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Purpose: To compare two methods of automatic breast segmentation with each other and with manual

segmentation in a large subject cohort. To discuss the factors involved in selecting the most appropriate

algorithm for automatic segmentation and, in particular, to investigate the appropriateness of overlap

measures (e.g., Dice and Jaccard coefficients) as the primary determinant in algorithm selection.

Methods: Two methods of breast segmentation were applied to the task of calculating MRI breast

density in 200 subjects drawn from the Avon Longitudinal Study of Parents and Children, a large

cohort study with an MRI component. A semiautomated, bias-corrected, fuzzy C-means (BC-FCM)

method was combined with morphological operations to segment the overall breast volume from

in-phase Dixon images. The method makes use of novel, problem-specific insights. The resulting

segmentation mask was then applied to the corresponding Dixon water and fat images, which were

combined to give Dixon MRI density values. Contemporaneously acquired T1- and T2-weighted

image datasets were analyzed using a novel and fully automated algorithm involving image filtering,

landmark identification, and explicit location of the pectoral muscle boundary. Within the region

found, fat-water discrimination was performed using an Expectation Maximization–Markov Random

Field technique, yielding a second independent estimate of MRI density.

Results: Images are presented for two individual women, demonstrating how the difficulty of the

problem is highly subject-specific. Dice and Jaccard coefficients comparing the semiautomated BC-

FCM method, operating on Dixon source data, with expert manual segmentation are presented. The

corresponding results for the method based on T1- and T2-weighted data are slightly lower in the indi-

vidual cases shown, but scatter plots and interclass correlations for the cohort as a whole show that

both methods do an excellent job in segmenting and classifying breast tissue.

Conclusions: Epidemiological results demonstrate that both methods of automated segmentation are

suitable for the chosen application and that it is important to consider a range of factors when choos-

ing a segmentation algorithm, rather than focus narrowly on a single metric such as the Dice coeffi-

cient. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of

American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.12320]
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1. INTRODUCTION

Mammographic density, a quantitative measure of radiodense

fibroglandular tissue in the breast, is one of the strongest pre-

dictors of breast cancer risk. Women with more than 75%

density have a fourfold or higher risk of breast cancer com-

pared to those with less than 5%.1 More intensive screening

for women with high mammographic density has been pro-

posed2 but remains controversial.3

However, in clinical practice, mammographic density, as

assessed on x-ray mammograms, is generally reported using

only qualitative, radiologist-assessed categories, and agreement

between radiologists tends to be only moderate.4 Quantitative

analysis is hampered by the fact that breast density is an inher-

ently 3-D material property and therefore not well suited to

measurement using 2-D x-ray projections. Although subse-

quent risk assessment and epidemiological analysis rarely use

full 3-D information (normally preferring a single number, i.e.,

the volume-averaged mean breast density), accurate derivation

of such a statistic from the 2-D x-ray data is problematic and

subject to error. Automated tools, such as Volpara (Vol-

paraSolutions, Wellington, NZ)5 and QUANTRA (Hologic

Inc., USA), are gaining traction in the mammography commu-

nity, suggesting that mean breast density can be calculated

without inter-reader bias. However, such readings may be

affected by errors in estimating breast thickness6 and the rela-

tion between the values of breast density reported and those

obtained by other techniques remains to be elucidated.7

Increasingly, magnetic resonance imaging (MRI) mam-

mography is being used in clinical and research settings to

assess breast structure, because of its 3-D capabilities, its

nonionizing nature and the strong soft tissue contrast between

fibroglandular (parenchymal) and fatty tissue. In an MRI con-

text, breast density refers to the percentage of breast tissue

volume that is deemed to be “parenchymal” and this is gener-

ally assumed to be the same as volume fraction of tissue

whose MR signal arises from free water molecules (i.e., the

“water fraction” or “percentage water”), as opposed to fat.

Clearly, this is not an exact equivalent of the mammographic

x-ray density. Nevertheless, Thompson et al.8 demonstrate a

clear correlation between the two.

At present, manual evaluation of MRI 3-D breast density

is an arduous, observer-dependent, and time-consuming pro-

cess. Therefore, full or partial automation of the 3-D analysis

of the breast is required. To achieve the desired segmentations

of breast parenchymal volume and breast fat volume, two sep-

arate image processing tasks are required. First, the breast as

a whole needs to be distinguished from the background and

chest wall; and, second, the parenchymal tissue within the

breast needs to be distinguished from fat.

Several different MRI pulse sequences have previously been

used to assess breast density, but no definitive consensus has

been reached about which is optimal. Few studies have com-

pared different sequences within the same subject population.

Furthermore, while there is a large body of prior literature (see

Table I) describing different ways to achieve the two segmenta-

tion tasks described above, no studies, to date, have compared

different automated methods with each other and with manual

segmentation, for a sizeable subject population.

It is clear that many methods can produce “good” segmenta-

tion results. This study poses the following question: Do the

minor differences we see between segmentations when we

apply different algorithms on the same data actually matter for

the uses to which the segmentations are ultimately put?

This study compares two very different methods of breast-

outline segmentation: (a) an established37 bias-corrected

fuzzy C-means (BC-FCM) clustering technique based on a

cost-function; and (b) a new heuristic approach based on

thresholding, landmark identification, and direct analysis of

image features. The results of this part of the study will be

measures of overall breast volume from each method and vol-

ume similarity measures (Dice and Jaccard coefficients).

With the breast outline obtained, the second part of the

study compares two methods of fat–water discrimination,

again based on different principles. (a) The Dixon approach38

uses scans acquired with an MRI technique that returns sepa-

rate “fat” and “water” images. In principle, these allow us to

obtain a fat and water fraction for every voxel, accounting for

partial volume effects. However, Dixon sequences are not cur-

rently part of the routine acquisition protocol for clinical

MRI examinations.39 (b) Our second method uses an analysis

of the intensity histograms of the two different tissue classes

in fat-suppressed T1-weighted (T1w) and T2-weighted (T2w)

images. Such images are routinely acquired in diagnostic

scanning and this method thus has the potential advantage of

wider applicability if the two methods are shown to be con-

cordant. Note that there is no means of obtaining ground truth

data and, given that we are dealing with a healthy subject

cohort, no possibility of obtaining x-ray data for comparison.

Nomenclature for the various segmentations is summa-

rized in Fig. 1.

A comprehensive epidemiological analysis of the relation-

ship between breast composition and seven other physical, his-

torical and lifestyle variables has been carried out for this

cohort. While the full report is beyond the scope of this study,

we summarize the results and use them to discuss quantitatively

the impact of differences between the various assessment meth-

ods on conducting reliable clinico-epidemiological studies.

2. METHODS

2.A. Data

2.A.1. Study population

This work forms part of an investigation into breast

composition at young ages, nested within the Avon Longi-

tudinal Study of Parents and Children (ALSPAC). ALSPAC

originally recruited 14,541 pregnant women resident in

Avon, UK with expected dates of delivery from 1 April

1991 to 31 December 1992, as described by Boyd et al. in

a cohort profile paper.40 For this substudy, Caucasian nulli-

parous women were invited to attend an MRI examination

at the University of Bristol Clinical Research and Imaging
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TABLE I. Summary of journal papers describing methods to segment pectoral muscle and internal fibro-glandular tissue from MR images. NOB refers to the num-

ber of observers who provided the gold standard manual segmentation. ND indicates the number of MR data sets the method was validated with and NS the num-

ber of MRI scanners. N/A = not applicable; N/S = not specified.

Author, year Ref. no. Breast outline segmentation method

Fat/water classification

method NObs ND NS

Image processing methods

Hayton et al. (1997) [9] Threshold, morphological opening

followed by “dynamic programming”

None N/S 3 N/S

Twellmann et al. (2005) [10] Median filtering; Otsu automated

thresholding; morphological closing

None N/S 12 1

Koenig et al. (2005) [11] Histogram-based threshold for breast air,

then Gaussian smoothing; intensity

threshold for pectoral boundary, then min

and max of locations with transition

within confidence interval

None N/S 4 N/S

Yao (2005) [12] Threshold, morphological opening, and

region-growing followed by Bernstein-

spline and active contour; automatic

identification of key points to define

rough surfaces of pectoral muscle;

successive refinement via gradient-based

technique, Bernstein spline, and active

contour

Fuzzy C-means 1 90 N/S

Lu et al. (2006) [13] Region-growing, then spline and active

contour for breast-air boundary; location

of key points by geometry; identification

of muscle slab, followed by spline

None N/S 1 1

Giannini et al. (2010) [14] Region-growing, then spline and active

contour

None 2 12 2

Wang L et al. (2012) [15] Hessian sheetness filter; 3-D connected

component algorithm; intensity-based

region-growing based on seed points

automatically selected

None 1 84 5

Wu et al. (2012a,b, 2013a,b) [16–19] Thresholding, morphological opening,

contour extraction; three edge maps

generated from original data and two

nonlinear filters; candidate selection;

median filtering; dynamic time-warping;

comparison between slices

Continuous Max-Flow 1 60 4

Atlas-based methods

Gubern–M�erida et al. (2011) [20] Manually created atlas with 7 tissue

classes; landmark detection

Bayesian atlas plus Markov

random field regularization

1 27 1

Gubern-M�erida et al. (2012), (2015) [21, 22] Manually created atlas; sternum

detection; N3 bias-field correction

EM algorithm with Gaussian

mixture model

3,4 27+23 1

Gallego-Ortiz and Martel (2012) [23] Atlas created from Dixon in-phase

images via entropy-based groupwise

registration; maximal phase congruency

and Laplacian mapping

None N/S 500 1

Khalvati et al. (2015) [24] Atlas created by manual initialization of

active contour algorithm, subsequently

corrected manually

None N/S 400 + 17 3

Gallego and Martel (2011) [25] Atlas, statistical shape model None N/S 415 N/S

Neural networks and fuzzy C-means

Ertas et al. (2006), (2008) [26, 27] Breast air boundary: threshold; chest-

wall: four cascaded cellular neural

networks

1 39 N/S

Wang C-M et al. (2008) [28] Support vector machines Support vector machines N/S N/S 1

Wang Yet al. (2013) [29] Support vector machines acting on

multiple sets of MR images with different

contrast

Support vector machines N/S 4 1

Klifa et al. (2004), (2010) [30, 31] Fuzzy C-means Fuzzy C-means > 1 30 N/S
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Centre (CRIC) between June 2011 and November 2014.

Women were restricted to those from a singleton birth,

who had never been diagnosed with a hormone-related dis-

ease, and had regularly participated in follow-up surveys,

including completing the age 20 y questionnaire (2010–

2011). Of the 2530 invited, 500 (19.8%) eligible women

attended.

The ALSPAC Law and Ethics Committee, and the

Local Research Ethics Committees gave ethical approval

for the study. The study website contains details of all the

TABLE I. Continued.

Author, year Ref. no. Breast outline segmentation method

Fat/water classification

method NObs ND NS

Yang et al. (2009) [32] Kalman filter-based linear mixing; fuzzy

C-means

Kalman filter-based linear

mixing

N/S 1 1

Nie et al. (2008) [33] Fuzzy C-means; V-cut; skin-exclusion;

B-spline; manual refinement via GUI

Fuzzy C-means 3 11 1

Sathya et al. (2012) [34] Fuzzy C-means; support vector machines None N/S 1 1

Lin et al. (2011) [35] Fuzzy C-means and B-spline fitting,

building on,33 with inhomogeneity

correction via N3

Fuzzy C-means, typically

with 6 clusters

1 30 1

Lin et al. (2013) [33, 36] Template-based As per35 1 30 1

Ertas et al. (2016) [37] Bias-corrected FCM, followed by

morphological opening and closing

None 1 82 > 4

This study Bias-corrected FCM vs thresholding,

landmark analysis

Dixon vs T1w and T2w

contrast

3 200 1

FIG. 1. Flow diagram of the overall data processing chain and nomenclature for the various segmentation methods. Some of these have the potential to operate

on different source data and we can also combine the methods in different ways to achieve an overall result. We thus assign each step three codes: segmentation

purpose (V = breast volume, FW = fat–water); degree of automation (m = manual, s = semi-automatic, a = fully automatic); and source data (D = Dixon;

T1 = T1-weighted, T2 = T2-weighted, T12 = uses both T1- and T2-weighted data). Thus, a breast-volume measurement using semiautomatic segmentation on

original Dixon data would be represented as VsD. Fat–water segmentations require both source data and a previously generated volume mask, so are represented

by the combination of two codes. For instance, fat–water statistics calculated semiautomatically from Dixon source data and using a mask generated automati-

cally from T1w and T2w data would be described by VaT12-FWsD. We note one additional case, in which the volume mask VaT12 is re-sampled to give a result

in the same coordinate space as the Dixon images and we assign this the label VaT12D.
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data that are available through a fully searchable data

dictionary.41

2.A.2. MR imaging

Participants underwent a breast MRI scan using a 3T Sie-

mens Skyra MR system with a breast coil that surrounds both

breasts of a prone patient. Three sets of bilateral images were

acquired:

• multislice, sagittal Dixon38 images (in-phase, out-of-

phase, water and fat), acquired using a turbo spin-echo

sequence with nominal in-plane resolution of (0.742 9

0.742) mm2, nominal slice thickness 7 mm and inter-

slice spacing 7.7 mm;

• T1-weighted 3D images, acquired using a VIBE

sequence with fat saturation and a nominal resolution of

(0.759 9 0.759 9 0.900) mm3, as routinely used in

clinical dynamic contrast-enhanced MRI protocols for

the breast;

• multislice, axial, T2-weighted images, acquired using a

turbo spin-echo sequence, with nominal in-plane resolu-

tion of (0.848 9 0.848) mm2, and both slice thickness

and spacing between slices 4 mm.

2.A.3. Manual reference segmentation

To assess breast volume, a manual segmentation proto-

col (as described in the Supplementary Information) was

developed and used by three readers (RD, MB, and ISS)

independently to outline the breast from surrounding tissues

in the Dixon images, using ITK-SNAP (version 3.0.0). All

subjects had a manual segmentation of all breast slices per-

formed by at least one reader. The datasets of 16 represen-

tative subjects were manually segmented twice by all three

readers to assess between- and within-observer variation. In

cases where more than one manual segmentation is per-

formed, the VmD and VmD-FWsD results quoted below

represent the median values taken for the multiple manual

readings.

2.A.4. Training and validation data sets

A training set of 100 randomly selected subjects was used

to make initial comparisons across MR images and segmen-

tation methods, and for the manual readings, between- and

within-observer variation. The training data were used to

assess the common reasons for segmentation failure and to

improve the algorithms. At the end of the testing phase, the

algorithm code was “frozen” and final comparisons of the

segmentation methods were completed on a second set of

images from a further 100 participants. Except where stated

otherwise, all the summary statistical results presented here

come from this second, “validation” cohort. For further

details concerning statistical methods, please see the Supple-

mentary Information.

2.B. Breast outline segmentation

2.B.1. Semiautomated, bias-corrected fuzzy

C-means (BC-FCM)

A fuzzy C-means (FCM) algorithm was applied to the

Dixon in-phase images. It has the advantage that it can be

modified to carry out a simultaneous intensity inhomogeneity

compensation, or bias-correction (BC), and this is potentially

less expensive computationally than a prefiltering

operation.42 The algorithms in this section were implemented

using IDL (Harris Geospatial Systems, Melbourne, FL, USA)

and run on a standard desktop computer.

The BC-FCM variant we implemented is described in.37

Formally, the algorithm does not require a training dataset

and so is an unsupervised clustering algorithm. However, in

practice, some experience with the types of data involved can

improve the results dramatically. Except for the local smooth-

ness criterion (introduced by cost function c in ref. [37] —

see this publication for all other related notation), BC-FCM

per se does not use any spatial information. Nevertheless, a

“good” segmentation involves a number of problem-specific

insights and the basic BC-FCM method above was enhanced

by additional heuristic algorithms in the spatial domain,

based on the results obtained with the training data.

Initial parameters and iteration threshold: After some

experimentation, b(r) was set to 0.1 for all spatial locations

and e to 0.01. The two initial class centroids cf were calcu-

lated by taking the mean of the slice being processed and

adding a lower and an upper offset. These two offsets are

adjustable parameters under user control. For many subjects

(see the Results section for an example), a single set of

defaults performed extremely well. However, for a small sub-

set of “difficult” cases (second example in Results), user

interaction was needed to try various combinations. As

implemented here, on a standard desktop computer, running

nonoptimized software, it took around 2 min to run the seg-

mentation algorithm on each 3-D dataset. Thus, this “trial

and error” step was the most frustrating feature of the BC-

FCM method in practice. Numerous coding and hardware

improvements (e.g., parallelization) could be made to the pro-

totype to improve the user experience, potentially allowing

these adjustable parameters to be altered by simple slider con-

trols with immediate feedback.

We observed an improvement in performance by allowing

the algorithm to perform separate BC-FCM classifications

for segmenting the posterior of the breast from the chest wall

and segmenting the anterior portion from air, then merging

the two volumes. Furthermore, it was noted that the optimal

offsets providing the initial class centroids were often differ-

ent for these two segmentation problems. Thus, each dataset

is split into two portions in an anterior-posterior (AP) direc-

tion and the BC-FCM algorithm applied twice per image

slice. Given that the size of breasts varies, the position of the

AP-split is also different for different datasets and this is
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handled automatically by having two passes through the

entire algorithm with an automated choice of the AP-split

position made after Pass 1.

Morphological operations: The breast outlining task

requires a definite boundary to be drawn. Thus, it is not nec-

essary to use the full membership function output of the BC-

FCM routine, and we arrange for the clustering to produce a

binary image. This may include some misclassified regions

outside the breast and some “holes” inside the breast. To

remove the unwanted regions, 2D hole-filling followed by a

4-neighborhood connectivity search and object labeling is

performed. The largest nonbackground object in each slice is

identified as the breast region and other smaller objects are

removed from the binary image. This exercise is repeated for

all slices and these are then merged to form an approximate

breast volume.

Within this approximate breast volume, there may be some

nonbreast tissue segmented for cases in which fatty breast tis-

sue is connected to the chest and liver; and there may also be

some unsegmented breast tissue left for cases in which dense

breast tissue is connected to the chest wall muscles. To

reduce these over- and undersegmentations, 3D morphologi-

cal image opening is performed, followed by closing using

two cylindrical structuring elements having the same radius

of 3 voxels but different heights of 3 voxels and 25 voxels in

the axial direction. These parameters were found by experi-

mentation during our previous study.37

Lateral cutoffs: The preceding steps in the process do an

excellent job in segmenting the anterior and posterior mar-

gins of the breast. However, there is no consensus in the liter-

ature as to “where the breast stops” in the right-left and

superior-inferior directions. The extent of the breast is not

directly delineated by any change in MRI contrast and the

required boundary may, indeed, be specific to the application

of the imaging (e.g., when comparing the MRI segmentation

with the breast region compressed within the paddles of a

mammography system, the axilla region may be excluded

entirely). Thus, based on the consensus protocol (Appendix

S1) reached by the three experienced readers, a heuristic

algorithm was developed, as described below. This additional

truncation is derived entirely from geometric considerations

and boundaries are drawn without regard to image intensity,

which is in many cases the same on either side of the bound-

ary.

Each breast is processed in turn. The stack of sagittal

images segmented using BC-FCM forms a pseudo 3-D data-

set. From this dataset, the transverse plane containing the lar-

gest breast area is passed to a simple algorithm that extracts

the air-breast interface as a 1-D “breast profile”. (This geome-

try is illustrated as Figure S2 of the Supplementary Informa-

tion.) The profile is used to determine the position of the

breast midpoint in a left-right direction. Working outwards

from this midpoint, we find the first position at which the

absolute value of the gradient (approximated by the finite dif-

ference between adjacent voxels) of the breast profile rises

above a threshold value, determined by experimentation. This

indicates a change in angle of the skin surface from flat

regions between and outside the breasts, to the side contour

of the breast. A mask is applied to exclude all sagittal slices

in the original dataset on either side of these changes in

angle. (Typically, the “raw” output of the BC-FCM algorithm

would include these.) Finally, a similar profile is generated

for the superior-inferior direction and the upper and lower

bounds of the breast are determined in each sagittal plane of

the original data.

2.B.2. Fully automated, using T1w and T2w images

Preprocessing processing (bias-field correction): A

slowly varying bias-field, caused by inhomogeneities in the

magnetic field during the MR acquisition, is a common arti-

fact of MR images. To correct this for the T1w and T2w

images, we apply the “N4ITK” nonparametric nonuniform

intensity normalization method.43 This is a refinement of the

popular N3 algorithm which adopts a fast, robust B-spline fit-

ting algorithm and a hierarchical, multiscale, optimization

scheme [Figs. 2(a) and 2(b)].

Breast mask segmentation: This novel, heuristic method,

implemented using the Insight Toolkit,44 computes a whole

breast mask using both the T1w and T2w images. In develop-

ing this automated approach, emphasis has been placed on

limiting the number of empirically derived parameters and

relying instead on detecting statistical or functional extrema.

In this way, we aim to make the method as widely applicable

to variations in subjects and images as possible. The method

comprises a number of distinct processing steps as follows.

1. The T2w image is resampled to match the resolution

of the T1w image.

2. A grey-scale closing operation along each of the

orthogonal axes, x, y and z, is performed on the T2w

image, to eliminate voids from the subsequent fore-

ground segmentation. In this operation, each voxel’s

intensity, IT2w, at index (i, j, k) is replaced by IcT2w(i,

j, k) according to:

IcT2wði; j ;kÞ¼min

"

min max
0�i1�i

IT2wði1; j; kÞ; max
i\i2\Ni

IT2wði2; j; kÞ
� �

;

min max
0�j1�j

IT2wði; j1; kÞ; max
j\j2\Nj

IT2wði; j2; kÞ
� �

;

min max
0�k1�k

IT2wði; j; k1Þ; max
k\k2\Nk

IT2wði; j; k2Þ
� �

#

(1)

where Ni, Nj, Nk are the number of voxels along each axis.

Medical Physics, 44 (9), September 2017

4578 Doran et al.: Breast MRI segmentation for density estimation 4578



3. The T1w image is rescaled to match the intensity

range of the closed T2w image and the maximum of

these two images, IMaxT1wT2w, computed.

4. The foreground (i.e., the subject) is segmented from

the background by thresholding, IMaxT1wT2w. The

threshold, tbg, is computed via:

tbg ¼ arg max
I

FdarkðIÞ FCDTðIÞ � FvarðIÞð Þ½ � (2)

according to the following functional criteria:

• The background is assumed dark therefore the

threshold should be close to zero:

FdarkðIÞ ¼ 1� I

maxðIÞ (3)

• The frequency of voxel intensities in the background

is higher than the foreground, i.e., the background

intensities form a distinctive peak in the image his-

togram, P(I), which is captured by a sharp rise in the

cumulative intensity distribution function:

FCDTðIÞ ¼
PI

j¼0 PðjÞ
PmaxðIÞ

k¼0 PðkÞ
(4)

• The background has a lower intensity variance than

the foreground:

FvarðIÞ ¼
PI

j¼0 PðjÞðj� lÞ2
PmaxðIÞ

k¼0 PðkÞðk � lÞ2
(5)

The resulting foreground mask image is denoted Ifg — see

Fig. 2(d).

5. Landmark identification. The most anterior voxels in

the foreground mask, Ifg, on the left and right sides of

the volume, are identified and assumed to be approxi-

mately coincident with the nipple locations. If multi-

ple voxels are found, then the center of mass of the

cluster is computed. The midsternum is computed as

the most anterior voxel of the foreground mask,

equidistant from the nipple landmarks in the coronal

plane.

6. Pectoral muscle boundary extraction. Various meth-

ods have been presented in the literature to segment

breast MRI volumes and the pectoral muscle

(Table I). These include semiautomated methods

requiring user interaction,31,33,36 2D midslice tem-

plate registration,36 statistical shape models,25 and

(a) (b)

(c) (d)

FIG. 2. Orthogonal slices through (a) a T2 weighted MRI and (b) the corresponding image after bias-field correction, with arrows indicating regions that are par-

ticularly improved by the processing. The “closed” T2w image is shown in (c) and foreground mask Ifg in (d). In each image, the top-left quadrant is the axial

slice, the top-right is sagittal and the bottom-left is coronal. [Color figure can be viewed at wileyonlinelibrary.com]
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atlas-based methods.16,18-20,24,25 A number of meth-

ods have been developed to segment explicitly the

pectoral muscle. These include a B-spline fit to the

intensity gradient of the pectoral boundary,33 aniso-

tropic diffusion and Canny edge detection,17 and

Hessian matrix planar shape filtering.15,46 Atlas-

based methods have been shown to perform well but

are computationally intensive47 and require signifi-

cant initial investment of time to develop a library of

atlases.

We have developed a method to detect explicitly

the anterior pectoral muscle boundary in individual

MR volumes. Our approach has similarities to the

Hessian processing of Wang et al.,15,46 in that it

employs Gaussian derivatives to detect regions in

the image with a planar profile. However, rather

than computing a ratio of the eigenvalues of the

Hessian matrix and thresholding the result, we

obtain a direct classification of linear structures,

immediately posterior to the sternum, using Ori-

ented Basic Image Features (OBIFs, Fig. 3).

The concept of Basic Image Features (BIFs) was

developed by Griffin.48 The technique classifies pix-

els in a 2D image into one of seven classes accord-

ing to the local zero-, first-, or second-order

structure. This structure is computed using a bank

of six derivative of Gaussian filters (L00, L10, L01,

L20, L11 and L02) which calculate the nth (where

n = 0,1,2) order derivatives of the image in x and y

(S00, S10, S01, S20, S11 and S02). By combining the

outputs of these filters, any given pixel can be clas-

sified according to the largest component of vector

BIF:

BIF ¼
(

flat
�S00;

slope–like

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
10
þ S2

01

p
;

maximum

k ;
minimum

�k ;

light line

kþ c
ffiffi

2
p ;

dark line

k� c
ffiffi

2
p ; saddle

c

)

(6)

given

k ¼ r2
S20 þ S02ð Þ

2
(7)

c ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S20 þ S02ð Þ2 þ 4S211

q

(8)

In addition, slopes, light lines, dark lines, and saddles

can be characterized according to their orientation

(OBIFs). We quantize this orientation into four, 45

degree quadrants which produces eight slope sub-

classes (OBIF1 to OBIF8), and four subclasses for each

of light lines (OBIF11 to OBIF14), dark lines (OBIF15
to OBIF18), and saddles (OBIF19 to OBIF22).

By region-growing the medial-lateral, OBIF15 dark

line features detected in each axial image slice, in 3-

D, from seed positions immediately posterior to the

midsternum, we obtain a binary segmentation of the

anterior pectoral muscle surface. The BIF processing

was performed at a single scale using a Gaussian ker-

nel with standard deviation 5 mm. A smooth B-spline

surface is then fitted to the anterior voxels of the

resulting mask44 to extrapolate the muscle surface to

the lateral boundaries of the image volume

[Fig. 3(c)].

(a) (b) (c)

FIG. 3. The anterior pectoral muscle surface is detected using the Oriented Basic Image Feature “dark line” class. Subplot (a) shows these features detected at

four orientations (OBIF15 to OBIF18). Region growing the “brown” medial-lateral class, OBIF15, closely delineates this anterior boundary immediately posterior

to the sternum (b). The anterior surface of this mask is extrapolated using a B-Spline fit to the lateral boundaries of the volume (c). [Color figure can be viewed

at wileyonlinelibrary.com]
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7. Finally, we generate a 2D coronal mask, ICNL, to crop

nonbreast tissue from the whole breast mask. ICNL is

computed from a coronal skin elevation map, Iskin2D,
which contains the distance of each anterior skin

voxel in the foreground mask, Ifg, from the most pos-

terior boundary of the MR volume. The coronal pro-

file of each breast is obtained by thresholding Iskin2D
at

h ¼ ð4hms þ hLn þ hRnÞ
6

(9)

where hms is the anterior elevation of the midsternum land-

mark, and hLn and hRn are the left and right nipple anterior

elevations, respectively. The roughly circular profile obtained

for each breast is then dilated by 10 mm and the mask

squared off, to create a superior-lateral corner and hence

extend the breast volume into the axilla [Fig. 4(c)]

2.C. Fat–water discrimination

2.C.1. Semiautomated calculation of percentage

breast density, based on dixon images

In principle, the output from a Dixon pulse sequence is a

set of images reflecting water content Iw(r), which we identify

with the parenchymal component of the breast, and an equiva-

lent set If (r) reflecting fat content. Ideally, these images

would be quantitative and allow the direct calculation of the

water and fat fractions /w(r) and /f (r) via the equation
49

/w ¼ Iw

Iw þ If
and /f ¼

If

Iw þ If
(10)

In practice, there are a number of complicating factors:

• Parenchymal tissue and fat have different relaxation proper-

ties and, since the acquisitions are not generally designed

to be proton density weighted, this means that the relative

intensities of equal fractions of fat and water are different.

• The B1 field of the probe is not uniform across the

whole breast and this leads to a spatially dependent effi-

cacy of the fat–water separation.

• In practice, the fat tissue does not have a single proton

resonance.

• Different manufacturers have different proprietary

image reconstruction methods and these may influence

the quantitative results.

Our solution to (at least) the first of these problems is to

proceed as follows:

(a) Identify a small region in the water image that is

expected to be entirely composed of parenchymal tis-

sue. The region should be in a part of the image that

is free from intensity artifacts caused by proximity to

the RF coil (i.e., the data should come from a

homogenous region of B1).

(b) In the fat image, identify similarly a second region

entirely composed of fat.

(c) Calculate the ratio of the average voxel values in each

of the two regions:

r ¼ 1

Nw

X

i2ROIw
IwðriÞ

�

1

Nf

X

j2ROIf
If ðrjÞ (11)

where Nw and Nf are the numbers of voxels in the selected

regions-of-interest ROIw and ROIf, respectively.

(d) Replace the value If in Eq. (10) with rIf.

This procedure potentially improves the accuracy of the

water-fraction calculation but at the cost of introducing an

interactive step into the density estimation process. We

have not tested in a systematic fashion the influence that

the size and shape of the region-of-interest selection have

on the process, in part because we have no ground truth

values. A further issue with this technique is that in the

limiting cases of extremely dense or extremely fatty tissues,

it may not be possible to find appropriately “pure” regions

of both types.

2.C.2. Fully automated, using T1w and T2w Images

Fuzzy c-means (FCM) clustering has been evaluated by a

number of studies to classify the internal structure of the breast

into fat and fibroglandular tissue classes16,18,29,31,33-35,50

Table I). Song et al.50 adopt a Gaussian kernel FCM, while

(a) (b)

(c)

FIG. 4. Breast region mask created by removing the pectoral surface mask

(Fig. 3) from the foreground mask (Fig. 2). Two views of the mask are

shown, superimposed on the original MR image and centered on the right (a)

and left (b) breasts. The surface rendering (c) illustrates the “squaring off” to

include the axilla. [Color figure can be viewed at wileyonlinelibrary.com]
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Sathya34 use a quadratic kernel FCM to train a support vector

machine (SVM). In,29 Wang et al. use a multiparametric hier-

archical SVM classification approach to segment the internal

breast and found this to be superior to both a conventional

SVM28 and FCM segmentation. T1W, T2W, proton density,

and three-point Dixon (water and fat) images were all incorpo-

rated. Klifa et al.31 compared the resulting volumetric MRI

density measurement of their method with mammography but

found only modest correlation (R2
= 0.67).

In,20 a probabilistic atlas approach was proposed. This

requires a sizeable number of prelabeled atlases to be created,

considerable computation to register them and assumes cor-

respondence between fibroglandular structures across the

population. To address the latter, a Markov random field

(MRF) was introduced to spatially regularize the classifica-

tion of each voxel according to that of its neighbors. Simi-

larly, Wu et al.16 use the registered atlas as a pixel-wise

fibroglandular likelihood prior for a multivariate Gaussian

mixture model and demonstrate superior performance when

compared to FCM using a manual thresholding approach as

the gold standard. In a later publication,19 the same authors

investigate a continuous max-flow (CMF) algorithm to gener-

ate a voxel-wise likelihood map using the same atlas initial-

ization. They demonstrate that this approach performs better

with the atlas initialization than without, but that FCM is

superior to the CMF approach without the atlas.

Mixture models have also been proposed by Yang et al.32

who implement a method using a Kalman filter-based linear

mixing. They demonstrate it out-performs a c-means method

but evaluation using real MR data was limited.

Our segmentation of the T1 and T2 MRI data into fat and

glandular tissue is a modification of that proposed by Van

Leemput et al.51 in which an intensity model and spatial reg-

ularization scheme are optimized using a maximum likeli-

hood formulation of the expectation-maximization (EM)

algorithm. The EM algorithm iteratively updates the Gaus-

sian probability distributions used to estimate the intensity

histograms of each tissue class (fat and nonfat) via a maxi-

mum likelihood formulation. In order to improve classifica-

tion of voxels in which the partial volume of fat and

glandular tissues is a significant factor, a Markov random

field (MRF) regularization scheme is employed to ensure

spatial consistency. The MRF modifies the probability of a

particular voxel being assigned to either the fat or glandular

classes (or a proportion of either) according to the current

classification of neighboring voxels. In this way, isolated

regions of glandular tissue in very fatty regions, for instance,

are penalized in favor of a more realistic and anatomically

correct arrangement of the classes.

2.D. Epidemiology

Appropriate linear and logistic regression models were

used to examine associations of average total breast, fat and

water volumes, and percent water, as measured using differ-

ent MR images and segmentation methods, with selected

established and potential mammographic density correlates.

Breast measures were log-transformed and the exponentiated

estimated regression parameters represent the relative change

(RC) in breast measure with a unit increase, or category

change, in the exposure of interest (with 95% confidence

intervals (95% CI) calculated by exponentiating the original

95% CIs). Age at menarche (months), height (cm), and BMI

(height (cm)/ weight (kg)2) at MR were treated as continuous

variables and centered at the mean. Current hormone contra-

ceptive use, cigarette smoking, and alcohol drinking were

treated as binary (yes/no) variables. Mothers mammographic

density (%) was averaged between both breasts, and maternal

age (months) at mammography and clinically measured or

self-reported maternal BMI (median 3 yr (interquartile range

(IQR) = 1.5 yr) prior to mammography)) were used as con-

tinuous measures and centered at the mean. Variables were

included as potential determinants of breast measures, or as

confounding factors, where appropriate.

Data analysis was conducted with STATA statistical soft-

ware, Version 14.

3. RESULTS

3.A. Breast outline segmentation

Figure 5 shows an example of the two methods applied to

a dataset containing medium-sized breasts, with a moderate

parenchymal content. There is a border of fat around the par-

enchyma, which, at the posterior of the breast, leads to excel-

lent contrast at the boundary with the chest wall, making

segmentation a relatively straightforward task. Results are

shown for two separate manual segmentations by the same

experienced observer; for the BC-FCM method from ref.

[37]; the BC-FCM method with additional heuristics and

default parameters, as described above; and the new method

based on T1 and T2 images (VaT12). It will be seen that the

segmentation performance is excellent, with only minor dif-

ference between the methods. Note how implementation of

guidelines developed during the manual segmentation pro-

cess supplements the BC-FCM approach in order to cut off

the segmentation in both the left-right and superior-inferior

directions, where there are no corresponding intensity bound-

aries seen in the image data themselves.

Table II shows the Dice and Jaccard coefficients for the

four sets of segmentations illustrated in Fig. 5, confirming

the excellent performance of all the algorithms.

By contrast, Fig. 6 illustrates a case where all assess-

ment methods have far more difficulty in providing a cor-

rect segmentation. Smaller breasts tend to be more

problematic to segment, as a higher fraction of the segmen-

tation involves partial-volume effects. Highly parenchymal

breasts have very low (sometimes no) contrast between the

parenchyma and pectoral muscles of the chest wall, and the

intensity-based BC-FCM algorithm has particular difficul-

ties in this regard. Many slices require a high degree of

anatomical knowledge to perform the segmentation. Con-

sider the two versions of the BC-FCM results presented.

With the default parameters in the upper of the two rows,
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oversegmentation occurs in slice 11 and part of the chest

wall is included in the parenchymal breast region. By con-

trast, with the “best” set of parameters (as found by repeat-

ing the algorithm and manually adjusting them), the lower

row shows that the problem in slice 11 is corrected, with

good matching of the pectoral muscle contour, but only at

the cost of introducing an undersegmentation in slice 8,

and, worse, losing the segmented breast region entirely in

slice 6. In practice, where such problems occurred, it was

necessary to edit the final segmentations manually. (Note

on terminology: As shown in Fig. 6, the “BC-FCM/heuris-

tics (VaD)” method cannot reliably be run for the whole

cohort using only default parameters and so we must

describe the technique as semi- rather than fully automated.

Even for cases where no manual editing or parameter

adjustment need to be performed, human inspection is still

TABLE II. Dice and Jaccard coefficients for the “easy” segmentation problem of Fig. 5. Note that the BC-FCM/heuristics (VaD) represents the fully automated

version, running with default parameters.

Manual 1 Manual 2 BC-FCM Orig BC-FCM /heuristics(VaD) VaT12D

Dice coefficients

Manual 1 1.000

Manual 2 0.949 1.000

BC-FCM Orig 0.854 0.877 1.000

BC-FCM/heuristics (VaD) 0.901 0.924 0.921 1.000

VaT12D 0.887 0.888 0.810 0.865 1.000

Jaccard coefficients

Manual 1 1.000

Manual 2 0.904 1.000

BC-FCM Orig 0.745 0.781 1.000

BC-FCM/heuristics 0.820 0.859 0.853 1.000

VaT12D 0.797 0.799 0.681 0.761 1.000

FIG. 5. Example of a case where both of the algorithms examined in this work performed well. Features of interest in the various different segmentations are

annotated. Note that this image is provided with high resolution and can be zoomed significantly to reveal additional detail. [Color figure can be viewed at

wileyonlinelibrary.com]
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required to confirm this. All subsequent cohort statistics

will therefore use the nomenclature VsD to reflect this.)

We have run a similar analysis on all 16 cases for which

we have duplicate manual segmentations by all three obser-

vers. The detailed results are shown in the Supplementary

Information.

A second method of examining the relation between

the volume segmentation results is to plot the total breast

volume obtained by one method against that of another.

In the scatter plots of Figs. 7(a)–7(c), the x- and y-coor-

dinates of each point represent the mean, for a single

subject, of the left and right breast volumes evaluated,

respectively, by the two methods under consideration.

Figure 7(a) compares VsD, the semiautomated BC-FCM

method using Dixon image input, with the “gold-stan-

dard” median manual segmentation, VmD, measured on

the same Dixon dataset. Figure 7(b) gives results for the

VaT12 method, which operates on the T1w and T2w

datasets and evaluates the breast volume in the coordinate

space of the T1w dataset. Finally, Fig. 7(c) looks at the

effect of resampling the map generated by the algorithm

in (b) with the spatial resolution and frame of reference

of the Dixon data, which we term VaT12D. In each case,

the line of identity is shown and Table IV reports the

corresponding interclass correlations (ICC), representing

the proportion of variance across participants shared

between different ascertainment methods.

3.B. Fat–water segmentation

Figures 8 and 9 present the results of the fat and water seg-

mentation in the same format as for the total breast volume.

In this case, however, a further option is available. Although

the breast outline segmentation VaT12 requires both the T1w

and T2w data, once this mask is available, it is possible to

obtain two separate fat–water segmentations one using just

the T1w and one using just the T2w data. These are denoted

VaT12-FWaT1 and VaT12-FWaT2, respectively.

The interclass correlation (ICC) for total water volume,

representing the proportion of variance across participants

FIG. 6. Example of a case where automatic segmentation is difficult. The rows represent the results of different segmentations and, for compactness, an informa-

tive subset of slices has been chosen to illustrate important features of the problem. Note that this image is provided with high resolution and can be zoomed sig-

nificantly to reveal additional detail. [Color figure can be viewed at wileyonlinelibrary.com]
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shared between the different ascertainment methods, are

given in Table V.

3.C. Epidemiological results

A diagrammatic summary of the results of the epidemio-

logical analysis is presented in Fig. 10 and further details of

the work are reported as supplementary information.

Associations with both breast volume and breast water

fraction were found for current body mass index (BMI). For a

1 kg m�2 increase in BMI, a relative change in breast volume

of 1.13[1.10, 1.16] was observed for the cohort for both the

VmD and VsD methods and the corresponding result for the

VaT12 family of methods was 1.15[1.12, 1.18], where the fig-

ures in square brackets are the 95% confidence intervals. A

smaller, but still important, decrease in breast water fraction

was seen, and the corresponding statistics are VmD-FWsD,

VsD-FWsD 0.96[0.95, 0.97], VaT12D-FWsD 0.95[0.94,

0.97], VaT12-FWaT1 0.97[096, 098], and VaT12-FWT2 0.95

[0.94, 0.96].

FIG. 7. Scatter plots of mean left and right breast volumes in cm3 for the different methods in comparison to manual segmentation: (a) volume from semiauto-

matic segmentation of Dixon images (VsD) vs. volume from manual segmentation (VmD); (b) volume via automated segmentation from T1- and T2-weighted

images transformed to Dixon reference frame (VaT12FD) vs manual (VmD); (c) volume obtained from T1- and T2-weighted images in native 3-D reference frame

(VaT12). [Color figure can be viewed at wileyonlinelibrary.com]
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Aweak association between current height and breast vol-

ume was also observed. For a 1 cm increase in height, the

analysis methods gave the following relative increases in

breast volume: VmD 1.05[0.98, 1.11], VsD 1.04[0.98,1.11],

VaT12D-FWsD was 1.05[0.97, 1.12], VaT12-FWaT1 1.05

[095, 1.03], and VaT12-FWT2 1.05[0.95, 1.13]. However,

height was not associated with breast water fraction.

No associations were found with any of age of menarche,

use of oral contraception, smoking, alcohol intake or mater-

nal mammographic density.

From the similarity of all these statistics, we conclude that

the exact details of the segmentation methods are not signifi-

cant at the level of this cohort analysis.

FIG. 8. Scatter plots of mean left and right breast water percentage for the different methods in comparison with manual segmentation on Dixon images followed

by percentage water estimation the using semiautomated Dixon image method: (a) semiautomatic segmentation of Dixon images followed by percentage estimate

from Dixon image data (VsD-FWsd); (b) volume via automated segmentation from T1- and T2-weighted images transformed to Dixon reference frame

(VaT12FD) followed by semiautomated percentage estimate from the Dixon data (VaT12D-FWsd); (c) volume obtained from T1- and T2-weighted images in

native 3-D reference frame, followed by automatic percentage estimate from T1-weighted data (VaT12-FWaT1); (d) as (c), but with the water percentage esti-

mated from the T2-weighted data. [Color figure can be viewed at wileyonlinelibrary.com]
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4. DISCUSSION

Our results show that, as in many segmentation problems,

the degree of success of the automated algorithms varies sig-

nificantly between subjects. Figure 5 and Table II demon-

strate excellent performance by all of the algorithms, whereas

the degree of correspondence with the expert manual seg-

mentation is considerably poorer in Fig. 6 and Table III.

However, it should be noted that even the expert human

observer is less able to provide a good repeat segmentation.

The ICCs for total breast volume in Table IV demon-

strate good agreement between all methods, but

interestingly, slightly closer agreement between VaT12 and

the two Dixon-based methods (VmD or VsD) than between

VaT12D and the Dixon methods. As described above,

VaT12D is created by simply resampling VaT12 in the

Dixon coordinate space, which has a coarser slice thick-

ness, using appropriate blurring and nearest neighbor inter-

polation. Although movement between the Dixon and T1w

or T2w scans could explain this disparity, registering the

volumes did not improve the results. The resampling pro-

cess appears to amplify the difference between VaT12 and

VmD or VsD, but we have not analyzed this further, given

that it is a relatively small effect.

FIG. 9. Scatter plots of mean left and right breast water volumes in cm3 for the different methods in comparison to VmD-FWsD. For nomenclature see caption

to Fig. 8. [Color figure can be viewed at wileyonlinelibrary.com]
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It would, of course, be interesting to compare the output

of the VaT1T2 method directly with manual segmentation of

the high-resolution T1w dataset in its native reference frame,

without the need to down-sample. However, the workload

involved in creating high-resolution manual segmentations is

prohibitive. In the Supplementary Information, we report

anecdotal results for five such cases with full high-resolution

manual segmentations.

Also of note from comparison of the scatter-plots of Fig. 7

is that each of methods VsD, VaT12D, and VaT12 increas-

ingly overestimates the breast volume in comparison to VmD

as the mean left and right breast size increases. This is most

apparent for VaT12. The trend to larger error is, of course

logical — similar percentage errors between the methods will

result in greater absolute differences the larger the breast –

but it is not currently clear why all methods are biased to

overestimate the volume in this region. The method VaT12D

also underestimates the breast volume for smaller breasts

compared with the manual segmentation VmD and the rea-

son for this, too, is unclear.

The biggest discrepancy between analysis methods, as

shown by the scatter plots, is in the assessment of mean

FIG. 10. Results of epidemiological analysis. Relative change in geometric means of MR breast volume and percent water in relation to a unit increase, or cate-

gory change, in each breast composition correlate variable. 1Models adjusted for current age in months and BMI at MR scan, where appropriate. 2Models

restricted to young women for whom mammograms from their mothers could be retrieved (n = 33) adjusted for current age in months and BMI at MR scan and

maternal age at mammogram and BMI in 2010 (median = 3y (IQR = 1.5y) prior to mammogram). For further details, see Supplementary Information. [Color

figure can be viewed at wileyonlinelibrary.com]
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breast water volume (and, hence, water fraction — data not

shown). The VsD-FWsD and VaT12-FWsD methods both

use Dixon source data and differ from VmD-FWsD only via

the breast outline previously described. The methods all give

very similar results (ICCs 0.995 and 0.992 in Table V). By

contrast, the correlation between the Dixon-based VmD-

FWsD and VaT12-FWaT1 is weaker, and the VaT12-FWaT2

result additionally shows a bias (Fig. 8). However, it is impor-

tant to note that the assumption that water fractions based on

the Dixon method can be regarded as a gold standard for true

parenchymal fraction is much less compelling than the previ-

ous assumption that VmD is the gold-standard volume. We

justify our choice of VmD-FWsD as the method of compar-

ison on the basis that it is consistent with previous work in

the field49 (and indeed an improvement), but Ledger et al.52

have demonstrated that there is a significant degree of vari-

ability between different Dixon-based methods, depending on

the exact design of the pulse sequence. It is unsurprising that

a segmentation based on a completely different MRI contrast

mechanism should be less highly correlated. What is never-

theless highly encouraging is that the correlation remains as

strong as it is — the worst value reported in Table V is 0.920

— and this suggests that the use of MRI as a modality will

prove to be a robust choice for breast analysis.

A salutary lesson from the scatter graphs is the constant

need for vigilance and appropriate quality control when pro-

cessing large cohorts of data. During the review of this paper,

a referee noticed an outlier, which turned out to be the result

of an easily corrected error that caused the mask for the entire

right breast to be missing. Such “edge” cases, occurring very

infrequently, remain a significant challenge in the adoption of

automated pipelines. Any requirement for manual inspection

of each dataset to check the output negates to some extent the

advantages of fully automated segmentation processes, and

an appropriate balance needs to be determined for each appli-

cation.

Another feature highlighted by all of these results is the

problem inherent in the use of quantitative metrics such as

Dice and correlation coefficients, which (despite their appar-

ent calculation “accuracy”) are a very blunt tool for analysing

a complex situation. Are all of the voxels that fail to overlap

equally important? Is much of the difference between the

observer and the automated methods in fact caused by the

choice of how much of the axilla is included and is this

region of any significance biologically?

A first reading of the coefficients presented here suggests

that the VsD breast outline segmentation, followed by the

FWsD tissue segmentation method is the best-performing of

the computer-aided tools presented here. But is it the most

suitable? Ultimately, the choice of segmentation method

needs to weigh up the following points:

• To what extent does the application demand a segmen-

tation that is as good as that of an expert radiologist?

Two extremes here might be the planning of radiother-

apy treatment for an individual patient, where high

TABLE III. Dice and Jaccard coefficients for the difficult segmentation problem of Fig. 6.

Manual 1 Manual 2 BC-FCM Orig BC-FCM /heuristics(best) BC-FCM Edited (VsD) VaT12D

Dice coefficients

Manual 1 1.000

Manual 2 0.915 1.000

BC-FCM Orig 0.776 0.797 1.000

BC-FCM /heuristics(best) 0.836 0.792 0.782 1.000

BC-FCM Edited (VsD) 0.914 0.913 0.809 0.828 1.000

VaT12D 0.796 0.771 0.728 0.818 0.795 1.000

Jaccard coefficients

Manual 1 1.000

Manual 2 0.843 1.000

BC-FCM Orig 0.634 0.662 1.000

BC-FCM /heuristics (best) 0.718 0.657 0.642 1.000

BC-FCM Edited (VsD) 0.842 0.840 0.679 0.707 1.000

VaT12D 0.661 0.627 0.572 0.692 0.660 1.000

TABLE IV. Interclass correlations for total breast volume segmentations.

VmD VsD VaT12D VaT12

VmD 1.000

VsD 0.990 1.000

VaT12D 0.974 0.977 1.000

VaT12 0.985 0.992 0.982 1.000

TABLE V. Interclass correlations for total water volume segmentations.

VmD-

FWsD

VsD-

FWsD

VaT12D-

FWsD

VaT12-

FWaT1

VaT12-

FWaT2

VmD-FWsD 1.000

VsD-FWsD 0.995 1.000

VaT12D-FWsD 0.992 0.993 1.000

VaT12-FWaT1 0.920 0.921 0.924 1.000

VaT12-FWaT2 0.948 0.949 0.962 0.899 1.000
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correspondence is vital, and the calculation of epidemi-

ological parameters for a Big Data cohort, where errors

might well “average out.”

• To what extent is the ground truth knowable? For a

given set of intra- and interobserver performance met-

rics evaluated on a test cohort, what performance

thresholds should be regarded as “acceptable” for auto-

mated segmentations?

• How widely available are the required source data? As

previously noted, the Dixon protocol is not routinely

included in clinical examinations, thus limiting the

applicability of breast density measurements based on

the VsD-FWsD method.

• How robust is the method?

• To what extent are speed, convenience and consistency

of method to be preferred over accuracy?

In our case, consideration of all of the above led to

the use of the VaT12 method, rather than VsD, for seg-

mentation of the remaining 300 cases in the cohort (re-

sults not presented). This choice was made largely on the

basis of improved automation and on the epidemiological

evidence from the 200-strong training and test datasets,

as described in Section 3.C, where key epidemiological

parameters were found to be identical, within confidence

limits, for both methods.

5. CONCLUSION

We have presented what we believe to be the first detailed

comparison on a large, population-based cohort of two meth-

ods of breast-outline segmentation based on completely dif-

ferent approaches. These have been coupled with two

methods of fat–water discrimination based on fundamentally

different MR contrast mechanisms. All combinations of the

methods studied are in very strong agreement, as seen both

visually and via interclass correlation coefficients, and are

suitable for large-scale epidemiological analysis. We have

discussed the assumptions behind the methods and posed a

number of general questions that we believe need to be

answered each time a decision is made on whether and how

to perform automated segmentation.

ACKNOWLEDGMENTS

We are extremely grateful to all the families who took

part in the ALSPAC study, the midwives for their help in

recruiting them, and the whole ALSPAC team, which

includes interviewers, computer and laboratory technicians,

clerical workers, research scientists, volunteers, managers,

receptionists. and nurses. In particular. we thank study

nurses, Elizabeth Folkes and Sally Pearce, and CRIC

radiographer, Aileen Wilson, for performing MRI acquisi-

tions of all the participants. The UK Medical Research

Council and the Wellcome Trust (Grant ref: 102215/2/13/

2) and the University of Bristol provide core support for

ALSPAC. Authors SJD and MOL acknowledge CRUK

and EPSRC support to the Cancer Imaging Centre at ICR

and RMH in association with MRC and Department of

Health C1060/A10334, C1060/A16464 and NHS funding

to the NIHR Biomedical Research Centre and the Clinical

Research Facility in Imaging. Authors JH, BE, and DH

were funded by the European 7th Framework Program

grants VPH-PRISM (FP7-ICT-2011-9, 601040), VPH-PIC-

TURE (FP7-ICT-2011-9, 600948) and the Engineering and

Physical Sciences Research Council grant MIMIC (EP/

K020439/1). IdSS was supported by funding from Cancer

Research UK (grant number C405/A12730).

CONFLICTS OF INTEREST

The authors are not aware of any conflicts of interest.

*Joint first author: j.hipwell@ucl.ac.uk.
a)Author to whom correspondence should be addressed. Electronic mail:

simon.doran@icr.ac.uk.

REFERENCES

1. McCormack VA, Silva IDS. Breast density and parenchymal patterns as

markers of breast cancer risk: a meta-analysis. Cancer Epidemiol

Biomarkers Prev. 2006;15:1159–1169.

2. Vilaprinyo E, Forne C, Carles M, et al. Cost-effectiveness and harm-

benefit analyses of risk-based screening strategies for breast cancer. Plos

One. 2014;9:e86858.

3. Price ER, Keedy AW, Gidwaney R, Sickles EA, Joe BN. The potential

impact of risk-based screening mammography in women 40-49 years

old. Am J Roentgenol. 2015;205:1360–1364.

4. Ciatto S, Houssami N, Apruzzese A, et al. Categorizing breast mammo-

graphic density: intra- and interobserver reproducibility of bi-rads den-

sity categories. Breast 2005;14:269–275.

5. Highnam R, Brady SM, Yaffe MJ, Karssemeijer N, Harvey J. Robust

breast composition measurement - volparatm. In: Mart J, Oliver A,

Freixenet J, Mart R, eds. Digital Mammography: 10th International

Workshop, IWDM 2010, Girona, Catalonia, Spain, June 16–18, 2010.

Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010:

342–349.

6. Waade G, Highnam R, Hauge I, et al. Impact of errors in recorded

compressed breast thickness measurement impacts on volumetric

density classification using volpara v1.5.0 software. Med Phys. 2016;

43:2870–2876.

7. Gubern-M�erida A, Kallenberg M, Platel B, Mann RM, Mart R, Karsse-

meijer N. Volumetric breast density estimation from full-field digital

mammograms: a validation study. PLoS One. 2014;43:2870–2876.

8. Thompson DJ, Leach MO, Kwan-Lim G, et al. Assessing the usefulness

of a novel MRI-based breast density estimation algorithm in a cohort of

women at high genetic risk of breast cancer: the UK MARIBS study.

Breast Cancer Res. 2009;11:R80.

9. Hayton P, Hayton P, Brady JM, et al. Analysis of dynamic MRbreast

images using a model of contrast enhancement. Med Image Anal.

1997;1:207–24.

10. Twellmann T, Lichte O, Nattkemper TW. An adaptive tissue characteri-

zation network for model-free visualization of dynamic contrast-

enhanced magnetic resonance image data. IEEE Trans Med Imaging.

2005;24:1256–1266.

11. Koenig M. Automatic cropping of breast regions for registration in MR

mammography. Proc SPIE. 2005;5747:1563–1570.

12. Yao J. Classification and calculation of breast fibroglandular tissue

volume on SPGR fat suppressed MRI. Proc SPIE. 2005;5747:1942–

1949.

13. Lu WLW, Yao JYJ, Lu CLC, Prindiville S, Chow C. DCE-MRI segmen-

tation and motion correction based on active contour model and forward

mapping. Seventh ACIS International Conference on Software

Medical Physics, 44 (9), September 2017

4590 Doran et al.: Breast MRI segmentation for density estimation 4590



Engineering, Artificial Intelligence, Networking, Parallel/Distributed

Computing (SNPD’06); 2006:0–4.

14. Giannini V, Vignati A, Morra L, et al. A fully automatic algorithm for

segmentation of the breasts in DCE-MR images. In: Engineering in

Medicine and Biology Society (EMBC), 2010 Annual International Con-

ference of the IEEE. Buenos Aires: IEEE 3146–3149.

15. Wang L, Platel B, Ivanovskaya T, Harz M, Hahn HK, Ieee. Fully

automatic breast segmentation in 3d breast MRI. 2012 9th IEEE

International Symposium on Biomedical Imaging (ISBI), 1024–1027;

2012.

16. Wu S, Weinstein S, Kontos D. Atlas-based probabilistic fibroglandular

tissue segmentation in breast MRI. Med Image Comput Assist Interv

2012;15:437–45.

17. Wu S, Weinstein SP, Conant EF, Localio AR, Schnall MD, Kontos D.

Fully automated chest wall line segmentation in breast MRI by using

context information. In: Proc. SPIE 8315, Medical Imaging 2012: Com-

puter-Aided Diagnosis, 2012. http://dx.doi.org/10.1117/12.911612

18. Wu S, Weinstein SP, Conant EF, Kontos D. Automated fibroglandular

tissue segmentation and volumetric density estimation in breast MRI

using an atlas-aided fuzzy c-means method. Med Phys. 2013;12:

122302.

19. Wu S, Weinstein SP, Conant EF, Kontos D. Fully-automated fibrogland-

ular tissue segmentation and volumetric density estimation in breast

MRI by integrating a continuous max-flow model and a likelihood atlas.

In: SPIE Medical Imaging. Lake Buena Vista, FL: International Society

for Optics and Photonics; 86701C.

20. Gubern-Merida A, Kallenberg M, Marti R, Karssemeijer N. Multi-class

probabilistic atlas-based segmentation method in breast MRI. In: Vitria

J, Sanches JM, Hernandez M, eds. Pattern Recognition and Image Anal-

ysis, Ibpria 2011, Lecture Notes in Computer Science, Vol. 6669. Berlin,

Heidelberg: Springer; 2011:660–667.

21. Gubern-M�erida A, Kallenberg M, Mart�ı R, Karssemeijer N. Segmentation

of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches.

In: Ayache N, Delingette H, Golland P, Mori K. eds.Medical Image Com-

puting and Computer-Assisted Intervention – MICCAI 2012. Lecture

Notes in Computer Science, Vol. 7511. Berlin: Springer; 2012.

22. Gubern-M�erida A , Kallenberg M, Mann R, Marti R, Karssemeijer N.

Breast segmentation and density estimation in breast MRI: a fully

automatic framework. IEEE J Biomed Health Inform 2015;19:349–

357.

23. Gallego-Ortiz C, Martel A. Automatic atlas-based segmentation of the

breast in MRI for 3d breast volume computation. Med Phys. 2012;39:

5835–5848.

24. Khalvati F, Gallego-Ortiz C, Balasingham S, Martel AL. Automated

segmentation of breast in 3-d MR images using a robust atlas. IEEE

Trans Med Imaging 2015;34:116–125.

25. Gallego C, Martel AL. Automatic model-based 3d segmentation of the

breast in MRI. Proc. SPIE 7962, Medical Imaging 2011: Image Proces-

sing, 796215. http://dx.doi.org/10.1117/12.877712.

26. Ertas G, Gulcur HO, Tunaci M, Dursun M. k-means based segmentation

of breast region on MR mammograms. Magn Reson Mater Phys Biol

Med 2006;19:317.

27. Ertas G, Gulcur HO, Tunaci M, Osman O, Ucan ON. A preliminary

study on computerized lesion localization in MRmammography using

3d nMITR maps, multilayer cellular neural networks, fuzzy c-partition-

ing.Med Phys. 2008;35:195–205.

28. Wang C-M, Mai X-X, Lin G-C, Kuo C-T. Classification for breast MRI

using support vector machine. 8th IEEE International Conference on

Computer and Information Technology Workshops: Cit Workshops

2008, Proceedings, 362–367;2008.

29. Wang Y, Morrell G, Heibrun ME, Payne A, Parker DL. 3d multi-

parametric breast MRI segmentation using hierarchical support vec-

tor machine with coil sensitivity correction. Acad Radiol. 2013;20:

137–147.

30. Klifa C. Quantification of breast tissue index from MR data using fuzzy

clustering. Engineering in Medicine and Biology Society, 2004. IEMBS

‘04. 26th Annual International Conference of the IEEE. San Francisco:

IEEE; 2004.

31. Klifa C, Carballido-Gamio J, Wilmes L, et al. Magnetic resonance imag-

ing for secondary assessment of breast density in a high-risk cohort.

Magn Reson Imaging. 2010;28:8–15.

32. Yang S-C, Wang C-M, Hsu H-H, et al. Contrast enhancement and tis-

sues classification of breast MRI using Kalman filter-based linear mix-

ing method. Comput Med Imaging Graph 2009;33:187–196.

33. Nie K, Chen J-H, Chan S, et al. Development of a quantitative method

for analysis of breast density based on three-dimensional breast MRI.

Med Phys. 2008;35:5253–5262.

34. Sathya A, Senthil S, Samuel A. Segmentation of breast MRI using effec-

tive fuzzy c-means method based on support vector machine. Proceed-

ings of the 2012 World Congress on Information and Communication

Technologies, 67–72; 2012.

35. Lin M, Chan S, Chen J-H, et al. A new bias field correction method

combining N3 and FCM for improved segmentation of breast density on

MRI.Med Phys. 2011;38:5–14.

36. Lin M, Chen J-H, Wang X, Chan S, Chen S, Su M-Y. Template-based

automatic breast segmentation on MRI by excluding the chest region.

Med Phys. 2013;40:122301-1–122301-10.

37. Ertas G, Doran SJ, Leach MO. A computerized volumetric segmentation

method applicable to multicentre MRI data to support computer aided

breast tissue analysis, density assessment and lesion localization. Med

Biol Eng Comput. 2017;55:57–68.

38. Dixon WT. Simple proton spectroscopic imaging. Radiol. 1984;153:

189–194.

39. England PH. Breast screening: professional guidance; 2016.

40. Boyd A, Golding J, Macleod J, et al. Cohort profile: the ’children of the

90s’ – the index offspring of the avon longitudinal study of parents and

children. Int J Epidemiol. 2013;42:111–127.

41. ALSPAC. http://www.bris.ac.uk/alspac/researchers/data-access/data-dic-

tionary; Accessed May 31, 2017.

42. Pham DL, Prince JL. An adaptive fuzzy c-means algorithm for image

segmentation in the presence of intensity inhomogeneities. Pattern

Recognit Lett. 1999;20:57–68.

43. Tustison NJ, Avants BB, Cook PA, et al. N4itk: Improved n3 bias cor-

rection. IEEE Trans Med Imaging. 2010;29:1310–1320.

44. National Library of Medicine. Insight segmentation and registration

toolkit (itk), http://www.itk.org/. Accessed May 31, 2017.

45. Gubern-Merida A, Kallenberg M, Marti R, Karssemeijer N. Segmenta-

tion of the pectoral muscle in breast MRI using atlas-based approaches.

Med Image Comput Assist Interv. 2012;15:371–8.

46. Wang L, Filippatos K, Friman O, Hahn HK. Fully automated segmenta-

tion of the pectoralis muscle boundary in breast MR images. Proc. SPIE

7963, Medical Imaging 2011: Computer-Aided Diagnosis, 796309.

http://dx.doi.org/10.1117/12.877645.

47. Gubern-M�erida A, Wang L, Kallenberg M, Marti R, Hahn HK, Karsse-

meijer N. Breast segmentation in MRI: quantitative evaluation of three

methods. Medical Imaging 2013: Image Processing 8669; 2013.

48. Griffn LD. The second order local-image-structure solid. IEEE Trans

Pattern Anal Mach Intell. 2007;29:1355–1366.

49. Poon CS, Bronskill MJ, Henkelman RM, Boyd NF. Quantitative mag-

netic resonance imaging parameters and their relationship to mammo-

graphic pattern. J Natl Cancer Inst. 1992;84:777–781.

50. Song H, Cui X, Sun F. Breast tissue 3d segmentation and visualization

on MRI. Int J Biomed Imaging. 2013;2013:859746.

51. Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated

model-based tissue classification of MR images of the brain. IEEE Trans

Med Imaging. 1999;18:897–908.

52. Ledger AEW, Scurr ED, Hughes J, et al. Comparison of dixon

sequences for estimation of percent breast fibroglandular tissue. PLoS

One. 2016;11:e0152152.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in

the supporting information tab for this article.

Appendix S1. Data availability statement.

Appendix S2. Statistical and epidemiological analysis.

Figure S1. Exemplar MR images from a single subject, illus-

trating the different spatial resolution and contrast in the var-

ious image types acquired.

Medical Physics, 44 (9), September 2017

4591 Doran et al.: Breast MRI segmentation for density estimation 4591

http://dx.doi.org/10.1117/12.911612
http://dx.doi.org/10.1117/12.877712
http://dx.doi.org/10.1117/12.877645


Figure S2. Concepts involved in the heuristic algorithms of

the BC-FCM refinement algorithm.

Figure S3. Distribution of breast volumes and percentage

water as measured by the different segmentation and fat-

water estimation methods. Nomenclature for method names

is as described in the main text.

Figure S4. Results of Bland-Altman analysis of (A) breast

volume measurements and (B) percentage water measure-

ments obtained using different segmentation methods.
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text.
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