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Abstract

In this thesis, we study logical and deep learning methods for the temporal reasoning
of reactive systems.

In Part I, we determine decidability borders for the satisfiability and realizability
problem of temporal hyperproperties. Temporal hyperproperties relatemultiple com-
putation traces to each other and are expressed in a temporal hyperlogic. In particu-
lar, we identify decidable fragments of the highly expressive hyperlogics HyperQPTL
and HyperCTL∗. As an application, we elaborate on an enforcement mechanism for
temporal hyperproperties. We study explicit enforcement algorithms for specifica-
tions given as formulas in universally quantified HyperLTL.

In Part II, we train a (deep) neural network on the trace generation and realizabil-
ity problem of linear-time temporal logic (LTL). We consider a method to generate
large amounts of additional training data from practical specification patterns. The
training data is generated with classical solvers, which provide one of many possi-
ble solutions to each formula. We demonstrate that it is sufficient to train on those
particular solutions such that the neural network generalizes to the semantics of the
logic. The neural network can predict solutions even for formulas from benchmarks
from the literature on which the classical solver timed out. Additionally, we show
that it solves a significant portion of problems from the annual synthesis competition
(SYNTCOMP) and even out-of-distribution examples from a recent case study.
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Zusammenfassung

Diese Arbeit befasst sich mit logischen Methoden und mehrschichtigen Lernmetho-
den für das zeitabhängige Argumentieren über reaktive Systeme.

In Teil I werden die Grenzen der Entscheidbarkeit des Erfüllbarkeits- und des
Realisierbarkeitsproblem von temporalen Hypereigenschaften bestimmt. Tempora-
le Hypereigenschaften setzen mehrere Berechnungsspuren zueinander in Beziehung
und werden in einer temporalen Hyperlogik ausgedrückt. Insbesondere werden ent-
scheidbare Fragmente der hochexpressivenHyperlogikenHyperQPTL undHyperCTL∗

identifiziert. Als Anwendung wird ein Enforcement-Mechanismus für temporale Hy-
pereigenschaften erarbeitet. Explizite Enforcement-Algorithmen für Spezifikationen,
die als Formeln in universell quantifiziertem HyperLTL angegeben werden, werden
untersucht.

In Teil II wird ein (mehrschichtiges) neuronales Netz auf den Problemen der
Spurgenerierung und Realisierbarkeit von Linear-zeit Temporallogik (LTL) trainiert.
Es wird eine Methode betrachtet, um aus praktischen Spezifikationsmustern große
Mengen zusätzlicher Trainingsdaten zu generieren. Die Trainingsdaten werden mit
klassischen Solvern generiert, die zu jeder Formel nur eine von vielen möglichen
Lösungen liefern. Es wird gezeigt, dass es ausreichend ist, an diesen speziellen Lö-
sungen zu trainieren, sodass das neuronale Netz zur Semantik der Logik genera-
lisiert. Das neuronale Netz kann Lösungen sogar für Formeln aus Benchmarks aus
der Literatur vorhersagen, bei denen der klassische Solver eine Zeitüberschreitung
hatte. Zusätzlich wird gezeigt, dass das neuronale Netz einen erheblichen Teil der
Probleme aus dem jährlichen Synthesewettbewerb (SYNTCOMP) und sogar Beispie-
le außerhalb der Distribution aus einer aktuellen Fallstudie lösen kann.
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Chapter 1

Introduction

1.1 Overview

In computer science, a (computer) system that continuously interacts with its envi-
ronment is called a reactive system. Examples are hardware circuits, communication
protocols, or embedded controllers [106]. They are indispensable in today’s industry
and are deployed in many safety and security-critical systems, such as cars, aircraft,
or the Internet of Things (IoT). The failure of a safety-critical system could result in
fatalities, and daily security breaches of security-critical systems lead to considerable
economic damage. As a result, global spending on cybersecurity is expected to ex-
ceed the 1 trillion mark by 2035 [90]. The quality standard set for a reactive system
deployed in such critical environments is exceptionally high. Companies like Airbus,
Intel, or Amazon, thus increasingly rely on quality assurance measures that mathe-
matically prove that a reactive system behaves as expected. Airbus uses Absint’s [3]
abstract interpretation1 tools as part of its certification process. Intel replaced test-
ing with verification for the core execution cluster in their design of the Intel Core
i7 processor [120]. Recently, the initial boot code in data centers at Amazon Web
Services (AWS) has been checked to be memory safe [45]. All these approaches have
in common that the expected behavior of the system must be rigorously specified.

A (temporal) specification of a reactive system precisely describes, given a particu-
lar input, what the output at a given point in time should be. When being interested
in reasoning on the temporal behavior of a reactive system, we must provide specifi-
cations that are even stricter than just being precise: a formal specification follows a
syntax and, especially, a formal semantics. Therefore, it cannot be based on natural
language, which is inherently unclear and ambiguous, but must be based on rigor-
ous mathematics. Temporal logics are a widespread family of formal specification

1Abstract interpretation [46] is a method to approximate the semantics of computer systems
soundly.

1
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languages for temporal reasoning. Their foundation dates back to Tense Logic [170]
introduced by Arthur Prior in his 1955/1956 John Locke lecture [6] and extended
by Hans Kamp in 1968 in his Ph.D. thesis [123]. In 1977, Amir Pnueli first pro-
posed this specification paradigm for computer science in "The Temporal Logic of
Programs" [165].2 Linear-time Temporal Logic (LTL) uses the temporal modalities of
Tense Logic, i.e., U (until), (globally), (eventually), and (next) to specify
the behavior of a reactive system. For example, one can express that “at no point in
time access to a shared resource should be given until the resource is free” as fol-
lows: ((¬access)U free). This paradigm provides an approach to express intuitive
yet rigorously defined specifications of reactive systems (see Section 1.2 and Chap-
ter 2 for detailed examples). The development of algorithms for temporal specifica-
tions was enabled by identifying the relation between temporal logics and finite au-
tomata. This connection has been examined by Moshe Vardi and Pierre Wolper in “An
Automata-theoretic Approach to Automatic Program Verification” [211, 212, 218].3

A temporal logical formula can be translated into a finite automaton with a Büchi ac-
ceptance condition (named after Julius Richard Büchi) [30]. The Büchi automaton
accepts an infinite word if at least one accepting state is visited infinitely often. Such
finite automata over infinite words are one of the cornerstones in industry-strength
verification tools used by, e.g., the companies mentioned above.

Modern circumstances, however, pose new challenges for the reasoning over re-
active systems with temporal logics.

The increased linkage of computer systems through the Internet and the growth of
the IoT in general results in numerous security vulnerabilities, such as the infamous
Meltdown [145] and Spectre [126] attacks. Classical temporal logics, such as above-
mentioned LTL, cannot express information-flow (security) policies. Information-flow
policies restrict the flow of confidential data through a reactive system, such that
attackers gain no information by observing differences in multiple runs of a system.
The general class of properties that relate multiple runs of a reactive system are
called temporal hyperproperties [69, 41]. A variety of temporal hyperlogics were
introduced to express such temporal hyperproperties (see [42] for an overview). The
first challenge considered in this thesis, is to find a sweet spot between expressive
power and feasibility. It is necessary to determine how much expressive power can
be added to a temporal hyperlogic before running into undecidability. In Part I of
this thesis, we, thus, determine the decidability boundaries of the satisfiability and
synthesis problem of temporal hyperproperties. As an application of these problems,
we consider the runtime enforcement problem of temporal hyperproperties.

Another challenge under modern circumstances is that reactive systems con-

2Amir Pnueli received the Turing Award in 1996 “For seminal work introducing temporal logic into
computing science and for outstanding contributions to program and system verification.” [1].

3The authors received the Gödel Prize in 2000 for their contributions to temporal logics and finite
automata [4].
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stantly increase in size, such that classical techniques must be equipped with fast and
reliable heuristics to become feasible. A current technique that yields heuristics and
even state-of-the-art performance in many fields (e.g., [107, 201, 222, 155, 193]) is
the training of a (deep) neural network [98]. So far, there was the perception that
deep neural networks cannot reliably solve complex logical tasks end-to-end. With
architectural advances, especially the Transformer architecture [214], however, it
was demonstrated that neural networks perform surprisingly well on symbolic in-
tegration [134], and that self-supervised training leads to mathematical reasoning
abilities [172]. The second challenge considered in this thesis, is to train a deep neu-
ral network on temporal logical reasoning tasks. With this approach, the temporal
logic serves as a link between natural language and the benefit of verifiable pre-
dictions. Because a temporal logic has a formally defined semantics, predictions of
the neural network can be automatically verified. The verification of the predictions
takes a fraction of the time that would be needed to compute them classically (see
Section 1.4 for more details). Training a deep neural network on a temporal logical
reasoning task, thus, automatically yields a reliable heuristic for safety-critical and
privacy-critical reactive systems. In Part II of this thesis, we successfully train a deep
neural network on the task of generating solutions to temporal logical formulas. We
provide a data generation method that even enables the successful training of a neu-
ral network to solve the LTL synthesis task, i.e., the challenging task of constructing
a satisfying circuit directly out of a temporal specification.

The remainder of this introduction is structured as follows. We give an overview of
the traditional problems in the field of formal methods in Section 1.2. Furthermore,
we provide an example of a reactive system model and a temporal logical specifica-
tion. In Section 1.3, we provide an introduction on temporal hyperproperties. We
give an overview on Part I of this thesis and introduce the hyperlogics HyperQPTL,
and HyperCTL∗. In Section 1.4, we provide an introduction on deep learning for
temporal logics. We give an overview on Part II of this thesis and introduce our
training method. Section 1.5 lists the publications which this thesis is based on. In
Section 1.6, we list the contributions of this thesis and, lastly, Section 1.7 provides
an overview over related work.

1.2 Formal Methods

The branch of computer science that is, amongst other things4, concerned with tech-
niques for the formal specification and the development of reactive systems prov-
ably complying with such formal specifications is called formal methods. One of the

4The range of system models considered in the area of formal methods is broad: e.g., software
models, probabilistic models, or machine learning models. This thesis focuses on the classical reactive
systems (see Chapter 2 for a formal definition).
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¬(g0 ∧ g1)

g0 g1

{}, r1, r2, r1 ∧ r2

{}, r1, r2, r1 ∧ r2

Figure 1.1: A mutual exclusion specification in LTL (left) and a finite state machine
model of a controller (right), where request and grant is abbreviated by r and g
respectively. Multiple labels on the edges denote that all of them are accepted.

most desirable objectives in the development of algorithms for formal methods is
automation to support developers. Verification algorithms, for example, so-called
model checkers [39], prove that an implementation adheres to a particular specifi-
cation. Synthesis algorithms and satisfiability solvers are purely logical methods that
do not receive a system model as input. Synthesis algorithms construct an implemen-
tation directly out of the specification. Satisfiability solvers analyze the specification
at hand. They determine if it is satisfiable, and they are also used to analyze impli-
cations between specifications. Dynamic verification techniques can treat the reactive
system as a black box and analyze its behavior during runtime. A monitor alerts
the user when a run of the reactive system does not comply with the specification,
whereas an enforcement algorithm corrects the system’s behavior automatically. This
thesis focuses on logical problems where no implementation of the reactive system
is passed as input, namely satisfiability, synthesis and enforcement.

Consider, for example, a controller that manages a shared resource. It receives
requests and provides grants for the resource to different processes. The LTL formula
in Figure 1.1 (left) defines a mutual exclusion specification, i.e., that two processes
should not have access to the shared resource simultaneously. The formula reads as
“at every point in time ( ) the controller should not give grants to process zero and
process one simultaneously”.

To apply formal methods to a reactive system, it must be modeled mathematically
as well, which is typically done as some finite state machine. Figure 1.1 (right) de-
picts a model of a controller satisfying the sample specification. The states (circles)
are labeled with the system’s output, and the edges (arrows) are labeled with pos-
sible inputs from the environment. The controller provides a grant to process zero
and process one alternatingly regardless of the input. An LTL formula reasons over
(execution) traces of these state machines in discrete time, which are, as an abstrac-
tion, typically assumed to be infinite sequences of valuations of system variables. A
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trace thus represents the input-output behavior of a single run through a reactive
system. Depending on the input from the environment, the controller in Figure 1.1
has infinitely many traces. An example trace could look as follows:

{g0} · {r1, g1} · {g0} · {g1} · {g0} · {g1} · · ·

In the first position of the trace (corresponding to the starting state of the state ma-
chine), the system outputs g0, and no input is coming from the environment, i.e.,
there is no request to the shared resource. In the second position, the system switches
states by taking the {}-transition. The system outputs g1 and receives a request from
process 1 (r1). Finally, the output alternates between g1 and g0 regardless of the
absence of requests after the second position. We can now verify that the controller
satisfies the mutual exclusion property, by verifying that every trace of the controller
satisfies the specification. While this controller satisfies the mutual exclusion speci-
fication, the controller provides many spurious grants. In Chapter 2, we define the
necessary preliminaries on reactive systems and temporal logics required for this
thesis in more detail.

1.3 Temporal Hyperproperties

Recently, many security breaches, most famouslyMeltdown [145] and Spectre [126],
occurred. Meltdown “breaks the most fundamental isolation between user applica-
tions and the operating system. This attack allows a program to access the memory,
and thus also the secrets, of other programs and the operating system.” [2]. This
attack exploits an information leak. In the following explanation, we assume that
there are two types of inputs and outputs: “high(-security)” inputs and outputs are
only visible by an admin, and “low(-security)” inputs and outputs are observable
by everyone and, hence, also by an attacker. Information leaks are hard to detect.
If specific data must be kept secret, then two executions that result from different
values of the high-security inputs (but agree on the low-security inputs) should not
reveal any difference in the low-security outputs. Figure 1.2 sketches a black box
reactive system with an information leak. If such a leak happens, an attacker might
gain knowledge about confidential data, such as credit card information.

LTL5 can express no information-flow policies and, in general, no properties that
reason overmultiple execution traces. Properties that relate multiple traces are called
hyperproperties [41]. Hyperproperties generalize trace properties, which are sets of
traces, to sets of sets of traces. While the primary motivation to study hyperprop-
erties stems from secure information-flow control, there are many more interesting
hyperproperties.

5As well as CTL/CTL∗ and all temporal logics that only reason about a trace in isolation.
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low input

high input

low output

high output

Figure 1.2: A sketch of an information leak in a black box reactive system. Dashed
arrows visualize permissible information flow. The red arrow from high security input
to low security output visualizes an unwanted flow of information.

For example:

• robustness [200] in machine learning, i.e., two inputs that are sufficiently
“close” to each other should produce the same predictions,

• distributivity [167], i.e., some outputs should be independent of specific pro-
cesses,

• promptness [131], i.e., there should exist a common bound across all traces
for an event to occur,

• or symmetry [82], i.e., the reactive system should behave symmetrically when
swapping inputs on two traces.

In the following, we provide an overview over Part I of this thesis. We describe the hy-
perlogics considered in this thesis and describe the enforcement problem of temporal
hyperproperties.

Recently, a variety of temporal logics for hyperproperties, starting in 2014 with
HyperLTL and HyperCTL∗ [40], have been proposed (e.g., [157, 49, 171]). HyperLTL
extends LTL with a mechanism to quantify over trace variables and label propositions
with these trace variables. A classical information flow policy that forbids unwanted
information flow from high-security variables to low-security variables is noninterfer-
ence [97], which can be expressed in HyperLTL as follows:

∀π.∀π′. (lowinputπ↔ lowinputπ′)→ (lowoutputπ↔ lowoutputπ′) .

The formula states that for all traces π and π′ that agree on all points in time on the
low-security input ( (lowinputπ↔ lowinputπ′)), the traces must agree on the low-
security output as well ( (lowoutputπ↔ lowoutputπ′)). For example, an attacker
could start any two runs of the reactive system with the same low-security input but
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HyperLTL
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=
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Figure 1.3: The expressiveness hierarchy of hyperlogics [42] for linear-time logics
(left) and branching-time logics (right). Logics studied in the first part of this thesis
are highlighted in green.

cannot distinguish the traces by its observational behavior. The primary method for
verifying reactive systems against hyperproperties is by verifying the self-composition
of copies of the system [14] (see Chapter 2 for more details). With this technique,
the verification of hyperproperties reduces to the verification of trace properties over
a tuple of traces.

When considering purely logical methods (e.g., satisfiability or realizability),
however, there exists no implementation to self-compose. There is no clear solu-
tion on how to handle logical methods for hyperproperties. They suffer from higher
computational costs and quickly become undecidable when the temporal logic is
equipped with too much expressive power. Studying decidability boundaries is, thus,
essential.

Fragments of HyperLTL have been identified for which logical methods remain
decidable. HyperLTL formulas in the ∃∗∀∗ fragment have a decidable satisfiability
problem [70], while the complete logic is undecidable [70, 89]. HyperLTL synthe-
sis can be decided for the ∃∗∀1 and the so-called linear ∀∗ fragment. The linear
fragment allows only linear distributed architectures, where no information forks
can be present [74]. We will discuss information forks in more detail in Chapter 3
when considering logical methods for HyperQPTL. We distinguish between linear-
time hyperlogics, which are interpreted over execution traces, and branching-time
hyperlogics interpreted over trees [209]. Figure 1.3 depicts the known results from a
first expressiveness study of hyperlogics [42]. So far, hyperlogics were either derived
from temporal logics by adding trace quantification or from first-order or second-
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order logics by adding an equal-level predicate, which relates the same point in time
on different traces. This thesis focuses on hyperlogics derived by temporal logics. We
climb up in the hierarchy of hyperlogics to determine the decidability border.

In Chapter 3, we study logical methods for HyperQPTL. HyperQPTL extends
HyperLTL with quantification over sequences of new propositions. What makes the
logic particularly expressive is that the trace quantifiers and propositional quantifiers
can be freely interleaved. With this mechanism, HyperQPTL can not only express all
ω-regular properties over a sequence of n-tuples; it truly interweaves trace quan-
tification and ω-regularity. For example, promptness can be stated as the following
HyperQPTL formula:

∃b.∀π. b ∧ (¬b U eπ) .

The formula states that there exists a sequence s ∈ (2{q})ω, such that event e holds
on all traces before the first occurrence of b in s.

In Chapter 4, we study logical methods for HyperCTL∗. While linear-time tem-
poral logics like LTL describe properties of individual traces, branching-time tem-
poral logics like CTL and CTL∗ describe properties of computation trees, where the
branches can be inspected by quantifying existentially or universally over paths. In
contrast to HyperLTL, where quantifiers are only allowed in a prefix, HyperCTL∗ al-
lows for arbitrary quantifiers in a formula. This expressive power is needed to state
that a system can generate secret information [81]. Generating secret information
means that there is, at some point, a branching into observably equivalent paths
that differ in the values of a secret. For example, this property can be stated as the
following HyperCTL∗ formula:

∃π. ∃π′. (
∧

a∈P

aπ↔ aπ′)∧ (
∨

a∈S

aπ = aπ′) ,

where the set of atomic propositions divides into the two disjoint sets of publicly
observable propositions P and secret propositions S.

Logical methods for hyperproperties are essential when there is no access to the
implementation to apply verification methods. In Chapter 5, we consider a prac-
tical problem to apply logical methods for hyperproperties to: the enforcement of
hyperproperties. Enforcement mechanisms treat the system under consideration as
a black-box and correct the behavior during runtime such that it complies with a
given hyperproperty. It is an extension of the monitoring problem, where a monitor
only reports whether an error is detected. When considering hyperproperties, espe-
cially information-flow policies, a reactive system cannot simply be stopped when an
error occurs since this could lead to the attacker gaining information about a secret.
It is thus vital to keep the system alive by correcting its behavior. Dynamic verifi-
cation methods are especially challenging when considering hyperproperties since
we have to relate multiple traces to each other. We study the enforcement problem
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Figure 1.4: Runtime enforcement for a reactive system. In case the input-output-
relation would violate the hyperproperty H, the enforcer corrects the output.

under two different trace input models: The parallel input model, where the enforcer
observes traces in parallel (for example, by applying secure multi execution [48]);
moreover, in the sequential input model, where the enforcer observes traces one after
another (for example, by observing multiple sessions). Figure 1.4 shows an overview
of enforcement mechanisms for hyperproperties in both input models. We develop
concrete algorithms and provide experiments for specifications given as universally
quantified HyperLTL formulas. We show that solving the enforcement problem for
hyperproperties boils down to solving a variation of the synthesis or the satisfiability
problem.

1.4 Deep Learning for Temporal Logics

Deep learning is a branch of machine learning, which itself is a branch of the large
field of artificial intelligence. In deep learning, the goal is to train a neural network,
consisting of multiple layers, on a specific task. A neural network can be trained
in a supervised fashion, where labeled examples are provided to the network dur-
ing the training phase, in a semi-supervised fashion, where only a tiny fraction of
the data is labeled, or unsupervised, where there is no labeled data at all. Deep
learning has become the state-of-the-art for many human-like tasks, such as com-
puter vision [107, 201], translation [222], or board games [155, 193]. However,
there is still the perception that deep neural networks cannot solve complex logical
tasks reliably. Therefore, deep learning for formal methods frameworks has focused
on sub-problems within larger logical frameworks, such as computing heuristics in
solvers [136, 12, 188] or predicting individual proof steps [146, 94, 13, 112]. As
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Figure 1.5: A sketch of a deep neural network with 6 input neurons, three hidden
layers with 7 neurons each and an output layer with 3 neurons.

mentioned in Section 1.1, the assumption that deep learning is not yet ready to
tackle hard logical questions, however, was drawn into question. We train a deep
neural network on temporal logical reasoning tasks leading to verifiable predictions
of the network. In the following, we provide an overview on Part II of this thesis.
We give an overview on the challenges and our solutions for training a deep neural
network on temporal logical reasoning tasks.

The architecture of a deep neural network [98] (see Figure 1.5) is inspired by the
human brain. It consists of connected neurons, grouped into multiple layers (an input
layer, multiple hidden layers, and an output layer), and can thus transmit signals to
other neurons. Neurons and edges are labeled with weights that determine whether
a neuron fires a signal. These weights are learned during a training process.6 In
a supervised learning setting (which we will focus on in this thesis), a deep neural
network is trained by providing examples that contain a tuple of the input and the
expected result. For example, in image classification for road signs, the inputs are
pictures of road signs labeled with “Stop”, “RightOfWay”, and so on. Given a picture
of a road sign, the expected output of the neural network is a correct prediction of
its label. The neural network training was successful if it generalizes to examples (of
the same distribution) that it has never seen during training.

In this thesis, we study the problem of applying deep learning to logical meth-

6Learning methods are typically implemented via a backpropagation algorithm [98].
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Figure 1.6: Overview of the neural network training process for logical methods
of LTL. A specification is constructed by combining multiple specification patterns.
Depending on the problem, we either construct a satisfying trace t (satisfiability) or
a circuit implementation C (synthesis). The deep neural network is then trained on
these data in a supervised fashion.

ods of linear-time temporal logic (LTL). We focus in this thesis on linear-time tem-
poral logic (LTL) as the baseline for the machine learning experiments since LTL
is the foundation of many specification languages (such as the industrial specifica-
tion langauge and IEEE standard “property specification language” (PSL) [114] or
HyperLTL) and widely used in the verification community. Logical methods of tem-
poral logics are computationally challenging problems in general. LTL satisfiability
is PSPACE-complete [196], and LTL synthesis is 2-EXPTIME-complete [166]. Com-
puting solutions to the satisfiability or synthesis problem thus becomes unfeasible
quickly when applying classical algorithms, such as automaton constructions.

The second research question, tackled in Part II of this thesis, is to provide a way
to cope with these high computational costs. To this end, we provide the first ap-
proach to apply machine-learning, more specificially a Transformer, to problems of
temporal logics end-to-end. The main benefit is that the temporal logic serves as a link
between requirements in natural language and automatically verifiable predictions
of the neural network. Successful training of a deep neural network on temporal logi-
cal problems would immediately yield powerful and fast heuristics. The computation
time of predictions from a neural network can be expected to be a fraction of, for ex-
ample, a classical synthesis algorithm that constructs an implementation via search.
The main challenges of applying deep neural networks to logical methods for tem-
poral logics end-to-end are the following: First, there exists no naturally occurring
distribution of LTL formulas and their solutions (either traces or circuits), such that
training data must be constructed synthetically; second, the network’s output gives
no guarantees whatsoever; and third, there are many (possibly infinite) solutions to
a formula in temporal logic.
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Figure 1.7: Performance of our best model trained on practical pattern formulas.
The x-axis shows the formula size. Syntactic accuracy, i.e., where the deep neural
network agrees with the classical tool are displayed in dark green. Instances where
the deep neural network deviates from the classical tools output but still provides
correct output are displayed in light green; incorrect predictions in orange.

We tackle the first problem by providing a data set constructed from specification
patterns either provided by the literature [53] or mined from the annual synthesis
competition SYNTCOMP [118]. For example, the following LTL formula is a request-
response pattern that is widely used in specifying controller:

(requesti → granti) .

The formula states that at any point in time a request of a process i must be even-
tually granted. Combining this request pattern with the mutual exclusion pattern in
Figure 1.1 is sufficient to specify a complete controller managing a shared resource.
Figure 1.6 depicts an overview of our training process for a neural network on tem-
poral logics presented in this thesis.

The second problem is that neural networks give no guarantees on their pre-
dictions. For logical methods of temporal logics, we can, however, make use of the
following: verifying a solution is typically easier than coming up with a solution.
The same holds for LTL. Finding a trace that satisfies an LTL formula is known to be
PSPACE-complete [196], whereas verifying the trace is only in AC1(logDCFL) [130];
and constructing a circuit is known to be 2-EXPTIME-complete [166], whereas model
checking the resulting circuit is only in PSPACE [196]. We utilize this by verifying
the solutions provided by the neural network with classical formal methods tools.

The last challenge is that there exist (possibly infinitely) many solutions to a
temporal logical formula. We, thus, train on symbolic data that is as under-specified
as possible. For example, instead of providing an explicit trace, we train the neural
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(assumptions)
( (¬(i0)))
( ((¬(o2))∨(((¬(i4))∧(¬(i1)))

U((¬(i4))∧(i1)))))
→
(guarantees:)
((i0)→( ((¬(i0))∨(o4))))
((i2)→( (o0)))
((i1)→( (o0)))
( ( (o4)))→( (( (i4))∧( (i1))))
((i4)→( (o3)))
( ((¬(o4))∨(¬(o2))))
((o1)→( ((i1)R(((i1)
→(o2))∧((¬(i1))→(o0))))))
(( (o3))→(i3))

Figure 1.8: A specification in our test set, consisting of 2 assumption patterns and 8
guarantee patterns (left). A circuit, predicted by our deep learning model, satisfying
the specification (right).

network on a symbolic trace, i.e., a sequence of propositional formulas that specify
the possible valuations of the atomic propositions.

In Chapter 6, we demonstrate that deep neural networks can predict traces even
for formulas from benchmarks from the literature on which the classical solver we
used to generate the training data timed out; meaning they can generalize to larger
andmore complex formulas than seen during training. We show that the Transformer
also generalizes to the semantics of the logics. While the models often deviate from
the traces found by the classical solvers, they still predict correct traces to most for-
mulas. Figure 1.7 visualizes the results of our best model on the trace generation task.
We observe a significant large light green area, where the Transformer came up with
different solutions to the formulas than the tool it was trained on. We furthermore
provide out-of-distribution (OOD) tests that strengthen this observation.

In Chapter 7, we train a deep neural network on the LTL synthesis problem, i.e.,
the problem of constructing a circuit implementation directly out of an LTL specifi-
cation. An annual competition is organized to track the improvement of algorithms
and tools over time (SYNTCOMP) [118]. We ensure that the synthetic data we train
on is sufficiently close to human-written specifications by mining common patterns
from the specifications used in the synthesis competitions. We show that hierarchi-
cal Transformers trained on this synthetic data solve a significant portion of prob-
lems from the synthesis competitions and even OOD examples from a recent case
study on smart homes [5]. Figure 1.8 depicts an example specification, constructed
from mined specification patterns of the synthesis competition, of the held-out test
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set on which the neural network is evaluated. We are using a hierarchical Trans-
former [141], which can directly construct a circuit satisfying this specification. Over-
all, the best performing model achieved 81.25% accuracy on the held-out test set. We
also tested the model on the SYNTCOMP benchmarks, where it solved 68.3% of the
145 instances within its space limits. Despite common belief, with the contributions
of this thesis, direct machine learning approaches can be used to augment classical
algorithms in verification tasks already today.

1.5 Publications
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1.6 Contributions

In the first part of this thesis, we identify the theoretical borders for which the two
core logical problems, i.e., the satisfiability and realizability problem, remain decid-
able when climbing up in the expressiveness hierarchy of hyperlogics. As a practical
application, where both of these problems play an important role, we consider the
enforcement of temporal hyperproperties for black box-systems.

In the second part of this thesis, we provide a data generation and a training
method for solving the satisfiability and realizability problem of linear-time temporal
logic (LTL) end-to-end with a deep neural network. This contribution paves the way
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for the development of more efficient heuristics and hybrid algorithms for temporal
reasoning. In more detail, this thesis makes the following contributions.

1.6.1 Part I: Logical Methods for Temporal Reasoning

Logical methods forω-regular temporal hyperproperties [42, 72]. In the realm
of linear-time hyperlogics, we study the satisfiability and synthesis problem of
HyperQPTL, a hyperlogic for ω-regular temporal hyperproperties. We can identify
the exact borders of decidable fragments. These fragments even contain prompt-
ness properties. We provide encouraging experimental results that show that it is
indeed possible to synthesize an arbiter respecting promptness from a HyperQPTL
specification despite the high computational cost.

Logical methods for branching-time temporal hyperproperties [42]. We study
the satisfiability problem of the branching-time hyperlogic HyperCTL∗, for which we
can identify decidable fragments. For the synthesis problem, we shortly remark that
HyperCTL∗ inherits the decidable fragments of HyperLTL and is undecidable in gen-
eral.

Enforcing temporal hyperproperties [43]. By elaborating the notion of a sound
and transparent enforcement mechanisms for temporal hyperproperties, we con-
tribute the necessary foundations for studying this problem algorithmically. We iden-
tify under which restrictions and in which trace input models [73, 74] enforcement
mechanisms exist and provide efficient algorithms. The algorithmic solutions are
based on solving either a variation of the synthesis or the satisfiability problem. We
conduct experiments, showing that algorithms can perform well without significant
overhead at runtime and can easily handle very long traces. The bottleneck is the
initial solving of the synthesis problem.

1.6.2 Part II: Deep Learning Methods for Temporal Reasoning

Teaching temporal logics to neural networks [102]. We train a Transformer on
the problem to predict a trace to a given LTL formula. We conduct various experi-
ments, showing that deep neural networks generalize to the semantics of logics with
our data generation method. While they often deviate from the solutions found by
the classical solvers, with which we generated the training data, they still predict
correct solutions to most formulas. We also provide experiments showing that mod-
els could solve instances from benchmarks from the literature on which the classical
solver timed out. Furthermore, we performed experiments on propositional logic and
out-of-distribution testing to confirm these observations. Overall, this contributes the
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first end-to-end training method of a deep neural network for a challenging logical
task in verification.

Neural circuit synthesis from specification patterns [182]. We contribute a data
generation and training method to train a hierarchical Transformer [141] to synthe-
size hardware circuits directly out of temporal logical specifications. We provide a
mining method for LTL specification patterns from the annual synthesis competi-
tion SYNTCOMP [116]. We show that the machine learning models trained on this
synthetic data solve many problems from the synthesis competitions. We also con-
duct experiments on out-of-distribution examples from a recent case study on secure
smart homes [5]. This thesis provides a solution to the problem that applying ma-
chine learning to hardware synthesis suffers from a severe lack of sufficient training
data.

1.7 Related Work

Temporal logics. Temporal logics have been studied in computer science since
their introduction by Pnueli [165]. Since then, many extensions have been de-
veloped: e.g., computation tree logic (CTL/CTL∗) [37, 57], signal temporal logic
(STL) [148], or temporal logics for hyperproperties (HyperLTL) [40]. Logical meth-
ods for temporal logics have been studied extensively over the years, e.g., LTL satisfi-
ability [139, 175, 185, 139, 138, 186] or LTL synthesis [83, 84, 22, 67, 152]. Other
verification methods, such as model checking, or monitoring, have also been studied
for LTL [39, 15, 85] and for various logics, e.g., STL monitoring [50] or CTL model
checking [38].

Temporal hyperproperties. After the introduction of the linear-time hyperlogic
HyperLTL and the branching-time hyperlogic HyperCTL∗ [40], formal methods for
temporal hyperproperties have been studied extensively: satisfiability [70, 89, 149,
71, 75], model checking [82, 79, 111, 80], program repair [24], monitoring [77, 103,
23, 25, 198, 76, 78, 7], synthesis [73, 74], and expressiveness studies [42, 129, 88]
have been conducted. There are various extensions of HyperLTL and HyperCTL∗,
e.g., HyperSTL [157], PHL [49], HyperQPTL [171], or HyperCTL∗lp [26].

Classic synthesis tools. The hardware synthesis problem traces back to the def-
inition of the problem by Alonzo Church in 1957 [36], thus also called Church’s
Problem. With theoretical solutions, already in 1969 by Büchi and Landweber [31].
From a foundational point of view, advances have been made algorithmically, e.g.,
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with a quasi-polynomial algorithm for parity games [33], conceptually with dis-
tributed [167] and bounded synthesis [84], or expressiveness-wise, e.g., GR(1) [164]
synthesis, which is an efficient fragment of LTL or synthesis for security properties
given in HyperLTL [74]. From a practical point of view, the field can build on a
rich supply of tools (e.g. [22, 67, 152]). The first synthesis competition (SYNT-
COMP) [118] was held in 2014, as part of the annual international conference on
computer-aided verification (CAV).

Runtime Enforcement. Monitoring HyperLTL has been studied extensively
(e.g.[77, 103, 23, 25, 198, 76, 78, 7]). Especially relevant is the work on realizability
monitoring for LTL [55] using parity games. Existing work on runtime enforcement
includes algorithms for safety properties [21, 220], real-time properties [174, 66],
concurrent software specifications [147], and security policies [183, 59, 144]. For a
tutorial on variants of runtime enforcement see [63]. Close related work is [156],
which also studies the enforcement of general hyperproperties but independently of
a concrete specification language (in contrast to this thesis). Systems are also as-
sumed to be reactive and black-box, but there is no distinction between different
trace input models. In this thesis, we mainly rely on parity game solving, while their
enforcement mechanism executes several copies of the system to obtain executions
that are related by the specification.

Property specification patterns. Dwyer et al. [53] identified 55 property specifi-
cation patterns for temporal logics. Their general hierarchical specification pattern
system can be mapped to temporal logics such as LTL and CTL. More patterns for
temporal logical formulas are identified by [61, 110, 162]. In [127], the authors
identified real-time specification patterns of real-time temporal logics, and in [99], a
specification pattern system was presented for probabilistic properties formulated in
probabilistic temporal logic.

Datasets for mathematical reasoning. Other works have studied datasets derived
from automated theorem provers [19, 146, 94], interactive theorem provers [115,
121, 13, 112, 224, 168, 221, 140, 137, 205, 172, 159] (see [173] for a survey),
symbolic mathematics [134], and mathematical problems in natural language [178,
181]. Close work to this thesis are the applications of Transformers to directly solve
differential equations [134] and directly predict missing assumptions and types of
formal mathematical statements [172]. We focus on a different problem domain, ver-
ification, and demonstrate that Transformers are roughly competitive with classical
algorithms in that domain on their dataset. Learning has been applied to mathemat-
ics long before the rise of deep learning. Earlier works focused on ranking premises
or clauses [32, 203, 204, 206, 151, 184, 122].
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Neural architectures for logical reasoning. In [219], the authors present a re-
inforcement learning approach for interactive theorem proving. NeuroSAT [189] is
a graph neural network [179, 143, 96, 223] for solving the propositional satisfia-
bility problem. A simplified NeuroSAT architecture was trained for unsat-core pre-
dictions [188]. In [136], the authors have used graph neural networks on CNF to
learn better heuristics for a 2QBF solver. In [62] the problem of logical entailment
in propositional logic is studied using tree-RNNs. Entailment is a subproblem of sat-
isfiability and the formulas considered in their dataset are much smaller than in this
thesis. In [12], the authors applied graph neural networks to predict tactics for SMT
solvers. In general, logical and mathematical reasoning with neural networks is a
growing field of research. Stronger and flexible reasoning engines could serve as
the basis for many applications, such as search, verification, synthesis and computer-
aided design [199].

Language models applied to programs. Transformers have also been applied to
programs for tasks such as summarizing code [68] or variable naming and mis-
use [108]. Other works have been focused on recurrent neural networks or graph
neural networks for code analysis, e.g. [163, 101, 17, 217, 9]. Another area in the
intersection of formal methods and machine learning is the verification of neural
networks, e.g. [54, 191, 190, 194, 95, 113, 51].



Part I

Logical Methods for Temporal
Reasoning
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Chapter 2

Reactive Systems and Temporal
Logics

A reactive system continuously interacts with its environment. Examples are hard-
ware circuits, communication protocols or embedded controllers [106]. They are
indispensable and are deployed in safety-critical and security-critical systems. In or-
der to prove that a reactive system adheres to a specification, both the specification
and the model of a reactive system must be based on rigorous mathematics. In this
chapter, we provide an overview of the mathematical models and constructions that
the approaches in this thesis rely on.

We consider temporal logics as our formal specification framework for temporal
reasoning. We differentiate between logics for trace properties, and hyperlogics1 for
hyperproperties. We begin by defining linear-time temporal logic (LTL), a logic for
expressing trace properties, followed by HyperLTL, a hyperlogic for expressing hy-
perproperties. As a reference point, we define the notion of self-composition, which
is a common algorithmic technique to verify relations between traces.

2.1 Reactive Systems

Reactive systems can be modeled as finite state machines, typically either as Mealy
or Moore machines. The system models were first introduced back in 1955 [150]
and 1956 [154], respectively. The next output of a Mealy machine is computed by
its current state and the current input, whereas the next output of a Moore machine
depends solely on the current state. Both system models are convertible into one
another and many synthesis and model checking tools support both interpretations.

1Throughout this thesis, we will refer to logics that express temporal trace properties as temporal
logics, and to logics that express temporal hyperproperties as (temporal) hyperlogics.
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q0 q1

1 | 1

1 | 1
0 | 0 0 | 0

(a) Mealy machine.

q0 | 0 q1 | 1

1

1
0 0

(b) Moore machine.

Figure 2.1: An example of a reactive system: a parity checker given as a Mealy and a
Moore machine. The symbol | separates inputs (left) from outputs (right) for Mealy
machines. For Moore machines, it separates the state name from the output.

Definition 1. A Mealy machine is defined as a tuple (S, s0,Σ, O,δ) with:

• S: a finite set of states,

• S0: the initial state,

• Σ: the input alphabet,

• O: the output alphabet, and

• δ : S ×Σ→ S ×O: a transition function.

Definition 2. A Moore machine is defined as a tuple (S, s0,Σ, O,δ, G) with:

• S: a finite set of states,

• S0: the initial state,

• Σ: the input alphabet,

• O: the output alphabet,

• δ : S ×Σ→ S: a transition function, and

• G : S→ O: an output labeling.

As an example of a simple reactive system, we consider a parity bit checker. A parity
bit is a simple error detecting technique typically used in data transmission or com-
munication [226]. When transmitting a bitstring, a single bit is added, which is 1 if
the number of 1’s in the bitstring is even and 0 if the number of 1’s in the bitstring
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is odd. When submitting the 4-bitstring 1010, a parity bit 1 is added, resulting in
10101. If there is now a single transmission error, i.e., one of the bits were flipped
during the transmission, the receive notices this error. For example, if the received
bitstring is 11101, the number of 1’s is even, meaning that one of the bits must be
flipped. If an even number of errors occur, no error can be detected. Note that this
technique can only detect errors, but can not correct any errors. Figure 2.1 depicts
a parity checker encoded as a Moore and a Mealy machine.

2.2 Temporal Logics

Temporal Logics have been a longstanding paradigm for formalizing specifications
of reactive systems. They are widely used in the verification community and are the
basis for industrial specification langauges like the IEEE standard “property specifi-
cation language” (PSL) [114]. In the following, we present LTL, a temporal logic
for trace properties, i.e., specification that refer to a single system execution and
HyperLTL, a temporal hyperlogic for hyperproperties, i.e., specifications over relations
of system executions. Hyperproperties are especially considered in security-critical
systems, since many security policies, such as information-flow, define relations over
system executions.

2.2.1 Linear-time Temporal Logic

Linear-time temporal Logic (LTL) [165] was introduced by Amir Pnueli in 1977.

LTL Syntax. LTL combines the usual boolean connectives with temporal modalities
such as the Next operator and the Until operator U. Formally, a trace t is an infinite
sequence over subsets of atomic propositions AP. We define the set of traces TR :=
(2AP)ω. Let p ∈ AP and t ∈ TR. The syntax of LTL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ϕ | ϕ | ϕ Uϕ .

The formula ϕ means that ϕ holds in the next position of a trace; ϕ1 Uϕ2 means
thatϕ1 holds untilϕ2 holds. We can derive several operators, such as ϕ ≡ true Uϕ,
ϕ ≡ ¬ ¬ϕ, ϕ1 Rϕ2 ≡ ¬(¬ϕ1 U¬ϕ2), and ϕ1 Wϕ2 ≡ (ϕ1 Uϕ2) ∨ ϕ1. ϕ

states that ϕ will eventually hold in the future and ϕ states that ϕ holds globally,
ϕ1 Rϕ2 states that ϕ1 releases ϕ2, and W is the weak version of the until operator.

Consider, for example, a controller that manages a shared resource. The con-
troller receives requests (r) and provides grants (g) to two processes. We identify
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g0 g1

∗

∗

(a) A controller simply alternating
between g0 and g1.

{} g1

g1

g0

r1 ∧¬r0

r0 ∧ r1

∗r1

¬r0 ∧¬r1

r0 ∧¬r1

¬r0

¬r1

r0

(b) A controller, without spurious grants.

Figure 2.2: Two controllers satisfying mutual exclusion with a symbolic edge nota-
tion: the symbol ∗ denotes that this edge can always be taken, and propositional
formulas represent sets of edges. We omit set brackets and state names.

which request and grant belong to which process by indexing it with the correspond-
ing process id (either 0 or 1). We can specify the behavior of a controller with LTL
as follows:

( (¬(g0 ∧ g1))) (2.1)

∧ ( (r0→ ( g0))) (2.2)

∧ ( (r1→ ( g1))) . (2.3)

The conjunct 2.1 states that at no point in time, the controller is allowed to give
both grants g0 and g1 at the same time. Conjuncts 2.2 and 2.3 state that every
request ri is eventually followed by grant gi (for i ∈ {1,2}). Figure 2.2 depicts two
implementations of a controller.

The semantics of LTL is defined over (execution) traces of a system in discrete
time, which are, in a reactive context, typically assumed to be infinite sequences of
valuations of system variables, called atomic propositions. A subset T ⊆ TR is called
a trace property. We use the following notation to manipulate traces: let t ∈ TR be a
trace and i ∈ N be a natural number. t[i] denotes the i-th element of t. Therefore,
t[0] represents the starting element of the trace. Let j ∈ N and j ≥ i. t[i, j] denotes
the sequence t[i] t[i + 1] . . . t[ j − 1] t[ j]. t[i,∞] denotes the infinite suffix of t
starting at position i. A trace, thus, represents the behavior of a single run through
a system model.
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LTL Semantics. Formally, the semantics of LTL is defined as follows:

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t 6|= ϕ
t |= ϕ1 ∨ϕ2 iff t |= ϕ1 or t |= ϕ2

t |= ϕ iff t[1,∞] |= ϕ
t |= ϕ1 Uϕ2 iff there exists i ≥ 0 : t[i,∞] |= ϕ2

and for all 0≤ j < i we have t[ j,∞] |= ϕ1 .

Assume, for example, the controller (a) in Figure 2.2. This simple implementation,
in fact, satisfies the LTL specification in Equation 2.1- 2.3. However, the output of
the system is independent of the input and provides spurious grants. Consider, for
example, the following trace:

{g0} {g1} {g0} {r0, g1} {g0} . . .

If we would like to specify that the controller provides no spurious grants, we have
to be more precise by adding the following constraints:

∧ (r0 R¬g0) (2.4)

∧ (r1 R¬g1) . (2.5)

The conjuncts 2.4 and 2.5 state that no grants gi are given until a request ri releases
this obligation. We also have to make sure that this obligation is reset after giving
out a grant, which is more technical:

∧ ( ((g0 ∧ ( (¬r0 ∧¬g0)))→ ( (r0 R¬g0)))) (2.6)

∧ ( ((g1 ∧ ( (¬r1 ∧¬g1)))→ ( (r1 R¬g1)))) (2.7)

∧ ( ((g0 ∧ ¬r0)→ ¬g0)) (2.8)

∧ ( ((g1 ∧ ¬r1)→ ¬g1)) . (2.9)

The controller (b) in Figure 2.2 satisfies the conjuncts 2.1-2.9. Instead of simply alter-
nating between both grants, the implementation reacts accordingly to the requests
r0 and r1, while still satisfying mutual exclusion.

LTL Satisfiability

In this section, we lay out an automata-theoretic approach to solving the satisfiability
problem of LTL. Formally, the problem is defined as follows.

Definition 3 (LTL Satisfiability). An LTL formula ϕ over atomic propositions AP is
satisfiable if there exists a trace t ∈ TR that satisfies ϕ.
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A B
b

a
∗

Figure 2.3: A Büchi automaton constructed from the LTL formula a U b with the
online tool LTL2BA [92, 93]. The only accepting state is B, depicted as a double
circle.

In 1962, Julius R. Büchi showed that a logical formula, given in monadic second-
order logic of one successor (S1S), can be translated to an automaton over infinite
words [29]. Since LTL is a syntactic fragment of quantified propositional logic (QPTL)
(which is equally expressive to S1S [124]), this result also applies to LTL formulas.
Note that QPTL, S1S and Büchi automata are equally expressive but more expressive
than LTL. We define QPTL in detail in Chapter 3. In the following, we defineω-word
automata and the Büchi acceptance condition.

Definition 4. A (nondeterministic)ω-word automaton is defined as the following tuple
A= (Q,Q0,Σ,δ, Acc):

• Q: a finite set of states,

• Q0: the set of initial states,

• Σ: the input alphabet,

• δ ⊂Q×Σ×Q: the transition relation, and

• Acc: the accepting condition.

We assume A to be complete, meaning that for every q ∈ Q and s ∈ Σ, there exists
a q′ ∈ Q, s.t. (q, s, q′) ∈ δ. The automaton is called determinstic if δ is a function
δ : Q×Σ→Q, ifQ0 is a singleton set, and there is at most one q′ ∈Q, s.t. (q, s, q′) ∈ δ.
The accepting condition Acc is defined over a run of the automaton. A run ofA over an
infinite input word σ ∈ Σω, is an infinite sequence of states τ ∈Qω, s.t. the sequence
starts with the initial state, i.e., τ[0] = q0 and the rest of the sequence follows the
transitions, i.e., (τ[i],σ[i],τ[i + 1]) ∈ δ for i ∈ N. There are several acceptance
conditions. Relevant for this thesis is the safety and the Büchi condition. The safety
acceptance condition is given as a subset Qsafety ⊆ Q. A run of A is accepting if only
safe states are visited. The Büchi condition [30] is necessary for the above-mentioned
translation of S1S and LTL formulas into an automaton. It is a subset QBüchi ⊆ Q. A
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...

ī
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Figure 2.4: A strategy tree for the reactive realizability problem.

run of A is accepting if some state in QBüchi is visited infinitely often. An example
of a Büchi automaton is given in Figure 2.3. The automaton accepts all traces that
satisfy the LTL formula a U b, with the set of accepting states being {B}.

There exist multiple algorithms and tools for the translation of an LTL formula
to a Büchi automaton. Most of them perform the translation in multiple steps with
intermediate representations like generalized Büchi automata (GBA) [212] or alter-
nating automata [207]. A solution to the satisfiability problem, i.e., either a trace or
unsat, is computed by an emptiness check on the Büchi automaton, which can be
performed on the fly.

Theorem 1 ([196]). The satisfiability problem of LTL is PSPACE-complete.

LTL Realizability

In this section, we give preliminaries on the realizability problem of LTL, which is
the task of, given an LTL formula ϕ, to compute an implementation (e.g., a Moore or
Mealy machine) that satisfies the specification. More precisely, the system is assumed
to receive some inputs from an environment and has to react with outputs such that
the specification is fulfilled. The realizability problem asks for the existence of a
so-called strategy tree, where the edges are labeled with all possible inputs and the
task is to find a function f that labels the nodes with the corresponding outputs.
Figure 2.4 shows a strategy tree for a single input bit i.

Let disjoint sets of inputs and outputs AP = I ∪̇O be given. Formally, a strategy
f : (2I)∗→ 2O maps sequences of input valuations 2I to an output valuation 2O. For
an infinite word w = w0w1w2 · · · ∈ (2I)ω, the trace corresponding to a strategy f is
defined as ( f (ε)∪w0)( f (w0)∪w1)( f (w0w1)∪w2) . . . ∈ (2I∪O)ω.

Definition 5 (LTL Realizability). An LTL formula ϕ over disjoint inputs and outputs
AP= I ∪̇O is realizable if there is a strategy f : (2I)∗→ 2O that satisfies ϕ.

Such a strategy can be computed by playing a 2-player parity gamewhere the “system”-
player, who tries to satisfy the specification, faces the “environment”-player, who
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tries to violate the specification. Intuitively, the environment-player has control over
the inputs and the system-player must react with certain outputs. For a given LTL
formula, we first construct a nondeterministic Büchi automaton in exponential time.
This Büchi automaton can be translated in exponential time into a deterministic parity
automaton.2 Formally, a parity automaton is a generalization of a Büchi automaton:
every q ∈ Q is labeled with some natural number k and the parity accepting con-
dition requires the smallest number that occurs infinitely often in a run to be even
(or odd). The parity game is then played in an arena, which is constructed from a
deterministic parity automaton.

Formally, a parity game G is a two-player game (V0, V1,Σ0,Σ1, E0, E1, vin, c), where
V0 and V1 are the states belonging to player P0 and P1, respectively, Σ0 and Σ1 are the
sets of actions, E0 : V0 ×Σ0→ V1 and E1 : V1 ×Σ1→ V0 are the transition functions,
vin ∈ V0 is the initial state, and c : V0 ∪̇ V1 → N is the coloring function. States
belonging to P0 and P1 are required to alternate along every path in a parity game.
For an infinite decision sequence w = w0

0w1
0w0

1w1
1 . . ., where the two players choose

one of their possible actions in every step (i.e., ∀i ∈ N. w0
i ∈ Σ0 and w1

i ∈ Σ1), the
game generates an infinite play r = v0

0 v1
0 v0

1 v1
1 . . ., where v0

0 is the initial state and the
edge function is followed according to w, i.e., ∀i ∈ N. p ∈ {0,1}. v1−p

i+p = Ep(v
p
i , wp

i ).
The play r is winning for player P0 if and only if the highest color occurring infinitely
often in the sequence c(v0

0 )c(v
1
0 )c(v

0
1 )c(v

1
1 )... is even. Otherwise, player P1 wins. A

strategy maps the history of the play to the next move that should be executed by
the player whose turn it is. The strategy for player P0 is a function σ0 : (Σ0×Σ1)∗→
Σ0, the strategy for player P1 is a function σ1 : (Σ0 × Σ1)∗ × Σ0 → Σ1. A decision
sequence w is conforming to a strategy σp for p ∈ {0,1}, if ∀i ∈ N we have that
wp

i = σp(w0
0w1

0...w1−p
i+p−1). A strategy σp is called winning for player Pp if all decision

sequences w conforming to σp generate plays that are winning for player Pp. There
always exists a winning strategy for exactly one of the players since parity games
are determined [58]. A state v ∈ V0 ∪̇ V1 is called winning for player Pp if this player
has a winning strategy in the modified game G v where the initial state vin is set to
v. The set of all states that are winning for player Pp is called the winning region
for player Pp. Parity games are even memoryless determined, i.e., if player Pp has a
winning strategy in state v, then Pp has a positional strategy σ : Vp → Σp, such that
for any decision sequence conforming to σ, the play starting in v is winning for p.
Positional strategies give a decision for each of the player’s states, independently of
the history of the play. The exact complexity of parity game solving, i.e., determining
the winning region, is still unknown. Current state-of-the-art algorithms perform in
quasi-polynomial time [33, 161].

Theorem 2 ([166]). The realizability problem of LTL is 2-EXPTIME-complete.

2The computational cost comes from determinization of the automaton [177].
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We use the terms realizability problem and synthesis problem interchangeably
throughout this thesis.

2.2.2 HyperLTL

Security policies, such as noninterference [97] are hyperproperties [41], since they re-
late multiple computation traces. Temporal logics that only reason over single execu-
tions of a system are thus not capable of expressing them. In this section, we present
a recently introduced extension of LTL, called HyperLTL[40], which is capable of ex-
pressing temporal hyperproperties. HyperLTL extends LTL with trace variables and
trace quantifiers. With this mechanism, it is possible to express relations between
traces. For example, one of the simplest hyperproperties is plain trace equivalence,
i.e., every two traces must agree on all atomic propositions. The following HyperLTL
formula, for example, expresses that all traces of a controller agree on the grants:

∀π.∀π′. (g0π↔ g0π′
)

∧ (g1π↔ g1π′
) .

The formula reads as “all traces π and π′ must agree on grants g0 and g1 at every
point in time”. Controller (a) in Figure 2.2, in fact, adheres to this specification.
Controller (b), however, does not satisfy this specification, since the grants provided
depend on the input requests.

HyperLTL Syntax. Let V be an infinite supply of trace variables. Formally, the syn-
tax of HyperLTL is given by the following grammar:

ψ ::= ∃π.ψ | ∀π.ψ | ϕ
ϕ ::= aπ | ¬ϕ | ϕ ∨ϕ | ϕ | ϕ Uϕ

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. Note that atomic
propositions are indexed by trace variables. The quantification over traces makes it
possible to express properties like “on all traces ψmust hold”, which is expressed by
∀π. ψ. Dually, one can express that “there exists a trace such that ψ holds”, which
is denoted by ∃π. ψ. The derived operators , , R, and W are defined as for LTL.

A more practical example is observational determinism [225], which is an
information-flow policy. The specification requires that two traces, with the same
observable input, appear the same to an observer, i.e., have the same observable
outputs. The hyperproperty is formalized as follows:

∀π.∀π′. (
∧

i∈I

iπ↔ iπ′)→ (
∧

o∈O

oπ↔ oπ′) ,

where I denotes the observable inputs and O denotes the observable outputs3. The
3Throughout this thesis, we also use the following notation: Oπ↔ Oπ′ .
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A|{}

B|o1

C |o2

∗

∗
i ∧¬s

i ∧ s

¬i

Figure 2.5: An example system with observable input i that leaks a secret s through
observable outputs o1 and o2.

formula reads as “all traces π and π′ must agree on every output o ∈ O if the traces
agree on ever input i ∈ I”. Figure 2.5 depicts an example system that leaks the secret
s through the observable outputs o1 and o2.

HyperLTL Semantics. Formally, a HyperLTL formula defines a hyperproperty H,
which is a set of sets of traces, i.e., H ∈ 2TR. A set T of traces satisfies the hyperprop-
erty H if it is an element of this set of sets, i.e., if T ∈ H. The semantics of HyperLTL
is given with respect to a trace assignment Π from V to TR, i.e., a partial function
mapping trace variables to actual traces. The notation Π[π 7→ t] denotes that π is
mapped to t, with everything else mapped according to Π and Π[i,∞] denotes the
trace assignment that is equal to Π(π)[i,∞] for all π:

Π |=T ∃π.ψ iff there exists t ∈ T : Π[π 7→ t] |=T ψ

Π |=T ∀π.ψ iff for all t ∈ T : Π[π 7→ t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ψ iff Π 6|=T ψ

Π |=T ψ1 ∨ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |=T ψ iff Π[1,∞] |=T ψ

Π |=T ψ1 Uψ2 iff there exists i ≥ 0 : Π[i,∞] |=T ψ2

and for all 0≤ j < i we have Π[ j,∞] |=T ψ1 .

Self-composition

A common technique to verify hyperproperties is to first compute the self-composition
of a system [14]. With this technique the verification problem for hyperproperties
can be reduced to the verification problem of a trace property [82]. For computing
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AA′

{},{}

BB′
o1, o′1

CB′
o2, o′1

BC ′
o1, o′2

CC ′
o2, o′2

AB′

AC ′

CA′

BA′

¬i,¬i′

i ∧¬s, i′ ∧¬s

i ∧ s, i′ ∧¬s

i ∧¬s, i′ ∧ s

i ∧ s, i′ ∧ s

Figure 2.6: Self-composition of the example system in Figure 2.5. The second copy
of the system is indicated by a ′ symbol. Parts that already violate the premise of the
specification are grayed out. Some edge labels are omitted for readability.

the self-composition, first the system is copied and then composed into a product
system simulating both runs of the system in parallel. The self-composition of the
example system leaking a secret (see Figure 2.5) is visualized in Figure 2.6. The
following LTL formula specifies observational determinism for the self composition,
which is a trace property:

( (i↔ i′))→
∧

i∈{1,2}
( (oi ↔ o′i)) .

The parts of the self-composition where traces differ in their observable inputs i
are grayed out, since they violate the premise of observational determinism already.
Problematic traces are the ones that agree on their input, as observational determin-
ism requires that they should also agree on their observable output. Traces depicted
in red, however, violate this specification. An attacker could infer the secret s be
repeatedly observing multiple runs of the system.
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Although motivated from security-critical applications, note that there are many
more application areas for hyperproperties. For example, other hyperproperties are,
as mentioned in the introduction, robustness [200], distributivity [167], symme-
try [82], or fault-tolerance [131].

HyperLTL Satisfiability

In contrast to logics for trace properties where the satisfiability problem asks for a
satisfying trace, the satisfiability problem of hyperlogics asks for a non-empty set of
traces. Formally, the problem is defined as follows.

Definition 6 (HyperLTL Satisfiability). A HyperLTL formula ϕ is satisfiable if there
exists a non-empty set of traces T such that Π |=T ψ, where Π is the empty trace
assignment.

If it is clear from the context, we omit Π and simply write T |=ψ. We call T a model
of ψ. Constructing a set of traces poses a new challenge and, in fact, leads to unde-
cidability of the logic in general [70]. However, the problem remains decidable for a
large class of hyperproperties, such as information-flow policies that are expressible
in the ∀∗ fragment. We arrange the findings on this matter on the quantifier structure
of the HyperLTL formula. An overview is depicted in Table 2.1.
The satisfiability problem has been shown to be undecidable for the full logic by
a reduction from Post’s Correspondence Problem (PCP) [70]. This result was then
refined by a reduction from the recurring tiling problem, showing that the problem
is Σ1

1-complete.

Theorem 3 ([89]). The satisfiability problem of HyperLTL is Σ1
1-complete.

Excursus: Restricting Models or Temporal Depth

In this excursus, we will have a quick look on further restrictions on the satisfiability
problem of HyperLTL investigated in the literature. In this thesis, however, we will
focus on structuring fragments based on the quantifier structure.

Fragment of HyperLTL Complexity

∀∗ PSPACE-complete [70]
∃∗ PSPACE-complete [70]
∃∗∀∗ EXPSPACE-complete [70]

Full Logic Σ1
1-complete [89]

Table 2.1: Complexity of the satisfiability problem of HyperLTL by quantifier struc-
ture.
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It is often sufficient to reason about a fixed number of traces, e.g., two in the case
of information-flow policies. When restricting the number of universal quantifiers in
a formula to a bound b ∈ N, it can be translated to an equisatisfiable LTL formula of
polynomial size.

Corollary 1 ([70]). The satisfiability problem of HyperLTL is PSPACE-complete for the
bounded ∃∗∀∗ fragment.

Similarly, instead of restricting the number of quantifiers in the formula, we can
restrict the cardinality of the trace models.

Theorem 4 ([149]). The following problem is EXPSPACE-complete: Given a HyperLTL
formula ϕ and k ∈ N does ϕ have a model with at most k traces?

Another dimension to analyze the complexity of HyperLTL formulas is their nesting
of temporal operators [149]. The authors showed that the lower bounds remain the
same for a temporal depth of two or higher. For a temporal depth of one, however,
the complexity of the problem decreases. Table 2.2 summarizes their results.

HyperLTL Realizability

It has been shown that the HyperLTL realizability problem subsumes many other
studied variants of the realizability problem studied in the literature [74], such as
synthesis under incomplete information [133], distributed synthesis [167], asyn-
chronous distributed synthesis [180], symmetric synthesis [56], or fault-tolerant
synthesis [86, 87]. The problem, however, is computationally very challenging and
becomes undecidable quickly. Table 2.3 summarizes the known results.

The problem is formally defined as follows. For any trace w = w0w1w2 . . . ∈
(2I∪O)ω and strategy f : (2I)∗→ 2O, we lift the set containment operator ∈ defining
that w ∈ f iff f (ε) = w0 ∩O and f ((w0 ∩ I) · · · (wi ∩ I)) = wi+1 ∩O for all i ≥ 0. We
say that a strategy f satisfies a HyperLTL formula ϕ over AP = I ∪̇O iff {w | w ∈ f }
satisfies ϕ.

Fragment of HyperLTL Temporal Depth 1

∃∗ / ∀∗ NP-complete
∃∗∀∗ NEXPTIME-complete
∃∗∀∃∗ in N2EXPTIME∗

∀2∃∗ undecidable

Table 2.2: Results on restricting the temporal depth of a HyperLTL formula, where ∗
denotes that the lower bound only holds for U-free formulas [149].
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Figure 2.7: Parity game for observational determinism. States of the system player
P0 are depicted as circles.

Definition 7 (HyperLTL Realizability). A HyperLTL formula ϕ over disjoint inputs and
outputs AP= I ∪̇O is realizable if there is a strategy f : (2I)∗→ 2O that satisfies ϕ.

For example Figure 2.7 depicts a parity game for observational determinism. Let
Σ0 = {o1, o2} be the set of low-security outputs and Σ1 = {i1, i2} be the set of low-
security inputs. As long as i1 and i2 agree, o1 and o2 also have to agree. In this
simplified example, a winning strategy would be to always choose o1 equivalent to
o2, independently of the inputs. The system player P0 has a winning strategy from
the upper states using only bold transitions from system states.

Intuitively, the realizability problem of HyperLTL becomes undecidable quickly,
because the ∀∗ fragment of HyperLTL can express (in)dependence [74]. This is a hy-
perproperty, which enables the encoding of the distributed realizability problem of
LTL, which is known to be undecidable [167]. We will discuss the realizability prob-
lem of temporal hyperproperties in more detail in the next chapter, when considering
ω-regular hyperproperties.

Fragment of HyperLTL Complexity

∃∗ PSPACE-complete
∀∗ Undecidable

linear ∀∗ NONELEMENTARY
∃∗∀1 3-EXPTIME
∃∗∀>1 Undecidable
∀∗∃∗ Undecidable

Table 2.3: Decidability results for the realizability problem of HyperLTL [74].



Chapter 3

Logical Methods for ω-regular
Temporal Hyperproperties

Hyperlogics can not only specify functional correctness but may also enforce the ab-
sence of information leaks or the presence of information propagation. There is a
great practical interest in information flow control, which makes synthesizing imple-
mentations that satisfy hyperproperties highly desirable. As mentioned in the last
chapter, it was shown that the synthesis problem of HyperLTL, although undecid-
able in general, remains decidable for many fragments, such as the ∃∗∀ fragment.
Furthermore, a bounded synthesis procedure was constructed, for which a prototype
implementation based on BoSy[67, 73, 44] showed promising results.

HyperLTL is, however, intrinsically limited in expressiveness. For example, prompt-
ness is not expressible in HyperLTL. Promptness is a property stating that there is a
bound b, common for all traces, on the number of steps up to which an event e must
have happened. Additionally, just like LTL, HyperLTL can express neither ω-regular
nor epistemic properties [171, 26]. We will, thus, move up in the expressiveness hi-
erarchy of hyperlogics [42] to HyperQPTL. We will determine the theoretical borders
for which the satisfiability and realizability problem remain decidable.

HyperQPTL subsumes epistemic extensions of temporal logics such as LT LK [104],
as well as the first-order hyperlogic FO[<, E] [88, 171, 42]. Epistemic properties are
statements about the transfer of knowledge between several components. The dining
cryptographers problem [35] describes an exemplary epistemic specification. Three
cryptographers sit at a table in a restaurant. Either one of the cryptographers or the
NSA must pay for their meal. The question is whether there is a protocol where each
cryptographer can determine whether the NSA or one of the cryptographers paid the
bill without revealing the identity of the paying cryptographer. Its expressiveness
makes HyperQPTL particularly interesting.

HyperQPTL extends HyperLTL with quantification over sequences of new propo-
sitions. What makes the logic particularly expressive is that the trace quantifiers and

35
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propositional quantifiers can be freely interleaved. With this mechanism, HyperQPTL
can not only express all ω-regular properties over a sequence of n-tuples; it truly in-
terweaves trace quantification and ω-regularity. For example, promptness can be
stated as the following HyperQPTL formula:

∃b.∀π. b ∧ (¬b U eπ) .

The formula states that there exists a sequence s ∈ (2{q})ω, such that event e holds
on all traces before the first occurrence of b in s.

We show that satisfiability is decidable for large fragments of the logic. The de-
cidable HyperQPTL fragments can be described in terms of their quantifier prefix.
We show that fragments consisting of a propositional ∀∃ quantifier alternation fol-
lowed by one type of trace quantifier remain decidable. No ∀∃ propositional quanti-
fier alternation is allowed, however, if followed by both types of trace quantification
(even ∃∗∀∗).

Propositional quantification also has an impact on the realizability problem: it be-
comes undecidable when combining a propositional ∀∃ quantifier alternation with
a single universal trace quantifier. However, we show that the synthesis problem
of large HyperQPTL fragments remains decidable, where one of these fragments
contains promptness properties. We partially obtain these results by reducing the
HyperQPTL realizability problem to the HyperLTL realizability problem. We extend
the BoSy bounded synthesis tool to synthesize systems respecting HyperQPTL speci-
fications based on this reduction. We provide promising experimental results of our
prototype implementation: using BoSy and HyperQPTL specifications, we synthe-
sized arbiters that respect promptness.

Results in this chapter are based on the satisfiability part in “The Hierarchy of
Hyperlogics” [42], which was joint work with Norine Coenen, Bernd Finkbeiner,
and Jana Hofmann and the realizability part in “Realizing ω-regular Hyperproper-
ties” [72], which was joint work with Bernd Finkbeiner, Jana Hofmann, and Leander
Tentrup. Furthermore, the author would like to thank Jonni Virtema for pointing
out inconsistencies. The chapter is structured as follows. We first define HyperQPTL
formally in Section 3.1 and give an intuition on ω-regularity. We then proceed by
considering the satisfiability and realizability problem of HyperQPTL in Section 3.2
and Section 3.3 respectively. Lastly, Section 3.4 presents experiments for the proto-
type implementation of a bounded synthesis algorithm for HyperQPTL.

3.1 HyperQPTL

LTL, and thus HyperLTL, is limited in expressiveness: counting languages, such as
L = (;;)∗{h}ω, can not be expressed. Quantified Propositional Temporal Logic
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; ; ; h h h

q ; q ; q ;

Figure 3.1: Quantification mechanism of QPTL for an example system trace (top). A
new trace in (2{q})ω (below) is constructed, that marks every odd position.

(QPTL) can express such ω-regular trace properties with a mechanism of quanti-
fying over propositions. As mentioned in Chapter 2, note that LTL is a syntactic frag-
ment of QPTL. Additionally QPTL is exactly as expressive as S1S and their definable
languages are thus Büchi recognizable.

QPTL Syntax. QPTL [195] extends Linear Temporal Logic (LTL) with quantifica-
tion over propositions. QPTL formulas ϕ are defined as follows:

ϕ ::= ∃q.ϕ | ∀q.ϕ |ψ
ψ ::= q | ¬ψ |ψ∨ψ | ψ | ψ ,

where q ∈ AP and AP is a set of atomic propositions. For simplicity, we assume that
variable names in formulas are cleared of double occurrences. The example language
above, i.e., L= (;;)∗{h}ω, specifies that a halting symbol h may only appear after an
even number of steps. This language is expressible in QPTL as follows:

∃q.(q ∧ (q↔¬ q) (3.1)

∧ ( h→ (h∨ q)) (3.2)

∧ h∧ (h→ h) . (3.3)

Figure 3.1 visualizes the quantification mechanism of QPTL. The Conjunct 3.1 en-
sures that every odd position of a new non-system trace in (2{q})ω is marked by a q.
The Conjunct 3.2 states that the first h is only at a non-marked position. The last
conjunct then requires that h eventually appears (and stays) on the system trace.

For defining the semantics of QPTL, we use the following notation. Given a trace
t ∈ (2AP)ω and a trace tq ∈ (2{q})ω, we define t[q 7→ tq] as the replacement of the
occurrences of q in t according to tq, such that t[q 7→ tq] ={q} tq and t[q 7→ tq] =AP\{q}
t. We also lift this notation to sets of traces as T[q 7→ tq] = {t[q 7→ tq] | t ∈ T}.
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QPTL Semantics. The semantics of ϕ over AP is defined with respect to a trace
t ∈ TR:

t |= q iff q ∈ t[0]
t |= ¬ψ iff t 6|=ψ
t |=ψ1 ∨ψ2 iff t |=ψ1 or t |=ψ2

t |= ψ iff t[1,∞] |=ψ
t |= ψ iff ∃i ≥ 0. t[i,∞] |=ψ
t |= ∃q.ϕ iff ∃tq ∈ (2{q})ω. t[q 7→ tq] |= ϕ
t |= ∀q.ϕ iff ∀tq ∈ (2{q})ω. t[q 7→ tq] |= ϕ .

We did not define the until operator U as native part of the logic. It can be derived
using propositional quantification [119]. The boolean connectives ∧,→,↔, and the
temporal operators globally and release R are derived as in Chapter 2.

Definition 8 (QPTL Satisfiability). A QPTL formula ϕ is satisfiable if there exists a
trace t ∈ TR that satisfies ϕ.

Due to the arbitrary quantifier alternations, the complexity of the satisfiability prob-
lem for QPTL is non-elementary in the number of alternations.

Theorem 5 ([197]). The satisfiability problem of QPTL is decidable with NONELE-
MENTARY complexity.

Similar to the lifting of LTL to HyperLTL, we can lift QPTL to HyperQPTL. Note that
we allow an arbitrary interleaving of propositional and trace quantification.

HyperQPTL Syntax. Given a set AP of atomic propositions and a set V of trace
variables, the syntax of HyperQPTL is defined as follows:

ϕ ::= ∀π.ϕ | ∃π.ϕ | ∀q.ϕ | ∃q.ϕ |ψ
ψ ::= aπ | q | ¬ψ |ψ∨ψ | ψ | ψ ,

where a, q ∈ AP and π ∈ V. As for QPTL, we assume that formulas are cleared of
double occurrences of variable names. We require that in well-defined HyperQPTL
formulas, each aπ is in the scope of a trace quantifier binding π, and each q is in the
scope of a propositional quantifier binding q. Note that atomic propositions aπ refer
to a quantified trace π, whereas quantified propositional variables q are independent
of the traces.
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HyperQPTL Semantics. The semantics of a well-defined HyperQPTL formula over
AP is defined with respect to a set of traces T ⊆ (2AP)ω and an assignment function
Π : V → T . We define the satisfaction relation Π, i |=T ϕ as follows:

Π, i |=T aπ iff a ∈ Π(π)[i]
Π, i |=T q iff ∀t ∈ T. q ∈ t[i]
Π, i |=T ¬ψ iff Π, i 6|=T ψ

Π, i |=T ψ1 ∨ψ2 iff Π, i |=T ψ1 ∨Π, i |=T ψ2

Π, i |=T ψ iff Π, i + 1 |=T ψ

Π, i |=T ψ iff ∃ j ≥ i. Π. j |=T ψ

Π, i |=T ∃π.ϕ iff ∃t ∈ T.Π[π 7→ t], i |=T ϕ

Π, i |=T ∀π.ϕ iff ∀t ∈ T.Π[π 7→ t], i |=T ϕ

Π, i |=T ∃q.ϕ iff ∃tq ∈ (2{q})ω.Π, i |=T[q 7→tq] ϕ

Π, i |=T ∀q.ϕ iff ∀tq ∈ (2{q})ω.Π, i |=T[q 7→tq] ϕ .

The semantics of propositional quantification is defined so that in the scope of a
quantifier binding q, all traces agree on their q-sequence.

3.2 HyperQPTL Satisfiability

In this section, we determine the undecidability borders for the satisfiability problem
of HyperQPTL.

Definition 9 (HyperQPTL satisfiability). A HyperQPTL formula ϕ is satisfiable if there
exists a non-empty set of traces T such that ;, 0 |=T ϕ, where ; is the empty trace
assignment.

We use the following notation to define HyperQPTL fragments. We write ∀π and
∀q for a single universal trace and propositional quantifier, respectively. To denote
a sequence of universal trace and propositional quantifiers, we write ∀∗

π
and ∀∗q.

Furthermore, we use ∀∗
π/q for a sequence of mixed universal quantification. We

use the analogous notation for existential quantifiers. Lastly, Q∗
π
and Q∗q denote

a sequence of mixed universal and existential trace and propositional quantifiers,
respectively. As an example, the ∀∗

π
Q∗q fragment denotes all formulas of the form

∀π1. . . .∀πm.∃/∀q1. . . .∃/∀qn.ϕ, where ϕ is quantifier free. The results of this sec-
tion are summarized in Figure 3.2.
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Figure 3.2: The satisfiability problem of HyperQPTL. Left and below of the solid line
are the decidable fragments, right above the solid line the undecidable fragments.

3.2.1 Decidable Fragments

We begin by defining the decidable fragments by their quantifier structure based on
the innermost trace quantifier. Propositional quantification to the right of the inner-
most trace quantifier has no impact on decidability since QPTL is decidable. Note
that the decidable fragment does also include the alternation-free fragments where
many information-flow properties lie. We first prove that the fragments consisting
of a propositional ∀∃ quantifier alternation followed by one type of trace quanti-
fier is decidable. When followed by an existential trace quantifier, we simulate trace
quantification with multiple propositional quantification.

Theorem 6. Satisfiability of the ∀∗q∃
∗
q∃
∗
π
Q∗q fragment of HyperQPTL is decidable.

Proof. Since QPTL is decidable, it is sufficient to show that HyperQPTL formulas in
the ∀∗q∃

∗
q∃
∗
π
fragment are decidable. We reduce the HyperQPTL formula to an equi-

satisfiable QPTL formula as follows. Let a HyperQPTL formula ∀∗q∃
∗
q∃π0

. . .∃πn−1
∃π′ . ϕ

over ai ∈ AP be given. We eliminate the existential trace quantification by replacing
the trace quantifier ∃π′ with k existential quantifiers over propositions, one for every
atomic proposition in ai ∈ AP:

∀∗q∃
∗
q∃π0

. . .∃πn−1

a(k−1)
π′

∃
ai
π′=a0

π′

ai
π′

.ϕ .

By iteration, the resulting formula is an equisatisfiable QPTL formula, which can be
decided.

When followed by a universal trace quantifier, we can exploit the fact that every
trace in the model must satisfy the formula. This means it is sufficient to construct
a singleton set. The universal trace quantification thus translates to a preceding
existential propositional quantifier simulating an existential trace quantification.

Theorem 7. Satisfiability of the ∀∗q∃
∗
q∀
∗
π
Q∗q fragment of HyperQPTL is decidable.
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Proof. Since QPTL is decidable, it is sufficient to show that HyperQPTL formulas in
the ∀∗q∃

∗
q∀
∗
π
fragment are deciable. We reduce the HyperQPTL formula to an equisat-

isfiable QPTL formula as follows. Let a HyperQPTL formula ∀∗q∃
∗
q∀
∗
π
ϕ over ai ∈ AP

be given. We eliminate all universal trace quantifiers by preceding existential propo-
sitional quantifier as follows:

a(k−1)
π′

∃
ai
π′=a0

π′

ai
π′

.∀∗q∃
∗
q. ϕ .

The resulting formula is an equisatisfiable QPTL formula, which can be decided.

Furthermore, as long as there is no ∀∃ quantifier alternation of any kind, HyperQPTL
formulas can be decided.

Theorem 8. Satisfiability of the ∃∗
π/q∀

∗
π/qQ

∗
q fragment of HyperQPTL is decidable.

Proof. Since QPTL is decidable, it is sufficient to show that HyperQPTL formulas in
the ∃∗

π/q∀
∗
π/q fragment are decidable. We do so by reducing the problem to the satisfi-

ability problem of QPTL. Let a HyperQPTL formula ∃∗
π/q∀

∗
π/q.ϕ over ai ∈ AP be given.

We inductively construct an equirealizable QPTL formula as follows. We consider four
cases: 1) The quantifier prefix is empty, the formula is then a QPTL formula. 2) If
the innermost quantifier is a propositional quantification, we leave it unchanged. 3)
The innermost quantifier is an existential trace quantifier, i.e., let ∃∗

π/q∃π′ . ϕ be given.
We eliminate the existential trace quantification by replacing the trace quantifier ∃π′
with k existential quantifiers over propositions, one for every atomic proposition in
ai ∈ AP:

∃∗
π/q

a(k−1)
π′

∃
ai
π′=a0

π′

ai
π′

. ϕ .

4) The innermost quantifier is a universal trace quantifier, i.e., let ∃∗
π/q∀

∗
π′/q. ϕ with

n existential and m universal trace quantifier be given. We eliminate the universal
quantification by explicitly enumerating every possible interaction between the uni-
versal and existential quantifiers, a technique already used to prove the decidability
of the ∃∗∀∗ HyperLTL fragment [70]:

∃∗
π/q.

n−1
∧

j1=0

· · ·
n−1
∧

jm=0

ϕ[π j1/π
′
1] . . .ϕ[π jm/π

′
m] ,

where ϕ[π j/π
′] denotes that the trace variable π′i in ϕ is replaced by π j. This con-

struction results in a QPTL formula ϕQPT L, which is equisatisfiable to ϕ.
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3.2.2 Undecidable Fragments

In this section, we determine the undecidable fragments of HyperQPTL. We first note
that HyperQPTL inherits the undecidable fragment of HyperLTL.

Corollary 2. Satisfiability of the ∀∗
π
∃∗
π
fragment of HyperQPTL is undecidable.

Wenow prove that formulas in the∀∗q∃
∗
π
∀∗
π
fragment are undecidable with a reduction

from Post’s Correspondence Problem (PCP) [169].

Theorem 9. Satisfiability of the ∀∗q∃
∗
π
∀∗
π
fragment of HyperQPTL is undecidable.

Proof. We give a reduction from PCP to a HyperQPTL formula from the ∀∗q∃
∗
π
∀∗
π

fragment. In PCP, we are given two equally long lists α and β consisting of finite
words from some alphabet Σ of size n. PCP is the problem to find an index sequence
(ik)1≤k≤K with K ≥ 1 and 1 ≤ ik ≤ n, such that αi1 . . .αiK = βi1 . . .βiK . Intuitively,
PCP is the problem of choosing an infinite sequence of domino stones (with finitely
many different stones), where each stone consists of two words αi and βi. Let a PCP
instance with Σ = {a1, a2, ..., an} and two lists α and β be given. We choose our set
of atomic propositions as follows: AP := (Σ∪ {ȧ1, ȧ2, ..., ȧn} ∪#)2, where we use the
dot symbol to encode that a stone starts at this position of the trace. We write ã to
denote either a or ȧ. We use ∗ as an arbitrary symbol of the alphabet. The notation
π = ~q denotes that for every qa ∈ ~q, it holds that aπ↔ qa. The premise ( π = ~q)
ensures that the propositions ~q are chosen to represent actual traces from the model.
We encode the PCP instance into a HyperQPTL formula that is realizable if and only
if the PCP instance has a solution:

∀~q∃πs∃π′∀π.((
n
∨

i=1

(ȧi, ȧi)πs
)∧ (

n
∨

i=1

(ãi, ãi)πs
)U (#, #)πs

)

∧ ( ~q = π)→ ϕstone&shift(π,π′) .

With ∀~q, we simulate universal trace quantification by quantifying over all proposi-
tions in the alphabet by qa for each a ∈ Σ. The first conjunct encodes that there exists
a solution trace πs to the PCP problem, that represents lists α and β . The second
conjunct ϕstone&shift(π′,π) is a disjunction that encodes that the trace simulated by ~q,
i.e., π starts with a valid encoding of a stone from the PCP instance (or is the empty
stone sequence) and that the trace π′ encodes the same trace but with the first stone
removed [70].

For example, let α with α1 = a, α2 = ab, α3 = bba, and β with β1 = baa,
β2 = aa and β3 = bb be given. A possible solution for this PCP instance is (3,2, 3,1),
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since bbaabbbaa = iα = iβ . For example, the third stone is encoded as follows:

�

�

((ḃ, ḃ)π ∧ (b, b)π ∧ (a, ∗̇)π ∧ (∗̇, ∗̃)π)

∨ ((ḃ, ḃ)π ∧ (b, b)π ∧ (a, #)π ∧ (#, #)π)
�

∧ ( (ã,∗)π→ (ã,∗)π′)
∧ ( (b̃,∗)π→ (b̃,∗)π′)
∧ ( (#, q∗)π→ (#,∗)π′)
∧ ( (∗, ã)π→ (∗, ã)π′)

∧ ( (∗, b̃)π→ (∗, b̃)π′)

∧ ( (∗, #)π→ (∗,#)π′)
�

.

The trace πs represents the solution:

(ḃ, ḃ)(b, b)(a, ȧ)(ȧ, a)(b, ḃ)(ḃ, b)(b, ḃ)(a, a)(ȧ, a)(#, #)(#, #) . . .

The ∀∃ quantifier structure requires that there exists another trace, with the first
stone removed:

(ȧ, ȧ)(b, a)(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#,#)(#, #) . . .

Continuing this, results in the following traces:

(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#,#)(#, #) . . .

(ȧ, ḃ)(#, a)(#, a)(#, #)(#,#) . . .

(#, #)(#,#) . . .

These traces verify the solution provided on the trace πs by removing one stone after
the other. Thus, the formula is satisfiable iff the PCP instance has a solution.

We, thus, identified the decidable fragments of HyperQPTL.

3.3 HyperQPTL Realizability

In this section, we proceed our analysis of HyperQPTL by considering the realizability
problem of HyperQPTL. We determine the decidability borders and provide experi-
mental results on a prototype implementation capable of synthesizing arbiters that
respect promptness.
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(a) Information fork: An architecture with
two processes; process p to produces output
o from input i and p′ produces output o′ from
input i′.
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i i, i′

o o′

(b) No information fork: The same architec-
ture as on the left, where the inputs of process
p′ are changed to i and i′.

Figure 3.3: Distributed architectures

Definition 10 (HyperQPTL Realizability). A HyperQPTL formulaϕ over atomic propo-
sitions AP= I ∪̇O is realizable if there is a strategy f : (2I)∗→ 2O that satisfies ϕ.

For technical reasons, we assume (without loss of generality) that quantified atomic
propositions are classified as outputs, not inputs. This complies with the intuition
that propositional quantifiers should be a means for additional expressiveness; they
should not overwrite the inputs received from the environment.

Compared to the standard realizability problem, the distributed realizability prob-
lem is defined over an architecture, containing a number of processes interacting
with each other. The goal is to find a strategy for each of the processes. In the fol-
lowing proofs, we will make use of the distributed realizability problem of QPTL,
which we therefore also define formally. A distributed architecture [167, 83] A over
atomic propositions AP is a tuple 〈P, penv,I,O〉, where P is a finite set of processes
and penv ∈ P is a designated environment process. The functions I : P → 2AP and
O : P → 2AP define the inputs and outputs of processes. The output of one process
can be the input of another process. The output of the processes must be pairwise
disjoint, i.e., for all p 6= p′ ∈ P it holds that O(p) ∩O(p′) = ;. We assume that the
environment process forwards inputs to the processes and has no input of its own,
i.e., I(penv) = ;.

Definition 11 (Distributed QPTL Realizability [83]). A QPTL formula ϕ over free
atomic propositions AP is realizable in an architecture A = 〈P, penv,I,O〉 if for each
process p ∈ P, there is a strategy fp : (2I(p))∗ → 2O(p) such that the combination of all
fp satisfies ϕ.

The distributed realizability problem for QPTL is (inherited from LTL) in general
undecidable [167]. However, we will use the result that the problem remains de-
cidable for architectures without information forks [83]. The notion of information
forks captures the flow of data in the system. Intuitively, an architecture contains
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an information fork if the processes cannot be ordered linearly according to their
informedness. Formally, an information fork in an architecture A = 〈P, penv,I,O〉 is
defined as a tuple (P ′, V ′, p, p′), where p, p′ are two different processes, P ′ ⊆ P, and
V ′ ⊆ AP is disjoint from I(p) ∪ I(p′). (P ′, V ′, p, p′) is an information fork if P ′ to-
gether with the edges that are labeled with at least one variable from V ′ forms a
subgraph rooted in the environment and there exist two nodes q, q′ ∈ P ′ that have
edges to p, p′, respectively, such that O(q)∩ I(p) * I(p′) and O(q′)∩ I(p′) * I(p).
The definition formalizes the intuition that p and p′ receive incomparable input bits,
i.e., they have incomparable information. Two example architectures are depicted
in Fig. 3.3 [73]. The processes in Fig. 3.3a receive distinct inputs and thus neither
process is more informed than the other. The architecture therefore contains an in-
formation fork with P ′ = {env, p, p′}, V ′ = {i, i′}, q = env, q′ = env. The processes in
Fig. 3.3b can be ordered linearly according to the subset relation on the inputs and
thus the architecture contains no information fork.
In the following sections, we identify tight syntactic fragments of HyperQPTL for
which the standard realizability problem is decidable. We give decidability proofs
and show that formulas outside the decidable fragments are in general undecidable.
An important aspect for decidability is the number of universal trace quantifiers that
appear in the formula. We thus present our findings in three categories, depending
on the number of universal trace quantifiers a formula has. Figure 3.4 summarizes
our results. We establish that a major factor for the decidability of the realizability
problem consists in the number of universal trace occurring in a formula. Realiz-
ability of HyperQPTL formulas without ∀π quantifiers is decidable (Section 3.3.1).
Formulas with a single ∀π are decidable if they belong to the ∃∗q/π∀

∗
q∀πQ∗q fragment.

This fragment also contains promptness. For more than one universal trace quan-
tifier, we show that decidability can be guaranteed for a fragment that we call the
linear ∀∗

π
Q∗q fragment. We also show that all the above fragments are tight, i.e., real-

izability of all other formulas is in general undecidable. Lastly, Section 3.4 presents
experiments for the prototype implementation of our bounded synthesis algorithm
for HyperQPTL.

3.3.1 No Universal Trace Quantifier

We show that the realizability problem of any HyperQPTL formula without a ∀π
quantifier is decidable. The problem is reduced to QPTL realizability.

Theorem 10. Realizability of the (∃∗
π
Q∗q)

∗ fragment of HyperQPTL is decidable.

Proof. Let a (∃∗
π
Q∗q)

∗ HyperQPTL formula ϕ over AP= I ∪̇O = {a0, . . . , ak} with trace
quantifiers π0, . . .πn be given. We reduce the problem to the realizability problem
of QPTL, which is known to be decidable (since QPTL formulas can be translated to
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(∃∗
π
Q∗q)

∗

∃∗q/π∀
∗
q∀πQ∗q ∀π∃π ∀∗q∃

∗
q∀π

linear ∀∗
π
Q∗q non-linear ∀∗

π

multiple universal trace
quantifiers (Sec. 3.3.3)

single universal trace
quantifier (Sec. 3.3.2)

no universal trace quan-
tifier (Sec. 3.3.1)

Figure 3.4: The realizability problem of HyperQPTL. Left and below of the solid line
are the decidable fragments, right above the solid line the undecidable fragments.

Büchi automata). The idea is to replace each existential trace quantifier ∃πi with
quantification of propositions a0

πi
, a1
πi

, . . . , ak
πi
, one for each a j ∈ AP, thereby mim-

icking the quantification of a trace. To make sure that only traces from an actual
strategy tree are chosen, we add a dependency formula which forces the outputs to
be dependent on the inputs. The following QPTL formula implements the idea:

ϕQPTL ::= ϕ[i ≤ n : ∃πi 7→ ∃a0
πi

. . . .∃ak
πi

. ] ∧
∧

i≤n

∧

j≤n

(Iπi
6= Iπ j

)R(Oπi
= Oπ j

) .

We use the notation [i ≤ n : ∃πi 7→ ∃a0
πi

. . . .∃ak
πi

. ] to indicate that each πi for 0 ≤
i ≤ n is replaced with the respective series of existential propositional quantification.
Furthermore, we write Iπi

6= Iπ j
as syntactic sugar for

∨

a∈I aπi
= aπ j

(and similarly
for Oπi

= Oπ j
). We show that ϕ and ϕQPTL are equirealizable. For the first direction,

assume that ϕ is realizable by a strategy f . Notice that all atomic propositions in
ϕQPTL are bound by a propositional quantifier. Therefore, if the witness sequences
for the quantified propositions can be chosen correctly, any strategy realizes ϕQPTL.
Propositions a j

πi
are chosen according to the witness traces of f |= ϕ. Witnesses

for the remaining atomic propositions are also chosen according to their witnesses
from f |= ϕ. Now, the first conjunct of ϕQPTL is fulfilled since f |= ϕ holds. The
second conjunct is fulfilled since any two traces πi,π j of a strategy tree fulfill by
construction (Iπi

6= Iπ j
)R(Oπi

= Oπ j
). For the other direction, assume that ϕQPTL is

realizable (by construction independently from the strategy). Let ta0
π0

, . . . , tak
πn
be the

witness sequences for the respective quantified atomic propositions. The following
strategy realizes ϕ:

f (σ) =











{taπi
[|σ|] | a ∈ O} if for some i ≤ n,

σ = {taπi
[0] | a ∈ I} . . . {taπi

[|σ|] | a ∈ I}
; otherwise .
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Strategy f chooses the outputs according to the witnesses for the propositions en-
coding the traces. Note that because of the second conjunct in ϕQPTL, the output is
always unique, even if several encoded traces start with the same input sequence.
Now, f |= ϕ holds because of the first conjunct of ϕQPTL.

3.3.2 Single Universal Trace Quantifier

In this fragment, we allow exactly one universal trace quantifier. It is particularly
interesting as it contains many promptness properties. For example, the following
promptness formulation mentioned in the introduction lies within the fragment:

∃b.∀π. b ∧ (¬b U eπ) .

Theorem 11. Realizability of the ∃∗q/π∀
∗
q∀πQ∗q fragment of HyperQPTL is decidable.

We show the theorem in two steps. First, we generalize a proof from [73], showing
that realizability of the ∃∗

π
∀πQ∗q fragment is decidable. Second, we show that we can

reduce the realizability problem of any HyperQPTL formula to a formula where some
propositional quantifiers are replaced with trace quantifiers.

Lemma 1. Realizability of the ∃∗
π
∀πQ∗q fragment of HyperQPTL is decidable.

Proof. The reasoning generalizes the proof in [73] showing that realizability ∃∗
π
∀π

HyperLTL formulas is decidable. We reduce the problem to the distributed realiz-
ability problem of QPTL without information forks, which is, since QPTL is sub-
sumed by the µ-calculus [187, 128], decidable [83]. Let a HyperQPTL formula
ϕ = ∃π1. . . .∃πn.∀π.ψ over AP = I ∪̇O be given, where ψ is from the Q∗q fragment.
We define a distributed architecture A over an extended set of atomic propositions
AP′ = I ∪ O ∪ I ′ ∪ O′. Similarly to the proof in Theorem 10, I ′ and O′ are com-
posed of a copy of the atomic propositions for each existentially quantified variable
π j. Formally, I ′ =

⋃

1≤ j≤n{iπ j
| i ∈ I} and O′ =

⋃

1≤ j≤n{oπ j
| o ∈ O}. We define A as

follows:

A ::= 〈(penv, p1, p2), penv,I,O, 〉
I ::= (p1 7→ ;, p2 7→ I)
O ::= (penv 7→ I , p1 7→ I ′ ∪O′, p2 7→ O) .

The architecture is displayed in Fig. 3.5. The idea is that process p1 sets the values
of all iπ j

and oπ j
(for j ≤ n) and thereby determines the choice for the existentially

quantified traces. Process p1 receives no input and therefore needs to make a de-
terministic choice. Process p2 then solves the realizability of formula ∀π.ψ. The
following QPTL formula ϕ′ encodes the idea:

ϕ′ ::=ψ′ ∧ (
∧

1≤ j≤n

(Iπ j
6= I)R(Oπ j

= O)) ,
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env

p2p1

I

OI ′ ∪O′

Figure 3.5: Distributed architecture encoding existential choice of traces.

where ψ′ is defined as ψ, where all aπ are replaced by a (but atomic propositions
aπ j

are still part of ψ′!). Note that QPTL formulas implicitly quantify over all traces
universally. Similarly to the proof in Theorem 10, the second conjunct ensures that
process p1 encodes actual paths from the strategy tree of process p2 (which is also the
strategy tree for formula ϕ). Thus, ϕ′ is realizable for the distributed architecture A
iff ϕ is realizable.

To state the second lemma, we need to define what it means to replace quantifiers
in a formula. Let ϕ = Qπ/q, . . . ,Qπ/q.ψ be a HyperQPTL formula, and J be a set of
indices such that for all j ∈ J , there exists a propositional quantifier ∃q j or ∀q j in
ϕ. Furthermore, assume that no π j with j ∈ J occurs in ϕ and that a ∈ AP. We
denote by ϕ[J ,→a π] the formula where each propositional quantifier ∃q j (or ∀q j,
respectively) with j ∈ J is replaced with the corresponding trace quantifier ∃π j (or
∀π j, respectively); and each q j in ψ is replaced by aπ j

.

Lemma 2. Let any HyperQPTL formula ϕ over AP = I ∪̇ O and a set of indices J be
given. If ϕ[J ,→i π] is realizable, then so is ϕ, where i ∈ I is an arbitrary input,
assuming w.l.o.g., that I is non-empty.

Proof. Let ϕ and J be given. Formula ϕ[J ,→i π] replaces the quantification over se-
quences (2{q})ω with trace quantification, where the trace is only used for statements
about a single input i. We thus exploit the fact that in the realizability problem, there
is a trace for every input sequence. Therefore, the transformed formula is equireal-
izable.

Now, we have everything we need to prove Theorem 11.

Proof of Theorem 11. Let ϕ be a HyperQPTL formula of the ∃∗q/π∀
∗
q∀πQ∗q fragment.

First, observe that in the quantifier prefix of ϕ, the ∀∗q quantifiers and the ∀π can be
swapped. The resulting formula belongs to the ∃∗q/π∀πQ∗q fragment. By Lemma 2, the
formula can be transformed to an equirealizable formula of the ∃∗

π
∀πQ∗q fragment,

for which realizability is decidable by Lemma 1.
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Lemma 2 allows us to decide realizability of a HyperQPTL formula by replacing
propositional quantifiers with trace quantifiers. Thus, we can reduce HyperQPTL
realizability to HyperLTL realizability, a fact that we use in Section 3.4 to describe a
bounded synthesis algorithm for HyperQPTL.

Corollary 3. The realizability problem of HyperQPTL can be soundly reduced to the
realizability problem of HyperLTL.

Lastly, we show that the decidable fragment is tight in the class of formulas with a
single universal trace quantifier. We do so by showing that a propositional ∀∗q∃

∗
q quan-

tifier alternation followed by a single trace quantifier ∀π leads to an undecidable real-
izability problem. The proof is carried out by a reduction from Post’s Correspondence
Problem.

Theorem 12. Realizability of any HyperQPTL formula which has a single ∀π quantifier
and does not lie in the ∃∗q/π∀

∗
q∀πQ∗q fragment is undecidable.

Proof. Inherited from HyperLTL, realizability of formulas with a ∀π quantifier fol-
lowed by an ∃π quantifier is undecidable [73]. It remains to show that realizability
of formulas from the ∀∗q∃

∗
q∀π fragment is in general undecidable. We give a reduction

from Post’s Correspondence Problem (PCP) [169] to a HyperQPTL formula from the
∀∗q∃

∗
q∀π fragment. Let a PCP instance with Σ = {a1, a2, ..., an} and two lists α and

β be given. We choose our set of atomic propositions as follows: AP ::= I ∪̇O with
I := {i} and O ::= (Σ∪{ȧ1, ȧ2, ..., ȧn}∪#)2, where we use the dot symbol to encode
that a stone starts at this position of the trace. We write ã to denote either a or ȧ.
The single input i spans a binary strategy tree. We encode the PCP instance into a
HyperQPTL formula that is realizable if and only if the PCP instance has a solution:

∀qi.∀~q.∃pi.∃~p.∀π. (( π= pi)→ ( π= ~p)) ∧
(( π= (qi, ~q))→ ϕreduc(qi, ~q, pi, ~p)) ,

where ~q and ~p are sequences of universally and existentially quantified propositional
variables, such that for each (o, o′) ∈ O, there is a q(o,o′) ∈ ~q and a p(o,o′) ∈ ~p. To-
gether with qi and pi for the input i, they simulate a universally and an existentially
quantified trace from the model. The notation π = ~q denotes that for every qa ∈ ~q,
it holds that aπ↔ qa. As seen before, the premise ( π = (qi, ~q)) and the conjunct
( π = pi) → ( π = ~p) ensure that the propositions (qi, ~q) and (pi, ~p) are chosen
to represent actual traces from the model. The universal quantification π thus only
ensures that (qi, ~q) and (pi, ~p), which are used for the main reduction, are chosen
correctly. The reduction is implemented in the formula ϕreduc and follows the con-
struction in [70], where it is shown that the satisfiability and realizability problem
of HyperLTL are undecidable for a ∀∃ trace quantifier prefix:

ϕreduc(qi, ~q, pi, ~p) := ϕrel(qi)→ ϕis++(qi, pi)
∧ϕstart(ϕstone&shift(~q, ~p), qi)∧ϕsol(qi, ~q) ,
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Figure 3.6: A sketch of the strategy tree of our PCP reduction: relevant traces are
marked in green.

• ϕrel(qi) := ¬qi U qi defines the set of relevant traces trough the binary strategy
tree (see Fig. 3.6).

• ϕis++(qi, pi) := (¬qi ∧¬pi)U ( qi ∧¬pi ∧ pi) defines that a relevant trace
is the direct successor trace of another relevant trace.

• ϕsol(qi, ~q) ::= qi → ((
∨n

i=1 q(ȧi ,ȧi))∧ (
∨n

i=1 q(ãi ,ãi))) U q(#,#) ensures that the
path on which globally i holds is a “solution” trace, i.e., encodes the PCP solu-
tion sequence.

• ϕstart(ϕ, qi) := ¬qi U(ϕ ∧ qi) cuts off an irrelevant prefix until ϕ starts.

• ϕstone&shift(~q, ~p) encodes that the trace simulated by ~q starts with a valid encod-
ing of a stone from the PCP instance and that the trace simulated by ~p encodes
the same trace but with the first stone removed [70].

The relevant traces verify the solution provided on the i trace by removing one
stone after the other. Thus, the formula is realizable iff the PCP instance has a solu-
tion.

3.3.3 Multiple Universal Trace Quantifiers

When considering multiple universal trace quantifiers ∀∗
π
, the problem becomes un-

decidable. This is because in HyperLTL, one can encode distributed architectures –
for which the problem is undecidable – directly into the formula without using any
propositional quantification [73].

Corollary 4. Realizability of the ∀∗
π
fragment of HyperQPTL is undecidable.

However, we show that the realizability problem for formulas with more than one
universal trace quantifier is decidable if we restrict ourselves to formulas in the so-
called linear fragment, i.e., that does not allow an encoding of a distributed architec-
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ture. We define the linear fragment of HyperQPTL, where the definitions are adopted
from [73].

Let A, C ⊆ AP. We define that atomic propositions c ∈ C do solely depend on
propositions a ∈ A as the following HyperQPTL formula:

DA7→C ::= ∀π∀π′.
�

∨

a∈A

(aπ = aπ′)

�

R
�

∧

c∈C

(cπ↔ cπ′)

�

.

We define a collapse function, which collapses a HyperQPTL formula with a ∀∗
π
uni-

versal quantifier prefix into a formula with a single ∀π quantifier. Propositional quan-
tifiers are preserved by the operation. Let ϕ be ∀π1 · · ·∀πn.Q∗q.ψ. We define the
collapsed formula of ϕ as collapse(ϕ) ::= ∀π.Q∗q.ψ[π1 7→ π][π2 7→ π] . . . [πn 7→ π]
where ψ[πi 7→ π] replaces all occurrences of πi in ψ with π.

Lemma 3. Either ϕ ≡ collapse(ϕ) or ϕ has no equivalent ∀1
π
.Q∗q formula.

Proof. The collapse function solely works on the trace quantification mechanism of
the HyperQPTL formula, by reducing them to a single universal quantification. The
theorem has been proven for ∀∗ HyperLTL formulas in [73]. Inner propositional
quantification does not interfere with this mechanism, hence, the proof can be carried
out identically.

Now we can formally define the linear ∀∗
π
fragment. Intuitively, we require that every

input-output dependency can be ordered linearly, i.e., we are restricted to linear
architectures without information forks (see Figure 3.3).

Definition 12. Let O = {o1, . . . , on}. A HyperQPTL formula ϕ is called linear if for all
oi ∈ O there is a Ji ⊆ I such that ϕ∧ DI 7→O ≡ collapse(ϕ)∧

∧

oi∈O DJi 7→{oi} and Ji ⊆ Ji+1

for all i ≤ n.

This results in the following corollary. Since the universal quantifiers can be col-
lapsed, the resulting problem is the realizability problem of QPTL in a linear archi-
tecture, which is decidable [83].

Corollary 5. Realizability of the linear ∀∗
π
Q∗q fragment of HyperQPTL is decidable.

We identifed the largest possible fragments for which the realizability problem of
HyperQPTL remains decidable. The three fragments for which we could prove de-
cidability all subsume the logic QPTL, for which the realizability problem is known
to be non-elementary (already its satisfiability problem is non-elementary [197]).
Hence, realizability of the discussed HyperQPTL fragments has a non-elementary
lower bound.
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instance system bound ∃-strategy bound result time [sec.]

arbiter-2-prompt 2 1 unsat < 1
2 2 sat < 1

arbiter-2-full-prompt 3 1 unsat 2.4
3 2 sat 6.0

arbiter-3-prompt 3 1 unsat 4.2
3 2 sat 9.5

arbiter-4-prompt 4 1 unsat 97
4 2 ? TO

Table 3.1: Experimental results for prompt arbiter.

3.4 Experiments

We have implemented a prototype tool that can solve the HyperQPTL realizability
problem using the bounded synthesis approach [84]. More concretely, we extended
the HyperLTL synthesis tool BoSy [67, 73, 44]. Bosy reduces the HyperLTL synthesis
problem to an SMT constraint system which is then solved by z3 [47]. We imple-
mented the reduction of HyperQPTL synthesis to HyperLTL synthesis (Corollary 3)
in BoSy, such that the tool can also handle HyperQPTL formulas. We evaluated the
tool against a range of benchmarks sets, shown in Table 3.1. The first column indi-
cates the parameterized benchmark name. The second and third columns indicate
the bounds given to the bounded synthesis procedure. The second column is the
bound on the size of the system. The newest version of BoSy also handles quantifier
alternations by viewing them as a two-player game between the ∀ player and the
∃ player [44]. Existential trace quantification is then replaced by strategic choice via
the introduction of prophecy variables. Bounds on the size of the strategy for the
existential player are given column three.

We synthesized a range of resource arbiters. Our benchmark set is parametric in
the number of clients that can request access to the shared resource (written arbiter-
k-prompt where k is the number of clients in Table 3.1). Unlike normal arbiters, we
require the arbiter to fulfill promptness for some of the clients, i.e., requests must
be answered within a bounded number of steps [202]. We state the promptness re-
quirement in HyperQPTL by applying the alternating-color technique from [131]. In-
tuitively, the alternating-color technique works as follows: We quantify a q-sequence
that “changes color" between q and ¬q. Each change of color is used as a poten-
tial bound. Once a request occurs, the grant must be given withing two changes
of color. Thus, the HyperQPTL formulation amounts to the following specifications,
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here exemplary for 2 clients, where we require promptness only for client 1:

∀π. ¬(g1
π
∧ g2

π
) (3.4)

∀π. (r2
π
→ g2

π
) (3.5)

∃q.∀π. q ∧ ¬q (3.6)

∧ (r1
π
→ (q→ (q U(¬q U g1

π
)))

∧ (¬q→ (¬q U(q U g1
π
))))

∀π.(¬g1
π

W r1
π
)∧ (¬g2

π
W r2

π
) . (3.7)

Formula 3.4 states mutual exclusion. Formula 3.5 states that client 2 must be served
eventually (but not within a bounded number of steps). Formula 3.6 states the
promptness requirement for client 1. It quantifies an alternating q-sequence, which
serves as a sequence of global bounds that must be respected on all traces π. Then, if
client 1 poses a request, the grant must be given within two changes of the value of
q. Formula 3.7 is only added in benchmarks named arbiter-k-full-prompt. It specifies
that no spurious grants should be given. BoSy was able to successfully synthesize a
prompt arbiter.

3.5 Summary

We studied the satisfiability and realizability problem of HyperQPTL. We showed
that realizability problem is decidable for HyperQPTL fragments that contain prop-
erties like promptness. Propositional quantification does make the satisfiability and
realizability problem of hyperlogics harder. More specifically, the HyperQPTL frag-
ment of formulas with a propositional ∀∃ quantifier alternation followed by a single
trace quantifier is undecidable in general, even though the projection of the frag-
ment to HyperLTL has a decidable realizability problem. Lastly, we implemented the
bounded synthesis problem for HyperQPTL in BoSy. Using BoSy with HyperQPTL
specifications, we have been able to synthesize several resource arbiters respecting
promptness.





Chapter 4

Logical Methods for Branching-time
Temporal Hyperproperties

While linear-time temporal logics like LTL describe properties of individual traces,
branching-time temporal logics like CTL and CTL∗ describe properties of compu-
tation trees, where the branches can be inspected by quantifying existentially or
universally over paths. There is a long-standing debate of the merits of linear-time
and branching-time specifications (e.g. [208, 209]). In summary, linear-time tem-
poral logics are considered more intuitive, whereas branching-time temporal logics
have fragments that can be efficiently model checked (e.g. in polynomial time for
CTL [38]). We consider the first (and least expressive) temporal logic for branching-
time hyperproperties: HyperCTL∗, which generalizes CTL∗ and subsumes HyperLTL.

In contrast to HyperLTL, where quantifiers are only allowed in a prefix, HyperCTL∗

allows for arbitrary use of quantifiers in a formula. This expressive power is typically
useful to state that a system can generate secret information [81]. Generating secret
information means that there is, at some point, a branching into observably equiva-
lent paths that differ in the values of a secret. For example, this property can be state
as the following HyperCTL formula:

∃π. ∃π′. (
∧

a∈P

aπ↔ aπ′)∧ (
∨

a∈S

aπ = aπ′) ,

where the set of atomic propositions divides into the two disjoint sets of publicly
observable propositions P and secret propositions S. Compared to its linear-time
counter part, the process equivalence induced byHyperCTL∗ is bisimulation [81], i.e.,
no HyperLTL formula can distinguish trees that have the same trace set, but differ in
their branching structure. This is, in general, a limitation as nondeterministic choices
are reflected in the branching structure.

Satisfiability checking of a branching-time hyperlogic does not only allow for the
analysis of specifications, but also for testing example runs. Two traces can be spec-
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ified directly in a HyperCTL∗ formula by utilizing the existential path quantification
E and the operator. Let τ0 and τ1 be the logical representations of two traces. The
following HyperCTL∗ formula is testing these traces for observational determinism:

τ0 ∧τ1 ∧∀π′.∀π′′. (Oπ′↔ Oπ′′) ,

where O denotes a set of observable outputs.
We show that the satisfiability problem of HyperCTL∗ remains decidable for the

∃∗ fragment. We show that the models in ∃∗ fragment have, in general, a multi
dimensional comb-shaped structure. For example, the formula ∃π. ∃π.ϕ, requires
that there is a tree with one witness trace for π on which a trace π′ branches off
at every point in time (see Figure 4.1). We show that every model for a formula
in the ∃∗ fragment has a finite representation by cutting off unnecessary parts in
the comb-shaped tree. Based on this result, an indirect scope free ∃∗∀∗ fragment
can be defined [105], which is decidable as well. Intuitively, the indirect scope free
fragment disallows that a universally quantified trace variable indirectly quantifies
over traces that branch of in a later point in time. For example, formulas of the
shape ∃π. (∃π′.∀π′′.ϕ) are not indirect scope free. Deciding the indirect scope free
∃∗∀∗ fragment, enables above mentioned testing of example runs. The results in this
chapter form the basis of the first satisfiability solver for HyperCTL∗ [105].

We also leave a short remark on the synthesis problem of HyperCTL∗. It is possible
to define a linear fragment in linear-time temporal hyperlogics (see [74] and Chap-
ter 3), for which the synthesis problem remains decidable, We argue that HyperCTL∗

inherits this fragment, but there seems to be no further extension of a linear fragment
to the realm of branching-time hyperproperties.

Results in this chapter are based on the satisfiability part in “The Hierarchy of
Hyperlogics” [42], which was joined work with Norine Coenen, Bernd Finkbeiner,
and Jana Hofmann. The chapter is structured as follows. We first define HyperCTL∗

formally in Section 4.1 and give more intuition on branching-time properties. We
then proceed by considering the satisfiability HyperCTL∗ in Section 4.2 and provide
a short remark on realizability in Section 4.3.

4.1 HyperCTL∗

CTL∗ utilizes path quantifiers E meaning “there exists a path”, and, dually, Ameaning
“for all paths”. For example, the following formula expresses that there exists a path
on which eventually a proposition p must hold:

E p .

This is not expressible in LTL, which can be seen as a subset of CTL∗ that is inherently
universally quantified, i.e., the LTL formula ϕ is equivalent to the CTL∗ formula Aϕ.
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CTL∗ Syntax. The syntax of CTL∗, where ϕ denotes state formulas and ψ denotes
path formulas, is given as follows:

ϕ ::= a | ¬ϕ | ϕ ∨ϕ | Eψ
ψ ::= ϕ | ¬ψ | ψ∨ψ | ψ | ψUψ ,

where a ∈ AP is an atomic proposition.
The semantics of branching-time logics are defined over trees. A tree T is defined

as a partially-ordered infinite set of nodes S, where all nodes share a common min-
imal element r ∈ S, called the root of the tree. Moreover, for every node s ∈ S, the
set of its ancestors {s′|s′ < s} is totally-ordered. We say that s′ is the direct ancestor
of s, if s′ < s, and there is no s′′ such that s′ < s′′ < s. A Σ-labeled tree is defined as a
tree T equipped with a function L : S → Σ, that labels every node with an element
from a finite set Σ. For the case that Σ = 2AP, we say that the tree is AP-labeled. A
path through a tree T is a sequence σ = s0, s1, . . . of direct ancestors in T , i.e., for
all si, si+1, node si is the direct ancestor of si+1. A path is called initial if s0 is the root
node, which we omit if it is clear from the context. We use the same path manipula-
tion operations as for traces. The set of paths originating in node s ∈ S is denoted by
Paths(T , s). If s is the root node, we simply write Paths(T ).

CTL∗ Semantics. The semantics of CTL∗ is defined over an AP-labeled tree T with
nodes S and labeling function L. Given a node s ∈ S and a path p in T , we define
the semantics of CTL∗ state and path formulas as follows:

s |=T a iff a ∈ L(s)
s |=T ¬ϕ iff s 6|=T ϕ

s |=T ϕ1 ∨ϕ2 iff s |=T ϕ1 or s |=T ϕ2

s |=T Eψ iff ∃p ∈ Paths(T , s). p |=T ψ

p |=T ϕ iff p[0] |=T ϕ

p |=T ¬ψ iff p 6|=T ψ

p |=T ψ1 ∨ψ2 iff p |=T ψ1 or p |=T ψ2

p |=T ψ iff p[1,∞] |=T ψ

p |=T ψ1 Uψ2 iff ∃i ≥ 0. p[i,∞] |=T ψ2

∧∀0≤ j < i. p[ j,∞] |=T ψ1 .

For a tree T and a CTL∗ formulaϕ, we write T |= ϕ if T has root r, such that r |=T ϕ.
Operators can be derived in the same fashion as for LTL. The universal path quantifier
Aϕ can be derived as follows: ¬E¬ϕ.

Definition 13 (CTL∗ Satisfiability). A CTL∗ formula ϕ is satisfiable if there exists a tree
T that satisfies ϕ.
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Theorem 13 ([210]). The satisfiability problem of CTL∗ is 2-EXPTIME-complete.

HyperCTL∗ Syntax. Quantification in HyperCTL∗ ranges over the paths in a tree.
Let π ∈ V be a path variable from an infinite supply of path variables V and let ∃π. ϕ
be the explicit existential path quantification. HyperCTL∗ formulas are generated by
the following grammar:

ϕ ::= aπ | ¬ϕ | ϕ ∨ϕ | ϕ | ϕUϕ | ∃π. ϕ .

HyperCTL∗ Semantics. The semantics of a HyperCTL∗ formula is defined with re-
spect to a tree T and a path assignment Π : V → Paths(T ), which is a partial mapping
from path variables to actual paths in the tree. The satisfaction relation |=T is given
as follows:

Π, i |=T aπ iff a ∈ L(Π(π)[i])
Π, i |=T ¬ϕ iff Π, i 6|=T ϕ

Π, i |=T ϕ1 ∨ϕ2 iff Π, i |=T ϕ1 or Π, i |=T ϕ2

Π, i |=T ϕ iff Π, i + 1 |=T ϕ

Π, i |=T ϕ1 Uϕ2 iff ∃ j ≥ i. Π, j |=T ϕ2

∧∀i ≤ k < j. Π, k |=T ϕ1

Π, i |=T ∃π.ϕ iff ∃p ∈ Paths(T ). p[0, i] = ε[0, i]
∧Π[π 7→ p,ε 7→ p], i |=T ϕ ,

where we use ε to denote the last path that was added to the path assignment Π.
We assume formulas to be given in negated normal form. A HyperCTL∗ formula

in NNF is in the ∃∗ and ∀∗ fragment, respectively, if it contains exclusively univer-
sal or exclusively existential path quantifiers. The union of the two fragments is the
alternation-free fragment. The formula is in the ∃∗∀∗ fragment, if there is no existen-
tial path quantifier in the scope of a universal path quantifier. It is in the ∀∃ fragment
if there is exactly one existential path quantifier in the scope of a single universal path
quantifier.

4.2 HyperCTL∗ Satisfiability

In this section, we study the satisfiability problem of HyperCTL∗. We prove that the
quantifier alternation-free fragments are decidable.

Definition 14 (HyperCTL∗ satisfiability). A HyperCTL∗ formula ϕ is satisfiable if there
exists a tree T such that ;, 0 |=T ϕ, where ; is the empty trace assignment.



Section 4.2. HyperCTL∗ Satisfiability 59

4.2.1 The Universal Fragment of HyperCTL∗

Lemma 1. Satisfiability of the ∀∗ fragment of HyperCTL∗ is decidable.

Proof. We reduce the satisfiability problem of ∀∗ HyperCTL∗ to the satisfiability prob-
lem for CTL∗ of models that are linear trees, i.e., trees having only a single path.

4.2.2 The Existential Fragment of HyperCTL∗

We now prove in two steps that the ∃∗ fragment is decidable, regardless of the tem-
poral modalities and the nesting depth of the existential quantifiers. We start with
formulas of a specific form and then generalize the result to the full fragment. Sub-
sequently, we establish that the satisfiability problem for HyperCTL∗ formulas in the
full ∃∗∀∗ fragment remains decidable.

Lemma 2. The satisfiability problem for HyperCTL∗ formulas of the form

ϕ ::= ∃π.(∃π′.ψ′)R(∃π′′.ψ′′) ,

where ψ′ and ψ′′ are quantifier free, is decidable.

Proof Idea. The key idea of the proof is to show that every model of a ϕ-shaped
formula has a finite representation. More concretely, we show that we can represent
an arbitrary model T satisfying ϕ as a tree Tfin of bounded size. We then show
that Tfin can be extended to an infinite tree T̃ which satisfies ϕ. We conclude by
describing a naive decision procedure which enumerates all bounded trees Tfin and
checks whether they can be extended into an infinite model T̃ for ϕ. We first give
some intuition on how to construct Tfin out of T . Assume a formula ∃π. (∃π′′.ψ),
which belongs to the fragment described in Lemma 2 and a model T satisfying it.
In this model, there needs to be a path p witnessing π, and at each point in time
i, there must be a path pi, which branches off of p and serves as a witness for π′′

at point in time i. Extracting these witnesses from the model results in a comb-like
structure as depicted in Figure 4.1. Through formula ψ, each pair of nodes p[i + j]
and pi[ j] are related with each other, e.g., if ψ = (aπ ↔ aπ′), then all p[i + j]
and pi[ j] must agree on a. The nodes p[i + j] and pi[ j] always reside on the same
diagonal in the comb. Like this, all nodes on the same diagonal are related with
each other through p. When transforming the witnesses, it is therefore important
to only consider one diagonal as a whole and to not alter just a single node on it.
Diagonal D3 is also depicted in Figure 4.1. Next, note that ψ can be transformed
into a Büchi automaton which accepts each pair of witness paths (p[i,∞], pi). We
label each pi in the comb with the corresponding accepting automaton run. Now, the
crucial observation is that if two diagonals in the comb are labeled with the same set
of automaton states, we can then cut out the part between those two diagonals and
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p[0]
p0[0] p0[1] p0[2] p0[3]

p[1]
p1[0] p1[1] p1[2] p1[3]

p[2]
p2[0] p2[1] p2[2] p2[3]

p[3]
p3[0]

D3

p3[1] p3[2] p3[3]

p0

p1

p2

p3

p

. . .

Figure 4.1: ©IEEE 2019. The witness p for π and the sequence of witnesses pi for π
′′

arranged in a comb-like structure, where nodes p3[0], p2[1], p1[2], and p0[3] reside
on the diagonal D3.

still have accepting runs, i.e., the resulting paths p and all pi are still witnesses for π
and π′′. The proof proceeds by repeatedly cutting out nonessential parts of the comb
until it has a suitable prefix of bounded size which we call Tfin.

Proof. We assumew.l.o.g. that no -modalities occur in the formula; any -modality
can only add an offset to the operations which we describe in the following. Assume
a tree T over nodes S with labeling function L that satisfies ϕ, i.e., there exist a path
p through T serving as witness for π. By the semantics of the R-modality, either
(Case 1) an infinite sequence p0, p1, p2, . . . of witnesses for π′′ or (Case 2) a finite
sequence p0, p1, . . . , pn of witnesses for π

′′ and a final witness p′ for π′.
Case 1. We construct a Büchi automaton Aψ′′ that accepts all possible pairs of

paths (p, pi) that satisfy ψ′′. The formula ψ′′ is quantifier-free and is thus inter-
preted as an LTL formula where each atomic proposition aπ is as a unique LTL propo-
sition. Let A′

ψ′′
= (Q′, q′0,Σ′,δ′, F ′) be the nondeterministic Büchi automaton ob-

tained from ψ′′ [212]. We transform A′
ψ′′

into a nondeterministic Büchi automaton
Aψ′′ = (Q, q0,Σ,δ, F), which reasons separately over π and π′′:

• Q : Q′,

• q0 : q′0,

• Σ : S × S,

• δ : Q × Σ → 2Q where q′ ∈ δ(q, (s0, s1)) iff q′ ∈ δ′(q, A) and L(s0) = {a ∈
AP | aπ ∈ A} and L(s1) = {a ∈ AP | aπ′′ ∈ A}, where A⊆ {aπ, aπ′′ | a ∈ AP}, and

• F : F ′.
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p0

p1

pk−2

pk−1

pk

pk+1

pk′

pk′+1

p

Dk

Dk′

Dk′′

Figure 4.2: ©IEEE 2019. A comb structure with highlighted diagonals Dk, Dk′ , and
Dk′′ , together with their associated automaton states (depicted as square, circle and
diamond). States at representative positions are printed in bold, suffices used for the
cut are highlighted.

Note that Aψ′′ reasons over pairs of paths, while A′
ψ′′

reasons over traces. The au-
tomaton Aψ′′ yields accepting runs ri for all pairs of witnesses (p[i,∞], pi). We can
thus associate with each node pi[ j] the automaton state ri[ j].

Frontiers. We arrange the witness paths p and p0, p1, p2, . . . in a comb-like struc-
ture as shown in Figure 4.1. For all k ∈ N, we address the sequence of nodes
p0[k − 0], . . . , pk[k − k] as the k-th diagonal of the comb, denoted by Dk. We use
the usual sequence notation for diagonals, e.g., Dk[i] to address the i-th element of
the sequence. We call the set of automaton states associated with nodes in Dk frontier
Fk, formally Fk ::= {ri[k− i] | i ≤ k}. Note that for every k, Fk ⊆Q.

Cuts. For two diagonals Dk and Dk′ with Fk = Fk′ , a cut modifies the comb in such
a way that the suffix of every node in Dk is replaced by the suffix of a node in Dk′ ,
where both nodes have to be associated with the same automaton state. Formally,
we replace every pi[k − i,∞] with some pi′[k′ − i′,∞], requiring that Dk[i] and
Dk′[i′] are associated with the same state. Additionally, to preserve the relation of
the modified paths with p, we replace the sub-comb with origin in p[k]with the sub-
combwith origin in p[k′]. Note that because of the requirement that Dk[i] and Dk′[i′]
are associated with the same state, the modified witness paths still have accepting
runs through Aψ′′ . For k ≤ k′, we say that two diagonals Dk, Dk′ with Fk = Fk′

are frontier-preserving cuttable (for short: cuttable) if for every q ∈ Fk′ , q is either
associated with at least as many nodes on Dk as on Dk′ , or it is associated with |Q|
nodes on Dk. For k ≤ k′ ≤ k′′, a cut preserving Fk′′ is a cut between two cuttable
diagonals Dk and Dk′ , such that the set Fk′′ is not modified by the operation. For each
q ∈ Fk′′ , pick a position iq ≤ k′′ as a representative such that the state associated with
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p0

p1

pk−2

pk−1

pk

pk+1

pk′

pk′+1

p

Dk′

Dk′′

Figure 4.3: ©IEEE 2019. The result of the cutting operation prepared in Figure 4.2.
The highlights show which suffix was shifted to which node in the comb.

Dk′′[iq] is q. All states q with representative position iq ≥ k′ will not be affected by the
cut. For representative positions iq < k′, ensure that when choosing suffices from Dk′

for the cut, each suffix piq[k
′− iq,∞] is chosen at least once. This is possible since we

require Dk and Dk′ to be cuttable. Like this, we ensured that all representative states
are not deleted by the cut. Figure 4.2 and Figure 4.3 show the choice of representative
positions in a comb and the resulting preserving cut.

Construct Tfin. We describe how to perform a series of preserving cuts to ensure
that sufficiently many accepting states can be found in a bounded-size prefix Tfin of
the comb. First, note that there are at most 2|Q| different frontiers. Furthermore,
there are at most c = (|Q|+ 1)|Q| many different equivalence classes of the cuttable
property, i.e. for c + 1 many diagonals, at least two are cuttable. We say that a
diagonal Dk is close to Dk′ if |k′ − k| ≤ c. By the pigeonhole principle, for every two
diagonals Dk, Dk′ and state set Fk′′ with k ≤ k′ ≤ k′′, we can perform a number of
cuts on diagonals situated between Dk and Dk′ , each preserving Fk′′ , such that at the
end, Dk′ is close to Dk and the set Fk′′ did not change.

There are only finitely many different frontiers in the infinite comb, so at least
one frontier occurs on infinitely many diagonals. We call that frontier Fω. Pick the
smallest number inf ∈ N such that Finf = Fω and cut diagonal Dinf as close as possible
to D0 while preserving Finf . Note that the first |Q||Q| diagonals are, in general, not
cuttable; therefore, in the worst case, Dinf will be cut close to D|Q||Q| . As a result of
these cuts, frontier Fω might not occur infinitely often anymore. More concretely,
diagonals which were previously associated with frontier Fω will now have frontiers
which are a subset of Fω. Since there are only finitely many different subsets of any
finite set, we know that there exists at least one frontier Fω′ ⊆ Fω that occurs on
infinitely many diagonals.
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Dinf

Dinf ′

Figure 4.4: ©IEEE 2019. The finite prefix Tfin with diagonals Dinf and Dinf ′ . States
in designated positions on Dinf are printed in bold. Suffices that will be copied to
extend the prefix comb are highlighted.

For every automaton state q ∈ Fω′ , there exists by construction an iq ≤ inf such
that Dinf[iq] is associated with q. We call the set of all iq the set of designated posi-
tions P. Now, find the smallest inf ′ > inf , such that Finf ′ = Fω′ , and for all i ∈ P, ri

has an accepting state between inf and inf ′. Such an inf ′ exist because of the Büchi
acceptance condition. We now perform a series of cuts to cut Dinf ′ as close to Dinf as
possible, each of which preserves Finf ′ . Find the i ∈ P whose accepting state is closest
to Dinf and cut the corresponding diagonal close to Dinf . Continue with the i′ ∈ P
whose accepting state comes next and cut it close to the last diagonal that was cut
close. Proceed, until the diagonal of the last accepting state of designated position
was cut close. Finally, cut Dinf ′ close to that last diagonal.

We choose Tfin to be the finite prefix of the resulting comb up to (and including)
Dinf ′ . The depth of Tfin is bounded by b = |Q||Q|+(2+ |Q|) ·(|Q|+1)|Q|. This is because
Tfin consists of a prefix of diagonals up to the first cuttable diagonal (at the most |Q||Q|
many), followed by Dinf . Then, |P| ≤ |Q|many diagonals have been cut close and the
distance between them is at the most (|Q| + 1)|Q|. Lastly, Dinf ′ was cut close, again
with a maximal distance of (|Q|+ 1)|Q|.

Decision Algorithm. We now extend Tfin into an infinite tree T̃ also satisfying ϕ.
By construction, for each i ∈ P, run ri has an accepting state between Dinf and Dinf ′ .
Furthermore, for each q ∈ Finf ′ , there is a designated position iq ∈ P such that Dinf[iq]
is associated with q. We extend Tfin by extending each node in Dinf ′ as follows: For
each i ≤ inf ′ with q associated to Dinf ′[i] and designated position iq, we append
a copy of piq[inf − iq + 1, inf ′ − iq] to pi[inf ′ − i]. Additionally, we copy the sub-
comb starting in node p[inf + 1] and append it to node p[inf ′], thus completing the
extension. By construction, we now have a larger finite comb ending in a diagonal
Dinf ′′ with Finf ′′ ⊆ Finf ′ . Figure 4.4 shows a possible prefix comb Tfin and Figure 4.5
shows how it is extended. Repeating this process indefinitely, we get an infinite,
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Dinf

Dinf ′

Dinf ′′

Figure 4.5: ©IEEE 2019. The resulting larger finite prefix after extending every
witness path in Figure 4.4 once. The highlights show which part of Tfin was used to
extend the prefix.

ultimately periodic model T̃ where each pair (p[i,∞], pi) of witness paths in the
comb of T̃ is accepted by Aψ′′ . It is thus a model for ϕ.

Case 2. In the case where the release modality is witnessed by path p for π and a
sequence of paths {p0, p1, . . . , pn, p′} forπ′′ andπ′, we proceed very similar to Case 1.
We again arrange the witnesses in a comb-like graph, with the only difference that
at p[n], there are the two witnesses pn and p′ branching from p. In order to get the
same structure as in Case 1, we zip p′ and pn into one witness path p̄n. Furthermore,
for all m> n, we add dummy witnesses p> = ;ω branching from p at p[m].

Automata construction. As in Case 1, we associate the paths with the correspond-
ing automaton runs. For (p[i,∞], pi) with i < n, we use the automaton Aψ′′ , as in
Case 1. For (p[i,∞], p>) with i > n, we use the automaton A>, which uncondition-
ally accepts every pair of traces. For (p[n,∞], p̄n), we construct a new automaton
Aψ′∧ψ′′ based on the LTL automaton A′

ψ′∧ψ′′ for ψ
′ ∧ψ′′, similar to the construction

of Aψ′′ . For the automaton Aψ′∧ψ′′ , we have the following:

Σ : S × (S × S) and
δ : Q×Σ→ 2Q, where q′ ∈ δ(q, (s0, (s1, s2))) iff q′ ∈ δ′(q, A),
and L(s0) = {a ∈ AP | aπ ∈ A}, L(s1) = {a ∈ AP | aπ′ ∈ A},
and L(s2) = {a ∈ AP | aπ′′ ∈ A} .

Wedenote the set of states of automaton Aψ′′ withQ and the set of states of automaton
Aψ′∧ψ′′ with Qψ′∧ψ′′ .

Construct Tfin. First, cut diagonal Dn close to diagonal D0. Following Dn, there
are again finitely many different cuttable diagonals (containing states from all three
automata). Proceeding as in Case 1, construct Tfin such that after Dn, there are two di-
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agonals Dinf and Dinf ′ with sufficiently many accepting states in between. The bound
b′ on the depth of Tfin is obtained analogously to the bound in Case 1. We only remark
that n is bounded by |Q||Q| + (|Q|+ 1)|Q|, and the maximal number of different cut-
table diagonals is described in terms of the number of states of all three automata,
i.e., (|Q| + |Qψ′∧ψ′′ | + |Q>| + 1)(|Q|+|Qψ′∧ψ′′ |+|Q>|). We conclude by noting that b′ can
be used as an over-approximation of bound b in Case 1. Finally, as in Case 1, we
construct an infinite satisfying tree T̃ using Tfin.

Decision Algorithm. Enumerate all comb-like prefixes Tfin of bounded depth b′ to
find a suitable prefix (for either of both cases). Whether a prefix is suitable or not can
be decided by labeling it with corresponding runs from the automata of Cases 1 and
2 and checking whether it contains a segment between two diagonals Dinf and Dinf ′

which qualifies to be extended into a model T̃ as described above. When associating
the comb prefixwith runs from the automata, we have to take into account all finitely-
many points in time nwhereψ′′ could be released byψ′. If some prefix Tfin is suitable,
ϕ is satisfiable (namely by the described tree T̃ ). As shown above, there is a suitable
finite prefix of bounded depth b′ whenever ϕ is satisfiable.

Corollary 6. The satisfiability problem for HyperCTL∗ formulas of the form

∃π.(∃π′′.ψ′′)U(∃π′.ψ′) ,

where ψ′ and ψ′′ are quantifier free, is decidable.

Proof. We proceed similarly to Case 2 in the proof above. The only difference is that
formula ψ′′ does not have to hold at the same point in time n where formula ψ′

holds. Therefore, the resulting comb does not have two witnesses branching from
p[n] that we have to zip. We use an automaton Aψ′ instead of Aψ′∧ψ′′ to obtain the
run rn for (p[n,∞], p′).

We lift the arguments of the above proof to arbitrary formulas in the existential frag-
ment of HyperCTL∗.

Lemma 3. Satisfiability of the ∃∗ fragment of HyperCTL∗ is decidable.

Proof. Define the existential quantifier depth of a ∃∗HyperCTL∗ formula as the maxi-
mal number of alternations between existential quantifiers and the temporal modal-
ities R and U in the syntax tree. The witnesses of a formula with quantifier depth
d can be arranged as a d-dimensional comb. We assume, again, w.l.o.g. that no
-modality occurs in the formula. Lemma 2 and Corollary 6 cover the case where

the comb is 2-dimensional. We now lift the arguments to the general case. Given a
d-dimensional comb, we associate the innermost witnesses with the corresponding
runs on the d-tuple automata, which we build as before from the inner LTL formu-
las. A 3-dimensional comb and the corresponding automaton runs are exemplarily
depicted in Figure 4.6.
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Figure 4.6: ©IEEE 2019. A 3-dimensional comb graph resulting from the arrange-
ment of witnesses for a HyperCTL∗ formula ∃π.�(∃π′.�(∃π′′.ϕ)). The innermost
witnesses pi, j are labeled with the automaton states of the corresponding automaton
runs.

In the d-dimensional case, diagonals are hyperplanes. We represent the k-th
plane Dk in the d-dimensional comb by a nested sequence of depth d − 1:

Dk ::=[Dk,0, . . . , Dk,k]
Dk,i1 ::=[Dk,i1,0 . . . , Dk,i1,k−i1]...

Dk,i1,...,id−2
::=[pi1,...,id−2,0[s], pi1,...,id−2,1[s− 1], . . .

pi1,...,id−2,s[0]], where s = k− (i1 + . . .+ id−2) .

We additionally define d-dimensional frontiers as nested sets of automata states:

Fk ::= {Fk,i1 | i1 ≤ k, i1 ∈ N}
Fk,i1 ::= {Fk,i1,i2 | i1 + i2 ≤ k, i2 ∈ N}

...
Fk,i1,...,id−2

::= {ri1,...,id−2,id−1
[id] |

id1
+ id = k− (i1 + . . .+ id−2)} .

As an example, in Figure 4.6, [p0,0[1], p0,1[0]], and [p1,0[0]] constitute plane D1. The
corresponding frontier is giving by F1 = {F1,0, F1,1}= {{r0,0[1], r0,1[0]}, {r1,0[0]}}.

We define the cuttable property recursively, with the definition for the
2-dimensional case (c.f. Lemma 2) as base case. For indices i1, . . . , il we also write ī.
Two sub-planes Dk,ī, Dk′,ī′ with Fk,ī = Fk′,ī′ are cuttable if for every two Fk′,ī′, j′ ∈ Fk′,ī′

and Fk,ī, j ∈ Fk,ī with Fk′,ī′, j′ = Fk,ī, j, sub-frontier Fk,ī, j is associated with at least as
many sub-sequences in Dk,ī as Fk′,ī′ is associated with in Dk′,ī′ , or at least with |Q|
many (where Q is the set of automata states). Furthermore, if Fk,ī, j is associated
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with Dk,ī, j, and Fk′,ī′, j′ is associated with Dk′,ī′, j′ , the corresponding sub-planes must
be cuttable again.

We show how the cut operation can be extended by one dimension. A plane in
the 3-dimensional comb is a sequence of sequences Dk,i of nodes. Each sequence Dk,i

contains nodes that reside on paths branching from pi. To cut plane Dk′ to Dk, we
require that Fk = Fk′ . Pick for each set Fk,i an equal set Fk′,i′ and cut the diagonal
Dk′,i′ to Dk,i, as described for the 2-dimensional case in the proof of Lemma 2. To
preserve the relations of paths in the third dimension (pi, j) with the paths in the first
and second dimension (p and pi), also replace each 2-dimensional sub-comb with
origin at pi[k− i] with the sub-comb at pi′[k′− i′]; and the 3-dimensional sub-comb
with origin at p[k] with the sub-comb p[k′]. Using the lifted definition of cuttable,
it is also possible to define preserving cuts by first declaring a set of representative
positions and then choosing the sets in such a way that no representative positions
are deleted during the cut.

With the same arguments as in the 2-dimensional case and using the lifted (pre-
serving) cut operation, we can create a 3-dimensional comb prefix Tfin of bounded
size which can then be extended to a satisfying model T̃ . Note that the bound in the
3-dimensional case is exponentially larger than the bound in the 2-dimensional case
due to the more complicated definition of cuttable.

We have, thus, proven that the existential fragment of HyperCTL∗ remains decidable.
In the next section, we will consider quantifier alternations.

4.2.3 Fragments with a Quantifier Alternation

In this section, we will prove that a quantifier alternation of any kind leads to un-
decidability of HyperCTL∗. HyperCTL∗ formulas in the general ∃∗∀∗ fragment are
undecidable. We prove this by spanning a comb-shaped tree with the ∃π ∃π′ pat-
tern. We then encode PCP into this tree with universal trace quantification.

Theorem 14. The satisfiability problem for HyperCTL∗ formulas in the ∃∗∀∗ fragment
is undecidable.

Proof. Let a PCP instance with Σ= {a1, a2, ..., an} and two lists α and β be given. We
choose our set of atomic propositions as follows: AP ::= {i}∪(Σ∪{ȧ1, ȧ2, ..., ȧn}∪#)2,
where we use the dot symbol to encode that a stone starts at this position of the trace.
We write ã to denote either a or ȧ. The single input i is used to span the comb-shaped
tree. We encode the PCP instance into a HyperCTL∗ formula that is satisfiable if and
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only if the PCP instance has a solution:

∃π. i (4.1)

∧ ( ∃π′. ¬iπ′) (4.2)

∧ (∀π′′∀π̃′′.(iπ′′ ∧ ¬iπ′′)→ ϕsol(π
′′) (4.3)

∧ϕadjacent(π
′′, π̃′′)→ ϕstart(ϕstone&shift(π

′′, π̃′′),π′′)) , (4.4)

• Conjunct 4.1 defines the back of the comb, which is globally labeled with i.

• Conjunct 4.2 defines the tines of the comb, which are at the first position la-
beled with i, followed by globally ¬i.

• The first part of the last conjunct (4.3) requires that the solution of the PCP
instance lives on the first tine of the comb.

• The second part of the last conjunct (4.4) requires that the next adjacent tine
encodes the same trace as the previous tine but with the first stone from the
PCP instance being removed as follows:

– ϕstart(ϕ,π′′) := iπ′′ U(ϕ ∧ ¬iπ′′) cuts of the irrelevant prefixes.

– ϕadjacent(π′′, π̃′′) := iπ′′ ∧ iπ̃′′ U¬iπ′′ ∧ ¬iπ̃′′ defines two adjacent tines.

– ϕstone&shift(π′′, π̃′′) defines that the next adjacent tine removes a stone
from the PCP instance as detailed outlined in the proofs in Chapter 3.
The notation π̃′′ denotes that the stone&shift encoding must be shifted
by one position to match the adjacent tine.

We can, furthermore, follow that HyperCTL∗ inherits the undeciable ∀∗∃∗ fragment
of HyperLTL.

Corollary 7. The satisfiability problem for HyperCTL∗ formulas in the ∀∗∃∗ fragment
is undecidable.

Proof. HyperCTL∗ subsumes HyperLTL as a syntactic fragment. The ∀∗∃∗ fragment
of HyperLTL is known to be undecidable [70].

The results above are due to the indirect quantifier scopes of HyperCTL∗ [105] For
example, the globally operator in the formula ∃π. (∃π′.∀π′′.ϕ) spans a comb in
such a way that ∀π′′ indirectly refers to traces introduced by ∃π′. In the formula
∃π. (∃π′. ∀π′′.ϕ), the universal quantification only refers to the current trace π′.
Formulas, which are in the indirect scope free ∃∗∀∗ fragment however, can be decided
by eliminating the universal quantification.
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Theorem 15. ([105]) Satisfiability of the indirect scope free ∃∗∀∗ fragment of HyperCTL∗

is decidable.

We have thus identified the largest decidable fragment of HyperCTL∗, which is the
indirect scope free ∃∗∀∗ fragment.

4.3 HyperCTL∗ Realizability

In this section, we briefly discuss the realizability problem of HyperCTL∗. We con-
clude that the problem is undecidable in general and that HyperCTL∗ inherits the
decidable fragments of HyperLTL.

Definition 15 (HyperCTL∗ Realizability). A HyperCTL∗ formula ϕ over atomic propo-
sitions AP= I ∪̇O is realizable if there is a strategy f : (2I)∗→ 2O that satisfies ϕ.

The linear∀∗
π
fragment [74] for HyperLTL (and for HyperQPTL 3) can also be defined

for HyperCTL∗:

Definition 16. Let O = {o1, . . . , on}. A HyperCTL∗ formula ϕ is called linear if for all
oi ∈ O there is a Ji ⊆ I such that ϕ∧ DI 7→O ≡ collapse(ϕ)∧

∧

oi∈O DJi 7→{oi} and Ji ⊆ Ji+1

for all i ≤ n.

We defined the collapsed formula of ϕ as collapse(ϕ) ::= ∀π.Q∗q.ψ[π1 7→ π][π2 7→
π] . . . [πn 7→ π] where ψ[πi 7→ π] replaces all occurrences of πi in ψ with π. This
means that every input-output dependency can be ordered linearly, i.e., we are re-
stricted to linear architectures without information forks (see Figure 3.3). We know,
however, that two universal quantifiers in a prefix (i.e. in HyperLTL) are enough to
already encode the distributed synthesis problem [74]. HyperCTL∗ thus inherits the
decidable fragments of HyperLTL, but remains undecidable in general.

Corollary 8. HyperCTL∗ realizability inherits the decidable fragments of HyperLTL.

Corollary 9. HyperCTL∗ realizability is undecidable in general.

4.4 Summary

We identified the decidability boundary of the satisfiability problem of HyperCTL∗.
We showed in this branching-time hierarchy of hyperlogics, that the ∃∗ fragment of
HyperCTL∗ is decidable. This result enabled the development of HyperCTL∗ satisfi-
ability solvers for the indirect scope free ∃∗∀∗ HyperCTL∗ fragment [105]. Further-
more, we briefly concluded that the realizability problem of HyperCTL∗ is undecid-
able and that HyperCTL∗ inherits the decidable fragments of HyperLTL.





Chapter 5

Runtime Enforcement of Temporal
Hyperproperties

Runtime enforcement combines the strengths of dynamic and static verification by
monitoring the output of a running system and correcting it if it violates a given
specification. Enforcement mechanisms thus provide formal guarantees for settings
in which a system needs to be kept alive while also fulfilling critical properties. Run-
time enforcement has been successfully applied in settings where specifications are
given as trace properties [65, 63]. Privacy policies, for example, cannot be ensured
by shutting down the system to prevent leakage: an attacker could gain information
just from the fact that the execution stopped.

Our contribution in this chapter is two-fold. First, we show that hyperproperty
enforcement of reactive systems needs to solve challenging variants of the synthesis
problem. The concrete formulation depends on the given trace input model. We
distinguish two input models 1) the parallel trace input model, where the number of
traces is known a priori and traces are processed in parallel, and 2) the sequential
trace input model, where traces are processed sequentially, and no a priori bound
on the number of traces is known. Figure 5.1 repeats the visualization from the
introduction of the general setting of reactive runtime enforcement in these input
models. In the parallel trace input model, the enforcement mechanism observes
n traces at the same time. This is the natural model if a system runs in secure multi-
execution [48]. In the sequential trace input model, system runs are observed in
sessions, i.e., one at a time. An additional input indicates that a new session (i.e.,
trace) starts. Instances of this model naturally appear, for example, in web-based
applications.

Second, we describe enforcement mechanisms for a concrete specification lan-
guage. In the previous chapters, we studied the theoretical boundaries of the sat-
isfiability and realizability problem for highly expressive logics. In this chapter, we
will move down the hierarchy of hyperlogics to HyperLTL, for which practical im-
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Figure 5.1: Runtime enforcement for a reactive system. In case the input-output-
relation would violate the hyperproperty H, the enforcer corrects the output.

plementations exist. HyperLTL is still flexible enough to state different application-
tailored specifications. Furthermore, the computational cost of the satisfiability and
realizability problem is reasonable. We focus on universally quantified formulas, a
fragment in which most of the enforceable hyperproperties naturally reside. For both
trace input models, we develop enforcement mechanisms based on parity game solv-
ing. For the sequential model, we show that the problem is undecidable in general.
However, we provide algorithms for the more straightforward case that the enforcer
only guarantees a correct continuation for the current session. Furthermore, we de-
scribe an algorithm for the case that the specification describes a safety property.
When it is not necessary for an enforcer to distinguish between inputs and outputs,
we show that it is sufficient to solve a variation of the satisfiability problem at run-
time. Our algorithms monitor for losing prefixes, i.e., so-far observed traces for which
the system has no winning strategy against an adversarial environment. We ensure
that our enforcement mechanisms are sound by detecting losing prefixes at the earli-
est possible point in time. Furthermore, they are transparent, i.e., non-losing prefixes
are not altered.

We accompany our findings with a prototype implementation for the parallel
model and conduct two experiments: 1) we enforce symmetry in mutual exclusion
algorithms, and 2) we enforce the information flow policy observational determin-
ism. We will see that enforcing such complex HyperLTL specifications can scale to
large traces once the initial parity game solving succeeds.

Results in this chapter are based on “Runtime Enforcement of Hyper-
properties” [43], which was joint work with Norine Coenen, Bernd Finkbeiner, Jana
Hofmann, and Yannick Schillo. The chapter is structured as follows. In Section 5.1,
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we develop a formal defintion of temporal hyperproperty enforcement. In Section 5.2,
we give explicit enforcement algorithms for specifications given in universally quan-
tified HyperLTL. We provide experimental results in Section 5.3 before concluding in
Section 5.4.

5.1 Hyperproperty Enforcement

In this section, we develop a formal definition of hyperproperty enforcement mecha-
nisms for reactive systems modeled with two trace input models. To this end, we first
formally describe reactive systems under the two trace input models by the prefixes
they can produce. We proceed by developing the two basic requirements on enforce-
ment mechanisms, soundness and transparency [63, 64], for our settings. Soundness
is traditionally formulated as “the enforced system should be correct w.r.t. the spec-
ification”. Transparency (also known as precision [156]) states that “the system’s
behavior should be modified minimally, i.e., the longest correct prefix should be pre-
served by the enforcement mechanism”. In the context of reactive systems, formal
definitions for soundness and transparency need to be formulated in terms of strate-
gies. They describe how the enforcement mechanism reacts to the inputs from the
environment and outputs produced by the system. We, therefore, define soundness
and transparency based on the notion of losing prefixes (i.e., prefixes for that no win-
ning strategy exists) inspired by work on monitoring reactive systems [55]. We will
see that the definition of losing prefixes depends heavily on the chosen trace input
model. Primarily the sequential model defines an interesting new kind of synthesis
problem, which varies significantly from the known HyperLTL synthesis problem.

As is common in the study of runtime techniques for reactive systems, we make
the following reasonable assumptions. First, reactive systems are treated as black
boxes, i.e., two reactive systems with the same observable input-output behavior are
considered equal. Thus, enforcement mechanisms cannot base their decisions on
implementation details. Second, w.l.o.g. and to simplify the presentation, we assume
execution traces to have infinite length. Finite traces can always be interpreted as
infinite traces, e.g., by adding endω. To reason about finite traces, on the other hand,
definitions like the semantics of HyperLTL would need to accommodate many special
cases like traces of different lengths. Lastly, we assume that control stays with the
enforcer after a violation occurred instead of only correcting the error and handing
control back to the system afterward. Since we aim to provide formal guarantees,
these two problems are equivalent. To ensure that the correction adheres to the
specification, the enforcer needs to guarantee that there is a strategy for reacting to
future inputs.
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Figure 5.2: Visualization of prefixes in trace input models.

5.1.1 Trace Input Models

We distinguish two trace input models [77], the parallel and the sequential model.
The trace input models describe how a reactive system is employed and how its traces
are obtained (see Figure 5.1). We formally define the input models by the prefixes
they can produce. The definitions are visualized in Figure 5.2. In the parallel model,
a fixed number of n systems are executed in parallel, producing n events at a time.

Definition 17 (Prefix in the Parallel Model). An n-tuple of finite traces U = (u1, . . . un)
∈ ((2Σ)∗)n is a prefix of V = (v1, . . . vn) ∈ ((2Σ)∗/ω)n (written U � V ) in the parallel
model with n traces iff each ui is a prefix of vi (also denoted by ui � vi).

The prefix definition models the allowed executions of a system under the parallel
trace input model: If the system produces U and after a few more steps produces V ,
then U � V . Note that the prefix definition is transitive: U can be a prefix of another
prefix (then the traces in V are of finite length) or a prefix of infinite-length traces.

In the sequential model, the traces are produced one by one and there is no a-
priori known bound on the number of traces.

Definition 18 (Prefix in the Sequential Model). Let U = (u1, . . . , un) ∈ ((2Σ)ω)∗ be a
sequence of traces and u ∈ (2Σ)∗ be a finite trace. Let furthermore V = (v1, . . . , vn, . . .)
be a (possibly infinite) sequence of traces with vi ∈ (2Σ)ω, and v ∈ (2Σ)∗ be a finite
trace. We call (U , u) a prefix of (V, v) (written (U , u) � (V, v)) iff either 1) U = V and
u� v or 2) V = u1, . . . , un, vn+1, . . . and u� vn+1.

We additionally say that (U , u)� V if (U , u)� (V,ε), where ε is the empty trace. To
continue an existing prefix (U , u), the system either extends the started trace u or
finishes u and continues with additional traces. Traces in U are of infinite length and
describe finished sessions. This means that they cannot be modified after the start
of a new session. Again, prefixes in this model are transitive and are also defined for
infinite sets.

We defined prefixes tailored to the trace input models to precisely capture the
influence of the models on the enforcement problem. Usually, a set of traces T is
defined as prefix of a set of traces T ′ if and only if ∀t ∈ T. ∃t ′ ∈ T ′. t � t ′ [41]. A
prefix in the sequential model, however, cannot be captured by the traditional prefix
definition, as it does not admit infinite traces in a prefix.
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5.1.2 Losing Prefixes for Hyperproperties

Losing prefixes describe when an enforcer has to intervene based on possible strate-
gies for future inputs. As we will see, the definition of losing prefixes, and thus the
definition of the enforcement problem, differs significantly for both input models.
For the rest of this section, let H denote an arbitrary hyperproperty.

We first define strategies for the parallel model with n parallel sessions. In the en-
forcement setting, a strategy receives a previously recorded prefix. Depending on that
prefix, the enforcer’s strategy might react differently to future inputs. We therefore
define a prefixed strategy as a higher-order function σ : ((2Σ)∗)n→ ((2I)∗)n→ (2O)n

over Σ= I ∪̇O. The strategy first receives a prefix (produced by the system), then a
sequence of inputs on all n traces, and reacts with an output for all traces. We define
a losing prefix as follows.

Definition 19 (Losing Prefix in the Parallel Model). A strategy σ(U) is losing for H
with U = (u1, . . . , un) ∈ ((2Σ)∗)n if there are input sequences (v1, . . . , vn) ∈ ((2I)ω)n

such that the following set is not in H:
⋃

1≤i≤n

{ui · (vi[0]∪σU(ε)(i)) · (vi[1]∪σU(vi[0])(i)) · (vi[2]∪σU(vi[0]vi[1])(i)) . . .},

where σU = σ(U) and σU(·)(i) denotes the i-th output that σ produces.

We say that σ(U) is winning if it is not losing. A prefix U is winning if there is a
strategy σ such that σ(U) is winning. Lastly, σ is winning if σ(ε) is winning and for
all non-empty winning prefixes U , σ(U) is winning. Similar to the parallel model, a
prefixed strategy in the sequential model is a function σ : ((2Σ)ω)∗×(2Σ)∗→ (2I)∗→
2O over Σ= I ∪̇O. The definition of a losing prefix is the following.

Definition 20 (Losing Prefix in the Sequential Model). In the sequential model, a
strategyσ is losing with a prefix (U , u) for H, if there are input sequences V = (v0, v1, . . .)
with vi ∈ (2I)ω, such that the set U∪{t0, t1, . . .} is not in H, where t0, t1, . . . are defined
as follows:

t0 := u · (v0[0]∪σ(U , u)(ε)) · (v0[1]∪σ(U , u)(v0[0])) · . . .

t1 := (v1[0]∪σ(U ∪ {t0},ε)(ε)) · (v1[1]∪σ(U ∪ {t0},ε)(v1[0])) · . . .

t2 := (v2[0]∪σ(U ∪ {t0, t1},ε)(ε)) · (v2[1]∪σ(U ∪ {t0, t1},ε)(v2[0])) · . . .

Winning prefixes and strategies are defined analogously to the parallel model. The
above definitions illustrate that enforcing hyperproperties in the sequential model
defines an intriguing but complex problem. Strategies react to inputs based on the
observed prefix. The same input sequence can therefore be answered differently
in the first session and, say, in the third session. The enforcement problem thus not
simply combinesmonitoring and synthesis but formulates a different kind of problem.
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5.1.3 Enforcement Mechanisms

With the definitions of the previous sections, we adapt the notions of sound and
transparent enforcement mechanisms to hyperproperties under the two trace input
models. We define an enforcement mechanism enf for a hyperproperty H to be a
computable function which transforms a black-box reactive system S with trace input
model M into a reactive system enf(S) with the same input model.

Definition 21 (Soundness). enf is sound if for all reactive systems S and all input
sequences in model M, the set of traces produced by enf(S) is in H.

Definition 22 (Transparency). enf is transparent if the following holds: Let U be a
prefix producible by S with input sequence sI . If U is winning, then for any prefix V
producible by enf(S) with input sequence s′I where sI � s′I , it holds that U � V .

We now have everything in place to define when a hyperproperty is enforcable for a
given input model.

Definition 23 (Enforceable Hyperproperties). A hyperproperty H is enforceable if
there is a sound and transparent enforcement mechanism.

In order to obtain a sound and transparent enforcement mechanism, we need to
construct a winning strategy for H.

Proposition 1. Let H be a hyperproperty and M be an input model. Assume that it is
decidable whether a prefix U is losing in model M for H. Then there exists a sound and
transparent enforcement mechanism enf for H iff there exists a winning strategy in M
for H.

Proof. For the first direction, let enf be given. We design a winning strategy σ as
follows. Let a prefix U be given, which is either empty or winning. Note that we
cannot exploit the fact that U is winning: We know that there is a strategy but we
do not know how to compute it. Instead, let S be a reactive system which produces
U . If U is empty, let S produce false in the first step. Compute enf(S). Now let V
be an input sequence suitable for M such that U|I = V . Since enf is transparent, the
outputs of enf(S) in reaction to V produce U . Now, for any further inputs, σ reacts
according to enf(S). Since enf(S) is sound, σ is winning.

For the second direction, let a reactive system S be given. Note that since σ is
winning, σ(ε) is winning. We define S′ = enf(S) recursively as follows: Let U be
the prefix computed so far. Invariantly, it is a winning prefix. Let input i be given
(the type of i depends on the given trace input model). Compute o = S(i). Decide
whether U together with (i, o) is winning. If it is winning, go on with the next input.
If it is losing, then return σ(U)(i) instead of o and use σ(U) for all future inputs.
The described enforcement mechanism enf is sound as either the traces producible
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by S are in H or at some point σ(U) for a winning prefix U takes over control. It is
transparent, as the output of S is not alternated as long as the prefix is winning.

The above proposition describes how to construct enforcement algorithms: We need
to solve the synthesis problem posed by the respective trace input model. However,
we have to restrict ourselves to properties that can be monitored for losing prefixes.
This is only natural: for example, the property expressed by the HyperLTL formula
∃π. aπ can in general not be enforced since it contains a hyperliveness [41] aspect:
There is always the possibility for the required trace π to occur in a future session
(c.f. the definition of monitorable hyperproperties in [7, 77]). We therefore describe
algorithms for HyperLTL specifications from the universal fragment ∀π1. . . .∀πk.ϕ of
HyperLTL. Additionally, we assume that the specification describes a property whose
counterexamples have losing prefixes.

Before jumping to concrete algorithms, we describe two example scenarios of
hyperproperty enforcement with different trace input models.

In the first example, we consider fairness in contract signing. Contract signing
protocols let multiple parties negotiate a contract. In this setting, fairness requires
that in every situation where Bob can obtain Alice’s signature, Alice must also be
able to obtain Bob’s signature. Due to the asymmetric nature of contract signing
protocols (one party has to commit first), fairness is difficult to achieve (see, e.g.,
[158]). Many protocols rely on a trusted third party (TTP) to guarantee fairness.
The TTP may negotiate multiple contracts in parallel sessions. The natural trace
input model is therefore the parallel model. Fairness forbids the existence of two
traces π and π′ that have the same prefix of inputs, followed in π by Bob requesting
(RB) and receiving the signed contract (SB), and in π′ by Alice requesting (RA), but
not receiving the signed contract (¬SA):

∀π.∀π′.¬((
∧

i∈I

(iπ↔ iπ′)) U (RB
π
∧ RA

π′
∧ (SB

π
∧¬SA

π′
))) .

In the second example we consider privacy in fitness trackers. Wearables track a
wide range of extremely private health data which can leak an astonishing amount
of insight into your health. For instance, it has been found that observing out-of-
the-ordinary heart rate values correlates with diseases like the common cold or even
Lyme disease [142]. Consider the following setting. A fitness tracker continuously
collects data that is stored locally on the user’s device. Additionally, the data is synced
with an external cloud. While locally stored data should be left untouched, uploaded
data has to be enforced to comply with information flow policies. Each day, a new
stream of data is uploaded, hence the sequential trace input model would be ap-
propriate. Comparing newer streams with older streams allows for the detection of
anomalies. We formalize an exemplary property of this scenario in HyperLTL. Let HR
be the set of possible heart rates. Let furthermore active denote whether the user is
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currently exercising. Then the following property ensures that unusually high heart
rate values are not reported to the cloud:

∀π.∀π′. (activeπ↔ activeπ′ →
∧

r∈HR

(rπ↔ rπ′)) .

5.2 Enforcement Algorithms for HyperLTL Specifica-
tions

For both trace input models, we present sound and transparent enforcement algo-
rithms for universal HyperLTL formulas defining hyperproperties with losing prefixes.
First, we construct an algorithm for the parallel input model based on parity game
solving. For the sequential trace input model, we show that the problem is undecid-
able in the most general case. We proceed to provide an algorithm that only finishes
the remainder of the current session. This simplifies the problem because the exis-
tence of a correct future session is not guaranteed. For this setting, we then present
a simpler algorithm that is restricted to safety specifications.

5.2.1 Parallel Trace Input Model

In short, we proceed as follows: First, since we know the number of traces, we can
translate the HyperLTL formula to an equivalent LTL formula. For that formula, we
construct a realizability monitor based on the LTL monitor described in [55]. The
monitor is a parity game, which we use to detect minimal losing prefixes and to
provide a valid continuation for the original HyperLTL formula.

Assume that the input model contains n traces. Let a HyperLTL formula
∀π1 . . .∀πk.ϕ over Σ = I ∪̇ O be given, where ϕ is quantifier free. We construct
an LTL formula ϕn

LTL over Σ
′ = {ai | a ∈ Σ, 1≤ i ≤ n} as follows:

ϕn
LTL :=

∧

i1,...,ik∈[1,n]

ϕ[∀a ∈ AP : aπ1
7→ ai1 , . . . , aπk

7→ aik] .

The formula ϕn
LTL enumerates all possible combinations to choose k traces – one for

each quantifier – from the set of n traces in the model. We use the notation ϕ[∀a ∈
AP : aπ1

7→ ai1 , . . . , aπk
7→ aik] to indicate that in ϕ, atomic propositions with trace

variables are replaced by atomic propositions indexed with one of the n traces. We
define I ′ = {ai | a ∈ I , 1 ≤ i ≤ n} and O′ analogously. Since n is known upfront, we
only write ϕLTL.

Our algorithm exploits that for every LTL formula ϕ, there exists an equivalent
parity game Gϕ such that ϕ is realizable iff player P0 is winning in the initial state
with strategyσ0 [60] (see Chapter 2). For a finite trace u,ϕ is realizable with prefix u
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Algorithm 1 HyperLTL enforcement algorithm for the parallel input model.

1: procedure Initialize(ψ, n)
2: ϕLTL := toLTL(ψ, n);
3: (game, q0) := toParity(ϕLTL);
4: winR := SolveParity(game);
5: if q0 /∈ winR then
6: raise error;
7: return(game, winR, q0);

8: procedure Enforce(game, lastq)
9: sig := GetStrat(game, lastq);

10: while true do
11: o := sig(lastq);
12: lastq:=Move(game, lastq, o);
13: output(o);
14: i := getNextInput( );
15: iLTL := toLTL(i);
16: lastq :=Move(game, lastq, iLTL);

17: procedureMonitor(game, winR, q)
18: lastq := q;
19: while true do
20: o := getNextOutput( );
21: oLTL := toLTL(o);
22: q := Move(game, lastq, oLTL);
23: if q /∈ winR then
24: return(game, lastq);
25: i := getNextInput( );
26: iLTL := toLTL(i);
27: q := Move(game, q, iLTL);
28: lastq := q;

iff the play induced by u ends in a state q that is in the winning region of player P0.
The algorithm to enforce the HyperLTL formula calls the following three procedures
– depicted in Algorithm 1 – in the appropriate order.

Initialize: Construct ϕLTL and the induced parity game Gϕ. Solve the game Gϕ,
i.e. compute the winning region for player P0. If the initial state q0 ∈ V0 is losing,
raise an error. Otherwise start monitoring in the initial state.

Monitor: Assume the game is currently in state q ∈ V0. Get the next outputs
(o1, . . . , on) ∈ On produced by the n traces of the system and translate them to oLTL ⊆
O′ by subscripting them as described for formula ϕLTL. Move with oLTL to the next
state. This state is in V1. Check if the reached state is still in the winning region. If
not, it is a losing state, so we do not approve the system’s output but let the enforcer
take over and call Enforce on the last state. If the state is still in the winning region,
we process the next inputs (i1, . . . , in), translate them to iLTL, and move with iLTL to
the next state in the game, again in V0. While the game does not leave the winning
region, the property is still realizable and the enforcer does not need to intervene.

Enforce: By construction, we start with a state q ∈ V0 that is in the winning
region, i.e., there is a positional winning strategy σ : V0 → 2O′ for player P0. Using
this strategy, we output σ(q) and continue with the next incoming input iLTL to the
next state in V0. Continue with this strategy for any incoming input.



80 Chapter 5. Runtime Enforcement of Temporal Hyperproperties

Correctness and Complexity. By construction, since we never leave the winning
region, the enforced system fulfills the specification and the enforcer is sound. It
is also transparent: As long as the prefix produced by the system is not losing, the
enforcer does not intervene. The algorithm has triple exponential complexity in the
number of traces n: The size of ϕLTL is exponential in n and constructing the parity
game is doubly exponential in the size of ϕLTL [60]. Solving the parity game only
requires quasi-polynomial time [33, 161]. Note, however, that all of the above steps
are part of the initialization. At runtime, the algorithm only follows the game arena.
If the enforcer is only supposed to correct a single output and afterwards hand back
control to the system, the algorithm can be adapted accordingly.

Non-reactive Setting

In general, we assume systems to be reactive. There are however situations where
distinguishing between inputs and outputs is not necessary. This is the case, for
example, when monitoring the outgoing stream of a device to a cloud like in the
fitness-tracker example given in the introduction. We show that in such a situation,
it is not necessary to build a parity game. Indeed, existing algorithms for HyperLTL
monitoring [77] can be easily extended to also enforce a hyperproperty. In [77],
monitoring of HyperLTL formulas is studied with respect to both trace input models.
Their algorithm for the parallel model already recognizes minimal bad prefixes. We
can therefore concentrate on how to provide a valid continuation once a minimal bad
prefix is detected.

Let a HyperLTL formulaϕ from the universal HyperLTL fragment, and the number
of traces n be given. Assume that a HyperLTL monitor for the parallel trace input
model is running. Each event ei consists of a tuple (ei

1, . . . , ei
n) ∈ (2

Σ)n. As long as
the monitor does not raise an alarm, new events are forwarded to the monitor. If
the monitor raises an alarm at position i + 1, we encode the observed traces up to
position i into a HyperLTL formula, together with the formula we want to enforce.
The resulting formula is the following:

ψ := ∃π1. . . .∃πn.ϕ ∧
∧

1≤k≤n

∧

0≤ j≤i

j(
∧

a∈e j
k

aπk
∧
∧

a/∈e j
k

¬aπk
) .

We use j as an abbreviation for j consecutive . The first conjunct (ϕ) is the
original universal HyperLTL formula. The second conjunct ensures that a satisfying
trace set contains at least n traces with the prefixes seen so far. The resulting formula
ψ is an ∃∗∀∗ HyperLTL formula. It is forwarded to a satisfiability solver for temporal
hyperproperties (e.g., EAHyper [75]) which, if the result is SAT, returns at least n
traces (t1, . . . , tn) such that the traces (t1[i + 1 . . .], . . . , tn[i + 1 . . .]) can be used to
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continue the observed prefix and enforce ϕ. Note that we did not ask for exactly
n traces. Universally quantified HyperLTL formulas are downwards closed, i.e., any
additional traces returned by the SAT solver can just be ignored. Also note that
the result must be SAT by construction. If the result was UNSAT, then the already
observed prefix up to position i would form a minimal bad prefix. Then, the monitor
would have raised an alarm at position i already.

Compared to the parity-game-based algorithms for reactive systems, we do not
solve a synthesis problem, but a satisfiability problem. Satisfiability of ∃∗∀∗ HyperLTL
formulas is solvable in single-exponential space (see Chapter 2), compared to the
triple exponential time complexity for the reactive case. However, the parity game
can be computed beforehand, while the satisfiability problem needs to be solved
at runtime (since we need to encode the observed traces). The evaluation of these
two approaches thus depends on the specific situation at hand, i.e., on whether the
parity game can be computed at all and what computational overhead at runtime is
considered acceptable.

This algorithm takes over the control of the enforced system when a bad prefix
was about to occur. The enforcer then fully determines how the system executions
are continued in the future. If we only want to avoid the violation of the specification
in the current situation but give back the control to the system afterwards, this algo-
rithm can be adapted accordingly: Given a monitor alarm at position i + 1, we solve
the above formula ψ and use (t1[i + 1], . . . , tn[i + 1]) as the event for position i + 1.
After that, we go back to monitoring the system for the next bad prefix. In order
to give a correct enforcement, even only for one position, one still has to compute a
solution for all coming positions. Otherwise, there might be no valid continuation in
the future.

5.2.2 Sequential Trace Input Model

Deciding whether a prefix is losing in the sequential model is harder than in the
parallel model. In the sequential model, strategies are defined w.r.t. the traces seen
so far – they incrementally upgrade their knowledgewith every new trace. In general,
the question whether there exists a sound and transparent enforcement mechanism
for universal HyperLTL specifications is undecidable.

Theorem 16. In the sequential model, it is undecidable whether a HyperLTL formula
ϕ from the universal fragment is enforceable.

Proof. We encode the classic realizability problem of universal HyperLTL, which is
undecidable [73], into the sequential model enforcement problem for universal
HyperLTL. The HyperLTL realizability problem asks if there exists a strategy
σ : (2I)∗ → 2O such that the set of traces constructed from every possible input
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sequence satisfies the formula ϕ, i.e. whether {(w[0] ∪ σ(ε)) · (w[1] ∪ σ(w[0])) ·
(w[2] ∪σ(w[0..1])) · . . . | w ∈ (2I)ω},; |= ϕ. Let a universal HyperLTL formula ϕ
over Σ= I ∪̇O be given. We construct the universal HyperLTL formula

ψ := ϕ ∧ ∀π.∀π′. (
∧

o∈O

oπ↔ oπ′) W (
∨

i∈I

iπ 6↔ iπ′) .

Formulaψ requires the strategy to choose the same outputs as long as the inputs are
the same. The choice of the strategy must therefore be independent of earlier ses-
sions, i.e., σ(U ,ε)(sI) = σ(U ′,ε)(sI) for all sets of traces U , U ′ and input sequences
sI . Any trace set that fulfills ψ can therefore be arranged in a traditional HyperLTL
strategy tree branching on the inputs and labeling the nodes with the outputs. As-
sume the enforcer has to take over control after the first event when enforcing ψ.
Thus, there is a sound and transparent enforcement mechanism for ψ iff ϕ is realiz-
able.

Finishing the Current Session

As the general problem is undecidable, we study the problem where the enforcer
takes over control only for the rest of the current session. For the next session, the
existence of a solution is not guaranteed. This approach is especially reasonable if we
are confident that errors occur only sporadically. We adapt the algorithm presented
for the parallel model. Let a HyperLTL formula ∀π1. . . .∀πk.ϕ over Σ = I ∪̇ O be
given, where ϕ is quantifier free. As for the parallel model, we translate the formula
into an LTL formula ϕn

LTL. We first do so for the first session with n= 1. We construct
and solve the parity game for that formula, and use it to monitor the incoming events
and to enforce the rest of the session if necessary. For the next session, we construct
ϕn

LTL for n = 2 and add an additional conjunct encoding the observed trace t1. The
resulting formula induces a parity game that monitors and enforces the second trace.
Like this, we can always enforce the current trace in relation to all traces seen so far.
Algorithm 2 depicts the algorithm calling similar procedures as in Algorithm 1 (for
which we therefore do not give any pseudo code). Initialize’ is already given an
LTL formula and, therefore, does not translate its input to LTL. Monitor’ returns a
tuple including the reason for its termination (‘ok’ when the trace finished and ‘losing’
when a losing prefix was detected). Additionally, the monitor returns the trace seen
so far (not including the event that led to a losing prefix), which will be added to
ϕtraces. Enforce’ enforces the rest of the session and afterwards returns the produced
trace, which is then encoded in the LTL formula (toLTL(t)).

Correctness and Complexity. Soundness and transparency follow from the fact that
for the n-th session, the algorithm reduces the problem to the parallel setting with n
traces, with the first n−1 traces being fixed and encoded into the LTL formula ϕn

LTL.
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Algorithm 2 HyperLTL enforcement algorithm for the sequential trace input model.
1: procedure EnforceSequential(ψ)
2: n := 1;
3: ϕtraces := true;
4: while true do
5: ψcurr := toLTL(ψ, n) ∧ ϕtraces;
6: (game, winR, q0) := Initialize’(ψcurr);
7: res := Monitor’(game, winR, q0);
8: if res == (‘ok’, t) then
9: ϕtraces := ϕtraces ∧ toLTL(t);

10: else if res = (‘losing’, t, (game, lastq)) then
11: t’ := Enforce’(game, lastq);
12: ϕtraces := ϕtraces ∧ toLTL(t · t’);
13: n++;

We construct a new parity game from ϕn
LTL after each finished session. The algorithm

is thus of non-elementary complexity.

Safety Specifications

If we restrict ourselves to formulas ψ = ∀π1 . . .∀πk.ϕ, where ϕ is a safety formula,
we can improve the complexity of the algorithm. Note, however, that not every prop-
erty with losing prefixes is a safety property: for the formula ∀π. (oπ → iπ)
with o ∈ O and i ∈ I , any prefix with o set at some point is losing. However, the
formula does not belong to the safety fragment. Given a safety formula ϕ, we can
translate it to a safety game [132] instead of a parity game. The LTL formula we
create with every new trace is built incrementally, i.e., with every finished trace we
only ever add new conjuncts. With safety games, we can thus recycle the winning
region from the game of the previous trace. The algorithm proceeds as follows. 1)
Translate ϕ into an LTL formula ϕn

LTL for n = 1. 2) Build the safety game G1
ϕLTL

for
ϕ1

LTL and solve it. Monitor the incoming events of trace t1 as before. Enforce the rest
of the trace if necessary. 3) Once the session is terminated, generate the LTL formula
ϕ2

LTL = ϕ
1
LTL ∧ ϕ

2
diff. As ϕ

2
LTL is a conjunction of the old formula and a new conjunct

ϕ2
diff, we only need to generate the safety game G2

diff and then build the product of
G2
diff with the winning region of G1

ϕLTL
. We solve the resulting game and monitor (and

potentially enforce) as before. The algorithm incrementally refines the safety game
and enforces the rest of a session if needed. The construction recycles parts of the
game computed for the previous session. We thus avoid the costly translation to a
parity game for every new session. While constructing the safety game from the LTL
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specification has still doubly exponential complexity [132], solving safety games can
be done in linear time [16].

Non-reactive Setting

Similarly to the parallel input model, we can encode enforcement in the sequential
model as a HyperLTL SAT problem, for the special case where the enforcer does not
need to distinguish between inputs and outputs. Again, we employ existing monitor-
ing tools and show how to provide an enforcement in case an error is observed. Let
a HyperLTL monitor for the sequential model be given, e.g., the one from [77]. Note
that in the sequential setting, finished sessions naturally produce finite-length traces.
We assume that the resulting traces are extended to infinite ones by appending the
trace {end}ω. Assume a violation of the property is detected in session n at position
c + 1. Furthermore, for each finished session k < n, let the trace length be ik.

We remove the last step that caused the violation (since the monitor monitors for
minimal prefixes) and solve the satisfiability problem of the following formula:

ψ := ∃π1. . . .∃πn.
∧

1≤k<n

ik endπk
∧
∧

0≤ j≤ik

j(
∧

a∈e j
k

aπk
∧
∧

a/∈e j
k

¬aπk
)

∧

0≤ j<c

j(
∧

a∈e j
n

aπn
∧
∧

a/∈e j
n

¬aπn
) .

The first conjunct encodes all finished sessions. The second conjunct encodes all
events seen so far for the current session n. Any trace set satisfyingψ∧ϕ provides a
valid continuation for trace n, finishing the current session. Furthermore, for future
traces, the enforcer can choose any trace from that trace set (since the specification
is universal and the enforcer has control over all atomic propositions).

5.3 Experimental Evaluation

We implemented the algorithm for the parallel trace input model in a prototype tool,
which is written in Rust. We use Strix [152] for the generation of the parity game.
We determine the winning region and the positional strategies of the game with PG-
Solver [91]. All experiments ran on an Intel Xeon CPU E3-1240 v5 3.50 GHz, with 8
GB memory running Debian 10.6. We evaluate our prototype with two experiments.
In the first, we enforce a non-trivial formulation of fairness in a mutual exclusion
protocol. In the second, we enforce the information flow policy observational deter-
minism on randomly generated traces.
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random traces symmetric traces
|t| avg min max #enforced avg min max #enforced

500 0.003 0.003 0.003 0 0.013 0.008 0.020 10
1000 0.005 0.005 0.005 0 0.024 0.015 0.039 10
5.000 0.026 0.024 0.045 0 0.078 0.065 0.097 10
10.000 0.049 0.047 0.064 0 0.153 0.129 0.178 10

Table 5.1: Enforcing symmetry in the Bakery protocol on pairs of traces. Times are
given in seconds.

5.3.1 Enforcing Symmetry in Mutual Exclusion Algorithms

Mutual exclusion algorithms like Lamport’s bakery protocol ensure that multiple
threads can safely access a shared resource. To ensure fair access to the resource,
we want the protocol to be symmetric, i.e., for any two traces where the roles of the
two processes are swapped, the grants are swapped accordingly. Since symmetry
requires the comparison of two traces, it is a hyperproperty. For our experiment, we
used a Verilog implementation of the Bakery protocol [135], which has been proven
to violate the following symmetry formulation [82]:

∀π.∀π′.(pc(0)π = pc(1)π′ ∧ pc(1)π = pc(0)π′)W (pauseπ = pauseπ′ ∧
sym(selπ, selπ′)∧ sym(breakπ, breakπ′)∧ selπ < 3∧ selπ′ < 3) .

The specification states that for any two traces, the program counters need to be
symmetrical in the two processes as long as the processes are scheduled (select) and
ties are broken (break) symmetrically. Both pause and sel < 3 handle further imple-
mentation details. The AIGER [18] translation [82] of the protocol has 5 inputs and
46 outputs. To enforce the above formula, only 10 of the outputs are relevant. We
enforced symmetry of the bakery protocol on simulated pairs of traces produced by
the protocol. Table 5.1 shows our results for different trace lengths and trace gen-
eration techniques. We report the average runtime over 10 runs as well as minimal
and maximal times along with the number of times the enforcer needed to intervene.
The symmetry assumptions are fairly specific and are unlikely to be reproduced by
random input simulation. In a second experiment, we therefore generate pairs of
symmetric traces. Here, the enforcer had to intervene every time, which produces
only a small overhead.

The required game was constructed and solved in 313 seconds. For sets of more
than two traces, the construction of the parity game did not return within two hours.
The case study shows that the tool performs without significant overhead at runtime
and can easily handle very long traces. The bottleneck is the initial parity game
construction and solving.
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benchmark size init 0.5% bit flip probability 1% bit flip probability

#i #o #t |t| avg min max #enf avg min max #enf

1 1
3 10K 0.5 0.014 0.013 0.017 60 0.013 0.013 0.015 60
8 10K 65.7 0.524 0.517 0.625 99 0.524 0.517 0.588 97

2 2
4 10K 0.87 0.025 0.024 0.030 73 0.032 0.031 0.043 77
5 10K 21.19 0.038 0.037 0.041 90 0.038 0.037 0.042 86

3 3
2 10K 0.6 0.019 0.018 0.022 47 0.023 0.023 0.025 54
4 5K

132.8
0.022 0.021 0.026 77 0.021 0.021 0.021 71

4 10K 0.038 0.036 0.056 77 0.037 0.037 0.042 77

4 4
3 1K

43.9
0.010 0.008 0.015 71 0.009 0.008 0.018 68

3 5K 0.023 0.021 0.033 72 0.022 0.021 0.025 78
3 10K 0.038 0.037 0.050 76 0.038 0.037 0.041 75

Table 5.2: Enforcing observational determinism. Times are given in seconds.

5.3.2 Enforcing Observational Determinism

In our second experiment, we enforced observational determinism, given as the
HyperLTL formula ∀π.∀π′. (oπ↔ oπ′)W(iπ = iπ′). The formula states that for any
two execution traces, the observable outputs have to agree as long as the observable
inputs agree. Observational determinism is a prototypical information-flow policy
used in many experiments and case studies for HyperLTL (e.g. [73, 82, 23]). We
generated traces using the following scalable generation scheme: At each position,
each input and output bit is flipped with a certain probability (0.5% or 1%). This
results in instances where observational determinism randomly breaks. Table 7.1
shows our results. Each line corresponds to 100 randomly generated instances of
the given size (number of inputs/outputs and traces, and length of the sessions). We
report the initialization time that is needed to generate and solve the parity game.
Furthermore, we report average, minimal, and maximal enforcement time as well as
the number of instances where the enforcer intervened. Times are reported in sec-
onds. The bottleneck is the time needed to construct and solve the parity game. At
runtime, which is the crucial aspect, the enforcer performs efficiently. The higher bit
flip probability did not lead to more enforcements: For traces of length 10000, the
probability of intervention is relatively high already at a bit flip probability of 0.5%.

5.4 Summary

We studied the runtime enforcement problem for hyperproperties. Depending on the
trace input model, we showed that the enforcement problem boils down to detecting
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losing prefixes and solving a custom synthesis problem. For both input models, we
provided enforcement algorithms for specifications given in the universally quantified
fragment of the temporal hyperlogic HyperLTL. While the problem for the sequential
trace input model is in general undecidable, we showed that enforcing HyperLTL
specifications becomes decidable under the reasonable restriction to only finish the
current session. For the parallel model, we provided an enforcement mechanism
based on parity game solving. Our prototype tool implements this algorithm for the
parallel model. We conducted experiments on two case studies enforcing complex
HyperLTL specifications for reactive systems with the parallel model. Our results
show that once the initial parity game solving succeeds, our approach has only little
overhead at runtime and scales to long traces.
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Chapter 6

Teaching Temporal Logics to Neural
Networks

Machine learning has revolutionized several areas of computer science, such as image
recognition [107], face recognition [201], translation [222], and board games [155,
193]. For complex tasks that involve symbolic reasoning, however, deep learning
techniques are still considered as insufficient. Applications of deep learning in log-
ical reasoning problems have therefore focused on sub-problems within larger log-
ical frameworks, such as computing heuristics in solvers [136, 12, 188] or predict-
ing individual proof steps [146, 94, 13, 112]. Recently, however, the assumption
that deep learning is not yet ready to tackle hard logical questions was drawn into
question: [134] demonstrated that Transformer models [214] perform surprisingly
well on symbolic integration, [172] demonstrated that self-supervised training leads
to mathematical reasoning abilities, and [28] demonstrated that large-enough lan-
guagemodels learn basic arithmetic despite being trained onmostly natural language
sources. This poses the question if challenging logical problems in verification that
are thought to require symbolic reasoning lend themselves to a direct learning ap-
proach. We thus consider linear-time temporal logic (LTL) [165], which is widely
used in the academic verification community [53, 139, 52, 175, 185, 139, 138, 186]
and is the basis for industrial hardware specification languages like the IEEE stan-
dard PSL [114] or more expressive hyperlogics like HyperLTL [40]. LTL specifies
infinite sequences and is typically used to describe system behaviors (see Chapter 2
for details). Logical methods of more hyperlogics can often be reduced to the cor-
responding LTL problems, such as the satisfiability problem of the ∃∗∀∗ fragment of
HyperLTL [70]. Successfully applying deep neural networks to logical methods of
temporal logics end-to-end would immediately yield reliable heuristics, as the predic-
tions of the neural network can be checked.

In this chapter, we apply a direct learning approach to the fundamental problem
of LTL to find a satisfying trace to a formula. In applications, solutions to LTL formu-

91
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Figure 6.1: Performance of our best model trained on practical pattern formulas
(LTLPattern126). The x-axis shows the formula size. Syntactic accuracy, i.e., where
the Transformer agrees with the generator are displayed in dark green. Instances
where the Transformer deviates from the generators output but still provides correct
output are displayed in light green; incorrect predictions in orange.

las can represent (counter) examples for a specified system behavior, and over the
last decades, generations of advanced algorithms have been developed to solve this
question automatically. We start from the standard benchmark distribution of LTL for-
mulas, consisting of conjunctions of patterns typically encountered in practice [53].
We then use classical algorithms, notably spot [52], that implement a competitive
classical algorithm, to generate solutions to formulas from this distribution and train
a Transformer model to predict these solutions directly.

Relatively small Transformers perform very well on this task and we predict cor-
rect solutions to 96.8% of the formulas from a held-out test set (see Figure 6.1).
Impressive enough, Transformers hold up pretty well and predict correct solutions
in 83% of the cases, even when we focus on formulas on which spot timed out.
This means that, already today, direct machine learning approaches may be useful
to augment classical algorithms in logical reasoning tasks.

We also study two generalization properties of the Transformer architecture, im-
portant to logical problems: We present detailed analyses on the generalization to
longer formulas. It turns out that transformers trained with tree-positional encod-
ings [192] generalize to much longer formulas than they were trained on, while
Transformers trained with the standard positional encoding (as expected) do not
generalize to longer formulas. The second generalization property studied here is
the question whether Transformers learn to imitate the generator of the training
data, or whether they learn to solve the formulas according to the semantics of the
logics. This question arises because for most formulas there are many possible sat-
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isfying traces. In Figure 6.1 we highlight the fact that our models often predicted
traces that satisfy the formulas, but predict different traces than the one found by
the classical algorithm with which we generated the data. Especially when testing
the models out-of-distribution we observed that almost no predicted trace equals the
solution proposed by the classical solver.

To demonstrate that these generalization behaviors are not specific to the bench-
mark set of LTL formulas, we also present experimental results on random LTL for-
mulas. Further, we exclude that spot, the tool with which we generate example
traces, is responsible for these behaviors, by repeating the experiments on proposi-
tional formulas for which we generate the solutions by SAT solvers.

Results in this chapter are based on “Teaching Temporal Logics to Neural Net-
works” [102], which was joint work with Frederik Schmitt, Jens U. Kreber, Markus
N. Rabe, and Bernd Finkbeiner. The chapter is structured as follows. We give an
overview over the Transformer architecture in Section 6.1. We describe the prob-
lem definitions and present our data generation in Section 6.2. Our experimental
setup is described in Section 6.3 and our findings in Section 6.4, before concluding
in Section 6.5.

6.1 The Transformer

The Transformer [214] is a deep neural network architecture initially proposed for
solving natural language processing tasks. They have become the state-of-the-art ar-
chitecture for many natural language processing tasks, such as translation or summa-
rization, replacing, e.g., recurrent neural networks (RNNs) such as long short-term
memories (LSTMs) [109]. Transformers are designed to handle sequences of input
elements by computing hidden embeddings for each element in parallel.

6.1.1 Architecture Overview

Transformers make use of the so-called attention mechanism that enables the Trans-
former to relate arbitrary input elements to each other and to process the input
sequence all at once. We will explain this mechanism in detail further below. There
are several benefits to this approach: First, the training can be massively parallelized,
and can thus effectively exploit modern hardware. Second, the processing of the in-
put data in the neural network is very flexible, i.e., the input elements do not have
to be processed one after another. Third, the number of steps information has to
flow through the neural network is significantly decreased, alleviating problems with
computing gradients through many operations.

There are publicly available implementations of the Transformer, e.g., [27, 213],
which can handle a wide range of tasks. This makes this approach highly accessible
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Figure 6.2: A high-level overview of the Transformer architecture: The input se-
quence is processed in one go by multiple encoding layers. The intermediate result
is then given to each decoder layer. The decoder takes the already computed output
and computes the next output step-by-step.

for users outside the machine learning domain. We begin by describing an overview
of the architecture before zooming into the details of the architecture, i.e., the en-
coder, decoder, and attention mechanisms.

A Transformer follows a basic encoder-decoder structure (see Figure 6.2). The
encoder constructs a hidden embedding zi for each input embedding x i of the input
sequence x = (x0, . . . , xn) in one go. An embedding is a mapping from plain input,
for example words or characters, to a high dimensional vector, for which learning
algorithms and toolkits exists, e.g., word2vec [153]. Given the encoders output z =
(z0, . . . , zk), the decoder generates a sequence of output embeddings y = (y0, . . . , ym)
step-by-step. Note that the length of the input and output sequences does not have
to be the same. Since the transformer architecture contains no recurrence nor any
convolution, a positional encoding is added to the input and output embeddings that
allows to distinguish between different orderings.

6.1.2 Encoder

The encoder consists of multiple layers where each layer is composed of the following
two components: a so-called self-attention mechanism and a fully connected feed-
forward neural network (see Figure 6.3). Each component is followed by a layer-
normalization [11] step, which significantly reduces the training time by normaliz-
ing the activities of the neurons. The feed-forward neural network FFNN consists
of two linear transformations with a ReLU activation in between, i.e., FFNN(x) =
max(0, xW1 + b1)W2 + b2. Instead of maintaining a hidden state, e.g. in a recurrent
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Figure 6.3: One encoder layer of the Transformer: Every embedding x i is processed
by a self-attention layer. The result is then processed by the same feed-forward neural
network. Each embedding zi is then either given to the next encoder layer or, if it is
the last encoder layer, to the decoder.

neural network architecture, the self-attention mechanism allows the neural network
to incorporate the hidden embedding of other important input elements into the hid-
den embedding of the current element under consideration.

We begin by describing the notion of attention intuitively. Consider a Transformer
trained for translation and the input sentence “The animal didn’t cross the street be-
cause it was too tired”. Figure 6.4 (left) depicts the attention that the neural network
pays to the other words in the sentence when encoding the word “it”. The most atten-
tion is focused on the phrase “The animal”. Computing the attention is parallelized
in multiple attention-heads that potentially pay attention to different parts of the in-
put. Figure 6.4 (right) shows one attention head during the encoding of the formula
(a U b)∧(a U¬b). When encoding the second until-operator this particular attention
head pays very close attention to the b of the first until-operator. Intuitively, it pays
attention to the fact that the second until-operator has to take the first conjunct into
account as well. This means the Transformer cannot simply satisfy the formula by
outputting ¬b and b on the first position of the trace as this would lead to a contra-
diction. As we will see in our experimental results, the transformer constructs the
following trace instead: a∧¬b ; b ; trueω, where ; denotes the beginning of the next
position. I.e., it delays the satisfaction of the first until to the second position.

We describe the attention mechanism in more technical detail. To compute the
hidden embedding for the i-th character of the formula we fist add the aforemen-
tioned positional encoding to the input embeddings x i. Then, the self-attention is
computed as follows. For each input embedding x i, we compute 1) a query vector
qi, 2) a key vector ki, and 3) a value vector vi by multiplying x i with weight matrices
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Figure 6.4: Self attention of the input of a Transformer that solves a translation
task (left) [8] and a Transformer that understands an LTL formula (right). Stronger
colored edges correspond to higher attention values.

Wk, Wv, and Wq, which are learned during the training process.
The main idea of the self-attention mechanism is to compute a score for each

pair (x i, x j) representing which positions in the sequence should be considered the
most when computing the embedding of x i. In our visualizations, for example in
Figure 6.4, stronger colored edges correspond to a higher attention value [216]. This
mechanism is especially suited for our LTL trace generation problem as the whole
context of the formula has impact on the choice of the decoder.

This is implemented by the so-called Scaled Dot-Product Attention: For example,
consider a self-attention computation of x = (x0, x1, x2). To compute the hidden
embedding of x0 we first take the dot products of the query vector q0 and key vectors
k0, k1, and k2. Intuitively, the query vector asks for a “selection” of different keys that
it wants to knowmore about. Those scores are then divided by a constant

p

dk, where
dk is the key dimension, to obtain more stable gradients. Taking the softmax results
in three attention scores s0, s1, and s3, which are the attentions for (x0, x0), (x0, x1),
and (x0, x2) respectively. Note that each si is between 0 and 1 and s0 + s1 + s2 = 1.
The hidden embedding of x0 is then obtained by the linear combination of v0, v1, and
v2 where vi is scaled with score si. This maps the queried keys to their values, where
keys with higher attention scores contribute more to the embedding. Intuitively, this
mechanism can be seen as an indexing scheme over amulti-dimensional vector space.

The embeddings can be calculated all at once using matrix operations [214]. Let
Q, K , V be the matrices obtained by multiplying the input vector X consisting of all
x i with the weight matrices Wk, Wv, and Wq:

Attention(Q, K , V ) = softmax

�

QK T

p

dk

�

V .
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Figure 6.5: One decoder layer of the Transformer: Every already decoded output yi is
processed by a self-attention layer. Then, the encoder-decoder attention between the
input embeddings Venc = (z0, . . . , zk), given from the encoder, and the current output
embedding is computed. If it is the last decoder layer, the next output element is
chosen by a linearization and softmax operation.

6.1.3 Decoder

In contrast to the encoder, which processes the input sequence at once, the output
sequences are computed step-by-step until the end of string (<EOS>) element is
chosen (see Figure 6.5). The decoder is again a layered architecture. Each layer
consists, in addition to a self-attention layer which processes already decoded ele-
ments and feed-forward neural network, of a layer that computes the attention be-
tween the output and input sequences. This is the key concept of the Transformer
architecture: In contrast to the self-attention mechanism, the query Qdec comes from
the decoder asking for the values Venc of the keys Kenc it is the most interested in
while decoding a position of the output sequence, i.e., the Attention(Qdec, Kenc, Venc) is
computed. Figure 6.6 shows an encoder-decoder attention head between the input
formula (a U b) ∧ (a U¬b) and the symbolic trace a ∧ ¬b ; b ; trueω. This head fo-
cuses on matching the atomic proposition b of the second until operator to the first
position of the trace and, thus, distinguishes between the same atomic propositions
in the formula. This concludes our short explanation of the Transformer architecture.
We describe our datasets and their generation in the next section.
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Figure 6.6: Attention values of one Encoder-decoder attention head for b between
the formula (a U b)∧(a U¬b) and the output trace a∧¬b ; b ; trueω (and vice versa).

6.2 Datasets

To demonstrate the generalization properties of the Transformer on logical tasks, we
generated several datasets in three different fashions. We will describe the underly-
ing logical problems and our data generation in the following.

6.2.1 Trace Generation for Linear-time Temporal Logic

We consider infinite sequences, that are finitely represented in the form of a “lasso”
uvω, where u, called prefix, and v, called period, are finite sequences of proposi-
tional formulas. We call such sequences (symbolic) traces. For example, the symbolic
trace (a ∧ b)ω defines the infinite sequence where a and b evaluate to true on ev-
ery position. Symbolic traces allow us to underspecify propositions when they do
not matter. For example, the LTL formula a is satisfied by the symbolic trace:
true true (a)ω, which allow for any combination of propositions on the first two po-
sitions.

Our datasets consist of pairs of satisfiable LTL formulas and satisfying symbolic
traces generated with tools and automata constructions from the spot
framework [52]. We use a compact syntax for ultimately periodic symbolic traces:
Each position in the trace is separated by the delimiter “;”. True and False are repre-
sented by “1” and “0”, respectively. The beginning of the period v is signaled by the
character “{” and analogously its end by “}”. For example, the ultimately periodic
symbolic trace denoted by a; a; a; {b} describes all infinite traces where a holds on
the first three positions followed by an infinite period of b’s.

Given a satisfiable LTL formula ϕ, our trace generator constructs a Büchi automa-
ton Aϕ that accepts exactly the language defined by the LTL formula, i.e., L(Aϕ) =
L(ϕ). From this automaton, we construct an arbitrary accepted symbolic trace, by
searching for an accepting run in Aϕ.
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Figure 6.7: Size distributions in the LTLPattern126 test set: on the x-axis is the size
of the formulas; on the y-axis the number of formulas.

Specification Pattern

Our main dataset is constructed from formulas following 55 LTL specification pat-
terns identified by the literature [53]. For example, the arbiter property ( p0) →
(p1 U p0), stating that if p0 is scheduled at some point in time, p1 is scheduled un-
til this point. The largest specification pattern is of size 40 consisting of 6 atomic
propositions. It has been shown that conjunctions of such patterns are challenging
for LTL satisfiability tools that rely on classical methods, such as automata construc-
tions [139]. They start coming to their limits when more than 8 pattern formulas
are conjoined. We decided to build our dataset in a similar way from these patterns
only to allow for a better comparison.

We conjoined random specification patterns with randomly chosen variables (from
a supply of 6 variables) until one of the following four conditions are met: 1) the
formula size succeeds 126, 2) more than 8 formulas would be conjoined, 3) our
automaton-based generator timed out (> 1s) while computing the solution trace, or
4) the formula would become unsatisfiable. In total, we generated 1664487 formula-
trace pairs in 24 hours on 20 CPUs. While generating, approximately 41% of the
instances ran into the first termination condition, 21% into the second, 37% into
the third and 1% into the fourth. We split this set into an 80% training set, a 10%
validation set, and a 10% test set. The size distribution of the dataset can be found
in Figure 6.7.

For studying how the Transformer performs on longer specification patterns, we
accumulated pattern formulas where spot timed out (> 60s) while searching for
a satisfying trace. We call this dataset LTLUnsolved254. We capped the maximum
length at 254, which is twice as large as the formulas the model saw during training.
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Figure 6.8: Size distributions in the LTLUnsolved254 test set: on the x-axis is the size
of the formulas; on the y-axis the number of formulas.

The size distribution of the generated formulas can be found in Figure 6.8.
In the following table, we illustrate the complexity of our training dataset with

two examples from the above described set LTLPattern126, where the subsequent
number of the notation of our datasets denotes the maximum size of a formula’s
syntax tree. The first line shows the LTL formula and the symbolic trace in mathe-
matical notation. The second line shows the input and output representation of the
Transformer (in Polish notation):

LTL formula satisfying symbolic trace

(a→ d)∧¬ f W f W¬ f W f W ¬ f (¬a ∧¬c ∧¬ f ∨¬c ∧ d ∧¬ f )ω

∧( c→¬c U(c ∧¬b W b W¬b W b W ¬b))
&&G>aFdW!fWfW!fWfG!f>FcU!c&cW!bWbW!bWbG!b {!a&!c&!f|!c&d&!f}
(b ∧¬a ∧ a→ c U a)∧ (a→ c)∧ ( b→¬b (¬a ∧ b ∧¬c ∧¬e ∧ f )(¬a ∧¬c
U(b ∧¬ f W f W¬ f W f W ¬ f ))∧ ( a→ (c ∧ (¬a U e) ∧¬e ∧¬ f )(¬a ∧¬c ∧¬e ∧ f )
→ (¬a U(e ∧ f )))U a)∧ c ∧ (a e→¬(¬e ∧ f ∧ (¬a ∧ c ∧¬e ∧¬ f )(¬a ∧¬e ∧¬ f )ω

(¬e U(¬e ∧ d)))U(e ∨ c))∧ ( ¬a ∨ (a ∧¬ f W d))∧ (e→ ¬c)
&&&&&&&G>&&b!aFaUcaG>aGc>FbU!b&bW!fWfW!fW &&&&!ab!c!ef;&&&!a!c!e!f;
fG!f>FaU>&cXU!aeXU!a&eFfaFcG>&aFeU!& &&&!a!c!ef;&&&!ac!e!f
&!efXU!e&!ed|ec|G!aF&aW!fdG>eG!c ;{&&!a!e!f}

Random Formulas

To show that the generalization properties of the Transformer are not specific to our
data generation, we also generated a dataset of random formulas. Our dataset of
random formulas consist of 1 million generated formulas and their solutions, i.e., a
satisfying symbolic trace. The number of different propositions is fixed to 5. Each
dataset is split into a training set of 800K formulas, a validation set of 100K formu-
las, and a test set of 100K formulas. All datasets are uniformly distributed in size,
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(a) Formula distribution by size. (b) Trace distribution by size.

Figure 6.9: Size distributions in the LTLRandom35 training set: on the x-axis is the
size of the formulas/traces; on the y-axis the number of formulas/traces.

apart from the lower-sized end due to the limited number of unique small formu-
las. The formula and trace distribution of the dataset LTLRandom35 can be found in
Figure 6.9. Note that we filtered out examples with traces larger than 62 (less than
0.05% of the original set).

To generate the formulas, we used the randltl tool of the spot framework,
which builds unique formulas in a specified size interval, following a supplied node
probability distribution. During the building process, the actual distribution occa-
sionally differs from the given distribution in order to meet the size constraints, e.g.,
by masking out all binary operators. The distribution between all k-ary nodes always
remains the same. To furthermore achieve a (quasi) uniform distribution in size,
we subsequently filtered the generated formulas. Our node distribution puts equal
weight on all operators ¬,∧, and U. Constants True and False are allowed with
2.5 times less probability than propositions.

In the following, we give three random examples from LTLRandom35 training set.
The first line shows the LTL formula and the symbolic trace in mathematical notation.
The second line shows the syntactic representation (in Polish notation):

LTL formula satisfying symbolic trace

((d U c)U d)∧ (b ∧¬(¬d U c)) true (b ∧¬c ∧¬d) (¬c ∧ d) d (true)ω

&XUUdcXXdX&b!U!dc 1;&&b!c!d;&!cd;d;{1}
¬ (( e ∧ (true U b)∧ c)U c) true (¬b ∧¬c) (¬b)ω

!XU&&XeU1bXcc 1;&!b!c;{!b}
¬((¬c ∧ d)U d) true (c ∨¬d) (¬d) (true)ω

X!U&!cdXd 1;|c!d;!d;{1}

6.2.2 Assignment Generation for Propositional Logic

To show that the generalization of the Transformer to the semantics of logics is not a
unique attribute of LTL, we also generated a dataset for propositional logic. A propo-
sitional formula consists of Boolean operators ∧ (and), ∨ (or), ¬ (not), and variables
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also called literals or propositions. We consider the derived operators ϕ1 → ϕ2 ≡
¬ϕ1 ∨ ϕ2 (implication), ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) (equivalence), and
ϕ1 ⊕ϕ2 ≡ ¬(ϕ1↔ ϕ2) (xor). Given a propositional Boolean formula ϕ, the satisfi-
ability problem asks if there exists a Boolean assignment Π : V 7→ B for every literal
in ϕ such that ϕ evaluates to true. For example, consider the following propositional
formula, given in conjunctive normal form (CNF): (x1∨x2∨¬x3)∧(¬x1∨x3). A possi-
ble satisfying assignment for this formula would be {(x1, true), (x2, false), (x3, true)}.
We allow a satisfying assignment to be partial, i.e., if the truth value of a propositions
can be arbitrary, it will be omitted. For example, {(x1, true), (x3, true)} would be a
satisfying partial assignment for the formula above. We define a minimal unsatisfi-
able core of an unsatisfiable formula ϕ, given in CNF, as an unsatisfiable subset of
clauses ϕcore of ϕ, such that every proper subset of clauses of ϕcore is still satisfiable.

We, again, generated 1 million random formulas. For the generation of propo-
sitional formulas, the specified node distribution puts equal weight on ∧, ∨, and ¬
operators and half as much weight on the derived operators↔ and ⊕ individually.
In contrast to previous work [189], which is restricted to formulas in CNF, we allow
an arbitrary formula structure and derived operators.

A satisfying assignment is represented as an alternating sequence of propositions
and truth values, given as 0 and 1. The sequence a0b1c0, for example, represents
the partial assignment {(a, false), (b, true), (c, false)}, meaning that the truth values of
propositions d and e can be chosen arbitrarily (note that we allow five propositions).
We used pyaiger [215], which builds on Glucose 4 [10] as its underlying SAT solver.
We construct the partial assignments with a standard method in SAT solving: We
query the SAT solver for a minimal unsatisfiable core of the negation of the formula.
To give the interested reader an idea of the level of difficulty of the dataset, the
following table shows three random examples from our training set PropRandom35.
The first line shows the formula and the assignment in mathematical notation. The
second line shows the syntactic representation (in Polish notation):

propositional formula satisfying partial assignment

((d ∧¬e)∧ (¬a ∨¬e))↔ ((¬⊕ (¬b↔¬e)) {(a, 0), (b, 0), (c, 1), (d, 1), (e, 0)}
∨((e⊕ (b ∧ d))⊕¬(¬c ∨ (¬a↔ e))))
<->&&d!e|!a!e|xor!b<->!b!exorxore&bd!|!c<->!ae a0b0c1d1e0
(c ∨ e)∨ (¬a↔¬b) {(c, 1)}
||ce<->!a!b c1
¬((b ∨ e)⊕ ((¬a ∨ (¬d↔¬e)) {(d, 1), (e, 1)}
∨(¬b ∨ (((¬a ∧ b)∧¬b)∧ d))))
!xor!be||!a<->!d!e!|!b&&&!ab!b!d d1e1

To test the Transformer on even more challenging formulas, we constructed a
dataset of CNF formulas using the generation script of [189] from their publicly
available implementation. A random CNF formula is built by adding clauses until
the addition of a further clause would lead to an unsatisfiable formula. We used the
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parameters pgeo = 0.9 and pk2 = 0.75 to generate formulas that contain up to 15
variables and have a maximum size of 250. We call this dataset PropCNF250.

6.3 Experimental Setup

We have implemented the Transformer architecture [214].1 Our implementation
processes the input and output sequences token-by-token. We trained on a single
GPU (NVIDIA P100 or V100). All training has been done with a dropout rate of 0.1
and early stopping on the validation set. Note that the embedding size will automat-
ically be floored to be divisible by the number of attention heads. The training of
the best models took up to 50 hours. For the output decoding, we utilized a beam
search [222], with a beam size of 3 and an α of 1.

Since the solution of a logical formula is not necessarily unique, we use two dif-
ferent measures of accuracy to evaluate the generalization to the semantics of the
logics: we distinguish between the syntactic accuracy, i.e., the percentage where the
Transformers prediction syntactically matches the output of our generator and the
semantic accuracy, i.e., the percentage where the Transformer produced a different
solution. We also differentiate between incorrect predictions and syntactically invalid
outputs which, in fact, happens only in 0.1% of the cases in LTLUnsolved254.

In general, our best performing models used 8 layers, 8 attention heads, and a
fully connected layer (FC) size of 1024. We used a batch size of 400 and trained for
450K steps (130 epochs) for our specification pattern dataset, and a batch size of
768 and trained for 50K steps (48 epochs) for our random formula dataset.

6.4 Experimental Results

In this section, we describe our experimental results. First, we show that a Trans-
former can indeed solve the task of providing a solution, i.e., a trace for a linear-time
temporal logical (LTL) formula. For this, we describe the results from training on the
dataset LTLPattern126 of specification patterns that are commonly used in the con-
text of verification. Furthermore, we provide training details, i.e., a hyperparameter
analysis of models trained on LTLRandom35 and the evolution of the syntactic and
semantic accuracy during training. Secondly, we show two generalization properties
that the Transformer evinces on logic reasoning tasks: 1) the generalization to larger
formulas (even so large that our data generator timed out) and 2) the generalization

1The code, our data sets, and data generators are available at https://github.com/
reactive-systems/deepltl and are part of the Python library ML2 (https://github.com/
reactive-systems/ml2).

https://github.com/reactive-systems/deepltl
https://github.com/reactive-systems/deepltl
https://github.com/reactive-systems/ml2
https://github.com/reactive-systems/ml2
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Figure 6.10: Overview of our main experimental results: the performance of our
best performing models on our different datasets. The percentage of a dark green
bar refers to the syntactic accuracy, the percentage of a light green bar to the semantic
accuracy without the syntactic accuracy, and the incorrect predictions are visualized
in orange.

to the semantics of the logic. We strengthen this observation by considering a differ-
ent dataset of random LTL formulas. Thirdly, we provide results for a model trained
on a different logic and with a different data generator. We thereby demonstrate that
the generalization behaviors of the Transformer are not specific to LTL and the LTL
solver implemented with spot that we used to generate the data. An overview of our
training results is displayed in Figure 6.10.

6.4.1 Solving Linear-time Temporal Logical Formulas

We trained a Transformer on specification of our data set LTLPattern126. Figure 6.1
in the introduction displays the performance of our best model on this dataset. We
observed a syntactic accuracy of 69.1% and a semantic accuracy of 96.8%. With this
experiment we can already deduce that it seems easier for the Transformer to learn
the underlying semantics of LTL than to learn the particularities of the generator.
Further we can see that as the formula length grows, the syntactic accuracy begins
to drop. However, that drop is much smaller in the semantic accuracy—the model
still mostly predicts correct traces for long formulas.

As a challenging benchmark, we tested our best performing model on
LTLUnsolved254. It predicted correct solutions in 83% of the cases, taking on av-
erage 15s on a single CPU. The syntactic accuracy is 0% as there was no output
produced by spot within the timeout. The results of the experiments are visualized
in Figure 6.11. Note that this does not mean that our Transformer models necessar-
ily outperform classical algorithms across the board. However, since verifying solu-
tions to LTL formulas is much easier than finding solutions (AC1(logDCFL) [130] vs
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Figure 6.11: Predictions of our best performing model, trained on LTLPattern126,
tested on 5704 specification patterns (LTLUnsolved254) for which spot timed out
(> 60s). Semantic accuracy is displayed in green; incorrect traces in orange; syntac-
tically invalid traces in red.

PSPACE), this experiment shows that the predictions of a deep neural network can
be a valuable extension to the verification tool box.

Table 6.1 shows the effect of the most significant parameters on the performance
of Transformers. The performance largely benefits from an increased number of lay-
ers, with 8 yielding the best results. Increasing the number further, even with much
more training time, did not result in better or even led to worse results. A slightly
less important role plays the number of heads and the dimension of the intermediate
fully-connected feed-forward networks (FC). While a certain FC size is important,
increasing it alone will not improve results. Changing the number of heads alone has
also almost no impact on performance. Increasing both simultaneously, however, will
result in a small gain. This seems reasonable, since more heads can provide more dis-
tinct information to the subsequent processing by the fully-connected feed-forward
network. Increasing the embeddings size from 128 to 256 very slightly improves
the syntactic accuracy. But likewise it also degrades the semantic accuracy, so we
therefore stuck with the former setting.

6.4.2 Generalization Properties

To prove that the generalization to the semantics is independent of the data gener-
ation, we also trained a model on a dataset of randomly generated formulas. The
unshaded part of Figure 6.12 displays the performance of our best model on the
LTLRandom35 dataset. The Transformers were solely trained on formulas of size less
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Embedding size Layers Heads FC size Batch Size Train Steps Syn. Acc. Sem. Acc.
128 3 4 512 512 45K 78.0% 97.1%
128 5 2 512 512 45K 80.4% 97.4%
128 5 4 256 512 45K 81.0% 97.4%
128 5 4 512 512 45K 82.0% 97.9%
128 5 4 1024 512 45K 80.3% 97.3%
128 5 6 1024 512 45K 81.8% 97.7%
128 5 8 512 512 45K 82.0% 97.8%
128 5 8 1024 512 45K 82.5% 97.9%
128 5 8 1500 512 45K 82.6% 97.8%
128 5 12 1024 512 45K 81.9% 97.5%
128 8 4 512 512 45K 83.2% 98.3%
128 8 8 1024 768 50K 83.8% 98.5%
128 10 4 512 512 75K 82.9% 97.6%
256 5 4 512 512 45K 82.3% 97.9%

Table 6.1: Syntactic accuracy and semantic accuracy of different Transformers, tested
on LTLRandom35: Layers refer to the size of the encoder and decoder stacks; Heads
refer to the number of attention heads; FC size refers to the size of the fully-connected
neural networks inside the encoder and decoders.

or equal to 35. We observe that in this range the exact syntactic accuracy decreases
when the formulas grow in size. The semantic accuracy, however, stays, again, high.
The model achieves a syntactic accuracy of 83.8% and a semantic accuracy of 98.5%
on LTLRandom35, i.e., in 14.7% of the cases, the Transformer deviates from our
automaton-based data generator. In Figure 6.13 we show the evolution of both the
syntactic accuracy and the semantic accuracy during the training process. Note the
significant difference right from the beginning. This demonstrates the importance
of a suitable performance measure when evaluating machine learning algorithms on
logical reasoning tasks.

To show that the generalization to larger formulas is independent from the data
generationmethod, we also tested howwell the Transformer generalizes to randomly
generated LTL formulas of a size it has never seen before. We used our model trained
on LTLRandom35 and observed the performance on LTLRandom50. The model pre-
serves the semantic generalization, displayed in the shaded part of Figure 6.12. It
outputs exact syntactic matches in 67.6% of the cases and achieves a semantic ac-
curacy of 92.2%. For the generalization to larger formulas we utilized a positional
encoding based on the tree representation of the formula [192]. The basic idea is to
encode the path through the syntax tree for each character. Since LTL has only unary
and binary operations, this is encoded by appending either [1,0], representing the
left child or [0, 1], representing the right child, in front of the encoding. When using
the standard positional encoding instead, the accuracy drops, as expected, signifi-
cantly. A visualization of this experiments can be found in Figure 6.14.
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syntactic accuracy
semantic accuracy

Figure 6.12: Syntactic and semantic accuracy of our best performing model (only
trained on LTLRandom35) on LTLRandom50. Dark green is syntactically correct; light
green is semantically correct, orange is incorrect.
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Figure 6.13: Syntactic accuracy (dark green) and semantic accuracy (light green) of
our best performing model, evaluated on a subset of 5K samples of LTLRandom35
per epoch.

In a further experiment, we tested the out-of-distribution (OOD) generalization
of the Transformer on the trace generation task. The Results of this experiment are
displayed in Table 6.2. We generated a new dataset LTLRandom126 to match the for-
mula sizes and the vocabulary of LTLPattern126. A model trained on LTLRandom126
achieves a semantic accuracy of 24.7% (and a syntactic accuracy of only 1.0%) when
tested on LTLPattern126. Vice versa, a model trained on LTLPattern126 achieves a
semantic accuracy of 38.5% (and a semantic accuracy of only 0.5%) when tested
on LTLRandom126. Testing the models OOD increases the gap between syntactic
and semantic correctness dramatically. This underlines that the models learned the
nature of the LTL semantics rather than the generator process. Note that the two
distributions are very different.

Following these observations, we also tested the performance of our models on
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syntactic accuracy
semantic accuracy

Figure 6.14: Performance of our best model (only trained on LTLRandom35) on
LTLRandom50 with a standard positional encoding.

other patterns from the literature. We observe a higher semantic accuracy for our
model trained on random formulas and a higher gap between semantic and syntactic
accuracy for our model trained on pattern formulas (see Table 6.2).

In a last experiment on LTL, we tested the performance of our models on hand-
crafted formulas.

The LTL formula (b U a)∧ (a U¬a) states that b has to hold along the trace until
a holds and a has to hold until a does not hold anymore. The automaton-based
generator suggests the trace (¬a ∧ b) a (true)ω, i.e., to first satisfy the second until
by immediately disallowing a. The satisfaction of the first until is then postponed
to the second position of the trace, which forces b to hold on the first position. The
Transformer, however, chooses the following more general trace a (¬a) (true)ω, by
satisfying the until operators in order (see Figure 6.15, right).

We especially observed that formulas with multiple until statements that describe
overlapping intervals were the most challenging. This is no surprise as these formulas
are the source of PSPACE-hardness of LTL.

Patterns Number of Patterns Trained on Syn. Acc. Sem. Acc.

dac [53] 55 LTLRandom126 49.1% 81.8%
eh [61] 11 LTLRandom126 81.8% 90.9%

hkrss [110] 49 LTLRandom126 71.4% 83.7%
p [162] 20 LTLRandom126 65.0% 90.0%

eh [61] 11 LTLPattern126 0.0% 36.4%
hkrss [110] 49 LTLPattern126 14.3% 49.0%
p [162] 20 LTLPattern126 10.0% 60.0%

Table 6.2: Syntactic and semantic accuracy for OOD tests on different pattern formula
data sets.
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Figure 6.15: Encoder self-attention values of one attention head for the example
propositional formula b∨¬(a∧d) in dataset PropRandom35 (left). Encoder-decoder
attention of the example LTL formula (b U a) ∧ (a U¬a) in dataset LTLRandom35
(right).

a U b ∧ a U¬b (a ∧¬b) (b) (true)ω

&UabUa!b &a!b;b;{1}

While the above formula can be solved by most models, when scaling this formula to
four overlapping until intervals, all of our models fail: For example, a model trained
on LTLRandom35 predicted the trace (a∧ b∧ c) (a∧¬b∧¬c) (b∧ c) (true)ω, which
does not satisfy the LTL formula.

(a U b ∧ c)∧ (a U¬b ∧ c)∧ (a U b ∧¬c)∧ (a U¬b ∧¬c) (a ∧ b ∧ c) (a ∧¬b ∧¬c) (b ∧ c) (true)ω

&&&Ua&bcUa&!bcUa&b!cUa&!b!c &&abc;&&a!b!c;&bc;1

6.4.3 Predicting Assignments for Propositional Logic

To show that the generalization to the semantic is not a specific property of LTL, we
trained a Transformer to solve the assignment generation problem for propositional
logic, which is a substantially different logical problem.

As a baseline for our generalization experiments on propositional logic, we trained
and tested a model with the following hyperparameter on PropRandom35:

Embedding size Layers Heads FC size Batch Size Train Steps Syn. Acc. Sem. Acc.
enc:128, dec:64 6 6 512 1024 50K 58.1% 96.5%

We observe a striking 38.4% gap between predictions that were syntactical
matches of our DPLL-based generator and correct predictions of the Transformer.
Only 3.5% of the time, the Transformer outputs an incorrect assignment. Note that
we allow the derived operators ⊕ and ↔ in these experiments, which succinctly
represent complicated logical constructs.

The formula b∨¬(a∧d) occurs in our dataset PropRandom35 and its correspond-
ing assignment is {(a, 0)}. The Transformer, however, outputs d0, i.e., it goes with
the assignment of setting d to false, which is also a correct solution. A visualization
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of this example can be found in Figure 6.15. When the formulas get larger, the solu-
tions where the Transformer differs from the DPLL algorithm accumulate. Consider,
for example, the formula ¬b ∨ (e ↔ b ∨ c ∨ ¬d) ∨ (c ∧ (b ⊕ (a ⊕ ¬d)) ⊕ (¬c ↔
d)∧ (a↔ (b⊕ (b⊕ e)))), which is also in the dataset PropRandom35. The generator
suggests the assignment {(a, 1), (c, 1), (d, 0)}. The Transformer, however, outputs e0,
i.e., the singleton assignment of setting e to false, which turns out to be a (very small)
solution as well.

We achieved stable training in this experiment by setting the decoder embedding
size to either 64 or even 32. Keeping the decoder embedding size at 128 led to very
unstable training.

We also tested whether the generalization to the semantics is preserved when
the Transformer encounters propositional formulas of a larger size than it ever saw
during training. We, again, utilized the tree positional encoding. When challenged
with formulas of size 35 to 50, our best performing model trained on PropRandom35
achieves a syntactic accuracy of 35.8% and a semantic accuracy of 86.1%. In com-
parison, without the tree positional encoding, the Transformer achieves a syntactic
match of only 29.0% and an overall accuracy of only 75.7%. Note that both positional
encodings work equally well when not considering larger formulas.

In a last experiment, we tested how the Transformer performs on more challeng-
ing propositional formulas in CNF. We thus trained a model on PropCNF250, where
it achieved a semantic accuracy of 65.1% and a syntactic accuracy of 56.6%. We
observe a slightly lower gap compared to our LTL experiments. The Transformer,
however, still deviates even on such formulas from the generator.

6.5 Summary

We trained a Transformer to predict solutions to linear-time temporal logical (LTL)
formulas. We observed that our trained models evince powerful generalization prop-
erties, namely, the generalization to the semantics of the logic, and the generalization
to larger formulas than seen during training. We showed that these generalizations
do not depend on the underlying logical problem nor on the data generator. Regard-
ing the performance of the trained models, we observed that they can compete with
classical algorithms for generating solutions to LTL formulas. We built a test set that
contained only formulas that were generated out of practical verification patterns,
on which even our data generator timed out. Our best performing model, although
it was trained on much smaller formulas, predicts correct traces 83% of the time.



Chapter 7

Neural Circuit Synthesis from
Specification Patterns

The circuit synthesis problem for linear-time temporal logic (LTL) is the problem to
construct a circuit implementation automatically from the LTL specification. Efficient
synthesis tools for LTL would simplify the hardware design process significantly. A
hardware designer could focus on specifying what the circuit is supposed to com-
pute, instead of implementing how the computation is done. LTL synthesis proce-
dures, however, have to invoke involved reasoning engines, which often turn out to
be infeasible when facing real-world problem instances. Much research has been
conducted to push this form of hardware construction process closer to practice (see,
for example, the successful synthesis of the AMBA protocol [20]). The high computa-
tional complexity of the general problem (2-EXPTIME-complete [166]), however, is
so far a barrier that seems insurmountable with classical, e.g., automaton-based, ap-
proaches. Recent successful applications of machine learning for logical tasks, such as
SAT solving [188, 189], higher-order theorem proving [159, 13], and the LTL trace
generation problem (see Chapter 6) encourage new approaches to the LTL synthesis
problem using machine learning. Similar to the success of machine learning for pro-
gram synthesis, e.g., [160, 100, 176], machine learning approaches might open a lot
of possibilities in hardware synthesis. For example, secondary design goals, which
cannot be easily formalized, might be incorporated into the process using natural
language. Applying machine learning to the area of hardware synthesis, however,
suffers from a severe lack of sufficient amounts of training data.

In this chapter, we build on the observation that deep neural networks generalize
to the semantics of temporal logics. We consider a method to generate large amounts
of additional training data, i.e., pairs of specifications and circuits implementing
them. We show that hierarchical Transformers [141] can be trained on the circuit
synthesis problem using the generated data and that the models can solve a signifi-
cant portion of problems from the annual synthesis competition (SYNTCOMP) [116].

111
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(assumptions)
( (¬(i0)))
( ((¬(o2))∨(((¬(i4))∧(¬(i1)))

U((¬(i4))∧(i1)))))
→
(guarantees:)
((i0)→( ((¬(i0))∨(o4))))
((i2)→( (o0)))
((i1)→( (o0)))
( ( (o4)))→( (( (i4))∧( (i1))))
((i4)→( (o3)))
( ((¬(o4))∨(¬(o2))))
((o1)→( ((i1)R(((i1)
→(o2))∧((¬(i1))→(o0))))))
(( (o3))→(i3))

Figure 7.1: A specification in our test set, consisting of 2 assumption patterns and 8
guarantee patterns (left). A circuit, predicted by a hierarchical Transformer, satisfy-
ing the specification (right).

In practice, logical hardware specifications follow specific design patterns [53]. To
cope with the data scarcity of this problem, we propose a method to use specifica-
tion patterns, from which data for successful training can be derived. For example, a
common LTL synthesis pattern looks as follows: (r→ g). The formula describes
a response property, stating that at every point in time ( ), a request r must be even-
tually ( ) followed by a grant g. We obtain these patterns from SYNTCOMP. We
mined 2099 specification patterns from 346 benchmarks. By combining these pat-
terns (see Section 7.1.2 for more details), we obtained 250000 specifications and
used classical synthesis tools [67, 152] to compute circuits satisfying the specifica-
tions. Figure 7.1 shows an example held-out specification constructed in this fashion
and a circuit predicted by one of our models (details on the data representation can
be found in Section 7.1). When checking, the predicted circuit indeed satisfies the
specification.

To train a machine learning model on the LTL synthesis task, we represent the
decomposed specifications and circuits as sequences and use hierarchical Transform-
ers [141]. We show that a hierarchical Transformer can successfully be trained on
the LTL synthesis task using our data generation method. We show that many of the
model’s predictions that differ from the circuits in our dataset satisfy the specifica-
tions when verifying the predictions1, i.e., the model constructs a different, yet cor-

1Verifying the solutions, i.e., model-checking, is an easier problem than synthesis (PSPACE [196]
vs 2-EXPTIME [166]) and can typically be done in a fraction of the time needed to synthesize the
circuits classically.
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rect solution. When using a beam search, models achieve an accuracy of up to 78.7%
on our synthetic test data and up to 67.6% on the original formulas from SYNTCOMP.
The Transformer can even solve out-of-distribution formulas, taken from a recent
case study [5], i.e., formulas that were not used for the specification pattern mining.
Furthermore, the models can solve generated test instances on which classical LTL
synthesis tools timed out. In practice, it is essential to handle both realizable (i.e.,
when a hardware implementation exists) and unrealizable (i.e., when no hardware
implementation exists) specifications. We demonstrate that our approach achieves
similar results on both realizable and unrealizable specifications.

Results in this chapter are based on “Neural Circuit Synthesis from Specification
Patterns” [182], which was joint work with Frederik Schmitt, Markus N. Rabe, and
Bernd Finkbeiner. The chapter is structured as follows. The data representation
and generation process is described in Section 7.1. The experimental setup and the
experimental evaluation are presented in Section 7.2 and Section 7.3, respectively.
We provide a summary in Section 7.4.

7.1 Datasets

In the following, we first explain the circuit representation we use in this chapter. We
then describe our dataset, which is mined from specification patterns from the LTL
track of SYNTCOMP 2020 [118].

7.1.1 And-Inverter Graphs

The AIGER format [18] describes circuits as and-inverter graphs. It is widely used,
especially for benchmarks and competitions in reactive synthesis. We base the fol-
lowing explanation on the explanation in the AIGER format report [18]. First, the
header of an AIGER file defines the following:

• M : the maximum variable index,

• I : the number of inputs,

• L: the number of latches,

• O: the number of outputs, and

• A: the number of AND gates.

Variables and literals are used for defining these. Literals are constants or signed
variables represented by unsigned integers. To obtain a literal from a variable, the
literal must be divided by 2. The literal modulo 2 defines if it corresponds to the
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negated or unnegated variable, respectively. The constant FALSE is represented by
0 and the constraint TRUE by 1. After the header, the next I lines define the inputs,
which are defined as unnegated literals. The next L lines define the latches, which are
two literals separated by a space character. The first literal denotes the current state
of the latch and the second is the next state of the latch. The next O lines define the
outputs, which can be arbitrary literals. The last A lines define the AND gates, which
are three literals separated by a space character. The first integer must be even and
represents the literal of the left-hand side (LHS). The two other integers represent the
literals of the right-hand side (RHS) of the AND gate. After the necessary definitions,
an optional symbol table and comments may follow. Symbols can be attached to
inputs, latches, and outputs.

In the following, we repeat our small example from previous chapters. The inputs
r0, r1 and outputs g0, g1 represent requests and grants of an arbiter. The following
LTL formula specifies an arbiter:

¬(g0 ∧ g1)
∧ (r0→ g0)
∧ (r1→ g1) .

The following AIGER representation (right) is a correct prediction for this specifica-
tion of our hierarchical Transformer model. The visual representation of the circuit
is given on the left.

aag 3 2 1 2 0 header
2 r0

4 r1

6 7 latch
6 g0

7 g1

The triangles represent inputs and outputs, the rectangles represent variables,
the diamond-shaped variables represent latches and the black dots represent inverter
(NOT-gates). The circuit implementation ignores the inputs I0 and I1, which repre-
sent both requests r0 and r1 (except for unnecessarily assigning them to variables 2
and 4). The circuit implementation satisfies the arbiter specification above by alter-
nating indefinitely between both outputs O0 and O1, which represent both grants
g0 and g1, independently of the given inputs. This is, in fact, the smallest solution
satisfying the simple arbiter specification above. The hierarchical Transformer also
predicts correct circuit implementations for more involved specifications where the
circuit has to react to inputs (see, for example, Section 7.3 for an arbiter that priori-
tizes a certain request).
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{
" semant ics " : " mealy " ,
" input s " : [

" r_m " ,
" r_0 "

] ,
" outputs " : [

"g_m" ,
" g_0 "

] ,
" assumptions " : [

" (G (F ( ! (r_m ) ) ) ) "
] ,
" guarantees " : [

" ( t rue ) " ,
" (G ( ( ! (g_m)) || ( ! ( g_0 ) ) ) ) " ,
" (G (( r_0 ) −> (F (g_0 ) ) ) ) " ,
" (G (( r_m) −> (X ( ( ! ( g_0 )) U (g_m) ) ) ) ) "

]
}

Figure 7.2: Specification of a prioritized arbiter in BoSy input format that is part of
the 2020 SYNTCOMP benchmarks [118].

7.1.2 Data Generation

In the following section, we describe our data generation method. The basis of our
data set are benchmarks from the LTL track of the annual reactive synthesis competi-
tion (SYNTCOMP 2020 [118]). We collected 346 benchmarks in the Temporal Logic
Synthesis Format (TLSF) [117]. We translated the TLSF specifications to the BoSy
input format [67] with SyFCo [117]. A specification in the BoSy input format consists
of a list of assumptions and a list of guarantees. An assumption poses a restriction
on the environment, and a guarantee defines how the system reacts to inputs. From
these specification patterns, we generate larger specifications by conjoining assump-
tion patterns to a specification ϕA and by conjoining guarantee patterns to a specifi-
cation ϕG. The implication ϕA → ϕG forms the final specification of the circuit. An
example of the format for a prioritized arbiter specification is shown in Figure 7.2.

We mined assumptions and guarantees of 346 SYNTCOMP benchmarks. We fil-
tered LTL formulas with more than five inputs, more than five outputs, or an abstract
syntax tree with size greater than 25 out. As a result, we constructed 157 assumption
patterns and 1942 guarantee patterns. In a final step, we renamed inputs and out-
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puts with a uniform random choice from input and output atomic propositions. The
table below, shows three random examples of assumption patterns and three random
examples of guarantee patterns.

assumption patterns guarantee patterns
(i0∧ (¬o0∧¬o1)→ i0) (o2 U i3)∨ o2

i0 (i0→ (o3∨ i3∨ (o3 ∨ i3 ∨ (o3∨ i3))))
(¬i0∨ o3∨ o2∨ o1∨ o0∨ i0) (¬o2∨¬o4)

aag 11 5 1 5
5
2
4
6
8
10
12 1
1
0
14
16
22
14 12 10
16 13 10
18 4 2
20 19 11
22 21 13

Figure 7.3: AIGER repre-
sentation of the circuit in
Figure 7.1.

We constructed our data set out of these specification
patterns as follows. We generated pairs of LTL specifica-
tions in the BoSy format and circuits implementing them.
The specifications are constructed by alternating between
sampling guarantees until the specification becomes un-
realizable and sampling assumptions until the specifica-
tion becomes realizable. Finding a suitable assumption
is tried 5 times. Furthermore, we implemented stopping
criteria that limit the maximal number of guarantees to
10, the maximal number of assumptions to 3, and the
runtime for the synthesis tool to 120 seconds. If the re-
sulting specification is unrealizable we also consider its
realizable predecessor for our dataset. Apart from that
intermediate specifications are discarded. To synthesize
specifications, we use the LTL synthesis tool Strix [152].
Systems are represented in the AIGER format. For unre-
alizable specifications we provide an AIGER circuit repre-
senting the winning strategy for the environment, i.e., a
counter strategy showing that the specification is unreal-
izable. To make sure that the data fits into our models,
we additionally filter the circuits as follows. We filter cir-
cuits exceeding a maximum variable index of 50 and circuits with k AND gates if the
number of circuits in the dataset with k AND gates exceeds 20% of the dataset size.

With our data generation method, we constructed a data set with 250000
specification-circuit-pairs. The data set is split into 80% training samples, 10% vali-
dation samples, and 10% test samples. The benefit of this data generation method is
that we can generate large amounts of specifications from practical, thus meaningful,
patterns. The number of underlying patterns can be comparatively small, as long as
they contain the main ideas of the domain at hand (such as the SYNTCOMP bench-
marks for reactive synthesis). To, furthermore, be able to predict unrealizability,
and, thus, counter strategies, we also included unrealizable specifications. They are
constructed through the first stopping criteria. For balance, we generated the data
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Figure 7.4: A hierarchical Transformer (HAT) [141] first encodes assumption and
guarantee patterns in isolation, before encoding them globally.

set such that half of the dataset consists of unrealizable specifications. An example
instance of the data set is shown in Figure 7.1 and Figure 7.3. Figure 7.1 depicts
the specification and the visualization of the circuit and Figure 7.3 shows the AIGER
representation of this circuit.

7.2 Experimental Setup

We implemented a hierarchical Transformer (HAT) [141] and augment it with a tree-
positional encoding [192].2 In contrast to a baseline Transformer, the encoder has
two types of layers, local and global layers.

The local layers encode individual assumptions and guarantees, and only the
global layers can combine the representations of tokens across all assumptions and
all guarantees. With this hierarchical encoding, we gain approximately 10% of accu-
racy across all models compared to using a standard Transformer (see Figure 7.5).
Figure 7.4 sketches the use of local and global layers in the encoder for our setting.

We trained hierarchical Transformers with model dimension 256. The dimension
of the feed-forward networks was set to 1024. The encoder employs 4 local layers
followed by 4 global layers, and the decoder employs 8 (unmodified) layers. All our
attention layers use 4 attention heads. We trained with a batch size of 256 for 30000

2The code, our data sets, and data generators are part of the Python library ML2 (https://
github.com/reactive-systems/ml2).

https://github.com/reactive-systems/ml2
https://github.com/reactive-systems/ml2
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Figure 7.5: Accuracy per sequence over the training course shown for the training
split (red) and validation split (light red) when training the hierarchical Transformer
and for the training split (green) and the validation split (light green) when training
the standard Transformer.

steps (∼ 39 epochs). We saved the model with the best accuracy per sequence on the
validation data. We trained on an NVIDIA DGX A100 system for around 10 hours.

7.2.1 Training Details

The Transformer architecture (see Section 6.1) is a sequence-to-sequence model
trained to predict a sequence of output tokens provided a sequence of input to-
kens. Similarly, we provide multiple sequences of input tokens to an hierarchical
Transformer. Assumptions and guarantees are LTL formulas and can thus be directly
represented as sequences of tokens with each atomic proposition, Boolean operator,
temporal operator, and Boolean constant being a separate token. We omit paren-
theses because we add, as for the trace generation problem in the previous chapter,
a tree-positional encoding [192] that identifies each token with its position in the
abstract syntax tree of the LTL formula. To distinguish assumptions from guarantees
in the global step we prepend assumptions with a special assumption token. Circuits
are in AIGER format that we represent as a sequence of tokens by representing each
digit with a corresponding token and replacing each newline character with a special
new line token. Since all circuits in our dataset have the same inputs and outputs
we can omit the header and the symbol table when tokenizing an AIGER circuit. Ad-
ditionally, we include a special realizability token at the beginning of the sequence
indicating whether a specification is realizable.

We used the Adam optimizer [125] with β1 = 0.9, β2 = 0.98 and ε= 10−9 and a
learning rate schedule as proposed in [214]. The learning rate is increased linearly
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for the warmup steps. The learning rate then decreases proportionally to the inverse
square root of the step.

7.2.2 Performance Measures

Similar to the experiments on the trace generation problem of LTL in Chapter 6, we
have to measure the performance semantically. For a given realizable LTL specifi-
cation, there are infinitely many circuits implementing them. Thus, more than one
prediciton of the Transformer might be correct. We use nuXmv [34] to check the pre-
dictions of our models. As in Chapter 6, we, thus, distinguish between the syntactic
and semantic accuracy. The percentage of the Transformer’s predictions that satisfy
the specification is called semantic accuracy. In the next section, we show that even
for the LTL synthesis problem, which is “harder” compared to the trace generation
problem, the Transformer model still comes up with own solutions.

7.3 Experiments

In this section, we report on a variety of experiments that analyze the performance
of hierarchical Transformers on the circuit synthesis task and their generalization be-
havior. In the following, we will first analyze the overall performance of the models
and see that they often construct different solutions, yet correct ones, than the classi-
cal tool we generated the training data with. For this, we consider four different test
sets and group results on the size of the predicted circuits. Secondly, we compare
the training with our data mining method against the ground truth, i.e., against a
training of a hierarchical Transformer on the raw SYNTCOMP benchmarks. Thirdly,
we compare the models performance on realizable and unrealizable specifications.
Lastly, we will take a deeper look into one of the specifications, which, compared to
the example in Section 7.1, is an arbiter that prioritizes a certain request.

Dataset Beam Size 1 Beam Size 4 Beam Size 8 Beam Size 16

Testset 53.1 (31.0) 69.5 (39.9) 74.3 (42.6) 78.7 (45.8)
SYNTCOMP 51.7 60.7 63.4 67.6
Timeouts 12.6 20.8 26.1 31.1
SmartHome 19.0 33.3 33.3 47.6

Table 7.1: Accuracy reported on test data, SYNTCOMP benchmarks, timeouts, and
smart home benchmarks for different beam sizes. For the test data we show the
syntactic accuracy in parenthesis.
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Figure 7.6: Accuracy with respect to the size of the synthesized circuits measured by
the number of AND gates for test set (top, left), SYNTCOMP (top, right), timeouts
(bottom, left), and smart home benchmarks (bottom, right). Number of AND gates
are binned into intervals of size 5.

Overall results. We tested our models on four different datasets. A Testset con-
sisting of held-out instances generated by our data mining method, the SYNTCOMP
set, consisting of the synthesis competition benchmarks, a set Timeouts that con-
sists of generated specifications on which Strix [152], the classical synthesis tool that
we used for generating the circuits, timed out (< 120s), and an out-of-distribution
(OOD) benchmark set SmartHome consisting of specifications for smart homes [5].
We consistently observed in all experiments that the beam search significantly in-
creases the accuracy. When analyzing the results we found that the beam search
often yields several correct circuits. For a beam size of 16 and the Testset, on
average 5 of the 16 AIGER circuits satisfy the specification.

In our Testset (see Table 7.1), we observe in many cases that the circuit pre-
diction of our model is different from the circuit the tool would synthesize. Since we
already showed this gap between syntactic and semantic accuracy in the previous
chapter, we concentrate on the semantic accuracy, i.e., the total accuracy. We found
no significant decrease or increase in average circuit size. In total, the model was
able to solve 78.7% of the held-out generated test instances with a beam size of 16.
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Figure 7.7: Accuracy per sequence over the training course shown for the training
split (red) and validation split (light red) of the synthetic dataset and the training
split and the validation split (not visible, ∼ 0% accuracy per sequence) of the raw
SYNTCOMP dataset: orange, gray, and blue for a batch size of 256, 64, and 8, re-
spectively.

While the training data is based on specification patterns extracted from SYNT-
COMP benchmarks it is unlikely that our data generation process reassembles SYNT-
COMP benchmarks. This allows to evaluate the model on them. After filtering out
benchmarks with more than 5 inputs/outputs, more than 12 properties, and proper-
ties of size greater than 25, the model achieved an accuracy of 67.6% for the resulting
145 benchmarks using a beam size of 16.

For a timed out specification it is not known whether it is realizable or unrealiz-
able. The model achieves an accuracy of 31.1% for beam size 16. This demonstrates
that our approach can yield performance gains in practice. To highlight the capabili-
ties of our model we display one of the largest correctly predicted circuit for a timed
out specification in Figure 7.8.

We constructed the SmartHome set with the same restriction as for the SYNTCOMP
set. The recently published benchmark set consists of specifications for synthesizing
smart home applications [5]. The hierarchical Transformer is able to solve 47.6% of
the provided instances. When compared to the full benchmark (i.e., without the size
restrictions), the model solved 11.1% of the formulas. Note that this benchmark set
was not used to mine specifications from and the benchmarks include instances with
larger assumptions and guarantees than seen during training.

We also analyzed the performance of the model depending on the size of the
predicted circuit. Results are shown in Figure 7.6. As expected, for larger circuit
implementations, themodel accuracy drops. The size distribution of the training data
resembles the size distribution of the test set (top left in Figure 7.6 and Figure 7.10).
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Figure 7.8: One of the largest circuit that satisfies a specification on which the clas-
sical tool times out.
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Figure 7.9: The specification (left), the predicted AIGER circuit (middle) and the
visualization of the circuit (right) for a prioritizing arbiter.

Note that the model has seen a significantly lower percentage of large circuits during
training.

Training on raw SYNTCOMP benchmarks. We also provide a baseline experi-
ment. Figure 7.7 shows that our data generation methods enables a stable training
while (not surprisingly) training only on the raw SYNTCOMP benchmarks fails.

Unrealizabile Specifications. The training data contains both realizable and un-
realizable specifications. In Table 7.2 we analyze the accuracy for realizable and
unrealizable specifications separately on our test data. While the syntactic accuracy
is higher for realizable specifications, in terms of the semantic accuracy the model
solves unrealizable specifications slightly more accurately. Further, we found for a
beam size of 1 that the Transformer predicts the correct realizability token for 91.4%
of the specifications from the test data.

Beam Size 1 Beam Size 4 Beam Size 8 Beam Size 16

Realizable 50.8 (39.0) 64.3 (48.0) 67.5 (50.0) 70.7 (52.6)
Unrealizable 55.4 (23.0) 74.6 (31.9) 81.0 (35.2) 86.7 (39.0)

Table 7.2: Accuracy on Testset reported separately for realizable and unrealizable
specifications. For different beam sizes we report the semantic accuracy and the
syntactic accuracy in parenthesis.
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Figure 7.10: Distribution of maximal variable index, number of latches, and number
of AND gates in the dataset.

Prioritizing arbiter. Building on the example of Section 7.1, we show that the
model can handle more interesting, real-world specifications. Figure 7.9 shows the
specification, AIGER file, and the circuit visualization of an arbiter that prioritizes
one of the requests whenever access is requested by both processes at the same time.
This means that the circuit implementation can no longer ignore the input, by simply
alternating between the different grants, as for the example in Section 7.1.

Conclusion to Experimental Results. Our experimental results show that the hi-
erarchical Transformer can be more than a valuable addition to the LTL synthesis
toolbox. The results do not only encourage the implementation of Transformer mod-
els in formal method tools, but also provide a method for constructing hardware
directly out of specifications. For example, one could use a Transformer model as
an end-to-end heuristic by simply verifying the predictions. Experimental results
suggest that the Transformer can be especially useful for predicting unrealizability.

7.4 Summary

We proposed a method to address the lack of data for training a neural network
on the task of synthesizing circuits out of LTL specifications. We mine specification
patterns from the annual reactive synthesis competition and generate new formulas
by combining multiple specification patterns. We showed that this dataset can be
used to successfully train hierarchical Transformers on the LTL synthesis problem for
specifications composed of specification patterns. We also showed that the models
generalize to unseen specifications, including specifications that are both realizable
and unrealizable and specifications that cannot be solved by a classical synthesis tool
within a time limit of 120 seconds. Furthermore, we performed an out-of-distribution
test on a recently added benchmark set on synthesis problems for smart homes. The
data generation method proposed in this chapter already enables the training of ma-
chine learning models for replacing classical heuristics in LTL synthesis tools.
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Conclusion

In this thesis, we studied logical and deep learning methods for the temporal rea-
soning about reactive systems. We first studied temporal hyperproperties expressed
in a hyperlogic. We considered purely logical methods, i.e., satisfiability, realizabil-
ity, and enforcement of temporal hyperproperties. We provided solutions to these
problems for highly expressive hyperlogics. Secondly, towards coping with the high
computational cost of these problems, we trained a neural network on the trace and
circuit generation task for the baseline temporal logic (LTL). We showed that a neu-
ral network could solve challenging formal methods problems, such as constructing
a circuit out of an LTL specification, end-to-end. In the following sections, we sum-
marize the results of this thesis before concluding.

8.1 Part 1: Logical Methods for Temporal Reasoning

In the first part of this thesis, we identified decidable fragments of the satisfiability
and realizability problem of expressive hyperlogics. On the linear-time spectrum,
we studied HyperQPTL, a temporal logic for ω-regular hyperproperties. On the
branching-time spectrum, we studied HyperCTL∗, a temporal logic for branching-
time hyperproperties. Both logics are more expressive than the baseline hyperlogic
HyperLTL. As an application of the satisfiability and realizability problem of hyper-
properties, we studied the enforcement problem of temporal hyperproperties. We
provided algorithms for enforcing HyperLTL specifications in a reactive black-box
system. Experimental results showed that enforcing hyperproperties at runtime is
feasible, and the bottleneck is the a prio solving of the parity game.

With the results of Part I of this thesis, we determined the borders for which
logical methods for temporal hyperproperties remain decidable in theory and feasible
in practice. The results provide a foundational understanding of the hierarchy of
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hyperlogics. The presented algorithms and decision procedures lay the foundation
for practical tools extending the toolkit for the automated analysis of hyperproperties.

8.2 Part 2: Deep Learning Methods for Temporal Rea-
soning

In the second part of this thesis, we trained a Transformer, a deep neural network
architecture, on the trace generation and realizability problem of linear-time tem-
poral logic (LTL). With our data generation method, which constructs specifications
and their solutions (traces or circuits) from specification patterns, we showed that
the Transformer generalizes to the semantics of the temporal logic. Our experiments
showed that these generalizations are also preserved when considering larger speci-
fications than seen during training. The machine learning models were also capable
of providing solutions to instances where classical solvers timed out. Overall, we
provided the first end-to-end supervised learning approach for the trace generation
and the circuit synthesis problem of LTL.

The results of Part II of this thesis suggest that deep learning can already augment
combinatorial approaches in automatic verification and the broader formal methods
community. With these results, we can, for example, derive novel algorithms for
LTL synthesis that first query a Transformer for circuit predictions. One of the main
benefits of the approach to learn from LTL specifications is that the predictions can
be checked comparatively easy. This enables the development of hybrid algorithms:
Classical methods can serve as a fallback, check partial solutions guiding the Trans-
former, or verify predictions, e.g., in a reinforcement loop. This approach, however,
also constitutes new challenges, such as the acquisition of large amounts of data.

8.3 Concluding Remarks

Reactive systems are increasingly linked through the Internet and, additionally, con-
stantly grow in size. The potential that arises from studying temporal logical reason-
ing under these circumstances is immense: Treating privacy and security require-
ments equally important as classical functional requirements will be essential in the
future. Furthermore, deep learning techniques have proven themselves to provide
significant efficiency gains for many applications. Deep learning for temporal log-
ics, thus, holds the promise to empower researchers in the automated reasoning and
formal methods communities to make bigger jumps in developing new automated
verification methods.
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In addition to the contributions that deep learning brings to formal methods, deep
learning techniques, and artificial intelligence (AI) in general, could also benefit from
formal methods techniques. Formal specification languages serve as a link between
requirements in natural language and formal specifications, which can be utilized for
automated reasoning. Understanding and reasoning on natural language are crucial
towards artificial general intelligence (AGI). A formal specification language, such as
a temporal logic, could also serve as a link to natural language in the context of AI
research. The benefit of this intermediate step is the ability to verify predictions of the
neural network automatically. Automatically verifiable predictions also significantly
increase interpretability towards more explainable AI (XAI). Thus, further studies on
machine learning techniques for formal (temporal) specification languages could be
a worthwhile step towards these goals.
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