423 research outputs found

    Auditory and Haptic Feedback in a Socially Assistive Robot Memory Game

    Get PDF

    Accessibility requirements for human-robot interaction for socially assistive robots

    Get PDF
    Mención Internacional en el título de doctorPrograma de Doctorado en Ciencia y Tecnología Informåtica por la Universidad Carlos III de MadridPresidente: María Ángeles Malfaz Våzquez.- Secretario: Diego Martín de Andrés.- Vocal: Mike Wal

    Creative Haptic Interface Design for the Aging Population

    Get PDF
    Audiovisual human-computer-interfaces still make up the majority of content to the public; however, haptic interfaces offer unique advantage over the dominant information infrastructure, particularly for users with a disability or diminishing cognitive and physical skills like the elderly. The tactile sense allows users to integrate new, unobstructive channels for digital information into their sensorium, one that is less likely to be overwhelmed compared to vision and audition. Haptics research focus on the development of hardware, improving resolution, modality, and fidelity of the actuators. Despite the technological limitations, haptic interfaces are shown to reinforce physical skill acquisition, therapy, and communication. This chapter will present key characteristics intuitive tactile interfaces should capture for elderly end-users; sample projects will showcase unique applications and designs that identify the limitations of the UI

    Development and evaluation of a haptic framework supporting telerehabilitation robotics and group interaction

    Get PDF
    Telerehabilitation robotics has grown remarkably in the past few years. It can provide intensive training to people with special needs remotely while facilitating therapists to observe the whole process. Telerehabilitation robotics is a promising solution supporting routine care which can help to transform face-to-face and one-on-one treatment sessions that require not only intensive human resource but are also restricted to some specialised care centres to treatments that are technology-based (less human involvement) and easy to access remotely from anywhere. However, there are some limitations such as network latency, jitter, and delay of the internet that can affect negatively user experience and quality of the treatment session. Moreover, the lack of social interaction since all treatments are performed over the internet can reduce motivation of the patients. As a result, these limitations are making it very difficult to deliver an efficient recovery plan. This thesis developed and evaluated a new framework designed to facilitate telerehabilitation robotics. The framework integrates multiple cutting-edge technologies to generate playful activities that involve group interaction with binaural audio, visual, and haptic feedback with robot interaction in a variety of environments. The research questions asked were: 1) Can activity mediated by technology motivate and influence the behaviour of users, so that they engage in the activity and sustain a good level of motivation? 2) Will working as a group enhance users’ motivation and interaction? 3) Can we transfer real life activity involving group interaction to virtual domain and deliver it reliably via the internet? There were three goals in this work: first was to compare people’s behaviours and motivations while doing the task in a group and on their own; second was to determine whether group interaction in virtual and reala environments was different from each other in terms of performance, engagement and strategy to complete the task; finally was to test out the effectiveness of the framework based on the benchmarks generated from socially assistive robotics literature. Three studies have been conducted to achieve the first goal, two with healthy participants and one with seven autistic children. The first study observed how people react in a challenging group task while the other two studies compared group and individual interactions. The results obtained from these studies showed that the group interactions were more enjoyable than individual interactions and most likely had more positive effects in terms of user behaviours. This suggests that the group interaction approach has the potential to motivate individuals to make more movements and be more active and could be applied in the future for more serious therapy. Another study has been conducted to measure group interaction’s performance in virtual and real environments and pointed out which aspect influences users’ strategy for dealing with the task. The results from this study helped to form a better understanding to predict a user’s behaviour in a collaborative task. A simulation has been run to compare the results generated from the predictor and the real data. It has shown that, with an appropriate training method, the predictor can perform very well. This thesis has demonstrated the feasibility of group interaction via the internet using robotic technology which could be beneficial for people who require social interaction (e.g. stroke patients and autistic children) in their treatments without regular visits to the clinical centres

    Enabling audio-haptics

    Get PDF
    This thesis deals with possible solutions to facilitate orientation, navigation and overview of non-visual interfaces and virtual environments with the help of sound in combination with force-feedback haptics. Applications with haptic force-feedback, s

    Social Cognition for Human-Robot Symbiosis—Challenges and Building Blocks

    Get PDF
    The next generation of robot companions or robot working partners will need to satisfy social requirements somehow similar to the famous laws of robotics envisaged by Isaac Asimov time ago (Asimov, 1942). The necessary technology has almost reached the required level, including sensors and actuators, but the cognitive organization is still in its infancy and is only partially supported by the current understanding of brain cognitive processes. The brain of symbiotic robots will certainly not be a “positronic” replica of the human brain: probably, the greatest part of it will be a set of interacting computational processes running in the cloud. In this article, we review the challenges that must be met in the design of a set of interacting computational processes as building blocks of a cognitive architecture that may give symbiotic capabilities to collaborative robots of the next decades: (1) an animated body-schema; (2) an imitation machinery; (3) a motor intentions machinery; (4) a set of physical interaction mechanisms; and (5) a shared memory system for incremental symbiotic development. We would like to stress that our approach is totally un-hierarchical: the five building blocks of the shared cognitive architecture are fully bi-directionally connected. For example, imitation and intentional processes require the “services” of the animated body schema which, on the other hand, can run its simulations if appropriately prompted by imitation and/or intention, with or without physical interaction. Successful experiences can leave a trace in the shared memory system and chunks of memory fragment may compete to participate to novel cooperative actions. And so on and so forth. At the heart of the system is lifelong training and learning but, different from the conventional learning paradigms in neural networks, where learning is somehow passively imposed by an external agent, in symbiotic robots there is an element of free choice of what is worth learning, driven by the interaction between the robot and the human partner. The proposed set of building blocks is certainly a rough approximation of what is needed by symbiotic robots but we believe it is a useful starting point for building a computational framework

    Enhancing tele-operation - Investigating the effect of sensory feedback on performance

    Get PDF
    The decline in the number of healthcare service providers in comparison to the growing numbers of service users prompts the development of technologies to improve the efficiency of healthcare services. One such technology which could offer support are assistive robots, remotely tele-operated to provide assistive care and support for older adults with assistive care needs and people living with disabilities. Tele-operation makes it possible to provide human-in-the-loop robotic assistance while also addressing safety concerns in the use of autonomous robots around humans. Unlike many other applications of robot tele-operation, safety is particularly significant as the tele-operated assistive robots will be used in close proximity to vulnerable human users. It is therefore important to provide as much information about the robot (and the robot workspace) as possible to the tele-operators to ensure safety, as well as efficiency. Since robot tele-operation is relatively unexplored in the context of assisted living, this thesis explores different feedback modalities that may be employed to communicate sensor information to tele-operators. The thesis presents research as it transitioned from identifying and evaluating additional feedback modalities that may be used to supplement video feedback, to exploring different strategies for communicating the different feedback modalities. Due to the fact that some of the sensors and feedback needed are not readily available, different design iterations were carried out to develop the necessary hardware and software for the studies carried out. The first human study was carried out to investigate the effect of feedback on tele-operator performance. Performance was measured in terms of task completion time, ease of use of the system, number of robot joint movements, and success or failure of the task. The effect of verbal feedback between the tele-operator and service users was also investigated. Feedback modalities have differing effects on performance metrics and as a result, the choice of optimal feedback may vary from task to task. Results show that participants preferred scenarios with verbal feedback relative to scenarios without verbal feedback, which also reflects in their performance. Gaze metrics from the study also showed that it may be possible to understand how tele-operators interact with the system based on their areas of interest as they carry out tasks. This findings suggest that such studies can be used to improve the design of tele-operation systems.The need for social interaction between the tele-operator and service user suggests that visual and auditory feedback modalities will be engaged as tasks are carried out. This further reduces the number of available sensory modalities through which information can be communicated to tele-operators. A wrist-worn Wi-Fi enabled haptic feedback device was therefore developed and a study was carried out to investigate haptic sensitivities across the wrist. Results suggest that different locations on the wrist have varying sensitivities to haptic stimulation with and without video distraction, duration of haptic stimulation, and varying amplitudes of stimulation. This suggests that dynamic control of haptic feedback can be used to improve haptic perception across the wrist, and it may also be possible to display more than one type of sensor data to tele-operators during a task. The final study carried out was designed to investigate if participants can differentiate between different types of sensor data conveyed through different locations on the wrist via haptic feedback. The effect of increased number of attempts on performance was also investigated. Total task completion time decreased with task repetition. Participants with prior gaming and robot experience had a more significant reduction in total task completion time when compared to participants without prior gaming and robot experience. Reduction in task completion time was noticed for all stages of the task but participants with additional feedback had higher task completion time than participants without supplementary feedback. Reduction in task completion time varied for different stages of the task. Even though gripper trajectory reduced with task repetition, participants with supplementary feedback had longer gripper trajectories than participants without supplementary feedback, while participants with prior gaming experience had shorter gripper trajectories than participants without prior gaming experience. Perceived workload was also found to reduce with task repetition but perceived workload was higher for participants with feedback reported higher perceived workload than participants without feedback. However participants without feedback reported higher frustration than participants without feedback.Results show that the effect of feedback may not be significant where participants can get necessary information from video feedback. However, participants were fully dependent on feedback when video feedback could not provide requisite information needed.The findings presented in this thesis have potential applications in healthcare, and other applications of robot tele-operation and feedback. Findings can be used to improve feedback designs for tele-operation systems to ensure safe and efficient tele-operation. The thesis also provides ways visual feedback can be used with other feedback modalities. The haptic feedback designed in this research may also be used to provide situational awareness for the visually impaired

    Proceedings of the 4th international conference on disability, virtual reality and associated technologies (ICDVRAT 2002)

    Get PDF
    The proceedings of the conferenc
    • 

    corecore