155 research outputs found

    Automatic multi-seed detection for MR breast image segmentation

    Get PDF
    In this paper an automatic multi-seed detection method for magnetic resonance (MR) breast image segmentation is presented. The proposed method consists of three steps: (1) pre-processing step to locate three regions of interest (axillary and sternal regions); (2) processing step to detect maximum concavity points for each region of interest; (3) breast image segmentation step. Traditional manual segmentation methods require radiological expertise and they usually are very tiring and time-consuming. The approach is fast because the multi-seed detection is based on geometric properties of the ROI. When the maximum concavity points of the breast regions have been detected, region growing and morphological transforms complete the segmentation of breast MR image. In order to create a Gold Standard for method effectiveness and comparison, a dataset composed of 18 patients is selected, accordingly to three expert radiologists of University of Palermo Policlinico Hospital (UPPH). Each patient has been manually segmented. The proposed method shows very encouraging results in terms of statistical metrics (Sensitivity: 95.22%; Specificity: 80.36%; Precision: 98.05%; Accuracy: 97.76%; Overlap: 77.01%) and execution time (4.23 s for each slice)

    Breast MRI segmentation for density estimation:Do different methods give the same results and how much do differences matter?

    Get PDF
    PURPOSE: To compare two methods of automatic breast segmentation with each other and with manual segmentation in a large subject cohort. To discuss the factors involved in selecting the most appropriate algorithm for automatic segmentation and, in particular, to investigate the appropriateness of overlap measures (e.g., Dice and Jaccard coefficients) as the primary determinant in algorithm selection. METHODS: Two methods of breast segmentation were applied to the task of calculating MRI breast density in 200 subjects drawn from the Avon Longitudinal Study of Parents and Children, a large cohort study with an MRI component. A semiautomated, bias-corrected, fuzzy C-means (BC-FCM) method was combined with morphological operations to segment the overall breast volume from in-phase Dixon images. The method makes use of novel, problem-specific insights. The resulting segmentation mask was then applied to the corresponding Dixon water and fat images, which were combined to give Dixon MRI density values. Contemporaneously acquired T1 - and T2 -weighted image datasets were analyzed using a novel and fully automated algorithm involving image filtering, landmark identification, and explicit location of the pectoral muscle boundary. Within the region found, fat-water discrimination was performed using an Expectation Maximization-Markov Random Field technique, yielding a second independent estimate of MRI density. RESULTS: Images are presented for two individual women, demonstrating how the difficulty of the problem is highly subject-specific. Dice and Jaccard coefficients comparing the semiautomated BC-FCM method, operating on Dixon source data, with expert manual segmentation are presented. The corresponding results for the method based on T1 - and T2 -weighted data are slightly lower in the individual cases shown, but scatter plots and interclass correlations for the cohort as a whole show that both methods do an excellent job in segmenting and classifying breast tissue. CONCLUSIONS: Epidemiological results demonstrate that both methods of automated segmentation are suitable for the chosen application and that it is important to consider a range of factors when choosing a segmentation algorithm, rather than focus narrowly on a single metric such as the Dice coefficient

    A computerized volumetric segmentation method applicable to multi-centre MRI data to support computer-aided breast tissue analysis, density assessment and lesion localization.

    Get PDF
    Density assessment and lesion localization in breast MRI require accurate segmentation of breast tissues. A fast, computerized algorithm for volumetric breast segmentation, suitable for multi-centre data, has been developed, employing 3D bias-corrected fuzzy c-means clustering and morphological operations. The full breast extent is determined on T1-weighted images without prior information concerning breast anatomy. Left and right breasts are identified separately using automatic detection of the midsternum. Statistical analysis of breast volumes from eighty-two women scanned in a UK multi-centre study of MRI screening shows that the segmentation algorithm performs well when compared with manually corrected segmentation, with high relative overlap (RO), high true-positive volume fraction (TPVF) and low false-positive volume fraction (FPVF), and has an overall performance of RO 0.94 ± 0.05, TPVF 0.97 ± 0.03 and FPVF 0.04 ± 0.06, respectively (training: 0.93 ± 0.05, 0.97 ± 0.03 and 0.04 ± 0.06; test: 0.94 ± 0.05, 0.98 ± 0.02 and 0.05 ± 0.07)

    Automatic and fast segmentation of breast region-of-interest (ROI) and density in MRIs

    Get PDF
    Accurate segmentation of the breast region of interest (BROI) and breast density (BD) is a significant challenge during the analysis of breast MR images. Most of the existing methods for breast segmentation are semi-automatic and limited in their ability to achieve accurate results. This is because of difficulties in removing landmarks from noisy magnetic resonance images (MRI) due to similar intensity levels and the close connection to BROI. This study proposes an innovative, fully automatic and fast segmentation approach to identify and remove landmarks such as the heart and pectoral muscles. The BROI segmentation is carried out with a framework consisting of three major steps. Firstly, we use adaptive wiener filtering and k-means clustering to minimize the influence of noises, preserve edges and remove unwanted artefacts. The second step systematically excludes the heart area by utilizing active contour based level sets where initial contour points are determined by the maximum entropy thresholding and convolution method. Finally, a pectoral muscle is removed by using morphological operations and local adaptive thresholding on MR images. Prior to the elimination of the pectoral muscle, the MR image is sub divided into three sections: left, right, and central based on the geometrical information. Subsequently, a BD segmentation is achieved with 4 level fuzzy c-means (FCM) thresholding on the denoised BROI segmentation. The proposed method is validated using the 1350 breast images from 15 female subjects. The pixel-based quantitative analysis showed excellent segmentation results when compared with manually drawn BROI and BD. Furthermore, the presented results in terms of evaluation matrices: Acc, Sp, AUC, MR, P, Se and DSC demonstrate the high quality of segmentations using the proposed method. The average computational time for the segmentation of BROI and BD is 1 minute and 50 seconds

    Information Fusion of Magnetic Resonance Images and Mammographic Scans for Improved Diagnostic Management of Breast Cancer

    Get PDF
    Medical imaging is critical to non-invasive diagnosis and treatment of a wide spectrum of medical conditions. However, different modalities of medical imaging employ/apply di erent contrast mechanisms and, consequently, provide different depictions of bodily anatomy. As a result, there is a frequent problem where the same pathology can be detected by one type of medical imaging while being missed by others. This problem brings forward the importance of the development of image processing tools for integrating the information provided by different imaging modalities via the process of information fusion. One particularly important example of clinical application of such tools is in the diagnostic management of breast cancer, which is a prevailing cause of cancer-related mortality in women. Currently, the diagnosis of breast cancer relies mainly on X-ray mammography and Magnetic Resonance Imaging (MRI), which are both important throughout different stages of detection, localization, and treatment of the disease. The sensitivity of mammography, however, is known to be limited in the case of relatively dense breasts, while contrast enhanced MRI tends to yield frequent 'false alarms' due to its high sensitivity. Given this situation, it is critical to find reliable ways of fusing the mammography and MRI scans in order to improve the sensitivity of the former while boosting the specificity of the latter. Unfortunately, fusing the above types of medical images is known to be a difficult computational problem. Indeed, while MRI scans are usually volumetric (i.e., 3-D), digital mammograms are always planar (2-D). Moreover, mammograms are invariably acquired under the force of compression paddles, thus making the breast anatomy undergo sizeable deformations. In the case of MRI, on the other hand, the breast is rarely constrained and imaged in a pendulous state. Finally, X-ray mammography and MRI exploit two completely di erent physical mechanisms, which produce distinct diagnostic contrasts which are related in a non-trivial way. Under such conditions, the success of information fusion depends on one's ability to establish spatial correspondences between mammograms and their related MRI volumes in a cross-modal cross-dimensional (CMCD) setting in the presence of spatial deformations (+SD). Solving the problem of information fusion in the CMCD+SD setting is a very challenging analytical/computational problem, still in need of efficient solutions. In the literature, there is a lack of a generic and consistent solution to the problem of fusing mammograms and breast MRIs and using their complementary information. Most of the existing MRI to mammogram registration techniques are based on a biomechanical approach which builds a speci c model for each patient to simulate the effect of mammographic compression. The biomechanical model is not optimal as it ignores the common characteristics of breast deformation across different cases. Breast deformation is essentially the planarization of a 3-D volume between two paddles, which is common in all patients. Regardless of the size, shape, or internal con guration of the breast tissue, one can predict the major part of the deformation only by considering the geometry of the breast tissue. In contrast with complex standard methods relying on patient-speci c biomechanical modeling, we developed a new and relatively simple approach to estimate the deformation and nd the correspondences. We consider the total deformation to consist of two components: a large-magnitude global deformation due to mammographic compression and a residual deformation of relatively smaller amplitude. We propose a much simpler way of predicting the global deformation which compares favorably to FEM in terms of its accuracy. The residual deformation, on the other hand, is recovered in a variational framework using an elastic transformation model. The proposed algorithm provides us with a computational pipeline that takes breast MRIs and mammograms as inputs and returns the spatial transformation which establishes the correspondences between them. This spatial transformation can be applied in different applications, e.g., producing 'MRI-enhanced' mammograms (which is capable of improving the quality of surgical care) and correlating between different types of mammograms. We investigate the performance of our proposed pipeline on the application of enhancing mammograms by means of MRIs and we have shown improvements over the state of the art

    Performance of a fully automatic lesion detection system for breast DCE-MRI

    Get PDF
    PURPOSE: To describe and test a new fully automatic lesion detection system for breast DCE-MRI. MATERIALS AND METHODS: Studies were collected from two institutions adopting different DCE-MRI sequences, one with and the other one without fat-saturation. The detection pipeline consists of (i) breast segmentation, to identify breast size and location; (ii) registration, to correct for patient movements; (iii) lesion detection, to extract contrast-enhanced regions using a new normalization technique based on the contrast-uptake of mammary vessels; (iv) false positive (FP) reduction, to exclude contrast-enhanced regions other than lesions. Detection rate (number of system-detected malignant and benign lesions over the total number of lesions) and sensitivity (system-detected malignant lesions over the total number of malignant lesions) were assessed. The number of FPs was also assessed. RESULTS: Forty-eight studies with 12 benign and 53 malignant lesions were evaluated. Median lesion diameter was 6 mm (range, 5-15 mm) for benign and 26 mm (range, 5-75 mm) for malignant lesions. Detection rate was 58/65 (89%; 95% confidence interval [CI] 79%-95%) and sensitivity was 52/53 (98%; 95% CI 90%-99%). Mammary median FPs per breast was 4 (1st-3rd quartiles 3-7.25). CONCLUSION: The system showed promising results on MR datasets obtained from different scanners producing fat-sat or non-fat-sat images with variable temporal and spatial resolution and could potentially be used for early diagnosis and staging of breast cancer to reduce reading time and to improve lesion detection. Further evaluation is needed before it may be used in clinical practice

    Brachial plexus delineation in intensity modulated radiotherapy treatment planning

    Get PDF
    • …
    corecore