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Abstract

Medical imaging is critical to non-invasive diagnosis and treatment of a wide spectrum
of medical conditions. However, different modalities of medical imaging employ/apply
different contrast mechanisms and, consequently, provide different depictions of bodily
anatomy. As a result, there is a frequent problem where the same pathology can be
detected by one type of medical imaging while being missed by others. This problem brings
forward the importance of the development of image processing tools for integrating the
information provided by different imaging modalities via the process of information fusion.
One particularly important example of clinical application of such tools is in the diagnostic
management of breast cancer, which is a prevailing cause of cancer-related mortality in
women. Currently, the diagnosis of breast cancer relies mainly on X-ray mammography and
Magnetic Resonance Imaging (MRI), which are both important throughout different stages
of detection, localization, and treatment of the disease. The sensitivity of mammography;,
however, is known to be limited in the case of relatively dense breasts, while contrast-
enhanced MRI tends to yield frequent “false alarms” due to its high sensitivity. Given this
situation, it is critical to find reliable ways of fusing the mammography and MRI scans in
order to improve the sensitivity of the former while boosting the specificity of the latter.

Unfortunately, fusing the above types of medical images is known to be a difficult com-
putational problem. Indeed, while MRI scans are usually volumetric (i.e., 3-D), digital
mammograms are always planar (2-D). Moreover, mammograms are invariably acquired
under the force of compression paddles, thus making the breast anatomy undergo sizeable
deformations. In the case of MRI, on the other hand, the breast is rarely constrained and
imaged in a pendulous state. Finally, X-ray mammography and MRI exploit two com-
pletely different physical mechanisms, which produce distinct diagnostic contrasts which
are related in a non-trivial way. Under such conditions, the success of information fu-
sion depends on one’s ability to establish spatial correspondences between mammograms
and their related MRI volumes in a cross-modal cross-dimensional (CMCD) setting in the
presence of spatial deformations (+SD). Solving the problem of information fusion in the
CMCD+SD setting is a very challenging analytical/computational problem, still in need
of efficient solutions.

In the literature, there is a lack of a generic and consistent solution to the problem of
fusing mammograms and breast MRIs and using their complementary information. Most
of the existing MRI to mammogram registration techniques are based on a biomechanical
approach which builds a specific model for each patient to simulate the effect of mammo-
graphic compression. The biomechanical model is not optimal as it ignores the common
characteristics of breast deformation across different cases. Breast deformation is essen-
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tially the planarization of a 3-D volume between two paddles, which is common in all
patients. Regardless of the size, shape, or internal configuration of the breast tissue, one
can predict the major part of the deformation only by considering the geometry of the
breast tissue. In contrast with complex standard methods relying on patient-specific bio-
mechanical modeling, we developed a new and relatively simple approach to estimate the
deformation and find the correspondences. We consider the total deformation to consist of
two components: a large-magnitude global deformation due to mammographic compression
and a residual deformation of relatively smaller amplitude. We propose a much simpler
way of predicting the global deformation which compares favorably to FEM in terms of
its accuracy. The residual deformation, on the other hand, is recovered in a variational
framework using an elastic transformation model.

The proposed algorithm provides us with a computational pipeline that takes breast
MRIs and mammograms as inputs and returns the spatial transformation which establishes
the correspondences between them. This spatial transformation can be applied in different
applications, e.g., producing “MRI-enhanced” mammograms (which is capable of improv-
ing the quality of surgical care) and correlating between different types of mammograms.
We investigate the performance of our proposed pipeline on the application of enhancing
mammograms by means of MRIs and we have shown improvements over the state of the
art.
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Chapter 1

Introduction

Breast cancer is the most common malignancy diagnosed in women worldwide. Approx-
imately 1.1 million cases of breast cancer are globally diagnosed each year, with annual
fatalities exceeding 400,000 lives worldwide. In Canada, breast cancer accounts for 13% of
all cancers'. It is the most commonly diagnosed cancer, accounting for 25% of all cancers
among female patients. Over the past 25 years, the incidence of breast cancer has essen-
tially increased with associated lifetime diagnosis going from 1-in-12 to 1-in-8, and at the
same time the absolute risk of dying from breast cancer has remained somewhat the same

[].

As in the case of many major disorders, early detection has a critical impact on the
outcomes of treatment of breast cancer. Accordingly, many diagnostic instruments have
been introduced for diagnosing breast disease in its earliest possible stages. Among these
tools, medical imaging provides a non-invasive analysis of internal anatomy and pathology.
Different imaging modalities provide different presentations of breast tissue. In this way,
they often provide physicians with a different source of information which is used differently
through clinical treatments.

Due to the complementary nature of the information provided by imaging modalities, it
is often useful to fuse them, or equivalently, transfer contrast from one modality to another
modality. To fuse the information, one would need to establish spatial correspondences
between two images coming from different modalities, which technically can be defined by
a geometric transformation between the domains of these two images. Therefore, given
two source images, the problem is mainly to estimate this geometric transformation which

12018 Canadian Cancer Statistics - Canadian Cancer Society: https://www.cancer.ca/en/cancer-
information/cancer-101/canadian-cancer-statistics-publication/?region=on



turns out to be a non-trivial problem in the case of images being used in the diagnosis of
breast disease. This is mostly due to the different dimensionality and contrast mechanism
of the breast imaging modalities. Our goal, in this work, is to transfer contrast from breast
Magnetic Resonance Imaging (MRI) to mammography.

The result of our research is a computational pipeline that takes breast MRIs and
mammograms as inputs and returns the spatial correspondences between them. This
spatial transformation can be used in many applications, but in particular, we are interested
in projecting the geometrical locations and shapes of breast lesions detected by MRI to
mammography. This helps to reveal cancers which are mammographically occult (not seen
in mammograms). But in this case, the former is 3-D while the latter is 2-D, they use
different contrast mechanisms, and on top of that, there is also an additional compression
component in mammography which makes this problem to be extremely ill-posed. In this
work, we propose a practical tool to establish correspondences between the breast MRI
and the mammogram, which improves the efficiency over standard methods.

Below, we provide some principles of breast anatomy and mention common breast ma-
lignancies. Then we provide basic information on breast MRI and mammography along
with briefly mentioning some other breast imaging techniques which are sometimes in-
volved. The chapter is concluded with a formal definition of our research problem, its
challenges, as well as our solutions associated with it.

1.1 Breast Anatomy

Breast tissue is part of the anatomy which mainly consists of adipose, i.e., fat, and fibrog-
landular, i.e., dense, tissue. A healthy breast is composed of 12 to 20 compartments called
lobes. Each of these lobes is made up of several smaller lobules which are the glands that
produce milk. Both the lobes and lobules are connected by milk ducts which gradually
converge towards the nipple (see Figure 1.1 for more details). The breast tissue is sepa-
rated from the ribs by two pectoral muscles. The lobules and the ducts are surrounded with
adipose tissue along with other types of supportive structures such as Cooper ligaments
which determines the shape of the breast tissue.

Broadly speaking, breast lesions are divided into benign and malignant neoplasm sub-
types [58]. For example, the most common types of benign neoplasm are breast cysts. On
the other hand, we have malignant neoplasm that combinedly is called breast cancer, which
can come in a variety of shapes, sizes and can grow at different parts of the breast tissue.
It can also spread outside the breast through blood vessels and lymph vessels, where it is
said to have metastasized.



Figure 1.1: Breast anatomy: (1) ribs, (2) adipose tissue, (3) lobules, (4) nipple, (5) lactif-
erous duct, (6) blood vessels, (7) chest wall, (8) pectoral muscle, and (9) skin [11].

Breast cancer can be categorized as invasive (if it is spread) and non-invasive (if it is
not spread) types. In situ breast cancer (ductal carcinoma in situ) is a common example
of non-invasive breast cancer which starts and grows in milk ducts. It is the earliest stage
(known as stage one) at which breast cancer can be diagnosed. The vast majority of
women diagnosed with it can be cured. If it is not diagnosed on time, it can lead to
invasive cancer?. Invasive breast cancers, which are generally detected in higher stages, are
divided into two common groups:

e Invasive ductal carcinoma: The cancer cells grow outside the ducts into other
parts of the breast tissue. Invasive cancer cells can also spread, or metastasize, to
other parts of the body.

e Invasive lobular carcinoma: Cancer cells spread from the lobules to the breast

tissues that are close by. These invasive cancer cells can also spread to other parts
of the body.

There are many risk factors for breast cancer, and cancer might be due to a combination
of factors which include age, family history, medical history, genetic information, etc. In

Zhttps:/ /www.webmd.com/breast-cancer /guide/ductal-carcinoma-invasive-in-situ
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addition to that, there are other quantitative measures of risk such as breast density which
is defined as the ratio of fibroglandular tissue to the total breast volume. In particular, it
has been shown that higher breast density is strongly related to a higher risk of developing
cancer [ 15]. The proportion of the fibroglandular and fat tissues varies across time as it
is affected by hormonal changes, such as childbirth or by the process of involution, which
results in time-variant breast density. Therefore, for an individual, risk factors vary by
time due to aging, involution process and hormonal changes.

1.2 Breast Imaging

The practice of breast imaging has transitioned through a wide variety of technological
advances from the early days of direct-exposure film mammography to xeromammography
to screen-film mammography to the current era of digital mammography and digital breast
tomosynthesis. Besides X-ray, other techniques like MRI and ultrasound have long been
the principal imaging modalities used throughout various stages of diagnosis and treatment
of breast cancer [10].

In the 1960’s, it was common to use X-ray tubes with direct exposure film in breast
diagnosis, which was originally designed for other medical imaging procedures such as chest
radiography [54]. Later on, the technology developed enough to become safer in terms of ex-
posure to radiation, where an improvement over direct exposure film mammography came
in the form of xeroradiography [03]. The major technological advance in mammography
came with the development of screen-film (analog) mammography and uniform-thickness
breast compression [ 13]. Since then screen-film mammography has allowed acquiring im-
ages in a safer and efficient manner.

X-ray mammography plays a central role in the radiological management of breast
cancer. It is used in many clinical workflows for diagnosis, tumor localization as well as
prescreening, presurgical planning, and interoperation guidance. For women at average
risk, a screening mammogram is normally performed annually (beginning at the age of
50 in Canada) to reveal early signs of breast cancer. For the patients at a higher risk
of breast cancer (due to, e.g., family history or genetic predisposition) an early exam is
usually warranted. In past decades, conventional analog mammography has been replaced
by Full-Filled Digital Mammography (FFDM) in which the X-ray film is replaced by solid-
state detectors that convert X-rays into electrical signals. Most radiology practices use
digital mammography because compared to analog film, it provides better quality images
with improved tissue contrast. Studies have shown that digital mammography is partic-
ularly better than film mammography for dense breasts, as well as for younger patients,
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who tend to have denser breasts than older patients. Digital mammography also has the
added benefit of lower radiation dose compared to traditional analog mammography. In
recent years, some prestigious hospitals have opted for tomosynthesis scanning, which is an
extension of mammography and allows 3-D reconstruction of the breast based on multiple
projections [99]. These three-dimensional image sets help to minimize the tissue overlap
that can hide cancers or make it difficult to distinguish normal overlapping breast tissue
from tumors [112].

MRI has been utilized for a long time and breast imaging was among the first appli-
cations of it. In particular, modern clinical workflows require using a particular version of
MRI which is called Dynamic Contrast-Enhanced MRI (DCE-MRI). In this type of MRI, a
contrast agent is injected into the subject and images acquired along a timeline providing
us with information of how this contrast agent is absorbed by different tissue types (it
will be explained later). It provides a 3-D image of the breast tissue and functional infor-
mation showing the areas in the breast with increased blood flow. This type of imaging
removes any ambiguity caused by the projective nature of mammography and also tends
to show both malignant and benign lesions which takes a radiologist to sort them by their
properties.

There are other methods like ultrasound which is often used as a second look imaging
modality to confirm what has been seen before. In addition, it is routinely used for wire
localization which is done before breast cancer surgery to find where the breast abnormality
is. Since it does not expose the patient to any radiation, ultrasound imaging is safer
in comparison to mammography [10]. However, diagnostic information of ultrasound is
difficult to interpret due to its relatively low spatial resolution, noise, and contrast.

Another common type of breast imaging is optical molecular modality which uses ex-
ogenous fluorescent probes as additional contrast agents that target molecules relevant to
breast cancer [13]. By providing detailed pictures of internal structures of the breast at the
molecular and cellular level, it creates a potential for early breast cancer detection. Fur-
thermore, it has an application in biopsy where it is utilized to guide a needle to remove a
sample of the tissue. Magnetic Resonance Spectroscopy (MRS) is another imaging modal-
ity focusing on diagnosis and staging. It indicates biochemical, rather than structural,
composition of a lesion[3].

Among all breast imaging modalities, X-ray mammography and MRI remain the main
principal medical imaging modalities in breast cancer diagnosis and treatment. In the next
section, we describe these imaging modalities in more detail.



1.2.1 X-ray Mammography

As it was mentioned in previous sections, X-ray mammography is the gold standard in
early detection of breast disease in screening programs. During examination the breast is
compressed between two plates, compression paddles, and it is exposed to X-ray radiation.
Figure 1.2 shows a schematic representation of the mammographic imaging system. In
mammography, the breast tissue is compressed (planarized) which is one of the essentials
of effective mammography (and a common source of patient discomfort and concern). Po-
tential benefits derived from breast compression includes: a more uniform breast thickness
resulting in a better fit of the exposure into the film latitude or dynamic range, reduced
blurring from patient motion, reduced scattered radiation and improved contrast sensitiv-
ity, reduced radiation dose, and better visualization of tissues near the chest wall.

As it is seen in Figure 1.2, in addition to compression paddles, there is a source of X-ray
radiation (X-ray tube) which is focused on the compressed breast tissue. The produced
X-rays pass through the tissue and are absorbed on the film producing a 2-D mammogram.
As the X-rays penetrate the breast tissue, they are attenuated by the tissues they have
passed. In other words, depending on the attenuation properties of the tissues and their
thickness, some energy of each X-rays is absorbed in the path. Note that X-rays are
composed of radiations with different energy levels.

Let I(r) be the image intensity at point r in the 2-D imaging plane, u(r,z, E') be the
linear attenuation coefficient of tissue at (r, z) (in the 3-D domain of the breast), and h(r)
be the thickness of the breast tissue at r and in the direction of mammographic projection.
Based on Beer-Lambert’s law, I(r) can be defined as follows [158]

h(r)

1) =1y [ p(E) I e (11)
E=0

where p(FE) is the normalized photon energy spectrum at energy F, and I, indicates the
incident photon energy. The attenuation coefficient of a tissue not only depends on its
properties but it also is a function of photon energy E, and that is why the integration
goes over entire range of energy.

Generally speaking, the contrast in mammograms is due to the different attenuation
coefficients of fat and fibroglandular tissues. The attenuation coefficient of fibroglandular
tissue is higher than that of adipose tissue, and hence, the former is seen brighter in X-ray
images [04]. On the other hand, the attenuation coefficient of any fibroglandular (e.g.,
ducts, carcinoma, glandular) and tumor are similar and, as a result, they look like each
other in X-ray mammography. Consequently, interpreting the mammographic findings in
dense breasts is challenging.
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Figure 1.2: X-ray mammography system [I31]

In mammography, the position of the patient is defined by two terms: Source-Object
Distance (SOD), where the object represents the patient); and Source-Detector Distance
(SDD). The distance between two paddles is indicated by “body-thickness” which is rela-
tively much smaller than SOD and SDD. Depending on the direction of breast compression,
digital mammograms are standardly acquired in two projected views called Cranial-Caudal
(CC) and Mediolateral-Oblique (MLO), examples of which are depicted in Figure 1.3. An-
other point deserving to be mentioned is that the resolution of X-ray images is typically
higher with respect to other modalities.

With all the advantages offered by mammography, it is known to have a lower success
rate in certain patients. More specifically, when it goes to radiological breast tissue cate-



(a)
Figure 1.3: X-ray mammogram: (a) CC view; (b) MLO view

gories known as “extremely dense” and “heterogeneously dense” it fails to reveal malignant
lesions. In these cases, lesions are obscured by dense tissues and technically we say lesions
are mammographically occult [17]. To locate these lesions we use information from MRI,
and throughout this thesis, we will call it “MRI-enhanced mammograms”. Such applica-
tion is particularly important in breast surgery to localize multi-centric and multi-focal
lesions.

1.2.2 Breast MRI Imaging

MRI relies on the phenomenon of Nuclear Magnetic Resonance (NMR) resulting in a spec-
troscopic technique that we use to obtain physical information about molecules. Although
NMR can be applied on a range of nuclei, in MRI, medical MRI targets hydrogen due to
the abundance of water molecules in our body. It uses a constant large-amplitude magnetic
field (typically around 1.5 to 3 T) to align the spins of the protons in water molecules. Sub-
sequently, using external electromagnetic pulses (time-varying electromagnetic field) the
spins are selectively forced to steer from the alignment. Then, by switching off the electro-
magnetic field, the spins go back to the equilibrium through the process of precession. As



the spins return to the alignment with the magnetic field, they emit electromagnetic en-
ergy that can be measured. Using the technique of tomographic construction, this emitted
electromagnetic energy is processed and used to build 3-D grey-scale MRI images.

The precession is described by two characteristic times, T1 (also called spin-lattice) and
T2 (also called spin-spin). In particular, T1 is the time required for the net magnetization
vector to realign itself with the constant magnetic field, and T2 is the time required for
the signal (produced in the precession process from a given tissue type) to decay. These
times are strictly dependent on the properties of the tissue at molecular level. Different
tissues, with normal or abnormal states, have different T1 and T2. In the MRI system,
the contrast is created by applying different imaging protocols that have been designed to
outline the differences in T1, T2, and spin density.

Breast MRI acquisition is standardly performed with women lying on their stomachs,
with their face turned down. This anatomical position is referred to as prone (see Fig-
ure 1.4a). The prone position makes it possible to place the breast as close as possible of
an array of MRI receiving antennas. It is not only to increase the Signal-to-Noise Ratio
(SNR), but also to reduce the frequency and phase contributions from tissues other than
the breast [19]. Moreover, the uncompressed and pendulous state of the breast tissue helps
to avoid tissue folding, thus further maximizing the accuracy of detection and localization
of breast lesions. In comparison to mammography, MRI exhibits coarser resolution with
typical voxel size of 0.7mm x 0.7mm x 2mm. Figure 1.4b illustrates a typical axial slice

(a)
Figure 1.4: (a) Prone position during MRI [131]; (b) pre-contrast (axial slice) MRI slice



from a T1-weighted breast MRI .

Unfortunately, the quality of MRI image declines due to the differences between reso-
nance frequencies of fat and water, chemical-shift effect, etc. This issue is of a particular
concern in breast imaging where most part of the breast is composed of fat. To solve this,
DCE-MRI in which multiphase MRI scans are taken following the intravenous injection of
a contrast agent, gadolinium™ in most cases, has been widely used in clinical practice.
These agents change the relaxation times of tissues. In the tumor neighborhood, the vas-
cular system is larger in comparison to other regions causing the accumulation of blood,
or equivalently water, in the area. Therefore, in vicinity of the lesions, the relaxation time
will change dramatically with respect to the other part of the breast tissue. By taking
more images as the agent passes through the vascular system and computing some param-
eters from these images, radiologists are able to locate the tumor [71]. Also by having
several post-contrast MRI images and subtracting the pre-contrast image from them, it
becomes possible to track changes at each region of the image, and consequently recognize
any abnormality in the breast tissue.

Thanks to the possibility of visualizing three-dimensional dynamic information and its
high sensitivity, the DCE-MRI has demonstrated a great potential for screening high-risk
women and staging newly diagnosed breast cancers. Therefore, DCE-MRI is becoming
more popular as an important tool for breast cancer diagnosis. In addition, DCE-MRI
sequences are used to extract the washout pattern of the contrast agent. Washout is defined
as a visually assessed temporal reduction in enhancement relative to the surrounding liver
from an earlier to a later phase [21]. By plotting the MR signal of a region of interest over
time, it is possible to distinguish between a tumor and healthy tissue. Malignant lesions
usually show early enhancement with rapid washout, whereas benign lesions typically show
a increase followed by persistent enhancement [(2].

Despite many advantages offered by breast MRI, it shows a higher rate of false-positive
or a small value of specificity. In other words, it detects all benign and malignant at the
same time which may lead to over-treatment. One possible way to increase the specificity
of DCE-MRI is to combine it with information from mammography.

1.3 Importance of Fusing Information from Mammog-
raphy and MRI

Depending on the type of the cancer and the stage of the disease, usually two types
of treatments are considered; mastectomy and lumpectomy. Mastectomy is a surgery
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to remove all breast tissue from the body as a way to treat or prevent breast cancer.
Lumpectomy is a breast-conserving surgery in which only the tumor is removed from the
breast, and treatment is done with the smallest possible change in the organ. Women who
have surgery as part of their breast cancer treatment may choose breast reconstruction
surgery to rebuild the shape and look of the breast. Therefore, preserving the breast tissue
as much as possible is of the great importance, which demands early-stage detection and
accurate localization of the lesions.

Breast surgeons usually rely on physical examination of the breast to locate the tumors,
and in cases where it is not applicable, they often prefer mammography. However, the
applicability of mammography for non-palpable breast malignancies has been limited to
the cases when the latter are visible on mammograms. At the same time, the situations in
which the non-palpable lesions are occult to mammography such that the surgeon could
no longer use the mammograms or the physical exam to localize lesions - the situation is
particularly aggravated in the presence of multifocality. In these cases it is common to take
breast MRI for better localization of the tumor. However, usually it is hard to interpret 3-D
images. Therefore, the availability of “MRI-enhanced” mammograms could substantially
improve the quality of surgical care, reducing the risk of postoperative complications as
well as precluding the need for repeated surgical interventions. Accordingly, to assist the
surgeon in choosing an optimal surgical plan and for breast lesion detection and localization,
it is necessary to use mammograms and MRIs together, which possibly results in better
treatment of breast diseases [39].

MRI and mammography are complementary and not exclusive; none of them can be
substituted by the other. On one hand, mammography is low-cost and provides a projective
image of the compressed breast. The relatively low sensitivity of mammography limits its
efficacy in patients with a relatively dense composition of breast tissue, which tends to
be mammographically occult. On the other hand, MRI gives a 3-D representation of the
disease and does not miss any possible tumor. However, despite MRI’s high sensitivity
(reported as 93% to 100% [%4]) and high negative predictive value, it shows variable and
generally lower specificity (ranging from 37% to 97%) in comparison to mammography and
breast ultrasound. Moreover, despite the superb ability of preoperative MRI to delineate
the spatial extent of multi-focal and multi-center disease, its use does not guarantee a
reduction in the rate of positive margins and hence does not always lead to an improvement
in surgical outcomes. However, if it was possible to automatically determine a spatial
correlation between MRI scans and their corresponding mammograms, one could augment
the mammograms with information on the location and shape of MRI-detected lesions.

In addition, transferring contrast from breast MRI to mammogram can be used to as-
sist radiologists in automatically correlating temporal mammographic images of the same
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view, or when they relate findings from the CC and the MLO view mammograms. Screen-
ing with two mammographic views improves the detection accuracy of abnormalities in
the breast, where two projections allow a better estimation of the conspicuity of lesions.
Establishing such correspondences can reveal lesions hidden by glandular tissue in one
projection, decreasing the chance of missing subtle cancers [11].

In conclusion, to improve the specificity of MRI and sensitivity of mammography find-
ings as well as to facilitate biopsy, these imaging modalities should be used together. In
other words, it is necessary to fuse their information by transferring dynamic contrast from
one modality to the other one. This diagnostic fusion helps to locate the same lesion in
the MRI and mammography scans concurrently.

1.4 Problem Statement

Establishing correspondences between a breast MRI and a mammogram requires one to
find a spatial transformation that relates the coordinates of breast tissue in its pendulous
and compressed states based on the imaging data alone. This problem can be conveniently
formulated as problems of image registration, which, in the case at hand, can be further
characterized as being both Cross-Modal and Cross Dimensional (CMCD). Moreover,
the expected ill-posedness of CMCD formulation is further exacerbated by the effect of
mechanical compression of the breast during mammography examination along with the
fact that, as opposed to MRI scans, mammographic images are, in fact, projective. Hence,
it hardly comes as a surprise that the range of approaches to the problem of 3-D breast MRI
to 2-D mammography registration remains comparatively limited, while the drawbacks of
existing solutions hamper their widespread adoption into clinical practice. As a result,
achieving an accurate alignment is challenging and difficult. Even though alignment may
not be perfect, bringing the correspondences of two images close enough to each other,
e.g., under 10 mm, would provide valuable information by decreasing the size of the region
of interest.

The goal of this research is to develop a theoretical framework and algorithmic methods
for information fusion of digital mammograms with their associated MRI scans in CMCD+
Spatial Deformation (SD) setting. In other words, the aim is to find the correspondences
between 3-D breast MRI and 2-D-mammogram. Given two real-valued images f (3-D
MRI) and g (2-D-mammogram) defined over some (typically rectangular) domain 2 c R3,
our problem consists in finding a spatial transformation ¢ : 2 — €0 that is capable of
bringing f into close correspondence with g. To find the optimal ¢, a similarity measure
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between ¢ and projected-deformed version of f should be maximized. The registration
task can be formulated as an optimization problem

p* = arg Elgax S(P(f o gp),g) (1.2)

where (fo)(r) = f(r+¢(r)), re, and P(f o) indicates the projection of f o ¢ onto
2-D plane of g. § is a similarity measure between g and f o, and ® is a set of acceptable
spatial transformations, e.g., topology preserving homeomorphism transformation. As it is
seen from this equation, we are looking for a spatial deformation which brings two images
from two different modalities and different domains to spatial alignment, i.e. we want to
find a solution to a CMCD+ SD problem. Note that f o ¢ is in 3-D but P(f o ¢) is in
2-D just like g which makes their alignment possible.

1.5 Main Contributions

In the literature, there is a lack of a generic and consistent solution to the problem of
fusing mammograms and breast MRI images and using their complementary information.
Most of the existing MRI to mammogram registration techniques are based on a biome-
chanical approach that builds a specific model for each patient to simulate the breast
deformation. Bio-mechanical approaches are user-dependent and their results vary with
initial conditions. For example, for the same subject, if the position of the patient or the
initial configuration of the model changes slightly, the registration results will be different.
Besides this, bio-mechanical methods need a third-party solver to numerically estimate the
breast deformation.

In contrast with complex standard methods relying on patient-specific bio-mechanical
modeling, we developed a new method which offers substantial improvement in computa-
tional complexity, independence of commercial software packages and ability to generalize
to multiple sides and patient groups. While traditionally the breast deformation was esti-
mated in a single stage, we came with the idea of splitting the total deformation into two
parts, namely the global and the residual deformation. The global deformation, which is
the significant part of the deformation, is almost common among all patient with much less
inter-patient variability, and consequently it is predictable. In this thesis, we use a mathe-
matical formulation to predict the value of global deformation followed by estimating the
residual part. Predicting the global part of the deformation takes us close enough to the
solution so that the residual part goes into the category of small magnitude, which makes it
easier to compute from numerical point of view. In this way, our proposed physical-aware
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mathematical solution offers computationally simple and standardizable means of predic-
tion, while being dependent neither on excessive image preprocessing nor on the knowledge
of any physical properties of the breast.

Estimating a geometric transformation that aligns MRIs and mammograms is a very
challenging problem, and consequently, before approaching it, one needs to solve a scope of
many sub-problems. To estimate the residual deformation, it is quite essential to synthesize
a mammogram from the MRI volume, which requires extracting the geometry of the breast,
isolating the breast tissue from the body and segmenting the breast voxels either as adipose
or fibroglandular. We will discuss the preprocessing steps in more detail.

The main contributions of this work can be summarized as follows,

Developing a new mathematical approach toward the alignment between breast MRIs
and mammograms. This method does not require any biomechanical model and is
capable of being standardized.

Proposing two new algorithms to predict the breast motion in mammography. I
used only the geometry and surface of the MRI volume to establish the shape of the
deformed breast, and consequently, the breast deformation.

Refinement of the results of the proposed alignment methods through an intensity-
based Free Form Deformation (FFD) Model. I have also explored two similarity
measures, namely mutual information and sum of square distance, to check the qual-
ity of the registration.

Developing two novel approaches to do whole breast segmentation in both mammo-
gram and MRI. In these methods, I take advantage of Deep Learning (DL) and graph
search techniques to find the boundary between the breast tissue and body.

Presenting a novel approach to segment the breast MRI to fibroglandular and adipose
tissue. This is necessary for registration refinement by the FFD model.

I validated the developed registration framework with a clinical dataset, using cases
with identified lesions in both modalities, annotated by experts.

1.6 Outline

The remainder of the thesis is organized as follows. Chapter 2 provides a literature review
and presents some technical preliminaries, including the FFD model and X-ray mammo-
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gram simulation from MRI, necessary for the presentation of our results.

Chapter 3 discuss the details of three pre-processing steps: a) segmentation of the
breast tissue from background in MRI scans, b) separating breast tissue from pectoralis
major in MLO mammograms and c¢) classifying the internal structures of the breast to
adipose and fibroglandular in MRI scans.

In Chapter 4, two new global deformation estimation algorithms along with details
of residual deformation estimation are proposed. These g methods are based on su-
perquadratic function model and MRI surface evolving.

In Chapter 5, the proposed registration framework on a clinical dataset is evaluated by
registering MRI images to CC and MLO mammograms.

Finally, Chapter 6 includes conclusions, possible application of proposed framework
and potential directions for future research.
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Chapter 2

Background and Literature Review

In this chapter, the main concepts of image registration along with different types of regis-
tration algorithms will be reviewed. Basic definition of image registration and some general
image registering methods are discussed in Section 2.1. Different factors of registration
(e.g., transformation types, optimization methods, similarity measures and validation) are
explained. In Sections 2.2 and 2.3, registration techniques which are applied to different
types of breast images, e.g., MRI and X-ray, are presented.

2.1 Image Registration

Image registration (aka alignment), is one of the key tasks in image processing and in med-
ical imaging in particular. Given two digital images defined over a shared spatial domain,
the most quintessential task of image registration is to find a spatial transformation which
brings them to the same coordinate system. These images could be taken from a different
angle with one or two different sensors, and consequently they have different coordinate
systems. The transformation aligns the two images so that the local intensities and features
of corresponding structures can be compared directly. Consequently, it becomes possible
to combine information about the scene that is captured by these two images. Figure 2.1
illustrates the general idea of image registration.

Formally, the goal of image registration is finding a spatial transformation function or
geometric model 7 that maps two images to each other. Given the transformation 7, the
coordinate ry is computed as

ro =T (ry) (2.1)
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Figure 2.1: Tlustration of image registration task.

Transformation 7 is applied to one of the images, which is called the moving or floating
image, while the other one remains unchanged and it is called the fixed or reference image.
Therefore, the intensity value of the warped floating image at point ry is equal to its value
at point r;. Depending on the problem in hand, the choice of geometric transformation 7T is
critical. To compute this transformation, often, a similarity measure is maximized between
the fixed and the floating images. As it is shown in Figure 2.2, the main components of
a registration task are floating and reference images, transformation function, searching
strategy (optimization) and similarity measure, which is discussed in the next sections. In
this figure, images are 2-D, thus, r1 = (z1,y;) and ry = (22, 92).

It deserves noting that images are essentially discrete representations of a continuous
scene, and the intensities at the pixel positions form a grid of the continuous space. Hence,
by applying a transformation at a point in one of the images, the new transformed position
may not coincide with a pixel center in the other image. To solve this problem, it is often
necessary to find the intensity values at a off-grid coordinates which necessitates image
interpolation.

We can categorize image registration algorithms based on the properties which they
use to do the alignment:

e Feature based: In this type of registration, some features or landmarks are found

from reference and floating images. Using these common points in two images, the
corresponding transformation for each pixel in the floating image is calculated. Find-
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Figure 2.2: Main components and steps of image registration.

ing these points is the most difficult and critical step of this type of registration
technique. Finding corresponding features or landmarks can be done automatically
or manually. Automatic algorithms are not accurate enough, and manual extraction
is laborious and subjective, while the use of markers is not always applicable. How-
ever, these type of registration algorithms are fast in comparison to other types of
registration methods as they use a few points to find the displacement vector of each
pixel.

Intensity based: Rather than relying on the features, the methods of this group
use image intensities directly. The critical factor of intensity based registration algo-
rithms is the similarity measure that they use as a criterion to judge how well two
images are registered. The similarity measure is iteratively maximized between the
two images by updating the parameters of the transformation function. Since these
methods use the intensity of all pixels in the image they are generally more robust
than feature-based techniques.
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2.1.1 Geometric Transformation Function

The key in image registration is to find the best geometric transformation which brings
floating and reference images into alignment. Also, it is necessary to restrict it to a set of
possible geometric transformations. The transformation function can be either parametric
or non-parametric. The former is defined by a small set of parameters while the latter
satisfies certain regularity conditions, e.g., bounded gradient or a smooth function with
continuous first or higher-order derivatives. The most used transformation functions are
rigid, affine and elastic (non-rigid) which will be explained next.

e Rigid: The transformation function is rigid-body, where it is assumed that the
floating image is only rotated and displaced with respect to the reference image. The
transformation function is defined as follows:

T(x)=Rr+t (2.2)

where R denotes the rotation matrix and t is a constant vector giving the translation
of the origin. Thus, in order to align the two images, one only needs to estimate R
and t. For the 3-D case, the number of parameters is six (3 Euler angles to construct
the rotation matrix R and 3 displacements in each direction x, y and z).

e Affine : This transformation composed of a rigid transformation along with scaling
and shearing in each direction. Affine transformation is formulated as follows:

T(r) = Ar+t (2.3)

where the scaling, shearing and rotations are included in A. For 3-D images, the
degree of freedom is 12, where one needs to estimate 9 elements of matrix A along
with three values of t. The main property of an affine transformation is that it
preserves parallelism; so parallel lines are still parallel after transformation.

e Non-rigid or Deformable : This type of transformation allows complex deforma-
tion with a large degree of freedom. It usually is applied in medical image registration,
especially in the case of organs with a highly deforming nature. This type of regis-
tration is not as tractable as affine or rigid transformations, and thus far, a plethora
of approaches have been proposed to address this issue. One of the most popular
non-rigid transformations is FFD which is based on B-splines curves [130]. A mesh
is applied to one of the images and the points of this mesh are considered as control
points of a B-splines equation. By moving these points, the other pixels will lie on the
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B-spline curve, and the deformation in each pixel will be known. B-splines can cap-
ture complex, local, and non-rigid deformations. Hence, it is common to use a global
transformation (such as rigid or affine) before applying the FFD. In other words, first,
the general transformation between two images is compensated, and then the FFD
method is applied to refine the transformation for each pixel. There are some other
non-rigid registrations techniques which are also popular, including but not limited
to optical flow [72], poly-affine transformation [3] and curvature-based scheme [35].
In this work, we focus on FFD transformation model which is explained next.

Registration Using FFD: A Free form deformation model is utilized to capture the
local displacement of every single pixel (in 2-D) or voxel (in 3-D). Transformation, at each
point r € R* (where n is the dimension), between two input images is parametrized as a
linear combination of B-spline curves. Figure 2.3 illustrates the main steps of this method.

For a given three-dimensional reference image g, with voxel coordinate r = (z,y, z) and
voxel intensity of g(r), and floating image f, with voxel intensity of f(r), a voxel-wise
displacement vector ¢(r) = ¢*(r)i+ p¥(r)j + ¢*(r)k, providing an anatomical mapping
from f to g, can be derived by maximizing the similarity measure §. Note that in this
case, T(r) =r + ¢(r). The deformation ¢!(r) (where [ € {x,y, z}) is parameterized using
the uniform cubic B-spline basis, which provides a sparse representation of ¢!(r) in terms

of the B-spline basis coefficients C! = {cﬁ}j\i (M is the number of the control point in
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Figure 2.3: The registration framework based on FFD model.
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Figure 2.4: Example of 2-D deformation field

the domain) while introducing continuity into the deformation model. Therefore, one can
formulate the deformation ¢!(r) at any coordinate r as follows [92],

M r
¢l(r) = Z dp (K - Ai) (2.4)

i=1
where A; is the coordinate vector of a lattice point (control point’s locations which are
uniformly distributed over Q with a predefined distance A from each other), and 3(r) =
B(x)B(y)B(z) is a separable convolution kernel, where 5(x) is a cubic B-spline function
defined as below.

(4-622+3Jz?), 0<|z|<1
5y =1 Lo jalys <[] <2 25
0, 2 < |z

Since the support of 5(x) is 4, hence, only those cls corresponding to the 4 x 4 x 4 = 64
nearest control points (which are referred to as a tile of voxels within the volume) to A;
contribute to the sum in (2.4). The coefficients of B-splines (¢!, i = 1,2,3,..., M and [ €
{z,y,2}) are computed by solving the following optimization problem,

C* = arg max S (g(r), f o p(r)) (2.6)
c
where C' = {C®, CY, C*} and f o ¢(r) represents the image f(r) transformed into the

coordinate system of g by displacement vector field of ¢(r), ie., f(r + ¢(r)). A 2-D
example of a displacement vector field is illustrated in Figure 2.4.
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2.1.2 Similarity Measures

To check the quality of registration, it is common to compute the similarity between the
reference and the warped image. Similarity measures can be both applied in intensity-based
and feature-based registration methods to show how well two images are aligned. Intensity-
based measures do not require any particular pre-processing and, consequently, are more
popular and widely used. We will only consider intensity-based similarity measures in this
work.

There is a wide range of intensity-based similarity measures that can be used for image
registration. The most straight forward similarity measure consists of searching for a direct
relationship between the images’ intensities and is known as Sum of Squared Difference
(SSD) which is formulated as follows [1],

SSD = [ lg(r) - fr(o)dr (2.7)

where f7 is the floating image f warped by transformation 7, and €2 denotes the domain of
the reference image g. This measure requires both images to have a one-to-one relationship
in terms of intensities. However, while dealing with images from the same object in different
modality or even with identical modality but different scanners, images can have different
intensity distributions. Although it is simple and easy to implement, this measure is not
suitable for images with a significant difference in their intensity distribution.

To address the issue with SSD, Normalized Cross Correlation (NCC) is frequently
applied in image registration. This measure computes the linear correlation between two
images, even-though their intensity differs significantly. NCC is computed as follows [30],

NCC = / (9(r) =) (fr(r) - fT)
Og0fr
where g and f7 represent the average intensity value of g and fr, respectively while o,
and oy, are the standard deviations of intensities of g and fr. Still, this measure is not
suitable for multi-modal image registration where the relation between intensities of two
images may not be linear.

(2.8)

There are measures from information theory that are more suitable for multi-modal
image registration. These measures are usually based on the distribution and entropy
of the image intensities. To compute any entropy-based measure, one needs to build a
joint histogram and Joint Entropy (JE) of the images. The joint histogram contains the
occurrence of each combination of paired intensities and is normalized in order to compute
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the Joint Probability Distribution Function (JPDF). JE of the reference and the floating
image can be computed as follows [139]:

H(g, fr)=- / p(r,s)log (p(r, s))ds dr (2.9)

where p(r,s) stands for the probability of co-occurrence of intensity r from image g to
intensity s from image fr. Note that the image intensity is normalized to [0, 1]. The
application of this type of measure can be complicated by the need for computing the
joint probability distributions. For instance, it may require interpolation or any partial
volume approach. Using interpolation, the floating image is first resampled and then each
occurrence is added as one into the histogram. The partial volume approach consists of
adding a weight value, between zero and one, to the joint histogram according to the

transformation [111]. Another strategy to compute the joint histogram is the Parzen
window solution, where it adds weight to the histogram in the neighborhood of the voxel
intensities [145]. Experiments have indicated that JE was promising, yet no rigorous

theoretical derivation was provided.

Mutual Information (MI) is the most popular measure from information theory which
considers the common information between the reference and warped image. By maximiz-
ing this information, the alignment quality will increase [150]. Collignon et al. [33] and
Viola et al. [162] introduced MI as an alignment measure which is defined as follows,

p(r;5)
/ R ool (210

where p,(r) = [ p(r,s)ds and ps(s) = [ p(r,s)dr denote the marginal intensity probabil-
ities of images ¢ and fr, respectlvely. The use of marginal probabilities makes mutual
information a more suitable alignment measure where there’s limited scene overlap be-
tween images. Mutual information takes its maximum value when the underlying images
are absolutely dependent (one of them is a function of the other one). In such cases, the
joint probability matrix (or joint histogram matrix) is diagonal. Conversely, if the images
are independent of each other, then the mutual information takes its minimum value, i.e.
zero [144].

In [151], Normalized Mutual Information (NMI) has been introduced, and it has been
shown that it is more robust to the overlap between images than MI. It is defined as ratio
between sum of entropies of two images and their joint entropy.

H H
i < H9) + H(f7) (2.11)
H(g7 f'T)
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where
H(g) =—fpg(7‘)10g(pg(7“))d7"

and

H(f7) == [ s(s)10g (ps(5)) ds

The problem with most of the intensity-based methods, especially those from informa-
tion theory, is that they do not consider spatial information at all. Recently, a few numbers
of studies attempted to combine the spatial information with the pixel’s intensity to cre-
ate a robust measure. In particular, a new computational pipeline has been proposed in
[82] using a conditional MI which takes into account spatial information using a weighting
strategy based on the voxel positions. Zhuang et al. [175] modified this algorithm and
introduced spatial MI. In [174], spatially encoded mutual information has been proposed
which is achieved by introducing a spatial variable and computing the associated entropy
measures according to the spatial coordinates of the sample points.

There are many other similarity measures from information theory (e.g., I® informa-
tion, M, information, cross-entropy, and Rényi entropy [121]) which are used in image
registration, but they are not as common as the measures were mentioned above.

2.1.3 Optimization

Optimization algorithms in image registration are not specific to the field, and they are
common in other applications as well [123]. Depending on the transformation function
type, different optimization strategies might be used. For instance, the Powell optimiza-
tion method [123] is suitable for registering medical images while the transformation T
is supposed to be rigid or affine. On the other hand, for non-rigid registration methods
where the number of parameters is much more in comparison to rigid transformations,
methods like gradient descent [130] or Gauss-Newton like approaches [160] are proper. To
apply the nonrigid registration method it is often required to compute the first-order and
the second-order derivative of the similarity function respect to transformation parame-
ters. Therefore, the choice of similarity measure is critical. For example, computation of
the derivative of SSD is much simpler than that of MI. Furthermore, to avoid local op-
tima, the similarity measure (or objective function) should vary smoothly by chaining the
transformation parameter.
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To improve the convergence properties of the algorithm, a multi-resolution strategy is
often used in the literature [38]. A Gaussian pyramid is generated that contains resampled
versions of the images at decreasing resolutions. Starting with the pair of floating and fixed
images at the lowest resolution, registration is performed using a coarse grid of control
points. The registration results are transferred from one resolution level to the next higher
level, and registration is run again, up to full resolution. This approach ensures that large
deformations can be recovered early at a low resolution and more detailed deformations
are accounted for at increasingly fine resolutions.

Notice that all types of deformation are not physically plausible and, consequently, often
a regularisation term is added to the objective function to penalize any irregular transform.
Practical regularization approaches usually rely on rather simple mathematical properties
of deformations that are suitable from a physiological point of view. For example, the
smoothness of displacement fields is one of the important regularizations being considered
in most of the non-rigid transformations.

2.1.4 Validation

The purpose of validation is to quantitatively assess the final alignment, and show how well
the algorithm has performed. In other words, besides the visual assessment, a numerical
value of the registration’s performance is assigned. If the ground truth transformation
between the two images is available, one can easily compute the error as the average
distance of pixels of the transformed image with pixels in the ground truth image, which
is obtained by applying ground truth transformation to the floating image.

&= [ 1) - Fo)lde (2.12)

where fr denotes the floating image warped by the transformation function 7 and f
represents the same image deformed by ground truth transformation. However, the ground
truth transformation is usually not available, then other approaches should be applied to
judge the registration performance.

An alternative method that is common in computing the registration accuracy is to
use corresponding points or landmarks. These points are known in both images and after
registration, ideally, they should align with each other. The average distance between
these corresponding points can be used to compute the registration accuracy. In medical
images, they are obtained either by fiducial markers attached to the imaging object /organ
or by experts in the field, e.g., radiologists. However, this manipulation may be a source
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of error as well, as it is generally difficult to accurately locate the corresponding points.
Gold-standard registration is another approach that is utilized to compute the registration
accuracy. In this method, it is assumed that there is an accurate and standard registration
method, and one can compute the accuracy by comparing registration results with that
of the accurate method. In all of these mentioned methods, mainly the distance between
points is computed.

If it is not practical to extract identical corresponding points in the floating and refer-
ence images it might be possible to provide the corresponding regions (R; and R,) based
on their boundaries. These boundaries can be applied to estimate the registration accuracy
being defined as the overlap between two corresponding regions. In this case, there are
validation metrics (also can be applied in image segmentation tasks), which are used to
quantify the registration accuracy. These validation assessments can be summarized as
follows:

e Dice Similarity Coefficient (DSC): It is defined as (2|R¢ n Rgy|)/(|R¢| + |Rg|), where
the modulus sign | -| is used to define the set size (i.e., the number of pixels in its
related binary mask), while n stands for set overlap. The DSC takes its maximum
value, one, if two regions completely overlap each other, and it will take zero if regions
Ry and R, have no overlap.

e Jaccard Coefficient (JAC): It is defined as (|Rf nRg|)/(|Rf URg|), and known to
be less sensitive to visual errors, and a high value (close to one) is desirable.

e Sensitivity (SEN): It is defined as TP/(TP + FN), where TP and FN stand for
the true positive and false negative, respectively. Note that the voxels (or pixels)
that do not belong to R, (in reference image ¢g) and R (in floating image f) are
considered as background. Lower values of SEN indicate a relatively large number
of misclassified pixels.

e Specificity (SPE): It is defined as TN/(TN + FP), where TN and FP stand for the
true negative and false positive, respectively.

e Accuracy (ACC): It is based on the overlap between R; and R, and also background
regions in two images, (TP + TN)/(TP + TN + FP + FN).

e False Positive Rate (FPR): FPR is defined as FP/(FP + TN), and small values of
it (close to zero) is an indication of better performance of an algorithm.

e False Negative Rate (FNR): It is defined as FN/(FN + TP) and, similar to FPR,
an algorithm with smallest FNR is desired.

26



Breast image registration is generally between different X-ray images (MLO and CC),
MRI images in the supine and prone position, and between MRI, X-ray and ultrasound
images. The next sections elaborate more on these registration types.

2.2 Intra-modal Breast Image Registration

Intra-modal registration is the alignment of two images (of the same organ/object) pro-
duced by the same imaging modality, or even acquired by an identical sensor. We first
focus on breast MRI image registration and then discuss different registrations among
X-ray breast images.

2.2.1 MRI Image Registration

A DCE-MRI protocol is based on collection of images which are acquired concurrently
with administration contrast agent. The coordinates of these temporal images might differ
due to involuntary subject motion (e.g., breathing and movements of the patient). The
existence of this kind of motion requires re-alignment of the images before further analysis.
To correct the motion artefacts, non-rigid image registration has been successfully applied
[136],[132]. In particular, one of the original works is by Rueckert et al. [136], where
the authors modeled the transformation by B-spline kernels. This algorithm has been
improved in [132] by adding a new constraint of volume conservation. It was shown that
their proposed approach gives higher accuracy in the regions containing tumors when
registering DCE-MRI images.

The use of the pharmacokinetic model for registration is another type of solution which
has been attempted. Pharmacokinetic refers to an intensity transformation approach,
rather than spatial transformation. In contrast to previous algorithms, pharmacokinetic-
based registration methods assume hat image intensity does not remain constant with
dynamic MR sequence. In these methods, a pharmacokinetic model is created to estimate
the intensity variation among image sequence which results in an accurate motion esti-
mation and compensation. Early work in this area was developed by Hayton et al. [55],
and it later was improved by Xiaohua et al. [I(7] into an automatic joint registration
and segmentation algorithm, making use of the pharmacokinetic parameter to drive tissue
classification.

Valentin et al. [51] introduced a new registration technique based on Robust Principal
Component Analysis (RPCA) to decompose a given DCE-MRI series into a low-rank and
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a sparse component. This helps to robustly separate the motion components (which can
be registered) from intensity variations that are left unchanged. DCE-MRI registration
has been recently improved by Subashini et al. [I419], where they proposed to use fat-
based registration of breast DCE images, which is a promising technique for deformable
registration.

Another breast MRI image registration is aligning images from prone to supine posi-
tions. Owing to the large deformations, which is mainly due to the change in the direction
of gravity during prone and supine imaging, this task is challenging. Biomechanical models
have been used in registration methods to include the direction of gravity reversal as prior
knowledge. Due to limited knowledge about the exact in vivo tissue response to loading,
among other factors biomechanical models and corresponding simulations are not accu-
rate enough [53]. Augmenting the biomechanical simulations with intensity-based image
registration techniques can boost the whole accuracy [32].

2.2.2 X-ray Image Registration

To determine the presence of breast disease, comparison of mammographic scans acquired
from a patient at different time has been routinely done in breast radiology. Moreover,
in the context of a clinical screening, it is of great importance to examine the temporal
changes in mammographic features (including changes in the spatial distribution of radio-
dense tissue) and to relate the spatial distribution of prediagnostic features to the tumor
location [119]. This requires accurately identifying corresponding areas on serial mam-
mograms of the breast. Variation in the imaging procedure such as positioning, breast
compression, and X-ray set configuration, makes mammographic features appear at dif-
ferent locations on mammograms taken at separate time points. Additionally, sometimes
radiologists want to register images from different views of breast tissue to discover the ab-
normalities. X-ray breast images registration can be clustered into three categories [1]: 1)
temporal registration, where mammograms of the same breast tissue and the same view,
taken at different times, are registered; 2) ipsilateral registration, where MLO and CC
views of the same breast are registered; 3) bilateral registration, where registration is done
between the images of the right and left breast from the same view.

The symmetry between right and left breast tissues is a critical consideration when
interpreting breast images in X-ray mammography [70]. For instance, Byng et al. [I§]
investigated breast density patterns on X-ray mammograms, and using both subjective
and objective measurements, reported symmetry between 30 left and right breasts . To
use this symmetry information, bilateral registration techniques were employed to mea-
sure the amount of asymmetry between right and left breast attempting to improve the
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detection of suspicious masses [138, 66, 79]. In particular, Trbali¢ [138] used thin-plate
splines interpolation integrated into an intensity-based non-rigid registration approach to
locate corresponding regions in the two mammograms. In [66], mutual information based
on Tsallis entropy has been applied to perform the registration. It was demonstrated that
Tsallis entropy could achieve higher registration accuracy in comparison to Shannon en-
tropy. Registration accuracy was further improved by Yanfeng et al. [79] by proposing a
two-step method: a region matching step for determining the correspondence between a
pair of mammograms, and a bilateral similarity analysis step for dropping false positives
in the detection. They showed that their method performs better in comparison to other
state-of-the-art algorithms.

Recent studies have shown that the use of comparison mammograms at screening pro-
grams results in lower recall rates (6.9% with temporal analysis vs 14.9 % cross sectional
analysis) [170]. Hence, mammograms, taken over a period of time, provide the radiologist
with discriminatory information contributing toward the malignancy detection. The use of
longitudinal analysis of mammographic scans range from local to global. Local registration
methods, including B-splines, poly rigid and Demons registration [94], act at different re-
gions of the image, modifying various regions of the image in different ways [29]. Nipple and
center of mass alignment have been proposed to enhance the registration accuracy [157, 90].
Taking into consideration the spatial relations (to the right of, to the left of, below and
above) is another temporal mammogram registration method, where the histogram of all
possible angles between all pairs of points in a pair of Region Of Interests (ROI) is treated
as a fuzzy set [87]. This method has been shown to improve overall detection efficiency.
In [1], another solution has been illustrated which is based on a transformation model
derived from the breast anatomy, namely the curvilinear coordinate system. In particular,
breast tissue boundary was used to construct the curvilinear coordinates. Consequently,
the resulting representation of the mammogram was rendered invariant to changes in the
size, position, and orientation of the internal structures of the breast tissue.

Matching mammograms from MLO and CC views and incorporating their joined fea-
tures into multi-view Computer-Aided Detection (CAD) systems has shown to significantly
improve performance over single view CAD [159]. In some methods, the registering across
views is often based on extracting suspicious regions from one view, computing their region-
based features, and finding the most similar region on the ipsilateral view using these

features [153]. Features include gray levels, morphological and texture features as well
as location features, which describe the relative position of the region. Lesion-to-nipple
distance was also used as a new feature to reduce false positive errors [153]. Another group

of researchers proposed to simulate the deformation process during X-ray imaging (rota-
tion, compression, projection) to determine the 3-D location of matched features from both
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views [127], [169]. Thus for example, Qiu et al. [125] suggested applying a biomechanical
model to map a lesion from CC and MLO mammograms to the MRI of the same patient,
and then use the 3-D position of the lesion in the MRI to align temporal mammograms.

2.3 Multi-modal Breast Image Registration

Due to their different physical principle, X-ray mammography and MRI provide comple-
mentary diagnostic information. Therefore, both of these modalities are often read in
combination for a definite diagnosis. However, the combined reading of mammograms
and MRI requires a lot of experience. Therefore, image registration is applied to make
this easier. Owing to huge spatial deformation in mammography, different dimensional-
ity of images, patient positioning and compression state of the breast tissue, registering
mammograms and MRI is an ill-posed problem. Furthermore, the different resolutions of
these modalities (resolution of X-ray images is finer) makes this task even more complex.
Many approaches have been proposed to automatically find correspondences between X-ray
mammogram and breast MRI.

At a conceptual level, the solutions proposed thus far differ in how they: a) cope
with the different dimensionalities of imaging modalities in use, b) model and estimate
the geometric transformation parameters, and c) evaluate image similarity. Thus, for
example, to overcome the problem with the discrepancy in image contrasts, Behrenbruch
et al. suggested a solution based on feature-based image registration [J]. In its initial
phase, the method computes and matches the spatial coordinates of several characteristic
features (aka landmarks) within both MRI images and their related mammogram scans.
Subsequently, the coordinates are used to estimate the deformation of interest employing
a standard fitting procedure. A particular critical drawback of this approach, however, is
due to the use of projected MRI images (rather than their volumetric counterparts), which
overly simplifies the complex dynamics of mammographic compression.

A feature-based registration approach was exploited in [91] as well. In this case, how-
ever, the mammogram scans have been aligned with 2-D slices of MRI volumes (rather
than their 2-D projections, as in [9]). Like other methods of this type, the algorithm relies
on the assumption that the most salient features can be discerned in both the selected
MRI slices and their related mammogram. Unfortunately, this assumption does not apply
in the case of mammographically occult breast disease [17], which undermines the overall
robustness of the proposed procedure.

On the other hand, a wide range of intensity-based registration algorithms has been
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proposed to fuse information from MRI and mammography. In these methods, MRI vol-
ume is deformed by the transformation function and then projected to simulate a 2-D X-ray
image. The similarity measure is maximized between the simulated and real mammogram
by tuning the parameters of the transformation function. For example, Mertzanidou et al.
proposed an intensity-based approach, in which the effects of mammographic compression
were described by means of an affine transformation model [95]. In this case, the model
parameters were estimated under the constraint of volume-preserving compression, result-
ing in a computationally simple and efficient algorithm. However, although the chosen
transformation model is capable of explaining the global effects of mammographic com-
pression (e.g., scaling, rotation, shifts, etc.), it does not seem to be adequate to describe
the curvilinear displacements of breast tissue, which are likely to take place during its
deformation.

It is important to emphasize that the ill-posedness of the problem of MRI to mam-
mogram registration is mainly due to the extremely large magnitude of breast deforma-
tion during mammographic compression, which renders standard solutions ineffective, even
when performed in combination with multi-scale computational schemes. Thus, taking into
account the highly complex nature of such deformation, several studies considered the pos-
sibility of its prediction based on subject-specific biomechanical modeling using FEM-based
methods.

The biomechanical methods simulate the effect of mammographic acquisition in a phys-
ically realistic way. They store information about the geometry and structure of the breast
tissue and provide a physics relations to simulate mechanical deformations. FEM-based
methods model the interrelationship of different tissue types by applying displacements,
forces, and restrictions to the movement. A patient-specific biomechanical model is built
using MRI volume which often needs some basic preprocessings. Typical preprocessing
steps involved in building a biomechanical model are shown in Figure 2.5.

First, the breast tissue is isolated from other nearby organs, which involves finding air-
breast and pectoralis-breast boundaries [10]. After extracting the breast geometry, which is
restricted to skin and pectoralis muscle surface, one needs to segment the internal structure
of the breast into different regions, or equivalently different tissue types. Having, labeled
voxels in MRI to one of the known breast tissue types (e.g., adipose and fibroglandular)
one can assign physical properties of that tissue to the corresponding voxel and predict
its behavior during compression. Due to the low resolution of MRI images, it may not be
possible to find the type of all breast internal tissues shown in Figure 1.1. Moreover, due
to the physics behind MRI imaging, voxels belonging to different tissues may look like each
other, e.g., lobules and ducts. For the sake of simplicity, in the literature, often voxels are
labeled as fibroglandular (dense) or adipose (fat) tissue.
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Figure 2.5: Preprocessing of FEM-based registration methods

Once internal tissues of the breast have been specified, the next step is to anatomically
generate the realistic patient-specific FEM, which consists of two types of mesh generations,
surface and volumetric meshes [11]. The surface mesh defines the external boundaries of
the model, and the volumetric mesh accounts for the internal behavior of the model. These
meshes break the whole MRI volume into smaller volumes known as elements. Based on
the majority of voxel’s label in an element, the corresponding physical property of that
label (tissue) is assigned to that element. The complexity of the model is in direct relation
to the resolution of the meshes (number of nodes or elements). On the other hand, there
is a trade-off between the complexity and accuracy of the built model. Many efforts have
been made to examine different mesh resolutions and mesh types, e.g., 4-node tetrahedral,
to make this model as effective as possible [12], [59].

Once the model is defined in terms of its related meshes, the next step is to deform
the obtained model to simulate the breast deformation during mammography. Finite
Element (FE) analysis, which allows the simulation of large deformations (of the breast),
is applied to reproduce the compressed breast. The Stress-Strain relationship is used to
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Figure 2.6: Simulating X-ray mammogram from a deformed MRI using ray-casting algo-
rithm. Here V represents the deformed MRI volume, and f is the focal spot [97].

precisely simulate the biomechanical behavior of the breast tissue [11]. This relation can
be linear, non-linear, or pseudo-nonlinear elasticity. Having physical properties of each
element (Young’s modulus) in hand, knowing the boundary conditions, applying external
loads and forces, and the relation between strain-stress (for example Neo-Hookean), the
model is deformed. This simulation can be done with many available FE solvers, such as
ABAQUSTM and ANSYS commercial software packages or NiftySIm' and OpenCMISS 2
which are open source and publicly available.

The simulated deformation can be applied to the 3-D MRI volume to reproduce the
shape of the breast in its compressed state. As the last step, a synthetic mammogram
can be simulated by projecting the deformed MRI volume on a 2-D domain. In this
case the application of Beer’s law (Equation 1.1) along with the ray-casting algorithm

Lavailable at : https://sourceforge.net/projects/niftysim/
Zavailable at : http://opencmiss.org/downloads.html
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allows one to produce the X-ray image from the deformed MRI. Note that MRI volume
is segmented to adipose and fibroglandular voxels, and their attenuation coefficients are
available. Figure 2.6 shows the projection geometry which is used to simulate a synthetic
mamimogram.

In the obtained synthetic mammogram, the intensity of each pixel (at location (z,vy))
is proportional to the number of the fibroglandular and fat voxels in the path of the
ray reaching (z,y). In other words, the intensity depends on the thickness of fat and
fibroglandular tissue along each ray, as given by

g(z,y) o< prhy + pghg (2.13)

where 1y and g denote linear attenuation coefficients of fat and dense tissues, respec-
tively, while h4 is the thickness of dense tissue along the ray reaching to r, and hy shows
the thickness of the fat tissue. Finally, after producing the synthetic mammogram, the
similarity measure is maximized between the original and simulated mammogram to find
the correspondences between MRI volume and X-ray mammogram.

To estimate breast deformation, the algorithms take advantage of FEM in different
ways. For instance, one of the first efforts toward registering mammograms and breast
MRI was proposed by Ruiter et al. [137] where a patient-specific biomechanical modeling
approach was applied to simulate the large magnitude deformation of the breast tissue in
mammography. In this method, it was suggested to deform the breast tissue by applying
displacements on the surface nodes, in two directions: a) the direction of the projection
(to account for the compression) and b) direction perpendicular to the projection (to
take to account the anisotropic behavior of the breast under compression). The shape of
the deformed breast and the boundary of the corresponding mammogram were used to
estimate the 3-D shape of the breast tissue. After that, the boundary of the projection of
the deformed breast was compared to that of the breast tissue in the X-ray mammogram,
and their distances were calculated. Consequently, these distances were added to the
displacements of the surface nodes of the deformed FEM model. Although this method
simulates a sensible deformation of the breast tissue, it is not automatic, and it consists of
several manual steps which may not be proper for clinical applications. For each patient,
it needs to create a new FEM model which miight be challenging.

Using non-linear FEM, Angela et al. [71] have proposed another approach which is sub-
ject to contact mechanics constraints to reproduce the large compressive deformation. The
parameters of FEM (e.g., the location and orientation of compression paddles) were opti-
mized to provide the best match between the synthetic and clinical X-ray mammograms.
Many assumptions regarding the tissue properties and the boundary conditions were made
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to make the problem solvable. To check the error generated by these assumptions and to
validate the framework, a few controlled experiments on the breast-shaped phantom has
been done.

Mertzanidou et al. proposed to augment the FEM-based model with rigid-body trans-
formation [98]. The transformation model has seven degrees of freedom, including pa-
rameters for both the initial rigid-body pose of the breast tissue before mammographic
compression and those of the biomechanical model. Through an intensity-based frame-
work, the authors simultaneously optimized the pose (rigid transform) and FEM param-
eters. To make their algorithm faster, it was suggested to decrease the volume resolution
to 10mm x 10mm x 10 mm, and assume one homogeneous tissue type rather than assign-
ing different material properties, i.e., fibroglandular and fat. Consequently, the number of
the nodes was decreased in FEM model resulting in a lower computational cost, smooth
meshes and free from artifacts. By optimizing NCC via hill-climbing approach, the mean
registration error of 11.6 mm + 3.8 mm for the MRI to CC and 11 mm + 5.4 mm for the MRI
to MLO view registrations were reached.

A fully automated method has been proposed in [118] which performs a complete regis-
tration of MRI volumes and X-ray images in both directions, from MRI to mammography
and from mammography to MRI. Then, by applying C-Means and Otsu algorithms, the
MRI voxels have been segmented to skin, fat and fibroglandular. Taking into consideration
the skin physical properties in the biomechanical model, reduced the registration error to
4.2mm=+1.9mm for the MRI to CC and 4.8 mm + 1.3 mm for the MRI to MLO alignments.

In contrary to conventional FEM-based approaches, Eloy et al. proposed to align the
density maps, extracted from the mammogram and MRI volume, rather than aligning the
synthetic and actual mammograms [39]. Using Vollapar package?®, they build a density
map from a mammogram which shows the thickness of fibroglandular tissue at each pixel
location. On the other hand, by segmenting the MRI volume to dense and fat, a floating
density map image is produced. In that work, mutual information was used as a similarity
measure which was maximized by taking advantage of the simulated annealing algorithm.
The transformation parameters were restricted to translation, rotation around the axis,
elastic properties (Young’s modulus), and amount of compression (distance between two
mammography paddles). Their approach obtained a high-structural agreement between
density maps regardless of the density of the breast tissue. The results showed that the
similarity of the glandular tissue distributions and also the correlation between both images
increases in denser breasts.

In [10], the same group of authors proposed to define the similarity measure using inten-

3 Available at: https://volparasolutions.com/science-hub/breast-density /measuring-breast-density/

35



sity gradients. In particular, the authors projected the intensity gradient of the glandular
tissue in the MRI volume to the mammographic space and tested two different gradient-
based metrics, the normalized cross-correlation of the scalar gradient values and the gra-
dient correlation of the vectoral gradients. Then, the biomechanical model extraction as
well as numerical optimization was performed similar to their previous work in [39]. The
performance of the two designed approaches was compared with an intensity-based FEM
model as a baseline. The obtained results revealed that using a scalar gradient approach
improves the registration accuracy, obtaining a registration error of 5.65 mm + 2.76 mm for
CC and of 7.83 mm + 3.04 mm for MLO views.

In actuality, however, the above-mentioned solutions expose the main drawback of all
FEM-based methods, viz. the strong dependence of their results to the initial conditions
dictated by biomechanical modeling (let alone their excessive computational requirements
due to the repetitive execution of the process of FEM-based prediction). In this case, the
prediction error becomes a function of the geometric organization of breast tissue that
is usually recovered through MRI image segmentation. Due to the presence of imaging
artefacts, however, the latter is known to be a challenging task, which, in combination
with using the average (rather than real) values of physical parameters, inevitably make
the predicted deformation deviate from the actual one. As a result, the use of FEM-based
methods comes at the cost of substantial between-subject variability, lack of standardiza-
tion, reliance on a specific configuration of a numerical solver in use as well as the consid-
erable dependence on interactions with the user. For these reasons, FEM-based MRI to
mammogram image registration is still far from its incorporation into clinical workflows,
remaining predominantly a subject of academic research.
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Chapter 3

Preparatory Contributions

As it was mentioned in the first chapter, our goal has been to find an optimal spatial trans-
formation which brings 3-D breast MRI images to a close alignment with the associated
2-D mammograms. However, before estimating this transformation, one needs to prepare
these images for alignment, which requires a few preprocessing steps. First of all, breast
MRI and mammogram images contain irrelevant information (other organs, e.g., lungs),
and hence, it is required to segment and isolate the breast tissue from the background and
other nearby organs existing in these images. In particular, the pectoralis major is often
included in breast MRI and MLO view mammograms where it could be easily confused
with fibroglandular breast tissue. Furthermore, as it was discussed in Chapter 2, to simu-
late X-ray mammogram from MRI scans employing ray-casting, it is essential to segment
the internal structure of the breast MRI to either adipose or fibroglandular. Note that
simulating X-ray mammograms from MRI images is necessary to estimate the residual de-
formation, which relies on breast properties. We proposed different algorithms to do each
of these preprocessing steps, which will be discussed in this chapter.

3.1 Whole Breast Segmentation in MRI Scans

The performance of the registration relies on the accurate delineation of the breast bound-
ary in MRI images. Due to the complex composition of breast tissue and its extensive
inter-subject variability, this problem is known to be a challenging one. Whole breast
segmentation can be broken down into two separate subproblems, namely locating: a)
the breast-body boundary and b) the breast-air boundary. Although the latter is often
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straightforward to address by means of standard edge detection algorithms, subproblem
(a) turns out to be considerably more complicated in its nature. In particular, this sub-
problem amounts to detecting the 3-D surface which separates the breast from its adjacent
pectoralis major muscle. In clinical breast MRI scans, pectoralis major muscle has a close
proximity with fibroglandular tissue, which makes it challenging to distinguish the anterior
pectoral boundary [171]. The partial visibility of pectoralis is further exacerbated by its
complex fascial structure and of its surrounding connective tissue, which altogether renders
the problem of breast segmentation far from trivial.

Over the last decades, the above problem has been addressed by a wide spectrum of dif-
ferent approaches, ranging from semi-automatic [154, 75, 69] to the scope of fully-automated
methods [124, , 33]. However, semi-automatic methods have the disadvantage of being
dependant on the laborious efforts of human interpreters, and fully-automated approaches
despite the promise demonstrated by their results, their performance depends on the good-
ness of initialization which is left at the discretion of final user. The performance of the
registration relies on the accurate delineation of the breast boundary in MRI images. Due
to the complex composition of breast tissue and its extensive inter-subject variability, this
problem is known to be a challenging one.

Among the most recent methods of breast segmentation are also those based on the ideas
and tools of DL [100], [5]. Particularly, in [83], it is proposed to take advantage of transfer
learning to leverage a pre-trained convolutional neural network (CNN), refined through
additional training based on in-house data. In regard to the question of optimal network
topology, different solutions have been discussed, e.g., in [133], [50] and [11&], which
advocated different extensions of a basic Unet architecture. Unfortunately, the performance
of DL-based methods is known to degrade pro rata with a decrease in the number of
(human annotated) training samples, which are frequently unavailable in sufficiently large
quantities.

In an attempt to address some drawbacks of the existing methods of fully automated
segmentation of breast MRI scans, we developed a simple, yet effective algorithm for finding
reliable segmentation results in a computationally effective manner. The image gradient is
used to generate a weighted graph, and the breast-body boundary is detected as the shortest
path between two nodes of this graph. Details of our proposed solution are explained in
the next section.
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3.1.1 Proposed Approach

As mentioned earlier, the process of whole-breast segmentation can be arranged as a combi-
nation of two independent subroutines, viz. detection of the breast-body and the breast-air
boundary. The former is defined by the deep layer of superficial fascia, which is typically
difficult to discern in anatomical MRI scans due to limitations in the spatial resolution.
For this reason, the problem of localization of the breast-body interface has long been
considered to be a challenging one. To solve this problem, our proposed solution relies on
Dijkstra’s algorithm, which is a classical method of finding shortest paths (geodesics) over
a weighted graph [26]. The algorithmic flow of the proposed solution is depicted in the
block-diagram of Figure 3.1, where it is shown to consist of a total of six steps which are
detailed next.
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Figure 3.1: Flow diagram of the proposed algorithm.
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Step One:

Given an anatomical T1-weighted MRI volume, as a first step, the algorithm selects its
medial slice along the inferior-posterior (i.e., axial) direction. At this slice, it is often
straightforward to detect the sternum, which will be used at the later processing steps.

Step Two:

Histogram-based segmentation is applied to the selected medial slice which results in an
approzimate segmentation mask of the breast. The main objective of the produced mask
is to restrict the search space of Dijkstra’s algorithm, which helps to improve the overall
time efficiency of breast segmentation. To find a suitable value of the threshold, the
maximum value of image histogram is used, whose largest “bin” typically represents the
values of image background. Consequently, having the background value, denoted by by,
the threshold is to 7 = 1.1by; which is a good choice for segmenting foreground from
background. Furthermore, due to the effects of noise, the resulting binary mask may
contain a number of disconnected components. For the purpose of the proposed method,
however, only the component of largest area is kept and subsequently used.

Step Three:

In this step, a weighted graph G = (V,€) is constructed, whose nodes V are associated
with image pixels, whereas its edges £ are defined based on the value of image gradient.
More specifically, for each pixel (or, equivalently, a node) = € V, let N'(z) denote its 8-
neighbourhood. Then, for any y € N (x), the edge between = and y is assigned a weight
defined by [116] X

9(x) +9(y)
where g(z) and g(y) represent the intensity of image gradient at pixels z and y, respectively.
To compute the values of g over the entire image domain, we take advantage of steerable
Gabor filtering performed at four different orientations, in which case the image gradient
g is set to be equal to the maximum of the absolute values of filter’s outputs.

(3.1)

x?y

Step Four:

Now, the graph G is in hand and one can apply Dijkstra’s algorithm to find the shortest
path between any pair of points on V. However, one needs to specify the starting and
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Figure 3.2: (a) Axial slice of a T1-weighted MRI volume; (b) Intensity variation of (a) along
the middle column (red-line); (c) Detected pectoralis-breast boundary; and (d) Masked
neighbouring slice.

end points on the graph. To this end, the starting point is chosen to be located at the
sternum (see Step 1). Finding this location is usually a straightforward task in view of its
homogeneous appearance due to the prevalence of adipose tissue, devoid of fibroglandular
structures. Figure 3.2 (b) shows the profile of image intensity across the middle column
of the medial-axial slice of a T1-weighted MRI volume. As it can be seen in this figure,
the start-point S (or mid-point MP in Figure 3.1) can be easily detected via following the
peaks of image intensity profile (as shown by the red line in Figure 3.2 (a)).

It should be pointed out that Dijkstra’s algorithm is a greedy search technique, which
could result in prohibitively long processing times. To avoid this undesirable situation, the
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search space of the algorithm should be restricted as much as possible. To this end, all
the pixels that do not belong to the breast-body boundary need to be cropped out. In our
proposed algorithm, the weights of the pixels located approximately one centimetre above
the starting point are set to infinity.

Figure 3.3 shows the initial produced mask together with the computed graph. Note
that, for each node in the computed graph, there are a total of eight associated weights.
To visualize the computed graph, only the minimum value of these weights is shown in
Figure 3.3. One can see, the graph has higher values at the nodes located relatively far
from the actual boundary. Therefore, these “distant” values are excluded from the search,
thus allowing Dijkstra’s algorithm to detect the actual boundary much more efficiently.

Step Five:

In this step, Dijkstra’s algorithm is used to find the minimum path between the start-point
and the end-points positioned bi-laterally, i.e., around the left and right ends of pectoralis
major. Starting at the sternum, the search is performed sequentially — first, to the left of
the initial position and then to its right (or wice versa) — and it is terminated once the
extremity of pectoral muscle is reached. To make the algorithm propagate unilaterally
(i.e., towards either left or right), the weights W, , are adjusted as follows. For example, to
find the left pectoral end, the nodes located to the right of the starting point are blocked
by setting their weights to infinity, viz.

if ]w >jS

W= {<g<x> g gy s & y e N (@) 32

where j, and jg indicate the column coordinates of nodes x and S, respectively. In this way,
the algorithm is constrained to “ignore” the right breast, while being forced to propagate in
the opposite direction until the left pectoral end is reached. Additionally, the algorithm can
be further accelerated by preventing back-search in the direction of the starting point. With
x = (iz, j,) being the current state of the algorithm, this can be achieved by excluding from
the search space the neighbouring nodes with coordinates (i, j.+1), (iz—1,j,+1) and (i, +
1,j.+1), where, as before, i, and j, stand for the row and column pixel coordinates. Finally,
once the left boundary is reconstructed, the algorithm is repeated along the right direction
using the same numerical procedure mutatis mutandis. Figure 3.2(c) and Figure 3.3(d)
demonstrate the examples of detected pectoral boundary for two different subjects.
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Figure 3.3: (a) An axial slice of a T1-weighted MRI volume; (b) Initial segmentation mask;
(c) Resulting graph; and (d) Detected boundary

Step Six:

At the final stage, the breast-body boundary found within the medial (axial) slice is ex-
tended in both inferior and superior directions. The extension relies on the spatial cor-
relation between adjacent (axial) slices, acquired with the slice thickness parameter set
around 2 mm or less. Specifically, the 3-D reconstruction is carried out sequentially, with
the final result being an aggregation of 2-D reconstructions obtained at different slices. To
enforce the spatial regularity, the application of Dijkstra’s algorithm at each subsequent
slice is guided by the result obtained for its predecessor. This can be achieved by means
of morphological dilation of an estimated 2-D boundary, followed by using the resulting
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binary mask to define a search area for the next slice. An example of such a mask is shown
in Figure 3.2(d). Although conceptually simple, the above procedure has been observed to
provide stable and consistent results owing to the fact that the location of the superficial
fascia at the breast-pectoralis interface does not significantly change between two consecu-
tive slices. It also deserves noting that restricting the search area helps to limit the number
of nodes “visited” by Dijkstra’s algorithm, which renders the entire computational process
numerically efficient.

Finally, we apply the same procedure for locating the upper boundary of the breast, the
air-breast boundary. Due to the high contrast between the background and the breast, the
air-breast boundary is considerably easier to find. Consequently, it is frequently possible to
detect the boundary by means of less complicated edge-detection methods, e.g., adaptive
thresholding. However, for higher accuracy purposes, the algorithm in Figure 3.1 was
utilized to separate the breast tissue from background.

Figure 3.4: Breast segmentation results for different types of breast tissue, namely: (a)
dense; (b) scattered fibroglandular; and (c) fatty

3.1.2 Evaluation and Results

To evaluate the performance of the proposed algorithm, a total of 20 T1-weighted volumes
have been used in our experimental study. Out of these, 6 volumes (of size 512 x 512 x 86)
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were extracted from the publicly available Cancer Imaging Archive!, while the remaining
14 volumes (of size 448 x 448 x 210) have been acquired at the Princess Margaret Cancer
Centre (Toronto, Canada) using standard (REB approved) protocols. All together, the
algorithm was tested on total of 3316 slices.

The study cases have been diversified to include three different types of breast tissue,
namely extremely dense, scattered fibroglandular and fatty. It should be noted that adi-
pose tissue and pectoral muscle have considerably different T1-weighted contrasts, which
makes it relatively simple to locate the body-breast boundary in fatty breasts. At the
same time, the same task tends to become considerably more challenging in the case of
dense breast due to the close similarity between the T1-weighted contrast of pectoralis and
fibroglandular tissue. Thus, the experiments involving different types of breast tissue are
critical for understanding the effect of inter-subject variability on the performance of breast
segmentation. Despite the challenging nature of this experiment, however, the proposed
method has been observed to be virtually invariant to the changes in breast composition. A
number of representative results obtained by means of the proposed algorithm for different
breast types are shown in Figure 3.4.

The proposed method has been observed to perform reliably in the case of disconnected
and weak body-breast boundaries. This was expected, because if there is no clear boundary
the algorithm picks a connection that minimizes the weight of the path. Thus, for instance,
Figure 3.5 shows two sample slices pertaining to the cases of an extremely dense and
a fatty breast. As shown in Figure 3.5(b), the proposed method detects the boundary
in disconnected areas of the “dense slice” with a minimum apparent error. The same
behaviour of the algorithm is demonstrated in Figure 3.5(d) for the case of fatty breast.

To evaluate the performance of the proposed method of breast segmentation in a quan-
titative manner, its results have been compared against the ground truth obtained by
means of expert manual segmentation. The numerical comparisons have been based on a
range of commonly used metrics including DSC, SEN and SPE.

Table 3.1 summarizes the performance metrics obtained using the proposed method.
One can see, the method shows relatively high mean values of DSC, SEN and SPE, with rel-
atively small values of their associated standard deviation. The mean value of each metric
is the average score among all slices of volumes with the same breast type. Table 3.2 shows
the performance scores obtained by means of four recent CNN-based segmentation method,
which have been applied on a private dataset and reported in [I18]. The mean values of
DSC, SEN and SPE rates of the proposed method are above 97% for all tissue types, which
is comparable with state of the art, shown in Table 3.2. In addition, the obtained results

'For more details visit wiki.cancerimagingarchive.net/display/~Public/breast-diagnosis.
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(d)

Figure 3.5: (a) An axial slice showing dense breast with disconnected boundary; (b) De-
tected boundary for (a); (¢) An axial slice showing fatty breast with disconnected boundary;
(d) Detected boundary for (c).

confirm that the performance of the proposed method does not vary significantly between
different breast types, despite the visual indiscernibility of the body-breast boundary in
denser breasts.

The performance of the proposed algorithm depends on finding the starting point within
the medial-axial slice. However, as long as this point can be correctly localized, the al-
gorithm is capable of finding the 3-D boundaries in a stable and consistent manner. The
start-point detection procedure proposed in step four of Section 3.1.1 has been tested on
other image slices. This point is detectable in more than 90% of all slices. However, this
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Table 3.1: DSC, SEN and SPE scores (mean + standard deviation) of proposed method.

Breast type DSC (%) SEN (%) SPE (%)

Dense 9742 £ 1.21 98.01 £ 0.89 99.12 + 0.19
Scattered dense 98.04 + 0.84 98.61 = 0.72 99.47 + 0.14
Fatty 97.86 £ 0.49 98.71 + 0.41 99.56 + 0.15

Table 3.2: DSC, SEN and SPE scores (mean + standard deviation) of CNN-based methods.

Method DSC (%) _ SEN (%) _ SPE (%)

Multi-planar [115] 96.60 + 0.30 96.85 + 0.47 99.49 + 0.09
U-Net [133]  95.60 + 0.34 96.20 + 0.87 99.41 = 0.16
SegNet [7] 05.34 = 0.85 95.16 = 0.76 99.44 + 0.13
V-Net [100]  90.44 +3.12 95.14 + 1.59  99.39 + 0.19

point needs to be detected in the middle slice of the MRI volume, which is straightforward.

From a computational point of view, the proposed method is simple and straightforward
to implement. In comparison to state of the art algorithms (which are mainly based on the
use of neural networks, as in [118]), the method takes less time to complete an end-to-end
breast volume segmentation. On average, it takes less than 80 seconds to process one MRI
volume in MATLAB®) on a standard desktop computer, without GPU acceleration.

3.2 Segmentation of Pectoral Muscle in Digital Mam-
mograms

Although it is rarely seen in CC mammogram, pectoralis major often appears in MLO
view, and for the purpose of an accurate alignment of breast MRI and mammogram, one
needs to segment and isolate it from the breast tissue. Unfortunately, the delineation of
pectoralis major in MLO mammograms is known to be a difficult problem for a number of
reasons. In particular, both in terms of its morphology and contrast, the pectoral muscle
can be similar to the appearance of fibroglandular tissue, which renders their delineation
quite problematic. This situation is particularly frequent in the case of dense breast tissue
whose fibroglandular component tends to edge near the breast-body bounding line, often
overlapping (and, as a result, obscuring) the pectoral region. Moreover, due to significant
inter-subject variability, the boundary of pectoralis major does not have a consistent ap-
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Figure 3.6: Varying appearance of the pectoral boundary due to the effects of inter-subject
variability.

pearance in MLO scans, exhibiting substantial variations in shape (i.e., from quasi-linear
to curved) and/or visibility due to low imaging contrast and physical occlusions (see Fig-
ure 3.6 for the examples of clinical mammograms which demonstrate the above effects).
Consequently, the application of conventional methods of statistical shape analysis have
shown rather limited ability to improve the accuracy of breast segmentation.

In MLO mammograms, the problem of pectoralis boundary detection has been ad-
dressed in multiple studies using a range of different approaches. In particular, there have
been a group of methods based on specific a priori assumptions regarding the boundary
geometry. Thus, for example, in [68], the boundary was approximated by a straight line,
thus allowing the authors to take advantage of the Hough transform for its detection.
While very efficient numerically, however, this approach suffers from the simplicity of its
model assumptions, which limits its applicability in the case of curved boundaries (e.g.,
as shown in Subplot B of Figure 3.6). The limitations of the straight-line model have
been addressed by a number of later studies, where they used the straight-line model as
an initialization which was subsequently refined into a curved configuration by means of
additional processing steps [34, 73, 73] and [73]. The initialization of the pectoral bound-
ary based on the results of adaptive thresholding has been discussed by several authors
as well [107, 23, , ]. In particular, following the thresholding stage, the initial pec-
toral boundary was refined through curve fitting using least squares minimization in [161].
However, the dependence of the above methods on photometric information and low-order
polynomial modelling makes them overly sensitive to the appearance (visibility) of the
pectoral muscle. As a result, their performance may still deteriorate dramatically when
the pectoral boundary is either visually indiscernible or obscured by dense tissue, which is
a common effect of tissue folding.

Among the most recent methods of pectorlis muscle segmentation are also those based
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on the ideas and tools of DL, and specifically CNN, which offer conceptually new possi-
bilities to tackle this problem. Subsequently, several studies aimed at designing the CNN
architectures which were specifically tailored to the problem at hand. Among such works,
the most promising results have been demonstrated in [31, , 128]. More specifically, in
[31, |, the CNNs were trained using image blocks (i.e., mini patches) extracted from
the pectoral region, thus taking into account the structural appearance and photometric
properties of the pectoral muscle. Despite the promising results reported by these two
studies, their output segmentation maps still suffered from the effects of false positive mis-
classification. To overcome this problem, it was proposed in [128] to subject the output
of CNN-based classification to a post-processing stage involving morphological operations.
It is worthwhile noting that, in its first stage, the method relied on a modified version of
the hierarchical edge detection (HED) network of [168] which is capable of integrating the
information on the location of pectoral edges across multiple resolution scales.

It should be pointed out that, the last few years have seen a rapid development of edge
detection CNNs which are capable of detecting both fine- and course-scale representations
of various geometric structures in data images (such as, e.g., edges, ridges, etc.) [31, 80,

]. The main idea of these methods is to produce edge maps in different resolution
scales, followed by fusing the obtained information to yield the final result. However, while
very effective for reducing uncertainties (due to imaging artefacts and the effects of noise),
the process of fusion is not without drawbacks, chief of which is often attributed to the
excessive thickness of resulting edges [122]. This could be a serious disadvantage in the
case of breast segmentation, in which case the edges are required to be as fine as possible.
To overcome some of the drawbacks of existing algorithms, a new approach was proposed
to the problem of pectoralis-breast boundary detection which will be explained in the next
section.

3.2.1 Proposed Approach

Similar to earlier works, our solution relies on a two-stage processing scheme. The first
stage uses a modified version of the VGG16 network architecture [111]. The introduced
modification restricts the analysis to two resolution levels and, as a result, it has the im-
portant advantage of depending on a relatively small number of network parameters which
are substantially easier to train. Moreover, the proposed architecture proves to be suffi-
cient to encode all the relevant information about the pectoral boundary, with the course
level pinpointing its anatomical location (with virtually no “false positives”) and the fine
level following its true configuration at a much higher resolution. Although the fine res-
olution map remains prone to numerous misclassification errors, the latter are effectively
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eliminated by the fusion process, yielding an accurate initialization for the second stage
of the proposed algorithm. At this stage, we construct a weighted graph and take advan-
tage of Dijkstra’s algorithm to locate the pectoralis boundary at a single-pizel resolution
(thickness). Below, these steps are discussed in detail.

CNN-based Edge Detection: Our designed CNN architecture is mainly based on the
principles of edge detection networks proposed recently in [168, 81, 80, 122]. In particular,
all these methods take advantage of multiple CNNs which correspond to different resolution
levels and are optimized using different numbers of training images. The backbone of these
models is formed by the convolutional blocks of VGG16 architecture, where edge maps are
generated from each block resulting in a multi-scale learning structure. Thus, for example,
the HED network of [168] exploits a total of five convolutional blocks, taking a side-output
from each of them. Subsequently, the outputs are integrated by a fusing block producing
the final edge map. Note that each of the convolutional blocks as well as the fusing block
are optimized using different cost functions (i.e., a total of six in the case of [168]), which
requires a relatively large number of training samples.

In the above-mentioned HED network, the edge (probability) maps are computed at
different resolution levels, resulting in edge estimates of variable thickness. In this case,
the final estimate produced by the process of fusion may not always reduce the edge
thickness to a single-pixel resolution [122]. In addition, aforementioned CNN-based models
have been designed to capture the complex edges in natural images. However, our aim is
to find only the boundary of the pectoralis major and neglect other possible edges in
MLO mammograms. This can be achieved using a simplified network architecture (with a
substantially reduced number of training parameters), as explained next.

To produce a thin-edge map and make the current edge-detection networks simpler,
using VGG16 as the base of the network, we designed a new architecture. VGG16 consists
of three fully connected layers and 13 convolutional layers which are subdivided into five
stages, and after each stage a pooling layer is connected. The fifth stage was excluded
and all the fully connected layers were cut, resulting in a simplified design depicted in
Figure 3.7.

Contrary to most edge detection networks and the method in [128], instead of taking 5
side outputs and fusing them, we only take two side outputs from stages 2 and 4, and leave
them unfused (which makes the network simpler). Convolutional layers of stages 2 and 4
are connected to a convolutional layer with kernel size 1 x 1 and depth 11. Note that in the
original VGG16, the depth size is 21 and in our work is is reduced to 11 (which was set
experimentally) in order to create a network with less complexity. Feature maps produced
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Figure 3.7: Proposed CNN architecture for pectoral boundary detection.

in each stage are accumulated and passed to another convolutional with size 1x1 and depth
1. Eventually, these feature maps are up-sampled to the size of the input image and passed
to a sigmoid function to produce the probability edge-maps. Linear interpolation is used
to do up-sampling. In the second phase of the algorithm, these two probability maps can
be subsequently used to locate the pectoralis muscle.

The proposed network was trained and tested using three public datasets, namely MIAS
[152], InBreast [104], and CBIS-DDSM [76]. MIAS and CBIS-DDSM consist of 322 and 457
scanned film mammograms, respectively, of different image sizes. The InBreast dataset,
on the other hand, consists of 208 FFDM of size 2560 x 3328. To create the reference
edge labels (i.e., Y), all the mammograms have been manually annotated by a qualified
radiologist. Both data mammograms and their related edge maps were subsequently resized
to a standard dimension of 256 x 256 pixels. Appendix A.1 provides details of the training
procedure of the network.
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input image ouT1 ouT2 binary mask modified binary mask final probability map detected boundary

connected boundary

disconnected boundary

Figure 3.8: Upper row of subplots: (A1) input MLO mammogram; (A2) edge probability
map OUT 1; (A3) edge probability map OUT 2; (A4) binary mask B; (A5) modified binary
mask; (A6) final edge probability map; and (A7) the result of graph-based edge detection.
Subplots B1-B7 are composed in an analogous manner, corresponding to a different input
image shown in Subplot B1.

The produced edge probability maps from stage 2 (OUT 1) and stage 4 (OUT 2) are
shown for two sample MLO mammograms in Figure 3.8 (Subplots A2-A3 and B2-B3).
Note that the probability maps are depicted in pseudo-colour, with the values of 0 and 1
represented by the blue and red colours, respectively.

Detection of Pectoral Boundary: As it is shown in Figure 3.8, the edge map con-
structed in OUT 1 is thinner with respect to that of the OUT 2, but it suffers from a
substantially larger amount of clutter noise due to the network’s response to the dense
structures of breast tissue. Fusing these two probability maps may result in a thin edge
map with no (or less) false positives. To this end, first the binary mask B is generated
by hard thresholding the probability map of OUT 2. Subsequently, B is subjected to
morphological pruning that retains the longest connected component of B, which is nor-
mally associated with the pectoral boundary. Note that, as opposed to the majority of
earlier approaches, the pruning step does not rely on any a priori assumptions regarding
the orientation of pectoral muscle.

For numerical convenience, all the images have been reoriented so as to position the
pectoral region at the low-left corner of the image coordinate system (as shown in Fig-
ure 3.8). As a result, the opposite ends of pectoral boundary had been constrained to lie
on the first column and the last row of B, respectively (as shown in Subplots A4 and B4
of Figure 3.8).
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Unfortunately, the numerical procedure described above has one critical limitation. In
particular, it has been assumed that the longest connected component of B coincides with
the pectoral boundary along its entire length (as illustrated by Subplot A4 in Figure 3.8).
Unfortunately, there are situations in which this component can be disconnected (as exem-
plified in Subplot B4 of the same figure). Therefore, it is necessary to recover the missing
parts of the contour in the probability map. This problem can be overcome by means of
simple linear extrapolation. In particular, suppose the edge indicated by B is disconnected
on the right and, as a result, its terminating point p; falls short of reaching the boundary
of the image domain, as depicted in Subplot B4 of Figure 3.8. The point p; can be defined
by the (right) endpoint of the morphological skeleton of the partial edge. Furthermore,
following the same skeleton (starting at p;), one can define another point po, lying at a
predefined arc-length distance D. In the course of our experimental study, the value of
D =25 was found to provide stable and consistent results.

Finally, the skeletal points within the interval defined by p; and p, can be fit by a line
segment, which can, in turn, be used to complete the partial edge (see the illustration in
Figure 3.8). In the present study, the fitting was based on a standard LS formulation.
Also, the thickness of the completing part of the edge was set to be equal to the average
thickness of its initial segment. The result of edge completion is shown in Subplot B5 of
Figure 3.8. Needless to add, the above considerations pertain to only one possible scenario,
while in practice, the edge incompletion problem may arise on either or both sides of the
longest connected component of B. In such cases, the edge completion can be done in an
analogous way mutatis mutandis.

In the end, given the binary mask B (which could have been modified through the
above described edge completion procedure, if necessary), the final edge probability map
M can be defined to be the result of element-wise product of B with OUT 1. Formally,

M=BoOUT I,

where ® denotes the element-wise (Hadamard) product between two equally-sized matrices.

The computation of M concludes the first phase of the proposed method. At the next
stage, M is used to resolve the breast-body interface at a single-pixel resolution. To this
end, M can first be converted to a symmetric, weighted, fully-connected graph G(V, E),
with V and E denoting the nodes and edges of the graph, respectively. Eventually, given
two points S (for “start”) and E (for “end”) on the opposite sides of pectoralis, its boundary
can be closely approximated by the shortest path on G that connects S and E. These points
are shown in subplot A.6 and B.6 of Figure 3.8. More details of finding the shortest path
from S to E can be found in Appendix A.2.
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MIAS

input image detected boundary input image detected boundary

CBIS-DDSM

InBreast

Figure 3.9: Panel A: Four examples of pectoral boundary detection showing MLO mam-
mograms (Subplots 1-4) from the MIAS dataset along with their associated OUT1, OUT?2,
and detected boundary (shown in the red colour); Panel B: same as A, only for the
CBIS-DDSM dataset; Panel C: same as A, only for the InBreast dataset.

3.2.2 Evaluation and Results
As it was mentioned earlier, the proposed method for breast segmentation has been tested

on three public datasets (MIAS [152], InBreast [101] and CBIS-DDSM [76]), containing
both scanned film and digital mammograms acquired from different subjects under various
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settings.

The three panels in Figure 3.9 show the results of detection of the pectoral boundary,
where each panel consists of four examples pertaining to the MIAS (Panel A), CBIS-DDSM
(Panel B) and InBeast (Panel C) datasets. In addition to input images and boundary
reconstructions, Figure 3.9 also shows their associated OUT1 and OUT2. One can see that
the largest values of OUT2 are indeed localized in a close proximity of the true pectoral
boundary, thereby guaranteeing the final probability map M to be free of outliers (false
alarms) due to the clutter noise in OUT1. One can also notice that the detection results
remain consistent with respect to underlying anatomy even in the cases of low-contrast
and/or incomplete observations (as depicted, e.g., in Subplots 2 & 4 of Panel A, Subplots
1 & 3 of Panel B or Subplots 1 & 4 of Panel C). Moreover, the proposed method has
demonstrated outstanding robustness to the presence of axillary foldings, which is another
common source of artefacts impeding the process of breast segmentation (see, e.g., Subplots
1, 2, and 3 in Panels A, B, and C, respectively).

Once the pectoral boundary is recovered, all pixels being below this boundary are set to
‘1" which results in a binary image (pectoralis mask) showing the pectoral muscle region.
For the purpose of quantitative analysis, the quality of pectoralis mask has been assessed in
terms of a number of performance metrics. Assuming R and R denote an estimated mask
of pectoralis major and its ground truth counterpart, the performance metrics included:
1- DSC, 2-JAC, 3- SPE, 4- SEN, 5- ACC, 6- FPR and 7- FNR.

While adopting the above metrics, it is important to keep in mind some of their principal
characteristics. In particular, better performance is associated with higher values of DSC,
FNR, SPE, SEN and ACC and lower values of FPR and FNR. At the same time, DSC and
JAC measures are known to be more sensitive in comparison to the other metrics (such
as, e.g., ACC and SPE) [128], while JAC and DSC are known to be less sensitive to visual
errors. Note that highly sensitive and highly specific algorithms rarely overlook the target
they are looking for and they rarely mistake anything else for that specific target.

Table 3.3 summarizes the results of our comparative analysis by showing the mean
values of the metrics (expressed in %) plus/minus one standard deviation. One can see
that, in all the cases, the values of DSC, FNR, SPE, SEN and ACC remain above 93%,
while the values of FPR and FNR are close to zero. The worst results have been observed
with the InBreast dataset, with DSC=% 96.39, JAC=93.17% and FNR=5.6%. It has
to be noted, however, that this dataset predominantly contains MLLO mammograms with
poorly defined pectoral boundaries, which are far from trivial to detect in general. At the
same time, the algorithm’s performance on the MIAS and CBIS-DDSM datasets has been
found to be comparable (with DSC>97.6%, JAC>95.3%, SPE& ACC>99.5%, along with
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Table 3.3: Comparison results for three database. All metrics are presented in % by their
mean value + one standard deviation.

Metric MIAS CBIS-DDSM InBreast
DSC | 97.59+1.73 97.69 + 1.51 96.39 + 2.66
JAC | 95.35+3.20 95.52 + 2.79 93.17 + 4.79
SPE | 99.83 £0.22 99.73 +0.34  99.92 +0.15
SEN | 97.76£2.27 98.66 + 1.74 94.39 + 3.77
ACC |99.72 £0.22  99.51+0.35 99.69+0.25
FPR | 0.16 £ 0.22 0.26 + 0.34 0.07 £ 0.15
FNR | 2.23 £+227 233 +1.74 5.60 + 4.61

FNR<2.5% and FPR<0.3%).

The comparison between our algorithm with the state of the art can be found in Ap-
pendix A.3.

3.3 Segmentation of Breast MRI

Segmenting breast tissue into adipose and fibroglandular classes is the other preprocessing
task that should be done before registration. The problem of segmentation of breast
MRI scans have been addressed in several studies using different approaches, such as
thresholding-based and gradient-based image segmentation, active contours, machine learn-
ing and others [126]. Thus, for example, an adaptation of the fuzzy c-means method with
a specially designed kernel was proposed in [07], while a solution to the problem of segmen-
tation of dermal and fibroglandular tissue by means of k-means clustering was described
in [I11]. An alternative use of the fuzzy c-means method, resulting in an adaptive and
semi-automatic algorithm for segmentation of fibroglandular and adipose tissue, was intro-
duced in [I10]. In [117], a similar idea of semi-automatic segmentation was realized based
on the method of region growing. Unfortunately, the manual selection of seed points as
well as the relatively high computational complexity of this method somewhat weaken its
otherwise excellent performance. The recent proliferation of the theory and tools of DL has
substantially expanded the possibilities of image segmentation as well. Thus, for example,
a particular architecture of deep neural networks (specifically CNN), known as U-net, was
used to segment fibroglandular and adipose tissues in [133]. However, that the performance
of CNNs usually improves pro rata with the size of training sets (e.g., manually segmented

o6



MRI scans, in the case at hand). Thus, generalizing DL-based methods to a wide range of
different densities and geometries of the breast could be potentially problematic.

When searching for relatively simple yet robust methods of segmentation of breast
MRI scans, statistical methods based on use of mixture models deserve special noting. In
particular, the assumption on image values to obey a Gaussian Mixture Model (GMM)
was exploited in [52, 45]. In this case, the GMM model is typically fitted by means of the
Expectation Maximization (EM) algorithm [27], properly modified to account for spatial
dependencies between same-class labels (using, e.g., the Markov Random Field model [15]).

For relatively high values of signal-to-noise ratio (SNR), the GMM is known to provide
an adequate approximation of the probability distribution of breast MRI scans. At low
SNR, however, the quality of this statistical model is known to plummet, causing notable
segmentation artefacts. To resolve this problem, we consider the use of Rician Mixture
Modeling (RMM) [18], which is known to be a more natural and accurate statistical de-
scription in the case of MRI. To avoid dealing with the generally complex nature of RMM
fitting, we introduce a simple “gaussianization” procedure which effectively reduces the
Rician case to a Gaussian one. Moreover, the proposed method can explicitly account for
the effect of bias fields [65], ultimately leading to a straightforward optimization problem.
The latter is shown to admit a computationally efficient solution, which can be found in
just a few iterations.

3.3.1 Proposed Approach

To set the notations, let 2 € R3 be a volumetric image domain over with an MRI scan
F : Q) - R3 is assumed to be defined. The scan F is also assumed to be contaminated
by a bias field B : 2 - R, the effect of which is usually considered to be multiplicative.
Consequently, in the absence of other artefacts and noises, the corresponding observed
image G could be modeled as

G(r) = F(r)B(r), ref. (3.3)
In practical settings, G is always contaminated by Rician noise, which leads to a rela-

tively complex analysis in the presence of B. To simplify the model, one can redefine (3.3)
in the logarithmic domain as

g(r) =Rc {f(I‘) + b(r)} , TEQ, (34)

with g, f and b standing for log G, log F' and log B, respectively, and with R,{-} being a
symbolic representation of the effect of the log-transformed Rician noise. The latter can
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Figure 3.10: (Subplot A) Rician probability densities R(x|o,v) for o =1 and v = 1,2,3;
(Subplot B) Corresponding log-Rician densities R (y|o,v), with y = logz.

be shown to behave similarly to a Gaussian noise, except for the presence of occasional
“spikes”, which can be attributed to the relatively large mass of the left-side tail of a
log-Rician distribution. In its Subplot A, Figure 3.10 depicts some examples of Rician
probability densities R(x|o,v) for o = 1 and v = 1,2, 3. Note how the shapes of the densities
transform from asymmetric to Gaussian-like as v increases. Subplot B of the same figure,
on the other hand, shows the corresponding log-Rician probability densities R (y|o,v)
(with y = logz). Note that, for all v, the densities have a Gaussian-like appearance, with
the exception of their heavy left tail.

Clearly, dealing with the log-Rician noise offers few advantages over the Rician case,
unless the former is properly “gaussianized” so that R, {f(r) + b(r)} can be approximately
replaced with f(r)+b(r)+u(r), where u(r) obeys a Gaussian distribution. Note that such
“gaussianization” should, in fact, be able to suppress the impulsive component of the log-
Rician noise. Such a result can be achieved by means of the procedure of outlier shrinkage
as given by

g(r) = g(r) - Si{g(r) -g(r)}, Vre, (3.5)
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where g stands for a median-filtered version of g2, while Sy denotes the operator of soft
thresholding given by
Sa(2z) =min(z + A, 0) + max(z — A, 0),

where A >0 is a predefined threshold value.

The action of outlier shrinkage is straightforward. With the original image f being a
piece-wise smooth function and b being a smooth field, the residuals g—g can be reasonably
assumed to be dominated by noise. When subjected to soft thresholding, the noise retains
its largest values which are likely to be associated with its impulsive (“spiky”) component.
Subsequently, the latter is subtracted from g, thus making the residual noise to behave in
a nearly Gaussian manner.

Despite its conceptual and computational simplicity, the procedure of outlier shrinkage
has demonstrated considerable efficacy for properly set values of \. In this work, the latter
has been set to be equal to two times the median absolute deviation of the residual g—g [77].

Two-class segmentation model: The anatomy of the breast is relatively complex.
However, when it comes to the T'1 contrast, which is typically used in breast MRI, there
are two main tissue classes that are usually targeted by image segmentation algorithms.
These classes correspond to fibroglandular and adipose tissue, which is referred below as
the dense and fat tissues, respectively?. Accordingly, in what follows, the problem of image
segmentation will be formulated for a two-class scenario. In this case, the objective of image
segmentation becomes to partition the domain €2 into two mutually exclusive subdomains
Q4 and Q (with Q = QuuQ; and Q4N Q; = @) associated with the dense and fat tissues,
respectively. Such a partition can, in turn, be described in terms of an partition function

£:Q - {0, 1} given by
B 17 I‘GQd
-

R I‘EQf

Consequently, the problem of image segmentation can be equivalently formulated as a
problem of estimation of function &.

One way to formulate the above estimation problem is by taking advantage of the effect
of outlier shrinkage, which guarantees the residual noise contaminating g is approximately
additive white Gaussian noise. In this case, it seems reasonable to assume the class-
conditional probability densities p(g(r)|r € €24) and p(g(r)|r € Q) to be Gaussian with

2In practical computations, a 3 x 3 median filter has proven to be an adequate choice.
31n the absence of contrast enhancement, dermal and tumorous tissues have a visual appearance similar
to that of dense tissue . For this reason, tumors are often included in the “dense” class .
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their means equal to pg + b(r) and py + b(r), respectively. Under this assumption, the
problem of estimation of £ can be expressed as an optimization problem of the form

5,%,1){% 3 E@lg(r) - pa - bE)P + Ap D1~ E@)lg(r) - sy —b(r)F}

reQ) reQ)

s.t. €(r) € {0, 1}, Vr e, (3.6)

for some regularization parameters \g, Ay > 0. It is important to emphasize that, in (3.6),
both p4 and ji; as well as the bias field b are treated as optimization variables, similarly
to &.

The problem defined by (3.6) is a non-convex integer optimization problem, a solution
to which would have been quite difficult to find in general. To overcome this difficulty,
one can try to “relax” the problem by letting the values of £(r) be anywhere within the
interval [0, 1] (instead of being trapped at either 0 or 1), while restricting the optimal £*
to the class of piece-wise smooth functions. This can be accomplished by minimizing the
value of the total variation (TV) semi-norm of £ that is given by

[€lrv = > [vE(r)l,

reQ2

where V¢ denotes the (discrete) gradient of £ and |VE(r)| stands for its magnitude at posi-
tion r. Consequently, the resulting minimization problem acquires the following form [105]

 min {Ad 2, E@)lg(r) = pa=b(r)* + Ap 3, (1= €(x)lg(r) = g = b(r) P+

re) reQ)

+ ||§|TV+I[O,1](€)}7 (3.7)

where I[o] stands for the indicator function of the closed interval [0, 1] that is given by

0, 0<z<1,
1[0,1](2) ={

oo, otherwise

Additionally, one can also take advantage of the fact that, in practice, the bias field b is
a smooth slowly varying function, which can approximated by a polynomial of a relatively
low order. Specifically, let {¢y}1 be a set of polynomials of orders 0,1, ..., K. Then, with
D, ik(r) =P k(x,y, 2) = ¢i(2)P;(y)dr(2), the bias field b can then be approximated as

b(r) =Y > cijuPijr(r)

=0 j=0 k=0
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C D

Figure 3.11: (A) Cross-sectional slice of a 3-D phantom; (B) Same slice contaminated by
a bias field and Rician noise; (C) Segmentation obtained using the GMM-based method of
[105]; (D) Segmentation obtained using the proposed method.

or, more concisely, as b(r) = ®(r)c. Consequently, the problem of estimation of the bias
field b can be reduced to the equivalent problem of estimation of its polynomial coefficients
c e RE+D? Tn this case, the optimization problem (3.7) becomes

ggg%{ME:anwuo—mf¢umf+xfle—aﬂnmn—uf—éaxﬁ+

reQ) reQ2
+lelr + T (©) 39
In this work, to define ®(r), Bernstein polynomials have been used [$5]. This choice

is by no means exclusive, and alternative definitions of polynomial bases could have been
used instead. Numerical solution of (3.8) is provided in Appendix B.

3.3.2 Evaluation and Results

The performance of the proposed method for segmentation of breast MRI scans has been
tested using both phantom and real-life data. In the former case, a 3-D version of the
Shepp-Logan phantom has been used as a model of the breast, while in the latter case we
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Figure 3.12: (A) Axial slice of a 3-D breast MRI volume; (B) Same slice contaminated by
a bias field and Rician noise; (C) Segmentation obtained using the GMM-based method of
[105]; (D) Segmentation obtained using the proposed method.

used the breast MRI scans acquired with a 3T Signa™ Premier MRI scanner (GE Health-
care, Inc.) at the Princess Margaret Cancer Center (Toronto, Canada). As a reference
method, the GMM-based algorithm of [105] has been used.

Some representative results produced by the reference and proposed methods are shown
in Figure 3.11 and Figure 3.12 corresponding to the case of in silico and in vivo experiments,
respectively. One can see that the Gaussian model is incapable of adequately capturing
the nature of Rician noise, resulting in erroneous segmentation. The proposed method, on
the other hand, has been able to produce valuable results at low SNR and in the presence
of sizable bias.

Moreover, using the phantom data allowed us to compare the performance of the refer-
ence and proposed methods in a quantitative way. As a figure of merit, we used the DSC,
which its values are distributed between 0 and 1, with the latter corresponding to the case
of perfect segmentation.

The quantitative comparisons have been performed at different levels of SNR and bias
field contamination. Table 3.4 demonstrates the obtained results for a representative set
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of SNR values. One can see that, in all these cases, the proposed method outperforms the
reference segmentation by a substantial margin.

3.4 Conclusion

In this chapter, we discussed the details of three preprocessing steps which are necessary
for an accurate breast MRI to mammogram registration. First, using Dijkstra’s algorithm
a fully automatic and computationally efficient method of whole-breast segmentation was
introduced. Based on the fact that neighbour slices of MRI scans are strongly correlated,
the detected boundary in each slice was used as a guide to find the breast boundary in
adjacent slices. This recursive organization of estimation process renders the algorithm
efficient, fast, and reliable, as supported by a series of experimental results performed on
clinical MRI volumes. The performance of the proposed method has been demonstrated
to remain nearly independent of breast type, which constitutes a significant improvement
over existing methods of breast segmentation.

Second, we illustrated the use of a simplified CNN architecture combined with a graph
search technique in locating the breast-pectoralis boundary in MLO mammograms. In
view of its limited description power (as a result of using a substantially smaller number
of network parameters), the proposed CNN is not expected to produce the final result,
but rather to provide reliable initialization for the second part of post-processing that
takes advantage of Dijkstras’s algorithm to complete the task. The proposed two-step
reconstruction of the pectoralis mask is advantageous in a number of ways. First, the
use of CNN eliminates the need for analytical assumptions regarding the geometry of
pectoral boundary, which are prone to errors due to the effects of inter-subject variability.
Consequently, the CNN-based processing remains stable and consistent across a variety

Table 3.4: Quantitative comparison of the reference and proposed methods.

SNR(in dB) | DSC (reference method) | DSC (proposed method)
6.6 0.86 0.97
7.0 0.65 0.94
7.4 0.65 0.91
7.8 0.69 0.95
12.0 0.86 0.97
12.3 0.79 0.97
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of different pectoral anatomies, imaging contrasts, and image acquisition methods (e.g.,
scanned film vs digital mammography). Furthermore, the subsequent use of graph-based

processing allows one to recover the pectoral boundary at a single-pixel resolution in a fully
automatic way as well.

Finally, a new method of segmentation of breast MRI scans has been described. A
principle attribute of the method is its formulation in the logarithmic domain in conjunc-
tions with proper “gaussianization”. It has been shown that such preprocessing allows one
to substantially simplify the problem of image segmentation, leading to a computationally
efficient numerical solution that remains accurate and stable for a wide range of values of
SNR as well as in the presence of sizable bias fields.
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Chapter 4

Breast MRI to Mammography
Registration

Due to their dependence on different contrast mechanisms breast MRI and X-ray mammo-
gram images provide different trade-offs in terms of the sensitivity and specificity of their
respective findings. For this reason, fusing the informational content of MRI scans and
digital mammograms has been considered to be a promising means to achieve improved
diagnostics of breast malignancies. Such fusion, however, entails spatial alignment of the
mammographic and MRI scans, which is known to be a difficult estimation problem — not
only that the scans are acquired under different physical conditions, but also they have
disparate contrasts and dimensionality. To this end, earlier studies depended on complex,
subject-specific bio-mechanical modelling to predict the breast deformation due to paddle
compression. In this chapter, we propose a different framework, in which the total breast
deformation is split to global and residual components. The global component is the sub-
stantial part of the deformation which is almost independent of the breast tissue properties,
and it is common among all subjects. In this chapter, we will discuss two computationally
simple approaches to estimate the global deformation. Additionally, this deformation esti-
mation is refined by computing the residual deformation by taking the advantages of FFD
model. The residual deformation is patient-specific and requires to take into account the
breast properties, e.g., the ratio of adipose and fibroglandular voxels.
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4.1 Problem Formulation

Let f be a 3-D MRI volume in a Left-Anterior-Superior (LSA) orientation, defined over
a rectangular domain € € R3. In addition, let Q5p be a 2-D plane within Q defined
as Qop = {(z,y,2) € Q| z = 0}, which will serve as the domain of definition for a 2-D
mammogram image g related to f. For the sake of generality, in what follows, f and g will
be replaced by their transformed versions Z;(f) and Z,(g), respectively, where Z; and Z,
denote two intensity transformations to be specified later in this chapter.

Given f, its corresponding “simulated mammogram” can be obtained by radiographi-
cally projecting Z;(f) onto 2p. In this work, the projection amounts to integrating the
image along its z-coordinate according to

P} = [T(f(ap.2)) (+1)

Note that the projection relies on the assumption of parallel rays, which seems to be rea-
sonable given the fact that, in most mammographic settings, the source-to-plane distance
is usually greater than breast thickness by an order of magnitude. It should also be noted
that the above projection corresponds to the case of a CC view (which will be extended to
MLO projections in the next section).

Central to this work is the assumption that f and g are related by a geometric trans-
formation accounting for the change in the anatomical posture as well as the effect of
paddle compression. Formally, this transformation can be defined as a map ¢ : 2 — (L.
Consequently, one can define the “simulated mammogram” of f as P{Z;(f) o ¢}, which
allows comparing it against Z,(g) in terms of a predefined similarity measure & [176]. In
this case, the problem of estimating ¢ can be cast into an optimization framework, where
its optimal value is recovered as a solution to

max S(P{Zy(f) 0 2} Z,(9)), (42)

where the maximization is performed over all transformations ® deemed to be admissible
(such as, e.g., topology preserving mappings [100]).

As mentioned in the introduction, directly estimating ¢ is rarely possible. Instead, the
proposed solution seeks for an optimal deformation of the form

Ptotal = Pres © Pglb, (43)

where, as before, the o symbol stands for functional composition. In (4.3), @q is used
to model the large-magnitude global component of the total deformation @iy, While ppes
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Figure 4.1: Block diagram of the proposed method: (A) preprocessing step which includes
geometry extraction and breast tissue segmentation in MRI images; (B) Estimation global
deformation; and (C) Computation of residual deformation by using the advantages of
FFD.

stands for a residual deformation of a relatively smaller magnitude (i.e., |@res| < [@anl). In
this work, the similarity S is maximized as a function of ¢, alone, whereas g, is replaced
by its predicted value @g1,. Consequently, the final estimate is obtained as Qres © Pgi, With

Pres = Arg max S(P{f o Sores} g) (4'4)

Pres€d

where f:=T #(f)opgm and § := Z,(g). The rest of this chapter provides details on computing
the prediction Qg as well as the computation of ¢, using (4.4). The overall structure of
the proposed method is depicted in Figure 4.1.



4.2 Data preprocessing

In general, breast MRI volumes acquired in a supine position contain an abundance of
unnecessary information on the nearby anatomy of the chest wall. Thus, cropping the vol-
umes to retain their relevant portion alone constitutes the first step in MRI to mammogram
registration [59]. In the supine position, when the breast is unrestricted and pendulous,
one can isolate it from the rest of the chest wall by means of a coronal separating plane
which is constrained to pass through the anterior end of sternal body (as shown by the
red dot in Subplot A of Figure 4.1). Note that, since mammographic paddles are typically
propped against the sternum, the breast anatomy represented by the cropped MRI volumes
and their respective mammograms can be reasonably assumed to be nearly the same.

As the next step, the cropped MRI volumes need to be prepared for their alignment with
mammogram scans. In the case of CC mammograms, the direction of paddle compression
and radiographic projection coincides with the z-axis, which precludes the breast from free
rotation around the coordinate axes. In the case of MLO mammograms, on the other hand,
the paddles are rotated around the y-axis through a predefined roll angle (around 45°),
whose value is usually known'. Moreover, during the examination, the subject’s position
is further optimized by adding an in-plane rotation around the z-axis, usually in the range
between 15° and 30°. Consequently, in the case of MLO, the process of cropping the MRI
volumes has been preceded by their rotation through both of the above angles (with the
in-plane rotation set to 20° [90]).

As it was discussed in the previous chapter, as a preprocessing step, one needs to isolate
breast tissue from nearby tissues, particularly pectoralis muscle. To exclude this muscle
both from MLO mammograms as well as from their related MRI scans, our proposed
solutions in Sections 3.1 and 3.2 were applied.

Finally, to resolve the problem with the discrepancy between different imaging con-
trasts, two different approaches to the definition of intensity transformations Z; and Z,
have been investigated. In the first case, the latter is set to be an identity (i.e., Z,(g) = g),
while Z; is defined following the method proposed in [10]. In particular, at each voxel
r=(z,y,2), let P,(r) and P,;(r) be the posterior probabilities of its value to be associated
with the class of adipose and dense tissue, respectively?, so that P,(r) + P;(r) = 1. The
adipose and dense classes, in turn, can be associated with their corresponding (average) at-
tenuation coefficients p,(F) and pq(E), which depend on the X-ray energy level E. Thus,

!This and other relevant information is standardly included in the header of DICOM files.
2Following [40], the dense component of breast tissue is assumed to consist of both its fibro-glandular
fraction and possible tumorous neoplasms [(4].
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an effective attenuation coefficient peq at r can be defined as given by
/jleff(ra E) = /La(E)Pa(r) + ,ud(E>Pd(r)

Consequently, given the attenuation coefficients of water (piwater(E£)) and air (pai(£)), the
intensity transformation /; can be defined as [10]

_ kva Meﬁ(ra E) - ,uwater(E)
If(f(r)) B EZ::O (E) MWater(E) - /’Lair(E) 7

where kVp stands for the end-point energy, while w(FE) denotes the energy spectrum of
the anode material (which is normally available).

(4.5)

The main idea behind using (4.5) is to convert an MRI volume f into a “pseudo-X-ray”
volume Z¢( f), whose projected values have an intensity distribution close to that of a mam-
mographic scan. In this way, the transformation makes it possible to use computationally
simpler similarity measures to solve (4.4), as it will be shown later.

Another approach to defining Zy and Z,, is due to [57]. In this case, Z;(f(r)) = Pa(r) Az,
with Az denoting the MRI resolution in the direction of projection. It is important to note
that P; can be viewed as a “soft” segmentation mask of the dense tissue. Hence, the
projected values of P; Az are expected to represent the physical thickness of the latter in
the direction of mammographic projection.

The above definition of Z; requires a proper adaptation of Z;, which should now re-
flect the thickness of the dense tissue in g. To this end, assuming the latter is given in
a raw (linear) format, let g, be equal to the average value of g corresponding to its re-
gions dominated by fat. Then, the intensity transformation Z, can be defined to be the
mammographic density of the dense tissue as given by [57]

Z,(g(x,y)) = 10g(g(:vl;y)_)l:d10g(ga).

(4.6)

The use of (4.6) requires the knowledge of g,, which could be hard to compute in
mammographically dense scenarios. In this case, an alternative way of computing g, can
be based on the fact that the total (physical) volume of the dense tissue should be equal
in both MRI and its related mammogram. Consequently, an optimal value of g, can be
adjusted empirically until the above equality is reached. Figure 4.9 shows an example of
CC mammograms with their respective transformed counterparts.

Concluding this section, it should also be noted that both approaches to the definition
of Z; require segmentation of an MRI volume f into two classes, namely adipose and
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Figure 4.2: Super-quadratic with a=0.6, b=1,c=1,t=4andr=2,s=2 (0<y)

dense. Although standard in breast MRI analysis, such segmentation is known to be
a difficult problem, especially in the presence of bias fields. In the present work, the
proposed approach in Section 3.3 was used that is capable of dealing with practical noises
and common imaging artefacts, while offering the advantage of straightforward and efficient
implementation. This being said, however, our choice of the segmentation method is by
no means binding, and other algorithms could have been used instead as well.

In the rest of this chapter, we introduce two different approaches for global deformation
(pgin) estimation along with details of computing the residual deformation (¢yes).

4.3 Global Deformation Estimation by Superquadratic
Function Model

According to (4.3), the total deformation yotar is assumed to consist of a composition of
g, and ¢res. While the second component is estimated based on imaging information,
the first is predicted from the breast geometry. It is important to emphasize that, in the
above model, the principal function of gy, is to account for the massive displacement of
breast tissue in response to mammographic compression. It is therefore not as important
for a predicted pgqp, to be as close as possible to @iota1 as to make sure that the residual
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deformation is sufficiently small (and, thus, amiable for accurate numerical estimation). A
common way to compute such predictions has been through the use of complex, subject-
specific bio-physical modelling by means of FEM. However, considering the global nature
of g, its prediction can be computed based on a much simpler computational procedure,
as explained below.

The global deformation of the breast during mammographic compression has many
properties and characteristics which appear to be common to subjects within different
breast geometry and composition. Thus, in particular, the boundary of a compressed
breast can be closely approximated by a super-quadratic ([7]) of the form

T s t

—+

T

a

Y

b

where the z, y and z coordinates are aligned with the left-right, posterior-anterior and
inferior-superior directions, respectively. Note that the condition y > 0 is added to keep
the anterior part of the surface only. The parameter 6 = {a,b, ¢, r, s,t} controls the shape of
the super-quadratic and, hence, needs to be properly defined. Figure 4.2 shows the shape
of resulted super-quadrics for a =0.6,b=1,c=1,r=2and s=2,t=4 (0 <y). As it can be
seen, the shape looks like a breast tissue which is compressed between two mammographic
paddles. Therefore, one can use this function and roughly model the breast deformation
by tuning a,b,c,r, s and t.

=1, y>0, (4.7)

To this end, it has been noticed that the projection of the super-quadratic onto the
(z,y) plane is described by a simplified equation of the form |z/a|" + |y/b|* = 1. This shape
can be reasonably expected to be aligned with the mammographic boundary of the breast.
Thus, one can find parameters (a, b, r and s) by fitting the above equation to the points
in the boundary of X-ray mammogram. We first extract the boundary of the breast from
the mammogram, and then find these parameters by feeding it to a heuristic optimization

algorithm, Teaching Learning-Based Optimization [129]. Then, the objective function was
defined as . .
T Yi 2
f(a,b,r,s)= Z (1_( E 3 )) (48)

x;,y:€A

where A is the boundary of breast tissue in the mammogram and {(z;,y;)}%, are the
coordinates of the points located on the boundary of the mammogram. Figure 4.3 shows
a sample fitted super-quadratic function in 2-D (z —y plane).

To estimate the remaining parameters of the super-quadratic (i.e., ¢ and t), we use the
fact that information about the distance between compression paddles is always indicated
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Figure 4.3: Fitting super-quadratic function to boundary of mammogram: (a) Sample
mammogram; (b) Fitted super-quadratic curve to the boundary of mammogram in (a)

in the header of mammography files>. Consequently, denoting this distance by h, it is
straightforward to see that ¢ = h/2. Finally, to estimate ¢, the compression is assumed to
be volume preserving [97]. Thus, given an estimate of the breast volume derived from the
3-D MRI, one can simply find a value of ¢ yielding a super-quadratic (4.7) of equal volume.

Given the original boundary of the breast (as observed in MRI scans) and its referenced
“compressed” boundary (as represented by the fitted super-quadratic), the final step in es-
timation of yg, consists of finding a spatial transformation that aligns these surfaces. Note
that, in practical computations, the surfaces are represented by sets of discrete point coor-
dinates. Consequently, in this work, we took advantage of the Coherent Point Drift (CPD)
point registration algorithm [108], which is a set-point registration technique allowing one
to determine a spatial transformation that brings the two sets of discrete (surface) points
into close correspondence with each other. This method was chosen for the convenience
and simplicity of its algorithmic structure that requires neither preprocessing nor special
initialization.

In the CPD algorithm, the alignment of two point clouds is formulated as a proba-
bility density estimation problem, and centroids (representing the first point cloud) are
fitted to the data (the second point cloud) by maximizing the likelihood. GMM centroids
move coherently as a group to preserve the topological structure of the set-points. The

3The value of h is a standard attribute of mammogram data which is designated as “breast thickness”
in DICOM nomenclature.
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transformation is defined as the initial position plus a displacement field v,
T(r,v) =r+uv(r) (4.9)

The norm of v is used as a regularizer to guarantee the smoothness of the transformation.
This suggests that the points that are close to one another tend to move coherently. The
expectation Maximization (EM) algorithm is used to find the parameters of the transfor-
mation. The algorithm starts with choosing the initial values of the parameters which is
known as the E-step. The parameter values are then updated in the M-step, where the
expectation of the complete negative log-likelihood function is minimized.

A fast implementation of this algorithm, reducing the method computation complexity
to linear, is publicly available 4. This code was used to find the transformation field between
surfaces. To apply set-point registration, we uniformly sampled around 2000 points to 3000
points from each surface. Results showed that CPD algorithm suits our problem and can
easily handle noise and outliers, specifically points on the nipple. Figure 4.4 (a) shows the
result of point registration, and as it can be seen, the nipple in the MRI surface has been
considered as noise.

It should be noted that the above method of surface registration can only be used to
predict the motion of the boundary points, while remaining oblivious to what happens in-
side the breast mass. To overcome this problem, one can extrapolate the boundary motion
inside the breast volume by means of Thin Plate Spline (TPS) interpolation [12]. Note
that this type of interpolation is guaranteed to find a spatial transformation of minimum
possible bending energy, which agrees well with the general tendency of soft biological
tissue to deform in the most “ergonomic” way. Subplots (b) and (c) of Figure 4.4 provide
an illustration of the above-described process.

The proposed method for estimating ¢, does not take into consideration the actual
composition of breast tissue, effectively assuming it to be homogeneous. As a result, it
would be unreasonable to expect g, thus obtained to be sufficient to explain the real
displacement. This brings us to the problem of estimation of the residual transformation
Yres, Which is detailed in next sections.

‘www.bme. ogi.edu/~myron/matlab/cpd.
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XZ slice

YZ slice

(b) (c)
Figure 4.4: MRI deformation using CPD: (a) Registered points of the surfaces of MRI and

simulated superquadratic; (b) Deformed MRI (shown in Figure 4.3 (b)); (c¢) Sample slices
of deformed MRI.

4.4 Estimation of (Global Deformation by Temporal
Evolution of Breast Surface

As an alternative method for estimating the global deformation, a new numerical approach
was developed. The principal idea is rooted in the observation that, due to the large
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magnitude of compression forces and the intrinsic softness of breast tissue, the shape of
a mammographically deformed breast mainly depends on its initial geometry rather than
its internal properties. Consequently, a useful prediction of @1, can be derived from the
apparent deformation of the breast boundary due to compression. In the present work,
this deformation is emulated by means of the Clip-And-Restore (CAR) procedure which is
detailed below.

As its input, the CAR procedure uses the breast boundary which can be extracted
directly from f. The boundary can be represented by the zero level-set I'y of a Lipschitz-
continuous function ¢ : @ - R, so that I'g = {r e R3 | ¢)(r) = 0}. In particular, it is common
to define ¢ to be the Signed Distance Function (SDF) of the breast boundary, with its
values being positive inside the breast region, while being negative outside [I12]. Such
SDF has the following properties:

|V (r)| =1, VreR?

P(r) =0, Vrel

(r) >0, Vr € interior of T
P(r) <0, Vr e exterior of I'

with V¢ standing for the gradient of ¢ and |Vi(r)| being its magnitude at r.

Assuming, as before, that the compression forces are applied along the caudal-cranial
direction, let z" and 2z be the minimum and maximum value of the z-coordinate of
I'y. To emulate the process of mammographic compression, we use a pair of virtual paddles
located at zi™ and z***, respectively, with their surfaces parallel to the (x,y) plane (as
shown in Figure 4.6). Note that, in such an arrangement, the breast region is guaranteed
to be confined to the spatial “slab” {(z,y,z) | 28" < 2 < 2" & y > 0}, where the points
with y = 0 are assumed to be aligned with the chest wall. Figure 4.5 illustrates the initial
configuration of the breast and the virtual paddles.

As its name suggests, the CAR procedure consists of two steps — clipping and restoring
— which are initiated with T, 2", 20 and performed iteratively until a termination
condition is reached. In this way, the procedure yields a sequence of breast boundaries
[y, I'1,T5, ..., closely converging to the breast boundary at the end of compression.

Clipping: The purpose of clipping is to emulate the movement of mammographic paddles
by a small increment A. towards each other. At iteration k, this amounts to redefining
the paddle positions as

min min max max
2 2 A2, 2 - A2
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Figure 4.5: Configuration of the virtual paddles in the beginning of emulation of mammo-
graphic compression.

Subsequently, the z-coordinates of the points in I'y_; are rectified according to
2 < min{max{z, Zpiny z,‘jlax},

resulting in a new boundary I'y. (The parameters of the clipping procedure are shown in
Figure 4.6).

Needless to say, that the new boundary I'j is flawed in two critical ways. First, the
clipping renders it non-smooth, which contradicts the natural curviness and regularity of
breast surface. Second, I';, is bound to encompass a smaller volume of tissue as compared
to I'k_1, thus violating the volume preservation constraint that requires the initial and final
breast volumes to be equal [97]. Accordingly, the above inconsistencies need to be remedied
through an additional step of “restoration”.

Restoring: To restore the regularity of I'y, its corresponding signed distance function
is subjected to smoothing by means of mean curvature flow [61]

t t t
8¢(r7 ) — _le( V@/J(I‘, ) ) V¢(r, ) , (410)
ot [vo(e,0)[ ) [V, 8]

where t stands for an artificial “diffusion” time, div and V denote the divergence and
gradient operators, while || is standard Euclidian norm. Starting with the signed distance
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Figure 4.6: Parameters of the clipping procedure (sagittal view)

function of the “clipped” breast boundary, (4.10) forces it to evolve in the normal direction
towards a solution with a minimal value of mean curvature. As a result, the evolution driven
by (4.10) always results in smooth and regular boundaries which happen to be in a good
compliance with the real-life morphology of the breast.

Unfortunately, if not properly constrained, solution to (4.10) is bound to converge to
a single point, which is rather undesirable [00]. To prevent this outcome, the “curvature
force” on the right hand side of (4.10) has been complemented with two additional terms,

leading to
ooet) [ (ot |, o] e
o [ ‘ (nvwr,t)n) 1) B] FoEol (4.11)

_ . VY(r,t)
fy(t)—[ﬂa(r,t)|dlv(m)dr/‘/S;a(r,t)dr

with a(r,t) = [VH(¢(r,t))| being the (unit) indicator function of the evolving surface and

where
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(b)

(d) (e) (f)

Figure 4.7: Evolution of the breast boundary under the CAR procedure: (a) original breast
surface; (b-e) breast surface after 1, 3, 5, and 7 iterations, respectively; and (f) final solution
after 10 iterations.

‘H standing for the Heavyside function, i.e., H(7) =1, if 7 > 0, and H(7) = 0, otherwise.
As shown in [78], the addition of 7(¢) guarantees the volume enclosed by the evolving
boundary remains constant, thus enforcing the compression to be volume-preserving [97].
On the other hand, including B > 0 gives rise to a ballooning (aka inflation) force which
makes the breast boundary expand outwards, thereby increasing its volume [78]. This force
needs to vanish when the expansion brings the volume to its initial value Vj. For this to
happen, B has been set to be proportional to the difference between V; and the volume at
time £, viz.

B=p (Vo [ Hwx.0)dr)

for some predefined > 0. In this way, the effect of the ballooning force is forced to vanish
as the evolving volume reaches its target value of Vj.

In the practical implementation of (4.11), it is important to pay close attention to
boundary conditions to prevent the estimated boundary from “leaking” into the chest wall
as well as outside the “between-the-paddle” space. This can be achieved by using Dirichlet
boundary conditions both on the chest wall (i.e., when y = 0) and the paddle planes.

The clipping and restoration stages of the CAR procedure are repeated sequentially
until the between-the-paddles distance 2" — 2" reaches a target value of h that is equal
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to the physical thickness of the breast at the end of compression. In this case, the clipping
parameter A. can be set to be equal to

A, = (20— zim — B) [N,

where N denotes the total number of CAR iterations. It has been observed that, most of
the time, setting N = 10 is sufficient to complete the emulation in a stable and consistent
manner. The results of the CAR procedure are exemplified in Figure 4.7, which shows an
initial breast surface (Subplot (a)) along with the compressed surfaces corresponding to
k=1,3,5,7 (Subplots (b)-(e)) and the final solution at N =10 (Subplot (f)).

Finally, the CAR procedure detailed above is only capable of tracking the motion of the
breast surface. To estimate the global deformation gy, it is therefore necessary to extend
the boundary displacement to the entire domain 2. To this end, we used a procedure
similar to the one exploited in Section 4.3. In particular, at the end of each iteration of
CAR, the trajectories of the boundary points were computed based on spatial proximity.
Subsequently, the incremental trajectories thus obtained were integrated into the global
displacement relating the configuration of the breast boundary at the initial and final stages
of CAR. As a final step, the boundary displacement was extrapolated to the entire image
domain by means of TPS interpolation, producing the required estimate Qg,. It should be
noted that the choice of the interpolation model has been by no means arbitrary, but rather
rooted in the property of TPS to yield approximations of minimal bending energy, which
seems to be in a good agreement with the general tendency of breast tissue to deform in the
most “ergonomic” way. A representative output of the proposed algorithm is demonstrated
in Figure 4.8.

4.5 Estimation of Residual Deformation

Given a prediction of the global component of ¢, the next step is to estimate its residual
part ¢res through registering f := Zi(f)o g and g :=Z,(g). In our proposed solution, ¢res
is assumed to be a member of the parametric family ® of piecewise polynomial functions.
Specifically, with r = (2,9, 2), let @2 (1), pies(r), and 7, (r) be the z, y, and z components
of pres, Tespectively, so that

gpres(r) = SO;EGS(I') 1 + @%’es(r)j + (pfes(r) k7

where i, j, k denote the unit vectors in the direction of corresponding spatial coordinates.
Then, each of the three components of ¢, is assumed to be given as

Spies(r) = Z:Cln/g(r/A —Il), le (:U7yvz)7 (4'12)
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Figure 4.8: Global deformation of an MRI volume under the CAR procedure: (a) original
MRI volume; and (b) compressed MRI volume.

with n = (n®,n¥,n?) being a triplet of integer translations and B(r) denoting a separable
B-spline of the form

B(r) = 6(x) B(y) (=),

with 8 being a one-dimensional B-spline of some predefined degree. In (4.12), the parameter
A > 0 is used to govern the location of control points and their associated spline coefficients
cl,, thus determining the spatial resolution of the residual transformation.

The use of parametric representation allows reducing the estimation of . to the
problem of finding a set of optimal spline coefficients, which, for the sake of convenience, we
agglomerate into a single numerical array ¢ = {¢%, ca, ¢ }. The number of such coefficients
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(a) (b)

Figure 4.9: Transformed intensity images: (a) Projected pseudo-CT; (b) Fibroglandular
thickness computed from MRI scan; (c¢) Fibroglandular thickness computed from mammo-
gram.

is a function of A, with its higher values resulting in a smaller number of unknowns. To
render the numerical estimation of ¢ stable, we employ a multi-scale approach, in which the
estimation is initially done for a relatively large A, followed by a sequence of refinements
via gradually reducing its value by a factor of 2. Thus, in the beginning of iterations, the
estimation produces a coarse approximation of (., which is robust against the effects of
noise. As the refinement advances, the spline model acquires more degrees of freedom (at
the expense of a greater number of coefficients c), yielding progressively finer estimates of
the residual deformation.

The multi-scale approach to the estimation of ¢ has been found to be a useful means
to prevent convergence to locally optimal solutions, producing consistent reconstructions
across various geometries and compositions of the breast. Yet, as A approaches the reso-
lution of imaging data, the estimation becomes more variable and, with that, less stable
numerically. A particularly simple and effective way to mitigate such instabilities is to
augment the optimization cost with an additional regularization term. In this work, the
regularization has been achieved by constraining the “bending energy” of the residual
deformation that is given by [101]

R(c):% >

le(z,y,2)

| veat i)l dr, (4.13)

where Vil (r | ¢) denotes the gradient of ¢l (r | ¢) at r, with its magnitude equal to
|Vl(r] c)|. With the addition of R(c), it turns out to be unnecessary to devise a special
rule for termination of the multi-scale update, in which case, the estimation can be stopped
at the value of A below which no further improve in the optimization cost is observed.

As it was mentioned in the introduction, the present work explores a number of different
definitions of the intensity transformations, which has been paired with two similarity
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measures. The first one was chosen to be the standard SSD given by [/]

Sssn(c) = - fo ) P{F 0 pees(€) Hsy) - 3, )| dee dy (4.14)

where the negative sign is added to keep the definition consistent with the maximization in
(4.4). With addition of the regularization term R(c), this case amounts to maximization
of Sssp(c) —AR(c), with A >0 being a user-defined regularization parameter.

In addition to SSD, which is generally considered to be an intra-modal distance, we
also used a cross-modal similarity measured in terms of MI [109, ]. The definition of
MI relies on both joint and marginal probability distributions of registered images. With
K being a Parzen window [110], the empirical distributions of P{f o ¢ye} and § have been
computed according to

1

Pirl)= g ], K (=P o punl@) (w)) drdy

and
1

Pys) = g ff, K 5=y dedy.

respectively, while their joint distribution was defined as®

P(r,s|c) = (4.15)

|QiD| fozn K (7“ ~P{f o pres(c) } (z, y)) K (s-g(z,y))dzdy.

With the above definitions, MI can now be defined according to [162],

Swi(c) = ﬂ P(r,s|c) log (P;(DT(T’CS)L;}S)) drds (4.16)

Consequently, in this case, the objective function to maximize is given by Syi(c) - AR(c).

In our experiments, the optimization over ¢ has been performed by means of the stan-
dard gradient ascent algorithm, a iteration of which is given by

¢t = ¢® 4 7(VS(c®) - ATR(c?)), (4.17)

where § is set to be Sy or Sssp, and 7 > 0 is a predefined step-size.

®Note that Pi(rlc) = [ P(r,s|c)ds, offers an alternative way of computing Ps(r|c).
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To estimate the optimal values of ¢, one needs to compute the gradient of regularized
objective functions, Syi(cc) — AR(c) and Sssp(c) — AR(c), which requires computing the
derivative of each term with respect to ¢ .

As shown by [155], computation of the derivative of Syi(c) respect to ¢l boils down to
98w (c) ﬂ OP(r,s | c) P(r,s|c)
drd 4.18
Tod, R P:(llc) )drds (4.18)
which only requires the calculation of M Using (4.16) one can write

OP(r, s|c)
e |QQD|ff K (=) Gy au
OP{F o o)} (2,0)

U=r— P{fOSDreS(C)}(x y)

dcl dx dy
where i
oP{f ;jnres(c)} fv o+ prea(rfe))? 22=lrlC) 8sores(rlc) D
Note that [ € {,y,2}, 222 = (8(r/A - n), 0,0), 8%6*’“'0) = (0, B(r/A - n), 0) and
2o = (0,0, B(r/A - ).

Using Equation (4.14) and applying basic derivative rules, the derivative of Sssp(c)
can be computed as follows,

@5282(") 9 ff (P{f o pres(©)}(,) - 3(x,y))
JOP{fo wgzécﬂ(% Y gway (4.19)

On the other hand, derivative of the regularization term with respect to ¢l is given by

OR(c) PVetalr|)
5 = J, Vehlrl o) dr

where V¢! (r | c) = [a“"re‘*iﬂc), 8%5;":), a%e(;z(r‘c)]. oo (r | c) is defined as a linear combi-

nation of separable cubic B-splines (4.12), thus, for example, one can compute awafefi(rm)

as follows,

OVeis(r]c) [ Peis(r|c) PPpi(r]c) Popi(r|c)
et - Ordcz Oydct 0z0ck
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where
Ppts(r|c) — 1dB(u)

BX -n)B(5 1)

drdcs A du e . A
A

Pote(r|e) 1,z dB(u) .

g0 Aﬁ(A n®) Tu u:i_nyﬁ(A n®)
A

Pops(r]e) 1w ooy dB(w)

9200k —K/B(Z n )B(Z n') T
A

AV ples(rle) OVl (rle)
ocl and ¢

can be computed in the same manner.

Finally, in our practical examples, both 3 and K have been chosen to be given by a cubic
B-spline, which offers an excellent compromise between the accuracy of approximation and
the efficiency of numerical implementation [156]. Also, in the course of optimization, it is
required to extrapolate the values of f and its gradient in between the points of a discrete

numerical grid, which was achieved by means of cubic interpolation.

To accelerate the gradient descent optimization, the limited-memory quasi-Newton min-
imization algorithm [19] was applied which reduces the objective function until termination
criteria are satisfied. The limited-memory quasi-Newton method is faster because instead
of estimating the entire Hessian during minimization, only a low-rank approximation is
calculated, allowing linear or super-linear convergence rates. It also provides an additional
advantage by allowing bound constraints on the independent variables.

In summary, we introduced two different geometry-dependent strategies for estimat-
ing global deformation. The first one is formulated using an analytical model that is
superquadratic and, on the other hand, the second approach is based on the process of
evolution and clipping-restoring procedure. The process of predicting the global deforma-
tion is followed by estimating the residual deformation where we take advantage of FFD
model. In the next chapter, the performance of our proposed framework will be evaluated.
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Chapter 5

Experimental Results

In this chapter, we demonstrate quantitative and visual results of registering 3-D breast
MRI images to digital mammograms on a clinical dataset using our proposed registration
approach. The results are compared against FEM-basd registration methods discussing
the advantages of our method over other algorithms.

5.1 Evaluation

The proposed method was tested on a clinical dataset consisting of MRI and mammogram
data acquired from 10 different subjects with unilateral breast lesions. Each case consisted
of a structural T1-weighted MRI volume and two mammographic images (i.e., CC and
MLO mammograms). All the imaging data were acquired approximately at the same
time point to avoid the significant change of tissues inside the breast. The breast MRI
scans were acquired at the Princess Margaret Cancer Centre (Toronto, Canada) by means
of a 3T Signa™ Premier MRI scanner (GE Healthcare, Inc.). The spatial resolution
of MRI scans was set to 0.76 mm x 0.76 mm x 1.2 mm, resulting in MRI volumes of size
448 x 448 x 210 voxels. The digital mammograms, acquired at the same centre, had the
spatial resolution of 0.094 mm x 0.094 mm, with the associated size of 2294 x 1914 pixels.
Prior to numerical treatment, both MRI and mammogram images were resampled to 1
mm? isotropic resolution. Moreover, the images have also been subjected to the procedure
of histogram equalization to increase the contrast of the fibroglandular component of breast
tissue.

In this study, we worked with unilateral diseases where only one breast is affected.
Also, the cases are not mammographically occult which allowed expert segmentation and
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Figure 5.1: Sample case with visible lesions: (a) Lesions in an MRI slice (Transversal view);
(b,c) Lesions in MRI slices (Sagittal view); (d) Same lesions depicted by mammography

annotation of lesions in both MRI and mammography scans. Figure 5.1 shows lesions in
MRI and mammogram images of a sample case. For the sake of quantitative comparison,
the Target Registration Error (TRE) metric has been used to evaluate the accuracy of the
proposed methods. To compute TRE, one needs to have reference points in both images,
which are called landmarks. However, in our experiments, the center of mass of the lesion
was used to compute the error. Consequently, the TRE is computed as the Euclidean
distance between the centroid of the 2-D tumor in the mammogram and the projected
centroid of the 3-D tumor [30].

Estimating the residual deformation was carried out in three different resolutions. In
the first resolution (coarse resolution) the distance between control points, the center of B-
spline kernels, was 20 mm in each x, y, and z-direction. In the second and third resolutions,
this distance was set to 10 mm and 5 mm, respectively. Furthermore, since the deformation
in z-direction is mainly incorporated in the estimation of global part ¢4, the amount of
deformation in the z-direction was limited. To do so, in the phase of residual deformation
computation, ¢Z,. has been restricted to vary slowly in comparison to @2, and ¢res.

As it was mentioned in the previous chapter, another objective of the present study
has been the exploration of two intensity transformation models and their performance
under two different similarity measures, i.e., SSD and MI. The first transformation model
is defined by (4.5) which aims at transforming an MRI volume into an “emulated” X-ray
(EXR) volume prior to its projection onto the mammographic plane. The second transfor-
mation model is based on computing the physical Thickness of the Dense (fibroglandular)
Tissue (TDT), both in MRI and mammogram scans (using (4.6)).

In the rest of this chapter, the results obtained by the two proposed registration ap-
proaches, global deformation using a superquadratic model and the CAR procedure, will
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Figure 5.2: Registration results of subject 1 using superquadratic model: (A) Test mam-
mogram in CC view; (B) Thickness of dense tissue of A; (C) Result using EXR; (D)
Results using TDT. In both (C) and (D), purple shows the manually segmented lesion in
the mammogram and green indicates the projected lesion.

be discussed.

5.2 Quantitative Assessment of Superquadratic Model

The proposed superquadratic model (Section 4.3) for global deformation estimation was
applied to bring breast MRIs and mammograms in CC view to an alignment. Then,
the alignment was refined by applying the proposed approach (Section 4.5) for residual
deformation estimation.

Figures 5.2 - 5.5 illustrate the results of registration for some sample cases using EXR
and TDT images. The visible boundaries of lesions are outlined red in thickness (TDT)
images. In the case of both registrations (using thickness and simulated X-ray images)
the deformed and projected lesions are shown with green color, while manually segmented
tumors (from mammograms) are purple. The overlap between the two lesions is indicated
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Figure 5.3: Registration results of subject 4 using superquadratic model: (A) Test mam-
mogram in CC view; (B) Thickness of dense tissue of A; (C) Result using EXR; (D)
Results using TDT. In both (C) and (D), purple shows the manually segmented lesion in
the mammogram and green indicates the projected lesion.

in white color. As it can be observed that in both cases the projected lesions are reasonably
close to lesions in the mammograms.

Table 5.1 summarizes the registration results on 10 different cases in the dataset. The
obtained mean TRE for registration by thickness images is 5.44 mm + 3.61 mm and it is
7.49 mm=3.72 mm for registration using EXR images. Considering each case independently,
all of the TREs are lower than 13 mm for both registrations (use of EXR and TDT images).
Comparing TREs by simulated X-ray and fibroglandular thickness, it is clear that the use
of thickness images results in smaller errors. However, the standard deviation is almost the
same for both approaches, indicating the same consistency of these methods. In the case
of fatty breast tissues, e.g., case 1 or case 7, there is less information (fibroglandular tissue)
and as a result, the simulated EXR is a relatively uniform image. In these kinds of images,
it is hard to drive the deformation and subsequently, the optimization is more likely to
terminate at a local minima. For example, using EXR images for registration resulted
in TRE of 11.63 mm in case 1. However, using thickness images may result in higher
accuracy in the case of fatty breasts. In fibroglandular thickness images, TDT, fatty areas
are treated as background; it only considers fibroglandular tissue. Therefore, if the tumors
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Figure 5.4: Registration results of subject 6 using superquadratic model: (A) Test mam-
mogram in CC view; (B) Thickness of dense tissue of A; (C) Result using EXR; (D)
Results using TDT. In both (C) and (D), purple shows the manually segmented lesion in
the mammogram and green indicates the projected lesion.

from the mammogram and the projected MRI volume have been brought close to each
other by ¢, the FFD model will align them precisely in the second step of the proposed
framework. For instance, registering thickness images resulted in TRE of 0.54 mm for case
1. On the other hand, the breast boundary usually contains only fat, and consequently, the
boundary of the breast tissue will not be distinct in the fibroglandular thickness images.
Therefore, the resulting deformation field may not be physically plausible in the boundary,
or even areas far from fibroglandular tissue.

The accuracy of the proposed approach is comparable with that obtained from FEM-
based methods (shown in Table 5.2). All of these methods use image intensity to opti-
mize the objective function over registration parameters. Note that there is no standard
database, and one should be cautious comparing the results provided by previous works.
However, comparing the TRE figures obtained by our approach as well as by the FEM-
based methods, one can see that results are of the same order of accuracy.

In the literature, some papers use the correspondences between mammogram boundary
and projected MRI boundary to judge the accuracy of the registration. However, due to
use of surface fitting in the first step and applying the FFD model in the second step of our
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Figure 5.5: Registration results of subject 10 using superquadratic model:(A) Test mam-
mogram in CC view; (B) Thickness of dense tissue of A; (C) Result using EXR; (D)
Results using TDT. In both (C) and (D), purple shows the manually segmented lesion in
the mammogram and green indicates the projected lesion.

proposed method, the boundaries of the two images coincide with each other completely,
especially when EXR images are used to do the registration. Therefore, our algorithm’s
accuracy would be much higher from this point of view. Figure 5.6 shows the boundaries
of the registered synthetic mammogram and the original mammogram of a sample case.
As it can be seen, the two boundaries match each other.

5.3 Quantitative Assessment of the CAR Procedure

The performance of the proposed CAR model has been evaluated in four different scenarios,
where two intensity transformations (EXR and TDT) and apply two similarity measures,
namely MI and SSD, have been used. The proposed method has been applied to align
breast MRI images with its associated mammograms in both CC and MLO views.

As an example, Subplots A and E of Figure 5.7 show the CC and MLO mammograms
collected from the same subject, with the corresponding TDT shown in Subplots B and F,
respectively. The remaining subplots of the figure demonstrate the results of SSD-based
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Table 5.1: Target registration error obtained by superquadratic model, in millimeters, for
the 10 CC -mammograms using EXR and TDT image

Using EXR images | Using TDT image

Case 1 11.63 0.54

Case 2 8.15 8.27

Case 3 13.4 11.21

Case 4 0.4 10.26

Case 5 2.45 3.29

Case 6 6.24 2.44

Case 7 6.74 6.91

Case 8 12.01 3.13

Case 9 5.33 3.78

Case 10 5.58 4.25

Mean 7.49 5.44

STD 3.72 3.61

Table 5.2: TRE(mm) of recent FEM-based methods in the literature
Method cC MLO

Garcia [10] {isotropic} | 9.02+4.28 | 12.96+3.78
Garcia[11] 9.90+3.72 | 8.04+4.68
Mertzanidou[95] 11.6+3.8 | 11.0+5.40
Solves[118] 4.2 1.9 4.8+1.3
Mertzanidou[97] 12.9 13.9

image registration using the EXR (Subplots C and G) and TDT models (Subplots D and
H). Here, the spatial location of a breast lesion is shown with the red-colored circles, while
the purple and green colors encode the manual delineation of the lesion and its MRI-based
projection, respectively. The overlap between the manual and MRI-based delineations is
shown with the white color, which indicates a good match between them.

Tables 5.3 and 5.4 summarize the results of MRI to mammogram registration obtained
for different intensity transformation models (i.e., EXR and TDT ) and similarity measures
(i.e., SSD and MI ). In particular, Table 5.3 shows the values of TRE for 10 cases of CC
mammograms — case 1 through case 10 — corresponding to various settings. The mean
values of the error and its standard deviation are indicated in the last two columns of the
table, respectively. Table 5.4, on the other hand, shows the values of TRE for 10 cases of
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(a) (b) (c)

Figure 5.6: Results of registration using EXR images for a sample case: (a) Real mam-
mogram in CC view; (b) Registered synthetic mammogram; and (c¢) Boundaries of two
registered images in (a) and (b). The green line is the boundary of FFDM and red one is
the boundary of registered image.

MLO mammograms, following the same arrangement as in Figure 5.3. One can see that,
in both scenarios, the best performance is achieved through combining the TDT intensity
model with the SSD metric, resulting in the average values of 4.81 mm + 3.44 mm and
7.59 mm + 4.88 mm in the case of CC and MLO mammograms, respectively.

A more detailed analysis of Tables 5.3 and 5.4 reveals that, in the case of CC mammo-
grams, the values of TRE remains below 10 mm in all subjects, while the corresponding
values in the case of MLO mammograms are bounded from above by 11 mm. The obtained
values compare favourably with the results of much more complex, FEM-based registration
methods which are summarized in Table 5.2. It should be emphasized that, even though
in some cases, the difference in the results does not seem to be critical, the proposed
solution has been achieved by much simpler computational means, without any need for
intervention by a human interpreter.

When comparing the performance of SSD and MI criteria, one can see that both mea-
sures produced comparable results under the EXR intensity transformation model. Thus,
in particular, the mean values of TRE in the case of CC and MLLO mammograms was found
to be about 8.5 mm and 11 mm, respectively, while having similar values of its standard de-
viation around 4 mm. However, in the case of the TDT intensity model, the two similarity
metrics produced considerably different outcomes, with the SSD-based registration offering
better accuracy as compared to the case of MI. This result, however, was expected. Indeed,
under the TDT model, the values of both MRI and mammogram scans are transformed
into estimates of the physical thickness of dense tissue, thereby equalizing their photomet-
ric properties and dynamic ranges. Consequently, the resulting P{Z;(f)op} and Z,(g) are
perceived by SSD as if they were produced by the same imaging modality, which makes
this measure particularly effective. On the other hand, the EXR intensity model of (4.5)
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Figure 5.7: Results of SSD-based MRI to mammogram registration using CAR model:
(A) Test mammogram in CC view; (B) thickness of dense tissue for the image in A; (C)
Manually (purple) and MRI-based (green) delineation of the breast lesion under the EXR
intensity transformation corresponding to A; (D) Manually (purple) and MRI-based (green)
delineation of the breast lesion under the TDT intensity transformation corresponding to
A; E-H are arranged similarly for the case of MLO mammogram in E. Note that the overlap
between manual and automatic segmentations is coloured in white.

is limited in its ability to translate the MRI contrast into the one characteristic of X-ray



Table 5.3: TRE values (in millimetres) of CAR procedure for 10 cases of CC mammograms
under different intensity transformations and similarity measures

Measure MI SSD

Image type | EXR image | TDT image | EXR image | TDT image
Case 1 8.12 6.89 6.39 3.64
Case 2 11.13 11.19 10.73 4.06
Case 3 9.00 7.11 8.97 6.51
Case 4 7.05 8.47 6.76 1.44
Case 5 7.94 8.03 5.94 2.48
Case 6 5.41 6.48 3.86 1.88
Case 7 9.33 4.70 10.30 2.55
Case 8 13.27 9.67 13.24 12.54
Case 9 14.12 14.50 12.51 8.24
Case 10 3.12 5.21 2.93 4.83
Mean 8.85 8.22 8.16 4.81
STD 3.36 2.94 3.53 3.44

imaging. As a result, this scenario still resembles the case of inter-modality registration,
for which the use SSD is known to be inadequate [163].

Since one of the main contributions of this paper is the introduction of a new method
of predicting the global displacement g, the question of the quality of this prediction
should not be overlooked. To this end, the computation of TRE was repeated for the case
when ¢ = g, i.e., with the effect of ¢, ignored. Surprisingly enough, in this suboptimal
scenario, the quality of image registration was found to be relatively high, with the average
values of TRE equal to 12.4 mm and 14 mm for CC and MLO mammograms, respectively.
At the same time, the contribution of ¢..s has been found to be directly dependent on the
quality of predicted @g,. Moreover, it was observed that poor predictions can, in effect,
worsen the results of final estimation. Thus, for instance, in case 2, the prediction alone
produced a relatively large error of 17 mm, which further declined to 19.49 mm after the
application of .

Another important observation has been made in connection to the performance of
the TDT model in the case of almost entirely fatty breasts. In such situations, due to the
virtual lack of fibroglandular tissue, the intensity model had difficulty producing sufficiently
salient features which were necessary to guide the process of deformation. As a result, the
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Table 5.4: TRE values (in millimetres) of CAR procedure for 10 cases of MLO mammo-
grams under different intensity transformations and similarity measures

Measure MI SSD

Image type | EXR image | TDT image | EXR image | TDT image
Case 1 16.43 18.34 16.36 9.02
Case 2 15.69 13.07 15.95 19.49
Case 3 4.29 6.35 4.97 6.67
Case 4 13.60 13.63 9.19 4.03
Case 5 4.49 4.56 3.53 3.44
Case 6 10.59 10.25 10.53 10.44
Case 7 9.39 8.18 10.36 3.36
Case 8 12.48 10.79 12.59 8.64
Case 9 13.59 13.18 11.45 4.12
Case 10 6.98 7.01 6.47 6.73
Mean 10.75 10.54 10.14 7.59
STD 4.38 4.15 4.28 4.88

estimation of (. was found to be prone to overfitting. Fortunately, the latter can be
easily prevented by requiring the spline resolution A to be low-bounded by a predefined
distance, e.g., 8 mm. An additional way to regularize the estimation of (. is to require
the transformation to be diffeomorphic and, hence, topology preserving. As demonstrated
in ([25]), to enforce this property, it is sufficient to upper bound the spline coefficients so
that |c,| < k/A, for all I € {z,y,z}, with xk = 2.48. Both strategies have been found to be
simple and effective remedies to avoid spurious variations in the final deformation field.

5.4 Additional Observations

Unfortunately, perfect alignment between (projected) MRI scans and mammograms are
impossible to achieve in practice for several reasons. First of all, due to different imaging
mechanisms used by these modalities as well as their different spatial resolutions, one
modality may capture content which does not appear in the other modality. For instance,
blood vessels are often seen in mammography, while being virtually indiscernible in MRI
scans. Consequently, in contrast to original mammograms, their MRI-based “emulations”
cannot be expected to contain these details. The second reason is that even if one can
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accurately extract the lesion’s boundary in both MRI and mammogram images, these
boundaries may not be the same in both images. It is because MRI and mammography
measure different physical properties of the breast tissue. In general, the projections of
the MRI annotations appear different than those of the X-ray images. This difference
could be partially explained by the fact that the two modalities measure different physical
properties of the tissue and also by the fact that, in general, it is much harder for a
radiologist to annotate 3-D structures in MRI volume. Moreover, the size of malignant
lesions on X-ray mammography tends to be underestimated, while MRI measurements
have been repeatedly shown to be larger, albeit more accurate [98]. Furthermore, when
breast lesions are deformed during registration, their radius can be reduced in the direction
of the projection and consequently increased in the perpendicular plane.

Following [10] and [95], we also studied the influence of the position of the lesions within
the breast. Figure 5.8 shows the relative position of lesions of the ten cases used in this
study. The boundary of the projected MRI volume or mammogram is shown by a semi-half
circle. One can see that the lesions are nearly uniformly distributed across the breast, with
some of them appearing closer to either the boundary or the center than the others. We
examined the relation between the values of TRE and the lesion’s position with respect
to the pectoral boundary as well as the z-axis. However, in none of our experimental
scenarios, the relation was found to be statistically significant. To support this conclusion,
Figure 5.9 shows the values of TRE as a function of the distance between the lesions and
pectoral boundary of different subjects in the case of SSD-based registration under the
TDT intensity model. One can see that in the case of both CC and MLO projections,
the error varies around the 8 mm mark, with no apparent trends. Note that a similar
conclusion was made in the studies relying on FEM modelling.

It should also be noted that, in the literature on MRI to mammogram registration,
it is not uncommon to use relatively small datasets. Thus, for example, the results in
[10] and [98] were obtained based on 10 subject cases, while the experiments in [137]
involved only 5 CC and 4 MLO mammographic images. Thus, from the viewpoint of
the statistical consistency of our comparative analysis, the use of 10 cases in the present
study seems to be a reasonable choice. It goes without saying that a more comprehensive
evaluation of the proposed method requires the use of a large collection of data images.
The same comment can be also extended to the use of TRE as a performance metric. In
particular, in the current work, the error was computed based on the distance between the
centroids of manually delineated lesions and their MRI-based counterparts. Although this
definition facilitates straightforward comparison with previously reported results, it is clear
that computing the error based on a set of anatomical landmarks could provide a more
accurate way to perform a quantitative assessment of MRI to mammogram registration.
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Figure 5.8: Relative positions of breast lesions in studied case: (leftmost) CC projections
and (rightmost) MLO projections.

The case of MLO mammograms deserves special attention. In particular, as opposed to
CC projections, the acquisition of MLO mammographic scans entails rotation of the breast
around two axes (i.e., roll and in-plane). However, while the rotation around the y-axis
(roll) is registered by the scanner (and, hence, known), the extent of in-plane rotation is
rarely available in practice. Following the suggestions in early studies, in the course of our
computation of g1, the value of in-plane rotation was assumed to be fixed and equal to
20° for all study cases. Needless to say, the above value is rather approximative, which is
likely to be a source of sizeable estimation errors. Moreover, for obvious reasons, the effect
of gravitational forces on the deformation of breast boundary is much more pronounced in
MLO mammograms than in their CC counterparts. This effect, however, is not explicitly
accounted by the proposed mechanism of prediction of ¢gy,, which unavoidably affects
its accuracy as well. It is for these reasons that the values of TRE in the case of MLO
mammograms happen to be notably worse as compared to the case of CC projections.
Accordingly, rectifying the adverse effects of the above limitations constitutes a principal
direction of our ongoing research.

The computational time of the proposed registration method (including preprocessing,
global, and residual deformation estimation) using MATLAB on a CPU (Intel(R) Core
(TM) -i7 6500U) is about 50 minutes on average. Roughly, it takes about 5 minutes to
complete preprocessing, 25 minutes and 20 minutes to accomplish the global and residual
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Figure 5.9: TRE as a function of the distance of lesions from the pectoral muscle. Each
marker indicates the TRE value in the case of SSD-based registration under TDT intensity
model.

deformation estimations, respectively. At the same time, FEM-based methods can only
complete a single registration task in an hour or a few hours, even using numerical acceler-
ations by means of GPUs. For instance, the computational time of the method proposed
by [10] (after extracting the biomechanical model) is approximately one hour using a GPU
with 128 threads. Another point that deserves noting is that the proposed algorithms have
been implemented in MATLAB which suggests the possibility of substantial acceleration
using a low level programming language like C and/or specialized hardware. Therefore,
another important advantage of the proposed method is the ability to be easily integrated
in clinics and run in an acceptable time with regular CPUs in hospitals.
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Chapter 6

Discussion and Conclusion

In this thesis, a general framework for intensity-based registration of breast MRI images
with X-ray mammograms was presented. For this purpose, an original and computation-
ally effective approach have been proposed to estimate the breast deformation and, conse-
quently, determine the correspondences between these imaging modalities. The principle
idea behind our approach was the notion that the significant part of the breast deformation
(which is called global deformation) does not depend on the breasts’ properties, and it is
almost common among subjects, which makes it predictable. The idea of splitting the total
deformation into global and residual components provides an efficient and straightforward
solution to the problem. We investigated two different mathematical approaches to pre-
dicting the global deformation, in which we constructed a 3-D surface rendering the shape
of the deformed breast in its compressed state. In the first approach a superquadratic func-
tion was used to represent the surface of the deformed breast tissue and then estimated
the global deformation by registering the surface of breast tissue in the MRI volume to
this model. On the other hand, our second approach toward estimating the global defor-
mation was by temporal evolving of the breast surface, where the changes of the breast
boundary is followed when it is gradually compressed between two imaginary paddles. To
refine this prediction, the process of estimating the global deformation was followed by
the computation of the residual deformation. The residual deformation is patient-specific,
with a significantly smaller magnitude in comparison to the global deformation.

Using visual and quantitative analysis, it was showed that while earlier approaches to
this problem depended on complex biomechanical modelling based on FEM formulation,
the better registration accuracy can be accomplished by substantially simpler means. It
has been demonstrated that both of our proposed solutions, superquadratic model and
CAR procedure, for global deformation estimation are efficient in accounting for the major
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part of the breast deformation in mammography. In both cases, the registration accuracy
is comparable with the state of the art. Also the effect of different intensity transformation
models and similarity measures has been investigated, with the best results favouring the
use of TDT and SSD, where the average TRE was 4.81 mm + 3.44 mm for registering
MRI volume to CC- mammogram and 7.59 mm + 4.88 mm for registering MRI volume
to the MLO-mammogram. These results, not only, are better than those by FEM-based
methods but also they are reproducible as our proposed framework is generic with minimal
preprocessing interaction and does not depend on any initialization. In addition, it is fully
automated with no interactive steps. Furthermore, from the computational point of view,
it is considerably lighter than FEM-based methods, and, as a result, it can be easily
integrated in clinics.

The use of the proposed method would not have been possible without investing in
preprocessing and data preparation. It was observed that existing solutions toward re-
quired preprocessings are inefficient in several ways, therefore it was attempted to address
such shortcomings. To this end, two new ways of approaching the problem of whole breast
segmentation in MRI and mammography scans were discussed. A breast MRI volume
contains much irrelevant information which should be excluded prior to deformation esti-
mation. We introduced a fully automatic and computationally efficient approach to the
problem of segmenting breast tissue from the background and other nearby organs existing
in MRI images. The performance of the proposed method has been shown to be almost
independent of breast type, which represents a considerable advance over previous breast
segmentation approaches. On the other hand, to exclude pectoralis major in MLO mam-
mogram, an original solution has been developed by taking advantage of convolutional
neural networks and a graph-based search. It has been demonstrated that the proposed
two-step approach is advantageous in several ways. First of all, it does not need any ana-
lytical assumptions regarding the geometry of pectoral boundary, which are prone to errors
due to the effects of inter-subject variability. Second, the subsequent use of graph-based
processing allows one to recover the pectoral boundary at a “single-pixel” resolution in a
fully automatic way which was an improvement over existing methods. Lastly, our exper-
imental results have demonstrated the superior performance of the proposed solution over
the state-of-the-art, especially when it comes to difficult cases of low-contrast mammo-
grams with partially occluded or barely distinguishable pectoral boundaries. In addition
to these peprocessings, I came up with a new solution of segmenting the internal structure
of the breast tissue in MRI volumes. It has been shown that with a proper formulation
one can segment breast tissue in a computationally straightforward manner. Our assess-
ments indicated that, in contrast to other segmentation methods, the proposed solution
can remain accurate and stable for a wide range of values SNR as well as the presence of

100



a sizable bias field.
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Chapter 7

Summary and Future Research

In summary, we addressed the problem of fusing information from breast MRI and mam-
mography scans. A novel mathematical framework has been developed which can establish
spatial correspondences between images from these modalities. One of the main advan-
tages of the proposed method is that it does not rely on a specific model for each patient,
which renders it generic. In addition, it does not require initiations by the use, and it is
capable of being standardized. In terms of computation complexity, it is much lighter with
respect to traditional registration frameworks, which makes it practical and, as a result, it
can be potentially easily incorporated into clinical practice.

The proposed approach has been evaluated on a relatively small number of subjects.
Also, data acquisition had been done in a specific hospital using a single particular scanner.
It is clear that computed registration error and even the correlation between TRE and the
positions of lesions may alter with a dataset containing more cases. For a robust validation
and to ensure that this method is applicable in clinical use, it should be tested on a wide
range of cases. Furthermore, in this work, the registration accuracy is computed based
on the distance of the center of the lesions. Computing the TRE with respect to a net
of landmarks distributed over the surface of the breast can reflect better accuracy mea-
surement. Therefore, as a future work, the algorithm should be tested on a larger dataset
using more landmarks. Another possible future work can be finding the correspondences
between the mammograms acquired from different views. Most of the previous CC to MLO
registration techniques treat this problem as a 2-D/2-D correspondence task (so assuming
one-to-one correspondence), either by mapping texture and intensity measures or by using
a distance transform from features such as the pectoral muscle and the nipple position.
Any 2-D transformation model is inappropriate for this task because X-ray mammograms
are projection images, and a 2-D technique cannot model the 3-D physical transformation
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of the tissue. Assuming that an MRI and two mammograms (either CC and MLO, or
temporal) of the same patient are available, then one can perform two registration tasks,
to relate the MRI to the X-ray mammograms independently. After having acquired the
two transformations, one can use them to map coordinates from one X-ray image to the
other.

In this dissertation, only the pre-contrast DCE-MRI of the breast for registration have
been used. The combination of a post-contrast image and a pre-contrast image may provide
precise details about the location and shape of tumors. In future research, the advantage
of integrating information from post-contrast images to assign a different attenuation co-
efficient to tumorous tissue than standard fibroglandular structures (thereby improving
contrast and producing more accurate X-ray simulations from the MRI) could be inves-
tigated further. Furthermore, in our proposed CAR procedure toward estimation of the
global deformation, it has been assumed that the distribution of breast density is uniform.
However, for a more realistic deformation, one can use the segmented MRI from prepro-
cessing step and take to account the real distribution of the dense tissue. This can be
another research direction for future works. In this work, basically the mammogram using
information from MRI has been enhanced. As another future study, one can also consider
transferring contrast from mammography to MRI. Even though this sounds straightfor-
ward as the map between them has already been computed, it still needs to be explored
and discussed more.

The proposed MRI to X-ray mammography registration framework can be used as part
of a clinical method to aid radiologists in combining the diagnostic information provided
by the two modalities and ultimately enhance breast cancer identification and diagnosis.
The radiologists will be able to navigate across the MRI and display the corresponding
spot on the CC and MLO view mammograms either as a point position or as a disc with
a radius equivalent to the mean registration error derived from a validation test using
our proposed algorithm as part of the viewing method. This technique will be especially
useful for detecting mammographically occult lesions as well as further evaluating lesions
that have been found mammographically. The algorithm needs to executed only once
offline, and consequently, the results can be saved as a transition model, which allows for
real-time multimodal visualization. Another possible application for our framework is to
allow X-ray-driven biopsy for lesions that are not evident or noticeable on ultrasound or
X-ray. These patients are currently subjected to MRI-guided biopsy which is costly, time-
consuming, and inconvenient for clinical practice. A lesion apparent in the MRI could
be detected and projected onto the X-ray mammogram if an MRI to X-ray registration
framework with adequate precision was available. This will allow the radiologist to do an
X-ray-guided biopsy, which would be a simpler, less invasive, and more readily accessible
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technique than an MRI.
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Appendix A

Pectoralis Segmentation in MLO
Mammograms

This section provides the details of proposed method toward the detecting the boundary
between the breast tissue and pectoralis major (Section 3.2).

A.1 Training the Network

Assuming W as the array of network parameters, the objective function used for training
the proposed CNN can then be expressed as

SW) = (XL, W) + Lo(X2, W) (A1)

where X! and X? are the activation values (feature maps) produced by stages 2 and 4 of
the network. In this formulation, £;(X!, W) and £4(X?2, W) represent the lost functions
of the two stages, respectively. Each lost function is computed over all pixels of a training
image and its reference edge map Y. The latter has the form of a binary mask which
assumes the value of one at the location of the true boundary, while being equal to zero
for other pixels, i.e., ¥; € {0,1}, i = 1,2,...,|Y]. For obvious reasons, the majority of
these labels always correspond to non-contour pixels, which introduces a considerable bias
towards the “out-of-boundary” pixels. To compensate for this undesirable effect, the loss
for each pixel X; in activation X with respect to its label Y; is computed as

\_ Ja-log(1-sgm(z;)) ify;=0
) {B-log(sgm(xi)) if y, =1 (A-2)
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where sgm stands for the standard sigmoid function, and

Y]

v
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(07

with A being a positive tuning parameter used to balance the discrepancy in the number
of “out-of-boundary” pixels (|[Y]) and “on-boundary” pixels (|[Y*]).

The availability of three different datasets has allowed us to employ a “2 + 1”7 validation
strategy, in which two datasets (e.g., InBreast and CBIS-DDSM) were used fo the purpose
of network training, followed by predicting the labels of the the third “unseen” dataset (e.g.,
MIAS). Note that, in addition to fair assessment of validation errors, the above strategy
has an important advantage of providing a useful insight into the effects of between-scanner
variability. To minimize the effects of overfitting, the experimental dataset was extended
by means of data augmentation, which is a standard practice in DL [110]. To this end,
each training image was resized by factors 0.9 and 1.1, followed by either cropping or
zero-padding of the results thus obtained to the target size of 256 x 256 pixels. Additional
training images were obtained from the original mammograms through the process of
vertical, horizontal, and diagonal flipping. In this way, the size of the training set was
increased by a factor of 10.

To initiate training, we used the VGG16 weights optimized over the ImageNet dataset
[28]. The learning rate and the batch size were set to 0.0001 and 2, respectively. The
training was performed by means of stochastic gradient descent optimization [131], with
the number of epochs set to 30.

A.2 Locating the Pectoralis Boundary as the Shortest
Path Between Two Nodes of the Graph

The connectivity structure of the computed graph G (Section 3.2.1) can be alternatively
defined in terms of its associated matrix of (edge) weights W, which quantifies a degree
of affinity between any two nodes of the graph. In this case, lower values of W indicate
“stronger” connections, with W(p,q) = co representing the situation when nodes p and g
are considered to be disconnected.

To facilitate the definition of W, we associate the nodes V of G with all the pixels within
the image domain, in which case V becomes a uniform rectangular lattice. For each p € V,
let N'(p) denotes its 8-connected neighbourhood and, with a slight abuse of notations, let
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the modified binary mask B embody the subset of V over which its values are equal to 1
(see Subplots A5 and B5 of Figure 3.8). Then, for each p € V, the (p,q)-th element W
can be defined as

2 ifqeN(p)nB
W(p,q)={M(")+M(‘” ifqeN(p)n : (A4)

00, otherwise

where n stands for set intersection. The above definition of edge weights is based on the
values of edge probability map M. It is worthwhile noting that M “inherits” the best
characteristics of both OUT 1 and OUT 2. In particular, similarly to OUT 1, the non-
trivial values of M are localized in close proximity of the true pectoral boundary. At the
same time, similarly to OUT 2, M remains immune to the effects of clutter noise. Thus,
for any p € B and q € N(p) n B, the value of W(p, q) is bound to decrease pro rata with
an increase in the empirical probability of nodes p and q to lie near the true pectoral
boundary. It is, therefore, not unreasonable to assume the latter to be associated with an
open path on G formed by its most “connected” nodes. More specifically, given two points
S (for “start”) and E (for “end”) on the opposite sides of pectoralis, its boundary can be
closely approximated by the shortest path on G that connects .S and E.

Computation of shortest paths over weighted graphs is a well-studied problem which,
in practical scenarios, is usually implemented by means of Dijkstra’s algorithm or one
of its many variations [26]. We used a modified version of Dijkstra’s algorithm which is
represented by the pseudocode in Figure A.1.

At its input, the algorithm in Figure A.1 receives the nodes V, binary map B as well
as points S and F, while returning a set of nodes P which form the shortest path on G.
To simplify the notations, the pseudocode uses two “hash functions”, dist and parent. For
any p € V, the functions either set or get its distance to the source node S (using dist) and
its respective parent (using parent). In particular, during initialization, the distance from
S to itself is set to zero (line 2), while the distances to all other nodes are set to infinity

(line 3). The parental relations between the nodes, at the same time, are assume to be
undefined (line 4).

While the algorithm in Figure A.1 follows the principal structure of Dijkstra’s proce-
dure, it incorporates a few important modifications intended to maximize its numerical
efficiency. In particular, the update of nodal distances to the source (lines 9-16) as well as
establishing the parental relations (lines 19-25) are carried out over the 8-connected neigh-
bourhood of each queried node q, while excluding those elements of N' which lie outside
B (lines 10 and 19). As a result, the updates involves only the nodes (pixels) which are
located in a close proximity of pectoralis, which substantially speeds up the computation of
P. Moreover, the updates are terminated once the end node FE is reached, at which point
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1. procedure DIJKSTRA(V, B, S, E)
2: dist(S) < 0

3 dist(p) « oo, Vp e V\{S}

4: parent(p) < NIL,Vp eV

5 A<{S}
6
7
8
9

u<« S
while u # F do
B=g

: for pe A do
10: for q ¢ (M{p} n B)\A do
11: if dist(q) > dist(p) + W(q, p) then
12: dist(q) < dist(p) + W(q, p)
13: B < Bu{q}
14: end if
15: end for
16: end for
17: u = arg mingep dist(q)
18: A<« Au{u}
19: for g€ (M{u} nB) do
20: if dist(q) > dist(u) + W(q,u) then
21: dist(q) < dist(u) + W(q,u)
22: parent(q) < u
23: end if
24: end for
25: end while
26: P« {E}
27: p«< E
28: while p # S do
29: p = parent(p)
30: P<Pu{p}
31: end while

32: return P
33: end procedure

Figure A.1: Modified Dijkstra’s algorithm with backtracking

the algorithm proceeds to recovering the shortest path P via backtracking the parental

127



1: procedure BouNDARY(OUT1, OUT2)

2: Compute B from OUT?2 via thresholding
3: if B is disconnected then

4: Complete B via linear extrapolation

5 end if

6 Compute M = BoOUT 1

7 Construct G; define S and E.

8: Compute P = DIJKSTRA(V, B, S, E)

9: return P

10: end procedure

Figure A.2: Pectoral boundary reconstruction

dependencies stored by parent (lines 28-31 of Figure A.1).

Our experiments revealed that the binary mask B computed from OUT 2 is connected
in more than 90% of the cases, and as a results, it does not need to be extrapolated.
Subplots A7 and B7 of Figure 3.8 depict the pectoral boundaries recovered by means of
the proposed method for the input MLO mammograms shown in Subplots Al and B1 of
the same figure, respectively. In this case, S and E have been identified with the end points
of the morphological skeleton of B, which has been observed to provide simple and stable
initialization throughout all our experiments. All the principal algorithmic steps involved
in the above estimation process are summarized in Figure A.2.

A.3 More Experimental Results on Pectorlais Bound-
ary Detection in Mammograms

Unfortunately, direct comparison of the proposed method with available alternative ap-
proaches is problematic due to the lack of standardized ground truth segmentation. With
this proviso in mind, Table A.1 summarizes the performance metrics obtained using a re-
cent method for breast segmentation proposed by Rampun et al [128]. Comparing these
results with those in Table 3.3, one can see that the proposed method outperforms the
reference one in most of the cases. Not less important is the fact that the proposed algo-
rithm yields considerably smaller values of the standard deviations, which suggests that it
is capable of providing more consistent estimation.

Additional comparative results are shown in Table A.2. In particular, the table sum-
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Table A.1: Comparison results for three database by Rampun et al |
presented in % by their mean value + one standard deviation.

Metric MIAS CBIS-DDSM  InBreast
DSC | 97.5+7.5 98.1+7.1 9560 + 8.4
JAC 94.6+9.8 95.1 + 94 92.6 + 10.6
SPE | 99.5 +1.2 99.6 +1.4 99.8 +1.8
SEN | 98.2+7.6 98.3+ 7.6 95.2 + 8.6
ACC ]99.3 £1.4 99.5+1.3 99.6+2.2
FPR | 0.6 £ 1.8 0.4 + 0.6 0.3 +2.1
FNR | 3.2+ 29 3.8 +25 57 £ 6.5

]. All metrics are

Table A.2: FPR and FNR (in %) of reference algorithms for the MIAS dataset.

Method Dataset | FPR FNR
Ours MIAS(all) | 0.16 2.23
Rampun et al. [128] MIAS 0.6 3.2

Vikhe and Thool [161] | miniMIAS | 0.93 5.7

Chen et al. [21] miniMIAS | 1.02  5.63
Yoon et al. [173] miniMIAS | 4.51  5.68
Bora et al. [13] miniMIAS | 1.56  2.83
Ferrai et al. [31] miniMIAS | 0.58 5.77
Camilus et al. [20] MIAS 0.64 5.58
U-net [133] MIAS 7.1 122

marizes the values of FPR and FNR produced by a number of existing approaches applied
to the MIAS dataset as well as to the miniMIAS dataset (which is identical to MIAS aside
for the size of data images that have a dimension of 1024 x 1024 pixels). Note that we
retrained the U-net [133] by our own annotated data and computed its performance on
MIAS dataset. Once again, the results indicate that the proposed method results in more
accurate reconstruction in terms of FPR and FNR (which are equal to 0.16% and 2.23%,
respectively, for the MIAS dataset).

As mentioned earlier, thresholding OUT2 occasionally produces a binary mask with
a fragmented longest connected component (about 10% of all cases), as exemplified in
Subplot B4 of Figure 3.8. In such cases, the masks have been extended via linear extrap-
olation, the accuracy of which, in turn, depends on the extent of the initial mask. One
of the worst-case scenarios is shown in Figure A.3 which depicts an input mammogram
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Figure A.3: Detection of pectoral boundary in a low-contrast mammogram: (a) Input
image; (b) OUT 1; (¢) OUT 2; (d) Modified binary mask B; (e) Final edge probability
map M; and (f) Detected boundary (red) and the ground truth (green).

(Subplot (a)) along with its related OUT1 (Subplot (b)) and OUT2 (Subplot (c)). One
can see that, in this case, the longest connected component of binarized OUT2 is markedly
shorter than the true pectoral boundary, being disconnected both on its left and right.
It would therefore be reasonable to expect that the linearly extrapolated mask B (Sub-
plot (d)) and the final edge probability map M (Subplot (e)) might provide inadequate
initialization for the Dijkstra procedure in Figure A.1 . However, despite the problematic
data, the final result of reconstruction of the pectoral boundary shown in Subplot (f) of
Figure A.3 (red curve) appears to be in a good agreement with the ground truth (green
curve), with DSC=93.85 % and JAC=88.42%. Thus, even though the resulting metrics are
objectively lower in comparison to their mean values in Table 3.3, the proposed algorithm
is still capable of producing meaningful and useful results.
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Appendix B

Numerical Solution for Two-class
Segmentation Model

While much more tractable compared with its original version, the optimization problem
(3.8) can still benefit further simplifications. One can first split the (optimization) variables
to yield an equivalent problem of the form

&Md#fﬁ reQ) re)

min {Ad S Eg(e) — B + A 3 (1 - E@Dg(r) — iy - D)+
+ Hn”T\/+[[071](f)}, S.t. §=T]. (Bl)

In this case, the augmented Lagrangian of the new problem can be defined as

E(&naﬂd,ﬂf&y) =
=X ) E(0)lg(r) = pra = @(r)el* + Ap 3 (1= &(r))|g(r) — p = B(r)c+

reQ) reQ2

Inlay + Ty (€) + 3 S1E) - n(r) + y(r)P, (B2

re

where y denotes a scaled version of the vector of Lagrange multipliers and > 0 is a
smoothing parameter (e.g., § =0.5).

At this point, one can use the Alternating Directions Method of Multipliers (ADMM)
[15] to minimize L£(&,n, fta, i, ¢,y) with respect to the primal variables (i.e., w.r.t. &, n,
s, g, and c) iteratively using the following steps.
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e Step 1: {1 = arg min £(&, 0", p, 1, ¢, y')
3

e Step 2: n+t =arg min L(E,m, pg, 15, ¢, y')
n
° Step 3 (szrl“u?l, ct+1) = arg minﬁ(f”l, 77t+1,Md7,uf, c, yt)
HdHf,C

Once the primary variables have been updated, the dual variable y is updated according
to

g ) =y () + § () - i), vYreQ.

Although the number of update steps above could look prohibitively large at the first
glance, they all admit either closed-form or efficiently solutions, which considerably reduces
the cost of each ADMM iteration. Specifically, the updates can be performed as follows.

Solution to Step 1:

The update in & requires solving a simple quadratic minimization problem, followed by
orthogonally projecting its solution onto the interval [0,1]. Moreover, the update can be
performed separately at each r according to

)™ = oy {1 - () + 22 g(0) - (1 = ) - @)}

where IIjp1(2) = max{min{z,1},0} denotes the operator of orthogonal projection onto
[0,1].
Solution to Step 2:

The update in 7 requires solving a norm minimization problem of the form

(1 1
p'*! = arg min {5 3 n(r) = (€ () + o' () + Sl .
n reQ)
This problem has the format of well-known 7'V de-noising [135], which can be efficiently
solved by a number of numerical methods. In this work, to solve this problem, the fixed-
point algorithm of [22] has been used.
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Solution to Steps 3:

To derive an equation for the update of ji4, poy and c, it is convenient to think of ®(r) as
an N x M matrix, with N equal to the number of voxels in Q and M = (K + 1)3 being
the total number of polynomial coefficients used for representation of b. In an analogous
manner, both ¢ and &' can be also thought of as column vectors of length N, with a
similar interpretation of ¢ as a length M (column) vector.

Using the notational simplifications above, let § € RM+2 he a new vector obtained via
concatenation of yg4, py and ¢, namely 0 = [ug, pup,c’]7. Also, let Ay and A; be two
N x (M + 2) matrices obtained by augmenting ® with a zero 0 and a unit 1 column as
Ay = [10®] and Ay = [01D], respectively. Finally, let W, and Wy be two diagonal
matrices defined by vectors A\ &' and Ay (1 - &), correspondingly, as well. Then, with

B=ATW, A, + A?WfAf and (= (ATW,+ A?Wf)g,

the optimal value of # can be shown to be a solution to the linearly constrained quadratic
program given by
arg min 07BO-2670, st. eT0=0, (B.3)
0

with e e RM+2 of the form e = [1, 1, 0, 0,...,0]7. Note that the constraint ©76 = 0 is added
to guarantee the attainment of a solution with p4 # pg, thus enforcing the photometric
discrepancy between the dense and fat tissues.

When applied to the constrained problem in (B.3), the Karush-Kuhn-Tucker optimality
conditions result in a system of linear equations in the primal optimal 6* and the dual
optimal v* variables that is given by [14]

Lol o] o

The above system of equation is straightforward to solve to find 6*, from which the values

of pft, pf', and ¢! can be extracted.

In a series of both computer simulations and experiments with real-life breast MRI
data, the proposed algorithm has demonstrated stable and consistent convergence in less
than 20 iterations, using Ag = Ay = 0.1 and 6 = 0.5. Once the optimal {* was computed, its
corresponding domain partition/segmentation was defined as

Qu={reQ|&(r)>05} and Qp={reQ|&(r)<0.5}.
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