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Abstract

In medical computer aided diagnosis systems, image segmentation is one of the

major pre-processing steps used to ensure only the region of interest, such as

the breast region, will be processed in subsequent steps. Nevertheless, breast

segmentation is a difficult task due to low contrast and inhomogeneity, especially

when estimating the chest wall in magnetic resonance (MR) images. In fact, the

chest wall is comprises of fat, skin, muscles, and the thoracic skeleton, which

can misguide automatic methods when attempting to estimate its location. The

objective of the study is to develop a fully automated method for breast and

pectoral muscle boundary estimation in MR images. Firstly, we develop a 2D

breast mathematical model based on 30 MRI slices (from a patient) and identify

important landmarks to obtain a model for the general shape of the breast in

an axial plane. Subsequently, we use Otsu’s thresholding approach and Canny
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edge detection to estimate the breast boundary. The active contour method is

then employed using both inflation and deflation forces to estimate the pectoral

muscle boundary by taking account of information obtained from the proposed

2D model. Finally, the estimated boundary is smoothed using a median filter to

remove outliers. Our two datasets contain 60 patients in total and the proposed

method is evaluated based on 59 patients (one patient is used to develop the 2D

breast model). On the first dataset the proposed method achieved Jaccard=

81.1% ± 6.1% and dice coefficient= 89.4% ± 4.1% and on the second dataset

Jaccard= 84.9% ± 5.8% and dice coefficient= 92.3% ± 3.6%. These results are

qualitatively comparable with the existing methods in the literature.

Keywords: Breast MRI, Breast Segmentation, Pectoral Segmentation,

Computer Aided Diagnosis, Active Contours

1. Introduction

In 2014 there were 55,200 new cases of breast cancer diagnosed in the United

Kingdom (UK). This approximates to 150 cases diagnosed every day on average,

making breast cancer the most common cancer in the UK [1]. Similarly, in

Europe, this disease is also the most common cancer overall, with more than5

460,000 new cases diagnosed in 2012; the highest and lowest incidence rates are

in Belgium and Bosnia Herzegovina, respectively; and the UK breast cancer

incidence rates are the 6th highest in Europe [2]. Although the survival rates

in most developed countries have been increasing in the last decade due to

improved screening methods, much effort still needs to be invested in fighting10

this disease.

The use of computer-aided diagnosis (CAD) systems in medical applications

as a ‘second reader opinion’ is becoming popular due to its consistency, relia-

bility, and speed. However, before further analysis can be done, it is crucial for

the computer algorithm itself to capture regions of interest accurately. In breast15

CAD, breast segmentation is an important first pre-processing step to speed up

the subsequent processes without losing any important anatomical information
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[3, 4, 5, 6, 7, 8, 9, 10, 11]. For example, breast segmentation (estimating the

breast boundary and chest wall boundaries) removes unnecessary regions such as

the heart, lung and liver. This will narrow down the area to be analysed by the20

computer algorithm, hence speeding up the analysis process. On the other hand,

in magnetic resonance imaging (MRI) volume assessment breast segmentation

alone is important as an alternative measurement of breast density[5, 12, 13]

and 3D breast reconstruction [14]. For example, dense breasts tend to have

higher volume/weight, and this is important information for the surgeon during25

the breast reconstruction. However, a fully automated method to estimate the

breast and chest wall boundaries is a challenging task due to large variations in

breast size and shape, intensity inhomogeneity, image artifacts and other noise

errors [7].

The existing studies in the literature can be divided into three categories30

which are anatomical model-based, classifier-based, clustering-based and a hy-

brid method which is a combination of any of them. Each category has its

own strength and weaknesses. For example a model-based method is efficient

but relaying heavily on the model which can produce extremely poor results

in cases where anatomical landmarks are invisible in the image. On the other35

hand, a classifier-based method can produce good results but there are many

hyper-parameters need to be tuned and can be time consuming due to the

training process. A clustering-based method is another alternative that can

produce fast results but it is very sensitive to intensity inhomogeneity resulting

to over-segmentation or under-segmentation. A hybrid method can provide bet-40

ter results as it combines different advantages of each category such as efficient,

less sensitive with noise and less dependent with anatomical landmarks. How-

ever it is often deemed to be semi-automatic (e.g., requires user initialisation or

prior knowledge from the user) and requires more complex pre-processing (e.g.,

image registration) and post-processing (e.g., curve smoothing).45

To encounter some of the deficiencies in the existing studies, we present a

fully automatic method for estimating the breast and pectoral muscle bound-

aries in MR images. The proposed method consists of the following phases: (a)
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pre-processing, (b) the development of a mathematical 2D breast model which

covers landmark identification, (c) breast boundary estimation, (d) pectoral50

muscle boundary estimation and (e) post-processing. The novel contribution of

our study is that we develop a simple mathematical 2D breast model and show

how it can be used for breast segmentation in MR images in conjunction with

active contour models (ACM). Furthermore, we studied how the inflation and

deflation forces in active contour models can be used simultaneously to estimate55

the chest wall (pectoral muscle) boundary. To the best of our knowledge, this

is the first time the Geodesic ACM model has been used in exploiting deflation

and inflation forces applied to the breast segmentation problem. In comparison

to the existing methods in the literature, our method is different in terms of:

1. Lower dependency on anatomical knowledge. Our method depends only60

on anatomical knowledge during the process of constructing the 2D breast

model.

2. No prior knowledge is required during the segmentation phase.

3. No image registration step is required.

4. No clustering is needed. Our proposed method employs an ACM which65

evolves based on the appearance of gradient information close to the initial

contour.

The paper is organised as follows: In Section 2 we review some of the exist-

ing methods in the literature followed by some variations of ACMs; Section 3

presents the technical aspects of the proposed method, covering the construction70

of the 2D breast model and the estimation of the breast and pectoral muscle

boundaries. We present experimental results and discuss the effects of various

parameter values on performance in Section 4. We discuss some of the limita-

tions of the study, future directions, qualitative comparison with the existing

methods in the literature and explanations about the weaknesses of the proposed75

method in Section 5. Finally, Section 6 summarises the work and presents some

conclusions.
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2. Literature Review

This section will briefly describe some of the current studies in chest wall

segmentation and various active contour models.80

2.1. Related Work

In comparison to breast segmentation in mammograms, the number of stud-

ies that have been undertaken to estimate both breast and pectoral muscle

boundaries in MR images is relatively small. This is probably due to the lack of

publicly available data and lack of ground truth available from expert radiolo-85

gists. In contrast, breast mammogram databases such as Mammographic Image

Analysis Society (MIAS) [15], INBreast [16], Breast Cancer Digital Repository

(BCDR) [17] and Digital Database for Screening Mammography (DDSM) [18]

are publicly available with ground truth, making the development of breast seg-

mentation in mammograms more popular. Our study is closely related to the90

studies previously conducted by Giannini et al. [4], Wang et al. [3], Gubern-

Mérida [5], Rosado-Toro et al. [6], Thakran et al. [7], Milenković et al. [8],

Fooladivanda et al. [9], Wu et al. [10] and Jiang et al. [11].

Early studies [19, 20] have attempted to segment the breast region using

a thresholding-based method followed by morphological operations which are95

efficient and could produce good results. However, in cases where breast in-

tensity appears to be very similar to the other structures in the image due to

noise or field inhomogeneities, a thresholding-based method may fail to segment

the breast region. Giannini et al. [4] developed a method based on anatomical

features of the pectoral muscle, which is detected given the assumption that the100

average muscle intensity is lower than that of fat within the breasts but higher

than air in the lungs. Firstly, Otsu’s thresholding method was used to separate

the skin and breast parenchyma from internal and external air and other low-

intensity areas. Secondly, a central point (initial point) of the breast boundary

is determined and, to estimate the pectoral muscle boundary, the method selects105

a pair of vertical points for each column that maximises the difference of gra-

dient. Subsequently, this process is repeated until all corresponding points are
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covered. However, although this method works well in cases where the breast

region is separated clearly from the pectoral region, if the region between the

pectoral and breast boundary has a similar appearance or similar intensity to110

the pectoral region the method may fail to find the pectoral boundary due to

insufficient or absent gradient information.

Wang et al. [3] used a Hessian-based filter call a ‘sheetness’ filter to analyse

the local geometrical structure in the image. Their method assumes that the

pectoral boundary has a similar appearance to sheet-like structures and this115

characteristic can be captured by tuning the parameters of Hessian-based fil-

ters. After employing ‘sheetness’ filters, only strong responses were retained

using a thresholding value and false positives were removed using a connected

component filter. This method may suffer from problems similar to the method

of Giannini et al. [4], especially when the breast regions are dominated by120

fatty tissue rather than dense tissue. Another study in breast MRI segmenta-

tion was conducted by Rosado-Toro et al. [6] using k-means++ and dynamic

programming by exploiting the contrast properties in the fat and water images

generated by a fat-water imaging method using the radial gradient- and spin-

echo (RADGRSE) technique. Dynamic programming is used to estimate the125

pectoral muscle boundary from the axial fat-image and the k-means++ cluster-

ing algorithm was employed to segment the breast region. Finally, both results

are combined to get the segmentation result.

The proposed method of Gubern-Mérida [5] was developed to automatically

capture breast density. In the breast segmentation phase, firstly image nor-130

malisation was performed to correct intensity inhomogeneities. Subsequently, a

3D probabilistic atlas-based approach was used to separate the breast from the

air background. A morphological dilation filter is then applied to remove the

skin between the background and the breast. In contrast, the pectoral muscle

boundary was estimated in a 3D model based on the location of the sternum.135

A coronal plane was defined at 2cm posterior from the sternum landmark and

excluded all the voxels which are posterior to this plane. Wu et al. [10] pro-

posed a method based on edge-enhancing filters and an edge linking algorithm
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to estimate the chest wall in a sagittal view.

In a recent study, Thakran et al. [7] proposed a solution for chest wall es-140

timation using multi-parametric MR images. The authors used T2-Weighted

(W),T1-W and Proton Density(PD)-W without fat saturation images with an

automatic landmarks detection technique based on operations like profile screen-

ing, Otsu thresholding, morphological operations and empirical observation.

Milenković et al. [8], developed a fully-automated method in axial MR im-145

ages based on the edge map (EM) obtained by applying an adaptive Gabor

filter which initialise its parameters according to the local texture for detect-

ing non-visible transitions between different tissues intensities. Subsequently,

the shortest-path search technique in conjunction with a novel cost function is

used to estimate the location of the pectoral muscle boundary. Fooladivanda et150

al. [9] used an intensity-based operation to estimate the location of the breast

chest wall boundary. Based on shape and textural features, the support vector

machine (SVM) is used to determine the connectivity of fibroglandular tissue to

the chest wall. Finally, the initial boundary is refined using the geometric shape

of the chest region, which is obtained by an atlas-based segmentation method.155

Finally, Jiang et al. [11] employed dynamic programming to trace the boundary

of the chest wall starting from the middle slice and limit the search range using

a Gaussian function.

2.2. Active Contour Models

ACMs are among the most popular segmentation techniques used in many160

different applications. In medical image analysis, the ACM has been widely

used for the segmentation of brain and bone MR images, breast mammograms

and retinal images. In this section, we briefly review several ACMs and their

variations by dividing them into four categories, namely region-based active

contours, edge-based active contours, level set models and hybrid models. We165

refer the reader to the study conducted by Lee [21] for more variations of ACM.

The study of Kass et al. [22] developed a model called “United Snakes”

which aims to combine the best features of the various snake techniques, hence
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providing more flexibility and minimum user interaction. Ciecholewski [23] de-

veloped an AC model using an inflation/deflation force with a damping coeffi-170

cient function to accurately estimate weak boundaries or edges in noisy regions.

Álvarez et al. [24] developed an AC model based on morphological operators in

conjunction with the Partial Differential Equation components, whereas Ferrari

et al. [6] developed an adaptive active deformable contour model (AADCM)

depending on the magnitude and direction of the image gradient. Wirth et al.175

[25] employed an AC model based on a Greedy algorithm which considers the

energy from continuity, curvature and image gradient at each point. Miller et al.

[26, 27] developed a model that firstly refined the estimated object’s boundary

by minimising the energy function followed by finding its actual boundary by

taking account of the local contour curvature of the model and image features.180

This process was repeated discretely until the model reached an equilibrium

state where velocity and acceleration are zero for each vertex.

Chan and Vese [28] developed an AC model based on techniques of curve evo-

lution, the Mumford-Shah segmentation technique and level sets. The authors

proposed a stopping function based on Mumford-Shah segmentation techniques185

instead of a gradient-based function, which enables the model to detect objects

not defined by the gradient. Later, Li et al. [29] proposed a robust level set

method that can deal with intensity inhomogeneities using a local clustering cri-

terion function which is based on the local intensity clustering property. Zhang

et al. [30] also proposed an AC model which attempts to deal with intensity in-190

homogeneities by introducing a local image fitting (LIF) energy function based

on the local image information which minimises the difference between the fitted

image and the original image. The LIF function is used to evolve the level set

function and it is regularised with a novel Gaussian kernel filtering after each

iteration in order to enhance the smoothing capacity.195

Belaid et al. [31] used local phase and local orientation derived from the

monogenic signal for the evolution of the level set approach to segment the left

ventricle in ultrasound image. Furthermore, they used Cauchy kernels, instead

of the commonly used log-Gabor, as pair of quadrature filters for the feature

8



extraction. In another study, Khadidos et al. [32] proposed a weighted level200

set based on local edge features applied on medical image segmentation. The

authors used objective energy function to determine the weight of the level

set based to their relative importance in detecting boundaries. Zhang et al.[33]

introduced a reaction-diffusion into level set evolution which eliminates the com-

plex and costly reinitialisation procedure. Experimental results show that the205

method produced very good performance on boundary antileakage.

Another variant of AC model is developed by Estellers et al. [34] based on

the geometric representation of images as 2D manifolds embedded in a higher

dimensional space. The method is a combination of active contour without

edges of Chan and Vese [28] and geodesic active contours of Caselles et al. [35].210

Whilst Chan and Vese [28] and Caselles et al. [35] proposed methods based

on region and edge-based features, respectively, Estellers et al. [34] developed

a function that is able to also exploit the alignment of the neighbouring level

sets to pull the contours to the right position resulting robust to local minima

and less sensitive to initialisation. Zhou et al. [36] used a similar approach215

combining region and edge information for the active contour model evolution

based on local intensity.

In our work we use the geodesic active contour model (GACM) of Caselles

et al. [35]. We refer the reader to Section 3.3 for our motivation in using

this method. The typical approach of edge-based ACM deforms the initial220

contour iteratively towards the boundary of an object by minimising the energy

function which controls the smoothness of the curve (internal energy) and the

tendency of the curve towards the desired boundary (external energy) [35]. In

contrast, a typical geodesic ACM deforms the initial contour iteratively towards

the boundary of an object by minimizing the distance curve in a Riemannian225

space derived from the image [35]. Since both models deform iteratively, the

number of iterations (i) is crucial to avoid under- or over-segmentation.

9



3. Methodology

Figure 1 shows a graphical overview of the proposed method used in this

study which consists of three main phases. After pre-processing using the me-

Figure 1: A graphical illustration of the proposed method.

230

dian filter and adaptive histogram equalisation [37], the first phase estimates the

breast boundary based on the best edge features using a combination of Otsu’s

thresholding [38] and Canny’s edge detection method. The second phase is to

estimate the pectoral breast boundary using the 2D breast model in conjunction

with the ACM of Caselles et al. [35]. Finally, both estimated boundaries are235

smoothed and combined to separate the breast region from the pectoral muscle

and the air background.

3.1. A generalised 2D Breast Model

To develop a generalised 2D breast model, it is important to identify impor-

tant landmarks and a general shape (in the axial plane) of the breasts in MR240

images. For this purpose, we took 30 MRI slices from a patient and performed

an image fusion operation using Io = I1 + I2 + I3 + I4.....In to generate a new

fused image (in our case n = 30). Due to the small number of data we selected

only one patient (30 slices) so that we can maximise the number of patients
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included in the testing dataset. This process is repeated for each corresponding245

manual annotation provided by one of the authors, yielding two images, namely

a combined MR image (Io) and a combined manual annotation image (Im).

Note that there is no selection criteria in choosing the patient when generating

the 2D breast model. Any patient can be chosen because breast structures are

similar across patients. The purpose of doing this is to get a general shape of250

a breast structure in a 2D axial MR image. However, for slice selection it is

recommended to take the middle slices as these slices contain the most visible

shape of the breast and chest wall boundaries. The slice selection refers to the

process of choosing a set of images from the middle slices in order to construct

a summed image (Io).255

Figure 2 shows a general overview used to construct the 2D model for breast

appearance in MR images. The images Io and Im (see figure 3.2) enable us

to identify important features of the breast and we use empirical observation

knowledge to model the general appearance of the breasts in MR images.

Figure 2: A work-flow for modelling the breast appearance in MR images

Figure 3.2 shows image Im (left) and our 2D breast model (right). Let260

B be the estimated breast boundary (see Figure 3.2) represented as a set of

coordinate points, hence B = {(x1, y1), (x2, y2)...(xmax, ymax)} where x and y
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are the row and column coordinate respectively. Now let Bx and By contain all

the x -coordinate and y-coordinate points in B. Based on Im, we identified the

following characteristics:265

Figure 3: A graphical illustration for the 2D model of the breast appearance

1. Each breast is located in half of the width (w) of the image.

2. The breast boundary contains two peaks. The first peak (p1) can be

captured by taking the highest point in the first half of the image (left

side of the MR image) and the second peak (p2) is the highest point in

the second half of the image (right side of the MR image) as defined in270

equations 1 and 2.

p1 = (Bx(lleftBmin
y

),min(By(1 : #By/2))) (1)

p2 = (Bx(lrightBmin
y

),min(By(#By/2 + 1 : end))) (2)

where lleftBmin
y

and lrightBmin
y

are the location of the minimum value of By in

the first and second halves of the image, respectively, where #By is the

number of elements of By.

3. The breast boundary has a global valley point (v1) which is the lowest275
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point on B between p1 and p2 defined using the following equation

v1 = (Bx(lmiddle
Bmax

y
(p1 : p2)),max(By(p1 : p2))) (3)

where lmiddle
Bmax

y
is the location of the maximum value of By from p1 to p2;

4. The pectoral boundary can be approximated using the following quadratic

equation

yU = qx2 + rx+ c (4)

This is the dotted curve in the right image of Figure 3.2. This equation can280

be solved by substituting coordinates of p4, v2 and p3 into the quadratic

equation. All points can be calculated using the following equations

p3 = (Bx(end), By(end)) (5)

p4 = (1, Bx(1)) (6)

v2 = (vx1 , v
y
1 + d) (7)

where vx1 is the x-coordinate of v1 and vy1 +d is the y-coordinate of v1 with

respect to parameter d, which is the vertical distance between v1 and v2.

Note that from equations 5 and 6 both p3 and p4 are the last and first285

coordinate points in B, respectively. Alternatively, p3 is a point in B with

the maximum x-coordinate located in the second half of the image (right

side), whereas p4 is a point in B with minimum x-coordinate located in

the first half of the image (left side).

5. The chest wall can be approximated using the following quadratic equation290

yL = qx2 + rx+ c (8)
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This equation can be solved by substituting coordinates of p5, v1, and

p6 into the quadratic equation. All points can be calculated using the

following equations

h1 = py4 − ymax (9)

h2 = py3 − ymax (10)

p5 = (1, py4 + (h1/3)) (11)

p6 = (1, p3(y) + (h2/3)) (12)

where ymax is the height of the image. Note that the y-coordinates for

p5 and p6 are estimated to be about 30% below the y-coordinates of p4295

and p3, respectively. This is based on our observation in Io and Im where

the majority of the left and right sides of the pectoral muscles are located

above this boundary (yL).

At the end of this process, our 2D breast model can be seen in the right

image of Figure 3.2. This model presents the general shape appearance of the300

breast in MR images. In Sections 3.2 and 3.3 we will show how the model can

be used as a ‘template’ to identify important landmark points along the breast

boundary, yielding a solution for curves yU and yL.

3.2. Breast Boundary Estimation

In this section, we will explain how the breast boundary which is the B curve305

in the 2D model can be determined using a simple edge detection technique.

Subsequently, we will show how the model can be used to identify important

landmark points along the B curve. For breast boundary estimation we em-

ployed Otsu’s thresholding [38] and Canny edge detection to get all possible

edge candidates (middle image in Figure 4). Subsequently, we retain the top310
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three longest edges (fourth image in Figure 4) from the binary image and delete

all other edges. Note that selecting the top five or more is possible, but in our

case we found that all edges representing the breast boundaries can be captured

by taking the top three longest edges. Finally, we select the edge which has the

smallest y-coordinate point as it indicates the location of the breast boundary315

that separates the breast from the air background. Figure 4 shows the step

by step process in finding the breast boundary. Note that the edge detected

along the breast boundary in the right-most image represents the B curve in

the 2D model. Using the 2D model in Figure as a ‘template’ we can identify

other landmarks along the breast boundary such as the P4, P1, v1, P2 and P3.320

Subsequently, the coordinate information of these points will be used to solve

curves yU and yL.

Figure 4: A graphical illustration for the breast boundary estimation.

3.3. Pectoral Muscle Boundary Estimation

In our case, the initial contours are the two quadratic equations (defined yU

and yL in the previous section) are denoted as y0U and y0L where the desired325

boundary is the pectoral muscle boundary. In this section we use the notation

curve as C(q) to cover y0U and y0L for simplicity. Note that q is the arch length

parameterisation. C0 and Ci represents the initial contour and the contour at ith

iteration. Let C(q) : [0, 1] → R2 be parameterised planar curve. The classical

edge-based snake approach [39] minimises the energy of curve C at ith iteration330
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by computing the following equation:

E(Ci) = p

∫ 1

0

|(C′i(q))|2dq + λ

∫ 1

0

|(C′′i(q))|2dq − b
∫ 1

0

|∇I(Ci(q))|dq (13)

where p, λ and b are the smooth factor, weight and contraction bias, respec-

tively. The first two terms (note that C ′i and C ′′i are first and second derivative,

respectively ) control the smoothness of the contours to be detected (internal

energy), while the third term is responsible for attracting the contour towards335

the object in the image (external energy) [39, 35]. In contrast, the GACM

minimises the energy of curve C at ith iteration using the following equation:

E(Ci) = p

∫ 1

0

|C′i(q)|2dq + b

∫ 1

0

g(|∇I(Ci(q))|)2dq (14)

where g(|∇I(Ci(q))|)2 is a function that controls the C attraction toward lines

and edges. Note that g : [0,∞) → R+ is a decreasing function such that g(r)→ 0.

Therefore340

g(r) =
1

1 + |∇I(Ci(q))|2
(15)

We employed the GACM of Caselles et al. [35], which is a variant of edge-

based ACMs, in conjunction with our 2D breast model to estimate the pectoral

muscle boundary. Our motivations in using GACM are three-fold:

1. GACM does not depend on curve parametrisation, which means the curve

deformation is not restricted to curve parameters. Other edge-based345

ACMs such as ‘snakes models’ are usually parametrised using B-splines

which constrain the curve deformation to a certain shape [35]. In our case,

curve parametrisation is not needed anyway because the initial curves (e.g.

y0U and y0L) are determined automatically based on the location of p3, p4,

p5, p6, v1 and v2.350

2. GACM is robust in handling topology changes in the image whereas most

of the edge-based ACMs require topology-handling procedures [35, 40].
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3. Region-based ACMs usually require segmentation techniques which can be

very difficult to cluster due to similar intensity between the lower region

of the breast and the pectoral muscle. In fact, the clustering process355

is time consuming because every corresponding point within the breast

region is taken into account. In comparison, GACM computes only the

neighbourhood points along the contour [40].

One of the key factors in using edge-based ACMs successfully is the place-

ment of the initial contour, which must be close to the actual boundary. For360

this purpose, we used the knowledge from our 2D model to estimate the initial

contour. Based on the breast contour defined in Figure 4 (leftmost image), we

calculate important landmarks/vertexes such as p1, p2, p3, p4, p5, v1, v2, etc.

Once all coordinate points for these vertexes were identified, we can define y0U

and y0L by substituting each vertex’s x- and y-coordinate into the corresponding365

equation (e.g. yU and yL).

Figure 5: A work flow graphical representation for pectoral muscle estimation. The arrow

directions in the leftmost images show the tendency of the initial contour to grow.

Figure 5 shows the steps involved in estimating the pectoral muscle bound-

ary. Using the GACM [35], all coordinate points in y0U (yellow line in Figure

5) and y0L (green line in 5) are evolved separately using GACM. This means

the GACM was run twice independently, firstly using y0U with deflation a force370
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followed by y0L with an inflation force. Both forces can be obtained by setting

different values of the contraction bias parameter (b). This parameter controls

the tendency of the contour to grow outwards (inflation) or shrink inwards (de-

flation) with a typical value between -1 to 1, where a positive value means the

contour tends to grow outward (inflate). In our case, using these forces en-375

sure the model is able to capture the upper boundary of the pectoral muscle

and boundary around the chest wall. Therefore, in our case, we set b = 1 and

b = −1 when evolving y0L and y0U using the GCAM, respectively. Subsequently,

after contour evolution, both y0L and y0U were combined and the lowest points

in y0L and y0U representing the estimated pectoral boundary (see the rightmost380

image in Figure 5). Finally, we smooth the estimated pectoral boundary using

a moving median filter to remove outliers.

3.4. Materials and Datasets

To test the performance of the proposed method, our first dataset was down-

loaded from the National Biomedical Imaging Archive (NBIA) [41] under the385

Quantitative Imaging Network Collection (QIN) of breast Dynamic Contrast

Enhanced (DCE) MRI [42]. The DCE-MRI data was collected from Oregon

Health & Science University and covers 10 patients which were acquired using

a Siemens 3 Tesla system with Syngo MR B17 software. DCE-MRI acquisition

parameters included 10◦ flip angle, 2.9/6.2 ms TE/TR, a parallel imaging accel-390

eration factor of two, 30− 34cm FOV, slice thickness is 1.39mm and 320× 320

in-plane matrix size. The x and y resolution is 1.06mm and z resolution is

1.4mm. However, since 30 MRI slices of a patient were used to build the 2D

breast model, these images were excluded in evaluating the proposed method.

Therefore, the test database consists of 9 patients. The MR scans included in395

the QIN database are all fat-suppressed images which means fatty areas are

contrast-enhanced making it easier for radiologists to visually identify fatty re-

gions on each image slice. Both pectoral and breast boundary annotations on

each image are provided by one of the authors and verified by an expert radiol-

ogist.400
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The second dataset (our own data) consists of 50 patients of T2-W MRI

collected from our clinical partner Hospital General Universitari Valencia and

acquired using a Siemens 1.5 Tesla system with Syngo MR A35 software. The

T2-W MRI acquisition parameters included 150◦ flip angle, echo time: 114ms,

repetition time: 3.350 − 5.950ms, slice thickness is 4mm and 1024 × 1024 in-405

plane matrix size. The x and y resolution is 0.35mm and z resolution is 4.4mm.

Both pectoral and breast boundary annotations on each image are provided by

an expert radiologist with more than 10 years experience in reading breast MRI.

The method was developed under the MATLAB environment version 9 (2016a)

on a Windows 10 operating system with an intel CORE i7 vPro processor.410

3.5. Evaluation Metrics

To evaluate the performance of the proposed method we used the following

metrics (more details of Jaccard and Dice metrics can be found in [43] and [44],

respectively):

Jaccard (J̈) =
|SI ∩RI |
|SI ∪RI |

(16)

Dice (D̈) =
2 |SI ∩RI |
|SI |+ |RI |

(17)

Accuracy (Ä) =
TP + TN

TP + TN + FN + FP
(18)

Sensitivity (S̈) =
TP

TP + FN
(19)

Specificity (S̄) =
TN

TN + FP
(20)

where TP, TN, FP and FN are true positive, true negative, false positive and415

false negative, respectively. SI and RI are the segmented image produced by the

proposed method and the reference image or manual segmentation, respectively.

The Hausdorff distance (∇D) [45] is used to measure the ‘closeness’ of two sets

of points that are subsets of a metric space. Given two coordinate sets A and B
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in Euclidean space, the Hausdorff distance can be calculated using the following420

equation

∇D = distB(A) + distA(B) (21)

distB(A) = sup
a∈A

dist(a,B) (22)

dist(a,B) = inf
b∈B

d(a, b) (23)

where a and b are each points in set A (the boundary of the segmented region)

and B (the boundary of the manual annotation), respectively. For all the eval-

uation metrics used in this study, a higher value indicates better performance;

however, for ∇D a smaller value means the estimated boundary is closer to the425

manual annotation.

4. Experimental Results

This section will first briefly describe the experimental results in Subsec-

tions 4.1. Next, we discuss the effects of two parameters in GACM, namely

the contraction bias (b) and smoothing (s). We perform a statistical analysis430

using the t-test by comparing each result with the average result across dif-

ferent thresholds. For example, when comparing accuracy the average result

can be computed by summing all accuracies across different threshold values

followed by dividing it with the number of thresholds. The t-test approach is

used to compare each accuracy produced at a specific threshold value against435

the average accuracy.

4.1. Quantitative Results

Since the proposed method employed GACM [35], there are several param-

eters which must be defined, namely vertical distance between v1 and v2 (d),

the number of iterations for the active contours to evolve (i), contraction bias440
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(b) which controls the tendency of the contour to evolve inwards or outwards,

and a smoothing parameter (s) which controls the smoothness of the contour.

The values chosen for these parameters are important in order to get optimal

results. Therefore, this section presents the results from all metrics when choos-

ing different values for each parameter. For this purpose, we chose the QIN445

dataset due to its smaller number of images, hence speeding up the process of

parameter selection.

To investigate the effect of i on the proposed method, we conducted an

experiment using 30 different values from i = 5 to i = 150 at intervals of five.

Other parameters were set as d = 10, s = 1.0 and b = −1 for y0U and b = 1 for y0L.450

These parameter values were chosen because they produce optimal performance

of the proposed method as shown in Figures 6, 7, 10 and 11. Note that each

point on the graphs is an average across the 270 images. Figure 6 show the

performance variations for all metrics when different numbers of iterations (i)

are used for the QIN dataset. It can be observed that both J̈ and D̈ start455

to decrease when i > 100, which indicates that the pectoral boundary was

overestimated and maximum results achieved at i = 100 for both metrics. The

proposed method produced consistent results for values of i between 70 and 100

with J̈ > 80% and D̈ > 88% . Similar results can be observed in Figure 6 for Ä

and S̈ where consistent results can be obtained using values of i between 70 and460

100. However, all metrics started to decrease after i > 75 with the best results

achieved for Ä and S̈ at i = 75. For metric∇D, Figure 7 shows that the smallest

distance (∇D = 5.71mm± 2.64mm) was obtained using i = 75 and increasing

the value of i results in a larger difference between the segmentation result and

the manual segmentation. Overall, the proposed method produced consistent465

results across different metrics for values of i between 70 and 100 (J̈ > 80%,

D̈ > 86%, Ä > 95%, S̈ > 85% and S̄ > 97%. In terms of the evaluation

of the proposed generalised 2D mathematical model the average distances are

∇D = 3.84mm ± 2.29mm and ∇D = 3.98mm ± 2.38mm for the QIN and our

own datasets, respectively. The evaluation was measured using the Hausdorff470

Distance for each of the estimated breast boundary with its associated ground
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truth.

Figure 6: Performance variation of metrics J̈ and D̈, Ä, S̈ and S̄ with standard deviation

using a different number of iterations (i) for the QIN dataset

.

We also tested the effect of the vertical distance between v1 and v2 by using

the following set of values for d : {5, 10, 15, 20}. In this experiment, we set

22



Figure 7: Performance variation of metric ∇D with standard deviation using a different

number of iterations (i) for the QIN dataset.

the other parameters as follow: i = 100, s = 1.0, b = −1 for y0U and b = 1475

for y0L. Table 1 shows quantitative results for the proposed method when using

different values of d. In general, the method produced better results using d = 5

and d = 10 than for d = 15 and d = 20. This is because locating v2 too far

away from v1 results in y0U being closer to the chest wall instead of the pectoral

muscle (hence, it tends to move closer to the chest wall instead). From the four480

different values of d tested, the results in Table 1 suggest that d = 5 or d = 10

produced the best results across the different metrics.

Figure 8 shows examples of segmentation results with good values across

different evaluation metrics. The left-hand, middle and right-hand columns

are the original, ground truth (manual segmentation in binary image) and the485

segmentation results of the proposed method, respectively. Evaluation metrics

are presented to the right of each row. The red and green lines indicate the breast

and pectoral muscle estimation, respectively. Both quantitative and qualitative

evaluation in Figure 8 shows that the proposed model is robust in conjunction

with GACM to estimate both breast and pectoral muscle boundaries. Examples490
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Table 1: Quantitative results using different values of d (the vertical distance between v1 and

v2 in Figure 3.2) for QIN dataset.

d J̈(%) D̈(%) Ä(%) S̈(%) S̄(%) ∇D(mm)

5 80.8± 6.7 89.3± 4.4 96.3± 1.4 88.1± 4.9 97.8± 2.1 6.2± 2.6

10 80.9± 5.9 89.4± 3.8 96.2± 1.2 86.2± 6.2 98.4± 1.8 6.2± 2.6

15 79.4± 6.6 88.3± 4.4 95.3± 1.4 83.2± 8.2 97.9± 2.4 6.6± 2.7

20 76.6± 7.9 86.5± 5.5 94.2± 1.9 79.5± 9.3 98.1± 1.4 7.2± 2.9

in Figure 8 show different variations in terms of shapes and textures of the

breast. In the second and fifth row, the pectoral muscle is almost invisible due

to similar intensities between the breast region and the pectoral muscle, where

the proposed method managed to achieve J̈ = 89.6% and 86.3%, respectively.

In the fourth row, although the orientation of the breast is slightly to the right,495

the proposed method achieved J̈ = 83.2% and D̈ = 90.8%. Figure 9 presents

examples of estimated breast (red line) and chest wall (green) boundaries taken

from the second dataset (our own dataset). All examples show good results in

estimating both boundaries.

4.2. The Effect of Contraction Bias500

In the proposed method, two contours (y0L and y0U ) were employed each using

different forces (inflation and deflation) which were controlled by the parameter

b. To investigate the effect of b, we conducted an experiment by varying its

values from b = 0.1 to 1.0 (inflation) and b = −0.1 to −1.0 (deflation) for y0L and

y0U , respectively, at intervals of 0.1. The effects on the performance as presented505

in Figure 10 were measured for J̈ , D̈, Ä, S̈ and S̄. Nevertheless, it can be

observed that the performance of the proposed method improved slightly (≈ 1%)

for metrics J̈ , D̈ and S̈ from b = 0.1(−0.1) to b = 0.6(−0.6), with no further

changes when b > 0.6(< −0.6). In our study we chose b = 1.0(−1.0) as default

values for ease of numerical calculation. Experimental results suggest that there510

is no statistical significant of improvement for all evaluation metrics across the
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Figure 8: Example segmentation results for breast (red) and pectoral muscle (green) boundary

estimation with high J̈ and D̈ more than 80% taken from the QIN dataset.
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Figure 9: Example segmentation results for breast (red) and pectoral muscle (green) boundary

estimation with high J̈ and D̈ more than 80% taken from our dataset.

values of b (at p < 0.01) with p = 0.0507. The p value was computed using

t-test comparing each result with the average result across different parameter

values. This suggests that the results are very consistent regardless of the (b)

value (variation results are from 0.1% to 0.7%).515

4.3. The Effect of Smoothing Parameter

In addition, we were also interested to know the effect of parameter s in our

study which controls the degree of smoothness or regularity of the contour of

the segmented regions (in our case it is the pectoral boundary). Using a large

value of s produces smooth contours but may miss finer details, whereas a small520

value will produce irregular contours but allow finer details to be captured. We

conducted an experiment by varying the values of s from 0.1 to 1.0 at increments

of 0.1. Figure 11 shows the results across different metrics which indicate that
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Figure 10: Performance variation of metrics J̈ , D̈ and Ä, S̈ and S̄ with standard deviation

using different values of contraction bias (b) for the QIN dataset. Note that the x- axis

has positive and negative values for y0L and y0U , respectively. Note that small variations on

performance indicate consistency across different values of b.
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the smoothing parameter does not have a significant effect on the performance.

This may be due to (a) the use of the median filter to smooth the pectoral525

boundary in the post-processing phase and (b) most pectoral boundaries having

a smooth appearance resulting in a smooth contour. For the ease of numerical

calculation, we used a default value s = 1.0. Once again, we found p = 0.0507

which indicates no statistical significant improvement for all evaluation metrics

across different values of s at p < 0.01 (variation results are from 0.1% to 0.6%).530
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Figure 11: Performance variation of metrics J̈ , D̈ (left graph), Ä, S̈ and S̄ (right graph) with

standard deviation using different values of smoothing (s) for the QIN dataset. Note that

small variations on performance indicate consistency across different values of s.

5. Discussion

In this section, we present some examples of over-estimated and under-

estimated results and explain our hypotheses why the proposed method unable
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to estimate those boundaries correctly. In addition, we will also present some

segmentation results using a single active contour model, discuss the computa-535

tional efficiency, compare the performance qualitatively of the proposed method

with the existing methods in the literature, identify study limitations and dis-

cuss future directions.

5.1. Over-estimated and Under-estimated Results

Figure 12 shows examples with over-estimated and under-estimated pectoral540

boundaries. From our qualitative analysis, we found that it is harder for the

proposed method if the breast area is small (e.g. first row) or the pectoral

muscle is located too low in the image (e.g. second row). Our explanation for

the first behaviour is that when the breast region is too small this affects the

placement of v1 and v2 (hence, v2 is mostly placed in the area of the pectoral545

muscle or chest wall). On the other hand, when the pectoral muscle is located

too low in the contour y0L the algorithm is likely to fail to capture it because

this contour uses an inflation force and hence tends to evolve upwards. As a

result, the boundary is under-estimated as shown in the second row of Figure

12.

Figure 12: Example of segmentation results for breast (red) and pectoral muscle (green)

boundary estimation with J̈ < 80% taken from the QIN dataset.

550
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Figure 13: Example of segmentation results for breast (red) and pectoral muscle (green)

boundary at the first and last slices taken from the QIN dataset.

Figure 13 shows examples of segmentation results at the first and last slices.

It can be observed that the proposed method is unable to find the chest wall

accurately due to invisible appearance of the boundary. However, since the

subsequent direction of our study is to perform region/pixels classification within

the breast region to find malignant regions; precise segmentation on these slices555

are less important because most malignant regions are visible within the middle

slices. In addition, radiologists often use middle slices when assessing MR/CT

scans rather than the first and last slices. The main reason for this is because
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most of the anatomical landmarks are more visible within the middle slices

whereas the first and last slices usually do not contain malignant regions (or560

anatomical landmarks are obscured).

5.2. Segmentation Results using a Single Active Contour

In this section, we present segmentation results using an active contour to

estimate both breast and chest wall boundaries simultaneously as well as using

a single active contour to find the breast and chest wall separately. Note that565

the parameter values of b = 1.0 and s = 1.0 are the same for all experiments.

Based on our experimental results and experience, using a single active contour

usually fails to estimate both boundaries (or one of those boundaries) due to:

1. Noise can appear in the air-background (the upper side of the image in

Figure 14) which can significantly affect the contour evolution if it starts570

from the the upper images moving towards the breast boundary. Hence,

the contour evolution may need a larger number of iteration to find the ac-

tual boundary (which reduces the computational efficiency of the method).

We show an example of this case in Figure 14 where the active contour

needs 400 iterations before it can find the actual breast boundary (ap-575

proximately 6 seconds) whereas our model took less than a second.

2. Strong appearance of other anatomical regions such as the liver, heart

and lung can also influence contour evolution when finding the chest wall

boundary as it tends to spread to that organ’s region. We show an example

in Figure 15 where the contour starts from the mask region (very close580

from the chest wall) and from i = 50 to i = 200 the contour evolution

tends to spread to the other region.

3. A single active contour can’t always track both boundaries at once be-

cause the chest wall boundary sometimes obscure or attach with the

lung/heart/liver. We show an example in Figure 16 where the chest wall585

is obscure and has similar intensity/appearance with the heart and liver.

First, we feed the active contour using Mask 1 (lower boundary is close to
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Figure 14: Contour evolution using different number of iterations on a noisy image.

Figure 15: Contour evolution using different number of iterations on an image with strong

appearance of the lung, liver and heart regions.

the chest wall boundary but away from the breast boundary) and second

we feed the active contour using Mask 2 (where the upper boundary is

located very close from the breast boundary but the masks base is away590

from the chest wall boundary). It can be observed that the contour evo-

lution fails to find the chest wall and breast boundaries accurately and

segmented the other parts of the image (liver/heart) in both experiments.
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In comparison, our proposed method can find the chest wall boundary

close to the actual boundary.595

Figure 16: Using a single active contour to estimate both breast and chest wall boundaries

simultaneously.

4. Invisible/complex anatomical appearance in the first-few and last-few slices

(see Figure 13) which make active contour unable to find the right edges

to approach and similar intensity homogeneity between the regions in the

image also can affect the active contour movement/evolution (most breast

and chest wall boundaries are visible in the middle slices). In this case600

(see Figure 13), a single active contour tends to over-segment the breast

region due to invisible/weak edges along the boundary.

5. Using a single active contour to segment both boundaries simultaneously

mean it is essential to get an initial mask that is close to these two bound-

aries. Unfortunately, to automatically get such mask is very difficult es-605

pecially the bottom part of the breast where other organs appear (lung,

liver and heart). In our case, we solved this problem using a generalised

2D mathematical model (the model of the breast shape) which is fast and

can automatically estimate the initial boundary of the chest wall by gen-

erating two quadratic equations which eventually evolve using the GACM610

method.
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Therefore, in our study to estimate the chest wall boundary we developed a

method consists of two separate sub-methods that firstly estimates the breast

boundary followed by contours evolution. The initial contours were determined

automatically based on the generalised 2D breast model and were evolved by615

exploiting the inflation and deflation forces of the GACM.

5.3. Computational Efficiency

In terms of computational efficiency the proposed method took on average

4.13± 1.3 seconds to find both breast and pectoral muscle boundaries with the

following parameter settings: i = 100, s = 1.0, d = 10, b = −1 for y0U and620

b = 1 for y0L. This is including the pre-processing and post-processing steps.

The GACM itself took on average 3.1± 1.2 seconds to find the pectoral muscle

boundary. Employing our proposed method is easy in terms of the choice of

the parameters due to its consistency over a wide range of different parameter

values. For example, the choice of parameters i in the range [70, ..., 100], d in625

the range [5, ..., 10], b in the range [0.6, 1.0]([−1.0(−0.6)]) and s in the range

[0.4, ..., 1.0] should produce a consistent performance based on our experimental

results.

5.4. Qualitative Comparison

Quantitative comparison of different studies in the literature is very difficult630

due to the unavailability of data from the other authors, different evaluation

metrics and different numbers of images used. Table 2 shows qualitative com-

parison with the existing studies in the literature. Note that each study has

its own dataset which makes a direct comparison difficult. Nevertheless, for the

sake of comparison, the proposed method achieved up to J̈ = 81.1%, D̈ = 89.4%,635

Ä = 96.1%, S̈ = 88.1%, S̄ = 98.4% and ∇D = 5.71mm when tested on the QIN

dataset. We further evaluate the proposed method on our own dataset and

it achieved J̈ = 84.9%, D̈ = 92.3%, Ä = 97.8%, S̈ = 90.2%, S̄ = 98.8% and

∇D = 4.92mm based on 50 patients. The method of Thakran et al. [7] reported

volumetric evaluation of J̈ = 95.1% and D̈ = 97.7 based on 30 patients. The640
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methods of Fooladivanda et al. [9], Milenković et al. [8], Jiang et al. (2017) [11]

and Wu et al. [10] produced very similar results between D̈ = 95 to 96.4%. Note

that studies in [9, 11] have made volumetric evaluation whereas the majority of

the studies in the literature made 2D evaluation.

Table 2: Qualitative comparison with the existing studies.

Authors J̈(%) D̈(%) # Patients Evaluation

Proposed 81.1 89.4 9 2D (QIN dataset)

84.9 92.3 50 2D (Own dataset)

Thakran et al. (2018) [7] 95.1 97.7 30 3D

Fooladivanda et al. (2017) [9] - 96.4 42 2D

Milenković et al. (2015) [8] - 96.1 52 2D

Jiang et al. (2017) [11] - 95.8 100 3D

Wu et al. (2013) [10] - 95 60 2D

Gubern-Mérida (2015) [5] - 94 27 2D

Rosado-Toro et al. (2015) [6] - 92 14 2D

Giannini et al. (2010) [4] - 79 31 2D

Giannini et al. [4] reported S̈ = 79% ± 9%, P̈ = 82% ± 10% and R̈ =645

95%± 2% based on 31 female patients, whereas our proposed method achieved

P̈ = 94%±7.2% and R̈ = 87.1%±6.2%. The metric P̈ is the number of pixels in

the intersection of segmentation and reference (manual segmentation), divided

by the number of pixels in the segmentation alone. The metric R̈ measures the

ratio of the number of pixels in the intersection of segmentation and reference,650

to the number of pixels in the reference. The study of Gubern-Mérida et al.

[5] reported D̈ = 94% ± 3% and S̈ = 96% ± 2% based on 27 female patients.

From the results of the existing studies presented in 2, we achieved comparable

performance considering the size of dataset used in our study (evaluated on 59

patients). In terms of ground truth, our manual segmentation on each slice was655

provided by an experienced observer (QIN dataset) and an expert radiologist
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(our own dataset). This is similar to the studies in [5, 9, 10] where a single

experienced observer/an expert radiologist was used to provide the manual an-

notation. Although the other studies used two observers/radiologists to provide

their annotation, each slice/scan/patient was annotated by one radiologist only660

(another radiologist provides annotation for another patient) such as the stud-

ies in [4, 6]. This means, using two radiologists are to speed up the process of

providing ground truth because it is time consuming.

5.5. Study limitations

The main limitations of this study is that we are unable to compare our665

results quantitatively against the other methods in the literature due to the

absence of data with ground truth or manual annotation available publicly. To

address this issue, we plan to make our ground truth data available so that

future researchers can compare their results with our results quantitatively.

Furthermore, implementing the existing studies in the literature from scratch is670

time consuming and the risk of developing/implementing it incorrectly is high.

Another limitation of our study is no quantitative reproducibility has been es-

tablished/provided for the QIN dataset. It is extremely time consuming for our

radiologist to provide his own annotations and make quantitative comparison

with our own annotation.675

5.6. Future work

For future work we plan to improve the contours’ convergence, hence boost-

ing the overall performance of the proposed method. We plan to employ a robust

segmentation technique to improve the accuracy of breast boundary. The esti-

mated breast boundary influences most of the important landmarks in the 2D680

model such as p3, p4, p5, p6, v1 and v2. For example, a poor estimation of

breast boundary resulting poor location of these points in the 2D model, hence

poor initialisation of y0U and y0L. Therefore, it is necessary to have a more ro-

bust method to estimate the breast boundary. However, achieving an optimum
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contours convergence is difficult because the chest wall boundary sometimes ob-685

scure or attach/overlapping with the lung/heart/liver. This will be very difficult

for the active contours to find the actual chest wall boundary. Alternative so-

lution would be to segment the lung/heart/liver separately followed by finding

the chest wall using active contours.

6. Conclusions690

We have developed a new breast segmentation method for MR images using

a generalised 2D mathematical breast model in conjunction with the geodesic

active contour model (GACM). The 2D breast model was developed based on an

empirical and quantitative evaluation to define a general shape (axial plane) of

the breast in MR images. The breast boundary can be estimated based on edge695

characteristics, whereas the pectoral muscle boundary can be estimated using

geodesic active contour models using inflation and deflation forces. Experimen-

tal results show that the method developed is not sensitive to its parameters and

produced consistent results across wide ranges of parameter values. Moreover,

both quantitative and qualitative results show that our method is robust in es-700

timating both the breast and pectoral boundaries. Although it is very difficult

to make quantitative conclusions, a visual comparison shows that our method

produced results that are comparable with those from the current studies in the

literature.
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