
 

 

 

  

 

A Framework for an Adaptive Early 

Warning and Response System for 

Insider Privacy Breaches 
 

 

 

PhD Thesis 

 

Yasser M. Almajed 

 

This thesis is submitted in partial fulfilment of the requirements 

for the degree of Doctor of Philosophy 

 

 

 

 

 

School of Computer Science and Informatics 

De Montfort University 

United Kingdom 

 

February, 2015 



 

I 

 

Abstract 

Organisations such as governments and healthcare bodies are increasingly responsible 

for managing large amounts of personal information, and the increasing complexity of 

modern information systems is causing growing concerns about the protection of these 

assets from insider threats. Insider threats are very difficult to handle, because the 

insiders have direct access to information and are trusted by their organisations. The 

nature of insider privacy breaches varies with the organisation’s acceptable usage policy 

and the attributes of an insider. However, the level of risk that insiders pose depends on 

insider breach scenarios including their access patterns and contextual information, such 

as timing of access. Protection from insider threats is a newly emerging research area, 

and thus, only few approaches are available that systemise the continuous monitoring of 

dynamic insider usage characteristics and adaptation depending on the level of risk. The 

aim of this research is to develop a formal framework for an adaptive early warning and 

response system for insider privacy breaches within dynamic software systems. This 

framework will allow the specification of multiple policies at different risk levels, 

depending on event patterns, timing constraints, and the enforcement of adaptive 

response actions, to interrupt insider activity. 

 

Our framework is based on Usage Control (UCON), a comprehensive model 

that controls previous, ongoing, and subsequent resource usage. We extend UCON to 

include interrupt policy decisions, in which multiple policy decisions can be expressed 

at different risk levels. In particular, interrupt policy decisions can be dynamically 

adapted upon the occurrence of an event or over time. We propose a computational 

model that represents the concurrent behaviour of an adaptive early warning and 

response system in the form of statechart. In addition, we propose a Privacy Breach 

Specification Language (PBSL) based on this computational model, in which event 

patterns, timing constraints, and the triggered early warning level are expressed in the 

form of policy rules. The main features of PBSL are its expressiveness, simplicity, 

practicality, and formal semantics. The formal semantics of the PBSL, together with a 

model of the mechanisms enforcing the policies, is given in an operational style. 



 

II 

 

Enforcement mechanisms, which are defined by the outcomes of the policy rules, 

influence the system state by mutually interacting between the policy rules and the 

system behaviour. We demonstrate the use of this PBSL with a case study from the e-

government domain that includes some real-world insider breach scenarios. The formal 

framework utilises a tool that supports the animation of the enforcement and policy 

models. This tool also supports the model checking used to formally verify the safety 

and progress properties of the system over the policy and the enforcement 

specifications. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

  



 

III 

 

 

Declaration 
 

 

The work described in this thesis is original work undertaken by the author for the 

degree of Doctor of Philosophy and no part of this material has been submitted for the 

award of any other qualification. 

 

Yasser Almajed 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

IV 

 

Acknowledgements 

 

In the name of Allah, the Entirely Merciful, the Especially Merciful. First and foremost, 

all praise to Allah who has given me the strength and bounty to complete this thesis. 

 

This research work would not have been possible without the support of a 

number of people. I wish to express my gratitude to Dr. Helge Janicke for his expert 

guidance, constructive criticism, and critical comments. Also, I wish to thank Dr. Ali 

Al-Bayatti who was helpful and provided his invaluable assistance, understanding, and 

motivation. I also want to thank Dr. Antonio Cau for his technical suggestions and 

careful reading to improve this thesis. Additionally, I am grateful to Professor Hussein 

Zedan for the insightful discussion and support in the preparation of the research 

project. Also, my thanks go to past and present colleagues at the department for the 

friendly working atmosphere. 

 

I would express my deepest thanks to my parents for their prayers, love, and 

encouragement throughout my studies. 

 

Last but not least, I am greatly indebted to my wife and my children for their 

love, patience, and support over the years of PhD study.  

 

 

 

 



TABLE OF CONTENTS 

V 

 

Table of Contents 

Abstract ....................................................................................................................... I 

Acknowledgements .................................................................................................. IV 

Table of Contents ..................................................................................................... V 

List of Tables ........................................................................................................... IX 

List of Figures ........................................................................................................... X 

List of Abbreviations .............................................................................................. XI 

Chapter 1: Introduction ......................................................................................... 11 

1.1 Introduction and Motivation ................................................................... 12 

1.2 Problem Statement and Research Questions ........................................... 15 

1.3 Original Contributions ............................................................................ 18 

1.4 Research Methodology............................................................................ 19 

1.5 Thesis Outline ......................................................................................... 21 

Chapter 2: Background and Related Work ......................................................... 23 

2.1 Introduction ............................................................................................. 24 

2.2 Nature of Insider Breach Problem........................................................... 24 

2.2.1 Definitions of Insider and ‘Insiderness’ ......................................... 25 

2.2.2 Categories of Insiders ..................................................................... 28 

2.2.3 Types of Insider Breaches .............................................................. 28 

2.2.3.1 Insider IT Sabotage ......................................................... 29 

2.2.3.2 Insider Theft of Intellectual property (Espionage) .......... 29 

2.2.3.3 Insider Fraud .................................................................... 29 

2.2.3.4 Insider Privacy Breach .................................................... 30 

2.2.3.4.1 Categories of Insider Privacy Breach Scenarios ......................... 32 

2.2.3.4.2 Facts and Cases about Insider Privacy Breaches ........................ 32 

2.3 Existing Countermeasures against Insider Breaches............................... 35 

2.4 Usage Control ......................................................................................... 38 

2.5 Insider Breach Problem and UCON ........................................................ 42 

2.6 Policy Based Management ...................................................................... 43 

2.7 Summary ................................................................................................. 45 



TABLE OF CONTENTS 

VI 

 

 

Chapter 3: Adaptive Early Warning and Response System Architecture and 

Computational Model .................................................................................... 46 

3.1 Introduction ............................................................................................. 47 

3.2 Architecture ............................................................................................. 48 

3.2.1 Usage Decision............................................................................... 48 

3.2.2 Interrupt Policy Decisions .............................................................. 51 

3.2.2.1 Early warning levels ........................................................ 51 

3.2.2.2 Interrupt Response Actions ............................................. 53 

Complex Response Actions .................................................................... 55 

3.3 Computational Model ............................................................................. 56 

3.3.1 User model ..................................................................................... 60 

3.3.2 AEWRC model .............................................................................. 60 

3.3.3 System model ................................................................................. 61 

3.4 Summary ................................................................................................. 62 

Chapter 4: PBSL – Linguistic Support ................................................................. 63 

4.1 Introduction ............................................................................................. 64 

4.2 Privacy Breach Specification Language ................................................. 65 

4.2.1 Policy Rules ................................................................................... 66 

4.2.1.1 Event patterns .................................................................. 68 

Basic event constructs .................................................................... 69 

Derived Event Constructs .............................................................. 70 

4.2.1.2 Attributes Constraints ...................................................... 71 

4.2.1.3 Timing Constraints .......................................................... 73 

4.2.1.4 Early Warning Actions .................................................... 75 

4.3 Some examples of PBSL usage .............................................................. 76 

4.3.1 Example 1 (Data theft) ................................................................... 76 

4.3.2 Example 2 (Masquerading) ............................................................ 78 

4.3.3 Example 3 (Inference) .................................................................... 79 

4.3.4 Example 4 (Access for unauthorised purposes) ............................. 80 

4.3.5 Example 5 (Access for a purpose without having a consent) ........ 81 

4.4 Summary ................................................................................................. 81 

Chapter 5: PBSL – Formal Semantics .................................................................. 83 

5.1 Introduction ............................................................................................. 84 



TABLE OF CONTENTS 

VII 

 

 

5.2 Labelled Transitions Systems (LTS) ....................................................... 86 

5.3 Fluent Linear Temporal Logic (FLTL) ................................................... 86 

5.4 Formal Semantics of PBSL ..................................................................... 91 

5.4.1 Event Patterns................................................................................. 91 

5.4.2 Attributes Constraints .................................................................... 94 

5.4.3 Timing constraints .......................................................................... 95 

5.4.4 Early Warning Actions ................................................................... 98 

5.4.5 Policy Rules ................................................................................... 99 

5.5 Summary ............................................................................................... 101 

Chapter 6: Enforcement ....................................................................................... 103 

6.1 Introduction ........................................................................................... 104 

6.2 Operational semantics of the enforcement mechanism ......................... 105 

6.2.1 Policy Enforcement Behaviour .................................................... 106 

6.2.2 AEWRS System Behaviour ......................................................... 109 

6.3 Efficient enforcement mechanism design ............................................. 118 

6.4 Summary ............................................................................................... 122 

Chapter 7: Verification ......................................................................................... 123 

7.1 Introduction ........................................................................................... 124 

7.2 Case Study ............................................................................................. 124 

7.2.1 Insider-aware Tax Revenue System (IATRS).............................. 125 

7.2.2 Scenario Description .................................................................... 125 

7.2.3 The informal system’s acceptable usage requirements ................ 126 

7.2.4 Formalisation in PBSL ................................................................. 128 

7.2.4.1 Very Low Early Warning Policy Rule .......................... 128 

7.2.4.2 Low Early Warning Policy Rule ................................... 128 

7.2.4.3 Medium Early Warning Policy Rule ............................. 129 

7.2.4.4 High Early Warning Policy Rule ................................... 130 

7.3 Verification ........................................................................................... 131 

7.3.1 Safety Properties .......................................................................... 132 

7.3.2 Progress Properties ....................................................................... 141 

7.4 Summary ............................................................................................... 145 



TABLE OF CONTENTS 

VIII 

 

 

Chapter 8: Conclusion .......................................................................................... 146 

8.1 Summary of the Thesis.......................................................................... 146 

8.2 Contributions Revisited ......................................................................... 149 

8.3 Future Work .......................................................................................... 151 

References .............................................................................................................. 156 

Glossary of Terms ................................................................................................. 168 

 



 

IX 

 

List of Tables 

Table 4.1 Syntax of PBSL: event Patterns ............................................................ 69 

Table 4.2 Syntax of PBSL: Attributes Constraints .............................................. 72 

Table 4.3 Syntax of PBSL: Timing Constraints ................................................... 74 

Table 4.4 Syntax of PBSL: Early Warning Actions ............................................. 76 

Table 5.1 Syntax of FLTL: Logical operators ...................................................... 88 

Table 5.2 Syntax of FLTL: Temporal operators .................................................. 89 

Table 5.3 Syntax of FLTL: Assertion and Ranges ............................................... 89 

Table 5.4 Formal Semantics of PBSL: Event patterns ........................................ 92 

Table 5.5 Formal Semantics of PBSL: Attribute Constraints ............................ 95 

Table 5.6 Formal Semantics of PBSL: Timing Constraints: Interval ................ 96 

Table 5.7 Formal Semantics of PBSL: Timing Constraints: duration ............... 97 

Table 5.8 Formal Semantics of PBSL: Early Warning Actions.......................... 99 

 



 

X 

 

List of Figures 

Figure 1.1 Security protection mechanisms timeline ........................................... 14 

Figure 1.2 Insider privacy breach scenarios on a time and risk level axes........ 17 

Figure 2.1 TimeLine for the detection of the insider breach [98] ....................... 33 

Figure 2.2 Usage control actions [100] .................................................................. 39 

Figure 2.3 Usage Control Model Components [76] .............................................. 40 

Figure 3.1 Architecture of the extended UCON ................................................... 50 

Figure 3.2 Computational model ........................................................................... 58 

Figure 3.3 AEWRC ................................................................................................. 60 

Figure 6.1 LTS representation for REQ_TRIG_DelayWhenLowLevel ....... 107 

Figure 6.2 LTS representation for SuspendWhenMediumLevel ................. 108 

Figure 6.3 LTS representation for REQ_TRIG_AbortWhenHighLevel ..... 108 

Figure 6.4 LTS representation for REQ_TRIG_SkipWhenVeryLowLevel 109 

Figure 6.5  LTS representation for DOM_PRE_POST_Suspended ................ 112 

Figure 6.6 LTS representation for DOM_PRE_POST_Delayed ...................... 112 

Figure 6.7 LTS representation for DOM_PRE_POST_Aborted ...................... 113 

Figure 6.8 LTS representation for DOM_PRE_POST_NormalOperation .. 113 

Figure 6.9 LTS representation for 

REQ_TRIG_ResumeWhenDelayedAndTimeout ................................. 115 

Figure 6.10 LTS representation for 

REQ_TRIG_ResumeWhenSuspendedAndAndEventOccurs............ 116 

Figure 6.11 LTS representation for 

REQ_TRIG_AbortWhenSuspendedAndNoEventAndTimeout ....... 117 

Figure 6.12 Concurrent and synchronous enforcement mechanism for conditions, 

clock synchronisation, and mutual exclusion ............................................ 120 

 



 

XI 

 

List of Abbreviations 

 

AEWRC  Adaptive Early Warning and Response Controller 

AEWRS       Adaptive Early Warning and Response System 

E-Government Electronic Government 

ECA   Event-Condition-Action 

FLTL   Fluent Linear Temporal Logic 

LTS   Labelled Transition System 

LTSA   Labelled Transition System Analyser 

PBSL   Privacy Breach Specification Language 

UCON   Usage Control 

 



 

11 

 

Chapter 1: Introduction 

 

 

 

 

 

Objectives 

- Explain the motivation for an adaptive early warning and response system  

- Articulate the research questions 

- Present the research contributions 

- Provide the research methodology 

- Outline the thesis structure 
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1.1 Introduction and Motivation 

Data is the main asset of organisations including governments and healthcare bodies, and 

their information systems are used to manage personal information assets concerning 

individuals. These assets must be protected from outsider and insider threats. The protection 

of information assets against insider threats is of growing concern, because insider actions 

lead to more damaging consequences than those of outsiders [22]. One well-known case of an 

insider breach concerns a data leak from the UK Revenue and Customs department, in which 

the details of 25 million individuals (child benefit data) on two CD-ROMs were lost [14]. 

Hence, there is a need to protect organisations’ information assets from unintentional and 

malicious insider threats. 

 

The notion of a malicious insider threat has been defined as “…a current or former 

employee, contractor, or business partner who has or had authorized access to an 

organization’s network, system, or data and intentionally exceeded or misused that access in 

a manner that negatively affected the confidentiality, integrity, or availability of the 

organization’s information or information systems” [22]. Thus, data might be breached by 

insiders in different ways, depending on whether an insider: (1) has access to data; (2) has 

knowledge of data; and (3) is trusted by his organisation to access the data. This leads us to 

the notion of “insiderness” [17].  

 

Insiderness, or the “degree of insiderness”, was introduced in [17] to define the level of 

access a particular insider has with respect to a given asset, and measures the degree of access 

and knowledge of an asset, and the level of trust of the insider. This definition indicates that 

the insider may pose a different level of risk during the ongoing usage of information assets, 

depending on the above factors. Therefore, the information asset must be protected by an 

efficient security mechanism to counter insider threats taking into consideration the 

likelihood of occurrence of a breach to a digital information asset by a user at different risk 

levels of insider access. 
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Most current mechanisms present in the literature, such as conventional access control 

and auditing, only partially address the insider threats by reducing the potential insider 

threats, and limiting the opportunities for insider’s breaches. Conventional access control 

mechanisms are used to limit inappropriate access of resources by determining whether to 

allow or deny prior to access being executed, but are unable alone to detect and prevent the 

insider breaches. This is because the insiders might misuse legitimate authorisations after the 

access has been granted. On the other hand, auditing mechanisms are used to log accesses to 

resources, and these log entries can only be analysed after access has been executed or even 

after the insider breach incident has been completed, thus rendering insufficient to interrupt 

insider activity (Figure 1.1). To the best of our knowledge, none of the existing mechanisms 

attempted to comprehensively counter such potential insider breaches.   

   

Usage Control (UCON) has been proposed as a usage model which controls prior, 

ongoing, and subsequent usage of resources, encompassing the traditional access control, 

trust management, and data rights management [76]. The main features of this model are the 

mutability of attributes and ongoing control of long-running access. If attributes are changed 

during the ongoing usage, the access decision is either to continue access or revoke the user. 

Although UCON can be seen as a comprehensive model to reduce the odds for insider 

breaches, both, prior to and after access is granted, it does not support early warning and 

response process during the ongoing insider usage. The aim of this process is to effectively 

provide early detection; warn against insider breaches; delay, suspend, and interrupt the 

insider attacks in order to mitigate and counter insider breaches. Therefore, an early warning 

and response mechanism for insider breaches needs to be integrated into UCON within the 

comprehensive approach that is insider-aware in order to provide two layers of defence 

(Figure 1.1). This early warning and response system needs to take into consideration insider 

breach scenarios, including access patterns and timing constraints. In addition, to interrupt 

insider activity in dynamic software environments, where insider behaviour may dynamically 

change on the basis of the intent and context, there is a need to support multiple policy 

decisions at different risk levels, and adapt dynamically to new situations. We believe that it 

is important to specify a well-defined policy that explicitly defines insider breach scenarios. 
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Figure 1.1 Security protection mechanisms timeline 

 

Insider breach scenarios, business and security requirements, and legal regulations are 

continuously changing; therefore, policies to protect the assets need to be reviewed and 

adapted periodically to reflect the evolution of changes, and to deal with new situations of 

insider privacy breaches. Hence, we adopt a policy-based management approach [90] that 

allows policies to evolve dynamically to reflect system changes without the need to re-

implement the system. The adaptability of this scalable approach is essential in large-scale, 

dynamic environment such as government or health bodies. 

 

In this motivating example, we assume an operator within a government agency has 

legitimate access to personal information as part of his/her job. During working hours, the 

operator can access information stored in the organisation’s database. In addition, we assume 

that there is a chance that insider privacy breaches (such as identity theft) may occur as a 

result of some social and psychological factors (disgruntlement or dissatisfaction) or financial 

problems. To conduct an insider privacy breach, the operator performs several steps: first, 

these particular data are accessed a couple of times within working hours, then the bulk data 

are queried outside of working hours, and finally the data are transferred to some removable 

media, printed, or emailed. We assume that the system has fundamental security mechanisms 

such as access control and auditing. The privacy breach scenario has multiple steps with 
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different levels of risk. If the access control mechanism detects the first step (browsing the 

data a couple of times) as a privacy breach, the system will deny or revoke the user. This is a 

strong decision that might be a false alarm—the full breach scenario has not yet occurred. In 

the case of auditing, a breach can only be detected after it happens, irrespective of the level of 

risk, so the system does not react in time, even in the case of actual data theft. It is not 

efficient for large, dynamic organisations to rely on human intervention to check numerous 

log entries. Thus, there is a crucial need for a system that enables early warnings and can 

enforce adaptive and proactive actions (such as suspend and delay access) when suspicious 

events are detected. This would mitigate and warn against risks, prevent insider activities 

before the actual attack takes place, and adapt dynamically to new situations. All of this 

should be achieved during real-time system use, depending on the insider’s access history, 

and within certain timing constraints. 

1.2 Problem Statement and Research Questions  

Protection from insider threats is a nascent research area in the field of information security. 

Insider threats are a very complex problem to handle within dynamic software systems, 

because the insiders have legitimate access to information assets and are trusted by their 

organisations. The nature of insider privacy breaches changes depending on the 

organisation’s acceptable usage policy and the attributes of an insider: access, knowledge, 

and trust. However, the level of risk that insiders pose (i.e. severity level of insider access) 

depends on insider breach scenarios including their access patterns and contextual 

information, such as timing of access.  

 

Few approaches systemise the continuous monitoring of dynamic insider usage 

characteristics and adaptation. Most of current approaches present in the literature attempt to 

solve particular problems of insider threats, and are focused only on mechanisms of 

prevention before the access is executed, e.g. traditional access control systems, or after the 

access is completed, e.g. auditing systems. UCON, although, a comprehensive model that is 

useful in handling insider threat problem, supporting the continuous monitoring during the 

ongoing usage after access has been granted, it has not completely solved the insider 

problem, especially in a dynamic software system environment.  
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Designing an adaptive mechanism to address insider breaches which is compatible 

with a dynamic software system environment is a very challenging task. The system must be 

able to adapt its behaviour based on ever-changing insider scenarios. Thus, it must respond to 

changes in the severity level of insider access according to different scenarios of insider 

breaches if it is to enforce adaptive response actions. Therefore, a security system that is 

utilised in a dynamic software system environment in order to enforce adaptive response 

actions must be policy-based. 

 

Policies must be adapted to, in a dynamic manner, on the basis of changes in the 

system state. Thus, the policy decisions must depend on the current and past insider 

behaviour. Therefore, a policy-based system that is utilised in a dynamic software system 

environment must be dynamic, in which policies can be adapted dynamically in response to 

the occurrence of events or depending on time.  

 

To the best of our knowledge, none of the existing mechanisms attempt to 

comprehensively counter the potential insider breaches, where the insiderness is a vital aspect 

of any dynamic software system, because the risk levels of insider access may dynamically 

change on the basis of their access patterns and timing constraints (Figure 1.2). Thus, it is 

essential that an adaptive early warning and response system that is suited for a dynamic 

software system environment is developed in order to rectify the loopholes of existing 

security mechanisms. 
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Figure 1.2 Insider privacy breach scenarios on a time and risk level axes. 

 

In this thesis, we propose a formal framework for an adaptive early warning and 

response system for insider privacy breaches within dynamic software systems. This 

framework allows for the specification of multiple and dynamic policies at different risk 

levels during usage (depending on insider breach scenarios), and for enforcement of adaptive 

response actions to interrupt the insider activity. The main features of our framework are: (1) 

the protection from insider breaches in a timely fashion through multiple interrupt actions, (2) 

the continuous monitoring of insider normal operation enabled with early warning provisions, 

(3) a high probability of early detection of insider breaches without an unacceptable number 

of false alarms by enforcing delay and suspend access, and the ability to express 

comprehensive insider breach scenarios, and (4) a minimum of human intervention through 

the adaptation process. 
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The key research question is: 

How can we develop a framework for an adaptive early warning and response system 

for insider privacy breaches within a dynamic software system environment? 

 

To answer the research question, six sub-questions can be formulated: 

 

1- What is the nature of the insider breach problem, and what existing approaches 

protect from insider breaches in the software system environment? 

2- How can adaptive early warning and response processes be incorporated into 

usage control model? 

3- How can an expressive policy specification language be developed that captures 

the access patterns and timing constraints? 

4- How can the policy specification language and the mechanism of enforcing the 

policies be suitably formalised so that policies can be enforced on the system? 

5- How can we evaluate the expressiveness of the policy language on a case study 

from the e-government domain that includes some real-world insider breach 

scenarios? 

6- How can verification techniques such as model checking be used to verify the 

policy and the enforcement mechanism model against the properties of the 

system? 

 

1.3 Original Contributions 

The contributions of this thesis can be summarised as follows:  

1- The UCON model is extended to include interrupt policy decisions, in which 

multiple policy decisions can be expressed at different risk levels during 

(ongoing) usage (Chapter 3).  
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2- We develop a computational model to demonstrate the abstract concurrent 

behaviour of an adaptive early warning and response system for a real information 

system in the context of policy-based management (Chapter 3). 

 

3- We introduce the Privacy Breach Specification language (PBSL) based on the 

computational model (Chapter 4). 

 

4- The policy language and the mechanism enforcing the policies are formalised in 

an operational style, allowing policies to be enforced on the system (Chapter 5 -

6).  

 

5- PBSL is evaluated using a case study from the e-government domain (Chapter 7). 

 

6- The safety and progress properties of the policy and enforcement mechanism 

models are formally verified using an automatic verification tool (Chapter 7). 

 

1.4 Research Methodology 

Our research addresses a software engineering problem using a constructive research method. 

This method constructs or develops novel artefacts, such as a framework, language, theory, 

and algorithm, to solve the research problem.  

 

The methodology of the proposed approach is comprised of four work packages. The 

first address the research background and related work, and the second focuses on the 

proposed model and language. The third work package presents suitable formal semantics for 

the language and the model. The final work package concentrates on evaluating our work. 

 

Work package 1: Research background and related work 

The research background and relevant literature are assessed, utilising digital 

resources and books. We consider aspects related to the nature of the insider breach 
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problem, and existing mechanisms to protect from insider threats such as access 

control, anomaly detection, and monitoring mechanisms (Chapter 2). This enables us 

to articulate the key research question and identify how the research problems can be 

understood and solved. 

 

Work package 2: Model and language 

To determine how we can answer the key research question, we propose a 

computational model of the system and the PBSL (Chapter 3 - 4). The research in 

this work package explores the link between the policy language and the 

computational model in the context of policy-based management. This package 

captures the second and the third research sub-questions. 

 

Work package 3: Formal Semantics 

Based on the computational model and policy language derived in the previous work 

package, this package explores existing formal methods in order to develop semantics 

for the policy language and model. Thus, the selected formal method is utilised to 

give the policy and enforcement mechanism operational semantics (Chapter 5 - 6). 

This package captures the fourth research sub-question. 

 

Work package 4: Evaluation 

To demonstrate the validity of our approach, we use a case study from the e-

government domain that includes some real-world insider breach scenarios (Chapter 

7). The automatic verification tool is used to formally verify the system properties 

over the policy and the enforcement mechanisms models (Chapter 7). This package 

captures the fifth and sixth research sub-questions.  
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1.5 Thesis Outline  

This thesis is structured into eight chapters:  

 

Chapter 1: Introduction 

This provides the motivation for an adaptive early warning and response system, and 

articulates the research questions and objectives. 

 

Chapter 2: Background and Related Work 

This chapter defines an insider, the notion of insiderness, and various types of insider threats, 

including insider privacy breaches. We then review some countermeasures to protect from 

insider threats, such as access control and anomaly detection and monitoring mechanisms. 

The UCON model is then introduced, and the adoption of this model to deal with insider 

breaches is investigated. Finally, an overview of policy-based management is given, 

reviewing some existing policy models. 

 

Chapter 3: Adaptive Early Warning and Response System Architecture and the 

Computational Model  

This chapter presents the architecture of our proposed adaptive early warning and response 

system (AEWRS) for insider privacy breaches, which extends the traditional UCON model. 

We then propose a computational model for AEWRS. The model demonstrates the abstract 

system components and their behaviour and interactions in the context of policy-based 

management.  

 

Chapter 4: PBSL – Linguistic Support  

This chapter introduces the PBSL, based on the computational model in Chapter 3. The 

syntax of the language is presented and described, privacy breach scenarios including the 

events patterns and timing constraints that determine a certain early warning action are 

specified in a unified manner in the form of policy rules. Finally, some examples of insider 

privacy breach scenarios are given in the form of PBSL specifications to demonstrate the 

usage of the language.  
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Chapter 5: PBSL – Formal Semantics 

Chapter 5 outlines the formal semantics of PBSL components in labelled transition systems 

(LTS) and fluent linear temporal logic (FLTL). Graphical representations of PBSL 

components are presented in LTS, which is based on state machines, computed from 

asynchronous FLTL specifications using a labelled transition system analyser (LTSA).  

 

Chapter 6: Enforcement 

In this chapter, the formal operational semantics for the enforcement mechanism of the 

AEWRS system is given in LTS and FLTL using LTSA. An efficient enforcement 

mechanism design is proposed.  

 

Chapter 7: Verification 

This chapter presents a case study of tax revenue systems as a means of evaluating our 

approach. A formal verification of the safety and progress properties is described using the 

LTSA model checker.  

 

Chapter 8: Conclusion and Future Work 

This chapter summarises our research and its findings, and provides suggestions for future 

work. 
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Chapter 2: Background and Related Work 

 

 

 

 

 

Objectives 

- Define the nature of the insider threat problem and identify various types of 

insider threats, including insider privacy breaches. 

- Review related work in the area of protection from insider threats. 

- Overview of the Usage Control Model (UCON). 

- Investigate how Usage Control Model (UCON) can be adopted to deal with 

insider breaches.  

- Explore the policy-based management approach and review the related policy 

models.  
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2.1 Introduction  

In this chapter, we provide background information on the nature of the insider breach 

problem. We begin with the notion of an insider, presenting different definitions of this term 

and types of insiders and follow with an introduction of the notion of ‘insiderness’. Types of 

insider breaches are described, including insider privacy breaches. Some existing approaches 

in the area of protection from insider threats including anomaly detection and access control 

are critically reviewed.  In addition, we illustrate the usage control model (UCON) and 

describe the differences between some existing formal approaches in order to specify and 

analyse this model as well as their limitations. We investigate how the UCON model can be 

employed to address the insider breach problem. Next, an overview of the policy-based 

management approach is discussed, reviewing some existing policy models, dynamic 

policies, and the importance of using the formal semantics of policy languages for security-

critical and dynamic environments, such as e-government.  

 

2.2 Nature of Insider Breach Problem 

Data protection is one of the major concerns in many large-scale, dynamic software system 

environments, such e-government, financial, and healthcare systems. Organisations have 

reasonability to collect information from individuals in order to facilitate services for them. 

The protection of digital information assets against insider threats is a major concern for large 

enterprises where their digital repositories are used to store personal information assets 

concerning people. The software systems are vulnerable to insider privacy breaches because 

insiders have direct authorised access to individuals’ information assets; and are trusted by 

the organisation to access them. 

 

The nature of the insider privacy problem, where an insider compromises information 

assets, changes depending on the organisation’s acceptable use policy and data protection 

regulations. The organisations are responsible for the privacy and confidentiality of the assets 

that they manage, ensuring that they are not used by their employees, who have authorised 

access for unauthorised purposes.   
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Insiders may have different motivations, such us personal, financial, and 

psychological factors. Insiders could act individually or in collusion with others. They could 

be malicious (intentional) or non-malicious (unintentional). Insiders may have some level of 

access to some or all information assets, have authority over system operations, or have 

knowledge of sensitive personal information. In addition, they may have technical skills and 

experience. Hence, they may have opportunity in a position of trust to commit a malicious act 

during normal operating conditions [45]. 

 

These breaches could lead to a high impact on agencies as well as on individuals, 

including financial loss, disruption to the organisation, loss of customer trust in organisational 

services, and legal actions against the organisation [18]. On the other hand, loss of privacy 

has a high impact on national security as well.  

 

2.2.1  Definitions of Insider and ‘Insiderness’  

It is important to define an insider in an unambiguous way in order to address insider breach 

issues. Defining “insider” could be very difficult, as insider is a new and complex concept. 

Recently, this term has begun to be used and understood in different ways, but there is no 

general agreement on a standard definition. There are several definitions of insider in 

literature, and they vary depending on different perspectives. This has recently been 

discussed by a wide range of researchers. 

 

The term ‘insider’ has been defined from the perspective of access, knowledge, and trust 

that an insider has, as follows: 

 

1- A number of workshops by RAND that started in 1999 attempted to define the term 

‘insider’ [4], [5], [19]. They defined insider as “someone with access, privilege, or 

knowledge of information systems and services”. This definition includes the access 

and knowledge factors but does not include that the insider is implicitly trusted.   
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2- A similar definition of insider by Greitzer et al. [39] is “an individual currently or at 

one time authorised to access an organisation’s information system, data, or 

network”.  

 

3- A broad definition of an insider in terms of trust that includes information and non-

information assets has been described by Bishop et al. in [18] as “a person that has 

been legitimately empowered with the right to access, represent, or decide about one 

or more assets of the organisation’s structure”. That implies both logical and physical 

presence. 

 

Some researchers distinguish between logical and physical insiders in that the insider may 

be inside or outside the system perimeter. Logical insiders may be physically outside the 

system perimeter, such as a user on duty accessing the system remotely, or physical insiders 

may be logically outside, such as a caretaker not actually having access to the system. 

Examples of these definitions that distinguish in terms of “insider” and “outsider” from the 

perspective of the system perimeter are as follows: 

 

1- “Anyone operating inside the security perimeter” as cited in [18]. 

 

2- “Person who is allowed inside the security perimeter of a system and consequently 

has some privileges not granted outsiders” as cited in [73].  

 

These definitions lack the clear distinction of the security perimeter with the assumption 

that there is only one security perimeter. 

 

Others describe “insider” in terms of different levels of access to a given information 

asset rather than distinguish in terms of “insider” and “outsider”. In other words, attackers 

have degrees of access with respect to an asset leading to “degrees of insiderness” as 

introduced by Bishop et al. [17]. This definition indicates that the access may pose a different 

level of risk during the ongoing usage of information assets regardless of the attacker being 

inside or outside the security perimeter. 
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The notion of insiderness deals with aspects regarding an insider that include having 

access to and knowledge of a resource by one who is considered trustworthy by an 

organisation, which may pose different levels of risk against that resource depending on those 

factors. This is different from regarding insider threats as an “insider” or “outsider”, as most 

security mechanisms are designed on that basis. These mechanisms, such as access control, 

normally define binary policy decisions (namely allow and deny), apply them statically, and 

use strong enforcement (e.g., deny or revoke). The ability to delineate multiple possible 

policy decisions at different risk levels rather than just natural access control binary ones and 

apply them dynamically, rather than statically provides proactive decisions before enforcing 

reactive decisions and helps to adopt insiderness [17]. We find that this definition is the most 

appropriate definition for our work, as it takes into consideration the likelihood of occurrence 

of a breach to a digital information asset by a user at different risk levels of insider access. 

 

“Insider threats” have been defined from the perspective of intent, motivation, and the 

impact of the threat: 

 

1- The notion of a malicious insider threat has been broadly defined by the CERT 

program of Carnegie Mellon University’s software engineering institute as “a current 

or former employee, contractor, or business partner who has or had authorized 

access to an organization’s network, system, or data and intentionally exceeded or 

misused that access in a manner that negatively affected the confidentiality, integrity, 

or availability of the organization’s information or information systems” [22]. This 

definition is IT-specific and considers only malicious (intentional) insider threats 

without acknowledging accidental (unintentional) ones. From the organisation’s 

perspective, an insider can be an employee, ex-employee, temporary employee, 

contractor, business partner, temporary business partner, or some other individual 

linked to IT. 

 

2- RAND describes insider threats as “malevolent (or possibly inadvertent) actions by an 

already trusted person with access to sensitive information and information systems” 

[19]. This considers both intentional and unintentional insider threats.  
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3- Greitzer et al. define insider threats as [39], “harmful acts that trusted insiders might 

carry out; for example, something that causes harm to the organisation, or an 

unauthorised act that benefits the individual”. This considers only intentional actions, 

the motivation for those actions, and their consequential risk to the organisation. 

 

4- The Centre for the Protection of National Infrastructure (CPNI) defines insider 

[threat] as “a person who exploits, or has the intention to exploit, their legitimate 

access to an organisation’s assets for unauthorised purposes” [23]. This definition is 

more general than the previous ones and includes both information and non-

information assets and considers both intentional and unintentional insider threats.  

 

2.2.2  Categories of Insiders   

Insider threats have been defined by differentiating between three types of insiders [83], [85] 

based on legitimate access, knowledge, and intent as follows: 

 

1- Masquerader: an individual who uses legitimate insider credentials to impersonate the 

legitimate user for malicious purposes.  

 

2- Traitor: a legitimate insider who uses his/her own legitimate credentials to violate 

his/her origination’s security (usage) policy maliciously. 

 

3- Naive insider: a legitimate insider who uses his/her own legitimate credentials to 

violate his/her origination’s security (usage) policy unintentionally. 

 

2.2.3  Types of Insider Breaches    

The classifications of insider breaches have been derived from surveys conducted, such as by 

CERT. The CERT program at Carnegie Mellon University in the US carried out an in-depth 

analysis of over 700 case studies of insider crimes since 2001. The following types are based 

on the perspective of motivation and potential impact of the risk. 
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2.2.3.1 Insider IT Sabotage 

“Insider use of information technology to direct harm at an organisation or an individual” 

[22]. The majority of those insiders were privileged insiders with technical skills and access 

to the organisation’s IT facilities. Most of those insiders had some disturbing attributes, such 

as conflicts with colleagues or psychological-social factors. The motivating factor includes 

the desire to gain revenge due to disgruntlement. 

 

Examples of sabotage include: 

 

- Planting a logical bomb to destroy critical data.  

- Deleting critical data, such as data copies and backup files. 

- Disturbing critical system operations. 

 

2.2.3.2 Insider Theft of Intellectual property (Espionage) 

“Insider use of IT to steal proprietary information from the organisation, this category 

includes industrial espionage involving insiders” [22]. The majority of the insiders that stole 

intellectual property (IP) were scientists, engineers, or programmers. According to CPNI and 

CERT, they were driven to take them to a new competing employer, to form their own 

business, or to sell the trade secrets to a competitor. 

 

Examples of stolen IP assets include the following:  

- Proprietary software and source code. 

- Business plans. 

- Confidential product information, such as engineering designs and scientific formulas. 

 

2.2.3.3 Insider Fraud 

“Insider use of IT for the unauthorized modification, addition, or deletion of an 

organization’s data (not programs or systems) for personal gain, or the theft of information 

that leads to an identity crime (identity theft, credit card fraud)” [22]. Most of the insiders 
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who commit fraud are low-level employees, such as data entry clerks or those in 

administrative positions. Unlike the insiders of IT sabotage and IP theft, they are without 

technical skills and usually not professionals. They are mostly motivated by financial gain. 

   

Examples of insider fraud include: 

- Making a false payment for financial benefits. 

- Making a false payment to be redirected to an account not that is not the customer’s 

account. 

- Making a purchase order and approval by the same user. 

 

2.2.3.4 Insider Privacy Breach 

There are different definitions of a privacy breach in literature that are appropriate for 

particular circumstances, study disciplines, and organisation or application domains, yet there 

is no definition that is suitable for all these domains. According to our scope in this thesis, it 

is essential to have a basic definition of an insider privacy breach to be a useful starting point 

for proposing the appropriate technical approach to deal with it. Hence, we define an insider 

privacy breach as follows:  

 

Insider use of IT for the access of personal data within an organisation in an unacceptable 

way for personal gain, or the theft of information that leads to an identity crime. 

 

In order to differentiate between an insider privacy breach and insider fraud, we 

consider here insiders who access personal data for their own interest and not those who add 

or modify only to commit financial fraud. In addition, insider privacy breaches in the 

definition include both data accesses and theft of personal information. The unacceptable way 

in our definition means that the way in which insider accesses data is inappropriate that may 

result in privacy breach and data theft. Although the insider is expected to be entrusted with 

access (e.g. has authorised access as a part of his/her job), the behaviour is unacceptable, 

leading to serious incidents at higher levels of risk.  In the context of security policy, the data 

is assumed to be accessed according to the expected behaviour, and the authorised user is 
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expected to be trusted not to breach the security policy. In the context of the acceptable use 

policy, the insider has already been granted authorised access to data but she/he behaves in a 

way that violates the acceptable use policy that he/she is intended to adhere to. Considering 

whether the use is acceptable or unacceptable normally depends on the organisation’s 

acceptable usage policy. As in insider fraud, most of the insiders are low-level employees and 

could act individually or in collaboration with others. They commit privacy breaches for 

personal interests or financial factors. 

 

Privacy protection has been largely recognised from the legal perspective. There are a 

number of legal regulations to protect data privacy, such as the Data Protection Act of 1998 

[75] in the UK, the Data Protection Directive 95/46/EC [32] in Europe, the Health Insurance 

Portability and Accountability Act (HIPAA) [2] in the US, and the Personal Information 

Protection and Electronic Documents Act [80] in Canada.  

 

According Directive 95/46/EC (article 2), personal data has been defined as [32]: 

“Any information relating to an identified or identifiable natural person ("data subject"); an 

identifiable person is one who can be identified, directly or indirectly, in particular by 

reference to an identification number or to one or more factors specific to his physical, 

physiological, mental, economic, cultural or social identity”. This definition is very broad, 

including the information that allows direct or indirect identification of the data subject (i.e. 

the person to whom personal data belong). Additionally, it involves sensitive personal data 

such as those related to race, health, religious beliefs and political opinions [32] (article 8). 
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2.2.3.4.1  Categories of Insider Privacy Breach Scenarios 

Based on the above definition of an insider privacy breach, insider privacy breaches are 

classified into the following: 

 

1- Inappropriate access to particular personal data. 

 

Examples of this category include:  

- Individual snooping–deliberate browsing where details of information have 

been accessed through direct access in an unacceptable way (e.g., for unethical 

purposes, without consent, or not related to the insider’s duties).  

- Access of unauthorised data through indirect access (e.g., data inference) [84].  

- Multiple anomalous accesses to personal data. 

- Masquerading by using a legitimate insider‘s credentials to access the personal 

data. 

 

2- Anomalous or inappropriate access to a large amount of personal data. 

 

3- Leak of a massive amount of personal data through either a malicious data theft (e.g., 

identity theft) or an accidental data loss [65]. 

 

2.2.3.4.2  Facts and Cases about Insider Privacy Breaches 

According to CPNI, the Insider Data Collection Study [23] collected and analysed data on 

120 insider cases in the UK between 2007 and 2012. The majority of insider activities 

identified were unauthorised disclosure of sensitive information (47%) and insider fraud 

(42%). 

 

The Information Security Breaches Survey 2014 [95] revealed that 58% of large 

organisations have experienced insider (namely staff) security breaches. Most of those 

incidents involved unauthorised access to systems or data, such as masquerading. This 
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affected 57% of large organisations that have had security breaches from their staff. The data 

indicates that the leakage of confidential information is the second most reported breach type 

in more than half of large organisations at 55% compared to a third (33%) that experienced 

security incidents caused by the misuse of confidential data. The survey indicates that 45% of 

those organisations experienced data protection breaches. This type of breach resulted in 

effects on those organisations, including large regulatory fines, influences on brand 

reputation, and high costs in terms of investigation and resolution. 

 

The Information Security Breaches Survey 2014 [95] revealed some financial costs to 

fix the worst security incidents of that year in large organisations. The average time to repair 

the breaches was high with an average of 45 to 85 days. Large organisations incurred £12,000 

to £34,000 in time costs and £80,000 to £135,000 in cash costs on average as a result of those 

breaches. 

 

Verizon 2014 Data Breach Investigations Report [98] consists of 1017 incidents 

concerning the timeline data for the detection of a breach, Figure 2.1 illustrates the timeline 

for the discovery of a breach. There is a mere 13% of incidents that took minutes or less to 

detect. The majority of the breach incidents were discovered within days or longer (69%), 

which is very significant. 

 

Figure 2.1 TimeLine for the detection of the insider breach [98] 
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The UK Audit commission in “Ghost in the machine an analysis of IT fraud and abuse” 

[10] reported a case of insider privacy breach. A nurse on night duty at a hospital was using 

her authorised access to search for names of friends and family on the patient administration 

system that were not linked to her official duty. She then discussed the health problems of the 

individuals that she searched for with other members of her family. This was considered a 

breach of confidentiality, and the nurse was given a written warning. 

 

Several realistic case studies have been presented in the report “Insider Threat Study: 

Illicit Cyber Activity in the Government Sector” conducted by CERT and the US Department 

of Homeland Security [53]. One of those cases involved a project leader who took a new 

position in a different department within the same organisation. He convinced supervisors in 

his former department to allow him to keep an account on their system because it was a 

mutually agreeable solution. That access, although with lower access rights than before, 

combined with his knowledge of additional access methods on the network, enabled him to 

repeatedly increase access rights on his account, even as the increased access was discovered 

and corrected by the system administrator. Using the elevated access, he logged in after hours 

and accessed confidential personnel and payroll files. 

 

Several realistic case studies have been reported in “2013 Information Security 

Breaches Survey-Technical Report” [94] commissioned by the Department for Business, 

Innovation, and Skills in the UK. They revealed “a disgruntled employee at a large utility 

company stole some sensitive information which he had access to as a part of his job and 

began selling this. The breach was discovered by accident, over a month after it started. The 

value of the lost data was several hundred thousand pounds, but the impact on the business of 

the investigation and aftermath was even greater. The lack of a contingency plan contributed 

to this cost. After the breach, the company deployed new systems, changed its procedures and 

introduced a formalised post-incident review process.”  

 

In this report “2014 Information Security Breaches Survey - Technical Report”, they 

reported “an employee of a social care facility based in the South East of England repeatedly 

gained unauthorised access to confidential information about individuals he knew in order to 
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facilitate fraudulent activities. As a result, the police were informed and disciplinary steps 

were taken against the employee. Stricter staff training and vetting process were also 

implemented as a result” [95]. 

 

2.3 Existing Countermeasures against Insider Breaches  

Most current mechanisms in literature, such as conventional access control and auditing, 

incompletely address the insider breach problem by reducing the potential for insider threats 

and limiting opportunities for insider breaches. Access control mechanisms are used to limit 

inappropriate access of assets by determining access control decisions, namely either to allow 

or deny prior to access being executed, but alone are unable to detect and prevent insider 

breaches. This is because insiders might misuse legitimate authorisations after access has 

been granted. Auditing mechanisms are used to log access of resources, and the analysis of 

those log entries can be only performed after access has been executed or even after the 

insider breach incident has been completed. Hence, it is insufficient to interrupt insider 

activity as the attacks are detected after insiders have breached data. Therefore, there is a 

need to prevent the attack before it happens by allowing early warning.  

 

Early warning is one of the main components of intrusion prevention systems—the 

new generation of intrusion detection systems. Early warning has received little attention 

because they can increase false positives. Early warning techniques, such as sandboxing and 

honeypots [91], [92], are designed mostly to detect outsider attacks and have some 

limitations. They require human intervention and do not support dynamic strategies for real-

time responses to detected misuse. 

 

Most of the proposed misuse specification languages have been built on misuse 

detection systems. Misuse by insiders of data cannot be specified by most existing misuse 

specification languages, such as STATL [33], CARDS [99], Sutekh [81], P-BEST [61], 

RUSSEL [72], LAMBDA [28], ADELE [76], IDIOT [55] and SHEDEL [66]. This is because 

they are designed specifically to specify intrusions of outsiders and not to specify misuse by 

insiders. 



CHAPTER 2. LITERATURE REVIEW 

36 

 

It could be argued that some responses of outsiders and insiders could be similar [73], 

in some cases, and some specification languages allow response actions to partial misuse 

scenarios (i.e., those that have not been completed yet, such as to raise a yellow alert), block 

the user, or alert the system administrator. In the case of blocking access, the insider breach 

scenario might be petty or have multiple steps but has not been completed (i.e., no further 

steps of the attack has happened after the initial step), which could be a false alarm. While in 

the case of an alert or log, it is costly and impractical in a large dynamic organisation to use 

only human intervention to check a high number of alerts and also to monitor any further 

suspicious events. 

 

Automatic and proactive response has received little attention in literature in intrusion 

detection. That is probably due to the inherent complexity and risk in developing automatic 

responses, which could lead to a disturbance to legitimate users and a warning to intruders. 

Neumann [73] argues that insider misuse should be detected and allowed to continue with 

online surveillance. To confine the effects of serious attacks, dynamic strategies for real-time 

response to the detected misuse and anomalies must be adopted.   

   

Schutzer [88] recommends that monitoring tools in the financial services industry 

should be developed with forecasting capabilities to forecast an employee’s intention before 

they commit an identity crime. These include the likelihood of the threat based on factors, 

such as employee behaviour that fits a known criminal pattern. Also, these tools should have 

the ability to take response actions, such as timely reporting.   

 

 A privacy intrusion detection system is introduced by Venter et al, [97], and sets of 

features have been defined to detect possible insider privacy breaches based on the 

anomalous behaviour of insiders. They suggested that once the insider exceeds the threshold 

of one feature, such as frequency of access to a particular record, the system would react 

accordingly to block access, alert, or reduce the threshold of the feature (called throttling). 

They employ anomaly-based detection and provide only conceptual architecture for their 

proposed system without testing. It is clear that this approach can cause many false alarms, as 

the system checks each feature one-by-one, irrespective of the full scenario of the insider. 



CHAPTER 2. LITERATURE REVIEW 

37 

 

That means it does not have the ability to predict the likelihood of a potential privacy breach 

that is happening or is going to happen.   

 

An et al. [3] attempted to address the problem of the uncertainty of privacy intrusion 

by evaluating the probabilities of all the features together using Dynamic Bayesian Networks. 

However, the approach was to detect a large amount of data theft regardless of the user, and it 

is not effective for detecting privacy breaches for a particular individual or group of 

individuals, as they claim. That causes false negatives, while true intrusions were not 

detected. 

 

Kamra and Bertino [51] proposed a framework for an anomaly detection system for a 

database management system (DBMS). They proposed what they call a privilege state based 

access control mechanism for supporting multiple response actions to anomalies. This uses a 

response engine based on a policy language. The language is based on event-condition-action 

(ECA). The disadvantage of the language is that it is not expressive enough to represent more 

complex insider breach scenarios, including event patterns. Furthermore, it does not support 

timing constraints. 

 

A conceptual framework is proposed by Crampton and Huth [25]; they defined a 

general-purpose policy language and an extended access control framework to deal with 

insider threats. Their language does not specify how the full breach scenario with multiple 

steps is defined, and it is not rich enough in terms of notations and operators to express 

complex insider breaches, including access patterns and timing constraints. They only used 

abstract requests and context predicates with limited operators. Additionally, their approach 

does not support early warning and multiple policy decisions. We argue that an approach 

should be integrated with expressive breach specification language (including the basic sorts 

of operators and timing constraints) to specify the known patterns of breach scenarios in 

order to clearly realise early warning and to avoid false alarms. Unlike our approach, they did 

not use underlying formal semantics to formalise the language and analyse the system 

properties. Additionally, they do not evaluate their approach on existing case studies.   
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Probst and Hansen [82] proposed an abstract model in terms of insider capabilities and 

restrictions to deal with the insider problem, providing formal semantics for their model using 

process algebra. They present a modelling language without providing the formal semantics 

of the language. They use forensic static analysis to analyse the access control specifications 

after the attack, the same as the auditing mechanism, where data is analysed after the fact. 

They use over-approximation for their analysis to detect insider attacks with the aim of 

lowering false positives. However, they deal mainly with physical systems based on the 

notions of locations and actors to check whether a location is at risk of the insider treating the 

location and data as resources. Additionally, they did not use the notion of time and 

frequency of access to the data asset to assess a data asset is at risk of an insider at run-time. 

 

2.4 Usage Control 

Usage Control (UCON) is a usage model that encompasses traditional access control, 

including Discretionary Access Control (DAC), Mandatory Access Control (MAC), and 

Role-based Access Control (RBAC), trust management, and data rights management [76]. 

The main features of this model are the notions of mutability of attributes [77] and continuity 

of decisions. The mutability means that attributes associated with subject and object can be 

updated during ongoing usage as a side effect of the subject’s access to the object, which 

influences the system state. Examples of these mutable attributes are the context of the user 

including time or location. Continuity of decisions means that control is performed prior 

(pre), ongoing (on), and subsequent to (post) the usage of resources. If attributes are updated 

during ongoing usage, the access decision is either to continue access or revoke the user 

according to the policy. During a usage process life cycle, there are two categories of usage 

control actions: subject actions and system actions [100] (Figure 2.2). Subject actions are 

those performed by a subject including tryaccess and endaccess, while the system actions are 

those performed by the system including permitaccess, denyaccess, revokeaccess, as well as 

the update actions that update the value of an attribute: preupdate, onupdate and postupdate. 

The system states change by updating the mutable attributes as side effects of subject actions. 

Therefore, UCON can be seen as a comprehensive model to not only control resources before 

access is granted, but also after it has been granted when the resource is being accessed.  
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Figure 2.2 Usage control actions [100] 

 

The usage process can be viewed as long-running access. To determine whether to 

allow or deny access rights,         introduced by Park and Sandhu in [76] depends on 

authorisation, obligation, and condition components (Figure 2.3). It incorporates conventional 

access control models, including conventional ones, such as Discretionary Access Control 

(DAC), Mandatory Access Control (MAC), and Role-based Access Control (RBAC) as well 

as some other existing ones. Authorisation is a key functional requirement that must be 

fulfilled before allowing a particular right of access to a digital object. Authorisation must be 

evaluated both before and during access. Obligation is used to confirm the mandatory 

requirements that a subject must undertake both before and during a particular usage process. 

These mandatory requirements may have to be fulfilled before access is allowed or during 

access. Conditions are environmental constraints that must be considered in the process of 

usage decisions. Conditions are not directly associated to objects or subjects, but are based on 

environmental attributes. The evaluation of these conditions may take place before allowing 

permission to access a digital object or while the subject is using the object.  
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Figure 2.3 Usage Control Model Components [76] 

 

The UCON model is conceptual and does not address specification and enforcement of 

policies. The UCON model has been first formalised using temporal logic of actions (TLA) 

[57] by Zhang et al. [100], [101]. The formal model is represented in the form of a simple 

state transition diagram. The main drawback of their formalism, as pointed out in [49] is that 

they assume a single usage process for each usage request, which adds some complexity to 

reason about the interactions of several concurrent usage requests. Therefore, the 

formalisation of UCON has been improved by Janicke et al. [49] using interval temporal 

logic (ITL) [71]. They focus on ongoing control. They described the UCON policies as 

constraints on the whole usage process rather than on a single usage process. Their 

formalisation assumes several (complex) usage requests as a part of a single usage process, 

rather than assuming only a single usage process for each atomic usage request, as in [100]. 

However, the concurrent enforcement of UCON policies introduces extra complexities with 

regards to the formal analysis of policies and the interaction between system behaviour and 

policy enforcement due to the atomicity of events. 
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Neither TLA-based nor ITL-based UCON models deal with timing constraints involved 

in complex usage scenarios. This is because these underlying formalisms do not depend on 

metric temporal logic [54], and cannot express qualitative temporal properties. They can only 

support quantitative temporal operators. With qualitative temporal operators, they can specify 

the period of time within which events may occur, such as the interval between two 

consecutive events. Hence, logic-based formalisms must be based on metric temporal logic to 

be more suitable for formalising policies, which include timing constraints. Other approaches 

utilise non-logic formalisms, such as process algebra [35] as in [63] and Petri-net [79] as in 

[52]. 

 

The issue of concurrency has been tackled by Janicke et al. [47]. They proposed a 

computational model as a model of an enforcement mechanism in the form of a statechart 

[41], rather than as simple state transition diagrams as used in [100]. Statecharts are an 

extension of state transition diagrams (STDs) to support concurrency [56], and are widely 

used for the design of reactive systems [41]. In their model, they separate between the user, 

controller, and system components. Additionally, Janicke et al. [47] proposed that the issue 

of concurrent enforcement of UCON policies could be resolved using a static analysis of the 

dependencies between policy rules. Their approach is based on interleaving enforcement, 

where only one action can be performed at a time.  

 

To create a veritable model and reduce the number of conflicts as the number of system 

states increases, it is ideal to analyse the policies using an automatic verification technique 

supported by tools, such as model checking and animation. Model checking is a widely used 

automated formal analysis technique for verifying the properties of finite-state concurrent 

systems. The main advantage of a model-checking tool is its ability to detect conflicts in 

properties in policy specifications and examine the interaction between policy rules, 

enforcement mechanisms, and system behaviour. On the other hand, policies can be 

expressed using history-based policies [1] with the ability to express the descriptions of 

behaviours without the need to use mutable attributes. 
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2.5  Insider Breach Problem and UCON  

The UCON model can be seen as a comprehensive model to limit opportunities for insider 

data breaches prior to access being granted and after it has been granted, but it does not 

support the early warning and response process during ongoing insider usage. The aim of this 

process is effective early detection, warn against insider breaches, delay, suspend, and 

interrupt insider attacks in order to mitigate and counter insider breaches. This early warning 

and response approach must depend on insider breach scenarios, including access patterns 

and timing constraints.  

 

Although UCON can be a model that is well suited with respect to the insider breach 

problem supporting continuous monitoring after the access has been granted, it has not 

completely solved the insider breach problem in a dynamic software system environment. 

The UCON models uses binary access control decisions, namely continue access or revoke, 

during ongoing usage, but the emphasis is on detecting, monitoring, and preventing insider 

actions. This is insufficient for dealing with insiders who pose different levels of risk. In 

particular, using revocation alone to interrupt insider activity is not suitable for dynamic 

software environments, where insider behaviour may dynamically change based on intent and 

context. This is a strong decision that might be a false alarm. Hence, to interrupt insider 

activity, there is a need to support multiple policy decisions at different risk levels and adapt 

dynamically to new situations. 

 

Developing an adaptive mechanism to address insider breaches that is compatible with 

a dynamic software system environment is a very challenging task. The system must be able 

to adapt its behaviour based on insider scenarios that are continuously changing. Thus, it 

must respond to changes in the severity level of insider access according to different 

scenarios of insider breaches if it is to enforce adaptive response actions.  For that reason, a 

security system that is utilised in a dynamic software system environment in order to enforce 

adaptive response actions should accordingly be policy-based. We believe that it is important 

to specify a well-defined policy that explicitly defines insider breach scenarios. Policies of 

UCON must comply with the organisation’s acceptable usage policy and data protection 

regulations and support dynamic adaptation. 
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2.6 Policy Based Management  

As business and security requirements and legal regulations are always changing, 

administrators need to review and adapt policies periodically to reflect the evolution of 

changes. Policy-based management [12], [90] separates between policy specifications 

(security requirements) and enforcement mechanisms of the system (functional 

requirements), which interpret and enforce these polices on the system. This separation of 

concern allows policies to evolve dynamically to reflect system changes without the need to 

re-implement the system. The adaptability of this scalable approach is essential in large-scale, 

dynamic environments, such as governments or health bodies. 

 

Policy specifications, as specified in the policy language, constrain the usage of the 

resource, while the enforcement mechanism interprets the policy specifications to influence 

the system behaviour. In other words, the policy rules of the policy language are typically 

specified in the paradigm of ECA in order to determine the actions to be taken by the 

enforcement mechanism.  The mechanism makes an interaction between the policy 

specifications and the system behaviour in order to ensure the consistency of these polices 

with the functional behaviour of system. Therefore, the development process of the policy-

based management systems should deal with not only the policy languages, but also the 

ability to analyse their behaviours and check system properties [12]. Also, it is important that 

policy specifications and enforcement mechanisms go hand-in-hand when developing any 

system, and this is extremely important and difficult when developing concurrent systems 

with reactive and timing characteristics.  

 

 It is important to understand the types of policies that can be enforced in order to 

facilitate their enforcement. Security policies can be in the form of access-control policies or 

in the form of usage policies governed by the organisation’s acceptable use policy and data 

protection regulations [13]. Most policy languages that have been developed are recognised 

within the area of access control, but there is a lack of languages governing UCON. Some 

concentrate on specification of privacy policies, such as P3P [26] and EPAL [9], which solve 

only one part of the data protection problem, where they control who can access what data for 
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which purpose, but not how the data are used, once accessed. Other policy languages are 

based on access control, such as Ponder [29] and XACML [70] that lack formal semantics.  

 

 To increase confidence in the policy language, it is important to be based on a formal 

model. In security-critical systems that must protect a huge amount of privacy-critical data 

(e.g., e-government), it is crucial that the policy language has a sound formalism to enable the 

analysis of system properties, such as safety and liveness, and to detect and resolve conflicts 

between policies [12]. Additionally, the formal basis of a policy language plays an essential 

role in association with a particular enforcement mechanism model in comprehending the 

behaviour of the overall system to ensure compliance. The choice of formalism depends on 

the expressiveness of the language and the computational model of the system on which the 

language is based [48]. 

 

In some existing policy models, such as conventional access control, policy decisions 

are “static” (i.e., policy changes are triggered due to human intervention).  Hence, they do not 

depend on the system state and changes have no dependency on time or occurrence of events. 

An example of such static policies is RBAC [86].  

 

It is ideal for policies to be stateful (i.e., the policy decisions depend on the current 

system state and can adapt dynamically depending on changes in the system state). Some 

policy models require that policy decisions depend on the current and past behaviour of the 

system. That provides the ability to be more expressive than other policy models to describe 

complex policies. Examples of such stateful models are history-based access control models 

[1] including the policy languages Chinese Wall Policy [20] and SANTA [46], [89] as well as 

the mutable attributes [77] in UCON. This leads us to the notion of dynamic policies [48].  

 

 The dynamic policy can be expressed by stateful models in which policies can be 

adapted dynamically in response to the occurrence of events or depending on time. Hence, in 

the case of the occurrence of a particular event or a specified time period that has elapsed 

new policies will be adopted and enforced changing the existing ones. This is crucial in order 

to deal with insider breaches in dynamic software systems with sensitive personal data, such 
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as e-government, where the insider behaviour depends on time and events. Additionally, 

through timing-dependent policies this will allow efficient enforcement of policies at run-

time.   

 

2.7 Summary  

In this chapter, we presented background regarding the nature of the insider breach problem 

by discussing the definitions of insider, insider threats, and the distinction between different 

types of insider breaches. A comparison between some existing approaches of protection 

from insider threats in terms of dynamic adaptation and timing constraints are made. We then 

investigated the usage control model (UCON), which is considered a comprehensive model 

that controls previous, ongoing, and subsequent resource usage. We described the differences 

between some existing approaches to formalising this model and their limitations. We 

identified the UCON model as a suitable model to address the insider breach problem. 

Finally, we gave an overview of the policy-based management approach by examining 

existing policy models, stateful and dynamic policies, and the crucial role that formal 

semantics of policy languages can play to enable the analysis of system properties and to 

detect and resolve conflicts between policies.  

 

In the following chapter, we propose an adaptive early warning and response system 

architecture and computational model of this system. 
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Chapter 3: Adaptive Early Warning and 

Response System Architecture and 

Computational Model 

 

 

 

 

Objectives 

- Present the architecture of the extended UCON 

- Describe the computational model for AEWRS  
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3.1 Introduction  

In this chapter, we present a comprehensive approach that extends the traditional UCON 

model [76] to include interrupt policy decisions to prevent insider breaches. Interrupt policy 

decisions are proactive decisions at graded risk levels which can be dynamically adapted 

following an early warning to interrupt insider activity. The objective of this chapter is to 

incorporate the adaptive early warning and response processes into a usage control model. 

Rather than the binary access control decisions used by UCON during the ongoing usage to 

either continue access or revoke the user, our approach supports multiple proactive and 

reactive decisions. This mitigates and limits the consequences of insider breaches, or may 

prevent many insider activities before an actual attack takes place. The approach ensures the 

continuous monitoring of insider normal operations with early warning enabled, minimal 

human intervention, and protection from insider breaches in a timely manner. 

 

We propose an extended UCON architecture that supports interrupt policy decisions. 

The main feature of the architecture is the incorporation of the interrupt policy decisions into 

the ongoing control to provide two layers of protection from insider breaches. 

 

The computational model of AEWRS for a real information system is now presented. 

Building on policy-based management, we model the abstraction of the enforcement 

mechanism for the AEWRS system as regulated by the policy rules that determine the policy 

decision-making behaviour. Thus, the model describes a link between the policy rules and the 

system behaviour of AEWRS. The computational model is depicted in the form of a 

statechart [41], extending the model of Janicke et al. [47] that supports concurrency. The 

proposed model demonstrates the concurrent behaviour of a real adaptive early warning and 

response system. The model allows for the dynamic adaptation of policies according to the 

occurrence of events/actions and the passage of time. 

  

Section  3.2 presents the extended UCON architecture and defines its components. An 

informal description of the computational model on which the policy specifications are based 

is presented in Section 3.3, along with a formal specification as a statechart in the context of 

policy decision-making and enforcement.  
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3.2 Architecture 

In this section, we explain the extended UCON architecture that supports interrupt policy 

decisions (Figure 3.1). We define each component in the architecture, and highlight the usage 

decision component and the interrupt policy decision component. The two dashed ovals 

indicate that usage decisions occur continuously before and during usage, whereas interrupt 

policy decisions only happen during usage. The architecture provides a comprehensive 

approach which incorporates the usage decision (Section 3.2.1) to determine the access 

control rights with the interrupt policy decision (Section 3.2.2) to early warn, delay, suspend 

and respond to the insider breaches. That provides two layers of defence from insider 

breaches including both prevention through access control and protection through early 

warning, detection and response [45]. In this thesis, policies are history-based with the ability 

to express the descriptions of behaviours without the need to use mutable attributes. 

 

The following subsections explain the functions of the two main components. 

 

3.2.1  Usage Decision  

This component operates as in UCON, determining whether to allow or deny access rights 

based on authorisation, obligation, and condition components [76]: 

 

- Authorisation: Authorisation is a key functional requirement that must be fulfilled 

before allowing a particular right of access to a digital object. Authorisation must be 

evaluated both before and during access. 

 

- Obligation: Obligation is used to confirm the mandatory requirements that a subject 

must undertake both before and during a particular usage process. These mandatory 

requirements may have to be fulfilled before access is allowed or during access. 

 

- Conditions: Conditions are environmental constraints that must be considered in the 

process of usage decisions. Conditions are not directly related to objects or subjects, 

but are based on environmental attributes. The evaluation of these conditions may 
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take place before allowing permission to access a digital object, or while the subject is 

using the object.  

 

- Rights: Rights are privileges held by a subject that can be used on an object. The 

subject must fulfil the required authorisations, obligations, and conditions to be 

allowed to access the object.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3. AEWRS MODEL 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Architecture of the extended UCON 
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3.2.2  Interrupt Policy Decisions  

Interrupt policy decisions determine what interrupt response actions will be executed 

depending on the level of early warning. These decisions are based on the policy decision-

making and enforcement process, where policies must be enforced on the system depending 

on the level of early warning. The early warning level defines the system state that has been 

determined on the basis of prior insider behaviour. Certain guards are implemented when an 

early warning action is triggered. These are known as interrupt policy decisions, because they 

are used to interrupt the insider activity during ongoing usage when an early warning level is 

operational. Our approach allows for the dynamic adaptation of policies according to both the 

occurrence of events/actions and the passage of time.  

 

3.2.2.1 Early warning levels 

The early warning levels are determined by the early warning level actions in the policy rules. 

The policy rules are specified in the Event-Condition-Actions (ECA) paradigm in order to 

determine which actions are to trigger the enforcement mechanism. The insider breach 

scenario detected by AEWRS triggers the corresponding early warning level action specified 

in the policy rules. When triggered, that action causes the early warning guard to become 

“true”. The early warning level action corresponding to a policy rule distinguishes the 

different early warning risk levels. These actions determine different risk levels: high, 

medium, low, or very low.  

 

To signal a particular early warning level, we use the access history matching past insider 

behaviour (Chapter 4). The access history is expressed in the privacy breach scenario of the 

early warning policy rules using our PBSL specification.  

 

1. Very Low Early Warning Level  

 

This level is determined by the very low early warning policy action of the 

corresponding policy rule. This very low early warning rule is triggered by a breach 

scenario at a very low level. This implies there is a small chance of insider breach, 

and that the threat of this potential suspicious activity would not affect the 
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information asset, as the insider behaviour is of very low risk. The system should be 

aware of this very low risk activity, as the insider behaviour may change to higher-

risk activities in the future. 

 

2. Low Early Warning Level 

 

This level is determined by the low early warning action of the corresponding policy 

rule. This low early warning policy rule is triggered by a low-level breach scenario, 

which implies that there is a chance of insider breaches that could potentially affect 

sensitive personal information assets. This suspicious activity requires a proactive 

response action. Therefore, the system investigates this activity, and conducts real-

time monitoring of ongoing usage. This allows for a reactive response if the risk level 

increases to medium or high. 

 

3. Medium Early Warning Level 

 

This level is determined by the medium early warning action of the corresponding 

policy rule. The medium early warning policy rule is triggered by a breach scenario at 

a medium level, implying an increased likelihood of a malicious insider breach that 

could potentially damage or disclose sensitive personal information assets. The 

system must respond proactively to this potential malicious activity, protecting the 

asset from the most serious impacts of an insider breach. 

 

4. High Early Warning Level 

 

This level is determined by the high early warning action of the corresponding policy 

rule. The high early warning policy rule is triggered by a high-level breach scenario, 

signifying that a direct and malicious insider breach has been detected. The system 

must immediately take the most strict response actions to protect sensitive personal 

information assets from the critical impact of an insider breach. 
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3.2.2.2 Interrupt Response Actions 

An interrupt response action must be performed when an early warning level has been 

triggered, with the aim of responding to insider breaches in a timely manner. In other words, 

the interrupt response action is governed by an early warning level guard that must be 

conditionally executed when the guard is true.   

 

There are four categories of response actions, one for each level of early warning. These are 

described as follows: 

 

1. Response action based on Very Low Early Warning  

 

If the AEWRS detects an insider scenario at a very low early warning level, then the 

very low early warning guard would hold. This triggers the skip response action, in 

which the request is executed after one time unit, and the system skips to the user’s 

normal mode of operation. There is no clear indication that the insider was misusing 

the information asset; thus, this response could also be used for false positives (false 

alarms). Although the request is executed, the action is logged.  

 

2. Response action based on Low Early Warning  

 

If the AEWRS detects an insider scenario at a low early warning level, then the low 

early warning guard is evaluated to true. Consequently, a response action is triggered 

that delays access for a period of time. This slows the insider’s progress by increasing 

the insider’s activity time. In addition, this increases the probability of early detection 

of insider breaches (with fewer false alarms) if subsequent investigation is carried out 

during the delay period of time. Further, the user can initiate other requests as part of 

the current usage process.  

 

Delay action can be more affective when allowing timely intervention by the system 

administrator following the early warning to investigate the incident within the delay 

period and respond in a timely manner to prevent the breach. If the system 
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administrator has been notified of insider activity, and detects that this is a direct 

breach within some duration t, then he/she can make an early decision and take 

stricter response actions within the delay duration. Otherwise, in the case of a timeout, 

the system automatically reverts to the user’s normal operation.  

 

In the case of further interrupts at higher early warning levels, namely medium or 

high under the continuous monitoring, the system takes a stricter response action, 

such as suspending operations while waiting for an answer from the user or 

automatically aborting operations by interrupting the delay period.  

 

3. Response action based on Medium Early Warning  

 

At the medium level, the system responds proactively by waiting for a user event to 

protect information assets from the potential high impact of an insider breach. If the 

AEWRS detects an insider privacy breach at the medium early warning level, the 

suspend response action is triggered, causing access to be suspended until some event 

occurs, e.g. an answer from the user, or the system times out. The main feature of this 

response is to suspend the insider activity, and impede the insider’s progress to get 

unauthorised access. The suspend action provides a stronger response than the delay 

action in a manner that it complicates the insiders progress by requiring him/her to use 

stronger mechanisms in order to gain access to the information assets within that 

suspension period. Within the suspension period, the user can neither initiate other 

requests within the current usage process nor initiate a new process. 

 

Using stronger mechanisms to complicate the insider’s progress within the suspension 

period can be developed. For example, the system challenges the user by asking for 

re-authentication to check whether they have legitimate authorisation to access the 

information assets they are trying to access. The system waits for t units of time for 

some event, such as an authentication decision, to occur. As soon as the event occurs, 

e.g. re-authentication is verified, the suspension period will be interrupted and the 

user’s normal operation resumed. If t time units elapse and no event, e.g. re-

authentication decision, has occurred or the event returns a “false” evaluation, e.g. re-
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authentication is not verified, and then the suspension period will be interrupted and 

automatically changed to an aborted decision to terminate the access.  

 

A suspend action can increase the likelihood of early detection of insider breaches if 

further investigation is carried out by the system administrator following the early 

warning within suspension period. The system can raise an alert to the system 

administrator requesting them to investigate the insider activity. If the system 

administrator detects that this activity is a direct breach within the suspension duration 

t and before any event occurs, then the administrator can take stricter response 

actions, such as aborting the operation, according to the level of severity and 

confidence of the insider breach. In AEWRS system, we do not describe such 

implementation details of any interactions between the system and the user 

throughout this thesis, as we leave them as an implementation decision. 

 

4. Response action based on High Early Warning 

 

This action disconnects the insider from the system, and immediately aborts the 

access process. If AEWRS determines that an insider privacy breach scenario is at the 

high early warning level, an abortive response action will be generated to interrupt the 

user’s normal operation. At this time, the user can neither initiate other requests 

within the current usage process, nor initiate a new usage process.  

 

Complex Response Actions 

 

Further complex response actions can be triggered within the delay or the suspension 

period. These allow two or more response actions to run in parallel or in sequence 

within the delay or suspend period. For example, once the very low early warning 

level is determined following some privacy breach scenario, the access process will 

be delayed while, in parallel, video surveillance monitoring is performed. In addition, 

an alert response action to the system administrator could be triggered after this delay, 

namely in sequence, to achieve further investigation and ensure awareness of the 

potential insider activity. Furthermore, triggering one response action may lead to 
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other response actions, such as delay leading to an alert. Examples of complex 

response actions within the delay period include an Alert and Video Surveillance, 

while examples of complex response actions within the suspension period include 

challenge questions and the use of stronger mechanisms such as multi-factor 

authentication. 

 

Complex response actions can be triggered based on the high early warning level. For 

example, once the very low early warning level is in operation, such as when bulk 

data is accessed, the skip action will be triggered. This does not do anything at that 

time. If the user has transferred the data by FTP or USB drive, which determines the 

high early warning level, then the user’s normal operation process will be interrupted 

and the data transmission will be blocked. Next (i.e. in sequence), the user’s session 

will be disconnected. Examples of complex response actions based on high early 

warning level are Disconnect, Block, and Block Data Transmission. However, in 

AEWRS, we do not include the details of complex response actions as they are out of 

scope for this thesis. 

 

3.3 Computational Model 

In this section, we present the computational model for AEWRS within a real information 

system. The abstract components of the system, their behaviour, and interactions are 

depicted. Building on policy-based management, we represent the abstraction of the 

enforcement mechanism model for the AEWRS system as regulated by the policy rules that 

determine the policy decision-making behaviour. Policy-based management separates the 

policy specifications and the enforcement mechanisms of the system. Policy specifications 

constrain the usage of the resource, while the enforcement mechanism interprets the policy 

specifications to influence the system behaviour. The policy rules in PBSL (Chapter 4) are 

specified in the ECA paradigm to determine which actions should trigger the enforcement 

mechanism. The computational model applies to the specification of the policies and policy 

enforcement to express multiple policy decisions at different risk levels during run-time and 

dynamically adapt policies to new situations. In particular, the model allows for the dynamic 

adaptation of policies according to the occurrence of events/actions and the passage of time. 
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The behaviour of the adaptive early warning and response controller (AEWRC) and 

its interaction with other system components are detailed in Figure 3.2 as a statechart. 

Statecharts are an extension of state transition diagrams (STDs) to support concurrency [41], 

and are widely used for the design of reactive systems [42]. The dashed line represents the 

concurrency of the system components. The nodes are referred to as states and the edges are 

referred to as transitions. The labels on the transitions are based on the form Trigger [Guard] 

/Action, where transition has taken once the trigger event occurs; if the guard condition 

evaluates to true, then the action is executed. If the insider breach scenario is detected by 

AEWRC, then the corresponding early warning level is triggered according to the policy 

rules. The outcome of the policy rules, namely early warning level, will affect the behaviour 

of the computational model by enabling the corresponding state transitions, namely interrupt 

response actions, changing the ongoing control and system states.   
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Figure 3.2 Computational model 
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The AEWRC policies in Figure 3.2 are stateful, i.e. they adapt dynamically depending 

on changes in the system state. The system state can be changed on the basis of the system 

triggers caused by a user accessing an object. As represented diagrammatically in Figure 3.3, 

the AEWRC can be in one of four states: Normal Operation, Delayed, Suspended, or 

Aborted. These states can be reached by interrupt policy decisions. Interrupt policy decisions 

determine what response actions to execute depending on the level of early warning and/or 

due to timeout, causing the controller state to change. Response actions depend on the effect 

of early warning policy rules, acting as a policy enforcement mechanism. The AEWRC 

enforcement mechanisms enforce policies on the system. The decisions of the policy rules 

depend on the insider breach scenario (access patterns and timing constraints) considered in 

the policy decision-making.  

To specify, animate, and verify the interrupt policy decisions, we represent the 

computational model for the AEWRC at two levels of abstraction. In Figure 3.3, the 

computational model for AEWRC is depicted at a lower level of abstraction. This displays an 

abstract representation of interrupt policy states which can be dynamically changed by certain 

response actions. The response actions cause a transition from the current state (precondition 

state) to the next state (postcondition state) when the early warning level guard is “true”. We 

support guarded enforcement to ensure mutual exclusion, where no conflicts can occur 

between two policies whose rules fire at the same time. The policy rules express the 

corresponding early warning actions for some insider privacy breaches through the PBSL 

(Chapter 4). Through our formal framework, the policy rules and enforcement mechanisms 

must be complete and free from conflicts with regard to system properties. The ability to 

verify these properties and ensure consistency between these high-level goals with low-level 

policy rules and enforcement mechanism behaviour is described in Chapter 7. 
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Figure 3.3 AEWRC 

 

An informal description of the three abstract components of the computational model in 

Figure 3.2 and a detailed description of AEWRC (Figure 3.3) are as follows:  

 

3.3.1  User model 

A user process is represented by a user. This process has three states: idle_user, waiting, and 

accessing. The initial state idle_user corresponds to the state in which the user process 

started. By raising the request event, the user process will enter the waiting state, where the 

request remains until either the access request is processed and reset or ready to execute. The 

accessing state lasts from when the user process starts accessing object until access is 

completed with the end event or access is interrupted with the abort event. 

 

3.3.2  AEWRC model  

The controller in Figure 3.2 is initially assumed to be in the idle_AEWRC state. Upon a 

request event being received, the controller enters the pre-check state, which represents the 

standard access control policy, in order to determine binary access control decisions. These 

decisions either allow or deny access, depending on the policy. When access is permitted, the 
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controller generates a permit event and enters the allowed state. The ready event is then 

generated to indicate that the actual access can take place. Otherwise, if access is denied, the 

deny event is generated, and the controller moves into the denied state. The accessing, on, 

and executing states then synchronise on ready event.  

 

Figure 3.3 represents the AEWRC model, where the response actions are guarded by 

the early warning levels. In the normal operation state, and when the guard medium early 

warning level—medium EWL—holds, the controller can suspend access, moving into the 

suspended state and wait, which causes the access to cease until an event or a timeout occurs. 

When an event occurs, access is resumed by raising a resume event and returning to the 

normal operation state. Otherwise, an abort event is generated if no suitable event occurs 

within the suspension period or the system times out. On the other hand, when the guard low 

early warning level—low EWL—is true, the controller will raise a suspend event and move 

into the delayed state. The delayed state is a sleeping state that delays access for some period 

of time, and then resumes operation automatically by generating a resume event and moving 

into the normal operation state. In the normal operation state, the controller can raise an 

abort event that terminates the access when the guard high early warning level—high EWL—

holds. When the very low early warning level—vlow EWL —is evaluated as true, the skip 

event is generated. It is worth noting that this event, depicted as a dotted line, is just a null 

event. 

 

3.3.3  System model 

Access to objects is handled in the system process. It is assumed that the system is initially in 

the idle_SyS state. Once the ready event indicates that the access request can be executed, the 

system enters the executing state by generating an execute event. This synchronises the 

accessing and executing states during the access, although the specific behaviour of the user 

process and the system in these states is not explicitly defined. Upon a suspend event, the 

system process will move from the executing state into the waiting state until either a resume 

event moves it back to the executing state or an abort event moves the system to the idle_SyS 

state. The effects of suspend and resume events in the system are transparent to the user 

process, so they trigger changes in the system states and policy specifications. 
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          The computational model demonstrates the abstract concurrent behaviour of an 

AEWRS for a real information system, where concurrent data access requests can be handled 

prior to usage using access control decisions, and then once usage is allowed by both ongoing 

control and the system execution. 

3.4 Summary  

In this chapter, we presented an extended UCON architecture that supports interrupt policy 

decisions (Section  3.2). These multiple proactive policy decisions operate at different risk 

levels, and can be dynamically adapted to interrupt insider activity upon an early warning 

being triggered. This architecture provide a comprehensive approach  which incorporates  

usage control process to determine the access control rights with the adaptive early warning 

and response process to early warn, delay, suspend, and respond to the insider breaches. The 

main feature of the architecture is the incorporation of the interrupt policy decisions into the 

ongoing control to provide two layers of protection from the insider breaches.  

 

We then proposed an AEWRS computational model for a real information system in 

Section  3.3. The computational model was depicted in the form of a statechart. This 

demonstrated the concurrent behaviour of an AEWRS, where concurrent data access requests 

can be handled. Building on policy-based management, we represented the abstraction of the 

enforcement mechanism model for an AEWRS system regulated by the policy rules of PBSL 

to determine the policy decision-making behaviour. Thus, it describes a link between the 

policy rules and the system behaviour of AEWRS. The model showed how polices can be 

adapted dynamically over, both, the occurrence of events/actions and the passage of time. 

 

The following chapter describes PBSL, which is based on the computational model, 

and Chapter 5 presents the PBSL formal operational semantics. Chapter 6 formalises the 

enforcement mechanisms model, and Chapter 7 shows that these policy and enforcement 

mechanism specifications can be verified against the system properties. 
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Chapter 4: PBSL – Linguistic Support 

 

 

 

 

 

Objectives 

- Describe PBSL 

- Demonstrate the use of PBSL by examples 
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4.1 Introduction 

This chapter defines a privacy breach specification language (PBSL) based on the 

computational model defined in Chapter 3. The objective of this chapter is to specify privacy 

breach scenarios and the corresponding early warning levels in the form of policy rules. Rule-

based languages are common in event-driven systems, and particularly in active database 

systems such as SNOOP [24], SAMOS [36], and ODE [37], which typically follow the ECA 

paradigm. Under ECA, once an event occurs, if the condition evaluates to true, the action is 

executed. Based on ECA rules, our PBSL determines the actions to trigger the enforcement 

mechanism. The standard ECA language [78] has been extended with some constructs, event-

supporting patterns (e.g. sequence, parallel), and timing constraints, as discussed in detail 

throughout this chapter. 

 

Policy specification is the process of expressing what response actions are triggered 

when some detected privacy breach scenario triggers a certain early warning level. Policy 

rules form the basis of PBSL specifications. The specification of policy rules is one of the 

main challenges of capturing privacy breach behaviour, and allows for early warnings at run-

time. Privacy breach scenario refers to a combination of events with some associated 

contextual information which identify the potential insider privacy breach, while the 

corresponding early warning relates to the decisions resulting from the breach scenario.  

 

Ideally, a policy specification language should meet the following criteria: 

 

- Expressiveness: The language is able to express a wide range of complex events and 

timing constraints in a comprehensive scenario, and can clearly specify a wide range 

of complex policies from various application domains. 

 

- Formal semantics: The language is based on sound formal semantics. This formal 

underpinning ensures the system description behaves unambiguously, and allows for 

the analysis of the policy specifications and their enforcements and the verification of 

system properties such as safety and progress. 
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 Simplicity: The constructs of the language should have a simple meaning that have 

foundations in existing work. This makes the language readable (easy to understand) 

and writable (easy to specify).  

 

 Practicality: The language can be implemented using an efficient mechanism in a 

practical setting. 

 

This chapter gives a detailed description of PBSL. The syntax and informal descriptions 

are presented in Section  4.2. The chapter ends with some examples of common insider 

privacy breach scenarios in Section  4.3.  

 

4.2 Privacy Breach Specification Language 

In this section, we describe the PBSL constructs based on the computational model defined in 

Chapter 3. Policy rules are an integral part of the system specification. They can capture the 

access history and timing constraints in the privacy breach scenario using a high-level 

description of the system behaviour that triggers the corresponding early warning level.   The 

objective of PBSL is to specify privacy breach scenarios and the corresponding early warning 

levels. 

 

The PBSL proposed in this thesis is based on the well-known ECA language. In 

PBSL, an event is used to represent the detection of an insider privacy breach, while 

conditions are used to constrain the context associated with the privacy breach behaviour. 

Actions are used to model the corresponding early warning level. The early warning level is 

then used by the enforcement mechanism to enforce the policy in AEWRS.  

 

PBSL expresses privacy breach scenarios and the early warning level corresponding 

to the insider privacy breach and various timing constraints. To specify privacy breach 

scenarios composed of temporally related events, an event language is proposed that can 



CHAPTER 4. PBSL: LINGUISTIC SUPPORT 

66 

 

express complex events. To specify the relationship between events, sequence, disjunction, 

parallel, negation, and implication operators are used. The language can also specify 

repetition. To constrain the period of time in which events may occur, various timing 

constraints are proposed to specify the interval between two events and the duration of the 

privacy breach scenario.  

 

4.2.1  Policy Rules 

A policy rule expresses the response action for some insider privacy breach scenario. The 

rule consists of a privacy breach scenario and a corresponding early warning level. The 

privacy breach scenario describes a combination of events with some associated contextual 

information that, when detected by the AEWRC, trigger the corresponding early warning 

level. The action of a policy rule defines the early warning decision that triggers the 

enforcement mechanism of AEWRC. The corresponding early warning level of a rule 

distinguishes between different severity levels of the insider access. These early warnings can 

be high, medium, low, or very low level. 

 

Our policy rule takes the general form:  

 

PolicyRule  {                       }                             

 

PolicyRule   

 

{

                      
                                   

                   
 

}                                     

 

 

Where 

 

 PolicyRule is the keyword of the policy rule name which introduces the policy rule, 

followed by the privacy breach scenario in parentheses. The privacy breach scenario 
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is separated from the early warning level by an arrow,  . This arrow denotes the 

implication operator, leading to the corresponding early warning level, when a 

privacy breach scenario is detected. 

 

               is the combination of events that match the event history, under the 

keyword      . 

 

                        express the context associated with the event pattern in 

the privacy breach scenario, under the keyword          . 

 

                    is the temporal expression constraining when the event 

pattern happened, under the keyword          . 

 

                          is the early warning level triggered in response to the 

privacy breach scenario, under the keyword       . The early warning level L can be 

(high), (medium), (low), or (vlow).  

 

The policy rules describe which event patterns, attributes, and timing constraints must be 

true to trigger the action that signals an early warning level. This action causes the early 

warning guard EWL to become true in the computational model (Section  3.3), triggering the 

enforcement mechanism. Consequently, the enforcement mechanism influences the actual 

system state by triggering interrupt response actions which are guarded by the early warning 

level.  

 

PBSL rules express some high-level constructs, and neglect unnecessary details at the 

implementation level. Policy rules can express the current and past behaviour of the insider in 

the system, allowing complex events that match the event history to be expressed. The 

following subsections explain the syntax and informal descriptions of event patterns observed 

by the AEWRC. 
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4.2.1.1  Event patterns 

The notion of an event represents a change in the system. Events can be primitive or 

complex. Primitive events are instantaneous, i.e. they occur at a single point of time, within a 

context, and atomic, i.e. they cannot further broken up and occur completely or not. Complex 

events (also known as compound events) occur when multiple primitive events occur 

according to some event pattern. The complex events occur within a time interval rather than 

at a single point of time. 

 

The event pattern is characterised by the event type and order. Event types are 

captured in the privacy scenario of the policy rules, or as external events and timing events. 

The events captured in the privacy scenario refer to those that can be controlled by the 

system, and use the event description and context that trigger the policy rule.  External events 

are observable by AEWRC from external systems. Further, a timing event is an explicit clock 

tick.   

 

An Event is characterised by its name associated with a set of attributes. The event’s 

attributes can be related to the information about the event itself, such the object and 

command name; or related to the contextual information relevant to the event, such as the 

session number. These attributes are constrained by the condition components of PBSL 

policy rule. To capture the event’s attributes, variables are bound to the structural and 

contextual information about the event, which can be utilised in the condition component of 

PBSL  4.2.1.2. 

 

A privacy breach scenario is expressed by a combination of events and the contexts that 

trigger the policy rule. Table 4.1 defines the syntax of the event pattern, and then the notation 

is described, where: 

 

- H = {  ,   , ...,  } : history of events.   

- Each event     may carry attributes. 

-    .       denotes the value of the attribute       of an event   . 

-   
  :     ×    .         {true, false}, where n is the number of occurrences. 
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- t, n ≥1. 

Table 4.1 Syntax of PBSL: event Patterns 

Construct Description 

   
  Repetition (number of occurrences) 

      t Happens at a particular point of time 

         Sequence of events 

          Events in parallel 

         Alternative events 

      Absence of event 

    →     Implication of events 

 

Basic event constructs 

An informal description of the basic event constructs is as follows: 

 

        .        . time =t 

This represents an event    happens at a particular point of time t. 

 

           

This scenario is the combination of consecutive events. The instances of events must 

be specified in the scenario in the order they occur.         starts with event     and is 

followed by event    . 

 

For example,                                       . 
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This is a parallel scenario. It represents a combination of events which happen at the 

same time, i.e. the events have identical occurrence times.           means that events 

    and     happen simultaneously. 

 

          ≜                                      

This describes alternative events. This scenario is detected when     or      happens. 

 

       ≜         

That refers to the absence or non-occurrence of an event during the interval in which a 

sequence of two or more events occurs. For example,                    denotes that 

event     does not happen during the period when events     and     happen. This 

implies that, if      happens in the context of a complex event (namely           ), the 

privacy breach scenario is incomplete. The absence operator   is usually used with 

any order operator   (a derived event construct). 

 

For example,                                      –               . 

 

 

Derived Event Constructs 

Some derived event constructs are as follows:  

 

   
  ≜   

         

This denotes that event     must happen n times for the scenario to be detected. 

 

For example,                   . 
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     ≜       ≥  1     

        ) 

This denotes that event     must happen a minimum of n times for the scenario to be 

detected. 

 

       
                ≥  1     

        )  

This denotes that event     must happen a maximum of m times for the scenario to be 

detected.  

 

    
                ≥  1     

           ) 

This denotes that event     must happen between a minimum of n times and a 

maximum of m times for the scenario to be correct and complete.  

 

            (            (                       

This scenario is composed of two or more events that can happen in any order (i.e. the 

order is not essential). The scenario is detected when both     and     happen. 

However,     and     may happen concurrently. 

 

     →                   

This denotes that event    implies that another event    happens. 

 

When the events are detected, certain conditions need to be evaluated, as described in 

the following subsection.  

 

4.2.1.2 Attributes Constraints 

Attributes constraints are used to constrain the events and their contexts that should occur in 

the privacy breach scenario of the policy rule. Attributes constraints are Boolean expressions. 

They can be defined using comparison operators either on the attributes of one event or on 

attributes of multiple events belonging to the same scenario, or can be defined using 
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predicates. The constraints that need to be evaluated are restricted to the policy rules of those 

events that have occurred. 

 

Every event has domains of event attributes that define which variables apply to each 

event. The domain represents the sets of variables. The event pattern often applies to the 

same domain of event attributes. The following table explains the syntax and informal 

descriptions of attributes constraints. 

                              . 

 

Table 4.2 Syntax of PBSL: Attributes Constraints 

 

 v   x      .         x  

This denotes the relationship between a variable or an attribute and a constant for the 

current event from the same domain of event attribute names. The attributes of an 

event are prefixed with the event type and a dot.  

 

  v1   v2      .      =    .       

This denotes the relationship between variables or attributes for historic events 

including two or more from the same domain of event attribute names. This compares 

Construct Description 

                     v   x ~   {<, ≤, >, ≥,=,<>, in}, v   Var, x is a 

constant 

v1   v2 ~  { =,<>}, v1   Var and v2    Var 

                Predicate for history of events from 

different domains 

        Complex constraints, 

  ,    are two Boolean expressions 
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an event in the current state with previously observed events. The attribute of the 

event is prefixed with the event name and a dot. 

 

           ≜                  

This predicate denotes the relationships between variables or attributes for historic 

events from different domains of event attribute names. This predicate might be used 

as an alternative way to relate attributes or variables in the same domain. The attribute 

of the event can be prefixed with the event name and a dot. 

 

                                  

 

         ≜                             

This denotes complex attributes, predicate, or timing constraints expressed in 

combination as Boolean expressions.  

 

4.2.1.3  Timing Constraints 

To constrain the period of time within which events may occur, timing constraints have been 

introduced in PBSL. Under these constraints, we can specify the breach scenarios that may 

occur during the ongoing usages. These constraints imply that events must occur within a 

number of clock time units, as a time interval (i.e. time period between two events) or the 

duration of a scenario. The following defines the syntactic elements of the timing constraints 

together with their informal descriptions. 
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Table 4.3 Syntax of PBSL: Timing Constraints 

Construct Description 

             

 

Time period within which the event patterns 

can happen  

                          Minimum and maximum interval between 

two events 

            Wait duration within which an action of a 

policy rule must be triggered 

                  

 

Event happens earlier than a particular time 

                      

 

Multiple times periodically 

 

              

This represents the time period d within which the event pattern can happen from the 

start of a scenario. 

For example, {

         
 

                         
 
 

}    states that    must happen n times 

within the duration of 180 units for the scenario to be detected. 

 

                       

This denotes the minimum       and maximum       time period between two events, 

per scenario.  

 

For example,                               states that     is followed by      when the 

time interval is between    and and180 time units. 
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This represents the time period d within which an action of a policy rule must be 

triggered.  

For example, {

         
 

                      
 
 

} . 

 

                

This represents a period that starts relatively earlier than a particular time t at which 

    happens.  

 

For example,                       states that         event happens after the time 

period of 180 time units has passed. 

 

                   

 

This describes an interval that happens periodically (i.e. every t time units) between 

events     and   . 

 

For example,                            states that it happens every 30 time units 

(periodic time interval) after          happens until         happens.  

 

The formal semantics of the timing constraints are described in the next chapter. 

 

4.2.1.4  Early Warning Actions 

Early warning actions represent operations that must be triggered once a privacy breach 

scenario has been detected. At the syntax level, the action is to signal an early warning level. 

The outcome of this action is taken by the enforcement mechanism of AEWRC. 



CHAPTER 4. PBSL: LINGUISTIC SUPPORT 

76 

 

  

Table 4.4 Syntax of PBSL: Early Warning Actions 

Construct Description 

                                  ,       ,    ,      

 

 

                           

This action signals an early warning level when a privacy breach scenario is satisfied. 

The early warning action is followed by an argument L to denote the High, Medium, 

Low, or Very Low level, using the keywords (    ), (      ), (   ), and 

(    ), respectively.  

 

4.3 Some examples of PBSL usage 

This section provides illustrative examples of PBSL specifications with regard to some real-

world situations and examples of insider privacy breaches. These examples have been chosen 

based on the categories of insider privacy breach scenarios in Section 2.2.3.4.1 (Chapter 2). 

These include data theft, masquerading, data inference, access for unauthorised purposes, and 

access without consent. We informally describe the syntactic elements of PBSL using such 

examples. Some of these will be utilised in our case study evaluation in a subsequent chapter.  

 

4.3.1  Example 1 (Data theft) 

 

Insider Breach Scenario: An organisation is vulnerable to an ‘operator’ who wishes to 

commit an identity theft. The operator could submit a query to get the ‘phone’, ‘age’, and ‘ 

income’ details of ‘tax payers’ with an ‘age’ of, for example, 65 and an ‘income’ of more 

than £1 million [97]. The insider privacy breach happens only during normal working hours 

(between 09:00 and 17:00), as the operator is not allowed to work outside these hours. The 

http://en.wikipedia.org/wiki/Pound_sign
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breach happens when the number of records accessed exceeds 100, and the duration of this 

scenario is no more than 180 time units. 

 

PolicyRule_DataTheft_1   

 

{
 
 
 
 
 

 
 
 
 
 

                                                  

                                    

                                          

                              

                                  

                                                                       

                   
             

 }
 
 
 
 
 

 
 
 
 
 

   

        :                             

 

In the above policy rule, the privacy breach scenario is represented by the event 

              and a set of conditions and timing constraints, leading to the determination 

of the very low early warning level.  

 

A further possible privacy breach scenario could occur when the              event 

(i.e. user transfers data by FTP) is executed after the               event by the same user 

on the same object within the same session. This would lead to a high early warning signal 

according to the following policy rule: 

 

PolicyRule_DataTheft_2    

{
 
 
 
 
 

 
 
 
 
 

                                                    

                                            
  

                                                                                            

                                                                    

                                            

                                         
                                             

                                                                        

                              
 }

 
 
 
 
 

 
 
 
 
 

   

        :                             
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4.3.2 Example 2 (Masquerading) 

 

Insider Breach Scenario: An organisation’s acceptable usage policy states that users are not 

allowed to access an object using two simultaneous connections. Consider a user who logs in 

to the system to perform routine duties by accessing an object. A breach scenario occurs 

when another person in another place uses the same user account and password to login to the 

system and access the same object the actual user is authorised to access. The breach happens 

when two people use the same login credentials from different machines and access the same 

object at the same time outside of working hours (17:00–08:00). 

 

PolicyRule_Masquerading_1  

{
 
 
 
 

 
 
 
 

 

                                                  

                                          

                                                                       

                                                         

                                   

                 

                                                       }
 
 
 
 

 
 
 
 

 

        :                             

 

In the above policy rule, the privacy breach scenario represents two events         and 

        that can be distinguished by comparing their attributes, such as the session, object, 

and user. For instance,                        means that the IPs of the two events are not 

the same,                            refers to using the same user credentials, and 

                               denotes that the same object is being accessed. 

 

A further insider scenario might include the object being updated by one of the users 

as follows: 
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PolicyRule_Masquerading_2  

{
 
 
 
 

 
 
 
 

 
                                                  

                                                                      

                                                                      
                                                         

                                                              
                                                        

                

                                                       }
 
 
 
 

 
 
 
 

 

        :                                

 

4.3.3 Example 3 (Inference) 

 

Insider Breach Scenario: An organisation’s acceptable usage policy states that Human 

Resource employees are authorised to access employee-related objects (O1, O2, O3) 

separately, but cannot access them combined (i.e. full details of an employee). The insider 

privacy breach happens when he/she tries to access the objects separately in order to deduce 

the full details of an employee. The interval between two events is less 60 time units. 

 

PolicyRule_DataInference   

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                                            

                                                         

                 

                                      

                                                                                           
                                                                      

                                                                              
                                                                    

                                 

                
                                                     

                                                     

                                                     
 }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

        :                               

 

This above scenario states that the user is permitted to perform his activities, as the 

AEWRC can check the authorisation of the request depending on the outcome of the allowed 

state (ready event) in the pre-check state (see the computational model, Figure 3.2). 
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Therefore, we make use of the effect of this decision in our language by specifying the 

predicate                                                      . Upon satisfying the 

above scenario, this rule will be fired, triggering the medium early warning level 

                             .  

 

4.3.4 Example 4 (Access for unauthorised purposes) 

 

Insider Breach Scenario 1: a data protection code states that a particular object (e.g. credit 

card number) can only be accessed for auditing purposes. We assume that the object has been 

accessed by at least two users with the same role. The privacy breach occurs when the first 

access request has been performed for the purposes of auditing, followed by an access request 

for marketing purposes. The duration of the scenario is 8 time units.  

 

PolicyRule_MultipleAccessforData   

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
                                                            

                                                            

                                                          

                                                                    
                                                                                

                                                                                       
                                                                           

                                                                                                     
                                                                                    

                              

                                                                       

                                                                       }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

         :                               

 

Insider Breach Scenario 2: a data protection code states that an object (e.g. credit card 

number) can only be accessed for the same purpose as that for which that the object was 

collected. The privacy breach occurs if the object has been accessed by a user for a purpose 

which is different from that associated with previous accesses by the same user. The duration 

of this scenario is 10 time units. 
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PolicyRule_AccessforDifferentPurposes  

{
  
 

  
 

 
                                              

                                     

                                                                             
                                                  

                                                                       }
  
 

  
 

 

         :                             

 

4.3.5 Example 5 (Access for a purpose without having a consent) 

 

Insider Breach Scenario: a data protection code states that a particular object (e.g. VIP 

patient data) can only be accessed if the access is compatible with specific purpose for which 

the object have been collected and accessed and if the data subject has consented to access. 

The privacy breach occurs when the object is accessed for the specified purpose, but the user 

has not been given consent by the data subject.  

 

PolicyRule_VIPSnooping  

{
 
 
 
 

 
 
 
 

 
 

      (                                                                                  ) 

                                         

                                                                                        
                                                                             

                                                                 
                                  }

 
 
 
 

 
 
 
 

  

        :                              

 

4.4 Summary  

This chapter introduced PBSL, which is based on the computational model in Chapter 3. The 

syntax of the language and its informal descriptions were presented in Section  4.2. Within the 

language, privacy breach scenarios and the early warning level corresponding to the insider 

privacy breach and various timing constraints can be specified in a unified manner in the 

form of policy rules. The main features of PBSL are its expressiveness, simplicity, 

practicality, and formal semantics. Thus, PBSL provides an expressive specification language 

that allows actions to be specified together with insider privacy scenarios in an integrated 



CHAPTER 4. PBSL: LINGUISTIC SUPPORT 

82 

 

manner. A variety of insider privacy behaviours can be represented within a comprehensive 

specification using various event patterns and timing constraints. That ability to express 

history-based behaviours using a high-level description in our specification language 

removed the necessity to use the notion of mutable attributes in UCON. This increases the 

likelihood of early detection of insider breaches with fewer false alarms. 

 

PBSL policy specifications are based on ECA rules. The standard ECA rules have 

been extended with various constructs, event-supporting patterns, and timing constraints. In 

our context, events are used to express patterns that contribute to a privacy breach scenario, 

while conditions are used to express the attributes constraints and timing constraints related 

to the breach scenario. Actions trigger the corresponding early warning level once a privacy 

breach scenario has been satisfied. This early warning action is to trigger an enforcement 

mechanism that will be explained in Chapter 6. 

 

In Section  4.3, some examples of PBSL specifications were provided to demonstrate 

the use of the language. These included data theft, masquerading, data inference, access for 

unauthorised purposes, and access without consent. 

 

The formal semantics of the policy language are represented in the next chapter using 

LTS with the FLTL formalism, where the language contracts can be animated using a support 

tool. The policy enforcement is discussed in a later chapter, facilitating the concurrent 

enforcement of policies on AEWRS.  
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Chapter 5: PBSL – Formal Semantics  

 

 

 

 

 

 

Objectives 

- Give an overview of LTS and FLTL 

- Provide the formal semantics of PBSL in LTS and FLTL 
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5.1 Introduction 

To increase confidence in PBSL, it is important to define its formal semantics. This will add 

rigour to the use of language, describe its constructs unambiguously, allow the animation of 

our specifications, and verify the properties of the system. However, some existing policy 

specification languages lack formal semantics, e.g. EPAL [9] and XACML [70]. In security-

critical systems that must protect a huge amount of privacy-critical data (e.g. e-government), 

it is crucial that the policy language has a sound formalism to enable the analysis of system 

properties such as safety and liveness, and to detect and resolve conflicts between policies. 

Additionally, the formal basis of a policy language plays a significant role, in association 

with a particular enforcement mechanism model, in understanding the behaviour of the 

overall system to ensure compliance.   

 

There are three general approaches to represent the formal semantics of a specification 

language [43], [74]. These are as follows: 

 

1- Operational approach  

The meaning of a construct is interpreted as a series of computational steps of a 

machine. Thus, this is concerned with how the constructs can be executed. Common 

examples of operational semantics including process algebra are CSP 

(Communicating Sequential Processes) [44] and CCS (Calculus of Communicating 

Systems) [68]. 

 

2- Denotational approach  

The meaning of a construct is expressed by mathematical objects. Denotational 

semantics are exemplified by VDM (Vienna Development Method) [50] and the Z 

notation [93]. 

 

3- Property-based approach  

The meaning of a construct is specified by giving properties known as assertions. This 

approach uses axiomatic and algebraic semantics. Axiomatic semantics express partial 

properties (preconditions and postconditions) of the effect of the constructs. For 
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example, Larch [40] uses axiomatic semantics. Algebraic semantics use equations 

related to the properties of the system, such as in CafeOBJ [31]. 

 

It has been argued that not all formalisms can be classified as one of these three 

approaches [43], as the language may belong to a combination of approaches.  

 

The choice of semantics depends on our requirements. In this thesis, we should animate 

policies, and verify the system properties over the policy specifications supported by an 

animation and verification technique. In particular, our requirements for the formalism are to 

be able to express the notions of: 

 

 Events/actions.  

 Concurrency of execution. 

 Timing. 

 

To animate and analyse the policies using an executable formalism based on the above 

requirements, it is important for the formalism to be a timed event-based model according to 

PBSL. This type of semantics needs to be operational in nature and support our expressive 

language, including event patterns and timing constraints, to enable suitable animation and 

verification. In addition, transforming from high- to low-level policy rules (namely 

operational semantics) means the enforcement mechanism can understand the outcome of 

rules, so the policies can be enforced. For this reason, LTS and FLTL have been chosen as 

the underlying formalism for both PBSL and the enforcement mechanism models using the 

LTSA tool. LTS is used to graphically represent the components of PBSL as state machines 

based on a timed event-based model by LTSA. FLTL is used to specify the policy rules and 

the enforcement mechanism behaviour to generate the corresponding LTS by LTSA, and to 

verify the system properties. FLTL and LTS have been preferred over alternatives for the 

following reasons: (1) concurrency is a primitive construct; (2) to support our time-dependent 

and event-driven system; (3) the underlying computational model is depicted as a statechart, 

can be animated in LTS using LTSA; (4) asynchronous FLTL can be used by LTSA to 

express operational semantics for PBSL specifications and the enforcement model, and verify 
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both the event-based (namely quantitative temporal) and state-based (namely quantitative 

temporal) properties in our timed event-based model.  

 

This chapter is organised as follows. In Sections  5.2 and  5.3, we give an overview of LTS 

and FLTL. The formal semantics of PBSL are given in asynchronous FLTL and the 

corresponding LTS in Section  5.4.  

 

5.2 Labelled Transitions Systems (LTS) 

LTS represents a system as a set of concurrent components, where each component 

represents a set of states and transitions between these states. Each transition is labelled, and 

the label denotes an event that is observable by the system [62]. The overall system behaviour 

is obtained by composing each component of LTS in parallel to form the overall LTS, where 

the behaviour of all components is interleaved and synchronised on shared events [60]. 

 

A timed event-based model using LTS formalism denotes a discrete time model in 

which time passes by successive ticks of a system clock. Therefore, an explicit tick event is 

used in LTS to signal the regular ticks of the clock, where each component is synchronised 

according to the time [62], [59]. Timed LTS models need to be automatically checked by 

LTSA to ensure that the time is regularly progressing, i.e. it has no deadlocks and the tick 

event does not stop in any infinite execution [60]. 

 

The Finite State Processes (FSP) is a process algebra based input notation for LTSA 

to specify LTSs [62]. However, process algebra is widely used to model concurrent and 

distributed systems using the notions of events/actions and processes.  

 

5.3 Fluent Linear Temporal Logic (FLTL) 

FLTL is a formalism based on a linear temporal logic to specify state-based and event-based 

properties on event-based models using the notion of “fluent”. Fluents have been defined by 
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Miller and Shanahan [69] as “time-varying properties of the world”. A Fluent in FLTL can be 

either state-based or event-based. State-based Fluents are state predicates which can be either 

true if a set of initiating events occur, or false if a set of terminating events occur. The 

initiating and terminating events in the fluent definitions must be disjoint. These 

events/actions should be related to the events/actions used in the LTS model through LTSA. 

The definition of a state-based fluent is as follows: 

 

fluent Fl = <       ,       > initially             

where  

 Fl is the fluent name 

        is a set of initiating events 

        is a set of terminating events 

             is an initial value which can be true or false. It is false by default. 

 

For example, we assume a fluent FireAlarmWarning which states that the fire alarm 

is initially not in the warning state (i.e. FireAlarmWarning is initially false). Therefore, 

the fluent definition for the state-based FireAlarmWarning fluent is as follows: 

 

fluent FireAlarmWarning = <               ,             > 

initially       

 

This means that when the initiating event                occurs, the fluent 

FireAlarmWarning becomes true. When the terminating event               occurs, 

the fluent FireAlarmWarning becomes false.  

 

In contrast, event-based fluents signal the occurrence of an event. The definition of an 

event-based fluent is as follows: 
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e = ({e}, E – {e}) 

 

where 

 {e} is a set of initiating events 

 E – {e} is the set of terminating events, and E is the universe of events  

 

For example, the fluent definition for the event-based fluent                is as 

follows: 

 

              = ({              }, E – {               }) 

 

FLTL formulae can be expressed with logical and temporal operators [62]. The 

following table lists the logical operators and gives informal descriptions: 

 

Table 5.1 Syntax of FLTL: Logical operators 

Operator Description 

&& Conjunction (and) 

|| Disjunction (or) 

! Negation (not) 

-> Implication 

         <-> Equivalence 

 

 In the following table, the temporal operators of FLTL are presented with 

informal descriptions: 

 



CHAPTER 5. PBSL FORMAL SEMANTICS 

89 

 

Table 5.2 Syntax of FLTL: Temporal operators 

Operator Description 

X In the next time (next) 

[] Always in the future (always) 

<> At some time in the future (eventually) 

U At some time in the future until (strong until) 

         W Indefinitely or at some time in the future until 

(awaits or weak until) 

 

The following table lists the other constructs and gives informal descriptions: 

 

Table 5.3 Syntax of FLTL: Assertion and Ranges 

construct Description 

assert Assertion defines an FLTL property as an 

FLTL formulae 

forall conjunction of Fluents 

exists disjunction of Fluents 

 

 

The resulting LTS trace computed from asynchronous FLTL specifications constructs 

a Büchi automaton [38] using LTSA. To specify FLTL properties of a timed LTS with the 

aim of enforcing policies and avoiding policy conflicts, the standard FLTL assertions, known 

as a synchronous or standard temporal logic, must be translated to asynchronous FLTL 

assertions, known as asynchronous or metric temporal logic [54], [60]. The difference 

between the two assertions is that synchronous FLTL expresses properties on the sequence of 

system states observed at a fixed time rate, whereas asynchronous FLTL expresses properties 

on the sequence of system states observed after the occurrence of an event. In addition, 
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asynchronous FLTL can formalise bounded timing constraints, whereas synchronous FLTL 

cannot. This is very suitable to formalise our policies, which include timing constraints. The 

tick fluent is used with asynchronous FLTL to mark the beginning of each time unit [7], [59], 

[60]. In [59], the translation from synchronous FLTL to asynchronous FLTL was defined 

with using an explicit tick as follows: 

 

Tr([] P) =   [](tick -> Tr(P)) 

Tr(<> P) = <>(tick   Tr(P)) 

Tr(P U Q) = (tick -> Tr(P)) U (tick   Tr(Q)) 

Tr (X P) =  X(!tick W (tick   Tr(P))) 

 

where 

 (Tr: FLTLSync -> FLTLAsync) 

 

For example, we assume the synchronous FLTL []FireAlarmWarning means that 

FireAlarmWarning holds at each time unit. When translated to asynchronous FLTL, this 

becomes []( tick -> FireAlarmWarning), which means FireAlarmWarning 

holds after the occurrence of an event.  

 

The policy rules, enforcement mechanism behaviour, and system properties can be 

specified using asynchronous FLTL. The system properties will be expressed in terms of 

event-based properties for the AEWRS in order to verify the system properties on the policy 

and enforcement mechanism models. This is achieved in the verification chapter. In terms of 

the enforcement mechanism model, constraints on the behaviour of the enforcer are defined 

in the next chapter. We formally enforce the PBSL specifications at run-time based on the 

underlying computational model. Conflicts between the policy rules can be detected using the 

LTSA model checker. Having defined the timing constraints, the notion of a bounded time 

interval [7] is required to reason about policies that include timing constraints. These 

constraints are usually associated with privacy breach scenarios in our policies. The 
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following represent the resulting LTS trace semantics of PBSL constructs that are generated 

from asynchronous FLTL specifications using LTSA. 

 

5.4 Formal Semantics of PBSL  

As mentioned in the previous chapter, a PBSL policy rule consists of events, conditions, and 

actions. In this section, the formal semantics of these components will be represented in 

timed LTS using FLTL specifications. 

 

5.4.1 Event Patterns 

PBSL can express primitive and complex events. The complex events are composed of 

temporally related events. Therefore, sequences of events, events in parallel, repetition of an 

event, alternative events, and the absence of an event can all be expressed in PBSL.  

 

In this section, complex events are animated graphically as state machines in timed 

LTS, representing the order in which events happen. In addition, as our system is time-

dependent, our formalism uses an explicit tick event as a standard way to signal the passage 

of time. Two state-based fluents in FLTL are defined to denote the occurrence of an event 

since the last time unit as follows: 

 

fluent E1_Occurs = <e1, tick>                                       (1) 

fluent E2_Occurs = <e2, tick>                                       (2) 

  

where the fluent E1_Occurs (respectively E2_Occurs) fluent holds, when e1 

(respectively e2) has occurred, and terminates by the tick event. 

 

Using this tick event, we can specify the time when an event occurs, as well as timing 

constraints such as the interval between two events (Section  5.4.3). It is important to mention 
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that policies are enforced using the interleaving concurrency mode that would be observed in 

our LTS. This concurrent enforcement will be explained in Chapter 6. 

 

The formal semantics of the basic event constructs and some interesting derived 

constructs are as follows: 

 

Table 5.4 Formal Semantics of PBSL: Event patterns 

Name PBSL 

Sequence of 

events  

 

              1                 1       ck    1       ck          

(              ck                          1   t2   t3   t4)          

LTS ( Graphical Representation)   

 

 

Name PBSL 

Repetition of 

an event 

 

 

 

 

  
        1              

      1             1                 

 (     t3)      ck            ck            1   t2   t3   t4)      
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LTS ( Graphical Representation)  

n=2 

 

Name PBSL 

Events in 

Parallel 

                 1         1           1        ck   t1)                

LTS ( Graphical Representation)  

 

Name PBSL  

Alternative 

events 

                1      (      1        ck    1        ck           

((      1       ck    1        ck           1   t2 ))     

LTS ( Graphical Representation) 

       OR  
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Name PBSL 

Absence of an event 

 

               1    (              ck         

(tock    1         t1) 

LTS ( Graphical Representation) 

 

 

5.4.2 Attributes Constraints 

In PBSL, attributes constraints are used to constrain the events and the context associated 

with them. To express the attribute constraints using LTSA, variables need to be defined as 

parameterised fluents in FLTL, where the variable values are restricted to the range of the 

fluent parameter. In Table 5.5, the attributes constraints expression for the relationship 

between a variable and a constant v   x is transformed into a fluent-based expression, where 

a parameterised fluent V (i) records all values of the variable in the range R in which x is 

evaluated. In the case of the relationship between two variables, the attributes constraints 

expression v    v2 is transformed into a fluent-based expression in which two parameterised 

fluents are defined, and the comparison between the fluent parameters is evaluated. The 

predicate can be captured by a parameterised fluent with a combination of sets of parameters, 

where all variable values are applied.  
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Table 5.5 Formal Semantics of PBSL: Attribute Constraints 

Name PBSL FLTL (Textual 

Representation)   

Relationship between a 

variable and a constant 

 

v   x 

~   {<, ≤, >, ≥,=,<>} 

fluent V [i: R]= <,> 

exists[i: R] V (i) && (i 

~ x) 

~   {<, ≤, >, ≥,==,<>} 

Relationship between two 

variables 

v1 ~ v2 

~   {=,<>} 

fluent V1 [i: R1]= <,> 

fluent V2 [j: R2]=<,> 

 

exists[i: R1] [j: R2] (V1 

(i) && V2 (j)) && (i~j)  

~   {==,<>} 

Predicate           fluent P [i:V1]...[j:Vn]= 

<,> 

 

forall[i:V1]...[j:Vn] 

P(i,...,j)) 

 

5.4.3  Timing constraints 

Timing constraints have been introduced in PBSL to constrain the period of time within 

which events may occur. These constraints include the time interval (i.e. time period between 

two events) and the duration of a scenario (i.e. maximum period of time required for the 

breach scenario to complete). The following describes the semantics of the timing constraints. 

An explicit tick event is used in our formalism as a standard way of signalling the passage of 

time. For example, the interval is represented by the minimum and maximum number of 
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ticks. In the semantics of the interval, the scenario that includes the minimum and maximum 

number of ticks between the two events occurring is also represented. The formal semantics 

of some of the interesting timing constraints are as follows: 

 

Table 5.6 Formal Semantics of PBSL: Timing Constraints: Interval 

Name PBSL 

Interval                     ≜                                                     

    )           

LTS ( Graphical Representation)  

      = 3 ,      = 4 

 

Name PBSL 

Interval 

between two 

events   

 

 

 

 

                                ≜                    ;      
         ;     )     

                        )    
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LTS ( Graphical Representation)  

      = 1 ,      = 2 

 

      = 1 ,      = 3 

 

 

Table 5.7 Formal Semantics of PBSL: Timing Constraints: duration 

Name PBSL 

Duration 

of a 

breach 

scenario 

 

 

             

{

         
 

                       
 
 

}                                          
           

                                                                        

                  )) 



CHAPTER 5. PBSL FORMAL SEMANTICS 

98 

 

LTS ( Graphical Representation)    

d= 3 

 

 

5.4.4  Early Warning Actions 

As defined in Section  4.2.1.4, the early warning actions of PBSL represent an operation that 

must be triggered once a privacy breach scenario has been detected. The action determined 

by the scenario will make the early warning guard be evaluated as true (see computational 

model, Section  3.3). Once the guard (namely whether the level is High, Medium, Low, or 

Very Low) holds, an interrupt response action must be triggered during the ongoing usage, 

using guarded enforcement to ensure mutual exclusion. In the formal semantics, the guards 

are defined as state-based fluents in FLTL, where the fluent can be true when a certain early 

warning action occurs. These actions are related to the early warning actions used in the LTS 

model using LTSA. As an outcome of the policy rule, these fluents will be used in the 

enforcement rules to enforce the policies on AEWRS (Chapter 6).  

 

The formal semantics of the early warning actions are as follows: 

 

 

 



CHAPTER 5. PBSL FORMAL SEMANTICS 

99 

 

Table 5.8 Formal Semantics of PBSL: Early Warning Actions 

Name PBSL FLTL (Textual Representation)   

Signal 

Early 

Warning 

Level 

                         

        ,       ,    , 

     

fluent VerylowEarlyWarning = 

<signalVeryLowLevel, tick  > initially 1 

 

fluent LowEarlyWarning = <signalLowLevel, 

tick > 

 

fluent MediumEarlyWarning = 

<signalMediumLevel, tick> 

 

fluent HighEarlyWarning = <signalHighLevel, 

tick > 

 

5.4.5 Policy Rules 

The formal semantics for the components of PBSL have been presented in the previous 

sections. These components can be combined together to formally represent a policy rule. As 

defined in Chapter 4, the simple definition of the PBSL policy rule is as follows: 

 

PolicyRule  {                       }                              

 

A policy rule specifies the privacy breach scenario and the corresponding early 

warning level. The implication arrow in PBSL can be captured in FLTL using the operator (-

> X) or simply (->). The operator captures the dependency of the policy decision (namely 

early warning action) on the previous behaviour.  

 

 

 

[](tick && ( PrivacyBreachScenario && <DomPre>))  -> X(! tick W 

signal<level>EarlyWarning))                                            (1) 
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The intuition of the operator is that, whenever PrivacyBreachScenario holds on the 

left, it implies that signal<level>EarlyWarning has been triggered, provided that the 

domain precondition DomPre for this early warning action is true. The action of the rule 

denotes the type of early warning action <level> which has been signalled once the privacy 

breach is satisfied. The domain precondition for early warning action DomPre specifies the 

current state of the early warning level before the early warning action is triggered. The 

above expression uses a required trigger condition (ReqTrig) form in FLTL. This captures an 

obligation to perform the action [60].  

 

Each component of PBSL can be combined to form a policy rule in asynchronous 

FLTL. For instance, the formal representation of the policy rule of access for unauthorised 

purposes is illustrated below. To avoid the problem of state-explosion in LTS using LTSA, 

we abstract away implementation details with regard to any unnecessary attributes 

constraints.  

 

constraint PolicyRule_AccessforUnauthorisedPurpose =  

 Exists [i: Users1] [j: Objects1] [k: Commands1] [l: Purposes1]  [m: 

Users2] [n: Objects2] [o: Commands2] [p: Purposes2] (tick -> (((Access1 

(i,j,k,l)  &&  Access2 (m,n,o,p)) && ((i == m) && (j == n) && (k == o) &&  

(j <> p))) && (X((! tick && ! tick) && (X( ! tick && (X(! tick W 

MediumEarlyWarning)))W MediumEarlyWarning)))-> X(!tick W 

signalMediumLevel)))                                                  (2) 

 

The rule specified above represents a policy to monitor usage to identify access for 

unauthorised purposes and signal an early warning in such a case. It specifies that the 

medium early warning signal must be triggered once the same user accesses the same object 

twice and performs the same command, although the purpose associated with one access is 

different from that associated with the other access. The duration for the scenario that triggers 

the rule is 3 time units. When the signalMediumLevel action is triggered as the rule fires, 
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this would make the fluent (state) MediumEarlyWarning hold, as defined in Table 5.8 as an 

initiating action. At the same time, !MediumEarlyWarning (the domain precondition  for 

early warning action signalMediumLevel) must hold at the next third tick. This domain 

precondition states that signalMediumLevel action must not occur when it is already 

occurred. Therefore, it specifies the current state of the early warning level if it is not 

MediumEarlyWarning, which must hold before the early warning action 

signalMediumLevel is triggered. 

 

Consequently, the outcomes of the policy rules will influence the state of the AEWRS 

in using the enforcement mechanisms to enforce the policies and ensuring they comply with 

the system behaviour. In other words, the policy rules communicate with the enforcement 

mechanisms that have been modelled in our computational model by triggering the early 

warning levels. This enforcement mechanism links the states of early warning levels and the 

actual AEWRS state. Specifying our policies and enforcement mechanism using state 

machines with LTS facilitates communication between them via events/actions. Thus, being 

in the early warning level state would immediately enforce the corresponding interrupt 

response action, changing the AEWRC state, which affects the system state (Section  3.3). For 

this policy rule to influence the behaviour of the system, it is important to define some rules 

to link the policy rules and the AEWRS behaviour based on the computational model. 

Identifying constraints that formally specify the enforcement of policies on AEWRS state 

within the concurrent settings will be provided in the next chapter. 

 

5.5 Summary  

In this chapter, we described the operational formal semantics of PBSL in LTS and FLTL. 

Asynchronous FLTL is a suitable formalism for specifying the operational semantics of 

PBSL specifications and verifying event-based properties on our policy model, and is well 

supported by the animation and verification tool LTSA. Unlike synchronous FLTL, 

asynchronous FLTL can express timing constraints. Hence, it can be used to reason about the 

policies that are associated with timing constraints and their enforcements using the LTSA 

model checker. The graphical representations of PBSL constructs, including event patterns 

and timing constraints, were presented using timed LTS (traces of events over discrete time 
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steps), which is based on state machines. The resulting LTS trace semantics of PBSL 

constructs were computed from asynchronous FLTL specifications using LTSA. Finally, we 

have demonstrated how the formalism can be used to represent policy rules specified in 

PBSL.  

 

In Chapter 6, an enforcement mechanism will be presented that links the policy rules 

and the system behaviour based on the computational model. This facilitates the concurrent 

enforcement of policies on AEWRS. Verification of the policy and the enforcement 

mechanism specifications against the system properties is conducted in Chapter 7. 
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Chapter 6: Enforcement 

 

 

 

 

 

Objectives 

- Provide operational semantics of the enforcement mechanism model to 

enforce the PBSL specifications at run-time 

- Propose an efficient enforcement mechanism  

 

 
  



CHAPTER 6. ENFORCEMENT 

104 

 

6.1 Introduction 

Having formalised the components of PBSL with timing and event-based characteristics 

using timed LTS, as generated by asynchronous FLTL with LTSA, in the previous chapter, in 

this chapter, we describe an enforcement mechanism. The enforcement mechanism is 

concerned with how policies are enforced in the system. This mechanism causes a mutual 

interaction between the policy specifications and the AEWRS system behaviour in order to 

ensure the consistency of polices with the functional behaviour of system. Given that 

AEWRS is adaptive, time-dependent and security-critical, choosing an efficient enforcement 

mechanism that adds more rigour in the correctness of the specifications is a crucial task. 

Some policy rules may have to satisfy certain timing constraints such as the medium early 

warning must be signalled within 3 time units, or when the medium early warning level 

holds, access is suspended for a period of 10 time units until some event or a timeout occurs. 

Therefore, one important requirement is to formalise the enforcement of policies including 

timing constraints. 

 

Being a UCON-based model, the usage process can be viewed as a long-running 

access in which the dependency between policy rules is crucial [47]. Conflicts could arise 

when multiple policy rules are triggered at the same time. For example, conflicts between 

high and low early warnings could occur when two policy rules are triggered concurrently. 

Therefore, there is a need to avoid conflicts to ensure system consistency with policies and 

their enforcement.  

 

In this chapter, we are concerned with the operational formal semantics of the 

enforcement mechanism as a means of defining enforcement rules and system behaviours, 

including their interactions to allow for the enforcement of the PBSL policies. The 

verification of safety and liveness properties against policy and the enforcement mechanism 

specifications using model checking will be discussed in Chapter 7. 

 

The design of efficient enforcement mechanisms that ensure system compliance 

against the policies is challenging, particularly when expressive PBSL policies are enforced 

within a concurrent and distributed setting. We propose an efficient enforcement mechanism 
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scheme for the concurrent enforcement of policies using the synchronous interleaving model 

to ensure mutual exclusion. This allows for usage processes to synchronise with time and 

support condition synchronisation, allowing a capability for interleaving actions to be 

handled at run-time. 

 

This chapter is organised as follows. The enforcement rules are described in 

asynchronous FLTL in Section 6.2.1. In Section  6.2.2, we present the operational formal 

semantics for the system behaviour in asynchronous FLTL. An efficient enforcement 

mechanism design is presented in Section  6.3. 

 

6.2  Operational semantics of the enforcement mechanism 

In this section, we provide the operational formal semantics of the enforcement mechanism 

for AEWRS by defining and specifying the system behaviour and enforcement rules. This 

enables us to enforce the PBSL specifications at run-time. The policy enforcement is based 

on the underlying computational model introduced in Chapter 3. Policies can be enforced 

using four mechanisms: suspension when medium early warning, delay when low early 

warning, abortion when high early warning and skip when very low early warning. We must 

avoid policy conflicts, and thus express the mutual exclusion of different policies. These 

formal semantics are expressed in the form of domain preconditions, domain postconditions, 

and the required trigger conditions to capture different system states [60]. Having formalised 

the timing constraints of PBSL in Chapter 5, asynchronous FLTL with the notion of a 

bounded time interval [7] is used to analyse the behaviour of policies and ensure they satisfy 

system properties such as safety and progress [62]. 

 

The formal semantics of the enforcement rules are expressed in the form of the 

required trigger conditions, while the formal semantics of the system behaviours are 

expressed in the form of domain preconditions/domain postconditions and trigger conditions. 

The semantics will be described in asynchronous FLTL in the next two sections. 
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6.2.1 Policy Enforcement Behaviour  

Having specified the formal semantics of the policy rules in Chapter 5, it is essential to 

specify their outcomes, which influence the state of the system, in order to formally analyse 

the policies. This enables the enforcement of PBSL specifications at run-time. The outcome 

of policy enforcement causes an interaction between the policy specifications and the system 

behaviour to ensure the consistency of these policies with the AEWRS system behaviour. 

 

To instigate the interaction between the early warning policy specifications and the 

system behaviour, we specify the enforcement rules on the behaviour of our enforcement 

mechanism according to the computational model. The outcomes of the early warning policy 

enforcement by the enforcement rules will change the system state of the AEWRS. It will 

change from the current state of system, represented by the domain precondition of the 

interrupt response action, to the next state of the system, represented by the domain 

postcondition of the interrupt response action. Therefore, the system behaviour depends on 

the outcome of the policy enforcement, as will be illustrated in the next section. 

 

The early warning action determined by the privacy breach scenario causes the early 

warning guard to be evaluated as true. Once the guard (namely whether the level is High, 

Medium, Low, or Very Low) holds, an interrupt response action must be triggered during the 

ongoing usage, using guarded enforcement to ensure mutual exclusion. In the formal 

semantics of PBSL early warning actions described in Chapter 5, the guards were defined in 

FLTL as state-based fluents, where the fluent is true under the occurrence of a certain early 

warning action. In this section, these fluents will be used as an outcome of the policy rule in 

the enforcement rules to trigger the interrupt response actions. 

 

To trigger the interrupt response action when the early warning level fluent holds, we 

use the required trigger condition (ReqTrig), which captures an obligation to perform the 

action [62]. The enforcement rules of the policies are specified in this form. The required 

trigger condition (ReqTrig) takes the following form in FLTL [7], [62]:  
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Constraint ReqTrig_<ResponseActionName>_When_<EarlyWarningLevelName> =  

[] (tick -> ((<EarlyWarningLevel> && <DomPre>) -> X (!tick W 

<InterruptResponseAction>)))                                           (3) 

 

where  

 EarlyWarningLevel is a state-based fluent representing the early warning level 

fluent that must be true to trigger the interrupt response action, provided that the 

domain precondition  DomPre for this response action is also true.  

 InterruptResponseAction is an event-based fluent representing the interrupt 

response action triggered when the EarlyWarningLevel and the domain 

precondition DomPre for this response action are true.  

 

Based on the required trigger condition described earlier, the remaining enforcement rules 

are specified in asynchronous FLTL with their LTS’s representations as follows: 

 

 

constraint REQ_TRIG_DelayWhenLowLevel =  

[](tick -> (( LowEarlyWarning && !Delayed)  -> X(!tick W delay)))      (4) 

 

 

Figure 6.1 LTS representation for REQ_TRIG_DelayWhenLowLevel 
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constraint REQ_TRIG_SuspendWhenMediumLevel =  

 [](tick -> ((MediumEarlyWarning && !Suspended)  ->X(!tick W suspend))) (5)    

            

 

Figure 6.2 LTS representation for SuspendWhenMediumLevel 

 

constraint REQ_TRIG_AbortWhenHighLevel =  

 [](tick -> (( HighEarlyWarning && !Aborted )  ->X(!tick W abort)))     (6) 

 

 

Figure 6.3 LTS representation for REQ_TRIG_AbortWhenHighLevel 

 

 

constraint REQ_TRIG_SkipWhenVeryLowLevel =  

[](tick -> ((VeryLowEarlyWarning )  -> X(!tick W skip)))                (7)                                                                      
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Figure 6.4 LTS representation for REQ_TRIG_SkipWhenVeryLowLevel 
 

 

For example, the constraint REQ_TRIG_DelayWhenLowLevel specifies the behaviour of 

an enforcement rule which triggers the interrupt response action delay at the next tick if 

LowEarlyWarning and !Delayed (the domain precondition  for the interrupt response action 

delay) are satisfied. The outcome of this constraint when the delay is triggered is reflected 

in the Delayed state, which transitions from not delayed to delayed. The outcome of the 

rules will be defined and specified in the next section. 

 

6.2.2  AEWRS System Behaviour  

In this section, the formal semantics for the system behaviour of the AEWRC are presented. 

The outcome of the enforcement rules described in the previous section interacts with the 

system behaviour to ensure compliance with the policy specifications. In other words, the 

outcomes of enforcing the early warning policies change the AEWRS state, as in the 

computational model. Therefore, we use asynchronous FLTL to define and specify the states 

of AEWRC, and the interrupt response actions to be performed to reflect these states. 

 

The system behaviour of the AEWRC is stateful, i.e. it adapts dynamically depending 

on changes in the system state. The state of the AEWRC will be defined as a state-based 

fluent in FLTL, where the fluent is true if a certain interrupt response action occurs, or false if 

another response action occurs. The behaviour of the AEWRC is defined in terms of fluents 

as follows: 
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fluent Suspended = <suspend, {resumeS,abort}>                        (8)                                                     

fluent Delayed = <delay, resumeD>                                    (9)                                            

fluent Aborted = <abort, reset>                                      (10)                                 

fluent NormalOperation = <{ready, skip, resumeD, resumeS }, 

{delay,suspend,abort, end}>                                          (11)                                                            

 

The state-based fluents are defined as: Normal Operation, Delayed, Suspended, and 

Aborted. Thus, when the initiating response action occurs, the fluent holds, and when the 

terminating response action occurs, the fluent will cease to hold. For instance, (8) defines the 

behaviour of the AEWRC in the Suspended state, which is referred to as a Suspended fluent. 

This fluent will hold (i.e. be true) when the response action suspend is initiated, and no 

terminating action, namely resumeS or abort, has occurred. The Suspended fluent will cease 

to hold (i.e. be false) when the resumeS or abort action occurs. 

 

We capture the state of the AEWRS by formally specifying a domain precondition 

and domain postcondition for each response action. These conditions capture the elementary 

state transitions defined by the application of operations in that domain. They capture the 

transition between the current state and the next state. The domain precondition specifies the 

current state of the system, which will hold before the action is triggered, while the domain 

postcondition specifies the state of the system that will hold after the action has been 

triggered.  

 

To specify a domain precondition  (DomPre) and postcondition (DomPost) pair for an 

interrupt response action, the following form is used [7], [62]:  

 

 constraint DomPre__DomPost_<InterruptResponseDecision> =  

[] ( ( tick && ! <DomPre> ) -> X ( !< ResponseAction> W tick ) )      

&&  [] ((tick && <DomPost>) -> X (!<ResponseAction> W tick))         (12) 
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where  

 ResponseAction in (12) is an event-based fluent which cannot occur when 

!<DomPre>  is true. ResponseAction in (13) is an event-based fluent which cannot 

occur when the DomPost is true. 

 InterruptResponseDecision is a stateful policy name, i.e. a fluent name in the 

fluent definition, which can be inserted in place of <DomPre> and <DomPost>. 

 

For example, the domain precondition for the “suspend” response action will be a state 

that is not suspended, while the domain postcondition for this response action will be the 

suspended state. Therefore, the transition between the domain precondition and domain 

postcondition states will be labelled by the interrupt response action “suspend”. The domain 

precondition and the domain postcondition can be formally specified as follows: 

 

constraint DOM_PRE_POST_Suspended = 

( [] ((tick &&  Suspended) -> X (! suspend W tick)) && 

  [] ((tick && !Suspended)-> X (! resumeS W tick)) && 

  [] ((tick && !Suspended)-> X (! abort W tick)) 

)                                                                     (13)                                                                                               

 

The domain precondition is specified in (14) using the constraint definition, where the 

precondition is !Suspended for the response action suspend, and the domain postcondition is 

Suspended. If Suspended is true, then suspend cannot occur, while if !Suspended is 

true , then resumeS and abort cannot occur. 

 

The LTSs representation for the above using the tool LTSA is represented as follows: 
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Figure 6.5  LTS representation for DOM_PRE_POST_Suspended 

 

The following presents the formal specifications for the domain preconditions and 

domain postconditions for the remaining response actions of the AEWRC with their LTSs 

representations: 

  

constraint DOM_PRE_POST_Delayed = 

( [] ((tick &&  Delayed) -> X (! delay W tick))  && 

  [] ((tick && !Delayed)-> X (! resumeD W tick)) 

)                                                                      (14)                                                                                                    

 

 

Figure 6.6 LTS representation for DOM_PRE_POST_Delayed 

 

 

constraint DOM_PRE_POST_Aborted = 

( [] ((tick &&  Aborted) -> X (! abort W tick))  && 

  [] ((tick && !Aborted)-> X (! reset W tick)) 

)                                                                      (15)                                                                                          
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Figure 6.7 LTS representation for DOM_PRE_POST_Aborted 

 

 

constraint DOM_PRE_POST_NormalOperation= 

( [] ((tick &&  NormalOperation) -> X (! ready W tick)) && 

  [] ((tick &&  NormalOperation) -> X (! skip W tick)) && 

  [] ((tick &&  NormalOperation) -> X (! resumeD W tick)) && 

  [] ((tick &&  NormalOperation) -> X (! resumeS W tick)) && 

  [] ((tick &&  !NormalOperation) -> X (! end W tick)) && 

  [] ((tick && !NormalOperation)-> X (! delay W tick))  && 

  [] ((tick && !NormalOperation)-> X (! suspend W tick))  && 

  [] ((tick && !NormalOperation)-> X (! abort W tick)) 

)                                                                     (16) 

 

 

 

 

Figure 6.8 LTS representation for DOM_PRE_POST_NormalOperation 
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Based on the computational model in Section  3.3, the transitions between the AEWRS 

system states are caused when the response actions are triggered. As defined earlier, the 

response actions cause the transitions between the system states, making an initiation of some 

fluents and termination of other fluents. To move from one state to another, we need to 

specify some obligations to perform the response actions that make transitions between these 

states. These include moving from the delayed state to the normal operation state, from the 

suspended state to the normal operation state and from the suspended state to the aborted 

state. These can be specified using required trigger conditions in which response actions must 

be performed when the condition and the domain precondition hold or over the passage of 

time. 

 

The outcome of  delay  interrupt response action when enforced is reflected in the 

Delayed state, within which the enforcement mechanism will observe a number of ticks 

within this state. On passage of time within the bounded time interval when the delayed state 

holds, the system must raise resumeD event to initiate NormalOperation fluent and 

terminate Delayed fluent.  An explicit tick event is used in our formalism to signal the 

passage of time.  

 

To trigger the resumeD action when the Delayed fluent holds and on passage of three 

time units (delayed period), we use the following required trigger condition: 

 

constraint REQ_TRIG_ResumeWhenDelayedAndTimeout =  

[](tick -> (( Delayed && !NormalOperation)  ->  X((! tick && ! tick) && (X( 

! tick && X(! tick W resumeD)))W resumeD)))                            (17) 

 

The constraint in (17) specifies the behaviour of the response action resumeD to make 

the transition from delayed state to the normal operation state. It states that it must be 

triggered by the next fourth tick if the system state is Delayed and not in the normal 

operation (!NormalOperation as a domain precondition for the response actions resumeD 

). The outcome of this constraint when the resumeD is triggered is reflected in the next state, 

where NormalOperation fluent is initiated and Delayed fluent is terminated. To avoid 
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deadlocks and time progress violations, we have placed (! tick && ! tick) in these 

asynchronous FLTL formulas (17), (18), and (19). For the ease of representation, the 

maximum period of time to be taken does not exceed 4 time units. The LTS’s representation 

for the constraint (17) using the tool LTSA is represented as follows: 

 

 

Figure 6.9 LTS representation for REQ_TRIG_ResumeWhenDelayedAndTimeout 

 

While the outcome of suspend interrupt response action when enforced, is reflected in 

the suspended state, within which the enforcement mechanism will observe a number of 

ticks until some event occurs. On the occurrence of the tick proceeding the occurrence of the 

event, the system must raise resumeS event to initiate NormalOperation fluent and 

terminate Suspended fluent. Otherwise, an abort event is generated if no event has occurred 

within the bounded time interval (suspension period). Event_Occurs state-based fluent is 

defined to denote the occurrence of an event in the last time unit as: fluent Event_Occurs 

= <event, tick>, where the fluent Event_Occurs holds, when event has occurred, and 

is terminated by the tick event. 

 

To trigger the resumeS action when the Suspended fluent holds and on the occurrence 

of event within the next two time units, we use the following required trigger condition: 

 

constraint REQ_TRIG_ResumeWhenSuspendedAndAndEventOccurs =  

 [](tick -> (( Suspended && !NormalOperation ) && (X((! tick && ! tick) && 

(X( ! tick && (X(! tick W Event_Occurs)))W Event_Occurs))) ->X(!tick W 

(tick && resumeS))))                                                   (18) 
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The constraint in (18) triggers the action resumeS at the tick proceeding if the system 

state is Suspended and not in the normal operation (!NormalOperation as a domain 

precondition for the response actions resumeS) and the event has occurred (Event_Occurs) 

within the next two ticks. The outcome of this constraint when the resumeS is triggered is 

reflected in the next state, where NormalOperation fluent is initiated and Suspended fluent 

is terminated. The LTS’s representation for (18)  is represented as follows: 

 

 

 

Figure 6.10 LTS representation for REQ_TRIG_ResumeWhenSuspendedAndAndEventOccurs 

 

Otherwise, if no event has occurred within the suspension period, we use the following 

trigger condition to trigger the abort action to cause a transition from suspended state to the 

aborted state: 

 

constraint REQ_TRIG_AbortWhenSuspendedAndNoEventAndTimeout =  

 [](tick -> (( Suspended  && !Aborted) && (X((! tick && ! tick) && (X( ! 

tick && (X(! tick W !Event_Occurs)))W !Event_Occurs))) ->X(!tick W (tick && 

abort))))                                                             (19) 

 

The constraint in (19) triggers the response action abort at the fourth tick if the 

system state is Suspended and not in aborted state (!Aborted as a domain precondition for 
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the response actions abort) and no event occurs  (!Event_Occurs) within the next two 

ticks. The outcome of this constraint when abort is triggered is reflected in the next state, 

where Aborted fluent is initiated and Suspended fluent is terminated. The LTS’s 

representation for the above using LTSA is represented as follows: 

 

 

Figure 6.11 LTS representation for REQ_TRIG_AbortWhenSuspendedAndNoEventAndTimeout 

 

The operational semantics presented in this section described the interactions between 

policy rules, enforcement mechanisms, and system behaviour in order to allow for the 

enforcement of the PBSL policies. We specified the enforcement rules on the behaviour of 

our enforcement mechanism according to the computational model in Section  3.3. The 

enforcement rule triggers the interrupt response action if the early warning level fluent and 

the domain precondition for the interrupt response action are satisfied. The outcome of the 

early warning policy enforcement will change from the current state of system to the next 

state. We specified constraints as a domain precondition and domain postcondition for each 

response action to state that it cannot be triggered if it has already been triggered, and the 

system states (fluents) cannot be initiated if it is already initiated. In addition, we expressed 

constraints as trigger condition for each response action that states when the response action 

must be triggered, provided the precondition is true, to cause the transitions between the 

system states. This is more intuitive and manageable than using enabling and disabling 

policies via obligation rules [96], or activation and deactivation rules [48], which are not only 

difficult to read, but also involve many rules that need to be managed. Further, the policies 

can be analysed using LTSA, even when the number of states increase, as this tool supports 

model checking with FLTL. LTSA can check for desirable and undesirable policy properties, 

and examine the interaction between policy rules, enforcement mechanisms, and system 
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behaviour. Identifying those operational specifications supports constructing fully operational 

enforcement mechanism framework. 

6.3 Efficient enforcement mechanism design 

Janicke et al. [47] proposed that the issue of the concurrent enforcement of UCON policies 

could be resolved using a static analysis of the dependencies between policy rules. Their 

approach is based on interleaving enforcement, where only one action can be performed at a 

time. Concurrent enforcement can be modelled using a true parallelism enforcement model or 

an interleaving enforcement model. In true parallelism (also known as real concurrency), 

multiple actions are executed at the same time (simultaneously), while the interleaving model 

(also known as pseudo-concurrency) is another form of concurrent execution in which 

multiple actions are interleaved, rather than executed at the same time [62]. We choose to 

model concurrency using interleaving, because the AEWRC in our model should run on both 

single- and multi-processor systems. Therefore, we should analyse the policies using tool 

support to ensure mutual exclusion, whereby only one action can be performed at a time. 

 

There is a range of tool support for the analysis of concurrent systems, such as 

simulation, theorem proving, and model checking [35]. We selected model checking for the 

following reasons. The LTSA tool supports model checking using asynchronous FLTL. In 

addition, asynchronous FLTL can be used by LTSA to specify enforcement rules and 

AEWRS system behaviour, and to verify event-based properties on our enforcement model. 

The property violations and traces of events/actions require some interpretation to ensure a 

correspondence between the enforcement mechanism model behaviour and the real system 

behaviour. 

 

Our semantics are single point-based in contrast to interval-based [21] where 

sequence of system states observed at the occurrence of an event at single point of time rather 

than state-based which are observed at a fixed timed rate. That means that an event occurs at 

a single point of time. In addition, that would let the enforcement mechanism monitor the 

system at single point of time rather than continuously. In addition, we use a discrete time 

model rather than a dense model because the latter introduces additional complexities with 

regards to model checking while the former widely exists in enforcement mechanism 
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implementations. Hence, the notion of a bounded time interval is adopted to analyse the 

behaviour of policies with timing constraints despite the fact we cannot represent the dense or 

precise time. This enables us to satisfy policy properties such as time progress. The ability to 

verify that the time is often and eventually progressing by checking a time progress property 

with the LTSA model checker will be explained in the next chapter. 

 

We employ guarded commands [87] to enforce policies by execution monitoring. 

Hence, the enforcement mechanism only triggers an interrupt response action when an early 

warning guard holds. This ensures mutual exclusion, where only one interrupt response 

action can be triggered at a time. We use condition synchronisation [62] which allows the 

enforcement mechanism to block processes until the occurrence of a particular action and a 

specified time period has elapsed. In the next chapter, we use the LTSA model checker to 

verify that the safety property of mutual exclusion is satisfied, and to detect any possible 

conflicts between policies (Section 7.3.1).  
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Figure 6.12 Concurrent and synchronous enforcement mechanism for conditions, clock 

synchronisation, and mutual exclusion 

 

Figure 6.12 Concurrent and synchronous enforcement mechanism for conditions, clock 

synchronisation, and mutual exclusion 
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The concurrent enforcement mechanism in Figure 6.12 depicts the concurrent and 

synchronous enforcement of polices for mutual exclusion and clock and condition 

synchronisation. The enforcement mechanism acts as a monitor, encapsulating the state of the 

system. The system state can only be updated by guarded commands, which can be 

implemented as synchronised procedures. Only a single procedure may be active at a time. 

Thus, the enforcement procedures ensure mutual exclusion in the update of the affected state 

of the system, changing the interrupt policy decisions dynamically when an early warning 

level signals and when a particular time period has elapsed.  

 

The enforcement mechanism ensures that enforcement procedures are synchronised 

based on time and when a condition holds. This ensures the mutual exclusion for access to 

the system state. Within the early warning mechanism, whenever time progresses, each 

process signals a sequence of methods or procedures to the enforcement mechanism 

corresponding to the early warning level depending on specified policies. The enforcement 

mechanism updates the state of the shared object by executing synchronised procedures. 

These synchronised procedures acquire the lock before access the object state and release the 

lock after access. Therefore, only one process can acquire the lock at a time [62]. The mutual 

exclusion access to the shared object encapsulating variables prevents the interference 

problem in which concurrent processes do not update the system state at the same time. The 

enforcement mechanisms can be implemented as a monitor including the synchronised 

procedures or the critical section of code belonging to a process; processes that initiate 

actions can be implemented as active threads.  

 

Considering distributed systems, an important component in the system must be added, 

that is logging, in which the events are time stamped at local logs based on its own internal 

clock. They are ordered based on the time at which events occur rather than the order in 

which events occur. Hence, we assume clock synchronisation [27] to synchronise the process 

enforcement. For example, when two events occur on different user processes, the timestamp 

of these events might be different from the order in which events actually occur. Therefore, 

the clock synchronisation tackles this problem enabling the processes in distributed 

information systems to be aware of the passage of time and can use the event’s timestamps to 
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specify the events’ order and the interval between two consecutive events. However, this 

scheme results in some synchronisation overhead when ensuring mutual exclusion due to the 

need to switch between processes. In addition, the synchronous and concurrent enforcement 

introduces extra complexities with regards to atomicity of events/actions and synchronised 

procedures executed by the monitor. These particular issues as well as implementation details 

including the actions and the interfaces are out of scope for this thesis because we leave that 

to the designer’s decision according to their experience and skills and according to the system 

application domain.  Our formalisation allows for verification on the policies and 

enforcement mechanism models with regards to the safety and progress properties in order to 

ensure that the system is complete and correct. Thus, that can be used as a sound basis for the 

concrete implementation of the system with high levels of assurance and understanding. 

 

6.4 Summary 

This chapter described the formal operational semantics for the enforcement mechanism of 

AEWRS in LTS and asynchronous FLTL. The resulting LTS semantics of enforcement 

mechanism were represented as automaton generated from asynchronous FLTL 

specifications using LTSA. Asynchronous FLTL is a suitable formalism to specify the 

operational semantics of the PBSL and enforcement mechanism. The system behaviour of 

AEWRC and the enforcement rules have been formally defined as the operational semantics 

of the enforcement mechanism. The outcome of policy enforcement caused a mutual 

interaction between the policy specifications and the system behaviour, ensuring the 

consistency of these policies with the AEWRS system behaviour. Formalising PBSL and 

enforcement mechanism using LTS and FLTL facilitated communication between them. 

Finally, we proposed a mechanism for the concurrent enforcement of policies using a 

synchronous interleaving model to ensure mutual exclusion, and supporting clock and 

condition synchronisation.  

 

In Chapter 7, we evaluate PBSL by demonstrating the use of early warning policies 

for insider privacy breaches using a case study from the e-government domain. In addition, to 

complement this evaluation, the safety and time progress properties are verified against the 

policy and enforcement mechanism models using model checking.  
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Chapter 7: Verification 

 

 

 

 

 

Objectives 

- Evaluate PBSL language using a case study 

- Formal verification of safety and progress properties on the policy and 

enforcement mechanism models using the LTSA model checker 
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7.1 Introduction 

This chapter describes the evaluation phase of the thesis. The evaluation follows two 

complementary strands: 

 

- Animation of the enforcement mechanism and policy specifications to check the 

execution traces of events/actions.  

- Formal verification of the AEWRS properties in terms of the enforcement mechanism 

and policy specifications to check the safety and progress properties. 

 

To facilitate this evaluation, we have chosen a case study from the e- government domain. 

Our focus in this case study is to demonstrate how early warning policies for insider privacy 

breaches can be developed to illustrate the verification of satisfaction of the system 

properties. To evaluate whether the policy specifications with their enforcement mechanism 

satisfy the AEWRS properties, we formally verify the timed LTS generated from FLTL 

specifications against the safety and progress properties using the LTSA model checker [62]. 

 

We begin by presenting the case study, which involves the examples scenarios of tax 

revenue system (Section  7.2). This is followed by a formal verification of the satisfaction of 

the safety and progress properties over the operational semantics of the enforcement 

mechanism (Section  7.3). 

 

7.2 Case Study 

This section provides an overview of an insider-aware tax revenue system (IATRS) 

(Section  7.2.1), and describes informally the system’s acceptable policy usage requirements. 

Then we give details of the full example scenario of insider breach in this system that is 

composed of separate scenarios (Section   7.2.2) and illustrates how each of those scenarios 

can be specified in PBSL (Section  7.2.4). 
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7.2.1  Insider-aware Tax Revenue System (IATRS) 

One example of an e-government system which is in charge of protecting sensitive personal 

information is the tax revenue system. Tax revenue systems are responsible for collecting and 

managing the personal information of taxpayers, such as their incomes, addresses, and ages in 

order to provide services such as benefits, loans, and education. These systems are vulnerable 

to privacy breaches by insiders in low-level positions such as data entry clerks or those in 

administrative positions. Privacy breaches are based on some attributes of an insider such as 

access rights, knowledge of information systems, motivation, intent, and the opportunity to 

perform their crimes on a particular information asset within a particular time. Privacy 

breaches could include activities such as the theft of a large amount of citizen data (namely 

for identity theft), or the browsing of sensitive personal data for the insider’s personal gain 

and the inference of confidential data to which they do not have authorised access for 

financial gain. The impact of these breaches, in some cases, can have damaging consequences 

on the organisation such as loss of its reputation, and disruption of operations. 

 

Insiders could pose threats to the organisation individually or in collusion with others. 

In this case study, we focus on a single insider breaching acceptable usage policies, which is 

sufficient to illustrate our approach. We leave collusive breach for future work. This case 

study has specific characteristics that are insider-aware, security-critical, and time-dependent. 

It is important to note that insider breach scenarios within e-government systems are time-

critical, where the insider attack is evolving over time and during a time period. In addition, 

this case study allows for the evaluation of the expressiveness of PBSL in terms of event 

history and timing constraints within dynamic environment. The objective of this case study 

is to demonstrate how simple early warning policy rules for insider privacy breaches can be 

developed, to illustrate the verification of the satisfaction of the overall system properties.  

 

7.2.2  Scenario Description   

The scenario description is derived from [3], [97]. An operator within a tax revenue system is 

authorised to access sensitive personal taxpayer data stored in a database. The operator’s 

normal working hours are from 08:00–17:00 every weekday; he/she does not usually work 

outside these hours. The operator’s duties include the auditing of income tax, tax returns, 
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other taxes related to individuals, and their application to various services with regards to 

benefits, payments, and employment. Other duties include printing letters concerning the 

collection of accounts and the delivery of benefits with regard to records that have been 

audited.  

 

7.2.3  The informal system’s acceptable usage requirements 

- The disclosure of sensitive personal data to a third party is not permitted by any user, 

either by direct or indirect means. 

- The operator is authorised to access citizens’ data (namely age, income, address) 

separately, but is not authorised to view all data related to an individual. 

- The user is not authorised to access or print bulk data in the same session.  

- The user must not access more than 100 records per day.   

- The user must not access any one record more than three times.  

- The user must not spend more than 3 min (180 time units) per day on one record. 

- The system must only be used within normal working hours (08:00–17:00 every 

weekday). 

- The user is not allowed to access a particular record using two simultaneous 

connections. 

 

We assume that the operator, Bob, intends to steal sensitive personal data from the tax 

revenue system and provide it to his wife, Alice, who works as a marketing agent. Therefore, 

the attacker is located inside the tax revenue organisation. This insider may or may not be 

authorised to commit the privacy breach.   

 

Bob’s intention is to commit data theft. In particular, he tries to steal the phone details of 

taxpayers, along with their age and income. To do so, Bob has several options. First, he could 

try to access sensitive personal records frequently, maintaining access for more than the usual 

time. He could also try to access partial sensitive personal records that are linked to each 

other by accessing them one by one, thus inferring the full record for a taxpayer. Afterwards, 

he could try to access a large amount of sensitive personal records in order to get the details 



CHAPTER 7. VERIFICATION 

127 

 

of a group of taxpayers. Finally, Bob could steal the bulk information by printing these 

sensitive personal data.  

 

A full description of the assumptions for insider breach scenarios are described below: 

 

1- Scenario 1 (browsing or snooping): Within Bob’s working hours, we assume he 

uses his access rights and job role to access partial personal records (age, income, 

or phone details) three times a day, staying on them for more than the usual time 

of 3 min (180 time units). This is a potential sign of privacy breach, and might 

lead to other breaches. The potential breach could happen within different 

sessions, where Bob logs in to the database 10 times a day and maintains access 

for more than the usual time (10 min). However, this does not mean that the 

insider is breaching data privacy regulations, but it will be considered as a 

suspicious activity.  

 

2- Scenario 2 (inference): The insider breach happens when Bob tries to access 

interlinked partial data (age, income, and phone data) seven times (referred to as 

inference variables) in order to deduce the full record. The potential breach could 

happen within the same session, where the interval between two events is less than 

1 min (60 time units). The insider breach happens during working hours. 

 

3- Scenario 3 (access to a large amount of data): Bob accesses a large amount of 

data in order to obtain phone, age, and income details for taxpayers. The insider 

breach happens when he makes 100 access requests a day to these details, which 

is different from his normal behaviour. The breach happens outside working 

hours. 

 

4- Scenario 4 (data theft): Bob prints the large amount of data he accessed in 

scenario 3. The insider breach happens during or outside working hours, and the 

intention is to commit identity theft.  
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7.2.4   Formalisation in PBSL 

In this section, we demonstrate how the four privacy breach scenarios with timing constraints 

and the early warning level corresponding to the insider privacy breach, which have been 

specified above, can be expressed—they are expressed in PBSL in the form of four policy 

rules. The policy rules include high, medium, low, and very low early warning policy rules 

according to the severity level of the insider breach scenario. The rationale for using some 

syntactic elements of each policy rule is briefly described. 

 

7.2.4.1 Very Low Early Warning Policy Rule 

The policy rule for the first breach scenario (snooping) can be specified as follows: 

 

PolicyRule_Snooping    

{
 
 
 
 
 

 
 
 
 
 

                                         

                                                              

                                                                        
                                                                          

                                                                              

                

              

                                                       

                                                       

                                                     }
 
 
 
 
 

 
 
 
 
 

 

                                      

 

Where the privacy breach scenario is detected when the event         or ( 

          or (           occur 3 times repeatedly with a set of conditions, and timing 

constraint              , leading to the determination of the very low early warning level.  

 

7.2.4.2 Low Early Warning Policy Rule 

The policy rule for the second breach scenario (inference) can be specified as follows: 
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PolicyRule_DataInference   

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

                                            

                                                        

                 

                                      

                                                                      
                                                                           

                                                                             
                                                                    

                                 

                
                                                       

                                                       

                                                     
 }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

                                     

 

Where the privacy breach scenario is detected when the event        , followed by 

            and followed     by         occur 7 times repeatedly, with timing constraints 

                  between them, triggering the low early warning level action.  

 

7.2.4.3 Medium Early Warning Policy Rule 

The policy rule for the third breach scenario (access to a large amount of data) can be 

specified as follows: 

 

PolicyRule_AccessLargeData   

 

{
 
 
 
 
 
 

 
 
 
 
 
 

                                        

                                  

                                 

                                                                      
                                                                          

                                                                             

                   

               
                                                      

                                                       

                                                     
 }
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Where the privacy breach scenario is detected when the events         and (   

        and (           occur 100 times repeatedly, with timing constraint         , leading 

to the determination of the medium early warning level.  

 

7.2.4.4 High Early Warning Policy Rule 

The policy rule for the fourth breach scenario (data theft) can be specified as follows: 
 

PolicyRule_DataTheft   

{
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 }

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

   

                                      

 

Where the privacy breach scenario is detected when the events         followed by 

           and (            followed by              and (           followed by 

            occur 100 times respectively, with timing constraint          , leading to the 

signalling of the high early warning level action. 

 

It is hard for the insider to circumvent the policies in our system to commit his 

breaches for the following reasons. First, the system supports multiple enforceable interrupt 

policies at different risk levels, and can enforce adaptive response actions upon different 

scenarios of insider threats. Second, the language can explicitly define well-defined policies 

with expressive insider breach scenario including different access patterns (e.g. sequence, 

alternative) and timing constraints. Third, the system is capable of detecting attacks at the 

application level owing to the knowledge of multiple business processes and normal 
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workflows. It is noteworthy that multiple small steps may not be malicious when those 

scenarios are considered individually, but can be malicious when all those scenarios are 

considered in conjunction with each other; therefore, our system monitors all events 

collectively. 

 

The specification assumes the above-mentioned sequence of the full example scenario 

with regards to (IATRS). The full scenario was composed of four separate scenarios. We 

have used of the expressiveness of PBSL to specify the complex policy descriptions with 

regard to the combining repetitions with some timing constraints or combining different types 

of constraints. In the following section, we illustrate how early warning actions for the above-

mentioned policy rules can be used in the verification process for the safety and progress 

properties on the entire system.  

 

7.3 Verification 

In this section, we use the LTSA model checker [62] to verify the operational semantics of 

enforcement mechanism against the system properties. In particular, the aim of this 

verification process is to check the safety and liveness properties of the AEWRS, and that 

they comply with the enforcement mechanism specifications. The system properties are 

declarative interrupt policies that are achieved by interrupt policy decisions. Through our 

formal framework, the enforcement mechanism behaviour should be complete and free from 

conflicts with regard to these properties. Additionally, the ability to verify the satisfaction of 

these properties helps us check the consistency between these high-level properties with low-

level the enforcement mechanism models.  

 

Given a timed LTS model and a specification of the properties that are required to 

hold, the LTSA model checker verifies whether the properties asserted are satisfied by the 

model. Upon detection of a violation, a counterexample is generated. Counterexamples are a 

sequence of execution traces which violate the property i.e. cause the property to be false. 

Absence of Counterexamples indicates that the timed LTS model satisfies the property, i.e. 

cause the property to be true. 
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Two categories of properties, safety and liveness, were introduced by Lamport [56] to 

ensure the correctness of concurrent programs. The safety property asserts that nothing bad 

happens, while the liveness property asserts that something good eventually happens. In the 

previous chapter, the enforcement mechanism ensures mutual exclusion. Hence, we now 

verify that the enforcement mechanism actually ensure mutual exclusion, and detect any 

conflicts by checking the safety property (Section  7.3.1). In terms of the liveness property, we 

check a particular class of liveness known as the progress property [6], [62]. The progress 

property asserts that a particular event/action is often and eventually executed. As our 

formalism is timed using tick events, we verify that the time is often and eventually 

progressing by checking, in particular, the progress property of time (Section 7.3.2). The 

animation and verification process was executed on a desktop computer (Core2duo CPU, 

2.96 GB of RAM). 

 

7.3.1  Safety Properties  

In this section, we need to verify that safety properties for mutual exclusion are satisfied. We 

assert that no conflicts (violation) can occur between two or more policies when policy rules 

fire early warning actions at the same time. That is included with safety properties for 

interrupt policies given time-critical nature (with timing constraints) of the AEWRS.  The 

property violations and traces of events/actions require some interpretation by the designer to 

ensure a consistency between the animated model behaviour and the system properties. This 

is needed to understand the situations of violations and the potential impact on the real 

system behaviour. We investigate safety properties and make some modifications to satisfy 

that two or more interrupt policies must not be true at the same time. Safety properties are 

specified in asynchronous FLTL to be checked by the LTSA model checker.  

 

Each system property will be expressed as an asynchronous FLTL safety property 

using the tick fluent [7]. There are four goal patterns to express the property: achieve, cease, 

maintain, and avoid [30]. We express our properties using a bounded achieve expression [7], 

[58] with bounded temporal operator such as       which means within the next d time units 

in the future. To make the investigation of the violation traces feasible, we do not specify 

time periods that take more than 4 time units.  
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Property 1 (safety): Normal Operation when Very Low Early Warning 

 

The first property we assert is that “once the guard very low Early Warning Level holds, 

ongoing usage must be skipped to the normal operation mode by the next time unit”. We 

express this safety property as follows: 

 

assert NormalOperationWhenVeryLowLevel  

 = [](tick -> ((VeryLowEarlyWarning)   -> X (!tick W (tick && 

NormalOperation))))   

   

The above-mentioned specification states that, it is always the case that if the very 

low early warning holds at the occurrence of a tick, then ongoing usage must be skipped to 

the normal operation mode by the next tick. Analysing this property on the timed LTS 

generated using LTSA produces no safety property violation as shown in the following result: 

 

 

Property 2 (safety): Delay when Low Early Warning 

 

The second property we assert is that “once the guard Low Early Warning Level holds, 

ongoing usage must be delayed by the next time unit”. We express this safety property as 

follows: 

 

assert DelayedWhenLowLevel  

 = [](tick -> ((LowEarlyWarning && !Delayed)   -> X (!tick W (tick && 

Delayed))))  

    

The above DelayedWhenLowLevel assertion states that it is always the case that if the 

low early warning holds and delayed state does not hold at the occurrence of a tick, then the 
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ongoing usage must be delayed by the next tick. Checking this property using LTSA verifies 

that DelayedWhenLowLevel safety property is not violated as follows: 

 

 

 

Property 3 (safety): Resumption when delayed and Timeout 

 

The third property to assert is that “once the usage is delayed, the access must be resumed 

after three time units i.e. at the time unit that occurs after the occurrence of the third time 

unit”. We express the required safety property as follows: 

 

assert ResumedWhenDelayedAndTimeout  

=  [](tick -> ((Delayed && !NormalOperation)   -> X((! tick && ! tick) && 

(X( ! tick && X(! tick W (tick && NormalOperation))))W (tick && 

NormalOperation)))) 

 

The above ResumedWhenDelayedAndTimeout property states that it is always the 

case that if the Delayed holds and normal operation state does not hold (!NormalOperation 

) at the occurrence of a tick, then the ongoing usage must be resumed before the occurrence 

of the third tick. The expression on the left [](tick -> ((Delayed && 

!NormalOperation) avoids the situation in which the normal operation and delayed states 

are true at the same time as that violates mutual exclusion.  

 

Performing the LTL property check produces the following violation trace: 
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The above violation trace indicates that a sequence of traces which violate the 

ResumedWhenDelayedAndTimeout property. The name of fluents on the left are true if the 

events/actions on the right occur as the LTSA annotates. We notice that at the occurrence of 

the second tick proceeding the delay action, the Delayed fluent is true and the 

NormalOperation fluent is false, and then the initiating/terminating action resumeD occurs 

afterward. Hence, at the third tick proceeding the delay action, the fluent Delayed is 

evaluated to false (when it must have been true) and the fluent NormalOperation is 

evaluated to true (when it must have been false). To avoid the situation where resumeD occur 

before the third tick within the delayed state, we modify the above FLTL safety property as 

the following formulae: 

 

assert ResumedWhenDelayedAndTimeout  

=  [](tick -> ((Delayed && !NormalOperation)   -> X((! tick && ! tick) && 

(X( ! tick && X(! tick W NormalOperation)))W NormalOperation))) 

 

This revised property states that it is always the case that if the delayed holds and 

normal operation state does not hold at the occurrence of a tick, then the ongoing usage must 

be resumed at the occurrence of the fourth tick.  

 

Checking the revised property on the timed LTS generated using LTSA produces the 

following result, where there are no safety violations: 
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Property 4 (safety): Suspension when Medium Early Warning 

 

The fourth property that we assert is that “once the guard medium Early Warning Level 

holds, ongoing usage must be suspended by the next time unit”. We express this safety 

property as follows: 

 

assert SuspendedWhenMediumLevel   

 = [](tick -> (( MediumEarlyWarning && !Suspended)  -> X (!tick W (tick && 

Suspended))))    

 

The above SuspendedWhenMediumLevel assertion states that it is always the case 

that if the medium early warning holds and suspended state does not hold at the occurrence of 

a tick, then ongoing usage must be suspended by the next tick.  

 

Running LTL property check on the timed LTS generated by LTSA produces the 

following result, where there are no safety violations: 

 

 

 

Property 5 (safety): Resumption when Suspended and an event occurs 

 

The fifth property to assert is that “once the usage is suspended and an event has occurred 

within the next two time units, the access must be resumed by the next time unit”. The 

required safety property is expressed as follows: 
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assert ResumedWhenSuspendedAndEventOccurs  

=  [](tick -> ((Suspended && !NormalOperation)  &&  (X((! tick && ! tick) 

&& (X( ! tick && (X(! tick W Event_Occurs)))W Event_Occurs))) -> X(!tick W 

(tick && NormalOperation)))) 

 

This ResumedWhenSuspendedAndEventOccurs property states that it is always the 

case that if the Suspended holds and normal operation state does not hold 

(!NormalOperation ) at the occurrence of a tick, and an event has occurred (Event_Occurs ) 

at the second and third time units, then the ongoing usage must be resumed by the fourth time 

unit.  

 

Performing property checking produces the following violation trace: 

 

 

 

The above output shows a counterexample which violates the 

ResumedWhenSuspendedAndEventOccurs property. The violation trace is illustrated by the 

LTSA with the names of fluents that are true on the left if the events/actions on the right 

occur. We observe in the trace that at the occurrence of the third tick proceeding the 

occurrence of the satisfying event, the Suspended fluent is true and NormalOperation 

fluent is false, but the Suspended fluent has not been terminated by the action resumeS 

afterward. Hence, at the last tick, NormalOperation fluent is evaluated to false and not made 

true by the occurrence of the initiating action resumeS when it must have been true. To avoid 

the violation, the required change to the above asynchronous FLTL formulae is to put the 
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operator (||) – disjunction (or) - in place of (&&) -Conjunction (and)-. The revised FLTL 

safety property is as follows: 

 

assert ResumedWhenSuspendedAndEventOccurs  

=  [](tick -> ((Suspended && !NormalOperation)  &&  (X((! tick || ! tick) 

|| (X( ! tick || (X(! tick W Event_Occurs)))W Event_Occurs))) -> X(!tick W 

(tick && NormalOperation)))) 

 

This modified property states that it is always the case that if the Suspended holds 

and normal operation state does not hold (!NormalOperation) at the occurrence of a tick, 

and an event has occurred (Event_Occurs ) within the next two time units, then the access 

must be resumed by the next time unit.  

 

Checking this modified property on the timed LTS generated by LTSA, yields the 

following output, where there are no safety violations: 

 

 

 

 

Property 6 (safety): Abortion when Suspended and timeout and an event has not occurred 

 

The sixth property to assert is that “once the usage is suspended and no event has occurred 

within the next two time units, the ongoing usage must be aborted at the fourth time unit”. 

We specify the required safety property as follows: 
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assert AbortedWhenSuspendedAndNoeventAndTimeout 

=  [](tick -> ((Suspended && !Aborted)  &&  (X((! tick || ! tick) || (X( ! 

tick || (X(! tick W !Event_Occurs)))W !Event_Occurs))) -> X(!tick W (tick 

&& Aborted)))) 

 

The above AbortedWhenSuspendedAndNoeventAndTimeout property states that it is 

always the case that if the Suspended holds and aborted state does not hold (!Aborted) at 

the occurrence of a tick, and no event has occurred (!Event_Occurs) within the next two 

time units, then the ongoing usage must be aborted at the next time unit.  

 

Performing LTL property check on the timed LTS generated using LTSA produces 

the following violation trace: 

 

 
 

The above trace shows a clear violation of the 

AbortedWhenSuspendedAndNoeventAndTimeout property. It is clear that at the occurrence 

of the last tick in the trace the Suspended fluent is true and Aborted fluent is false, and no 

event has occurred but has not been finished by the action abort to initiate Aborted fluent 

and terminate the Suspended fluent. To eliminate this violation, the above asynchronous 

FLTL formulae needs to be modified by replacing the operator (||) to (&&) as follows: 

  

assert AbortedWhenSuspendedAndNoeventAndTimeout 

=  [](tick -> ((Suspended && !Aborted)  &&  (X((! tick && ! tick) && (X( ! 

tick && (X(! tick W !Event_Occurs)))W !Event_Occurs))) -> X(!tick W (tick 

&& Aborted)))) 
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This revised property states that it is always the case that if the Suspended holds and 

aborted state does not hold (!Aborted) at the occurrence of a tick, and no event has occurred 

(!Event_Occurs) at the second and the third tick, then the ongoing usage must be aborted at 

the fourth tick.  Running against this revised property results in no violations as shown in the 

following output:  

 

 

 

Property 7 (safety): Abortion when High Early Warning 

 

The seventh property we assert is that “once the guard high Early Warning Level holds, 

ongoing usage must be aborted by the next time unit”. The safety property is expressed as 

follows: 

 

assert AbortedWhenHighLevel  

 = [](tick -> ((HighEarlyWarning && !Aborted)   -> X (!tick W (tick && 

Aborted))))     

   

The above specifications state that, it is always the case that if the high early warning 

holds at the occurrence of a tick, then the ongoing usage must be aborted by the next tick. 

Checking this property on the timed LTS generated using LTSA generates no violations as is 

seen the following output: 
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7.3.2  Progress Properties  

As our LTS formalism is timed using tick events, it is essential that the time is eventually 

progressing. The trace in which the time does not progress is called Zeno execution [8]. 

Hence, we need to check that the tick events happen regularly and will be executed infinitely 

often [60]. This is achieved by model checking the LTS model against a property called time 

progress [62]. This property is used with the discrete-time event-based model.  

 

Our checking of this time progress assume maximal progress [62], [64] and fair 

choice [62]. The maximal progress of actions means that all actions that are ready must 

happen between tick events. Therefore, the system will perform all actions that can occur 

before the next tick. This is determined by our scheduling policy which gives tick events low 

priority [62]. That ensures that interrupt policies with timing constraints are enforceable, by 

giving the events/actions a tick low priority. Subsequently, this allows the events/actions to 

occur when the components of the system are ready to perform them within a time period. 

The maximal progress assumption is included in the overall system behaviour.  The overall 

system behaviour is represented by the parallel compositions of all timed LTSs generated 

from the FLTL operational semantics in Section  6.2. We have included maximal progress by 

assigning tick events an action low priority using the FSP low priority operator as 

>>{tick}. This will ensure that all events/actions that can happen will be performed by 

the system during a single time unit. 

 

To avoid an infinite number of events/actions happening during a (finite) interval of 

time (it is called finite variability [64]), we assume that our scheduling policy makes a fair 

choice. Fair choice assumption defined as follows: “if a set of transitions are executed 

infinitely often, then every transition in the set will be executed infinitely often”. Hence, the 

enforcement mechanism will eventually observe a tick event whenever the time progresses by 

a single time unit. We check that the resulting timed LTS of the overall system behaviour 

satisfy the time progress property where the tick events must happen infinitely often in every 

infinite execution as follows:  
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Progress TimeProgressProperty = {tick}. 

 

The TimeProgressProperty is specified in FSP that checks the time progress 

property violations that can happen in all LTS traces generated from the operational 

semantics of the enforcement mechanism. Performing TimeProgressProperty property 

check on the overall system behaviour in timed LTS, under the maximal progress assumption 

using LTSA produces the following violation trace: 

 

 

 

The above-mentioned counterexample satisfies the safety property 

DelayedWhenLowLevel, but violates the time progresses property 

(TimeProgressProperty). This leads to the terminal set in which the only signallowlevel 

action and no tick occurs afterwards. The time progress property is violated where the second 

tick does not occur after the delay action. This is because there is no domain precondition for 

the action signallowlevel that states when the LowEarlyWarning fluent is initiated; it 

cannot be initiated by the occurrence of the action signallowlevel again before the next 

time point, would prevent the low early warning from happening again. Hence, we need to 

improve the operational semantics with domain preconditions for the action signallowlevel 

to avoid this progress violation. Additionally, there is a need to define domain preconditions 

for the other early warning actions to prevent this situation from occurring in those situations 

as well. The domain preconditions for early warning actions can be formally specified in a 

similar manner to that for interrupt response actions in (Section 6.2.2), and they are given as 

follows: 

 



CHAPTER 7. VERIFICATION 

143 

 

constraint DOM_PRE_SignalLowLevelWhenLowEarlyWarning =  

 [](tick -> ((LowEarlyWarning) -> X( !signalLowLevel W  tick))) 

 

constraint DOM_PRE_SignalMediumLevelWhenMediumEarlyWarning =  

 [](tick -> ((MediumEarlyWarning) -> X( !signalMediumLevel W  tick))) 

 

constraint DOM_PRE_SignalHighLevelWhenhighEarlyWarning =  

 [](tick -> ((HighEarlyWarning) -> X( !signalHighLevel W  tick))) 

 

constraint DOM_PRE_SignalVeryLowLevelWhenVeryLowEarlyWarning =  

 [](tick -> ((VeryLowEarlyWarning) -> X( !signalVeryLowLevel W  

tick))) 

 

For instance, the domain precondition that the “signalLowLevel” action may not be 

signalled if low early warning is already signalled, as specified in the above-mentioned 

constraint DOM_PRE_SignalLowLevelWhenLowEarlyWarning. Additionally, these 

specifications ensure that the policy rules triggering early warning actions will comply with 

the domain precondition for the same actions. 

 

We further analyse the progress of the overall system behaviour against the time 

progress property (TimeProgressProperty). The following progress violation is obtained: 
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This trace satisfies the safety property SuspendedWhenMediumLevel, but violates the 

expectation that the time progresses (TimeProgressProperty). The dead lock occurs 

because no tick occurs in the trace after the first tick. This violation indicates an 

inconsistency problem in the operational semantics of the enforcement rules. Hence, we need 

to improve the operational semantics with a required precondition for the suspend action to 

be consistent with the trigger condition for this response action [7], [60]. The required 

precondition (Req_PRE) captures a permission to perform an action. In other words, it 

captures conditions on the actions that a system component may perform when the condition 

is met to satisfy the properties. The required precondition for the action suspend is specified 

as follows: 

 

constraint REQ_PRE_SuspendWhenMediumLevel =  

   [] (tick ->  (!MediumEarlyWarning -> X (!suspend W tick))) 

 

The above expression states that the ongoing usage may not be suspended if the 

medium early warning has not been signalled.  To satisfy the time progress property for the 

system, the required preconditions for each response action need to be added in a manner 

similar to the one mentioned above to ensure consistency with the required trigger for those 

response actions expressed in (Section  6.2).  In the following, we include some of the 

interesting required preconditions:   

 

constraint REQ_PRE_DelayWhenLowLevel =  

 [](tick -> (LowEarlyWarning -> X( !delay W  tick)))   

 

constraint REQ_PRE_SkipWhenVeryLowLevel =  

  [] (tick ->  (VeryLowEarlyWarning -> X (!skip W tick))) 

 

constraint REQ_PRE_AbortWhenHighLevel =  

  [] (tick -> (HighEarlyWarning -> X (!abort W tick))) 
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Further progress analysis after adding the missing required preconditions for the rest 

of actions generate no violation, thus satisfying the time progress property.  

 

 

7.4 Summary  

In this chapter, using a case study of a tax revenue system, we illustrated how the full 

examples scenario of insider breach in this system are identified and formalised from a given 

natural language. We showed the benefits of our specification approach that utilise its 

expressiveness to specify some complex policies. We demonstrated how the progress and 

safety properties of the system with respects to policy and enforcement mechanism 

specifications can be verified using the LTSA model checker. We expressed safety properties 

for mutual exclusion using as an asynchronous FLTL property. We eliminated the safety 

property violations by making some modifications to those specified properties to ensure the 

consistency between the animated model behaviour and the system properties. We checked 

the time progress property to ensure that the time is often and eventually progressing. Our 

checks of the time progress property assumed the maximal progress and fair choice. The 

maximal progress assumption allows the events/actions to occur when the components of the 

system are ready to perform them within a time period.  We avoided the progress property 

violations by improving our operational semantics of enforcement mechanism with some 

missing domain preconditions and preconditions for actions.  While checking the consistency 

of the policy, enforcement mechanism specifications, and the system properties, the policies 

with timing constraints can be enforced and the enforcement mechanism can be deployed in 

AEWRS; this can be used as a sound basis for the concrete implementation of the system, 

with high level of assurance and understanding. 

 



 

146 

 

Chapter 8: Conclusion  

This chapter provides a summary of the work presented in this thesis and presents the 

research findings. We conclude this chapter with suggestions for future work. 

 

8.1 Summary of the Thesis 

Developing a framework for an adaptive early warning and response system to address 

insider privacy breaches that is compatible with a dynamic software system 

environment has been the overall aim of this thesis. This is needed due to the challenges 

that have been faced by the dynamic software system environment, where the insiders 

have direct access to information and are trusted by their organisations. However, the 

nature of insider privacy breaches fluctuates with the organisation’s acceptable usage 

policy and the attributes of an insider. In a software system environment, such as e-

government, the level of risk based on access patterns and timing constraints is 

considered in order to allow early warning against insider breaches. In addition to that, 

this aims to interrupt insider activity by enforcing adaptive response actions upon 

different scenarios of insider breaches. However, it is important to note that technical 

approaches alone are unable to detect and prevent insider breaches [22]. Hence, 

producing a framework for an adaptive early warning and response system to 

completely counter insider privacy breaches is challenging because insider behaviour 

may dynamically change based on intent and context. However, the necessity for a 

framework to support multiple and adaptive policy decisions at different risk levels in 

order to address the demands of a dynamic software system environment and to fill the 

gap of the existing frameworks has now been satisfied. 

 

 In meeting this goal, this thesis proposed a formal framework for an adaptive 

early warning and response system for insider privacy breaches. This framework allows 

for the specification of multiple policies at different risk levels during ongoing usage 

(depending on insider breach scenarios) and for enforcement of adaptive response 
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actions to interrupt insider activity. Chapter 3 illustrated an architecture for an adaptive 

early warning and response system (AEWRS) for insider privacy breaches that extends 

the traditional UCON model to include interrupt policy decisions, where those decisions 

can be expressed at different risk levels. Interrupt policy decisions determine what 

interrupt response actions (skip, delay, suspend, or abort) will be executed depending on 

the level of early warning (very low, low, medium, or high), respectively, during access. 

In this architecture, an adaptive early warning and response component is integrated 

into the UCON model within a comprehensive approach in order to provide two layers 

of defence in depth that is insider-aware.  

 

 In addition, a computational model for AEWRS was presented in the form of 

Statechart to demonstrate the concurrent behaviour of the system, where concurrent data 

access requests can be handled. Building on policy-based management, we represented 

an abstraction of the enforcement mechanism model for an AEWRS system regulated 

by the policy rules of privacy breach specification language (PBSL) to determine the 

policy decision-making behaviour. The model gave a description of how the outcome of 

the policy rules, namely the early warning level, will affect the behaviour of the 

computational model by enabling the corresponding state transitions, namely interrupt 

response actions, changing the system states.  Thus, it describes a link between the 

policy rules of PBSL and the system behaviour of AEWRS. The model demonstrated 

how polices can be adapted dynamically due to both the occurrence of events or actions 

and the passage of time. The development of AEWRS as an extension of UCON can be 

clearly seen from Statechart.  

 

 Chapter 4 presented PBSL based on the computational model. Within the 

language, privacy breach scenarios and the early warning level corresponding to the 

insider privacy breach and various timing constraints have been specified in a unified 

manner in the form of policy rules. The PBSL policy specifications are based on ECA 

rules. The standard ECA rules have been extended with various constructs, event-

supporting patterns, and timing constraints. In our context, events are used to express 

patterns that contribute to a privacy breach scenario, while conditions are used to 

express the attribute constraints and timing constraints related to the breach scenario. 
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Actions initiate the corresponding early warning level once a privacy breach scenario 

has been satisfied. The main features of PBSL are its expressiveness, simplicity, 

practicality, and formal semantics. The ability to express history-based behaviours using 

a high-level description in our specification language removed the necessity to use the 

notion of mutable attributes in UCON. Additionally, this increases the likelihood of the 

early detection of insider breaches with fewer false alarms. Furthermore, some 

examples of PBSL specifications with regard to some situations and examples of insider 

privacy breaches were provided to demonstrate the use of the language. These included 

data theft, masquerading, data inference, access for unauthorised purposes, and access 

without consent. 

 

 To add more rigour in the correctness of the specifications, LTS and 

asynchronous FLTL were considered suitable formalisms to specify operational 

semantics for PBSL and the enforcement mechanism model of AEWRS, which are time 

and event dependent and support the concurrency of execution. Additionally, 

asynchronous FLTL was deemed the most appropriate formalism to express the policies 

that are associated with timing constraints and to verify the (event-based) system 

properties on policy and enforcement mechanism (time event-based) models via the 

LTSA model checker.  

 

 The operational formal semantics of PBSL were described in LTS and FLTL 

(Chapter 5). The resulting LTS trace semantics of PBSL constructs were computed from 

asynchronous FLTL specifications using the LTSA animation facility. The graphical 

representations of PBSL constructs, including event patterns and timing constraints, 

were presented using timed LTS, which is based on state machines.  

 

 To facilitate communication between policy rules and the enforcement 

mechanism, we gave the formal operational semantics for the enforcement mechanism 

in LTS and asynchronous FLTL (Chapter 6). This was achieved as a means of defining 

enforcement rules and system behaviours, including their interactions, to allow for the 

enforcement of the PBSL policies. Given that AEWRS is adaptive, time-dependent, and 
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security-critical within a concurrent setting, we proposed an enforcement mechanism 

design for the concurrent enforcement of policies using a synchronous interleaving 

model to ensure mutual exclusion and support clock and condition synchronisation.  

 

 Using a case study of a tax revenue system, we illustrated how the example 

scenario of insider breaches are identified and formalised from a given natural language. 

We demonstrated the benefits of our specification approach that utilises its 

expressiveness to specify complex policies. We demonstrated in Chapter 7 how the time 

progress property and safety properties of the system with respect to policy and 

enforcement mechanism specifications can be verified using the LTSA model checker. 

In checking the consistency of the policy, enforcement mechanism specifications and 

system properties, policies with timing constraints can be enforced, and the enforcement 

mechanism can be deployed in AEWRS. Thus, that can be used as a sound basis for the 

concrete implementation of the system, with a high level of assurance and 

understanding. 

 

8.2 Contributions Revisited 

The contributions of this thesis can be summarised as follows:  

 

1- The UCON model has been extended to include interrupt policy decisions in 

which multiple policy decisions can be expressed at different risk levels 

during ongoing usage (Chapter 3).  

 

2- A computational model has been developed to demonstrate the abstract 

concurrent behaviour of an adaptive early warning and response system for a 

real information system in the context of policy decision-making and 

enforcement (Chapter 3). 

 

3- The Privacy Breach Specification language (PBSL) has been introduced 

(Chapter 4). This policy specification language has the following features: 
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o Expressiveness: PBSL is able to express a wide range of complex events 

and timing constraints in a comprehensive scenario and can specify a 

wide range of policies within the system. 

 

o Formal semantics: PBSL is based on sound formal semantics. This 

allows the language’s constructs and policy specifications to be analysed. 

 

o Simplicity: The constructs of PBSL are readable (easy to understand) 

and writable (easy to specify).  

 

o Practicality: The language can be implemented using an efficient 

mechanism. 

 

4- The policy language and the mechanism enforcing the policies have been 

formalised in an operational style, allowing policies to be enforced on the 

system (Chapter 5 and 6).  

 

5- The PBSL has been evaluated using a case study from the e-government 

domain (Chapter 7). 

 

6- The safety and progress properties of the policy and enforcement mechanism 

models have been formally verified using an automatic verification tool 

(Chapter 7). 
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8.3 Future Work  

Protection from Insider threats is a newly emerging and broached research area in the 

field of information security, and there are many issues that remain to be investigated. 

By providing a framework for an adaptive early warning and response system for 

insider privacy breaches, we have identified a number of suggestions to be considered in 

this regard. These are outlined below: 

 

Complex Response Actions 

As mentioned in Section  3.2, further complex response actions can be triggered within 

the delay or suspension period. These allow two or more response actions to run parallel 

or in sequence within the delay or suspend period. Some of these response actions are 

also suggested in [15], but no notation has been provided to express them. To define 

these complex response actions within PBSL, a response action language can be 

integrated into our language together with the temporal operators between actions as 

follows: 

 

Construct Description Example 

         Sequence of 

response actions 

                                

          Response actions 

in parallel 

                           

         Response actions 

happen in any 

order 

               

          Response actions 

happen and 

implies another 

action happens. 
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Interrupt policy operator 

To define interrupt policies within PBSL in a compositional fashion, interrupt policy 

constructs can be integrated into the language to express the interrupt policies using 

simple Boolean guards over state variables within different early warning levels. 

Interrupt policies can be expressed as    
 
 
 , where a policy starts with the policy  . 

Then   starts if either   time has elapsed or an event (interrupt) has occurred (that made 

the event e evaluate as true), whichever happens first. The abbreviations of the policy 

can be as follows, while the t and e are optional. 

 

-       

This is a policy that is equivalent to  . 

-        

This is a policy that starts with   and only if an event e occurs, then   takes 

over. 

-         

Here the interrupt policy starts with   and after a t time unit has elapsed, 

response action   starts.  

 

Examples.  

{                                         
        

        } 

 

 

{                                   } 

 

 Furthermore, we could introduce the expression      
           where a policy 

starts with  . While   is operating, it waits for e event to occur for t time units. As soon 

as e occurs,   policy starts. If after t time units and no e event has occurred or the event 

e evaluates to false, then   policy starts. 

 

Example.  

(             
                                    

                 )          
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Large Case Study 

An area for future work is to use a large real-world case study with more complex 

scenario examples including insider breaches or fraud in collusion with each other using 

our PBSL language for the purposes of further evaluation.  

 

Risk Engine 

We can integrate a risk engine with our policy-based approach for dynamic risk 

evaluation to assess the risk level at the session and policy level. We can use a risk 

assessment matrix based on the likelihood of the breach scenario and potential impact. 

The level of risk can be calculated at run-time by multiplying the likelihood of each 

breach scenario by the potential impact from a particular insider to a specific 

information asset. The values of risk levels from different policy rules can be merged in 

order to determine the total value (e.g., average) of the risk level at the session level. A 

policy can be specified based on the final result in order to trigger the corresponding 

early warning action. The risk level can be calculated as follows: 

the risk level from insider (I) against information asset (IA) = the likelihood of the 

breach scenario * damage impact. 

 

The likelihood of an insider threat can be evaluated in order to identify the chance that a 

breach will happen to a digital information asset by an insider based on access patterns. 

The potential impact is the degree of potential damage or impact to an information asset 

in the case of a potential insider breach occurrence with regards to asset confidentiality 

and privacy.  

 

Risk Level Range 

Very low early warning 1   EWL < 250                                      

Low early warning 250   EWL < 500 

Medium early warning 500   EWL < 750                  

High early warning EWL > 750-1000 
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Additional Extensions to UCON 

 Usage control remains a major open research area in information security. Hence, 

another issue of future work is to further investigate UCON to fully support insider 

threats with regards to specification and adopting efficient enforcement mechanisms and 

their implementation and deployment. These extensions include such as integrating the 

notions of context aware (e.g., location of the insider) in context-aware access control, 

and the purpose (the purpose of insider access) in purpose-aware access control.  

 

Practicality 

In order to demonstrate the applicability in practical settings, Implementation of 

enforcement mechanism to enforce PBSL policies tailored to specific applications and 

databases is an interesting area of future work. A related  area is to investigate how the 

early warning mechanism that send signals to the enforcements mechanism  can be  

implemented in a distributed setting with all the necessary facilities such as logging. To 

demonstrate the practicality in terms of the PBSL, another avenue of future work is to 

design a language and develop an easy-to use tool to enable end-users who interactively 

specify policies to use PBSL policies. 

 

Integration with Information Flow Model 

One important area of future work is to investigate how information flow model [16] 

can be adopted for our framework in order to control the flow of information after has 

been accessed from one insider to another. The system can then specify and enforce 

policies in order to detect illegal paths of information flow and prevent the information 

asset from being copied, printed or leaked outside the organisation. 

 

Considering non-technical aspects associated with our approach 

One important direction for future work is to accommodate nontechnical factors such as 

social, legal, ethical issues with our technical approach.  These include AEWRS needs 

to comply with data privacy laws such as the prohibition of use of monitoring personal 

data in AEWRS for the purpose of monitoring person’s job performance or analysing 



CHAPTER 8. CONCLUSION 

155 

 

his/her personal habits [34], that is required to be used only for the purpose of breach 

early detection and warning.  

 

 



 

156 

 

References 

[1] M. Abadi and C. Fournet, "Access Control Based on Execution History", in 

Proceedings of the 10th Annual Network and Distributed System Security 

Symposium (NDSS), 2003, p.107-121. 

[2] A. Act, "Health insurance portability and accountability act of 1996", Public 

Law, vol. 104, p. 191, 1996. 

[3] X. An, D. Jutla and N. Cercone, "Privacy intrusion detection using dynamic 

Bayesian networks", in ICEC '06 Proceedings of the 8th international 

conference on Electronic commerce. ACM, 2006. 

[4] R.H. Anderson, "Research and Development Initiatives Focused on Preventing, 

Detecting, and Responding to Insider Misuse of Critical Defense Information 

Systems: Results of a Three-Day Workshop", in Proceedings of an August 1999 

workshop, RAND Corporation, 1999. 

[5] R.H. Anderson, T. Bozek, T. Longstaff, W. Meitzler and M. Skroch, "Research 

on mitigating the insider threat to information systems-# 2", in Proceedings of 

an August 2000 workshop, RAND Corporation, 2000. 

[6] B. Alpern and F.B. Schneider, "Defining liveness", Information processing 

letters, vol. 21, no. 4, p.181-185, 1985. 

[7] D. Alrajeh, J. Kramer, A. Russo and S. Uchitel, "Elaborating requirements using 

model checking and inductive learning", IEEE Transactions on Software 

Engineering, vol. 39, no. 3, p.361-383, 2013. 



REFERENCES 

157 

 

 

 [8] D. Alrajeh, J. Kramer, A. Russo and S. Uchitel, "Deriving non-zeno behaviour 

models from goal models using ILP", Formal aspects of computing, vol. 22, no. 

3-4, p.217-241, 2010. 

[9] P. Ashley, S. Hada, G. Karjoth, C. Powers and M. Schunter, Enterprise privacy 

authorization language,  [EPAL 1.2]. Submission to W3C, 2003. 

[10] L. Audit Commission, Ghost in the machine An analysis of IT fraud and abuse. 

1998, [Online] Available from: http://archive.audit-

commission.gov.uk/auditcommission/subwebs/publications/corporate/publicatio

nPDF/1246.pdf [Accessed 10/10/14].  

[11] A.K. Bandara, A formal approach to analysis and refinement of policies, PhD.,  

Imperial College London (University of London), 2005. 

[12] A. Bandara, N. Damianou, E. Lupu, M. Sloman and N. Dulay, "Policy-based 

management", in J. Bergstra and M. Burgess, Eds., Handbook of network and 

systems administration. Elsevier, 2007, p.507-563. 

[13] D. Basin, V. Jugé, F. Klaedtke and E. Zălinescu, "Enforceable security policies 

revisited",  ACM Transactions on Information and System Security (TISSEC), 

vol. 16, no. 1, 2013. 

 [14] BBC,  "Six more data discs 'are missing' ", BBC News, 27th Nov 
 
2007. [Online]  

Available from: http://news.bbc.co.uk/1/hi/7111056.stm [Accessed 15/10/2014]. 

[15] E. Bertino, "Data Protection from Insider Threats", Synthesis Lectures on Data 

Management, vol. 4, no. 4, p.1-91, 2012.  

[16] M.A. Bishop, The Art and Science of Computer Security. Addison-Wesley 

Longman Publishing Co., Inc, 2002. 

http://archive.audit-commission.gov.uk/auditcommission/subwebs/publications/corporate/publicationPDF/1246.pdf
http://archive.audit-commission.gov.uk/auditcommission/subwebs/publications/corporate/publicationPDF/1246.pdf
http://archive.audit-commission.gov.uk/auditcommission/subwebs/publications/corporate/publicationPDF/1246.pdf
http://news.bbc.co.uk/1/hi/7111056.stm


REFERENCES 

158 

 

 

[17] M. Bishop, S. Engle, D.A. Frincke, C. Gates, F.L. Greitzer, S. Peisert and S.     

Whalen,  "A risk management approach to the “insider threat”, in C. W. Probst 

et al., Eds., Insider Threats in Cyber Security. Springer, 2010, p.115-137. 

[18] M. Bishop, D. Gollmann, J. Hunker and C. W. Probst, "Countering insider 

threats", in Dagstuhl Seminar proceedings, 2008, p.18. 

[19] R.C. Brackney and R.H. Anderson, "Understanding the Insider Threat",  in 

Proceedings of a March 2004 Workshop, RAND Corporation, 2004. 

[20] D.F. Brewer and M.J. Nash, "The chinese wall security policy", in 1989 IEEE 

Symposium on Security and Privacy, 1989, p.206-214. 

[21] S. Calo and J. Lobo, "A basis for comparing characteristics of policy systems", 

in IEEE Workshop on Policies for Distributed Systems and Networks (POLICY 

2006), IEEE, 2006. 

[22] D.M. Cappelli,  A.P. Moore and R.F. Trzeciak, The CERT Guide to Insider 

Threats: How to Prevent, Detect, and Respond to Information Technology 

Crimes (Theft, Sabotage, Fraud).  Addison-Wesley, 2012. 

[23] Centre for the Protection of National Infrastructure (CPNI), Insider Data 

Collection Study: Report of main Findings. April 2013. [Online]  Available 

from: http://www.cpni.gov.uk/advice/Personnel-security1/Insider-threats/ 

[Accessed 10/01/15]. 

[24] S. Chakravarthy, V. Krishnaprasad, E. Anwar and S. Kim, "Composite events 

for active databases: Semantics, contexts and detection", in Proceedings of the 

20th international conference on Very Large Data Bases (VLDB), 1994, p.606-

617. 

http://www.cpni.gov.uk/advice/Personnel-security1/Insider-threats/


REFERENCES 

159 

 

 

[25] J. Crampton and M. Huth, "Towards an access-control framework for countering 

insider threats", in C. W. Probst et al., Eds., Insider Threats in Cyber Security. 

Springer, 2010, p.173-195. 

[26] L. Cranor, M. Langheinrich and M. Marchiori, A P3P preference exchange 

language 1.0, [APPEL1. 0]. W3C working draft, 2002. 

[27] F. Cristian, "Probabilistic clock synchronization", Distributed computing, vol. 3, 

no. 3, p.146-158, 1989.  

[28] F. Cuppens and R. Ortalo, "LAMBDA: A language to model a database for 

detection of attacks", in Recent advances in intrusion detection, Springer, 2000. 

[29] N. Damianou, N. Dulay, E. Lupu and M. Sloman, "The ponder policy 

specification language", in M. Sloman et al., Eds., Policies for Distributed 

Systems and Networks. Springer, 2001, p.18-38. 

[30] A. Dardenne, A. Van Lamsweerde and S. Fickas, "Goal-directed requirements 

acquisition", Science of computer programming, vol. 20, no. 1, p.3-50, 1993.  

[31] R. Diaconescu and K. Futatsugi, CafeOBJ Report: The Language, Proof 

Techniques, and Methodologies for Object-Oriented Algebraic Specification. 

AMAST Series in Computing, World Scientific, 1998. 

[32] E. Directive, "95/46/EC of the European Parliament and of the Council of 24 

October 1995 on the protection of individuals with regard to the processing of 

personal data and on the free movement of such data", Official Journal of the 

EC, vol. 23, no. 6, 1995. 

 

 



REFERENCES 

160 

 

 

[33] S.T. Eckmann, G. Vigna and R.A. Kemmerer, "STATL: An attack language for 

state-based intrusion detection",  Journal of computer security, vol. 10, no. 1, 

p.71-103, 2002. 

[34] U. Flegel, F. Kerschbaum, P. Miseldine, G. Monakova, R. Wacker and F. 

Leymann, "Legally Sustainable Solutions for Privacy Issues in Collaborative 

Fraud Detection", in C. W. Probst et al., Eds., Insider Threats in Cyber Security. 

Springer, 2010, p.139-171. 

[35] W. Fokkink, "Introduction to process algebra", 2nd ed. Computer Science 

Monograph. Springer-Verlag, 2007. 

[36] S. Gatziu and K.R. Dittrich, "SAMOS: An active object-oriented database 

system", IEEE Data Eng. Bull., vol. 15, no. 1-4, p.23-26, 1992. 

[37] N.H. Gehani and H.V. Jagadish. "Ode as an Active Database: Constraints and 

Triggers", in Proceedings of the 17th international conference on Very Large 

Data Bases (VLDB), 1991, p.327-336. 

[38] D. Giannakopoulou and J. Magee, "Fluent model checking for event-based 

systems", in ACM SIGSOFT Software Engineering Notes, ACM, 2003. 

[39] F.L. Greitzer, A. P. Moore, D. M. Cappelli, D. H. Andrews, L.A. Carroll and 

T.D. Hull, "Combating the insider cyber threat",  IEEE Security and Privacy, 

vol. 6, no. 1, p.61-64, 2008. 

 [40] J.V. Guttag, K. D. Jones, A. Modet and J.M. Wing, Larch: languages and tools 

for formal specification, New York: Springer-Verlag, 1993. 

[41] D. Harel, "Statecharts: A visual formalism for complex system", Science of 

computer programming, vol. 8, no. 3, p.231-274, 1987. 



REFERENCES 

161 

 

 

[42] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-

Trauring and M. Trakhtenbrot, "Statemate: A working environment for the 

development of complex reactive systems", IEEE Transactions on Software 

Engineering, vol. 16, no. 4, p.403-414, 1990. 

[43] M. Hinchey, J.P. Bowen and C. A. Rouff, "Introduction to Formal Methods", in 

C. A. Rouffet et al., Eds., Agent technology from a formal perspective. Springer-

Verlag, 2006, p.25-64. 

 [44] C.A.R. Hoare, Communicating sequential processes. Prentice-hall Englewood 

Cliffs. 1985. 

 [45] IAEA, Preventive and Protective Measures against Insider Threats: 

Implementing guide. Vienna: International Atomic Energy Agency, 2008. 

[46] H. Janicke, The development of secure multi-agent systems, PhD., 2007, De 

Montfort University. 

[47] H. Janicke, A. Cau, F. Siewe and H. Zedan, "Concurrent enforcement of usage 

control policies",  in IEEE Workshop on Policies for Distributed Systems and 

Networks (POLICY 2008), 2008, p.111-118. 

[48] H. Janicke, A. Cau, F. Siewe and H. Zedan, "Dynamic access control policies: 

specification and verification", The Computer Journal, p.bxs102, 2012. 

[49] H. Janicke, A. Cau and H. Zedan, "A note on the formalisation of UCON", in 

Proceedings of the 12th ACM symposium on Access control models and 

technologies, 2007. 

[50] C.B. Jones, Systematic software development using VDM. Prentice-Hall 

Englewood Cliffs, NJ, 1986.  



REFERENCES 

162 

 

 

[51] A. Kamra and E. Bertino, "Design and implementation of an intrusion response 

system for relational databases", IEEE Transactions on Knowledge and Data 

Engineering, vol. 23, no. 6, p.875-888, 2011. 

[52] B. Katt,  M. Hafner and X. Zhang, "A usage control policy specification with 

petri nets", in IEEE 5th International Conference on Collaborative Computing, 

Networking, Applications and Worksharing (CollaborateCom 2009), 2009, p.1-

8. 

[53] E. Kowalski, T. Conway, S. Keverline, M. Williams, D. Cappelli, B. Willke and 

A. Moore, Insider threat study: Illicit cyber activity in the government sector. 

US Department of Homeland Security at the US Secret Service and  CERT at 

the Software Engineering Institute (Carnegie Mellon University), 2008. 

[54] R. Koymans, "Specifying real-time properties with metric temporal logic", Real-

time systems, vol. 2, no. 4, p.255-299, 1990. 

[55] S. Kumar, Classification and detection of computer intrusions, PhD., Purdue 

University, 1995. 

 [56] L. Lamport, "Proving the correctness of multiprocess programs", IEEE 

Transactions on Software Engineering, vol. 3, no. 2, p.125-143, 1977. 

[57] L. Lamport, "The temporal logic of actions", ACM Transactions on 

Programming Languages and Systems (TOPLAS), vol. 16, no. 3, p.872-923, 

1994. 

 [58] E. Letier, Reasoning about agents in goal-oriented requirements engineering, 

PhD.,  Université catholique de Louvain, 2001. 

 



REFERENCES 

163 

 

 

[59] E. Letier, J. Kramer, J. Magee and S. Uchitel, "Fluent temporal logic for 

discrete-time event-based models", in ACM SIGSOFT Software Engineering 

Notes, ACM, 2005. 

[60] E. Letier, J. Kramer, J. Magee and S. Uchitel, "Deriving event-based transition 

systems from goal-oriented requirements models", Automated Software 

Engineering, vol. 15, no. 2, p.175-206, 2008. 

[61] U.  Lindqvist and P.A. Porras, "Detecting computer and network misuse through 

the production-based expert system toolset (P-BEST)", in Proceedings of the 

1999 IEEE Symposium in Security and Privacy,1999. 

[62] J. Magee and J. Kramer, Concurrency: state models & Java programs, 2nd ed. 

John Wiley & Sons, 2006. 

[63] F. Martinelli, "A Model for Usage Control in GRID systems", in Third IEEE 

International Conference on Security and Privacy in Communications Networks 

and the Workshops (SecureComm 2007), 2007, p.520-520. 

[64] J. Mattai and M. Joseph, Real-Time Systems: specification, verification, and 

analysis. Prentice Hall PTR, 1995. 

[65] M. McCormick,  "Data theft: a prototypical insider threat", in J. S. Salvatore et 

al., Eds., Insider Attack and Cyber Security: Beyond the Hacker. Springer, 2008, 

p.53-68. 

[66] M. Meier, N. Bischof and T. Holz, "SHEDEL - A Simple Hierarchical Event 

Description Language for Specifying Attack Signatures", in Proceedings of the 

17th International Conference on Information Security, Springer, 2002, p.559-

571. 



REFERENCES 

164 

 

 

[67] C. Michel and L. Mé, "Adele: an attack description language for knowledge-

based intrusion detection", in Proceedings of the 16th International Conference 

on Information Security (IFIP/SEC 2001), Springer, 2001, p.353-368. 

[68] R. Milner, Communication and concurrency. Prentice-Hall, Inc, 1989. 

[69] R. Miller and M. Shanahan, "Some alternative formulations of the event 

calculus", in A. C. Kakas and F. Sadri, Eds., Computational logic: logic 

programming and beyond. Springer Berlin Heidelberg, 2002, p.452-490. 

[70] T. Moses,  Extensible access control markup language, [xacml] version 2.0. 

Oasis Standard, 2005. 

[71] B. Moszkowski, "Executing temporal logic programs" in S. D. Brookes et al., 

Eds., Seminar on concurrency,  Springer, 1985, p.111-130. 

[72] A. Mounji, Languages and tools for rule-based distributed intrusion detection, 

Belgium Doctor of Science Thesis, Facult es Universitaires Notre-Dame de la 

Paix, Namur, 1997. 

[73] P.G. Neumann, "Combatting insider threats", in C. W. Probst et al., Eds., Insider 

Threats in Cyber Security. Springer, 2010, p.17-44. 

[74] H.R. Nielson and F. Nielson, Semantics with applications: a formal 

introduction. John Wiley & Sons, Inc., 1992. 

[75] Office of Public Sector Information,  Data protection act 1998. 1998.  

[76] J. Park and R. Sandhu, "The UCON ABC usage control model", ACM 

Transactions on Information and System Security (TISSEC), vol. 7, no. 1, p.128-

174, 2004. 

 



REFERENCES 

165 

 

 

[77] J. Park, X. Zhang and R. Sandhu, "Attribute mutability in usage control", in C. 

Farkas and P. Samarati, Eds., Research Directions in Data and Applications 

Security XVIII,  Springer, 2004, p.15-29. 

[78] N.W. Paton and O. Díaz, "Active database systems", ACM Computing Surveys 

(CSUR), vol. 31, no. 1, p.63-103, 1999. 

[79] J.L. Peterson, Petri net theory and the modeling of systems. Prentice-hall 

Englewood Cliffs (NJ), 1981. 

[80] T. Piper, " The Personal Information Protection and Electronic Documents Act-

A Lost Opportunity to Democratize Canada's Technological Society", Dalhousie 

LJ, vol. 23, p. 253, 2000. 

[81] J.-P. Pouzol and M. Ducasé, "From declarative signatures to misuse IDS", in 

Recent Advances in Intrusion Detection, Springer, 2001. 

[82] C.W. Probst and R.R. Hansen, "An extensible analysable system model", 

Information security technical report, vol. 13, no. 4, p.235-246, 2008. 

 [83] C.W. Probst, J. Hunker, D. Gollmann and M. Bishop, "Aspects of Insider 

Threats", in C. W. Probst et al., Eds., Insider Threats in Cyber Security. 

Springer, 2010, p.1-15. 

[84] D.E. Robling Denning, Cryptography and data security. Addison-Wesley 

Longman Publishing Co., Inc, 1982. 

[85] M.B. Salem, S. Hershkop and S.J. Stolfo, "A survey of insider attack detection 

research", in J. S. Salvatore et al., Eds., Insider Attack and Cyber Security: 

Beyond the Hacker. Springer, 2008, p.69-90. 

 



REFERENCES 

166 

 

 

[86] R.S. Sandhu, E.J. Coyne, H. L. Feinstein and C.E. Youman, "Role-based access 

control models", Computer, vol. 29, no. 2, p.38-47, 1996. 

[87] F.B. Schneider, "Enforceable security policies", ACM Transactions on 

Information and System Security (TISSEC), vol. 3, no. 1, p.30-50, 2000. 

[88] D. Schutzer, "Research Challenges for Fighting Insider Threat in the Financial 

Services Industry", in J. S. Salvatore et al., Eds., Insider Attack and Cyber 

Security: Beyond the Hacker. Springer, 2008, p.215-218. 

[89] F. Siewe, A compositional framework for the development of secure access 

control systems, PhD., De Montfort University, 2005. 

[90] M. Sloman, "Policy driven management for distributed systems", Journal of 

network and Systems Management, vol. 2, no. 4, p.333-360, 1994. 

[91] L. Spitzner, "Honeypots: Catching the insider threat", in Proceedings of the 

IEEE Computer Security Applications Conference (19th Annual), 2003.  

[92] L. Spitzner, "Honeytokens: The other honeypot", 2003, [Online] Available from: 

http://bandwidthco.com/sf_whitepapers/honeypots/Honeytokens%20-

%20The%20Other%20Honeypot.pdf [Accessed 13/10/14].  

 [93] J.M. Spivey and J. Abrial, The Z notation. Prentice Hall Hemel Hempstead, 

1992. 

 [94]  The Department for Business, Innovation and Skills (BIS), Information Securiy 

Breaches Survey: Technical Report. 2013, [Online] Available from: 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/2

00455/bis-13-p184-2013-information-security-breaches-survey-technical-

report.pdf [Accessed 13/01/15]. 

http://bandwidthco.com/sf_whitepapers/honeypots/Honeytokens%20-%20The%20Other%20Honeypot.pdf
http://bandwidthco.com/sf_whitepapers/honeypots/Honeytokens%20-%20The%20Other%20Honeypot.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/200455/bis-13-p184-2013-information-security-breaches-survey-technical-report.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/200455/bis-13-p184-2013-information-security-breaches-survey-technical-report.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/200455/bis-13-p184-2013-information-security-breaches-survey-technical-report.pdf


REFERENCES 

167 

 

 

[95] The Department for Business, Innovation and Skills (BIS), Information Securiy 

Breaches Survey: Technical Report. 2014, [Online] Available from: 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/3

07296/bis-14-767-information-security-breaches-survey-2014-technical-report-

revision1.pdf [Accessed 13/01/15]. 

[96] K. Twidle, E. Lupu, N. Dulay and M. Sloman, "Ponder2-a policy environment 

for autonomous pervasive systems", in IEEE Workshop on Policies for 

Distributed Systems and Networks (POLICY 2008), IEEE, 2008, p.245-246. 

 [97] H.S. Venter, M.S. Olivier and J.H. Eloff, "PIDS: a privacy intrusion detection 

system", Internet Research, vol. 14, no. 5, p.360-365, 2004. 

[98] Verizon,  2014 Data Breach Investigations Report. 2014, [Online] Available 

from: http://www.verizonenterprise.com/DBIR/2014/ [Accessed 16/01/15]. 

 [99] J. Yang, P. Ning, X. S. Wang and S. Jajodia, "CARDS: A distributed system for 

detecting coordinated attacks", in Proceedings of the IFIP TC11 Fifteenth 

Annual Working Conference on Information Security for Global Information 

Infrastructures, Springer, 2000, p.171-180. 

[100] X. Zhang, F. Parisi-Presicce and R. Sandhu, "Formal model and policy 

specification of usage control", ACM Transactions on Information and System 

Security (TISSEC), vol. 8, no. 4, p.351-387, 2005. 

 [101] X. Zhang, J. Park, F. Parisi-Presicce and R. Sandhu, "A logical specification for 

usage control", in Proceedings of the ninth ACM symposium on Access control 

models and technologies, 2004. 

 

http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307296/bis-14-767-information-security-breaches-survey-2014-technical-report-revision1.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307296/bis-14-767-information-security-breaches-survey-2014-technical-report-revision1.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307296/bis-14-767-information-security-breaches-survey-2014-technical-report-revision1.pdf
http://www.verizonenterprise.com/DBIR/2014/


 

168 

 

Glossary of Terms 

 

Abort is an interrupt response action that disconnects the insider from the system, and 

immediately aborts the access process. 

Abstraction Levels the abstraction level is related to the amount of detail represented in 

the model, and are supported by moving up and down the hierarchy of composed 

components of the model. 

Acceptable Usage policy is a set of rules that limit the ways in which resources may be 

used and outlines the guidelines as to how they should be used.  

Access Control is a process of limiting access to resources depending on the security 

policies, which determine whether to allow or deny subjects to access objects prior to 

access being executed. 

Adaptive Early Warning and Response System AEWRS is proposed to mitigate and 

counter insider breaches by early detection; warn against insider breaches; delay, 

suspend, and interrupt the insider attacks. It consists of early warning policies and 

enforcement mechanisms.  

Anomaly detection is intrusion detection technique that identifies the observed 

behaviour is abnormal when it deviates from the expected normal behaviour. 

Asynchronous or Metric Temporal Logic - Asynchronous FLTL - expresses 

properties on the sequence of system states observed after the occurrence of an event by 

using temporal operators with bounded time intervals (qualitative notion of time). 

Auditing is a process of logging and analysing access events to resources, to determine 

which incidents took place and who executed them.  

Authentication is the process of verifying users’ identities in a system, by determining 

who the user is or who he/she claims to be.  
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Authorisation is the process of determining the set of rights assigned to a user to 

execute access to particular objects. 

Bounded Time operators are a form of operators that are restricted by time-bounds. It 

allow to specify and reason about properties by using a qualitative notion of time 

(bounded time interval).  

Clock synchronisation refers to the technique that deals with the problem when 

concurrent processes signal events ordered based on the time, in order to enable those 

processes on different sub-systems to be aware of the passage of time and allow 

concurrent access to shared objects. 

Condition synchronisation refers to the technique that allows the enforcement 

mechanism (monitor) to block processes until a particular condition holds. 

Counterexamples are a sequence of execution traces produced by model checking 

which violate the property. 

Delay is an interrupt response action that delays access for a period of time until 

timeout occurs. 

Dense time model is a time model in which events occur at times that are represented 

by a dense continuous time domain such as real numbers. 

Discrete time model is a time model in which events occur at times that are represented 

by a discrete time domain such as natural numbers. 

Domain preconditions and Domain postcondition capture the elementary state 

transitions defined by the application of operations in that domain. 

Early warning Action represents an operation that must be triggered once a privacy 

breach scenario has been detected. 

Early warning levels are risk levels that are determined by the early warning level 

actions in the policy rules. 

E-Government refers to the use of information technology by government agencies to 

improve the delivering of government services to citizens and to empower them to 

access to information. 
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Event patterns are complex events that occur when multiple primitive events occur 

according to some patterns.  

False negative is the actual incident that goes undetected. 

False positive or False Alarm is the incident that is detected as an actual attack 

although it is normal and not suspicious. 

Fluents are time-varying properties of the world. A Fluent in FLTL can be either state-

based or event-based predicate. 

Fluent Linear Temporal Logic is a formalism based on a linear temporal logic to 

specify state-based and event-based properties on event-based models using the notion 

of “fluent”.  

Formal Semantics is a description of the meaning of language syntax unambiguously 

in a formal mathematical way. 

Formal verification is the process of applying a manual or automatic formal technique 

for establishing whether a given system satisfies a given property or behaves in 

accordance to some formal specification of the system. 

Honeypot is designed to capture malicious users and trap attempts at inappropriate 

access of data.  

Insider Fraud Insider use of IT for the unauthorized modification, addition, or deletion 

of an organization’s data (not programs or systems) for personal gain, or the theft of 

information that leads to an identity crime (identity theft, credit card fraud). 

Insider IT Sabotage Insider use of information technology to direct harm at an 

organisation or an individual. 

Insider Privacy Breach Insider use of IT for the access of personal data within an 

organisation in an unacceptable way for personal gain, or the theft of information that 

leads to an identity crime. 

Insider Theft of Intellectual property (Espionage) Insider use of IT to steal 

proprietary information from the organisation, this category includes industrial 

espionage involving insiders. 
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Insiderness “Degree of Insiderness” the level of access a particular insider has with 

respect to a given asset, and measures the degree of access and knowledge of an asset, 

and the level of trust of the insider. 

Interrupt policy decisions are proactive decisions at graded risk levels which can be 

dynamically adapted following an early warning to interrupt insider activity.  

Interrupt Response action is an action that must be performed when an early warning 

level has been triggered, with the aim of responding to insider breaches in a timely 

manner. 

Intrusion detection System is a system that identifies attempts to misuse or break into 

a computer system and reports them to the system administrator. 

Labelled Transition System represents a system as a set of concurrent components, 

where each component represents a set of states and transitions between these states. 

Labelled Transition System Analyser is a tool for modelling concurrency in form of 

state machines (LTS), and analysis using model checking with animation. 

Liveness property asserts that something good eventually happens. 

Misuse Detection is intrusion detection technique that identifies intrusions that conform 

to a predefined pattern of a known attack (misuse signature). 

Model Checking is a widely used automated formal analysis technique for verifying 

the properties of finite-state concurrent systems. 

Mutual exclusion refers to the requirement that no concurrent processes sharing object 

are in their critical section at the same time, so only one process must acquire a lock at a 

time. 

Object is a passive entity that is typically associated with data structures in information 

systems such as records. 

Policy specification is the process of expressing what response actions are triggered 

when some detected privacy breach scenario triggers a certain early warning level. 

 



GLOSSARY 

172 

 

 

Policy Enforcement is the process of enforcing policies in the system by enforcement 

mechanisms. This mechanism causes a mutual interaction between the policy 

specifications and the system behaviour in order to ensure the consistency. 

Privacy breach scenario is a known pattern or attack or vulnerability represented as a 

combination of events with some associated contextual information that, when detected, 

trigger the corresponding early warning level.  

Privacy Breach Specification Language is a policy specification language that 

expresses privacy breach scenarios, and their the corresponding early warning levels as 

well as various timing constraints in a unified manner in the form of policy rules.  

Progress property asserts that a particular action is often and eventually executed. 

Safety property asserts that nothing bad happens. 

Security Policy is a set of rules, laws and practices that regulate the use of resources 

and outline high-level guidelines as to allowing or denying access to sensitive 

information resources. 

Subject is an active entity that performs actions on objects and is associated with users, 

or a processes acting on behalf of users.  

Suspend is an interrupt response action that causes access to be suspended until some 

event occurs or the system times out. 

Synchronous or standard temporal logic - synchronous FLTL - expresses properties 

on the sequence of system states observed at a fixed time rate by using a quantitative 

notion of time. 

Required Precondition captures a permission to perform an action. 

Required trigger condition captures an obligation to perform the action. 

Risk Assessment is the process of risk identification, analysis, and evaluation. 

Timing constraints are to constrain the period of time within which events may occur. 
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Usage Control is a usage model that encompasses traditional access control, trust 

management, and data rights management. 

Video Surveillance is the use of video cameras to transmit a signal to a specific, limited 

set of monitors where it is used for detection of potential risks and crimes. 


