158 research outputs found

    Techniques pour l'évaluation et l'amélioration du comportement des technologies émergentes face aux fautes aléatoires

    Get PDF
    The main objective of this thesis is to develop analysis and mitigation techniques that can be used to face the effects of radiation-induced soft errors - external and internal disturbances produced by radioactive particles, affecting the reliability and safety in operation complex microelectronic circuits. This thesis aims to provide industrial solutions and methodologies for the areas of terrestrial applications requiring ultimate reliability (telecommunications, medical devices, ...) to complement previous work on Soft Errors traditionally oriented aerospace, nuclear and military applications.The work presented uses a decomposition of the error sources, inside the current circuits, to highlight the most important contributors.Single Event Effects in sequential logic cells represent the current target for analysis and improvement efforts in both industry and academia. This thesis presents a state-aware analysis methodology that improves the accuracy of Soft Error Rate data for individual sequential instances based on the circuit and application. Furthermore, the intrinsic imbalance between the SEU susceptibility of different flip-flop states is exploited to implement a low-cost SER improvement strategy.Single Event Transients affecting combinational logic are considerably more difficult to model, simulate and analyze than the closely-related Single Event Upsets. The working environment may cause a myriad of distinctive transient pulses in various cell types that are used in widely different configurations. This thesis presents practical approach to a possible exhaustive Single Event Transient evaluation flow in an industrial setting. The main steps of this process consists in: a) fully characterize the standard cell library using a process and library-aware SER tool, b) evaluate SET effects in the logic networks of the circuit using a variety dynamic (simulation-based) and static (probabilistic) methods and c) compute overall SET figures taking into account the particularities of the implementation of the circuit and its environment.Fault-injection remains the primary method for analyzing the effects of soft errors. This document presents the results of functional analysis of a complex CPU. Three representative benchmarks were considered for this analysis. Accelerated simulation techniques (probabilistic calculations, clustering, parallel simulations) have been proposed and evaluated in order to develop an industrial validation environment, able to take into account very complex circuits. The results obtained allowed the development and evaluation of a hypothetical mitigation scenario that aims to significantly improve the reliability of the circuit at the lowest cost.The results obtained show that the error rate, SDC (Silent Data Corruption) and DUE (Detectable Uncorrectable Errors) can be significantly reduced by hardening a small part of the circuit (Selective mitigation).In addition to the main axis of research, some tangential topics were studied in collaboration with other teams. One of these consisted in the study of a technique for the mitigation of flip-flop soft-errors through an optimization of the Temporal De-Rating (TDR) by selectively inserting delay on the input or output of flip-flops.The Methodologies, the algorithms and the CAD tools proposed and validated as part of the work are intended for industrial use and have been included in a commercial CAD framework that offers a complete solution for assessing the reliability of circuits and complex electronic systems.L'objectif principal de cette thèse est de développer des techniques d'analyse et mitigation capables à contrer les effets des Evènements Singuliers (Single Event Effects) - perturbations externes et internes produites par les particules radioactives, affectant la fiabilité et la sureté en fonctionnement des circuits microélectroniques complexes. Cette thèse à la vocation d'offrir des solutions et méthodologies industrielles pour les domaines d'applications terrestres exigeant une fiabilité ultime (télécommunications, dispositifs médicaux, ...) en complément des travaux précédents sur les Soft Errors, traditionnellement orientés vers les applications aérospatiales, nucléaires et militaires.Les travaux présentés utilisent une décomposition de sources d'erreurs dans les circuits actuels, visant à mettre en évidence les contributeurs les plus importants.Les upsets (SEU) - Evènements Singuliers (ES) dans les cellules logiques séquentielles représentent actuellement la cible principale pour les efforts d'analyse et d'amélioration à la fois dans l'industrie et dans l'académie. Cette thèse présente une méthodologie d'analyse basée sur la prise en compte de la sensibilité de chaque état logique d'une cellule (state-awareness), approche qui améliore considérablement la précision des résultats concernant les taux des évènements pour les instances séquentielles individuelles. En outre, le déséquilibre intrinsèque entre la susceptibilité des différents états des bascules est exploité pour mettre en œuvre une stratégie d'amélioration SER à très faible coût.Les fautes transitoires (SET) affectant la logique combinatoire sont beaucoup plus difficiles à modéliser, à simuler et à analyser que les SEUs. L'environnement radiatif peut provoquer une multitude d'impulsions transitoires dans les divers types de cellules qui sont utilisés en configurations multiples. Cette thèse présente une approche pratique pour l'analyse SET, applicable à des circuits industriels très complexes. Les principales étapes de ce processus consiste à: a) caractériser complètement la bibliothèque de cellules standard, b) évaluer les SET dans les réseaux logiques du circuit en utilisant des méthodes statiques et dynamiques et c) calculer le taux SET global en prenant en compte les particularités de l'implémentation du circuit et de son environnement.L'injection de fautes reste la principale méthode d'analyse pour étudier l'impact des fautes, erreurs et disfonctionnements causés par les évènements singuliers. Ce document présente les résultats d'une analyse fonctionnelle d'un processeur complexe dans la présence des fautes et pour une sélection d'applications (benchmarks) représentatifs. Des techniques d'accélération de la simulation (calculs probabilistes, clustering, simulations parallèles) ont été proposées et évalués afin d'élaborer un environnement de validation industriel, capable à prendre en compte des circuits très complexes. Les résultats obtenus ont permis l'élaboration et l'évaluation d'un hypothétique scénario de mitigation qui vise à améliorer sensiblement, et cela au moindre coût, la fiabilité du circuit sous test. Les résultats obtenus montrent que les taux d'erreur, SDC (Silent Data Corruption) et DUE (Detectable Uncorrectable Errors) peuvent être considérablement réduits par le durcissement d'un petite partie du circuit (protection sélective). D'autres techniques spécifiques ont été également déployées: mitigation du taux de soft-errors des Flip-Flips grâce à une optimisation du Temporal De-Rating par l'insertion sélective de retard sur l'entrée ou la sortie des bascules et biasing du circuit pour privilégier les états moins sensibles.Les méthodologies, algorithmes et outils CAO proposés et validés dans le cadre de ces travaux sont destinés à un usage industriel et ont été valorisés dans le cadre de plateforme CAO commerciale visant à offrir une solution complète pour l'évaluation de la fiabilité des circuits et systèmes électroniques complexes

    Runtime Monitoring for Dependable Hardware Design

    Get PDF
    Mit dem Voranschreiten der Technologieskalierung und der Globalisierung der Produktion von integrierten Schaltkreisen eröffnen sich eine Fülle von Schwachstellen bezüglich der Verlässlichkeit von Computerhardware. Jeder Mikrochip wird aufgrund von Produktionsschwankungen mit einem einzigartigen Charakter geboren, welcher sich durch seine Arbeitsbedingungen, Belastung und Umgebung in individueller Weise entwickelt. Daher sind deterministische Modelle, welche zur Entwurfszeit die Verlässlichkeit prognostizieren, nicht mehr ausreichend um Integrierte Schaltkreise mit Nanometertechnologie sinnvoll abbilden zu können. Der Bedarf einer Laufzeitanalyse des Zustandes steigt und mit ihm die notwendigen Maßnahmen zum Erhalt der Zuverlässigkeit. Transistoren sind anfällig für auslastungsbedingte Alterung, die die Laufzeit der Schaltung erhöht und mit ihr die Möglichkeit einer Fehlberechnung. Hinzu kommen spezielle Abläufe die das schnelle Altern des Chips befördern und somit seine zuverlässige Lebenszeit reduzieren. Zusätzlich können strahlungsbedingte Laufzeitfehler (Soft-Errors) des Chips abnormales Verhalten kritischer Systeme verursachen. Sowohl das Ausbreiten als auch das Maskieren dieser Fehler wiederum sind abhängig von der Arbeitslast des Systems. Fabrizierten Chips können ebenfalls vorsätzlich während der Produktion boshafte Schaltungen, sogenannte Hardwaretrojaner, hinzugefügt werden. Dies kompromittiert die Sicherheit des Chips. Da diese Art der Manipulation vor ihrer Aktivierung kaum zu erfassen ist, ist der Nachweis von Trojanern auf einem Chip direkt nach der Produktion extrem schwierig. Die Komplexität dieser Verlässlichkeitsprobleme machen ein einfaches Modellieren der Zuverlässigkeit und Gegenmaßnahmen ineffizient. Sie entsteht aufgrund verschiedener Quellen, eingeschlossen der Entwicklungsparameter (Technologie, Gerät, Schaltung und Architektur), der Herstellungsparameter, der Laufzeitauslastung und der Arbeitsumgebung. Dies motiviert das Erforschen von maschinellem Lernen und Laufzeitmethoden, welche potentiell mit dieser Komplexität arbeiten können. In dieser Arbeit stellen wir Lösungen vor, die in der Lage sind, eine verlässliche Ausführung von Computerhardware mit unterschiedlichem Laufzeitverhalten und Arbeitsbedingungen zu gewährleisten. Wir entwickelten Techniken des maschinellen Lernens um verschiedene Zuverlässigkeitseffekte zu modellieren, zu überwachen und auszugleichen. Verschiedene Lernmethoden werden genutzt, um günstige Überwachungspunkte zur Kontrolle der Arbeitsbelastung zu finden. Diese werden zusammen mit Zuverlässigkeitsmetriken, aufbauend auf Ausfallsicherheit und generellen Sicherheitsattributen, zum Erstellen von Vorhersagemodellen genutzt. Des Weiteren präsentieren wir eine kosten-optimierte Hardwaremonitorschaltung, welche die Überwachungspunkte zur Laufzeit auswertet. Im Gegensatz zum aktuellen Stand der Technik, welcher mikroarchitektonische Überwachungspunkte ausnutzt, evaluieren wir das Potential von Arbeitsbelastungscharakteristiken auf der Logikebene der zugrundeliegenden Hardware. Wir identifizieren verbesserte Features auf Logikebene um feingranulare Laufzeitüberwachung zu ermöglichen. Diese Logikanalyse wiederum hat verschiedene Stellschrauben um auf höhere Genauigkeit und niedrigeren Overhead zu optimieren. Wir untersuchten die Philosophie, Überwachungspunkte auf Logikebene mit Hilfe von Lernmethoden zu identifizieren und günstigen Monitore zu implementieren um eine adaptive Vorbeugung gegen statisches Altern, dynamisches Altern und strahlungsinduzierte Soft-Errors zu schaffen und zusätzlich die Aktivierung von Hardwaretrojanern zu erkennen. Diesbezüglich haben wir ein Vorhersagemodell entworfen, welches den Arbeitslasteinfluss auf alterungsbedingte Verschlechterungen des Chips mitverfolgt und dazu genutzt werden kann, dynamisch zur Laufzeit vorbeugende Techniken, wie Task-Mitigation, Spannungs- und Frequenzskalierung zu benutzen. Dieses Vorhersagemodell wurde in Software implementiert, welche verschiedene Arbeitslasten aufgrund ihrer Alterungswirkung einordnet. Um die Widerstandsfähigkeit gegenüber beschleunigter Alterung sicherzustellen, stellen wir eine Überwachungshardware vor, welche einen Teil der kritischen Flip-Flops beaufsichtigt, nach beschleunigter Alterung Ausschau hält und davor warnt, wenn ein zeitkritischer Pfad unter starker Alterungsbelastung steht. Wir geben die Implementierung einer Technik zum Reduzieren der durch das Ausführen spezifischer Subroutinen auftretenden Belastung von zeitkritischen Pfaden. Zusätzlich schlagen wir eine Technik zur Abschätzung von online Soft-Error-Schwachstellen von Speicherarrays und Logikkernen vor, welche auf der Überwachung einer kleinen Gruppe Flip-Flops des Entwurfs basiert. Des Weiteren haben wir eine Methode basierend auf Anomalieerkennung entwickelt, um Arbeitslastsignaturen von Hardwaretrojanern während deren Aktivierung zur Laufzeit zu erkennen und somit eine letzte Verteidigungslinie zu bilden. Basierend auf diesen Experimenten demonstriert diese Arbeit das Potential von fortgeschrittener Feature-Extraktion auf Logikebene und lernbasierter Vorhersage basierend auf Laufzeitdaten zur Verbesserung der Zuverlässigkeit von Harwareentwürfen

    Characterization of Interconnection Delays in FPGAS Due to Single Event Upsets and Mitigation

    Get PDF
    RÉSUMÉ L’utilisation incessante de composants électroniques à géométrie toujours plus faible a engendré de nouveaux défis au fil des ans. Par exemple, des semi-conducteurs à mémoire et à microprocesseur plus avancés sont utilisés dans les systèmes avioniques qui présentent une susceptibilité importante aux phénomènes de rayonnement cosmique. L'une des principales implications des rayons cosmiques, observée principalement dans les satellites en orbite, est l'effet d'événements singuliers (SEE). Le rayonnement atmosphérique suscite plusieurs préoccupations concernant la sécurité et la fiabilité de l'équipement avionique, en particulier pour les systèmes qui impliquent des réseaux de portes programmables (FPGA). Les FPGA à base de cellules de mémoire statique (SRAM) présentent une solution attrayante pour mettre en oeuvre des systèmes complexes dans le domaine de l’avionique. Les expériences de rayonnement réalisées sur les FPGA ont dévoilé la vulnérabilité de ces dispositifs contre un type particulier de SEE, à savoir, les événements singuliers de changement d’état (SEU). Un SEU est considérée comme le changement de l'état d'un élément bistable (c'est-à-dire, un bit-flip) dû à l'effet d'un ion, d'un proton ou d’un neutron énergétique. Cet effet est non destructif et peut être corrigé en réécrivant la partie de la SRAM affectée. Les changements de délai (DC) potentiels dus aux SEU affectant la mémoire de configuration de routage ont été récemment confirmés. Un des objectifs de cette thèse consiste à caractériser plus précisément les DC dans les FPGA causés par les SEU. Les DC observés expérimentalement sont présentés et la modélisation au niveau circuit de ces DC est proposée. Les circuits impliqués dans la propagation du délai sont validés en effectuant une modélisation précise des blocs internes à l'intérieur du FPGA et en exécutant des simulations. Les résultats montrent l’origine des DC qui sont en accord avec les mesures expérimentales de délais. Les modèles proposés au niveau circuit sont, aux meilleures de notre connaissance, le premier travail qui confirme et explique les délais combinatoires dans les FPGA. La conception d'un circuit moniteur de délai pour la détection des DC a été faite dans la deuxième partie de cette thèse. Ce moniteur permet de détecter un changement de délai sur les sections critiques du circuit et de prévenir les pannes de synchronisation engendrées par les SEU sans utiliser la redondance modulaire triple (TMR).----------ABSTRACT The unrelenting demand for electronic components with ever diminishing feature size have emerged new challenges over the years. Among them, more advanced memory and microprocessor semiconductors are being used in avionic systems that exhibit a substantial susceptibility to cosmic radiation phenomena. One of the main implications of cosmic rays, which was primarily observed in orbiting satellites, is single-event effect (SEE). Atmospheric radiation causes several concerns regarding the safety and reliability of avionics equipment, particularly for systems that involve field programmable gate arrays (FPGA). SRAM-based FPGAs, as an attractive solution to implement systems in aeronautic sector, are very susceptible to SEEs in particular Single Event Upset (SEU). An SEU is considered as the change of the state of a bistable element (i.e., bit-flip) due to the effect of an energetic ion or proton. This effect is non-destructive and may be fixed by rewriting the affected part. Sensitivity evaluation of SRAM-based FPGAs to a physical impact such as potential delay changes (DC) has not been addressed thus far in the literature. DCs induced by SEU can affect the functionality of the logic circuits by disturbing the race condition on critical paths. The objective of this thesis is toward the characterization of DCs in SRAM-based FPGAs due to transient ionizing radiation. The DCs observed experimentally are presented and the circuit-level modeling of those DCs is proposed. Circuits involved in delay propagation are reverse-engineered by performing precise modeling of internal blocks inside the FPGA and executing simulations. The results show the root cause of DCs that are in good agreement with experimental delay measurements. The proposed circuit level models are, to the best of our knowledge, the first work on modeling of combinational delays in FPGAs.In addition, the design of a delay monitor circuit for DC detection is investigated in the second part of this thesis. This monitor allowed to show experimentally cumulative DCs on interconnects in FPGA. To this end, by avoiding the use of triple modular redundancy (TMR), a mitigation technique for DCs is proposed and the system downtime is minimized. A method is also proposed to decrease the clock frequency after DC detection without interrupting the process

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Approximate hardening techniques for digital signal processing circuits against radiation-induced faults

    Get PDF
    RESUMEN NO TÉCNICO. Se llama radiación al proceso por el cual una partícula o una onda es capaz de transmitir energía a través del espacio o un medio material. Si la energía transmitida es suficientemente alta, la radiación puede provocar que algunos electrones se desplacen de su posición, en un proceso llamado ionización. La radiación ionizante puede provocar problemas a los seres vivos, pero también a los diversos materiales que componen los sistemas eléctricos y electrónicos utilizados en entornos sujetos a radiación. Existen en La Tierra varios procesos que emiten radiación ionizante, como la obtención de energía en centrales nucleares o ciertos procedimientos médicos. Sin embargo, las fuentes de radiación más importantes se sitúan más allá de nuestra atmósfera y afectan fundamentalmente a sistemas aeroespaciales y vuelos de gran altitud. Debido a la radiación, los sistemas electrónicos que se exponen a cualquiera de estas fuentes sufren degradación en sus propiedades a lo largo del tiempo y pueden sufrir fallos catastróficos que acorten su vida útil. El envejecimiento de los componentes se produce por acumulación de carga eléctrica en el material, lo que se conoce como Dosis Ionizante Total (TID por sus siglas en inglés), o por distorsiones en el silicio sobre el que se fabrican los circuitos, lo que se conoce como Daño por Desplazamiento (DD). Una única partícula ionizante puede, sin embargo, provocar también diversos tipos de fallos transitorios o permanentes en los componentes de un circuito, generalmente por un cambio de estado en un elemento de memoria o fallos destructivos en un transistor. Los diferentes tipos de fallos producidos en circuitos por la acción de una única partícula ionizante se engloban en la categoría de Efectos de Evento Único (SEE por sus siglas en inglés). Para proteger los sistemas electrónicos frente a los efectos de la radiación se suele recurrir a un conjunto de técnicas que llamamos endurecimiento frente a radiación. Los procedimientos tradicionales de endurecimiento han consistido en la fabricación de componentes electrónicos mediante procesos especiales que les confieran una resistencia inherente frente a la TID, el DD y los SEE. A este conjunto de técnicas de endurecimiento se lo conoce como Endurecimiento frente a la Radiación Por Proceso (RHBP por sus siglas en inglés). Estos procedimientos suelen aumentar el coste de los componentes y empeorar su rendimiento con respecto a los componentes que usamos en nuestros sistemas electrónicos cotidianos. En oposición a las técnicas RHBP encontramos las técnicas de Endurecimiento frente a la Radiación Por Diseño (RHBD por sus siglas en inglés). Estas técnicas permiten detectar y tratar de corregir fallos producidos por la radiación introduciendo modificaciones en los circuitos. Estas modificaciones suelen aumentar la complejidad de los circuitos que se quiere endurecer, haciendo que consuman más energía, ocupen más espacio o funcionen a menor frecuencia, pero estas desventajas se pueden compensar con la disminución de los costes de fabricación y la mejora en las prestaciones que aportan los sistemas modernos. En un intento por reducir el coste de las misiones espaciales y mejorar sus capacidades, en los últimos años se trata de introducir un mayor número de Componentes Comerciales (COTS por sus siglas en inglés), endurecidos mediante técnicas RHBD. Las técnicas RHBD habituales se basan en la adición de elementos redundantes idénticos al original, cuyos resultados se pueden comparar entre sí para obtener información acerca de la existencia de un error (si sólo se usa un circuito redundante, Duplicación Con Comparación [DWC]) o llegar incluso a corregir un error detectado de manera automática, si se emplean dos o más réplicas redundantes, siendo el caso más habitual la Redundancia Modular Triple (TMR) en todas sus variantes. El trabajo desarrollado en esta Tesis gira en torno a las técnicas de endurecimiento RHBD de sistemas electrónicos comerciales. En concreto, se trata de proponer y caracterizar nuevas técnicas de endurecimiento que permitan reducir el alto consumo de recursos de las utilizadas habitualmente. Para ello, se han desarrollado técnicas de endurecimiento que aprovechan cálculos aproximados para detectar y corregir fallos en circuitos electrónicos digitales para procesamiento de señal implementados en FPGA comerciales, dispositivos que permiten implementar circuitos electrónicos digitales a medida y reconfigurarlos tantas veces como se quiera. A lo largo de esta Tesis se han desarrollado diferentes circuitos de prueba endurecidos mediante TMR y se ha comparado su rendimiento con los de otras técnicas de Redundancia Aproximada, en concreto la Redundancia de Precisión Reducida (RPR), la Redundancia de Resolución Reducida (RRR) y la Redundancia Optimizada para Algoritmos Compuestos (ORCA): • La Redundancia de Precisión Reducida se basa en la utilización de dos réplicas redundantes que calculan resultados con un menor número de bits que el circuito original. De este modo se pueden disminuir los recursos necesitados por el circuito, aunque las correcciones en caso de fallo son menos precisas que en el TMR. En este trabajo exploramos también la RPR Escalada como un método de obtener un balance óptimo entre la precisión y el consumo de recursos. • La Redundancia de Resolución Reducida es una técnica propuesta originalmente en esta tesis. Está pensada para algoritmos que trabajan con información en forma de paquetes cuyos datos individuales guardan alguna relación entre sí. Las réplicas redundantes calculan los resultados con una fracción de los datos de entrada originales, lo que reduce su tamaño y permite correcciones aproximadas en caso de fallo. • La Redundancia Optimizada para Algoritmos Compuestos es también una aportación original de esta tesis. Está indicada para algoritmos cuyo resultado final puede expresarse como la composición de resultados intermedios calculados en etapas anteriores. Las réplicas redundantes se forman como bloques que calculan resultados intermedios y el resultado de su composición se puede comparar con el resultado original. Este método permite reducir recursos y proporciona resultados de corrección exactos en la mayor parte de los casos, lo que supone una mejora importante con respecto a las correcciones de los métodos anteriores. La eficacia de las técnicas de endurecimiento desarrolladas se ha probado mediante experimentos de inyección de fallos y mediante ensayos en instalaciones de aceleradores de partículas preparadas para la irradiación de dispositivos electrónicos. En concreto, se han realizado ensayos de radiación con protones en el Centro Nacional de Aceleradores (CNA España), el Paul Scherrer Institut (PSI, Suiza) y ensayos de radiación con neutrones en el laboratorio ISIS Neutron and Muon Source (ChipIR, Reino Unido).RESUMEN TÉCNICO. Se llama radiación al proceso por el cual una partícula o una onda es capaz de transmitir energía a través del espacio o un medio material. Si la energía transmitida es suficientemente alta, la radiación puede provocar que algunos electrones se desplacen de su posición, en un proceso llamado ionización. La radiación ionizante puede provocar problemas a los seres vivos, pero también a los diversos materiales que componen los sistemas eléctricos y electrónicos utilizados en entornos sujetos a radiación. Existen en La Tierra varios procesos que emiten radiación ionizante, como la obtención de energía en centrales nucleares o ciertos procedimientos médicos. Sin embargo, las fuentes de radiación más importantes se sitúan más allá de nuestra atmósfera y afectan fundamentalmente a sistemas aeroespaciales y vuelos de gran altitud. Debido a la radiación, los sistemas electrónicos que se exponen a cualquiera de estas fuentes sufren degradación en sus propiedades a lo largo del tiempo y pueden sufrir fallos catastróficos que acorten su vida útil. El envejecimiento de los componentes se produce por acumulación de carga eléctrica en el material, lo que se conoce como Dosis Ionizante Total (TID, Total Ionizing Dose), o por distorsiones acumuladas en la matriz cristalina del silicio en el que se fabrican los circuitos, lo que se conoce como Daño por Desplazamiento (DD, Displacement Damage). Una única partícula ionizante puede, sin embargo, provocar también diversos tipos de fallos transitorios o permanentes en los componentes de un circuito, generalmente por un cambio de estado en un elemento de memoria o la activación de circuitos parasitarios en un transistor. Los diferentes tipos de fallos producidos en circuitos por la acción de una única partícula ionizante se engloban en la categoría de Efectos de Evento Único (SEE, Single Event Effects). Para proteger los sistemas electrónicos frente a los efectos de la radiación se suele recurrir a un conjunto de técnicas que llamamos endurecimiento frente a radiación. Los procedimientos tradicionales de endurecimiento han consistido en la fabricación de componentes electrónicos mediante procesos especiales que les confieran una resistencia inherente frente a la TID, el DD y los SEE. A este conjunto de técnicas de endurecimiento se lo conoce como Endurecimiento frente a la Radiación Por Proceso (RHBP, por sus siglas en inglés). Estos procedimientos suelen aumentar el coste de los componentes y empeorar su rendimiento con respecto a los componentes que usamos en nuestros sistemas electrónicos cotidianos. En oposición a las técnicas RHBP encontramos las técnicas de Endurecimiento frente a la Radiación Por Diseño (RHBD, por sus siglas en inglés). Estas técnicas permiten detectar y tratar de corregir fallos producidos por la radiación introduciendo modificaciones en los circuitos. Estas modificaciones suelen aumentar la complejidad de los circuitos que se quiere endurecer, haciendo que consuman más energía, ocupen más espacio o funcionen a menor frecuencia, pero estas desventajas se pueden compensar con la disminución de los costes de fabricación y la mejora en las prestaciones que aportan los sistemas modernos. En un intento por reducir el coste de las misiones espaciales y mejorar sus capacidades, en los últimos años se trata de introducir un mayor número de Componentes Comerciales (COTS, por sus siglas en inglés), endurecidos mediante técnicas RHBD. Las técnicas RHBD habituales se basan en la adición de elementos redundantes idénticos al original, cuyos resultados se pueden comparar entre sí para obtener información acerca de la existencia de un error (si sólo se usa un circuito redundante, Duplicación Con Comparación [DWC, Duplication With Comparison]) o llegar incluso a corregir un error detectado de manera automática, si se emplean dos o más réplicas redundantes, siendo el caso más habitual la Redundancia Modular Triple (TMR, Triple Modular Redundancy) en todas sus variantes. El trabajo desarrollado en esta Tesis gira en torno a las técnicas de endurecimiento RHBD de sistemas electrónicos comerciales. En concreto, se trata de proponer y caracterizar nuevas técnicas de endurecimiento que permitan reducir el alto consumo de recursos de las técnicas utilizadas habitualmente. Para ello, se han desarrollado técnicas de endurecimiento que aprovechan cálculos aproximados para detectar y corregir fallos en circuitos electrónicos digitales para procesamiento de señal implementados en FPGA (Field Programmable Gate Array) comerciales. Las FPGA son dispositivos que permiten implementar circuitos electrónicos digitales diseñados a medida y reconfigurarlos tantas veces como se quiera. Su capacidad de reconfiguración y sus altas prestaciones las convierten en dispositivos muy interesantes para aplicaciones espaciales, donde realizar cambios en los diseños no suele ser posible una vez comenzada la misión. La reconfigurabilidad de las FPGA permite corregir en remoto posibles problemas en el diseño, pero también añadir o modificar funcionalidades a los circuitos implementados en el sistema. La eficacia de las técnicas de endurecimiento desarrolladas e implementadas en FPGAs se ha probado mediante experimentos de inyección de fallos y mediante ensayos en instalaciones de aceleradores de partículas preparadas para la irradiación de dispositivos electrónicos. Los ensayos de radiación son el estándar industrial para probar el comportamiento de todos los sistemas electrónicos que se envían a una misión espacial. Con estos ensayos se trata de emular de manera acelerada las condiciones de radiación a las que se verán sometidos los sistemas una vez hayan sido lanzados y determinar su resistencia a TID, DD y/o SEEs. Dependiendo del efecto que se quiera observar, las partículas elegidas para la radiación varían, pudiendo elegirse entre electrones, neutrones, protones, iones pesados, fotones... Particularmente, los ensayos de radiación realizados en este trabajo, tratándose de un estudio de técnicas de endurecimiento para sistemas electrónicos digitales, están destinados a establecer la sensibilidad de los circuitos estudiados frente a un tipo de SEE conocido como Single Event Upset (SEU), en el que la radiación modifica el valor lógico de un elemento de memoria. Para ello, hemos recurrido a experimentos de radiación con protones en el Centro Nacional de Aceleradores (CNA, España), el Paul Scherrer Institut (PSI, Suiza) y experimentos de radiación con neutrones en el laboratorio ISIS Neutron and Muon Source (ChipIR, Reino Unido). La sensibilidad de un circuito suele medirse en términos de su sección eficaz (cross section) con respecto a una partícula determinada, calculada como el cociente entre el número de fallos encontrados y el número de partículas ionizantes por unidad de área utilizadas en la campaña de radiación. Esta métrica sirve para estimar el número de fallos que provocará la radiación a lo largo de la vida útil del sistema, pero también para establecer comparaciones que permitan conocer la eficacia de los sistemas de endurecimiento implementados y ayudar a mejorarlos. El método de inyección de fallos utilizado en esta Tesis como complemento a la radiación se basa en modificar el valor lógico de los datos almacenados en la memoria de configuración de la FPGA. En esta memoria se guarda la descripción del funcionamiento del circuito implementado en la FPGA, por lo que modificar sus valores equivale a modificar el circuito. En FPGAs que utilizan la tecnología SRAM en sus memorias de configuración, como las utilizadas en esta Tesis, este es el componente más sensible a la radiación, por lo que es posible comparar los resultados de la inyección de fallos y de las campañas de radiación. Análogamente a la sección eficaz, en experimentos de inyección de fallos podemos hablar de la tasa de error, calculada como el cociente entre el número de fallos encontrados y la cantidad de bits de memoria inyectados. A lo largo de esta Tesis se han desarrollado diferentes circuitos endurecidos mediante Redundancia Modular Triple y se ha comparado su rendimiento con los de otras técnicas de Redundancia Aproximada, en concreto la Redundancia de Precisión Reducida (RPR), la Redundancia de Resolución Reducida (RRR) y la Redundancia Optimizada para Algoritmos Compuestos (ORCA). Estas dos últimas son contribuciones originales presentadas en esta Tesis. • La Redundancia de Precisión Reducida se basa en la utilización de dos réplicas redundantes que calculan resultados con un menor número de bits que el circuito original. Para cada dato de salida se comparan el resultado del circuito original y los dos resultados de precisión reducida. Si los dos resultados de precisión reducida son idénticos y su diferencia con el resultado de precisión completa es mayor que un determinado valor umbral, se considera que existe un fallo en el circuito original y se utiliza el resultado de precisión reducida para corregirlo. En cualquier otro caso, el resultado original se considera correcto, aunque pueda contener errores tolerables por debajo del umbral de comparación. En comparación con un circuito endurecido con TMR, los diseños RPR utilizan menos recursos, debido a la reducción en la precisión de los cálculos de los circuitos redundantes. No obstante, esto también afecta a la calidad de los resultados obtenidos cuando se corrige un error. En este trabajo exploramos también la RPR Escalada como un método de obtener un balance óptimo entre la precisión y el consumo de recursos. En esta variante de la técnica RPR, los resultados de cada etapa de cálculo en los circuitos redundantes tienen una precisión diferente, incrementándose hacia las últimas etapas, en las que el resultado tiene la misma precisión que el circuito original. Con este método se logra incrementar la calidad de los datos corregidos a la vez que se reducen los recursos utilizados por el endurecimiento. Los resultados de las campañas de radiación y de inyección de fallos realizadas sobre los diseños endurecidos con RPR sugieren que la reducción de recursos no sólo es beneficiosa por sí misma en términos de recursos y energía utilizados por el sistema, sino que también conlleva una reducción de la sensibilidad de los circuitos, medida tanto en cross section como en tasa de error. • La Redundancia de Resolución Reducida es una técnica propuesta originalmente en esta tesis. Está indicada para algoritmos que trabajan con información en forma de paquetes cuyos datos individuales guardan alguna relación entre sí, como puede ser un algoritmo de procesamiento de imágenes. En la técnica RRR, se añaden dos circuitos redundantes que calculan los resultados con una fracción de los datos de entrada originales. Tras el cálculo, los resultados diezmados pueden interpolarse para obtener un resultado aproximado del mismo tamaño que el resultado del circuito original. Una vez interpolados, los resultados de los tres circuitos pueden ser comparados para detectar y corregir fallos de una manera similar a la que se utiliza en la técnica RPR. Aprovechando las características del diseño hardware, la disminución de la cantidad de datos que procesan los circuitos de Resolución Reducida puede traducirse en una disminución de recursos, en lugar de una disminución de tiempo de cálculo. De esta manera, la técnica RRR es capaz de reducir el consumo de recursos en comparación a los que se necesitarían si se utilizase un endurecimiento TMR. Los resultados de los experimentos realizados en diseños endurecidos mediante Redundancia de Resolución Reducida sugieren que la técnica es eficaz en reducir los recursos utilizados y, al igual que pasaba en el caso de la Redundancia de Precisión Reducida, también su sensibilidad se ve reducida, comparada con la sensibilidad del mismo circuito endurecido con Redundancia Modular Triple. Además, se observa una reducción notable de la sensibilidad de los circuitos frente a errores no corregibles, comparado con el mismo resultado en TMR y RPR. Este tipo de error engloba aquellos producidos por fallos en la lógica de comparación y votación o aquellos en los que un único SEU produce fallos en los resultados de dos o más de los circuitos redundantes al mismo tiempo, lo que se conoce como Fallo en Modo Común (CMF). No obstante, también se observa que la calidad de las correcciones realizadas utilizando este método empeora ligeramente. • La Redundancia Optimizada para Algoritmos Compuestos es también una aportación original de esta tesis. Está indicada para algoritmos cuyo resultado final puede expresarse como la composición de resultados intermedios calculados en etapas anteriores. Para endurecer un circuito usando esta técnica, se añaden dos circuitos redundantes diferentes entre sí y que procesan cada uno una parte diferente del conjunto de datos de entrada. Cada uno de estos circuitos aproximados calcula un resultado intermedio. La composición de los dos resultados intermedios da un resultado idéntico al del circuito original en ausencia de fallos. La detección de fallos se realiza comparando el resultado del circuito original con el de la composición de los circuitos aproximados. En caso de ser diferentes, se puede determinar el origen del fallo comparando los resultados aproximados intermedios frente a un umbral. Si la diferencia entre los resultados intermedios supera el umbral, significa que el fallo se ha producido en uno de los circuitos aproximados y que el resultado de la composición no debe ser utilizado en la salida. Al igual que ocurre en la Redundancia de Precisión Reducida y la Redundancia de Resolución Reducida, utilizar un umbral de comparación implica la existencia de errores tolerables. No obstante, esta técnica de endurecimiento permite realizar correcciones exactas, en lugar de aproximadas, en la mayor parte de los casos, lo que mejora la calidad de los resultados con respecto a otras técnicas de endurecimiento aproximadas, al tiempo que reduce los recursos utilizados por el sistema endurecido en comparación con las técnicas tradicionales. Los resultados de los experimentos realizados con diseños endurecidos mediante Redundancia Optimizada para Algoritmos Compuestos confirman que esta técnica de endurecimiento es capaz de producir correcciones exactas en un alto porcentaje de los eventos. Su sensibilidad frente a todo tipo de errores y frente a errores no corregibles también se ve disminuida, comparada con la obtenida con Redundancia Modular Triple. Los resultados presentados en esta Tesis respaldan la idea de que las técnicas de Redundancia Aproximada son alternativas viables a las técnicas de endurecimiento frente a la radiación habituales, siempre que

    Design and Optimization for Resilient Energy Efficient Computing

    Get PDF
    Heutzutage sind moderne elektronische Systeme ein integraler Bestandteil unseres Alltags. Dies wurde unter anderem durch das exponentielle Wachstum der Integrationsdichte von integrierten Schaltkreisen ermöglicht zusammen mit einer Verbesserung der Energieeffizienz, welche in den letzten 50 Jahren stattfand, auch bekannt als Moore‘s Gesetz. In diesem Zusammenhang ist die Nachfrage von energieeffizienten digitalen Schaltkreisen enorm angestiegen, besonders in Anwendungsfeldern wie dem Internet of Things (IoT). Da der Leistungsverbrauch von Schaltkreisen stark mit der Versorgungsspannung verknüpft ist, wurden effiziente Verfahren entwickelt, welche die Versorgungsspannung in den nahen Schwellenspannung-Bereich skalieren, zusammengefasst unter dem Begriff Near-Threshold-Computing (NTC). Mithilfe dieser Verfahren kann eine Erhöhung der Energieeffizienz von Schaltungen um eine ganze Größenordnung ermöglicht werden. Neben der verbesserten Energiebilanz ergeben sich jedoch zahlreiche Herausforderungen was den Schaltungsentwurf angeht. Zum Beispiel führt das Reduzieren der Versorgungsspannung in den nahen Schwellenspannungsbereich zu einer verzehnfachten Erhöhung der Sensibilität der Schaltkreise gegenüber Prozessvariation, Spannungsfluktuationen und Temperaturveränderungen. Die Einflüsse dieser Variationen reduzieren die Zuverlässigkeit von NTC Schaltkreisen und sind ihr größtes Hindernis bezüglich einer umfassenden Nutzung. Traditionelle Ansätze und Methoden aus dem nominalen Spannungsbereich zur Kompensation von Variabilität können nicht effizient angewandt werden, da die starken Performance-Variationen und Sensitivitäten im nahen Schwellenspannungsbereich dessen Kapazitäten übersteigen. Aus diesem Grund sind neue Entwurfsparadigmen und Entwurfsautomatisierungskonzepte für die Anwendung von NTC erforderlich. Das Ziel dieser Arbeit ist die zuvor erwähnten Probleme durch die Bereitstellung von ganzheitlichen Methoden zum Design von NTC Schaltkreisen sowie dessen Entwurfsautomatisierung anzugehen, welche insbesondere auf der Schaltungs- sowie Logik-Ebene angewandt werden. Dabei werden tiefgehende Analysen der Zuverlässigkeit von NTC Systemen miteinbezogen und Optimierungsmethoden werden vorgeschlagen welche die Zuverlässigkeit, Performance und Energieeffizienz verbessern. Die Beiträge dieser Arbeit sind wie folgt: Schaltungssynthese und Timing Closure unter Einbezug von Variationen: Das Einhalten von Anforderungen an das zeitliche Verhalten und Zuverlässigkeit von NTC ist eine anspruchsvolle Aufgabe. Die Auswirkungen von Variabilität kommen bei starken Performance-Schwankungen, welche zu teuren zeitlichen Sicherheitsmargen führen, oder sich in Hold-Time Verstößen ausdrücken, verursacht durch funktionale Störungen, zum Vorschein. Die konventionellen Ansätze beschränken sich dabei alleine auf die Erhöhung von zeitlichen Sicherheitsmargen. Dies ist jedoch sehr ineffizient für NTC, wegen dem starken Ausmaß an Variationen und den erhöhten Leckströmen. In dieser Arbeit wird ein Konzept zur Synthese und Timing Closure von Schaltkreisen unter Variationen vorgestellt, welches sowohl die Sensitivität gegenüber Variationen reduziert als auch die Energieeffizienz, Performance und Zuverlässigkeit verbessert und zugleich den Mehraufwand von Timing Closures [1, 2] verringert. Simulationsergebnisse belegen, dass unser vorgeschlagener Ansatz die Verzögerungszeit um 87% reduziert und die Performance und Energieeffizienz um 25% beziehungsweise 7.4% verbessert, zu Kosten eines erhöhten Flächenbedarfs von 4.8%. Schichtübergreifende Zuverlässigkeits-, Energieeffizienz- und Performance-Optimierung von Datenpfaden: Schichtübergreifende Analyse von Prozessor-Datenpfaden, welche den ganzen Weg spannen vom Kompilierer zum Schaltungsentwurf, kann potenzielle Optimierungsansätze aufzeigen. Ein Datenpfad ist eine Kombination von mehreren funktionalen Einheiten, welche diverse Instruktionen verarbeiten können. Unsere Analyse zeigt, dass die Ausführungszeiten von Instruktionen bei niedrigen Versorgungsspannungen stark variieren, weshalb eine Klassifikation in schnelle und langsame Instruktionen vorgenommen werden kann. Des Weiteren können funktionale Instruktionen als häufig und selten genutzte Instruktionen kategorisiert werden. Diese Arbeit stellt eine Multi-Zyklen-Instruktionen-Methode vor, welche die Energieeffizienz und Belastbarkeit von funktionalen Einheiten erhöhen kann [3]. Zusätzlich stellen wir einen Partitionsalgorithmus vor, welcher ein fein-granulares Power-gating von selten genutzten Einheiten ermöglicht [4] durch Partition von einzelnen funktionalen Einheiten in mehrere kleinere Einheiten. Die vorgeschlagenen Methoden verbessern das zeitliche Schaltungsverhalten signifikant, und begrenzen zugleich die Leckströme beträchtlich, durch Einsatz einer Kombination von Schaltungs-Redesign- und Code-Replacement-Techniken. Simulationsresultate zeigen, dass die entwickelten Methoden die Performance und Energieeffizienz von arithmetisch-logischen Einheiten (ALU) um 19% beziehungsweise 43% verbessern. Des Weiteren kann der Zuwachs in Performance der optimierten Schaltungen in eine Verbesserung der Zuverlässigkeit umgewandelt werden [5, 6]. Post-Fabrication und Laufzeit-Tuning: Prozess- und Laufzeitvariationen haben einen starken Einfluss auf den Minimum Energy Point (MEP) von NTC-Schaltungen, welcher mit der energieeffizientesten Versorgungsspannung assoziiert ist. Es ist ein besonderes Anliegen, die NTC-Schaltung nach der Herstellung (post-fabrication) so zu kalibrieren, dass sich die Schaltung im MEP-Zustand befindet, um die beste Energieeffizient zu erreichen. In dieser Arbeit, werden Post-Fabrication und Laufzeit-Tuning vorgeschlagen, welche die Schaltung basierend auf Geschwindigkeits- und Leistungsverbrauch-Messungen nach der Herstellung auf den MEP kalibrieren. Die vorgestellten Techniken ermitteln den MEP per Chip-Basis um den Einfluss von Prozessvariationen mit einzubeziehen und dynamisch die Versorgungsspannung und Frequenz zu adaptieren um zeitabhängige Variationen wie Workload und Temperatur zu adressieren. Zu diesem Zweck wird in die Firmware eines Chips ein Regression-Modell integriert, welches den MEP basierend auf Workload- und Temperatur-Messungen zur Laufzeit extrahiert. Das Regressions-Modell ist für jeden Chip einzigartig und basiert lediglich auf Post-Fabrication-Messungen. Simulationsergebnisse zeigen das der entwickelte Ansatz eine sehr hohe prognostische Treffsicherheit und Energieeffizienz hat, ähnlich zu hardware-implementierten Methoden, jedoch ohne hardware-seitigen Mehraufwand [7, 8]. Selektierte Flip-Flop Optimierung: Ultra-Low-Voltage Schaltungen müssen im nominalen Versorgungsspannungs-Mode arbeiten um zeitliche Anforderungen von laufenden Anwendungen zu erfüllen. In diesem Fall ist die Schaltung von starken Alterungsprozessen betroffen, welche die Transistoren durch Erhöhung der Schwellenspannungen degradieren. Unsere tiefgehenden Analysen haben gezeigt das gewisse Flip-Flop-Architekturen von diesen Alterungserscheinungen beeinflusst werden indem fälschlicherweise konstante Werte ( \u270\u27 oder \u271\u27) für eine lange Zeit gespeichert sind. Im Vergleich zu anderen Komponenten sind Flip-Flops sensitiver zu Alterungsprozessen und versagen unter anderem dabei einen neuen Wert innerhalb des vorgegebenen zeitlichen Rahmens zu übernehmen. Außerdem kann auch ein geringfügiger Spannungsabfall zu diesen zeitlichen Verstößen führen, falls die betreffenden gealterten Flip-Flops zum kritischen Pfad zuzuordnen sind. In dieser Arbeit wird eine selektiver Flip-Flop-Optimierungsmethode vorgestellt, welche die Schaltungen bezüglich Robustheit gegen statische Alterung und Spannungsabfall optimieren. Dabei werden zuerst optimierte robuste Flip-Flops generiert und diese dann anschließend in die Standard-Zellen-Bibliotheken integriert. Flip-Flops, die in der Schaltung zum kritischen Pfad gehören und Alterung sowie Spannungsabfall erfahren, werden durch die optimierten robusten Versionen ersetzt, um das Zeitverhalten und die Zuverlässigkeit der Schaltung zu verbessern [9, 10]. Simulationsergebnisse zeigen, dass die erwartete Lebenszeit eines Prozessors um 37% verbessert werden kann, während Leckströme um nur 0.1% erhöht werden. Während NTC das Potenzial hat große Energieeffizienz zu ermöglichen, ist der Einsatz in neue Anwendungsfeldern wie IoT wegen den zuvor erwähnten Problemen bezüglich der hohen Sensitivität gegenüber Variationen und deshalb mangelnder Zuverlässigkeit, noch nicht durchsetzbar. In dieser Dissertation und in noch nicht publizierten Werken [11–17], stellen wir Lösungen zu diesen Problemen vor, die eine Integration von NTC in heutige Systeme ermöglichen

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present

    FLEXIBLE LOW-COST HW/SW ARCHITECTURES FOR TEST, CALIBRATION AND CONDITIONING OF MEMS SENSOR SYSTEMS

    Get PDF
    During the last years smart sensors based on Micro-Electro-Mechanical systems (MEMS) are widely spreading over various fields as automotive, biomedical, optical and consumer, and nowadays they represent the outstanding state of the art. The reasons of their diffusion is related to the capability to measure physical and chemical information using miniaturized components. The developing of this kind of architectures, due to the heterogeneities of their components, requires a very complex design flow, due to the utilization of both mechanical parts typical of the MEMS sensor and electronic components for the interfacing and the conditioning. In these kind of systems testing activities gain a considerable importance, and they concern various phases of the life-cycle of a MEMS based system. Indeed, since the design phase of the sensor, the validation of the design by the extraction of characteristic parameters is important, because they are necessary to design the sensor interface circuit. Moreover, this kind of architecture requires techniques for the calibration and the evaluation of the whole system in addition to the traditional methods for the testing of the control circuitry. The first part of this research work addresses the testing optimization by the developing of different hardware/software architecture for the different testing stages of the developing flow of a MEMS based system. A flexible and low-cost platform for the characterization and the prototyping of MEMS sensors has been developed in order to provide an environment that allows also to support the design of the sensor interface. To reduce the reengineering time requested during the verification testing a universal client-server architecture has been designed to provide a unique framework to test different kind of devices, using different development environment and programming languages. Because the use of ATE during the engineering phase of the calibration algorithm is expensive in terms of ATE’s occupation time, since it requires the interruption of the production process, a flexible and easily adaptable low-cost hardware/software architecture for the calibration and the evaluation of the performance has been developed in order to allow the developing of the calibration algorithm in a user-friendly environment that permits also to realize a small and medium volume production. The second part of the research work deals with a topic that is becoming ever more important in the field of applications for MEMS sensors, and concerns the capability to combine information extracted from different typologies of sensors (typically accelerometers, gyroscopes and magnetometers) to obtain more complex information. In this context two different algorithm for the sensor fusion has been analyzed and developed: the first one is a fully software algorithm that has been used as a means to estimate how much the errors in MEMS sensor data affect the estimation of the parameter computed using a sensor fusion algorithm; the second one, instead, is a sensor fusion algorithm based on a simplified Kalman filter. Starting from this algorithm, a bit-true model in Mathworks Simulink(TM) has been created as a system study for the implementation of the algorithm on chip

    Standard interface definition for avionics data bus systems

    Get PDF
    Data bus for avionics system of space shuttle, noting functions of interface unit, error detection and recovery, redundancy, and bus control philosoph
    corecore