar reasoning applies to y, and
Tanks 2 and 3).

The IDS component simulates the physical evolution of the system by means of
discrete linear difference equations, rising alarms when the values of the simulated
variables differ, up to a proper threshold, from the real measurements. Furthermore,
the IDS is capable of mitigating the effects of detected attacks by reconfiguring control
commands to be sent to actuators via dedicated channels.

An implementation in HModest

In this section, we provide our implementation in HMopEsT. The whole implemen-

tation is divided in four main processes running in parallel (see Figure 5.2):
* Global_Clock(), modelling both the passage of time and process synchronization;
* Plant(), modelling both the physical plant and physical devices;
* Logics(), representing the logical (or cyber) component;
* Network(), connecting Plant() and Logics().

Let us describe these processes in some detail.

// action, constant and variable declarations
action start_pump_a_actuator, read_level_1, sync_level_1_ids, ...;
const real NOISE_LVL1 = 0.007 , UNCERT_LVL1 =0.015, ...;

real levell, ... ,level4;

real sensed_levell, sensed_level2;

int stress_levell =0, .. , stress_leveld = 0;
bool safe_levell =true, .. , safe_leveld = true;

bool deadlock_levell = false, ... ,deadlock_level4 = false;
// process declarations
process Global_Clock() {
clock global_clock;
do {
evolution_step;
Sync_process;
invariant(global_clock <= 1) when(global_clock >= 1) {= global_clock = 0 =}
}
}
process Plant() {
... // local declarations
par { : Physical_Process() :: Sensors() :: Actuators() :: Safety() }
}
process Logics() {
... // local declarations
par { :: Supervisor() :: IDS() }
}
process Network() {
... //proxies between Logics() and Plant()
}

// main
par { :: Global_Clock() :: Plant() :: Logics() :: Network() }

Figure 5.2: Implementation in HMoDEsT of Sys.
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The Global_Clock process

This process says to the other components when it is possible to perform an evolution_step

action, modelling the evolution of physical variables. Then, a sync_process action is
performed to synchronize all components of the system. At the end of each control

cycle the global clock is reset.

The Plant process

This process consists of the parallel composition of four sub-processes: Physical_Process(),
Sensors(), Actuators() and Safety().

The Physical_Process() models the physical evolution of the water tank system. This
process waits for the evolution_step action to take place. When this action is triggered
by Global_Clock() the process proceeds with the evolution of the variables x1, x3, x3 and
x4 which are represented in terms of the HMobEsT variables levell, level2, level3
and level4, respectively. At the end, the process updates the value of the variables at
the next time instant, according to the discrete time model given in Section 7.2. In or-
der to model uncertainty of physical variables, we use random extractions of numbers,

uniformly distributed, within a specific range.

The process Sensors(), given in Figure 5.3, implements the two sensors: the water
level of Tank 1, via the variable sensed_levell, and the water level of Tank 2, via the
variable sensed_level2. This process waits for requests coming from the controller to
measure the levels. Again, the measurement noise is modelled by a random number ex-
traction, uniformly distributed, within a specific range. Upon completion, the process

sends an ack to the controller.

Actuators() executes the commands sent by the controller to the actuators (see Fig-
ure 5.3). In our model, this process sets the value of the control signals involved in the
command just before the evolution_step action is performed by Physical_Process(). For
instance, if the controller sends the command to turn off Pump A, then the actuator sets
the control signal PUMP_A_FLOW to the associated correct value.

process Sensors() {
do {
i read_levell {= sensed_levell = levell + Uniform(-NOISE_LVL1,NOISE_LVL1) =};
ack_read_levell
i read_level2 {= sensed_level2 = level2 + Uniform(-NOISE_LVL2,NOISE_LVL2) =};
ack_read_level2
}
}

process Actuators() {
do {
i start_pump_a_actuator {= PUMP_A_FLOW =0.2 =}
i1 stop_pump_a_actuator {= PUMP_A_FLOW = -0.2 =}
i start_pump_b_actuator {= PUMP_B_FLOW = 0.4 =}
i1 stop_pump_b_actuator {= PUMP_B_FLOW = -0.4 =}

Figure 5.3: Sensors() and Actuators() processes.
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The last component of Plant() is the process Safety() which records the stress level
of each physical variable (see Figure 5.4). Roughly, the stress level associated to a
physical variable is given by an integer number which keeps track of the consecutive
time instants in which the controlled variables violate safety ranges. If this number
exceeds a given threshold then the system is supposed to be in an unsafe state. The
process consists of four parts. In Figure 5.4, we provide only the part concerning the
water level of Tank 1, the other parts are similar. This process sets a global boolean
variable safe_levell to false only when the system reaches the maximum stress, i.e.,
stress_levell = 4, and resets it to true otherwise. Thus, this variable says when the
system is currently in a state violating the safety condition. Similarly, the global boolean
variable deadlock_levell is set to true whenever the system’s invariant is violated (in

that case, the whole stops).

process Safety () {
do{

alt {
:: when((levell< 0.5 | | levell> 0.5) && stress_levell <=2) {= stress_levell ++ =}
: when(levell >= -0.5 && levell<= 0.5) {= stress_levell = 0, safe_levell = true =}
: when((levell < —0.5 | | levell > 0.5) && stress_levell >= 3)
{= stress_levell =4 , safe_levell = false =}
: when(levell < -1 | | levell > 1) {= deadlock_levell = true =};
stop
b
. // similar for other variables
evolution_step ;
sync_process
}
}

Figure 5.4: Safety() process.

The Logics process

The Logics() process consists of two parallel sub-processes: Supervisor() and IDS(). Su-
pervisor() contains two parallel controllers: Controller_Levell(), for the water level of
Tank 1, and Controller_Level2(), for the water level of Tank 2. The IDS() consists of four
parallel sub-processes: Simulated_Plant(), Simulated_Actuators(), Reconfiguration_levell(),
Reconfiguration_level2().

We will explain these processes by focusing on the control cycle of the variable
levell, the water level of Tank 1 (see Figure 5.5). The machinery to manage the other
three variables is similar. The goal of the controller is to maintain the water level of
Tank 1 within the range [—0.5,0.5] (this interval has been empirically derived). Thus,
the controller requests a measurement of the level to the associated sensor device.
When the measurement is ready the sensor sends it to the controller. Both transmis-
sions pass through the network and are acknowledged. The controller acts according
to the received measurement: (i) if the level is below —0.5 then it commands to turn on
Pump A, and informs the IDS about its decision; (ii) if the level is above 0.5 then it re-
quests to turn off Pump A, and again informs the IDS about its decision; (iii) if the level
lies within [—0.5,0.5] then no action is required. After that, a synchronization with the
IDS is required to check for anomalies in the behaviour of Tank 1. At the end of the
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process Controller_Levell() {
do {
read_levell_ctrl; ack_read_levell_ctrl;
alt {
1 when(sensed_levell < —0.5 ) start_pump_a_ctrl; ack_start_pump_a_ctrl; start_pump_a_ctrl2ids
:: when(sensed_levell > 0.5) stop_pump_a_ctrl; ack_stop_pump_a_ctrl; stop_pump_a_ctrl2ids
:: when(sensed_levell >= -0.5 && sensed_levell <= 0.5) tau // do nothing

sync_levell_ids; ack_levell_ids; evolution_step; sync_process
}
}

Figure 5.5: Controller of the water level of Tank 1.

cycle, the physical variables are free to evolve (via the evolution_step action) and the
controller will synchronize with the rest of the system (via the sync_process action).

As regards the IDS() process, the Simulated_Plant() sub-process (Figure 5.6) simu-
lates the physical behavior of the water tanks and provides the IDS with the simulated
state of Physical_Process(), i.e., the simulated values of the water levels. The simulated
physical variables are not affected by the system uncertainty, as they will be used to

detect anomalies in the real physical variables.

The Simulated_Actuators() process of IDS() (Figure 5.6) actuates the Simulated_Plant()
and it is designed to simulate the physical actuation. The simulated actuation must be
updated /reconfigured whenever either the controllers update or the IDS() reconfigures
the actuator commands. For instance, if the controller wants to change the value of
PUMP_A_FLOW then it must synchronize with Simulated_Actuators() to change the value
of PUMP_A_FLOW_SIM. The action start_pump_a_ctrl2ids is triggered whenever the
controller of Tank 1 wants to start Pump A. Moreover, Simulated_Actuators() can also
synchronize with Reconfiguration_levell() and Reconfiguration_level2() to replicate their
commands. These commands are sent whenever a potentially unsafe behavior is de-
tected.

process Simulated_Plant() {
do {
evolution_step {= levell_sim = levell_next_sim, ...
levell_next_sim = 0.8526+levell_sim + 0.3144xlevel3_sim
+ 0.7695+«PUMP_A_FLOW_SIM + 0.0829«PUMP_B_FLOW_SIMV, ... =};
sync_process
}
}
process Simulated_Actuators() {
do {
i start_pump_a_ctrl2sim {= PUMP_A_FLOW_SIM = 0.2 =}

start_pump_b_reconf2sim {= PUMP_B_FLOW_SIM = 0.2 =}

Figure 5.6: IDS plant estimator.

Let us now describe the Reconfiguration_level1() process of the IDS (Figure 5.7). This
process has two main activities: (i) monitoring Tank 1 for malicious activities that may
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bring the water level out of the safety region, and (ii) reconfiguring controller com-
mands when it is necessary to restore the safety of the tank. Thus, the process syn-
chronizes with Controller_Level1() and then it acts depending on the distance between
the current measurement of levell and its current simulated value. If that distance
is greater than the threshold 0.2 then something wrong is supposed to be happening
in the tank, and an alarm is risen. In this case, the safety of Tank 1 fully relies on the
simulated values of its level. Thus, if the simulated 1evell is out of the safety inter-
val [—0.5,0.5] then the reconfiguration process does two actions: (i) uses a dedicated
channel shared with the actuators to reconfigure the controller commands, and (ii) re-
configures the simulated actuation as well, to be consistent with the real ones. Finally,
the reconfiguration process synchronizes with the process Controller_Levell(). The im-

plementation of Reconfiguration_level2() associated to the variable level2 is similar.

process Reconfiguration_levell() {
do {
i sync_levell_ids;
alt {
:: when(abs(levell_sim — sensed_levell) < 0.2) tau // do nothing
:: when(abs(levell_sim — sensed_levell) >= 0.2) {= alarm_levell = true =};
{= alarm_levell = false =};
alt {
2 when(levell_sim < —0.5 ) start_pump_a_ids; ack_start_pump_a_ids;
start_pump_a_reconf2sim
:: when(levell_sim > 0.5) stop_pump_a_ids; ack_stop_pump_a_ids;
stop_pump_a_reconf2sim
. when(levell_sim >= -0.5 && levell_sim <= 0.5) tau // do nothing
}

a/ck_levell_ids

Figure 5.7: IDS control reconfiguration of Tank 1.

The Network process

The last component of our implementation models the network infrastructure (see Fig-
ure 5.8). The Network() process consists of a set of proxies connecting physical and logi-
cal components. In particular, three main kinds of messages travel along the network:

1. sensor measurements;
2. control commands;
3. reconfiguration of control commands.

Thus, for instance, controllers use the network to transmit measurement requests which
are forwarded to the appropriate sensor devices. When the measurements are ready
they are transmitted via the network to the controllers which requested them. The
transmission of both control commands from controllers to actuators and reconfigura-

tion commands from IDSs and actuators works in a similar manner.
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process Network () {
do {

// proxy for levell measurements
= read_levell_ctrl; read_levell; ack_read_levell; ack_read_levell_ctrl
// proxy for start commands to pump_b required by the controller
i start_pump_b_ctrl; start_pump_b_actuator; ack_start_pump_b_ctrl
// proxy for reconfiguration commands to pump_b required by the IDS
i start_pump_b_ids; start_pump_b_actuator; ack_start_pump_b_ids

// remaining proxies

Figure 5.8: Network() process.

Verification

We conduct our safety verification using a laptop with the following set-up: (1) 2.8
GHz Intel i7 7700 HQ, with 16GB memory, and Linux Ubuntu 16.04 operating system;
(2) Mopest Toorser Build 3.0.141 (2019-04-17).

In order to assess the correct functioning of our implementation, we have verified a
number of properties by means of the statistical model checker modes in which the con-
fidence intervals are determined according to the Chow-Robbins sequential test [39],
and the statistical parameters for false negatives and probabilistic uncertainty are both
set to 0.01, to ensure a 99% accuracy. Basically, we have used modes to verify prop-
erties expressed in terms of formulae of the form Oy j¢, where t is a positive integer.
Thus, we compute the probability that a property e holds in at least one time instant of
the discrete time interval [0, t]. In particular, for all possible executions, that are at most
1000 time units long, we estimate the probabilities that the system Sys reaches three dif-
ferent undesired states: deadlock, violation of safety conditions, and alarm state. More
precisely, we verify the following three properties:

* Q01000 (deadlock_level;), fori € {1,2,3,4}, testing whether the system violates

the invariant conditions;

* Qo000 (—safe_levely), for i € {1,2,3,4}, testing whether the system violates

the safety conditions;

. 0[0,1000] (alarm_level;), fori € {1,2}, testing whether the two IDSs fire an alarm
for the two monitored variables.

The verification of the three properties above required a few minutes each.

5.1.1 Analyses and results

In what follows we use the statistical model checker modes to do an impact analysis of
the system under investigation when exposed to three different cyber-physical attacks.
In particular, we implement three simple, yet effective, attacks targeting the physical

devices of our system Sys:

1. an integrity attack on the sensor of the water level of Tank 1;
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2. a DoS attack on Pump B, preventing its deactivation;

3. a MITM attack on the network, combining a replay attack on the measurements of
the water level of Tank 2, with a DoS attack on the Pump B.

These attacks are implemented by tampering either with the physical devices (sen-
sors and/or actuators) of the system or with the communication network connecting
logics and physical devices. In particular, the first attack compromises the Sensors()
component, whereas both the second and the third attacks affect the Network() compo-
nent.

Attack 1

We propose an attack altering the measurements of levell (contained in the variable
sensed_levell) that the sensor device sends to the controller. The attack manipulates
the measurements inside a compromised Sensors() device by adding an OFFSET (see Fig-
ure 5.9). Thus, during this attack the controller will base its decisions on wrong mea-
surements of the level of Tank 1. As a consequence, it will delay the control actions
deemed to keep the levels within the safety region. In our analysis, the offset added to
the water level varies between —0.5 liters and 0.5 liters. Thus, for instance, if the attack
introduces a negative offset then the controller may wrongly decide not to change the
pump status, even if the actual level is 0.5, leading to an overflow of the corresponding
tank. As Pump A regulates the water inflow in both Tank 1 and Tank 4, the attack will
affect both tanks.

process Sensors_Integrity_Attack_Tank_1() {
do {
// compromised measurements of levell
:: read_levell {=sensed_levell=levell+OFFSET+Uniform(-NOISE_LVL1,NOISE_LVL1)=};
ack_read_levell
:: read_level2 {= sensed_level2 = level2 + Uniform(-NOISE_LVL2,NOISE_LVL2) =};
ack_read_level2

Figure 5.9: Integrity attack on the sensor level of Tank 1.

Figure 5.10 reports the impact of the attack on Tank 1 and Tank 4, respectively;
the other two tanks are completely unaffected by the attack. As regards safety, Tank 1
will get into an unsafe state with probability 1 for most of the admitted offsets; while
Tank 4 will reach an unsafe state with a significantly lower probability. Furthermore,
the attack is not deadly, as the tanks never reach a deadlock state, i.c., they do not
overflow /underflow. As regards safety, for offsets in the range [—0.1,0.1] the attack
may delay the control actions, leading to violations of the safety condition. This is a
stealthy attack as the IDS will misinterpret the attack’s forgery as process error and/or
sensor noise. In fact, in this case, the offset is below the IDS threshold 0.2. On the
contrary, for offsets outside the range [—0.1,0.1], the IDS detects the attack and fires
an alarm with probability 1. Summarizing, the IDS leaves little margin for an attack
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forging measurement data; furthermore, unnoticed attacks never drag the system into
a deadlock state.

Attack 2

Our second attack strikes Pump B by preventing the deactivation of the pump. We re-
call that this pump is used to fill both Tank 2 and Tank 3. As reported in Figure 5.11, the
attack has been implemented by compromising the proxy of the network component
associated to the actuator of Pump B. In particular, when a stop command arrives from
the controller, the attack prevents the forwarding of the command to the actuator. The
attack becomes operative at a random instant of time (variable ATTACK_INIT) chosen in
the discrete time interval [1,500]. The attack operates only within a finite time window
(parameter ATTACK_WND). Furthermore, in order to fool the controller, an ack message is
sent to it. In this way, both the controller and the IDS believe that the control command
has been correctly dispatched.

Figure 5.12 shows the impact of the attack on the four tanks, respectively. In our
analysis the attack window may vary between 1 and 40 time instants. Let us examine
first the tanks directly involved by Pump B: Tank 2 and Tank 3. As regards the safety
of Tank 2, the probability to reach an unsafe state grows together with the size of the
attack windows; this probability reaches 1 when the window reaches 20 time instants
long. Furthermore, as Tank 2 may overflow, the attack may deadlock the whole system.
Tank 3 violates its safety condition with the same pace as Tank 2. Finally, the IDS
fires alarms with a probability slightly greater than safety violation, indicating that the
detection works quite well.

Notice that the attack affects also Tank 1 and Tank 4 because more water is flowing
from Tank 3. However, Tanks 1 and 4 may reach an unsafe state and/or deadlock
with a significant smaller probability, when compared to Tank 2 and Tank 3. The IDS
notices the anomaly on Tank 1 and it fires an alarm with a probability that is directly
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process Network_DoS_Pump_B () {
int ATTACK_INIT = DiscreteUniform(1,500);
clock attack_clock;
do {
i ... // unaffected proxies
// compromised proxy
i stop_pump_b_ctrl;
alt {// the proxy work correctly until ATTACK_INIT
. when(attack_clock <= ATTACK_INIT - 1) stop_pump_b_actuator
= when(attack_clock >= ATTACK_INIT)
alt {// in the attack window, drop the stop command
: when(attack_clock <= ATTACK_INIT + ATTACK_WND) tau
// outside the attack window, forward the stop command correctly
: when(attack_clock >= ATTACK_INIT + ATTACK_WND + 1)
stop_pump_b_actuator
}
b
ack_stop_pump_b_ctrl // send the ack to the controller
i ... // unaffected proxies

Figure 5.11: DoS attack on Pump B to prevent its deactivation.

proportional to the size of the attack window. However, when monitoring the level of

Tank 2, here we have a significant number of false positives as the threshold 0.2 of the
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IDS seems to be too tight for this kind of attack.

Attack 3

The third attack combines the denial of service on Pump B, as seen in Attack 2, together
with an integrity attack on the measurements of the water level of Tank 2, by replaying
old measurements that have been previously recorded. This is achieved by compromis-
ing two different proxies of the network: the proxy used to transmit stop commands to
Pump B, and the proxy for requesting the measurements of level2 (see Figure 5.13).

The attack consists of two phases: an eavesdrop phase and a strike phase. In the eaves-
drop phase, the attacker records a sequence of measurements detected during an inter-
val of time (ATTACK_WND). Then, in the attack window, the attacker replays the recorded
measurements to the controller and simultaneously drops stop commands addressed
to Pump B. The replay starts only when the measurements match the recorded mea-

surements for two consecutive time units, up to an empirically determined tolerance
0.02.

process Network_DoS_Pump_B_Replay_Tank_2 () {
int ATTACK_INIT = DiscreteUniform(1,500);
clock attack_clock = 0;
inti=0j=0;
real [] buffer = array(k, ATTACK_WND,0.0); // buffer of size ATTACK_WND
do {// unaffected proxies

// phasel: eavesdrop of measurements of level2
. read_level2_ctrl; read_level2; ack_read_level2;
alt {// the proxy work correctly until ATTACK_INIT
:: when(attack_clock < ATTACK_INIT) tau
// start eavesdropping measurements at ATTACK_INIT
. when(attack_clock >= ATTACK_INIT)
alt {// record measurements in the buffer
: when(i < ATTACK_WND) {= buffer[i] = sensed_level2, i++ =}
// phase: strike—replay part
:: when(i == ATTACK_WND)
alt {// if the current measurement matches the recorded data up to 0.02
1 when(abs(sensed_level2 — buffer[j]) <=0.02 &&j<2) {= j++ =}
// if the current measurement does not match the recorded data
:: when(abs(sensed_level2 — buffer[j]) > 0.02 &&j<2) {=j =0 =}
/ /start replay attack
i when(j >=2 && j < ATTACK_WND) {= sensed_level2 = buffer[j], j++=}
// stop replay attack outside ATTACK_WND
:: when(j == ATTACK_WND) tau
}

}; ack_read_level2_ctrl // send in any case the ack to the controller
// phase2: strike, with drops of stop commands to Pump B
i stop_pump_b_ctrl;
alt {// when the replay attack is going on
: when(j >= 2 && j < ATTACK_WND) tau // drop the stop command
// when the replay attack stopped
: when(j<2 || j >= ATTACK_WND) stop_pump_b_actuator
}; ack_stop_pump_b_ctrl // send in any case the ack to the controller

Figure 5.13: DoS on stop commands on Pump B together with a replay attack on mea-
surements of Tank 2.

Figure 5.14 shows the impact of the attack on the four tanks, respectively. In our
analysis the attack window may vary between 10 and 40 time instants. Let us examine
the impact on the tanks directly involved by the attack: Tank 2 and Tank 3. As regards
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the safety of Tank 2, an unsafe state is reached in all analyzed durations of the attack
window; the probability of reaching an unsafe state in Tank 2 increases as the attack
duration increases, with a direct proportional relation. Such probability reaches 0.95
when the time window is around 30 time instants long. This attack causes a violation
of the invariant condition (deadlock) of Tank 2 with a high probability. As for the safety
violations, this probability increases with the size of the attack window, although a bit
more slowly. Tank 3 violates its safety condition with the same pace as Tank 2, but
it never deadlocks. This is because the flow of water from Tank 3 to Tank 1 partially
mitigates the effects of the attack. Thus, even if Pump B is not working correctly, the
level of Tank 3 never violates the invariant condition. As regards the detection of the
attack in Tank 2, the probability of firing an alarm decreases as the attack duration
increases. Actually no alarms are thrown when the duration of the attack is longer than
30 time instants. This is because when the attack window is 30 time instants long the
system deadlocks (i.e., it stops completely) with a probability close to 1.

Finally, due to the physical interconnection of the tanks, the safety of Tank 1 and
Tank 4 is slightly affected. However, these alterations are large enough to violate the
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threshold = 0.2 of the IDS of Tank 1. In fact, although the replay attack on the mea-
surements of the level of Tank 2 succeeds in cheating the corresponding IDS, this is not
enough to implement a stealthy attack. A stealthy attack, i.e., undetected by both IDSs,
should tamper with the measurements of both Tank 1 and Tank 2.

5.2 Summary and discussion

Summary In this chapter we have implemented in HMoDEsT Johansson’s tank sys-
tem, a laboratory application where a controller regulates the level four interconnected
water tanks, as shown in Figure 5.1. The water tank system maintains the water level of
all four tanks within a safe range. This is achieved by means of tow pumps that inject
water into the four tanks. Then we have evaluated the impact of three significant cyber-
physical attacks in terms of deadlock, safety violations and IDS alarms, as presented in
the Verification subsection. The attacks tampered with the sensor measurements or ac-
tuator commands via either the dedicated communication channels or the associated
actuator/sensor devices. In particular, we have presented: (i) an integrity attack on a
sensor of the system; (ii) a DoS attack on a pump, by tampering with its actuator; (iii)
a combination of the previous attack with a replay attack on the measurements. Our
analysis also provided us with insights on the performance of the proposed mitigating
IDS. Finally, the analyses have been carried out on the statistical model checker modes of
the MopEsT TOOLSET.

Discussion The time required for the analyses was quite reasonable, in fact, on av-
erage each analysis required less than 15 minutes. The ICS under analyses contained
four physical variables. Furthermore, recall that the statistical parameters for false neg-
atives and probabilistic uncertainty were both set to 0.01, to ensure a 99% accuracy. On
the other hand, as said in Chapter 4, the verifications required seven hours in some
cases, there we have analysed an ICS with only one physical variable, some verifica-
tions required. Therefore, with a (small) compromise on the accuracy of the verification
results, this confirms that modes and more generally statistical model checking can be
successfully used to perform security analyses of non-trivial ICSs.
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Chapter 6

End of Part 1

In the first part of this thesis we have presented our investigations in applying static for-
mal analysis techniques, i.e., model checking and statistical model checking, to perform
and integrated security and safety analysis of ICSs when exposed to cyber-physical at-
tacks targeting sensors and/or actuators via either the corresponding physical device

or the communication network used by the device.

We have performed our analyses via the MoDesT TOOLSET as it relies on a number
of stat-of-the-art analysis backends. Furthermore, its modelling language, HMODEsT,
revealed to be very effective to specify realistic control systems in terms of four main
parallel components: global clock, plant, logics and network. Such structured represen-
tation scales quite well and allowed us to represent cyber-physical attacks by focusing

on specific compromised components (e.g., sensors, actuators and network proxies).

In Chapter 4 we have implemented a simple but totally realistic and nuanced con-
trol system together with three cyber-physical attacks targeting the sensor or the ac-
tuator of the system. In particular, we have proposed: (i) a DoS attack on the actuator
that operates as a man-in-the-middle on the connecting network; (ii) a DoS attack on the
sensor that is achieved by compromising the sensor device; (iii) an integrity attack on the
sensor, again by compromising the sensor device. Our implementation is quite clean
and concise, although the current version of the language has still some problems in
representing both instantaneous and delayed behaviours in an effective manner (we
did not use the elegant delay() construct as each instance introduces a new clock, with
heavy implications on the verification performance). Furthermore, in order to verify
our safety and invariant conditions we have implemented a Safety() process that is
not really part of our control system. From a designer point of view it would have been
much more practical to use some kind of logic formula, such as: 3 (D[t,t y5)temp > 9.9).

As said in the Introduction, the safety model checker within the MoDEsT TOOLSET
relies on a modified version of the hybrid solver PHAVer, whose specification language
is a slight variation of hybrid automata supporting compositional reasoning, where in-
put and output variables are clearly distinguished [106]. Although, PHAVer would be a

good candidate for the verification of small CPSs, we preferred to specify our case study
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in the high-level language HMoDEST, supporting: (i) differential inclusion to model lin-
ear CPSs with constant bounded derivatives; (ii) linear formulae to express nondeter-
ministic assignments within a dense interval; (iii) compositional programming style in-
herited from process algebra (e.g., parallel composition, nondeterministic choice, loops,
etc.); (iv) shared actions to synchronise parallel components.

In Chapter 5 our goal was to test the statistical model checker modes as a tool for
achieving a safety/security analysis of a non-trivial control system under attack. We
have evaluated the physical impact of three carefully chosen cyber-physical attacks Our
analysis also provided us with insights on the performance of the proposed mitigating
IDS. The time required for the analyses, with a 99% accuracy, was quite reasonable
(in average, less than 15 minutes for each analysis). This confirms that modes can be
successfully used to perform security analyses of non-trivial ICSs. Again, in order to
verify safety conditions we had to implement a Safety() process although it is not really
part of the system under investigation. It would have been much more practical to use
some formula as explained above.

6.1 Related work

In [145, 146], Vigo presents an attack scenario that addresses some of the peculiari-
ties of a cyber-physical adversary, and discussed how this scenario relates to other at-
tack models popular in the security protocol literature. Unlike us, this paper focuses
on Do$ attacks without taking into consideration timing aspects. Rocchetto and Tip-
penhaur [105] introduce a taxonomy of the diverse attacker models proposed for CPS
security and outline requirements for generalised attacker models; in [133], they then
propose an extended Dolev-Yao attacker model suitable for CPS security. In their ap-
proach, physical layer interactions are modelled as abstract interactions between log-
ical components to support reasoning on the physical-layer security of CPSs. This is
done by introducing additional orthogonal channels. Time is not represented. Nigam
et al. [117] work around the notion of Timed Dolev-Yao Intruder Models for Cyber-
Physical Security Protocols by bounding the number of intruders required for the auto-
mated verification of such protocols. Following a tradition in security protocol analysis,
they provide an answer to the question: How many intruders are enough for verifica-
tion and where should they be placed? They also extend the strand space model to CPS
protocols by allowing for the symbolic representation of time, so that they can use Real-
Time Maude [121] along with SMT support. Their notion of time is however different
from ours, as they focus on the time a message needs to travel from an agent to another.
The paper does not mention physical devices, such as sensors and/or actuators.

Pedroza et al. [125] proposed an UML-based environment to model critical embed-
ded systems. The verification of safety properties relies on UPPAAL, whereas the veri-
fication of security properties (e.g., confidentiality and integrity) relies on ProVerif [24].
Wardell et al. [149] proposed an approach for identifying security vulnerabilities of in-

dustrial control systems by modelling malicious attacks as PROMELA models. Kumar
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et al. [87] introduced an attack-fault tree formalism to describe attack scenarios; they
conduct formal analyses by using UPPAAL-SMC in order to obtain quantitative estima-
tions on the impact of both system failures and security threats. Cheh et al. [35] used
UPPAAL-SMC to do statistical model checking on a railway system to assess the safety
of the system under attack. Like us, they tied safety analyses to security analyses and
consider an attack that manipulates the communication messages exchanged between
the signalling components of the railway system (this affects the speed of the trains and
the routes that they take). More precisely, their attack is able to remove, insert, modify,
or delay those network packets, much like a Dolev-Yao attacker. Huang ef al. [78] anal-
ysed the impact of attacks compromising the safety of automotive systems. In partic-
ular, they considered attacks affecting the communications between vehicles: forgery
of fake data, replay of old data or spoofing of vehicle IDs. Both safety and security
properties are verified in UPPAAL-SMC. Taormina et al. [139] modelled the interaction
between the physical and cyber layer of water distribution systems in epanetCPA, an
open-source MATLAB toolbox allowing users to design custom cyber-physical attacks
and simulate the hydraulic response of water networks. epanetCPA features a wide
range of cyber-physical attacks: physical attacks to sensors and actuators, deception
attacks, DoS on communication channels, replay attacks, and alteration of PLC and
SCADA control statements. Although this tool can deal with several cyber-physical
attacks, its analysis is based on single simulations.

In [115] the authors have proposed a formal approach to model and analyse the
security and safety properties of ICSs. Both the ICS components and the attacker are
modelled in the actor-based modelling language Rebeca, where the continuous phys-
ical dynamics are abstracted through discrete automata, for instance, different water
levels (low, medium, and high) are modelled as discrete state variables. Thus, to model
the increasing and decreasing of the water, the automaton performs a transition be-
tween these discrete levels delayed with a prefixed amount of time. Concerning secu-
rity, the attacker can target: (i) the communication channels to inject malicious mes-
sages which may mislead the receiver and cause a system security failure; (ii) the ICS
components: sensors, actuators and controllers to damage to damage them or alter the
physical process; (iii) the combination of each. For such attacks, the security analysis
verifies whether each tank will overflow or underflow. The modelling approach has
been evaluated on the Secure Water Treatment (SWaT) System.

Lanotte et al. [93] provide a metric based on weak bisimulation metrics to estimate
the impact of cyber-physical attacks targeting sensor devices of IoT systems formalised
in a Timed Process Language. In [143] the authors propose and evaluation metric to
analyse the trade-off between usability and security of cyber-physical attacks detection
algorithms. In particular, the metric takes into account the impact of the worst attack
that remains undetected and the average time between false alarms.
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6.2 Future work

For the security analysis we have used LTL properties as specifications for the mod-
elled system under attack. As future work we would like to analyse time properties
regarding the responsiveness of the IDS to violations of safety conditions. Properties
such as:

¢ there are integers m, k such that the system may have an unsafe state at some
instant n > m, and the IDS detects this violation with a delay of at least k time
instants (k being a lower bound of the reaction time of the IDS);

¢ there is an instant n where the IDS fires an alarm but neither an unsafe state nor
a deadlock occurs between the instants n — k and n + k; this would provide a
tolerance of the occurrence of false positive.

Although in general both model checking and statistical model checking techniques do
not provide temporal properties of this form we could implement an ad hoc process to
check these properties.

Another interesting future avenue is the security analysis through SMC of ICSs in
which the physical plant shows a non-deterministic behaviour. Hybrid systems with
nondeterministic physical behaviour can be modelled using Markov automata, and a
number tools already support SMC for such automata [28].

Finally, the proposed method may appear to work only for known attacks against
ICSs. However, due to the peculiar structure of ICSs, the research community has
agreed that there are only a few types of attacks that can affect ICSs [61, 63, 141], the
ones highlighted in Chapter 2. On the other hand, the parameters of cyber-physical
attacks, such as timing, duration and offset, are not known. In this regard, we have
proposed an efficient SMC-based method to analyse the impact of cyber-physical at-
tacks with different parameters. Thus, an interesting future work would be to find a
technique to efficiently analyse colluding cyber-physical attacks on complex ICS, i.e. at-
tacks that compromise multiple sensors/actuators in order to achieve a goal. To do this
we could reason compositionally, for example estimate the impact of attacks targetting
a complex ICS in terms of impact on its subsystems.
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Threat model of part II In the second part of the thesis we focus on controllers com-
promised (A5) by colluding malware that may tamper with actuator commands, sensor

readings, and inter-controller communications (see the figure below).
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Again, we assume that the attacker has already obtained access to the control sys-
tem, and we do not consider the particular mechanisms of how vulnerabilities are ex-
ploited, and how the attack is hidden. Instead, we consider the final objective of the

attack, i.e., to maliciously affect the physical part.
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Chapter 7

Runtime enforcement for control

systems security: a formalisation

In this chapter we provide a formalisation of runtime enforcement tailored for the pro-
tection of control systems, i.e., the controllers. This chapter is structured as follows.
Section 7.1 gives a formal language for monitored controllers. Section 7.2 defines the
case study. Section 7.3 provides a language of regular properties to express controller
behaviours; it also contains a taxonomy of properties expressible in the language. Sec-
tion 7.4 contains the algorithm to synthesise monitors from regular properties, together
with the main results.

7.1 The model

In this section, we introduce the Timed Calculus of Monitored Controllers, called TCMC,
as an abstract formal language to express networks of controllers integrated with edit
automata sitting on the network interface of each controller to monitor/correct their
interactions with the rest of the system. Basically, TCMC extends Hennessy and Regan’s
Timed Process Language (TPL) [75] with monitoring edit automata. Like TPL time pro-
ceeds in discrete time slots separated by tick-actions.

Let us start with some preliminary notation. We use s,sy € Sens to name sensor
signals; a,a, € Act to indicate actuator commands; c,cy € Chn for channels; zq,zy for

generic names.

7.1.1 A process calculus representation for PLCs

In our setting, controllers are nondeterministic sequential timed processes evolving
through three main phases: sensing of sensor signals, communication with other con-
trollers, and actuation. For convenience, we use five different syntactic categories to
distinguish the five main states of a controller: Ctrl for initial states, $leep for sleep-
ing states, $Sens for sensing states, Com for communication states, and Act for ac-
tuation states. In its initial state, a controller is a recursive process waiting for signal
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stabilisation in order to start the sensing phase:

Ctrls> P == X
Bleep>5 W = tick W | S

The main process describing a controller consists of some recursive process defined
via equations of the form X = tick. W, with W € S$leep; here, X is a process variable
that may occur (free) in W. For convenience, our controllers always have at least
one initial timed action tick to ensure time-guarded recursion, thus avoiding undesired
zeno behaviours: the number of untimed transitions between two timed ones is always
bounded. Then, after a determined sleeping period, when sensor signals get stable, the
sensing phase can start.

During the sensing phase, the controller waits for a finite number of admissible
sensor signals. If none of those signals arrives in the current time slot then the controller
will timeout moving to the following time slot (we adopt the TPL construct |- |- for
timeout). The syntax is the following:

Fens >S5 = [YiersiSilS ‘ C

where ) ;c;5;.S; denotes the standard construct for nondeterministic choice. Once the
sensing phase is concluded, the controller starts its calculations that may depend on
communications with other controllers governing different physical processes. Con-
trollers communicate with each other for mainly two reasons: either to receive notice
about the state of other physical sub-processes or to require an actuation on a physical
process which is out of their control. As in TPL, we adopt a channel-based handshake
point-to-point communication paradigm. Note that, in order to avoid starvation, com-

munication is always under timeout. The syntax for the communication phase is:
Comm > C == [Yie6.GJC | [eCJC | A

Once the communication phase is over, the controller moves on to the actuation phase.
In the actuation phase a controller eventually transmits a finite sequence of commands
to actuators, and then, it emits a fictitious control signal end to denote the end of the scan
cycle. After that, the whole scan cycle can restart. Formally,

Act> A = aA | end. X

Remark 2 (Scan cycle duration and maximum cycle limit). The scan cycle of a PLC must
be completed within a specific time, called maximum cycle limit, which depends on the con-
trolled physical process; if this time limit is violated the controller stops and throws an ex-
ception [137]. Thus, the signal end must occur well before the maximum cycle limit of the

controller. We actually work under the assumption that our controllers successfully complete
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Table 7.1: LTS for controllers.

their scan cycle in less than half of the maximum cycle limit. The reasons for this assumption
will be clarified in Remark 4.

The operational semantics in Table 7.1 is along the lines of Hennessy and Regan’s
TPL [75].

Remark 3 (Time determinism). The operational semantics of our timeout construct, inherited
from TPL [75], ensures us a useful property when synthesising monitors: time determinism.
Basically, this property says that the execution of each tick-action leads to at most one new state.

In the following, we use the metavariables &« and B to range over the set of all
observable actions: {s,4,¢, ¢, tick,end}. These actions denote: sensor readings, actuator
commands, channel transmissions, channel receptions, passage of time, and end of scan

cycles, respectively.

7.1.2 An enforcement mechanism based on edit automata

The core of our enforcement relies on (timed) finite-state Ligatti et al.’s edit automata [102],
i.e., a particular class of automata specifically designed to allow/suppress/insert ac-
tions in a generic system in order to preserve its correct behaviour. The syntax follows:

Edit > E == go | Yicr MiEi | X

The special automaton go will admit any action of the monitored system. The edit
automaton ) ;< A;.E; enforces an action A;, and then continues as E;, for any i € I, with
I finite. Here, the symbol A ranges over: (i) « to allow the action «, (ii) ~« to suppress the
action «, and (iii) B < « to insert the action 8 before the action «.

Finally, recursive automata X are defined via equations of the form X = E, where

the automata variable X may occur (free) in E. The operational semantics of our edit
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automata is the following:

_ . jel X=E ELHE
(Go) ———— (Edit) T (recE) 5
g0 — go ZiEI /\i~Ei -]> E] X = E/

Our monitored controllers, written E & |, consist of a controller |, for | € Ctrl U
Sleep U $ens U Comm U Act, and an edit automaton E enforcing the behaviour of J,
according to the following transition rules, presented in the style of [108]:

ESE N E “a E/ X1/
(Allow) - J=1T (Suppress) — T=17
Ex]SE xJ Ex] S E x]J

ELNE 187 ES

Ex] e n

Rule (Allow) is used for allowing observable actions emitted by the controller under
scrutiny. By an application of Rule (Suppress), incorrect actions emitted by (possibly
corrupted) controllers are suppressed. Rule (Insert) is used to insert an action  before

an action « (of the controller) which is not allowed by the monitoring automata.

Thus, in a monitored controller E x |, when | complies with the property en-
forced by E, the two components E and | evolve in a tethered fashion (by applying
rule (Allow)), moving through related correct states. On the other hand, if | gets some-
how corrupted (for instance, due to the presence of a malware) then E and | will get
misaligned reaching unrelated states. In this case, the remaining actions emitted by the
controller will be suppressed by the monitor E until the controller | reaches the end of
the scan cycle, signalled by the emission of the end-action'. After that, if E and ] are not
aligned then E will command the execution of a safe trace, without any involvement
of the controller, via one or more applications of the rule (Insert). Safe traces inserted
in full autonomy by our enforcers always terminate with an end. Thus, when both the
controller and the monitor will be aligned at the end of the scan cycle, they will syn-
chronise on the action end, via an application of the rule (Allow), and from then on they
will continue in a tethered fashion.

Remark 4. Note that in case of insertion of a safe trace by the monitor, the assumption made
in Remark 2 ensures us that scan cycles always end well before a violation of the maximum cy-
cle limit.

Obviously, we can easily generalise the concept of monitored controller to a field
communications network of parallel monitored controllers, each one acting on different

In general, malware that aims to take control of the plant has no interest in delaying the scan cycle and
risking the violation of the maximum cycle limit whose consequence would be the immediate controller
shutting down [137].
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N SN N, SN

(ParL) N5 N (ChnSync) T
ar noync) N; || N, — N/ || N/
AR 1IN NN
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Table 7.2: LTS for field communications networks of monitored controllers.

actuators, and exchanging information via channels. These networks are formally de-
fined via a straightforward grammar:

FNet >N == Ex] | N|IN

with the operational semantics defined in Table 7.2.

Notice that monitored controllers may interact with each other via channel com-
munication (see Rule (ChnSync)). Moreover, via rule (TimeSync) they may evolve in time
only when channel synchronisation may not occur (our controllers do not admit zeno
behaviours). This ensures maximal progress [75], a desirable time property when mod-
elling real-time systems: channel communications will never be postponed.

Having defined the possible actions 5 of a monitored field network (we recall that
B may also range over T-actions, due to an application of rule (Suppress)), we can easily
concatenate actions to define execution traces.

Definition 3 (Execution traces). Given a finite execution trace t = By ... B, we write N LN

as an abbreviation for N = Ny LiN N By By Ni_q B, Ny = N

In the rest of the chapter we adopt the following notations.

Notation 1. As usual, we write € to denote the empty trace. Given a trace t we write | t | to
denote the length of t, i.e., the number of actions occurring in t. Given a trace t we write t to
denote the trace obtained by removing the T-actions. Given two traces t' and ", we write t' - '
for the trace resulting from the concatenation of ' and t'. Fort = t' -t we say that t' is a
prefix of t and t" is a suffix of .

7.2 Use case: the SWaT system

In this section, we describe how to specify in TCMC a non-trivial network of PLCs to
control (a simplified version of) the Secure Water Treatment system (SWaT) [109].

SWaT represents a scaled down version of a real-world industrial water treatment
plant. The system consists of 6 stages, each of which deals with a different treatment,
including: chemical dosing, filtration, dechlorination, and reverse osmosis. For sim-
plicity, in our use case, depicted in Figure 7.1, we consider only three stages. In the first



76 Chapter 7. Runtime enforcement for control systems security: a formalisation

Ve
chemical pump3
dosing

pump>

Filtration Reverse

unit osmosis
unit hs—
valve 3
l3—
clean water

oni, onz, open PLC 11, my, hy PLC, lz ha ons PLC, I3, hg
offy, offy, close L |:| offs |:|
) |

open_req, close req

pump;
raw water

Figure 7.1: A simplified Industrial Water Treatment System.

stage, raw water is chemically dosed and pumped in a tank Tj, via two pumps pump;,
and pump,. A valve connects T; with a filtration unit that releases the treated water in a
second tank T,. Here, we assume that the flow of the incoming water in T is greater
than the outgoing flow passing through the valve. The water in T, flows into a reverse
osmosis unit to reduce inorganic impurities. In the last stage, the water coming from
the reverse osmosis unit is either distributed as clean water, if required standards are
met, or stored in a backwash tank T3 and then pumped back, via a pump pump,, to
the filtration unit. Here, we assume that tank T5 is large enough to receive the whole
content of tank T3 at any moment.

The SWaT system has been used to provide a dataset containing physical and net-
work data recorded during 11 days of activity [64]. Part of this dataset contains infor-
mation about the execution of the system in isolation, while a second part records the
effects on the system when exposed to different kinds of cyber-physical attacks. Thus,
for instance, (i) drops of commands to activate pump, may affect the quality of the water,
as they would affect the correct functioning of the chemical dosing pump; (ii) injections
of commands to close the valve between T; and T, may give rise to an overflow of tank
Ty if this tank is full; (iii) integrity attacks on the signals coming from the sensor of the

tank T3 may result in damages of the pump pumpj, if it is activated when T3 is empty.

Each tank is controlled by its own PLC. The user programs of the three PLCs,
expressed in terms of ladder logic, are given in Figure 7.2. In the following, we give
their descriptions in TCMC.

Let us start with the code of the controller PLC; managing the tank T7. Its defi-
nition is given in terms of two equations to deal with the case when the two pumps,
pump; and pump,, are both off and both on, respectively. Intuitively, when the pumps
are off, the level of water in T drops until it reaches its low level (event /;); when

this happens both pumps are turned on and they remain so until the tank is refilled,
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Figure 7.2: Ladder logics of the three PLCs controlling the system in Figure 7.1.

reaching its high level (event #1). Formally,

Pfﬂ: = tick. ( Ul.ﬁ.m‘close.end.Plon
+my. Lopen_req.ﬁ.@.open.end.]’fﬁ + close_req.ﬁ.%.close.end.PffFJ (ﬁ.%.close.end.l’fff)
+ hy. openfreq.ﬁ.@.open‘end.POfr + closeJeq.ﬁ.ﬁ.close.end.POfF ?Fl.E.close.end.PMF
1 1 1 1
J (E.E.close.end.l’fff))
Pi)n = tick. ( Ul.ﬁ.ﬁ.close.end.l)fn
1-|open_req.onj.ony.open.end. close_req.ony.onj.close.end. ony.onj.close.end.
+m ony.ony. d.Py" +d ony.ong.cl d.Pp" I d.Pp"
+ I’l] . I_openfreq.ﬁ.@.open‘end.PffF + closeireq.ﬁ.ﬁ.close.end.Pfﬂrj (E.E.close.end.l){’fr)

J (ﬁ.@.ﬁ.end.l’fn ))

Thus, for instance, when the pumps are off the PLC; waits for one time slot (to get stable
sensor signals) and then checks the water level of the tank T, distinguishing between
three possible states. If T; reaches its low level (signal /1) then the pumps are turned
on (commands on; and &n;) and the valve is closed (command open_req). Otherwise,
if the tank T; is at some intermediate level between low and high (signal m4) then
PLC; listens for requests arriving from PLC, to open/close the valve. Precisely, if the
PLC gets an open_req request then it opens the valve, letting the water flow from T;
to T, otherwise, if it gets a close_req request then it closes the valve; in both cases the
pumps remain off. If the level of the tank is high (signal k) then the requests of water
coming from PLC, are served as before, but the two pumps are eventually turned off

(commands off; and off5).

PLC; manages the water level of tank T5. Its code consists of the two equations to
model the filling (state 1) and the emptying (state |) of the tank. Formally,

PzT = tick.( le Lm.end.P;J end.PzT + my. LW.end.PZTJ end.PzT + hz. Lclose_req.end.Pzij end.PzTJ end.PzT)

Pzl = tick.( Uz Lm.end,PgJ end.le + my. Lclose_req.end.PZLJ end.PzL + hz. Lclose_req.end.lej end.Pzﬂ end.P;)

Here, after one time slot, the level of T; is checked. If the level is low (signal I5)
then PLC, sends a request to PLC;, via the channel open_req, to open the valve that lets
the water flow from T to T, and then returns. Otherwise, if the level of tank T is
high (signal hy) then PLC; asks PLC; to close the valve, via the channel close_req, and
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then returns. Finally, if the tank T, is at some intermediate level between I, and hy
(signal my) then the valve remains open (respectively, closed) when the tank is refilling

(respectively, emptying).

Finally, PLC3 manages the water level of the backwash tank T5. Its code consists of
two equations to deal with the case when the pump pumpj, is off and on, respectively.

Formally,

Pgﬁ = tick.(Ll:;.ﬁ.end.]j??ff + m:;.%.end.P;ff + h3.ﬁ.end.P§nJ(of%.end.P;fr))

. —_ ff __ __ ff
P;n = tlck.(l_l3.off3.end.P§ + T’I/I3.on3.end.P§n + h3.on3.end.P§nJ(ofF3.end.P§ ))

Here, after one time slot, the level of tank T3 is checked. If the level is low (signal
I3) then PLC3 turns off the pump pump,; (command off;), and then returns. Otherwise,
if the level of T3 is high (signal /13) then the pump is turned on (command sn3) until the

whole content of T3 is pumped back into the filtration unit of Ty.

7.3 A simple language for controllers’ timed properties

In this section, we provide a simple description language to express correctness prop-
erties that we may wish to enforce at runtime in our controllers. As discussed in the
Introduction, we resort to (a sub-class of) reqular properties, the logical counterpart of
regular expressions, as they allow us to express interesting classes of properties refer-

ring to one or more scan cycles of a controller.

7.3.1 Syntax and semantics

The proposed language distinguishes between two kinds of properties: (i) global prop-
erties, e € Prop@G, to express general controllers’ execution traces; (ii) local properties,
p € PropL, to express traces confined to a finite number of consecutive scan cycles.
The two families of properties are formalised via the following regular grammar:

e € PropG == p*|eNe
p € PropL == €| pyp2 | Uiermipi | p10p2

where 71; € Events = Sens U Act U Chn* U {tick} U {end} denote atomic properties, called
events, that may occur as prefix of a property. With an abuse of notation, we use the
symbol € to denote both the empty property and the empty trace.

The semantics of our logic is naturally defined in terms of sets of execution traces

which satisfy a given property; its formal definition is given in Table 7.3.

However, the syntax of our logic is a bit too permissive with respect to our inten-
tions, as it allows us to describe partial scan cycles, i.e., cycles that have not completed.
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Ir*] £ {e}UUpen+{t | t=t-...-ty, witht; € [p], for1 <i < n}
[er Nea £ {t|te[e] andt e [er]}

[ 2 g

[mnp] = {t|te[p]andte [p]}

[p1;p2] £ {t|t=t-t, withty € [p1] and t, € [p2]}

[Uiermipi]l 2 Uierlt | t=m -, witht' € [p;]}

Table 7.3: Trace semantics of our regular properties.

Thus, we restrict ourselves to considering properties which builds on top of local prop-
erties associated to complete scan cycles, i.e., scan cycles whose last action is an end-action.
Formally,

Definition 4. Well-formed properties are defined as follows:
e the local property end.€ is well formed;
* a local property of the form p1; py is well formed if p is well formed;
* a local property of the form p1 N py is well formed if both p1 and py are well formed;

* a local property of the form Ujcr7;.p; is well formed if either 7;.p; = end.€ or p; is well
formed, for any i € I;

e a global property p* is well formed if p is well-formed;
* a global property e N ey is well-formed if both ey and e are well-formed.

In the rest of the chapter, we always assume to work with well-formed properties.

Moreover, we adopt the following notations and/or abbreviations on properties.

Notation 2. We omit trailing empty properties, writing 7 instead of rt.e. For k > 0, we write
7i¥.p as a shorthand for rt.7t...7t.p, where prefix 7 appears k consecutive times. Given a local
property p we write events(p) C Events to denote the set of events occurring in p; similarly, we
write events(e) C Events to denote the set of events occurring in a global property e € PropG.
Given a set of events A C Events and a local property p, we use A itself as an abbreviation for
the property U e 47.€, and A.p as an abbreviation for the property Uy c go7t.p. Given a set of
events A, with end & A, we write A=K, for k > 0, to denote the well-formed property defined
as follows: (i) AS0 £ end; (i) ASK £ end U AASK, for k > 0. Thus, the property ASK
captures all possible sequences of events of A whose length is at most k, for k € IN. We write
PEvents to denote the set of pure events, i.e., Events \ {end}. Finally, we write PUEvents to
denote the set of pure untimed events, i.e., Events \ {end, tick }.

7.3.2 Modularity: from simple to complex properties

From our simple language of regular properties we derive a wide family of correct-
ness properties can be combined in a modular fashion to prescribe precise controller
behaviours.
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Figure 7.3: A trace satisfying a persistent conditional property PCnd,, (7, p).

For the sake of simplicity, both local and global properties presented in this section
prescribe the behaviour of controllers whose initial sleeping phase is one tick long; these
properties can be easily generalised to deal with k-tick sleeping phases: (i) tick—1.p, for a
local property p, and (ii) (tick*1.p)*, for a global property p*. Furthermore, we assume
a maximum number of actions, written maxa, that may occur within a single scan cycle

of our controllers.

7.3.3 Local properties

As already said, local properties describe execution traces which are limited to a finite
number of scan cycles. Let us present a number of significant local properties that can
be expressed in our language of regular properties.

Basic properties

They prescribe conditional, eventual and persistent behaviours.

Conditional These properties says that when a (pure) untimed event 7t occurs in the
current scan cycle then some property p should be satisfied. More generally, for 7r; €
PUEvents and p; € ProplL, we write Case( Ujc{(7;, pi)}) to denote the property gy,
for k = maxa, defined as follows:

® g £ end U Uie i.pi U (PEvents\ Uiel{ﬂi}).qk_l, for 0 < k < maxa
®* 4o £ end.

When there is only one triggering event 7 € PUEvents and one associated lo-
cal property p € Propl, we have a simple conditional property defined as follow:
Cnd(m, p) £ Case({(,p)}).

Conditional properties Cnd (7, p) define a cause-effect relation in which the trig-
gering event 77 is searched in the current scan cycle; one may think of a more general
property PCnd,, (7, p), in which the cause-effect relation persists for m > 0 consecutive
scan cycles, i.e., the search for the triggering event 7t continues for at most m consecutive
scan cycles. Of course, the triggered local property p may span over a finite number
of scan cycles (see Figure 7.3). Formally, we write PCnd,, (7, p), for m € PUEvents,
p € ProplL and m > 0, for the property gpaxa defined as follows:

" £ endglll, U mp U (PEvents\{n}).q" |, for1 <h <mand0 < k < maxa
18 £ end.qﬁra}(a, forl<h<m

1

k

end U 71.p U (PEvents\{7t}).q;_,, for 0 < k < maxa
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cqp=e

Obviously, Cnd(m, p) = PCnd; (71, p).

Bounded eventually In this case, an event 7w must eventually occur within m scan cycles.
Formally, for = € PUEvents and m > 0, we write BE,,(77) to denote the property g ..,
defined as follows, for1 < h < mand 0 < k < maxa:

o gl £ endgl U 71.PEvents=F—1 U (PEvents\{7}).q"_,

h A h—1
® Jo = end.fmaxa

* g} £ mPEvents** 1 U (PEvents\{rr}).q}_,

4 q(l] £ 7C.end.

Bounded persistency While in BE,,(7r) the event 7w must eventually occur within m
scan cycles, bounded persistency prescribes that an event 7t must occur in all subsequent
m scan cycles. Formally, for 1 € PUEvents and m > 0, we write BP,,(7) to denote the

property gl .., defined as follows:
o gl £ 7T.PEvents<F~1; g1 U (PEvents\{7}).q¢_,,forl <h <mand0 < k < maxa
. qg 2 mendglil, forl <h<m
e gt £ m.PEventsk~1 U (PEvents\{7}).q}_,, for 0 < k < maxa

° q(l] £ 7C.end.

Bounded absence The negative counterpart of bounded persistency is bounded ab-
sence. This property says that an event 7 must not appear in all subsequent m scan cycles.
Formally, for 7 € PUEvents and m > 0, we write BA,,(7r) to denote the property g,

defined as follows:
e g, = (PEvents\{rt})Sm®@;q, |, forO<h <m

*qg=e

Compound conditional properties

The properties above can be combined together to express more detailed PLC behaviours.

Let us see a few examples with the help of the use case of Section 7.2.

Conditional bounded eventually According to this property, if a triggering event 71
occurs then a second event 71, must eventually occur between the m-th and the n-th
scan cycle, with 1 < m < n. Formally, for 7r1, 1, € PUEventsand 1 < m < n, we define
CBE|,,, ;) (711, 712) as follows:

CBE(, (71, 712) £ Cnd (71, (PEvents=™>@)" 1, BE, 1 (7).
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Intuitively, if the event 711 occurs then the event 71p must eventually occur between the
scan cycles m and n. In case we would wish that 7t should not occur before the m-th
scan cycle, then the property would become: Cnd(7ty , BA,,—1(72); BE,_+1(72)).

As an example, we might enforce a conditional bounded eventually property in
PLC; of our use case in Section 7.2 to prevent water overflow in the tank T, due to a
misuse of the valve connecting the tanks T; and T,. Assume that z € IN is the time
(expressed in scan cycles) required to overflow the tank T, when the valve is open
and the level of tank T; is low. We might consider to enforce a property of the form
CBE[;, ] (open_req, close), with w << z, saying that if PLC; receives a request to open the
valve, then the valve will be eventually closed within at most w scan cycles (including
the current one). This will ensure that if a water request coming from PLC; is received
by PLC; then the valve controlling the flow from T; to T; will remain open for at most

w scan cycles, with w << z, preventing the overflow of T5.

Conditional bounded persistency Another possibility is to combine conditional with
bounded persistency to prescribe that if a triggering event 7r; occurs then the event 7,
must occur in the m-th scan cycle and in all subsequent n — m scan cycles, for 1 < m <
n. Formally, for 711, 1 € PUEventsand 1 < m < n, we write CBP,, , (71, 712) to denote
the property defined as:

CBP[m,n] (71'1, 7'[2) = Cl’ld(T[] , (PEventSSmaxa)mil; BPnferl (7‘[2)).

As an example, we might enforce a conditional bounded persistency property in
PLC3 of our use case in Section 7.2 to prevent damages of pump, due to lack of water
in tank T3. Assume that z € IN is the minimum time (in terms of scan cycles) required
to fill T, i.e., to pass from level I3 to level h3, when pump, is off. We might consider
to enforce a property of the form CBP|; ;)(I3,0ff;), to prescribe that if the tank reaches
its low level (event [3) then pump, must remain off (event off;) for z consecutive scan
cycles. This will ensure enough water in tank T3 to prevent damages on pumip;.

Notice that all previous properties have a single triggering event 771; in order to
deal with multiple triggering events it is enough to replace the conditional operator
with the case construct.

Conditional bounded absence (also called Absence timed [58]) Finally, we might
consider to combine conditional with bounded absence to formalise a property saying
that if a triggering event 711 occurs then another event 77 must not occur in the m-th
scan cycle and in all subsequent n — m scan cycles, with 1 < m < n. Formally, for
7t1, T € PUEventsand 1 < m < n, we write CBA[m,n] (711, 12) to denote the property
defined as follows:

CBA[m,n] (7'[1, 7'[2) e Cnd(ﬂl, (PEventSSmaxa)m_l;BAn_m+1 (7'[2)).
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Figure 7.4: A trace satisfying a minimum duration property MinD(7ty, 712, m, 1), for
m=mn=3.

Intuitively, if the triggering event 711 occurs then the event 7m, must not occur in the
time interval between the m-th and the n-th scan cycle.

As an example, we might enforce a conditional bounded absence property in PLCp
of our use case in Section 7.2 to prevent water overflow in the tank T, due to a misuse
of the valve connecting the tanks T7 and T,. Assume that z € IN is the time (expressed
in scan cycles) required to empty the tank T, when the valve is closed and the tank
T; reaches its high level hy. Then, we might consider to enforce a property of the form
CBA[Lw] (hy, spen_req), for w < z, to prescribe that if the tank reaches its high level (event
hy) then PLC; may not send a requests to open the valve (event open_req) for the subse-
quent w scan cycles. This ensures us that when T; reaches its high level then it will not

ask for incoming water for at least w scan cycles, so preventing tank overflow.

Compound persistent conditional properties

Now, we formalise in our language of regular properties a number of correctness prop-
erties used by Frehse et al. for the verification of hybrid systems [58]. More precisely,
we formalise bounded versions of their properties.

Bounded minimum duration When a triggering event 711 occurs, if a second event
712 occurs within m scan cycles then this event must appear in at least all subsequent n

scan cycles (see Figure 7.4). Formally, we can express this property as follows:

MinD(7ty, 75, m, n) £ Cnd (71, PCnd,, (712, BP,,(712))).

Note that the property MinD(7t1, 7r2, m, 1) is satisfied each time CBPy, .., (711, 72)
is. The vice versa does not hold as in CBPy,, (71, 772) the event 7 is required to
occur in the whole time interval [m, m+n], while, according to MinD(7ty, 715, m, ), the
event 7, might not occur at all.

Bounded maximum duration When an event 711 occurs, if a second event 71, occurs
within m scan cycles then the same event 7 may occur in at most all subsequent 1 scan

cycles. Formally, we can represent this property as follows:
MaxD( 7y, 71, m, 1) = Cnd(7r1, PCnd,, (72, (PEventsSM@). BA; (115))).

It is worth mentioning here that the property MaxD( 7y, 712, m, 1) is satisfied each time
the property CBPY,, 1] (71, 712); BA1 (712) is. Again, the vice versa does not hold.
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Bounded response When an event 717 occurs, if a second event 7t occurs within m
scan cycles then a third event 713 appears within # scan cycles. Formally, we can express
this property as follows:

BR(7ty, 710, 773, M, 11) £ Cnd(7r1, PCndy, (712, BE, (713))).

Bounded invariance Whenever an event 717 occurs, if 71 occurs within m scan cycles
then 713 will persistently occur for at least n scan cycles. Formally, we can express this
property as follows:

BI(7ry, 7o, 713, m, 1) = Cnd (711, PCnd,, (712, BP, (713))).

Bounded mutual exclusion

A different class of properties prescribes the possible occurrence of events 7r; € PEvents,
for i € I, in mutual exclusion within m consecutive scan cycles. Formally, for 71; €
PUEvents, i € I and m > 1, we write BME,,(U;c;{7} ), for the property g, de-
fined as:

o g £ endgiola U Uier i (Njen iy BAR(77)) U (PEvents\ Uje {75;}).q1_;, for 1 <
h<mand 0 < k < maxa

o qg £ endgll,, for1 < h <m

* gi £ endUUieg 7t;.(Njer iy BA1(77j)) U (PEvents)\ Uier{mi})-qi_y, for 0 < k <

maxa
® qp 2e
As an example, we might enforce a bounded mutual exclusion property in the PLC;
of our use case of Section 7.2 to prevent chattering of the valve, i.e., rapid opening
and closing which may cause mechanical failures on the long run. In particular, we
might consider to enforce a property of the form BMEg ({apen, close } ) saying that within

3 consecutive scan cycles the opening and the closing of the valve (events spen and close,
respectively) may only occur in mutual exclusion.

In Table 7.4, we summarise all local properties represented and discussed in this
section.

7.3.4 Global properties

As expected, the previously described local properties become global ones by applying
the Kleene-operator *. Once in this form, we can put these properties in conjunction
between them. Here, we show two global properties, the first one is built top of con-
ditional bounded persistency properties and the second one is built on top of a condi-
tional bounded eventually property.
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Case: if 7t; occurs then p; should be satisfied, fori € I

Persistent conditional: for m scan cycles, if 7t occurs then p should be satisfied

Bounded eventually: event 71 must eventually occur within m scan cycles

Bounded persistency: event 77 must occur in all subsequent m scan cycles

Bounded absence: even 7T must not occur in all subsequent m scan cycles
Conditional bounded eventually: if 711 occurs then 71, must eventually occur in the scan cycles [m, 1]
Conditional bounded persistency:  if 717 occurs then 71, must occur in all scan cycles of [m, 1
Conditional bounded absence: if 711 occurs then 71, must not occur in all scan cycles of [m, 1]
(Bounded) Minimum duration: when 711, if 715 in [1, m| then 7, persists for at least 1 scan cycles
(Bounded) Maximum duration: when 71y, if 715 in [1, m] then 71, persists for at most 1 scan cycles
Bounded response: when 711, if 715 in [1, m] them 713 appears within # scan cycles
Bounded invariance: when 71y, if 715 in [1, m] then 773 persists for at least n scan cycles
Bounded mutual exclusion events 71; may only occur in mutual exclusion within n scan cycles

Table 7.4: Overview of local properties.

As a first example, we might consider a global property saying that whenever an
event 71 occurs then all events 7; , for i € I, must occur in the m-th scan cycle and in
all subsequent n — m scan cycles, for 1 < m < n. Formally, for 7T, r; € PUEvents,i € I,
and 1 < m < n: ;e;(CBPy, , (77, 71;)) "

We might enforce this kind of property in PLC; of our use case of Section 7.2. As-
sume z € IN being the time (expressed in scan cycles) required to overflow the tank T;
when the level of the tank T; is low and both pumps are on and the valve is closed.
Then, the property would be (CBPyy 4 (I1,on1))* N (CBPyy ) (I1,0m:))*, with w < z, say-
ing that if the tank T; reaches its low level (event [;) then both pump, and pump, must
be on (events ony and on;) in all subsequent w scan cycles, starting from the current one.

As a second example, we might consider a more involved global property relying
on conditional bounded eventually, persistent conditional and bounded persistency.
Basically, the property says that whenever an event 71; occurs then a second event 7,
must eventually occur between the m-th scan cycle and the n-th scan cycle, with 1 <
m < n; moreover, it must occur for d consecutive scan cycles, for 1 < d (see Figure 7.5).
Formally, the property is the following:

*

(CBEj, (1, 72))" N (Cnd (71, PCnd,, (71, PEvents=™>;BP_;(72))))

for 1y, 1, € PUEvents, with 1 < m < nand d > 1. Intuitively, (CBE[m,n] (711, 712))*
requires that when 711 occurs the event 7, must eventually occur between the m-th
scan cycle and the n-th scan cycle. The remaining part of the property says if the event
712 occurs within the n-th scan cycle (recall that m < 1) then it must persist for d scan

cycles.

d

w

800 -~ D00000000000000oRG000000Ng 00N 000 000Na0 00000

m-th n-th

Figure 7.5: A trace satisfying the aforementioned property for some m, n = m + 4 and
d=4
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In this manner, we might strengthen the conditional bounded eventually property
given in Section 7.3.3 for PLC; of our use case to prevent water overflow in the tank Ty.
Let z € IN be the time (expressed in scan cycles) required to overflow the tank T, when
the valve is open and the level of tank T is low. The property is the following:

(CBE[y 4 (open_req, close))* M (Cnd (open_req, PCndy (close, PEvents =™ BP,_ (close))))*

where w << z,and d € N is the time (expressed in scan cycles) required to release in
T3 the (maximum) quantity of water that the tank T, may accumulate in w scan cycles.
The first part of the property says that if PLC; receives a request to open the valve

(event open_req) then the valve must be eventually closed (event close must eventually
occur) within at most w scan cycles. The remaining part of the property says that when
PLC; receives a request to open the valve (event open_req), if the valve gets closed (event
close) within the w-th scan cycle, then it must remain closed for the d consecutive scan
cycles. Here, d depends both on the maximum level of water reachable in T in w scan

cycles and on the physical law governing the water flow from T, to Ts.

7.4 Monitor synthesis

In this section, we provide an algorithm to synthesise monitors from regular properties
whose events are contained in (the set of events associated to) a fixed set P of observ-
able actions. More precisely, given a global property ¢ € PropG the algorithm returns
an edit automaton (e )¥ € Edit that is capable to enforce the property e during the

execution of a generic controller whose possible actions are confined to those in P.

7.4.1 Synthesis algorithm

The synthesis algorithm is defined in Table 7.5 by induction on the structure of the
global/local property given in input; as we distinguish global properties from local

ones, we define our algorithm in two steps.

The monitor { p* )* associated to a global property p* is an edit automaton defined
via the recursive equation X = ( p )%, to recursively enforce the local property p. The
monitor ( e; Ney 7 is given by the cross product between the edit automata (| e; )7
and ( e, )7, to accept only traces that satisfy both e; and ey; the technical definition of
the cross product Pron(EL E,) between two edit automata E; and E;, with respect a

process variable X, is given in the appendix in Table 11.1.

The monitor ( p1 N pa )] is given by the cross product of Table 11.1 between the
edit automata ( p; § and ( p )§. The monitor { p1; p» ¥ is given by the sequential
composition of the edit automata associated to the properties p; and p,, respectively.
Finally, the monitor associated to a union property U;c;7t;.p; does the following: (i)
allows all actions associated to the events 7;, (ii) inserts the action associated to the
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(p)? & X forX={(ph¥
(exney )P 2 Prodf({ e )7, ez )F), X fresh
(e} = X
({pnp2 ) & Prodl (( p1 DX, p2 %)
A
(i & (p )7 forZ={(pa)}, Zfresh
(Uiermipi DX 2 Z forZ=Y m(pi D+ L mi<end.(p; )L+ )y “az
i€l icl aeP\(Ujcpm;U{tickend})

m;#end
Table 7.5: Monitor synthesis from properties in PropG and ProplL.

events 77; whenever the controller is about to complete the scan cycle, i.e., to emit an

end-action, and (iii) suppresses any other event.

Remark 5. Notice that our synthesised monitors do not suppress neither tick-actions nor end-
actions. Thus, if the monitor is aligned with the controller on the execution of an end-actions,
then a new scan cycle is free to start; if this is not the case, the monitor yields some correct trace,
without any involvement of the controller, to reach the completion of the current scan cycle.

7.4.2 Enforcement properties

First of all, we calculate the complexity of the synthesis algorithm based on the number
of occurrences of the operator N in e and the dimension of ¢, dim(e), i.e., the number
of all operators occurring in e (for the definition of dim(e) the reader is referred to the

appendix).

Proposition 1 (Complexity). Let e € PropG be a global property and P be a set of actions
such that events(e) C P. The complexity of the algorithm to synthesise (e|)” is O(m**1),
with m = dim(e) and k being the number of occurrences of the operator N in e.

In the following, we prove that the enforcement induced by our synthesised mon-
itors enjoys the properties stated in the Introduction: determinism preservation, trans-
parency, soundness, deadlock-freedom, divergence-freedom, and compositionality. In this sec-
tion, with a small abuse of notation, given a set of observable actions P, we will use P

to denote also the set of the corresponding events.

As concerns determinism preservation, we prove that deterministic properties give
rise to deterministic enforcements, i.e., monitored controllers with a deterministic run-
time behaviour [32].

Definition 5 (Deterministic properties). A global property e € PropG is said to be de-
terministic if for any sub-term U;c7;.p; appearing in e, we have 1t # vy, for any k,h € 1,
k # h.

Notice that all properties proposed in Section 7.3 are deterministic.
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Definition 6 (Semantically deterministic enforcement). Given an edit automaton E €
Edit and a controller P € Ctrl. The monitored controller E x P is said to be seman-
tically deterministic if for any trace t and actions w1, &y such that E x P LEx ]’ and
E'x ] 25 By x ]y and B x ' 22 By x ], and Eq # Ey, it holds that aq # .

Thus, given a deterministic global property e, our synthesis algorithm returns a

semantically deterministic enforcer. Formally,

Proposition 2 (Deterministic preservation). Given a deterministic global property e €
PropG over a set of events P. For any controller P € Ctrl, the monitored controller
(e|)? w P is a semantically deterministic.

Let us move to the next property: transparency. Intuitively, the enforcement in-
duced by a property e € PropG should not prevent any trace satisfying e itself [102].

Theorem 1 (Transparency). Let e € PropG be a global property, P be a set of observable
actions such that events(e) C P, and P € Ctrl be a controller. Let t be a trace of go X P. If
t € [e] then t is a trace of (e )" x P.

Another important property of our enforcement is soundness [102]. Intuitively, a
controller under the scrutiny of a monitor (e[)” should only yield execution traces
which satisfy the enforced property e, i.e., execution traces which are consistent with its

semantics [e] (up to T-actions).

Theorem 2 (Soundness). Let e € PropG be a global property, P be a set of observable
actions such that events(e) C P, and P € Ctrl be a controller. If t is a trace of the monitored
controller (e)” w P then t is a prefix of some trace in [e] (see Notation 1 for the definition of
the trace 1).

Here, it is important to stress that in general soundness does not ensure deadlock-
freedom of the monitored controller. That is, it may be possible that the enforcement of
some property e causes a deadlock of the controller P under scrutiny. In particular, this
may happen in our controllers only when the initial sleeping phase does not match the
enforcing property. Intuitively, a local property will be called a k-sleeping property if it
allows k initial time instants of sleep. Formally,

Definition 7. For k € N, we say that p € ProplL is a k-sleeping local property, only if
[pl ={t|t=t .-ty forn>0, st t;= tickk‘f;'end,end ¢ t,and1 < i< n} Wesay
that p* is a k-sleeping global property only if p is, and e = e1 N ey is k-sleeping only if both
e1, e are k-sleeping.

The enforcement of k-sleeping properties does not introduce deadlocks in k-sleeping
controllers. This is because our synthesised monitors suppress all incorrect actions of
the controller under scrutiny, driving it to the end of its scan cycle. Then, the controller
remains in stand-by while the monitor yields a safe sequence of actions to mimic a safe

completion of the current scan cycle.

Theorem 3 (Deadlock-freedom). Let e € PropG be a k-sleeping global property, and P
be a set of observable actions such that events(e) C P. Let P € Ctrl be a controller of the
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form P = tickk.S whose set of observable actions is contained in P. Then, {|e|)” x P does not
deadlock.

Another important key of our enforcement mechanism is divergence-freedom [52]. In
practice, the enforcement does not introduce divergence: monitored controllers will al-
ways be able to complete their scan cycles by executing a finite number of actions. This
is because we limit our enforcement to well-formed properties (Definition 4) which
always terminates with an end event. In particular, the well-formedness of local prop-
erties ensures us that in a global property of the form p* the number of events within

two subsequent end events is always finite.

Theorem 4 (Divergence-freedom). Let e € PropG be a global property, P be a set of
observable actions such that events(e) C P, and P € Ctrl be a controller. Then, there exists
ak € NT such that whenever ([e)” x P s Ex ], if Ex ] 5 E' x J', with | ¥ |> k, then
end € t'.

Notice that all properties seen up to now hold in field networks of controllers. This
means that they are preserved when the controller under scrutiny is running in parallel
with other controllers in the same field communications network. As an example, by
an application of Theorems 1 and 2, we show how both transparency and soundness
hold in field networks of controllers running in parallel. A similar result applies to the

remaining properties.

Corollary 1 (Compositionality). Let e € PropG be a global property and P be a set of
observable actions, such that events(e) C P. Let P € Ctrl be a controller and N € FNet be
a field network. If ({e)” x P) | N LEXD | N, for some t, E, ] and N, then

o whenever gox P X3 gox J, with t' € [e], the trace t' is a trace of (e )T w P;

o whenever (e|)” x P 2 Ex ] the trace t' is a prefix of some trace in [e].

7.5 Summary

In this chapter we have defined a simple timed process calculus, based on Hennessy
and Regan’s Timed Process Language (TPL) [75], for specifying controllers, finite-state
edit automata, and networks of communicating monitored controllers, Table 7.2. Then,
we have defined a simple description language based on regular expression to express
timed correctness properties that should hold upon completion of a finite number of scan
cycles of the monitored controller, indeed, we have have focused only on well-formed
property according to Definition 4. This language has allowed us to abstract over con-
trollers implementations, focusing on general properties which may even be shared by
completely different controllers. With such language, we have shown a wide class of
interesting correctness properties for controllers in terms of our regular properties, Ta-
ble 7.4. Furthermore, we have provided a synthesis function, (| — |) that, given an alpha-
bet P of observable actions (sensor readings, actuator commands, and inter-controller

communications) and a deterministic regular property e combining events of P, returns
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an edit automaton (¢ |)%, Table 7.5. The resulting enforcement mechanism will ensure
the required features: transparency, soundness, determinism preservation, deadlock-
freedom, divergence-freedom, mitigation and compositionality. Finally, in Section 7.2
we have proposed a non-trivial case study, taken from the context of industrial water
treatment systems. There, we have also shown the user programs of the three PLCs,
expressed in terms of ladder logic, Figure 7.2. Thus, in the next chapter, we will rely on
this case study to show the effectiveness of our enforcement mechanism.
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Chapter 8

Our enforcement mechanism at

work

In this chapter, we propose an implementation of our enforcement mechanism in which
monitors, running on field-programmable gate arrays (FPGAs) [150], enforce open source
PLCs ! [11], running on Raspberry Pi devices [60].

This chapter has the following structure. In Section 8.1, we argue why FPGAs
are good candidates for implementing secure proxies. In Section 8.2, we describe how
we implemented the enforcement of non-trivial safety properties on the use case of
Section 7.2, where the physical plant was simulated in Simulink [110]. Finally, in Sec-
tion 8.3, we test our implementation when the enforced PLCs are injected with five
different malware aiming at causing three different physical perturbations: tank over-
flow, valve damage, and pump damage.

8.1 FPGAs as secure proxies for ICSs

Field-programmable gate arrays (FPGAs) are semiconductor devices that can be pro-
grammed to run specific applications. An FPGA consists of (configurational) logic
blocks, routing channels and I/O blocks. The logic blocks can be configured to per-
form complex combinational functions and are further made up of transistor pairs,
logic gates, lookup tables and multiplexers. The applications are written using hard-
ware description languages, such as Verilog [142]. Thus, in order to execute an applica-
tion on the FPGA, its Verilog code is converted into a sequence of bits, called bitstream,
that is loaded into the FPGA.

FPGAs operate with a frequency of 100 MHz, thus, they introduce a negligible
overhead in the whole behaviour of the PLCs which run with a frequency of 1 KHz [118].
Furthermore, FPGAs are assumed to be secure when the adversary does not have phys-
ical access to the device, i.e., the bitstream cannot be compromised [80]. Recent FPGAs

support remote updates of the bitstream by relying on authentication mechanisms to

ICompliant with the TEC 61,1313 international standard.
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prevent unauthorised uploads of malicious logic [80]. Nevertheless, as said in the In-
troduction and advocated by McLaughlin and Mohan [111, 114], any form of runtime
reconfiguration should be prevented. Summarising, under the assumption that the ad-
versary does not have physical access to the FPGA and she cannot do remote updates,

FPGAs represent a good candidate for the implementation of secure enforcing proxies.

8.2 An implementation of the enforcement of the SWaT

system

The proposed implementation adopts different approaches for plant, controllers and
enforcers.

Plant The plant of the SWaT system is simulated in Simulink [110], a framework to
model, simulate and analyse cyber-physical systems, widely adopted in industry and
research. A Simulink model is given by blocks interconnected via wires. Our Simulink
model contains blocks to simulate water tanks, actuators (i.e., pumps and valves) and
sensors (see Figure 8.1). In particular, water-tank blocks implement the differential
equations that model the dynamics of the tanks according to the physical constraints
obtained from [109, 64]. Actuation blocks receive commands from PLCs, whereas sen-
sor blocks send measurements to PLCs. For simplicity, state changes of both pumps and
valves do not occur instantaneously; they take 1 second. Finally, we ran our Simulink
model on a laptop with 2.8 GHz Intel i7 7700 HQ, 16GB memory, and Linux Ubuntu
20.04 LTS OS.

Controllers Controllers use OpenPLC [11], a fully functional open source PLC capable
of running user programs in all five IEC61131-3 defined languages [82]. Additionally,
OpenPLC supports standard SCADA protocols, such as Modbus/TCP, DNP3 and Eth-
ernet/IP. OpenPLC can run on a variety of hardware, from a simple Raspberry Pi to
robust industrial boards. We installed OpenPLC on three Raspberry Pi 4 [131]; each
instance runs one of the three ladder logics seen in Figure 7.2.

Enforcers As regards the enforcing monitors, we use three NetFPGA-CML develop-

ment boards [154]. More precisely, we have implemented our synthesis algorithm in

dirty water
in
clean water

Water filter

-

Actuators tank 1 Sensor tank 1 Sensor tank 2 Clean water Actuator tank 3 Sensor tank 3

Figure 8.1: An implementation in Simulink of the plant of the SWaT system.
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Python to return enforcers written in Verilog. The Verilog code is then compiled into a
bitstream which runs inside the FPGAs.

Finally, the connection between the PLCs, the enforcers and the Simulink of the
plant is realised via a wired UDP network (see Figure 8.2). The duration of each scan
cycle is fixed to 100 milliseconds with no enforcement, and 101 milliseconds in the
presence of enforcement. The ladder logics of the three PLCs, the synthesis algorithm
in Python, the enforcers written in Verilog, and the Simulink simulations can be found

at: https://bitbucket.org/formal_projects/runtime_enforcement.

Figure 8.2: Some components of our implementation.

8.3 The enforced SWaT system under attack

In this section, we consider five different attacks targeting the PLCs of the SWaT system
to achieve three possible malicious goals: (i) overflow the water tanks, (ii) damage of
the valve, (iii) damage of the pumps. In order to simulate the injection of malware in the
PLCs, we reinstall the original PLC ladder logics with compromised ones, containing
some additional logic intended to disrupt the normal operations of the PLC [67]. In the
following, we will discuss these attacks, grouped by goals, showing how the enforce-
ment of specific properties mitigates the attacks by preserving the correct behaviour of
the monitored PLCs.

Tank overflow Our first attack is a DoS attack targeting PLC; by dropping the com-
mands to close the valve. In the left-hand side of Figure 8.3 we show a possible imple-
mentation of this attack in ladder logic. Basically, the malware remains silent for 500
seconds and then it sets true a malicious drop variable (highlighted in yellow). Once the
variable drop becomes true, the valve variable is forced to be false (highlighted in red),
thus preventing the closure of the valve.

In order to prevent attacks aiming at overflowing the tanks, we propose the fol-
lowing three enforcing properties, one for each PLC, respectively:

N (CBP( ) (h1, 0ff1))* N (CBPyy ) (h1, 0ff2) )", an intersection between two con-
ditional bounded persistency properties to enforce PLC; to prevent water over-
flow in T;. This property ensures that both pumps pump, and pump, are off, for
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Figure 8.3: Tank overflow: Ladder Logic of the first (left) and the second attack (right).

m consecutive scan cycles, when the level of T; is high (measurement /). Here,
m < n for n € N is the number of scan cycles required to empty T; when its level
is high, both pumps are off, and the valve is open.

e = (CBPyy,,,) (h2, close_req))*, a conditional bounded persistency property for
PLC; ensuring that requests to close the valve (event close_req) are sent for u con-
secutive scan cycles when the level of water in tank T is high (measurement /7).
Here, u < v for v € IN is the number of scan cycles required to empty the tank T
when the level is high and the valve is closed.

e3 £ (CBPY3 ) (h3,5m3))", a conditional bounded persistency property for PLCj to
ensure that pump, is on for w consecutive scan cycles when the level of water in
tank T3 is high (measurement h3). Here, w < z for z € IN is the time (expressed
in scan cycles) required to empty the tank T3 when the level is high and pump;, is
on.

In Figure 8.4 we show part of the Verilog code of the enforces associated to the proper-

ties e1, ex and e3, respectively.

Now, let us analyse the effectiveness of the enforcement induced by these three

properties. For instance, in the upper graphs of Figure 8.5 we report the impact on

the tanks T7 and T, of the DoS attack previously described, when enforcing the three

case (state) case (state) case (state)
INIT: INIT: INIT:
if (level 1 >= high_1) begin if (level_2 >= high_2) begin if (level_3 >= high 3) begin
state = ENF_PUMP 1; state = ENF_REQ; state = ENF_PUMP;
end end end
else begin else begin else begin
state = INIT; state = INIT; state = INIT;
end end end
ENF_PUMP_1: ENF_REQ: ENF_PUMP:
if (pump_l == off) begin if (request == close_req) begin if (pump_3 == on) begin
state = ENF_PUMP 2; state = CYCLE_1; state = CYCLE_1;
end end end
else begin else begin else begin
pump 1 = off; request = close_req; pump_3 = on;
state = ENF_PUMP_2; state = CYCLE_1; state = CYCLE_1;
end end - end -
ENF_PUMP_2: CYCLE_1: CYCLE_1:
if (pump_2 == off) begin if (request == close_req) begin if (pump_3 == on) begin
state = CYCLE_1; state = CYCLE_2; state = CYCLE_2;
end end end
else begin else begin else begin
pump 2 = off; request = close_req; pump_3 = on;
state = CYCLE_1; state = CYCLE 2; state = CYCLE 2;
end end end

Figure 8.4: Verilog code of the enforcers of the three properties ej, e, e3.
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properties e, e; and e3 in the corresponding PLCs. Here, the red region denotes when
the attack becomes active. As the reader may notice, despite repeated requests to close
the valve coming from PLC5, the compromised PLC; never closes the valve causing the
overflow of tank Tp. So, the enforced property ¢; is not up the task.

In order to prevent this attack, we must guarantee that PLC; closes the valve when
PLC; requests so. Thus, we should enforce in PLC; a more demanding property ¢}
defined as follows: e; N CBEj; 1] (close_req, close). Basically, the last part of the property
ensures that every request to close the valve is followed by an actual closure of the
valve in the same scan cycle. The impact of the malware on PLC; when enforcing the
properties ¢}, ey, e3 is represented in the lower graphs of Figure 8.5. Now, the correct
behaviour of PLC; is ensured, thus preventing the overflowing of the water tank 1. In
these graphs, the green highlighted regions denote when the monitor detects the attack
and mitigates the activities of the compromised PLC;. In particular, the monitor inserts
the commands to close the valve on behalf of PLC; when PLC, sends requests to close
the valve.
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Figure 8.5: Tank overflow: DoS attack on PLC; when enforcing e, e, e3 (up) and
ey, ez, e3 (down).

Having strengthened the enforcing property for PLC; one may think that the en-
forcement of ey in PLC; is now superfluous to prevent water overflow in T,. However,
this is not the case if the attacker can compromise PLCy. Consider a second attack to
PLC,, an integrity attack that adds an offset of —30 to the measured water level of T5.
We show a ladder logic implementation of such attack in the right-hand side of Fig-
ure 8.3 where, for simplicity, we omit the initial silent silent phases lasting 500 seconds.
The impact on the tanks T and T, of the malware injected in PLC; in the presence of the
enforcing of the properties ] and e3, respectively, is represented on the upper graphs of
Figure 8.6. Again, the red region shows when the attack becomes active. As the reader

may notice, the compromised PLC, never sends requests to close the valve causing the
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overflow of the water tank T,. On the other hand, when enforcing the three proper-
ties ¢/, e, e3 in the three PLCs, the lower graphs of Figure 8.6 shows that the overflow
of tank T; is prevented. Again, the green highlighted regions denote when the moni-
tor detects the attack and mitigates the commands of the compromised PLC,. Here, the
monitor inserts the request to close the valve on behalf of PLC; when T, reaches a high
level.
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Figure 8.6: Tank overflow: integrity attack on PLC, when enforcing ¢}, e3 (up) and
e}, ez, e3 (down).

Valve damage We now consider attacks whose goal is to damage the valve via chat-
tering, i.e., rapid alternation of openings and closings of the valve that may cause me-
chanical failures on the long run. In the left-hand side of Figure 8.7 we show a possible
ladder logic implementation of a third attack that does injection of the commands to
open and close the valve. In particular, the attack repeatedly alternates a stand-by phase,
lasting 70 seconds, and a injection phase, lasting 30 seconds (yellow region); then, in the
injection phase the valve is opened and closed rapidly (red region). With no enforce-
ment, the impact of the attack on the tanks T; and T is represented on the upper graphs
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Figure 8.7: Valve damage: Ladder logic of the first (left) and the second attack (right).
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of Figure 8.8, where the red region denotes when the attack becomes active. From the
graph associated to the execution of T; the reader can easily see that the valve is chat-
tering. Note that this is a stealthy attack as the water level of T, is maintained within the
normal operation bounds.

In order to prevent this kind of attacks, we might consider to enforce in PLC; a
bounded mutual exclusion property of the form e} £ (BMEjoo{open, close})* to ensure
that within 100 consecutive scan cycles (10 seconds) openings and the closings of the
valve may only occur in mutual exclusion. When the property ef is enforced in PLC;,
the lower graphs of Figure 8.8 shows that the chattering of the valve is prevented. In
particular, the green highlighted regions denote when the monitor detects the attack
and mitigates the commands on the valves of the compromised PLC;.
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Figure 8.8: Valve damage: injection attack on PLC; in the absence (up) and in the
presence (down) of enforcement.

A fourth attack with the same goal of chattering the valve may be launched on
PLC,, by sending rapidly alternating requests to open and close the valve. This can be
achieved by means of an integrity attack on the sensor of the tank T, by rapidly switch-
ing the measurements between low and high. In the right-hand side of Figure 8.7 we
show parts of the ladder logic implementation of this attack on PLCy, where, for sim-
plicity, we omit the machinery for dealing with the alternation of phases. Again, the
attack repeatedly alternates between a stand-by phase, lasting 70 seconds, and a active
phase, lasting 30 seconds. When the attack is in the active phase (red region) the mea-
sured water level of T, rapidly switches between low and high, thus, sending requests
to PLC; to rapidly open and close the valve in alternation.

The impact of this attack targeting on PLC; in the absence of an enforcing monitor
is represented in the upper graphs of Figure 8.9, where the red region shows when
the attack becomes active. Notice that the rapid alternating requests originating from
PLC; cause a chattering of the valve. On the other hand, with the enforcement of the
property e/ in PLC; , the lower graph of Figure 8.9 shows that the correct behaviour of
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tanks T7 and T; is ensured. In that figure, the green highlighted regions denote when
the enforcer of PLC; detects the attack and mitigates the commands (on the valve) of the
compromised PLC,. Notice that in this case no enforcement is required in PLC,.
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Figure 8.9: Valve damage: integrity attack on PLC; in the absence (up) and in the
presence (down) of enforcement.

Pump damage Finally, we consider attacks whose goal is the damage of the pumps,
and in particular pump,. In that case, an attacker may force the pump to start when the
water tank T3 is empty. This can be done with a fifth attack that injects commands to turn
on the pump based on a ladder logic implementation similar to that seen in Figure 8.3.
The impact of this attack to tank T3 in the absence of enforcement is represented on
the left-hand side graphs of Figure 8.10, where the red region shows when the attack
becomes active. As the reader may notice, pump, is turned on when T3 is empty.

Now, we can prevent damage on pump, by enforcing on PLCj the following condi-
tional bounded persistent property: e} = (CBPYy,4(I3,0ff;))*. The enforcement of this
property ensures that pump; is off for w consecutive scan cycles when the level of water
in tank T3 is low, for w < zand z € IN being the time (expressed in scan cycles) required
fill up tank T3 when the pump is off. Thus, when the enforcement of the ¢} is active,
the lower graphs of Figure 8.10 shows that the correct behaviour of T3 is ensured, thus
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Figure 8.10: Pump damage: injection attack on PLCj in the absence (up) and in the
presence (down) of enforcement.
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preventing pump damage. In that figure, the green highlighted regions denote when
the monitor detects the attack and mitigates the commands (of the pumps) of the com-
promised PLC3. More precisely, the enforcer suppresses the commands to turn on the
pump when the tank is empty, for w consecutive scan cycles.

8.4 Summary

In this chapter we have shown the effectiveness of our enforcement via a full imple-
mentation of a non-trivial case study with monitors running on FPGAs and enforcing
PLCs, running on Raspberry Pi devices. We have relied on Simulink to simulate the
physical part of our case study, Figure 8.1. Concerning the computational overhead in-
troduced by the enforcers running on FPGAs, we have shown that the duration of the
scan cycle of the monitored PLCs has increased only by a factor of 1%. Furthermore,
we have tested our implementation when the enforced PLCs were injected with five
different malware aiming at causing three different physical perturbations: (i) over-
flow the water tanks, (ii) damage of the valve, (iii) damage of the pumps. Recall that in
order to simulate the injection of malware in the PLCs, we have reinstalled the original
PLC ladder logics with compromised ones, containing some additional logic intended
to disrupt the normal operations of the PLC, see for instance Figure 8.3. Finally, we
have shown how the enforcement of specific properties have mitigated the attacks by
preserving the correct behaviour of the monitored PLCs.
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Chapter 9

End of Part I1

In the second part of this work we have provided a formal approach based on runtime
enforcement for the security of control systems. In Chapter 7 we have defined a formal
language to express networks of monitored controllers, potentially compromised with
colluding malware that may forge/drop actuator commands, modify sensor readings,
and forge/drop inter-controller communications. The enforcing monitors have been
expressed via a finite-state sub-class of Ligatti’s edit automata.

Then, we have defined a simple description language to express ad-hoc timed reg-
ular properties, always terminating with an end event, which have been used to describe
a wide family of correctness properties can be combined in a modular fashion to pre-
scribe precise controller behaviours. For instance, our description language allows us

to capture most controller properties collected in [58].

Once defined a formal language to describe controller properties, we have pro-
vided a synthesis function (| — |) that, given an alphabet P of observable actions (sensor
readings, actuator commands, and inter-controller communications) and a determinis-
tic regular property e consistent with P, returns a finite-state edit automaton (e )”. The
resulting enforcement mechanism will ensure the required features advocated in the
Introduction: transparency, soundness, deadlock-freedom, divergence-freedom, miti-
gation and compositionality. In particular, with regards to mitigation our synthesised
enforcers never suppress end-actions as they are crucial watchdogs signalling the end
of a controller scan cycle: when a controller is aligned with its enforcer then a new scan
cycle is free to start, otherwise, if this is not the case, the enforcer launches a mitigation
cycle by yielding some correct trace, without any involvement of the controller, to reach

the completion of the current scan cycle.

In Chapter 8 we have provided a full implementation of a non-trivial case study in
the context of industrial water treatment, where enforcers are implemented on FPGAs.
In this setting, we showed the effectiveness our enforcement mechanism by means of
five carefully-designed attacks targeting the PLCs of our use case. We recall that in the
Introduction we have widely discussed about the advantages of securing the enforcing

proxy rather than the controller itself.
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Finally, notice that malicious alterations of sensor signals at network level, or within
the sensor devices, are out of the scope of this work. On the other hand, our ICS ar-
chitecture ensures that the sensor measurements transmitted to the supervisory control
network (e.g., to SCADA devices) will not be corrupted by the controller.

9.1 Related work

The notion of runtime enforcement was introduced by Schneider [135] to enforce secu-
rity policies via truncation automata, a kind of automata that terminates the monitored
system in case of violation of the property. Thus, truncation automata can only enforce
safety properties.

Ligatti et al. [102] extended Schneider’s work by proposing the notion of edit au-
tomata, i.e., an enforcement mechanism able of replacing, suppressing and inserting sys-
tem actions. Edit automata are capable of enforcing instances of safety and liveness
properties, along with other properties such as renewal properties [22, 102]. In gen-
eral, Ligatti et al.’s edit automata have an enumerable number of states, whereas in this
work we restrict ourselves to finite-state edit automata equipped with Martinelli and
Matteucci’s operational semantics [108].

Bielova and Massacci [22, 23] provided a stronger notion of enforceability by intro-
ducing a predictability criterion to prevent monitors from transforming invalid execu-
tions in an arbitrary manner. Intuitively, a monitor is said predictable if one can predict
the number of transformations used to correct invalid executions, thereby avoiding un-
necessary transformations.

Falcone et al. [49, 51] proposed a synthesis algorithm, relying on Streett automata, to
translate most of the property classes defined within the safety-progress hierarchy [107]
into enforcers. In the safety-progress hierarchy our global properties can be seen as
guarantee properties for which all execution traces that satisfy a property contain at least
one prefix that still satisfies the property. In the Safety-Progress classification our global
properties can be seen as guarantee properties for which all execution traces that satisfy
a property contain at least one prefix that still satisfies the property.

Beauquier et al. [18] proved that finite-state edit automata (i.e. those edit automata
we are actually interested in) can only enforce a sub-class of regular properties. Ac-
tually they can enforce all and only the regular properties that can be recognised by a
finite automata whose cycles always contain at least one final state. This is the case
of our enforced regular properties, as well-formed local properties in IProplL always
terminate with the “final” atomic property end.

Some interesting results on runtime enforcement of reactive systems (which have
many aspects in common with control systems) have been presented by Koénighofer
et al. [84]. They defined a synthesis algorithm that given a safety property returns a
monitor, called shield, that analyses both inputs and outputs of a reactive system, and
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enforces the desired property by correcting the minimum number of output actions.
More recently, Pinisetty et al. [126, 124] proposed a bi-directional runtime enforcement
mechanism for reactive systems, and more generally for cyber-physical systems, to cor-
rect both inputs and outputs. They express the desired properties in terms of Discrete
Timed Automata (DTA) whose labels are system actions. Thus, an execution trace sat-
isfies a required property only if it ends up on a final state of the corresponding DTA.
Although the authors do not identify specific classes of correctness properties as we
aim to do, DTAs are obviously more expressive than our class of regular properties.
However, as not all regular properties can be enforced [18], they proposed a more per-
missive enforcement mechanism that accepts also execution traces which may reach a
final state.

Aceto et al. [5, 4] developed an operational framework to enforce properties in
HML logic with recursion (WHML) relying on suppression. More precisely, they achieved
the enforcement of a safety fragment of yHML by providing a linear automated syn-
thesis algorithm that generates correct suppression monitors from formulas. Here, in
order to avoid deadlocks, when the SuS reaches a state in which the monitor does not
specify any transformation, the monitor ceases its activity and acts as the go moni-
tor (see also [52]). Enforceability of modal y-calculus (a reformulation of yHML) was
previously tackled by Martinelli and Matteucci [108] by means of a synthesis algorithm
which is exponential in the length of the enforceable formula. More recently, Cassar [32]
defined a general framework to compare different enforcement models and different
correctness criteria, including optimality. His works focuses on the enforcement of a
safety fragment of yHML, paying attention to both directional and bi-directional no-

tions of enforcement.

It is worth mentioning here runtime adaptation [33, 34], a monitoring technique
that sits between runtime verification and runtime enforcement. Violation detections
are replaced by adaptation actions that respond to behaviours detected, while reusing
as many elements as possible from the system under scrutiny.

Concerning the notion of deterministic enforcement, we synthesized determinis-
tic enforcers as defined in [5, 32], which were derived from syntactically deterministic
regular expressions. An quite different notion of deterministic monitoring was intro-
duced in [54, 55], there the authors proposed a contextual definition for deterministic
monitoring based on consistent detections, they considered detections (i.e., the verdicts
of the monitors) as the only externally visible aspect of a monitor. Thus, given a trace
exhibited by the program it is instrumented with, a consistent monitor is required to
always reach the same verdict for that trace. Note that, a consistent detection allows
such a monitor to pass through different intermediate states during the course of its
verdict-reaching trace analysis. Finally, they proposed the notion of controllability that
leverages a tractable method for assessing deterministic monitor behaviour.

Concerning syntactically deterministic monitors, i.e., monitors that cannot contain

a nondeterministic choice between two sub-monitors reached by the same action, in
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[6] the authors showed that for every monitor derived from and HML formula with
recursion three is an equivalent, deterministic one, which is at most doubly exponential
in size with respect to the original monitor. When monitors are described as CCS-like
processes, this doubly exponential bound is optimal. When (deterministic) monitors
are described as finite automata, then they can be exponentially more succinct than

their CCS process form.

Concerning the features of soundness and transparency, we have relied on the ones
defined by Ligatti et al. [102]. Other definitions have been provided. For instance, in [5]
the authors enforced properties of the yHML logic which is a branching-time logic, i.e.,
the semantics of such properties is given in terms of computation graphs, not traces as
in our case. Concerning soundness, it is required that the resulting composite system
obtained from instrumenting the enforcer with the system/controller should satisfy
the property of interest, whenever this property is satisfiable. On the other hand, trans-
parency requires that whenever a system (controller in our case) already satisfies the
property to be enforced, the behaviour of the enforced system should be behaviourally

equivalent (in terms of weak bisimilarity) to the original system.

In [126] soundness requires that for any input word the output of the enforcer can
be extended to a sequence that satisfies, very much like in Ligatti et al. [102]. On the
other hand, transparency requires that any new input event will be simply forwarded
by the enforcer if what has been computed as output earlier by the enforcer followed
by the input can be extended to a sequence that satisfies the enforced property in the
future. This is a somewhat stronger requirement, indeed a transparency requirement
according to. [102] is satisfied if the transparency requirement of [126] is satisfied. Sim-
ilar soundness and transparency definitions, although in timed systems context, have
been presented by [127]. There, soundness requires that if a timed word is released as
output by the enforcement function, in the future, the output of the enforcement func-
tion should satisfy the property. On the other hand, transparency requires that, at any
time, the output is a delayed prefix of the observed input.

As regards papers in the context of control system security closer to our objectives,
McLaughlin [111] proposed the introduction of an enforcement mechanism, called C?,
similar to our secure proxy, to mediate the control signals 1 transmitted by the PLC to
the plant. Thus, like our secured proxy, C? is able to suppress commands, but unlike
our proxy, it cannot autonomously send commands to the physical devices in the ab-
sence of a timely correct action from the PLC. Furthermore, C2? does not seem to cope
with inter-controller communications, and hence with colluding malware operating on
PLCs of the same field network.

Mohan et al. [114] proposed a different approach by defining an ad-hoc security
architecture, called Secure System Simplex Architecture (S3A), with the intention to gen-
eralise the notion of “correct system state” to include not just the physical state of the
plant but also the cyber state of the PLCs of the system. In S3A, every PLC runs un-

der the scrutiny of a side-channel monitor which looks for deviations with respect to safe
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executions, taking care of real-time constraints, memory usage, and communication pat-
terns. If the information obtained via the monitor differs from the expected model(s)
of the PLC, a decision module is informed to decide whether to pass the control from
the “potentially compromised” PLC to a safety controller to maintain the plant within
the required safety margins. As reported by the same authors, S3A has a number of
limitations comprising: (i) the possible compromising of the side channels used for
monitoring, (ii) the tuning of the timing parameters of the state machine, which is still

a manual process.

Finally, our work may remind the reader of supervisory control theory [130, 27], a
general theory for automatic synthesis of controllers (supervisors) for discrete event sys-
tems, given a plant model and a specification for the controlled behaviour. Fabian and
Hellgren [48] have pointed out a number of issues to be addressed when adopting su-
pervisory control theory in industrial PLC-based facilities, such as causality, incorrect
synchronisation, and choice between alternative paths. However, in our work we focus
on a quite different kind of synthesis: from a correctness specification to an enforcing
monitor. As our synthesis regards only logical devices (no plant involved) we are not

affected from problems similar to those mentioned by Fabian and Hellgren.

9.2 Future work

We are currently working on a user-friendly tool that synthesizes our enforcers from the
family of properties that we have presented in Chapter 7. In that tool our properties
are represented with a tree-like structure and can be combined with intuitive drag-and-
drop actions.

We also want to test our enforcement mechanism in other control system domains,
such as robotics and power transmission. More generally we would like to consider
physical plants with significant uncertainties, that is, measurement noises and physi-
cal process uncertainties. In particular, a significant measurement noise might falsely
indicate that the monitored plant is outside safe limits and thus induce our enforcers
to take erroneous correcting actions. To address such challenges we could rely on and
integrate our enforcers with well-know algorithms from the control theory field. In
practice, these algorithms provide the means to correctly estimate the state of the phys-
ical plant even when it is affected by significant uncertainties.

Finally, we would like to enhance the capabilities of our enforcers to deal with ma-
licious alterations of sensor measurement coming from compromised sensor devices.
To do so we will investigate the integration of our secured proxies with physics-based
attack detection [61]. Since the differential/difference equations are involved in the cal-
culation of such algorithms, these could introduce significant overhead into the secure

proxy scan cycle and therefore into the monitored controller scan cycle.
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Chapter 10

Overview of published work

We now overview the research papers that the author of this thesis has contributed to
during the course of his PhD.

Concerning the first part of this work, we made our first steps in the static analy-
sis for the security of ICSs via model checking in the 38-th IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Objects, Components, and Systems
(FORTE). The paper is cited below and contains the results and the contributions pre-
sented in Chapter 4.

e R. Lanotte, M. Merro, and A. Munteanu. 2018. A Modest Security Analysis of
Cyber-Physical Systems: A Case Study. In FORTE (LNCS), Vol. 10854. Springer,
58-78.

The author implemented and analysed the case study under the guidance of the co-
authors i.e., his PhD advisers. In addition, he was also extensively involved in writing

up the paper.

As regards the approach via statistical model checking, in Chapter 5 we mentioned
the work published in the journal ACM Transactions on Privacy and Security (TOPS).

* R. Lanotte, M. Merro, A. Munteanu, and L. Vigand. A Formal Approach to
Physics-based Attacks in Cyber-physical Systems. ACM Trans. Priv. Secur. 23, 1
(2020), 3:1-3:41.

The author’s main contribution lies in the implementation section where he imple-
mented and analysed the case study of the paper.

In Chapter 5, we also have described in a detailed manner the work published
in the 8-th International Conference on Formal Methods in Software Engineering (For-
maliSE’20).

* A. Munteanu, M. Pasqua, M. Merro. Impact Analysis of Cyber-Physical Attacks
on a Water Tank System via Statistical Model Checking. In IEEE/ACM 8th Int.
Conf. on Formal Methods in Sw Eng. (FormaliSE), pp. 34-43, 2020.

There the author was extensively involved in writing up the paper. In addition, the
author contributed again with the implementation and the analysis of the case study.
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As regards the second part of this thesis, i.e., runtime enforcement for the security
of ICSs. Chapters 7 and 8 contain the work that have been submitted for reviews to a
journal.

¢ R. Lanotte, M. Merro, and A. Munteanu. Runtime Enforcement of Programmable
Logic Controllers. Submitted to journal.

Once again, the author was involved extensively in writing up the paper. In addition,
he formulated the formal models and proofs presented in the paper under guidance of
the PhD advisers. Furthermore, he also contributed with the implementation part.

In the works mentioned below, the author was involved extensively in writing up
the paper. In addition, he formulated the formal models and proofs presented in the pa-
per under guidance of the PhD advisers. Chapters 7 and 8 contain an extended version
of the paper appeared in the 33-rd IEEE Computer Security Foundations Symposium
(CSF 2020).

e R. Lanotte, M. Merro, and A. Munteanu. 2020. Runtime Enforcement for Control
System Security. In CSFE. IEEE, 246-261.

This work is based on our first steps in runtime enforcement published in the 21-st
Italian Conference on Theoretical Computer Science (ICTCS 2020).

¢ R. Lanotte, M. Merro, and A. Munteanu. 2020. A process calculus approach to
correctness enforcement of PLCs. In ICTCS (CEUR Workshop Proceedings, Vol.
2756). CEUR-WS.org, 81-94.

This work has been revised and extended with our preliminary steps in the imple-
mentation of our enforcement mechanism which will appear in the journal Theoretical
Computer Science (TCS).

¢ R.Lanotte, M. Merro, and A. Munteanu. A process calculus approach to detection
and mitigation of PLC malware. To appear in the journal Theoretical Computer

Science.

In this work the author also contributed with the implementation part.
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Chapter 11
Appendix

11.1 An introduction to the HMODEST language

A HMopEsrt specification consists of a sequence of declarations (constants, variables,
actions, and sub-processes) and a main process behaviour. The most simple process
behaviour is expressed by (prefixing) actions that may be used to synchronize paral-
lel components. The construct do models loops, i.e., unguarded iterations that can be
exited via the special action break. There is a construct par to launch two or more
processes in parallel, according to an interleaving semantics. The construct alt mod-
els nondeterministic choices. The invariant construct is used to control the evolution
of continuous variables. Furthermore, all constructs can be decorated with guards,
to represent enabling conditions, by means of the when construct. We can use both
invariant and when constructs to specify that a behaviour should be executed after a
precise amount of time. Thus, we can write invariant(c < k) when(c > k) P(), where
c is a clock variable and k a real value, to model that the process P() may start its exe-
cution only after k instants; if k = 0 then the execution of P() may start immediately.

In order to explain these constructs, we model a small example. Consider a Master
process and a Slave process that may synchronize via the actions go and end to allow
the Master to send instructions to the Slave. Depending on the received instructions, the
Slave either restarts or it sleeps for one time unit and then ends its execution. Once syn-
chronized via the go action, the Master sleeps for two time units and then synchronizes

on the end action. More precisely,

Master : Slave :
synchronize on action go repeat
sleep 2 time units listen for action synchronization
synchronize on action end if action is go then
continue
else

sleep 1 time unit

exit
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// action declarations
action go, end;
// process declarations
process Master() {
clock e¢m; // local clock declaration
invariant(cm <= 0) when(cm >=0) go {=cm =0 =};
invariant(cm <= 2) when(cm >= 2) end
}
process Slave() {
clock c¢s; // local clock declaration
do {
alt {
1 go
i end {=cs =0 =}; invariant(cs <=1) when(cs >= 1) break
}
}
}
// main
par { :: Master() :: Slave() }

Figure 11.1: Master and Slave processes in HMODEST

The compound system is given by running the two processes Master and Slave concur-
rently.

Figure 11.1 shows an implementation in HMopest of the system above. Both
Master and Slave processes declare private clocks that are reset each time is necessary to
impose a specific time delay. The communication is implemented via the two actions
go and end; the testing is via pattern matching within nondeterministic choice.

11.2 Proofs of Section 7.4

In order to prove the results of Section 7.4, in Table 11.1 we provide a formal defini-
tion of cross product between two edit automata. The first three cases are straightfor-
ward, we explain only the fourth case, thus, we consider the cross product associated to
Prod7ZD (Xier MiEs Yiej v;.E;). In this case, the result is either a suppression edit automa-
ton, or an edit automaton that: (i) allows all common actions A;, for A; = v;, allowed by
Ei and E;, (ii) inserts such common actions A; whenever the controller is about to com-
plete the scan cycle, i.e., it is about to emit an action end, and (iii) suppresses all others
actions. Here, the index setis H = {(i,j) € I x ] : A; = v; € P and Prod (E;, Ej) #
YweP\{tickend} &-X}. Intuitively, H is the set of pairs (i, j) of indexes in I x ] for which
the unfolding of the product of the associated edit automata E; and E; never ends into
a suppression-only edit automata.

Let us prove the complexity of the synthesis algorithm formalised in Proposition 1.
For that we need a couple of technical lemmata. The first lemma extends classical
results on the complexity of cross product of finite state automata to cross product of
edit automata.

Lemma 1 (Complexity of cross product). Let Ej,E; € Edit be two edit automata and
P be a set of observable actions of size n. Let v1,vy be the number of derivatives of E; and
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1>

Prod? (X1, X3)

Prod? (X, ¥ A.E))
iel

Prod? (L Ai.E;, X)

Pr0d7ZD(E1,E2), if X1 = E1 and X2 = E2
Prod? (E, ¥ Ai.E;), if X = E

iel
Prod? (Y A,.E;,E), if X =E

iel iel
Y aZ ifH=0Q
aeP\{tickend}
Prod? (Y ALE;, X viE)) 2 r (AiXij + A < end X)) + Y, “aZ fH#OQ
iel jer (i,j)eH a€(P\{tickend)\U; e i

for X;; = Pron_l (Ei,E))

Table 11.1: Cross product between two edit automata with alphabet P.

Ep, respectively.! Let wy,wy be the number of distinct observable actions that can be fired
by Eq and E; and their derivatives, respectively. The complexity of the algorithm to compute
Prod} (E1, Ez) is O(v1 - vy - (max(wy, wy) + n)).

The second lemma provides an upper bound to the number of derivates of the
automaton ( e 7. For that we need a formal definition of size of both global and
local properties. Intuitively, the size of a property is given by the number of operators

occurring in it.
Definition 8. Let dim() : PropG UPropll — N be a property-size function defined as:
dim(p*) £ dim(p) dim(e; Ney) £ dim(e) +dim(ep) +1

dim(e) 1 dim(p1; p2) dim(p1) +dim(p2) +1
dim(py N p2) dim(p1) +dim(py) +1  dim(Uiesaipi) = | 1|+ ey dim(p;).

1>
1>

(1>

Lemma 2 (Upper bound of number of derivatives). Let e € PropG be a global property
with and m = dim(e), and P be a set of observable actions. Then, the number of derivatives of

k+1

( e )7 is at most m*+1, where k us the number of occurrences of the symbol N in e.

Proof. The proof is by structural induction on e.

Lete = e; Nep and m = dim(e Ney). By definition, the synthesis function recalls
itself on e; and ep. Obviously, my + mp = m — 1 with m; = dim(ey) and my = dim(ey).
Let k, k1 and k; be the number of occurrences of the symbol N in e; Nep, e and ey,
respectively. We deduce that k1 + k; = k — 1. By inductive hypothesis, (| e; )” has at
most m]l<1+1 derivatives, and, { e, )” has at most mgzﬂ derivatives. As the synthesis
returns the cross product between ( e; ) and ( e |7, we derive that the resulting

edit automaton will have at most mll<1+1 . mSZH derivatives. The result follows because

m’{ﬁl .m7§2+1 < mRHL et < pkitka 2 < k142 <kt

Lete = p*, for p € Propl. In order to analyse this case, as (p*)” £ X, for
X = { p D%, we proceed by structural induction of p € ProplL. We focus on the
most significant case p = U,y 7i.pi. Let p = Ujer mi.pi and m = dim(U;¢; 7ti.pi). By
definition the synthesis produces | I | derivatives, one for each 7; € I, and also the

1These numbers are finite as we deal with finite-state edit automata.
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derivative Z. Furthermore, the synthesis algorithm re-calls itself | I | times on p;, with
m; = dim(p;) such that m =| I | + Y ;c;m;, fori € I. Let k and k; be the number of
occurrences of M in p and in p;, respectively, for i € I. We deduce that ) ;< k; = k. By
inductive hypothesis, the synthesis produces m?"ﬂ derivatives on each property p;, for
i € I. Summarising, in this case the number of derivatives is 14+ | I | + Y ;¢; mfi i
Finally, the thesis follows as 1+ | I | + Y;¢; m:-("ﬂ < Yoy mhith < mktl, O

Proof of Proposition 1 (Complexity). For any property e € PropG, we prove that the re-

cursive structure of the function returning (e|)”

can be characterised in the following
form: T(m) = T(m — 1) + m 1, with m = dim(e), and k the number of occurrences of
N in e. The result follows because T(m) = T(m — 1) + m**1 is O(m**1). The proof is
by case analysis on the structure of ¢, by examining each synthesis step in which the

synthesis process m = dim(e) symbols.

Case e = e; Ney. Let m = dim(e; Ney). By definition, the synthesis ( e; Ney )7
call itself on e; and e;, with m; = dim(e1) and my = dim(ep) symbols, respectively,
where my + my = m — 1. Let k be the number of occurrences of N in e and k1, k, be the
number of occurrences of N in e; and ey, respectively. We deduce that ky +k, =k — 1.
By Lemma 1 and by Lemma 2 we know that number of operations required for the

ki+1 m]2<2+1

cross product between (| e; )” and { e, )7 is m) -max(my,my). Thus, we

can characterise the recursive structure as: T(m) = T(my) + T(mp) + mllﬁ+1 . m§2+1 .
max(my, my). We notice that the complexity of this recursive form is smaller than the

complexity of T(m — 1) + mF+1,

Case e = p*. In order to prove this case, as (p* )P 2 X, forX = ( p D%, we proceed
by case analysis on p € ProplL. Thus, we consider the local properties p € ProplL.
We focus on the most significant case p = U;ej 71;.pi. Let m = dim(U;¢; 7i.pi). By
definition, the synthesis (| U;c; 77;.p;)” consumes all events 7;, for i € I. The synthesis
algorithm re-calls itself | I | times on p;, with dim(p;) symbols, for i € I. Furthermore,
let [ be the size of the set P, the algorithm performs at most  operations due to a
summation over over a € P\ (U;cr 7t; U {tick, end } ), with | P\ (U;es 71; U {tick, end } ) | < I.
Thus, we can characterise the recursive structure as T(m) = Y_;c; T(dim(p;)) + 1. Since
Yicrdim(p;) = m —|I| < m — 1. The resulting complexity is smaller than that of

T(m —1) +mF+1. O

In order to prove Proposition 2 we give a technical results saying that the edit
automata synthesised from deterministic global properties are deterministic as well.

Lemma 3. Let e € PropG be a deterministic property over a set of observable actions P. Let
A A .

EL E for some trace t and automaton E. If E N Ey; and E 22 By, with a E1 # Ep, then

A # Ag.

Proof. A property e € PropG is deterministic if any sub-term U;¢j7;.p; is such that
e # 1y, for any k,h € I, k # h. By construction, the cross product of edit automata
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preserves determinism. The result follows by reasoning on structural induction on the
property e € PropG. O

Proof of Proposition 2 (Semantically-deterministic-enforcement). We show that for any exe-
cution trace t and actions a1, &, such that (e))” x P L Ex Jand Ex ] <% Eq & J; and
Ex]J 2, E; X J» and E; # Ej, it holds that a; # ap. We proceed by contradiction.
Assume there is an « such that E x | L E X Jiand Ex | L Ex J» and E; # E;. The
first transition can be derived either via rule (Allow) or via rule (Insert). We focus on
the rule (Allow) (the other case is similar). Suppose & # end. Since E x | S Eix J1is
derived via rule (Allow), then E % E; and J LN J1. From | 4 J1 and & # end we derive
that | % and so Ex | L E X J» is derived via rule (Allow) as well, and E % E. By
Lemma 3 it follows the contradiction E; = E;.. The case & = end can be treated in a
similar manner. O

The next step is the proof of transparency, i.e., the proof of Theorem 1.

We start proving that the cross product between edit automata satisfies a standard
correctness result saying that any execution trace associated to the intersection of two
regular properties is also a trace of the the cross product of the edit automata associated
to the two properties, and vice versa. In order to prove that, given a prefix A € {a, & <
B, ~a}, we write enfAct(A) to denote the resulting action of the monitored controller.
Formally, enfAct(a) = enfAct(a < B) = a and enfAct(~a) = 7. This notation can be eas-
ily extended to a trace f = A - - - A, by defining enfAct(t) = enfAct(Aq) - - - enfAct(Ay,).

Lemma 4 (Correctness of Cross Product). Let e1,e; € PropG (resp., p1, p2 € ProplL)

and P be a set of actions such that events(e; Ney) C P (resp., events(py N p2) C P). Then,
it holds that:

o Iftisa trace of Prodf ({ e1 )%, ( ez DE) (resp., ProdZ ({ p1 DX, { p2 VX)), then enfAct(t)
is prefix of some trace in the semantics [e1 N ey (resp., [p1 N p2])-

o If tisa trace in the semantics [eq Ney| (resp., [p1 N p2]) then there exists a trace t' of
Prodf ({ e1 DX, { e2 DX) (resp., Prodl ({ p1 DX, ( p2 DX)) such that enfAct(t') = t.

In the following, we use the symbol <, with < C (PropL U PropG) x (PropL U
Prop@), to denote the reflexive and transitive closure of sub-term inclusion between

regular expressions such that whenever p; < p} and po < pj then p1 Npx < pi N ph
and p1;py < 1 Pa-

Proof of Theorem 1 (Transparency). We actually prove a stronger result. Let e € PropG
a global property and P € Ctrl such that go x P AN go X | for some trace t. If t is the
prefix of some trace in the semantics [¢] we prove that:

1. (e)?xP L ExJ in which either E = ( p' ){ or E = Z, withZ = ( p’ ), for
some p’ € PropL such that p’ < e and some automaton variable X.

2. Thereis a trace t' € [[p'] such that ¢ -t is a prefix of some trace in [e].
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These two points imply the result. We proceed by induction on the length n of the
execution trace t.

Base case: n = 1. We have that go X P % go x | with & € Sens U Chn* U Act U {tick, end}
and « be a prefix of some trace in [e]. We proceed by induction on the structure of e.

Case e = p*, for some p € ProplL. We prove by induction on the structure of p the
following two results: i) | p )}, x P % E x J, where either E = (| p/ )% or E = Z, with
Z = (p' )%, for some p’ € PropL such that p’ < p, and some automaton variable
X'; ii) there is a trace " € [p'] such that a - # is a prefix of some trace in [p]. As
(p*)? £ X, with X = (| p ¥ results i) and ii) imply the required results (1) and (2) for
e = p*. We give the cases for p = p1; p2 and p = p1 N py; the other case are similar or

simpler.

Let p = py; p2. In this case, « is a prefix of some trace in [[pl ; pzﬂ and ( p1; p2 |>§ returns
(| p1 )5, for Z' = ( po )%, and Z' # X. We prove the two items for the case p; # €, the

case p1 = € is simpler.

e Let us prove i). From p; # € we derive that « is a prefix of some trace in [p1].
From this fact and since gox P = go x ], we derive by inductive hypothesis
that ( p1 |>§ X P 5 E; x ], where either E; = iz |>7ZJ, or Ey = Zy, with Z; =
( py )%, for some p} € PropL such that p] < p1. Let us analyse E; = ( p} %

(the analysis for E; = Z;, with Z; = ( p} % is similar). From ( p; )} x P 4
Ey x ], we derive that ( py; p2 D} x P % E x J, for some E. Moreover, since E; =
(| pi )% with Z/ = ( po )% and p] < p1, then, by definition of the synthesis
algorithm, it follows that E = { p}; p2 )% for pi; p2 < p1; p2 = p, as required.

® Let us prove ii). Again, from p; # € we derive by inductive hypothesis that there
exists t' € [p}] such that a -t is a prefix of some trace in [p;]. Thus, there is a
trace t” such that ' - " € [p}; p2] and hence a - t - "’ is a prefix of some trace in

[p1; p2], as required.

Let p = p1 N py. In this case, we have that  is prefix of some trace in [p1 N p2] and the
synthesis of algorithm applied to { p; N p2 )§ returns Prod} ({ p1 D%, (2 DY)

® Let us prove i). We start by analysing the transitions afforded by the edit au-
tomaton Prody ({ p1 )%, (| p2 %) By definition of cross product in Table 11.1,
the most interesting case is when ( p1 )} = Yic;AiEiand { p2 D} = YieyviEj.
In this case, Prod} (e Ai-E;, Yjej vj-Ej) is equal to:

“aX ifH=0
aeP\{tickend}
Yy ()\i-xi,j + A < end.Xi,j) + Y “aX fH#Q
(i,j)eH a€(P\{tickend})\Ui jjen Ai

for X; ; = Prodﬁii(Ei, E/)

with H = {(i,j) € I x J : \; = v; € P and Prod} (E;, E;) # Lacp\ frickend) X}
The first case is not admissible as we assume that & is a prefix of some trace in
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[p1 N p2], thus, the edit automaton associated to p1 N p, may not be a suppres-
sion automaton. Thus, we focus on the second case and the following admissible

transitions: Prod} (( p; 0, p2 DY) N Xij, with X; ; = Pron_J(Ei, E;), for any
(i,j) € H. Now, since « is a prefix of some trace in [[pl N p2], then a is a prefix
of some trace in both [p1] and [p,]. Thus, since gox P = go x J, by induc-
tive hypothesis we have that for h € {1,2}, ( p, )} x P 5 Ej, @ ], where either
E, = {p) D% or E, = Z;,, with Z, = ( p, )%, for some p} € PropL such that
p), < pp- Hence, by Lemma 4 and by definition of cross product, there exists
(i,j) € H such thata = A; and Prod} (( p1 )%, { p2 DX) %P = Ex ] with E =
Xijo Xij = Prodf (E;,Ey) and E{ = E;and Ey = E;. Thus, X;; = Prodf (E;,E)). It
remains to prove that either Prod73 (Ei, E)={(pinph )} or Prod? (E,, Ej) =12
w1th Z={(pinp, \)X,, such that pl N py < p1 N pa, for some automaton variable
. We have proved that for h € {1,2}, either E; = ( p, )¥ or E, = Z,, with
= ( p, DL, for some p), € Propl such that p; < p,. Moreover, we have
proved also that E; = E} and E; = Ej. Thus, by definition of cross product
we derive that Prod79 (El, E]) = Prodx ({ p} D&, ( 5 DX) = ( pi N5 DX More-
over, from pj < p1 and ph < p2, we have that pj N p, < p1 N pa. Therefore

Prod%/}_(Ei, Ej) ={(pinph |> for p} N py < p1 N p2 = p, as required.

o Let us prove i), As ProdZ(( pr D2, p2 1E) % ProdZ(1 7} D, 4 4 DE) =
( pi N ph ¥ and by Lemma 4, we deduce that [p} N p}] # @ and so there exists
t" € [pi Np,]. Again, by Lemma 4, we have that Prod} ({ p1 )%, ( p2 D%) =
ProdZ (( p; DE. ( ¥5 D%) LN E’, for some E/, with « -t prefix of some trace in
[p1 N p2], as required.

Casee = e1 Ney, for some e, ep € PropG. This case can be proved with a reasoning
similar to that of the case p; N py.

Inductive case: n > 1, for n € IN. Suppose go X P 4 go X | such that ¢ is a prefix of
some trace in [[e]]. Sincen > 1, goX P i> gox ]’ 5 gox | for some trace # such that
t =t a. Since t is a prefix of some trace in [e] it follows that # is a prefix of some trace
in [e] as well. Hence, by inductive hypothesis, we have that:

1. {e)? %P 5 E' xJ' in which either E/ = (| Pl )L orE =27, withZ = ( p' ), for

some p’ € PropL such that p’ < e and some automaton variable X.
2. Thereis a trace " € [p'] such that t' -t is a prefix of some trace in [e].

It remains to prove that if go x ] % go & ] such that « is a prefix of some trace in 'l

then E/ x ' = E x J. For that we resort to the proof of the base case, for n = 1. O

In order to prove Theorem 2 we need a couple of technical lemmata.

Lemma 5 (Soundness of the synthesis). Let e € PropG be a global property and P be a
set of observable actions such that events(e) C P. Let (e|)? My E bean arbitrary

execution trace of the synthesised automaton {|e|)”. Then,
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1. for t = enfAct(A1) - ... - enfAct(Ay) the trace T is a prefix of some trace in [e];

2. either E = ( p' )} or E = Z, withZ = ( p' )%, for some p' € ProplL such that
p' < e, and some automaton variable X.

Proof. We proceed by induction on the length of the execution trace (e )” by M E

Base case: n = 1. In this case, { e|)” A E We proceed by induction on the structure of e.

Case e = p*, for some p € ProplL. We prove by induction on the structure of p
the following two results: i) for « = enfAct(A), & is a prefix of some trace in [p], and
ii) either E = ( p/ ¥, or E = Z, with Z = (| p’ {,, for some p’ € PropL such that
p' < p and some automaton variables X'. As (p* )7 £ X, for X = (| p ¥, results i) and
ii) imply the required results (1) and (2), for e = p*. We show the cases p = p;; p» and
p = p1 N p2, the others cases are similar or simpler.

Let p = py;p2 and ( p1;p2 DY A E We prove the two results i) and ii) for p; # €,
the case py = e is simpler. By definition, ( py; p2 )§ returns ( py )5, for Z = ( po D%,
and Z' # X. As a consequence, from p; # € and { p1;p2 D A E it follows that
{p1 D% 2 Ey, for some E.

* Let us prove i). Since (| p1 )% A, by inductive hypothesis we have that & is
a prefix of some trace in [p1]. Thus, & is a prefix of some trace in [py;p2], as
required.

e Let us prove ii). Again, since (| p1 ¥ A g, by inductive hypothesis either E; =
(| py DD or Ey = Z3, with Z; = ( p} )%, for some p} € PropL such that p} < p
and some automaton variables Z'. Let us analyse E; = (| p} )7, (the case E; = Z;,
with Z; = ( p} )%, is similar). As E; = (| p} )5 with Z' = ( po ¥ and p} <
p1, by definition of the synthesis algorithm it follows that Ey = { p}; p2 )%, for
Py P2 < P1; P2 = p, as required.
Letp = p1Nprand ( p1Npa DX ANE By definition, the synthesis algorithm applied to
(| p1 N p2 X returns Prodx ({ p1 %, | p2 D%)- Let us prove the results i) and ii).

¢ Result i) follows directly from Lemma 4.

e Let us prove ii). Let us consider the transitions of Prody ({| p1 )%, { p2 D¥)- By
inspection of the cross product in Table 11.1, the most interesting case is when
(p1 )% = LiciAiEiand ( po Y = Y.jcjvj-Ej. In this case, the cross product
Prod?(ziel AiEi, Cjey vj-Ej) is equal to:

“aX ifH=0
aeP\{tickend}
> (Al-.x,-,]- + A< end.xi,]') + Y “aX fH#OQ
(ij)eH vce('P\{tick,end})\UW)eH A

for X;; = Prod}, (E;, Ej)
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with H = {(i,j) € I x J : \j = v; € P and Prod} (E;, E}) # Lycp frickend} X}
The first case satisfies result ii) as by definition X = ( p1 N p, )¥ and p1 N p2 <
p1Np2 = p.

In the second case, the edit automaton has following three (families of) transi-

tions:

() Prod% ({ p1 )

(b) Prod} ({ p1 )

Aj<end

r<| p2 |> )—>X1]Ifor(l ]) € H;

X3 X3

A p2 DF) 2 X, for (i) € H
P
X

(C) Prod§(<| P1 |>§, <| 1%} |>)7Z>l) X, fora € (P \ {tick, end}) \U(i,j)EH A
We prove the result for the case (a); cases (b) and (c) can be proved in a sim-
ilar manner. By definition of cross product, it holds that ( py % N E; and
(| p2 DX AN Ej. From ( p; 34 AN E;, by inductive hypothesis we have that
either E;, = ( p| DX or E; = Z;, with Z; = ( p} )%, for some p; € PropL
such that pj < pi. Similarly, from { ps D¥ AN E;, by inductive hypothesis
we have that either E; = ( p )} or Ej = Z,, with Z, = ( p} )%, for some
ph € Propl such that p) < pp. Therefore, by definition of cross product, we
derive that Prod?i (Ei,Ej) = Prodx({ p} D2 APy D) = (pinph hE. More-
over, since pj < p1 and p, < p, we have that pj N p, < p1 N pa. Therefore,
ProdZZi,j(Ei, Ej) ={(pinph |> for pj N py < p1 N p2 = p, as required.

Case e = e1 Nep for some ey, e; € PropG. This case can be proved with a reasoning

similar to that seen in the proof of case p; N p.

. A A .
Inductive case n > 1, forn € N. Suppose (e))? =5 ... =% F/ N E, forn > 1.

(e)? N NN Thus, by induction, we have that:
1. for t' = enfAct(My) - ... - enfAct(A,_1) the trace t' is a prefix of some trace in [e],
and

2. either E' = (| p/ )X or E' = Z, with Z = ( p’ ), for some p’ € PropL such that
p' < e and some automaton variables Z and X.

To conclude the proof it is sufficient to prove that given E’ Ay Eand ay = enfAct(Ay),
it holds that 7, is a prefix of some trace in [p’]. For that we resort to the proof of the
base case. O

In the next lemma, we prove that, given the execution traces of a monitored con-
troller, we can always extract from them the traces performed by its edit automaton
and its monitored controller in isolation. For proving that we need a technical defini-
tion. Let A € {a,& < B, ~a} be an action for an edit automaton, we write ctrlAct(A)
to denote the controller action associated to A. Formally, ctrlAct(a) = ctrlAct("a) = «
and ctrlAct(a < B) = B.



118 Chapter 11. Appendix

Lemma 6 (Trace decomposition). Let e € PropG be a global property, P € Ctrl be a
controller, and ‘P be the set of all possible actions of P such that events(e) C P. Then, for any
execution trace (e)” x P 5% By X [} =5 ... 2% E, x J,, it hold the following results:

1. (e)? Ay Eq NN E,, with a; = enfAct(A;);

2. for Jo=Pand 1 <i < n,either J;_, By Ji, with B; = ctrlAct(A;) € P,or J; = Ji_1.

Proof. The proof is by induction on the length 7 of the execution trace (e)” x P =%
Ey ™ i =2 ... 2% E, x J,. The base case, for n = 1, is trivial since if (e)PxP S EM]
then & = tick and the synthesis algorithm in Table 7.5 never return an edit automa-
ton suppressing a tick-action. Hence, we focus on the inductive step. Let n > 1 and
(e)PmP S Erm ]y 2. 2 Eyx . By inductive hypothesis we have:
An .
o ()P ME 2 ML witha = enfAct(M);
o for Jy = Pand 1 < i < n—1, either J;_; i Ji, with B; = ctrlAct(A;) € P, or
Ji = Ji-1-

Thus, we have to prove the following results: 1) E,_; An, E, with o, = enfAct(Ay);
2) either J,_1 ﬁ—"ﬂn or J = Jy—1, with B, = ctrlAct(A,). Let us consider the step
E,_1X ]n_lﬁ”»En X J,. By an application of Lemma 5 we have that either E,_; =
(9" DX or Eyoy = Z, with Z = ( p’ ¥, for some p’ € PropL such that p’ < e and
some automaton variable X. We consider the case E,_1 = (| p’ ¥ (the case E,_1 = Z,
with Z = ( p' %, is similar). We proceed by case analysis on the structure of p’. We

show the case p’ = p| N p}, the others cases are similar or simpler.

Case p/ = p{ (1 p. We have that E, 1 = { pl, 11} )E = Prodx({ p} Z. 4 p} DE). We
prove the results (1) and (2). Let us consider the transitions of Prodx ({ p} )%, ( p5 D%)-
By definition of cross product in Table 11.1, the most interesting case is when (| pj )5 =
YicrAiEiand (| ph |>§ = Yjejvj-Ej. In this case, Prodﬁ(ziel)\i.Ei, Yjeyvj-Ej) is equal
to:

“aX itH=0
aeP\{tickend}
Y (/\i-xi,j + A < end.xl‘,]') + Y “aX fH#Q
(ij)eH a€(P\{tickend})\U(; jyen Ai

for X;; = Prodf{z(Ei, E))

with H = {(l,]) celx]: A= vj € P and PrOdZ(D(Ei, E]) # ZaeP\{tick,end} 7D£.X}. In
order to prove the results (1) and (2), we proceed by case analysis on the transitions of

J..—1. We have three cases.

i) Let J,_1 ﬁﬂn, for B, € events(e) C P and B, = A; for
lows because Prodx ({ p; )%, { v5 I%) LN X;,; with enfAct(B,

(i,) € H. Result (1) fol-
) = Bn. Moreover, by an

application of rule (Allow) we derive the transition Prodx (( p} )%, { p5 D%) ™ Ju-1 LR

Xij ™ Ju, with ctrlAct(Bn) = Bn. This implies the result (2).
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n d
ii) Let J, 1 <% 1. As Prodx (( P, D2, | Py DE) L5 Xy, for B € events(e) C

P and B, = A; for (i,j) € H, by an application of rule (Insert) the monitored controller

has the transition Prodx ({ p} )%, ( p5 D)%) X Ju—1 LN Xi,j ™ Jn, withenfAct(By < end) =

Bn. This implies the result (1). Moreover, J, = J,—1 and ctrlAct(B, < end) = end. This

implies result (2).

iii) Let J,—1 LN Jn, for By € (P \ {tick,end}) \ U(;jjey Ai- Since we have the

transition Prodx ({| p} D%, { P D) —Pr 7 with enfAct("Bn) = T we derive the re-
sult (1). Moreover, by an application of the rule (Suppress), we have the transition
Prody ({ p4 D%, { Py DE) % Ju—1 = X ™ Jy with ctrlAct(~B) = Bu. This implies (2). O

Proof of Theorem 2 (Soundness). Let t = ay -...-a, be a trace such that (e[)” x P 4
E x |, for some E € [Edit and some controller J. By an application of Lemma 6 there
exist E; € Edit and A;, for 1 < i < n, such that: <|e|>73 ﬂ) Eq ﬁ) AN E, = E, with
a; = enfAct(A;). Thus, t = enfAct(Aq) - ... - enfAct(A,). By Lemma 5, # is a prefix of
some trace in [e], as required. O

Lemma 7 (Deadlock-freedom of the synthesis). Let e € PropG be a global property and
P be a set of observable actions s.t. events(e) C P. Then the edit automaton (| e \* does not
deadlock.

Proof. Given an arbitrary execution { e |)” Ay My E, the proof is by induction on
the length n of the execution trace. By an application of Lemma 5 we have that either
E=(p)LorE=2ZwithZ = (p), for p € PropL and some automaton variable
X. Hence, the result follows by inspection of the synthesis function of Table 7.5 and by
induction on the structure of p. O

Proof of Theorem 3 (Deadlock-freedom). Let t be a trace such that (e))” x P L ExJ, for
some edit automaton E and controller J. By contradiction we assume that E x | is in
deadlock. Notice that, by definition, our controllers | never deadlock. By Lemma 7 the
automaton (¢ )” never deadlock as well. Consequently, we have that for any transition
J = J' there is no action A for E, such that the monitored controller E x ] may progress
according to one of the rules: (Allow), (Suppress) and (Insert). Now, let us consider the
class of edit automata with the following form:

ZD&i.Xi + Z n; <end.X; + 2 “aX

iel icla;#end acP\ (U a;U{tickend})
This class of edit automata, denoted with £, may only deadlock the enforcement when
the controller may only perform tick-actions. We now show that either E € £orE =,
with Y = E’ and E’ € £. By an application of Lemma 5, we have that either E = (| p )}
or E =27, withZ = (| p ¥, for some p € Propl and some automaton variable X. We
consider the case E = (| p ¥ (the case E = Z, with Z = ( p ¥, is similar). We proceed
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by induction on the structure of p and we give the cases p1; p2 and p1 N py; the other
cases are simpler.

Let p = py; po. By definition, ( p1;p2 ) returns { py )2, forZ' = ( pp )%, and Z' # X.
By inductive hypothesis we have either ( p; }7, € € or ( p1 )X = Y1, with Y; = Ej
and B} € &. In the first case, E = ( p )} = ( p1;p2 )X € &, as required; the second
case is similar.

Let p = p1 N p2. By definition, ( p1 N p2 DE = Prodx (( p1 )%, p2 )%)- By inductive
hypothesis either ( p; )% € € or { p1 )¥ = Y1, with Y; = E] and E] € &; similarly.
Still by inductive hypothesis either { po )§ € € or ( p2 )§¥ = Yo, with Y, = E} and
E, € &. By definition of cross product (see Table 11.1), it follows that E = ( p )% =

( p10p2 DX =Prodx(( p1 DX, | p2 DY) € €.

Now, since E € £ but E x ] is in deadlock, it follows that | may only perform tick-
actions and E t'i% . From the first fact, we derive | = tick.S, for 0 < h < k. Since
tick-actions cannot be suppressed by edit automata in £, we have that t = t' - tick" ", for
some possibly empty trace ' terminating with an end. By Theorem 2, t = #' - tickk ™" €
[e]. And since e is k-sleeping we derive p = tick".p’, for some p’. Since (e ))” is sound
(Lemma 5) we derive that E = (| p ) = ( tick".p’ )% . Finally, h > 0 implies E tick, g,
for some E/, in contradiction with what stated four lines above. O

Proof of Theorem 4 (Divergence-freedom). Let e € PropG be a global property in its gen-
eral form, given by the intersection of n > 1 global properties p; N --- N py, for p; €
Propl, with 1 < i < n. As ¢ is well-formed, according to Definition 4 also all local
properties p; are well-formed. This means that they all terminate with an end event.
Thus, in all global properties p;, for 1 < i < n, the number of events within two sub-
sequent end events is always finite. The same holds for the property e. Now, let ¢ be
an arbitrary trace such that (e])” x P 15 ExJ, for some edit automaton E and con-
troller J. And let k = max; <;<,k;, where k; is the length of the longest trace of [[pl-]] , for

1<i<n Thus,ifEx] LNy Y J', with | t' |> k, and since by Theorem 2 we have that
t -t is a prefix of some trace [e], thenend € #'. O
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