198 research outputs found

    Model-based classification for subcellular localization prediction of proteins

    Get PDF

    Metalearning

    Get PDF
    This open access book as one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, automated machine learning (AutoML) is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user. This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and AutoML, covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience. This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence. ; Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence

    Metalearning

    Get PDF
    This open access book as one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, automated machine learning (AutoML) is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user. This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and AutoML, covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience. This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence. ; Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence

    Towards Deep Learning with Competing Generalisation Objectives

    Get PDF
    The unreasonable effectiveness of Deep Learning continues to deliver unprecedented Artificial Intelligence capabilities to billions of people. Growing datasets and technological advances keep extending the reach of expressive model architectures trained through efficient optimisations. Thus, deep learning approaches continue to provide increasingly proficient subroutines for, among others, computer vision and natural interaction through speech and text. Due to their scalable learning and inference priors, higher performance is often gained cost-effectively through largely automatic training. As a result, new and improved capabilities empower more people while the costs of access drop. The arising opportunities and challenges have profoundly influenced research. Quality attributes of scalable software became central desiderata of deep learning paradigms, including reusability, efficiency, robustness and safety. Ongoing research into continual, meta- and robust learning aims to maximise such scalability metrics in addition to multiple generalisation criteria, despite possible conflicts. A significant challenge is to satisfy competing criteria automatically and cost-effectively. In this thesis, we introduce a unifying perspective on learning with competing generalisation objectives and make three additional contributions. When autonomous learning through multi-criteria optimisation is impractical, it is reasonable to ask whether knowledge of appropriate trade-offs could make it simultaneously effective and efficient. Informed by explicit trade-offs of interest to particular applications, we developed and evaluated bespoke model architecture priors. We introduced a novel architecture for sim-to-real transfer of robotic control policies by learning progressively to generalise anew. Competing desiderata of continual learning were balanced through disjoint capacity and hierarchical reuse of previously learnt representations. A new state-of-the-art meta-learning approach is then proposed. We showed that meta-trained hypernetworks efficiently store and flexibly reuse knowledge for new generalisation criteria through few-shot gradient-based optimisation. Finally, we characterised empirical trade-offs between the many desiderata of adversarial robustness and demonstrated a novel defensive capability of implicit neural networks to hinder many attacks simultaneously

    Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation

    Get PDF
    Intrusion detection systems (IDSs) are intrinsically linked to a comprehensive solution of cyberattacks prevention instruments. To achieve a higher detection rate, the ability to design an improved detection framework is sought after, particularly when utilizing ensemble learners. Designing an ensemble often lies in two main challenges such as the choice of available base classifiers and combiner methods. This paper performs an overview of how ensemble learners are exploited in IDSs by means of systematic mapping study. We collected and analyzed 124 prominent publications from the existing literature. The selected publications were then mapped into several categories such as years of publications, publication venues, datasets used, ensemble methods, and IDS techniques. Furthermore, this study reports and analyzes an empirical investigation of a new classifier ensemble approach, called stack of ensemble (SoE) for anomaly-based IDS. The SoE is an ensemble classifier that adopts parallel architecture to combine three individual ensemble learners such as random forest, gradient boosting machine, and extreme gradient boosting machine in a homogeneous manner. The performance significance among classification algorithms is statistically examined in terms of their Matthews correlation coefficients, accuracies, false positive rates, and area under ROC curve metrics. Our study fills the gap in current literature concerning an up-to-date systematic mapping study, not to mention an extensive empirical evaluation of the recent advances of ensemble learning techniques applied to IDSs. (C) 2020 Elsevier Inc. All rights reserved
    corecore