

Autore:

Francesco Sechi _______________

Relatori:

Prof. Luca Fanucci _______________

Prof. Roberto Saletti _______________

FLEXIBLE LOW-COST HW/SW
ARCHITECTURES FOR TEST,

CALIBRATION AND CONDITIONING
OF MEMS SENSOR SYSTEMS

Anno 2011

SSD ING-INF/01

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
INGEGNERIA DELL’INFORMAZIONE

Tesi di Dottorato di Ricerca

A Simona
Alla mia famiglia

ACKNOWLEDGMENTS

A lot of people attend me for the whole period of my PhD course, but some in
particular deserve a special thanks.
I would like to say thank you to my parents and my sisters for their essential
support: I would have never reached this goal without your protection and the
warmth of your words.
Another very important person I would like to thank you is Simona, because her
love gave me the strength to get over all the difficulties I met during this period.
Then my gratitude goes to my tutors Prof. Luca Fanucci and Prof. Roberto Saletti
both for their precious technical help and for the several chances of professional
improving they provided to me.
A special thanks goes to the SensorDynamics’ design center of Navacchio,
particularly to Alessandro Rocchi and Adolfo Giambastiani for their precious
technical and professional teaching, and for giving me the chance to explore the
amazing world of electronic!
Last but not least, a great thanks goes to all my friends, especially to Sergio,
Alberto, Chiara, Marcolino, Weiwor, Claudioca’, Agostino, Paolo and Fabio&Enrica,
and to all my cousins and relatives.

I

SOMMARIO

Negli ultimi anni gli smart sensor basati su sistemi Micro-Elettro-Meccanici (MEMS)
si sono largamente diffusi in diversi settori quali l’Automotive, il settore biomedico,
quello ottico e il consumer, e oggigiorno rappresentano il più avanzato stato
dell’arte. Le ragioni della loro diffusione sono legate alla loro capacità di misurare
quantità fisiche e chimiche usando componenti miniaturizzati.
Lo sviluppo di questo tipo di architetture, per via della eterogeneità delle loro
componenti, richiede un flusso di progetto molto più complesso per via della
presenza sia di parti meccaniche proprie del sensore MEMS, sia di componenti
elettroniche per l’interfacciamento e il condizionamento.
In questo tipo di sistemi acquista una notevole rilevanza l’attività di testing, che
interessa varie fasi del ciclo di vita di un sistema basato su sensori MEMS. Infatti,
sin dalla fase di design del sensore è importante validare il progetto estraendone i
parametri caratteristici, che saranno utili durante la fase di design del circuito di
interfaccia e condizionamento. Inoltre, un’architettura di questo tipo richiede, oltre
ai tradizionali metodi di test che riguardano la circuiteria di controllo, anche
tecniche per la calibrazione e la valutazione dell’intero sistema.
La prima parte di questo lavoro di ricerca affronta il tema dell’ottimizzazione del
testing mediante lo sviluppo di differenti architetture hardware/software per le
diverse fasi di test che fanno parte del flusso di sviluppo di un sistema basato su
sensori MEMS. E’ stata sviluppata una piattaforma flessibile e a basso costo per la
caratterizzazione e la prototipazione di sensori MEMS, così da offrire un ambiente
che permetta inoltre di supportare la progettazione dell’interfaccia per sensore. Per
ridurre il tempo di ingegnerizzazione richiesto durante la fase di ―verification
testing‖ è stata progettata un’architettura client-server universale che offre un unico
framework per il test di diversi tipi di dispositivi, permettendo l’utilizzo di differenti
tipi di ambienti di sviluppo e linguaggi di programmazione. Dato che l’uso di
macchine ATE durante lo sviluppo dell’algoritmo di calibrazione è costoso in
termini di tempo di occupazione della macchina stessa, poiché un suo utilizzo
durante questa fase richiederebbe la sospensione del processo di produzione, si è
proposta un’architettura hardware/software a basso costo e facilmente adattabile
per la calibrazione e la valutazione delle performance che consente lo sviluppo
dell’algoritmo di test in un ambiente user-friendly e permette inoltre di realizzare
una produzione su piccola e media scala.
Nella seconda parte del lavoro di ricerca si è approfondito un argomento che sta
acquisendo una sempre maggiore importanza nell’ambito dello sviluppo di
applicazioni per sensori MEMS, e riguarda la possibilità di combinare le
informazioni estratte da diversi tipologie di sensori (tipicamente accelerometri,
giroscopi e magnetometri) per ottenere informazioni più complesse. In questo
contesto sono stati sviluppati e analizzati due differenti algoritmi di sensor fusion: il
primo è un algoritmo puramente software che è stato utilizzato come strumento per
valutare quanto un errore nella misura del MEMS può inficiare la stima del
parametro calcolato usando un algoritmo di sensor fusion; il secondo, invece, è un
algoritmo di sensor fusion basato su un filtro di Kalman semplificato. Di questo
algoritmo è stato creato anche un modello bit-true in Mathworks Simulink

TM
 che

verrà usato come studio di sistema per l’implementazione dell’algoritmo su chip.

III

ABSTRACT

During the last years smart sensors based on Micro-Electro-Mechanical systems
(MEMS) are widely spreading over various fields as automotive, biomedical, optical
and consumer, and nowadays they represent the outstanding state of the art.
The reasons of their diffusion is related to the capability to measure physical and
chemical information using miniaturized components.
The developing of this kind of architectures, due to the heterogeneities of their
components, requires a very complex design flow, due to the utilization of both
mechanical parts typical of the MEMS sensor and electronic components for the
interfacing and the conditioning.
In these kind of systems testing activities gain a considerable importance, and they
concern various phases of the life-cycle of a MEMS based system. Indeed, since
the design phase of the sensor, the validation of the design by the extraction of
characteristic parameters is important, because they are necessary to design the
sensor interface circuit. Moreover, this kind of architecture requires techniques for
the calibration and the evaluation of the whole system in addition to the traditional
methods for the testing of the control circuitry.
The first part of this research work addresses the testing optimization by the
developing of different hardware/software architecture for the different testing
stages of the developing flow of a MEMS based system. A flexible and low-cost
platform for the characterization and the prototyping of MEMS sensors has been
developed in order to provide an environment that allows also to support the
design of the sensor interface. To reduce the reengineering time requested during
the verification testing a universal client-server architecture has been designed to
provide a unique framework to test different kind of devices, using different
development environment and programming languages. Because the use of ATE
during the engineering phase of the calibration algorithm is expensive in terms of
ATE’s occupation time, since it requires the interruption of the production process,
a flexible and easily adaptable low-cost hardware/software architecture for the
calibration and the evaluation of the performance has been developed in order to
allow the developing of the calibration algorithm in a user-friendly environment that
permits also to realize a small and medium volume production.
The second part of the research work deals with a topic that is becoming ever more
important in the field of applications for MEMS sensors, and concerns the capability
to combine information extracted from different typologies of sensors (typically
accelerometers, gyroscopes and magnetometers) to obtain more complex
information. In this context two different algorithm for the sensor fusion has been
analyzed and developed: the first one is a fully software algorithm that has been
used as a means to estimate how much the errors in MEMS sensor data affect the
estimation of the parameter computed using a sensor fusion algorithm; the second
one, instead, is a sensor fusion algorithm based on a simplified Kalman filter.
Starting from this algorithm, a bit-true model in Mathworks Simulink

TM
 has been

created as a system study for the implementation of the algorithm on chip.

Table of Contents

V

TABLE OF CONTENTS

INDEX OF FIGURES .. IX

INDEX OF TABLES .. XI

INTRODUCTION .. 1

1 TESTING OF MIXED-SIGNAL MEMS SENSOR SYSTEMS 5

1.1 Introduction.. 5

1.1.1 Applications ... 6
1.1.2 Design and testing of a MEMS based devices 8

1.2 Design of MEMS sensors ... 10

1.2.1 MEMS modeling ... 11
1.2.2 MEMS layout ... 13

1.3 Design of the conditioning system ... 14

1.3.1 Microsystem vs. Micromodule .. 15
1.3.2 Functions of a microsensor system ... 15
1.3.3 Typical microsensor interface circuit ... 17

1.4 Testing and characterization of the SoP ... 19

1.4.1 Type of testing ... 20
1.4.2 Automatic test equipment.. 21
1.4.3 Testing of sensor systems ... 22

1.5 Calibration and performances evaluation .. 22

1.5.1 Performance parameters and sensor errors 23
1.5.2 Sensor calibration .. 25
1.5.3 Calibration of inertial sensors ... 26

1.6 The future of MEMS based systems ... 29

2 CHARACTERIZATION OF MEMS AND PROTOTYPING OF THE SENSOR
INTERFACE ... 31

2.1 ISIF: a low-cost and flexible platform for the characterization and the
conditioning of MEMS sensors ... 32

2.1.1 ISIF platform .. 32
2.1.1.1 Analog section ... 33
2.1.1.2 Digital section .. 33
2.1.1.3 Software .. 34
2.1.1.4 High Voltage Board ... 35

2.1.2 Fast-developing and low-cost characterization and test
environment ... 35

Table of Contents

VI

2.1.3 Test and characterization of a double axis resonating micromirror
 36

2.1.3.1 Physical description and principle of operation of the micromirror 36
2.1.3.2 Electrostatic FEM simulations .. 37
2.1.3.3 Mechanical Simulations for the resonance frequency extraction 39
2.1.3.4 Mechanical Simulations for the K extraction .. 40
2.1.3.5 Electrical Model ... 42
2.1.3.6 SimulinkTM model ... 44

2.1.4 Test and characterization with ISIF flow 46
2.1.4.1 Setup and static capacitance measurement ... 47
2.1.4.2 Dynamic ΔC measurements ... 47

2.2 Pin-limited frequency converter bridge for fast prototyping of custom
functionalities in platform-based sensor interfaces 50

2.2.1 State of the Art Review .. 50
2.2.2 Project Design Flow .. 51
2.2.3 IP Bridge Architectural Design .. 51
2.2.4 Implementation and test results ... 58
2.2.5 Case Study of an Automotive Smart IC Sensor 59

2.3 Conclusions... 61

3 VERIFICATION TESTING AND CALIBRATION .. 63

3.1 Universal communication framework: DevCom 64

3.1.1 State of the art ... 64
3.1.2 Architecture ... 65

3.1.2.1 Overall description ... 65
3.1.2.2 Server .. 67
3.1.2.3 Client ... 68

3.1.3 DevCom for SD sensors .. 68
3.1.3.1 SD74x series inertial sensors .. 68
3.1.3.2 FTDI driver ... 69
3.1.3.3 Applications ... 70

3.2 Low-cost architecture for the calibration and evaluation of IMSS for
small and medium volumes production: CaLVal ... 70

3.2.1 Overall description ... 70
3.2.2 Hardware design .. 71
3.2.3 Software design ... 73

3.2.3.1 Instruments ... 73
3.2.3.2 Communication layer ... 74
3.2.3.3 Test procedures ... 74
3.2.3.4 Single piece application ... 75
3.2.3.5 Logging and Yield Management System .. 76

3.2.4 Case study: SD740 .. 77

Table of Contents

VII

3.3 Conclusions... 80

4 DATA PROCESSING .. 83

4.1 A preliminary evaluation using a fully software algorithm 83

4.1.1 Overview ... 83
4.1.2 The architecture ... 84

4.1.2.1 Hardware and Firmware .. 84
4.1.2.2 Software .. 85

4.2 An integrated sensor fusion algorithm for the orientation tracking 90

4.2.1 State of the art ... 90
4.2.2 System modelling ... 90
4.2.3 Algorithm simplifications ... 93
4.2.4 Simulations .. 94
4.2.5 Bit true model .. 97

4.3 Conclusions... 98

5 CONCLUSIONS ... 99

REFERENCES ... 101

Index of Figures

IX

INDEX OF FIGURES

Figure 1-1. MEMS market forecast [1] .. 6
Figure 1-2, Flowchart of the life cycle of a MEMS system 9
Figure 1-3. MEMS design flow block diagram .. 11
Figure 1-4. Schematic representation of a MEMS physical process 13
Figure 1-5. Functions of a sensor system ... 16
Figure 1-6. Block diagram of a generic sensor interface....................................... 17
Figure 1-7. Basic principle of digital testing .. 20
Figure 1-8. Test machines: (A) Accelerometer turntable; (B) Two-axis rate table;
(C) Vibration machine [3] ... 27
Figure 1-9. Motion sensor combos: strategies of integration [2] 29
Figure 2-1. ISIF block diagram ... 32
Figure 2-2. Input channel block diagram ... 33
Figure 2-3. Signal chain .. 34
Figure 2-4. LabVIEW

TM
 GUI ... 36

Figure 2-5. Micromirror structure .. 37
Figure 2-6. Simplified structure used for electrostatic simulations 38
Figure 2-7. Capacitance versus angle relationship for the micromirror fast axis ... 39
Figure 2-8. Fast axis motion at its resonance frequency 40
Figure 2-9. Forces applied to the micromirror plate .. 41
Figure 2-10. Mechanical Torque versus rotation angle for the fast axis................ 42
Figure 2-11. (a) Micromirror layout; (b) Slow axis model 43
Figure 2-12. Block diagram of the Simulink

TM
 model for the micromirror fast axis 45

Figure 2-13. Rotation angle versus time curve for the micromirror fast axis 46
Figure 2-14. Test and Characterization setup ... 47
Figure 2-15. Digital amplitude of the sensing signal versus frequency extracted

from the open loop analysis on slow axis .. 48
Figure 2-16. Maximum deflection angle versus driving frequency extracted from

the open loop analysis on slow axis .. 49
Figure 2-17. Maximum deflection angle versus driving frequency extracted from

the open loop analysis on fast axis .. 49
Figure 2-18. Closed loop driving block diagram .. 50
Figure 2-19. Bi-synchronous FIFO.. 52
Figure 2-20. IP bridge pinout .. 53
Figure 2-21. IP bridge architecture ... 54
Figure 2-22. Meaning of pinout in transaction from ASIC to FPGA....................... 57
Figure 2-23. Meaning of pinout in transaction from FPGA to ASIC....................... 57
Figure 2-24. Bridge area vs. different size of the FIFOs 59
Figure 2-25. Bridge slack time and area vs. temperatures and supply voltages ... 60
Figure 2-26. Micromirror ASIC and FPGA connection through bridge 61
Figure 3-1. Block diagram of DevCom architecture .. 65
Figure 3-2. Hypothetical scenario of DevCom architecture 66
Figure 3-3. Board for SD sensor communication .. 69
Figure 3-4. Motors movements in CaLVal .. 71
Figure 3-5. Board block diagram... 72
Figure 3-6. Layered software composition .. 73

Index of Figures

X

Figure 3-7. Test procedure template... 75
Figure 3-8. Front-end of the YMS manager .. 77
Figure 3-9. Software layers including SD74x family components 78
Figure 3-10. Flow chart of (a) trimming (b) performance 79
Figure 4-1. 3D view of the board... 84
Figure 4-2. Block diagram of the board ... 85
Figure 4-3. Rotation algorithm flowchart ... 87
Figure 4-4. Acceleration algorithm and cross-compensation flowchart 88
Figure 4-5. Kalman filter algorithm. ... 92
Figure 4-6. SensorDynamics Cube Demo sensor... 94
Figure 4-7. Drift on the x axis .. 95
Figure 4-8. Drift correction on the x axis with the Kalman filter 95
Figure 4-9. Initial angular position estimation on the x axis 96

Index of Tables

XI

INDEX OF TABLES

Table I – Performance parameters .. 23
Table II – Resonance frequencies for the micromirror fast axis 40
Table III – Comparison between simulation results and test results (slow axis) 62
Table IV – Device access right .. 68
Table V – Example of limit file for trimming stage .. 80
Table VI – Rotation sequence ... 96
Table VII – Mean square error related to the number of bits used for data
representation ... 97

Introduction

1

INTRODUCTION

Micro-electro-mechanical-systems (MEMS) technology is widely spreading during
the last years, also thanks to the employment in the consumer applications.
MEMS devices can be defined as micrometers embedded systems whose purpose
is to collect physical and chemical information of various kinds about their
environment and to make this information available in a form more suitable for the
human senses and technical systems.
The design of this kind of devices is very challenging, but also testing activity has a
key role in the development of MEMS based device, because of the complexity of a
MEMS system architecture that is composed by heterogeneous elements, and
each one of these components requires a different approach to verify its
correctness.
A MEMS device, in fact, is composed by electrical and mechanical parts, so it
requires different test equipment to perform electrical testing and mechanical
testing. MEMS testing and reliability assurance are critical processes to achieve
high yields and profitability as these processes account for 40 to 70% of the total
device cost.
In order to reduce this cost, the main key factor can be identified as the
standardization of the test equipment. Indeed, most of the MEMS testing is
performed separately for electrical and mechanical elements. This market scenario
is changing and there are several test vendors developing key solutions to perform
both the electrical and mechanical testing in a single test equipment. Another
challenge prevailing in the market today is the non-availability of standardized
equipment to test the MEMS devices cost effectively. In fact, current test
equipment is priced as high as $1 million, which can deter most MEMS device
manufacturers from testing their products. Since customized solutions require
vendors to conduct research every time they receive an order, they tend to be
expensive. The costs are expected to drop once standard solutions become more
prevalent. Most semiconductor industry engineers have a mechanical background
or an electrical background, which is sufficient to test any type of semiconductor
product. However, testing combined components is more complex than testing
them separately, and not many have the technical training required to perform the
tests.
To overcome the target of cost effective and time-to-market reduction, the
standardization of the test equipment is not enough. Indeed, the life-cycle of a
MEMS device consists on several steps, and almost all of these requires different
approach to verify and validate its output product.
During the design of the MEMS, simulation and prototyping of the device are
required. High volume, high-cost, and accurate measuring systems are necessary
to characterize and test the designed device, especially to examine motions,
deflections and resonance frequencies of the mechanical structures that are the
distinguishing characteristics of these systems. A variety of custom systems relying
on interferometry have been developed for deflection measurement but they
require a significant amount of development time. Alternatively, there are a variety
of commercial deflection measurement systems based on scanning Laser-Doppler

Introduction

2

vibrometers. However, even though these systems feature very accurate results,
they are often very expensive.
The design of the sensor interface circuit requires an high accurate simulation and
validation, and often the use of CAD tools are not enough to verify the correctness
of the design, because it is based on approximated models of the MEMS device,
produced during the design of the MEMS itself. A solution to perform also a
prototyping of the sensor interface will be appreciated, but, for the moment, no
solution are commercially available to supply for this lack.
Once the sensor interface is developed, it must be tested. Different typologies of
testing have done, depending on the phase of the life-cycle of a chip. The
verification testing regards the certification of the correctness of the design and of
the test procedure in laboratory, and it is done the first time the chip is designed
and fabricated. The manufacturing testing, instead, regards the testing of the
fabricated chip in the factory during the production phase. Each device has its own
pinout, its interface, and its peculiar characteristic, so the verification testing
requires to set up a custom device each time a new device is developed. This
reengineering activity entails a growth of costs and time-to-market. So, the
reengineering time must be reduced as much as possible, standardizing the
applications that interact with the device to provide a common interface that allows
to reuse the same tests developed for other products. Some applications are
available in the marketplace to achieve this goal, but all of these suffer from
different drawbacks, as incompatibility, non concurrent access to the device,
absence of libraries to manage laboratory instruments, and so on. The use of this
approach, moreover, permits to define the test program directly in the laboratory,
reducing the time a test machine is used to debug the test procedure.
The last step of the production flow is the design of the calibration algorithm. The
calibration is the procedure of correcting the transfer function of a sensor, using a
reference measurement system in order to guarantee a specified input-output
relationship with a certain accuracy and under certain conditions. To calibrate a
sensor, it is necessary to excite it with an appropriate physical stimulus. To do so, a
test machine able to produce this stimulus is necessary. To calibrate a sensor, very
expensive test machines are used. These machines allow to calibrate different
pieces contemporarily and to handle the socketing of each piece automatically, in
order to calibrate pieces continuously. The cost of this machine can be quantified in
terms of cost for the equipment and cost for the usage time. While the first one
depends on the machine vendor, the second one is dependent on the allocation
time disposed by the MEMS device developer. So, in order to minimize the costs, a
solution to avoid the use of the production machine for the debug of the calibration
algorithm is desirable.
Besides the problematic concerning the development of these smart sensors, the
diffusion of this kind of technology in consumer electronic application is causing a
continuous demand for new functionalities together with the one offered by the
sensors themselves. In fact, differently to other fields the MEMS were traditionally
used, the consumer field is very dynamic and requires a continuous innovation in
the offered functionalities in order to keep up with the competitors. In the last few
years, sensor fusion algorithms, used to combine the outputs of different kind of
sensor in order to produce new information, are identified as the future of

Introduction

3

microsensor technology, and different companies are equipping their devices with
components that implement functionalities on the basis of these algorithms.
This research work deals with two main topics: the first is the development of
hardware and software architecture for the optimization of the verification and
validation stages in terms of cost effectiveness and time-to-market reduction; the
second concerns the analysis and the developing of sensor fusion algorithms.
Chapter 1 presents the MEMS technology by describing its historical development
and the fields of applications, then the fundamental steps that characterize the
life-cycle of a MEMS are illustrated. The chapter is then concluded by showing the
trend of this technology for the next future.
The first part of chapter 2 illustrates a flexible and low-cost platform for the
characterization and the prototyping of MEMS sensors. This architecture permits to
reduce the time for simulating complex characteristic parameters combining the
simulation data with measurements. Moreover, its high reconfigurability permits
also to use it for the evaluation of the required sensor interface. The second part
describes a pin limited frequency converter bridge for the communication between
an ASIC and a FPGA. This architecture is very important during the prototyping
phase because it permits to design new functionalities without the need to redesign
the ASIC.
The first part of chapter 3 describes a solution for the optimization of the validation
phase of the packaged device. The proposed architecture offers a standard
framework for the developing of the test environment in laboratory, permitting to
reuse the same setup for different systems. The second part shows a low-cost
architecture for the calibration of MEMS sensor systems that permits the
debugging of a calibration algorithm without using a complex ATE.
Chapter 4 deals with the analysis of algorithm for sensor fusion. In particular, after
a brief analysis of the advantages and disadvantages of a purely software
development, a solution for an integrated angular position estimation is illustrated.
A simplified Kalman filter has been used in order to permit the integration in the
sensor interface integrated circuit.

Chapter 1. Testing of mixed-signal MEMS sensor systems

5

1 TESTING OF MIXED-SIGNAL MEMS SENSOR SYSTEMS

1.1 Introduction

Micro electromechanical systems (MEMS) are probably the smallest functional
machines that are currently engineered by humans. They can be defined as
embedded systems involving both electronic and mechanical components with a
dimensional scale of the order of micrometers and that employ both an electronic
movement of charge and mechanical movement for operation. The purpose of
microsensors is to collect physical and chemical information of various kinds about
their environment and to make this information available in a form more suitable for
the human senses and technical systems.
MEMS device development can be traced back to the 1970's, but the first
microsensor was developed in 1956, thanks to the discovery of the piezoresistive
effect in silicon and germanium. However, it is in the period since 1995 that this
technology caught on, because a wide range of new materials and bulk
micromachining technologies have become available. Business and scientific world
were very interested in MEMS technology, and also many governments heavily
funded the research in this field. The reasons for this attention were numerous: first
of all, the cost of this technology is reduced, because it scales with its size; second,
MEMS devices are characterized by excellent mechanical properties, due to their
pure crystalline structure; moreover, they can be fabricated using the same
technology infrastructure of the integrate circuit (IC) industry; finally, MEMS devices
can be integrated with IC circuitry to create low cost systems on a chip. All these
reasons contribute to the proliferation of this technology, particularly the possibility
to integrate different components together to perform more complex functionalities.
For instance, a single device can integrate multiple sensors and combine the
information they produce to extract other kind of information, like position,
combining a 3-axis gyroscope and a 3-axis accelerometer.
MEMS is a potent technology and its powerful expresses especially in sensor
application. There is now the possibility of designing complex MEMS based
systems able to sense and react to their environment and respond and adapt to it.
However, even though MEMS technology has been very promising,
commercialization efforts have encountered multiple stumbling blocks that have
significantly delayed the availability of commercial devices. A first stumbling block
was the fact that the IC industry has not provided all process modules required to
fabricate mechanical devices (such as wafer deep etching, double side wafer
alignment and multiple wafer bonding) and the development of such MEMS
processes was long and expansive. Secondly, the mechanical properties of IC
materials were unknown and dependent on the fabrication process as well as
electrical stability of silicon structures. The third point is that in the IC industry the
structure thickness was not an issue, IC industry required an accuracy on thickness
of about ±10%, but in MEMS industry the thickness becomes a key point and a
better control for mechanical thickness is required. Moreover high volume, low cost
MEMS dedicated testing had to be developed entirely by the MEMS industry. And
finally the compatibility with the real world was the major task to be developed by
MEMS industry.

Chapter 1.Testing of mixed-signal MEMS sensor systems

6

Despite of this problems, MEMS technology importance in the electronic
marketplace is increasing rapidly, particularly during the last years. Figure 1-1
shows the trend of the market for this kind of technology.

Figure 1-1. MEMS market forecast [1]

The sector will likely see a healthy increase this year despite any general
semiconductor slowdown, and will remain on track to maintain its 17% average
growth for the next years. This charge in volume production is owing to the wide
spreading of these devices also in consumer market. By 2012, MEMS makers will
be shipping 8.1 billion units a year, worth some $15.5 billion, and nearly half that
market will be consumer devices. Major market drivers will include silicon
microphones, micro displays, RF MEMS and even microfluidics for biomedical
applications. RF MEMS and silicon microphones alone will account for more than
45% of unit demand from 2011.

1.1.1 Applications

With the consolidation of the MEMS technology, it spread in various fields,
becoming the outstanding state of the art for a broad range of mechanical,
chemical, optical, and biotech products (sensors, microstructures and actuators)
fabricated as integrated circuits on silicon wafers in a batch mode. Commercial
MEMS products comprise flow sensors, pressure sensors, acceleration sensors,
gyros, ink-jet nozzles, head locators in hard drives, and digital light processors
(DLPs) in projectors and screen sets. In the following an overview of the major field
of applications for MEMS sensor is presented.

Chapter 1. Testing of mixed-signal MEMS sensor systems

7

Life science applications

The requirement of reliable and very small implantable devices, and the need of
handheld devices for patient monitoring and diagnostics at home brought to the
utilize of this technology in medicine applications, creating a separated branch of
devices called bioMEMS. Biocompatibility, reliability, miniaturization, low power are
some of the advantages of this technology. Moreover, bioMEMS feature non
invasive/painful procedures and allow to reduce the patient recovery time because
they permit to monitor continuously the patient also outside the hospital. One of the
most important segment for medical applications of MEMS is the so called
Lab-on-a-chip (LOC) which is a typology of devices that integrate multiple
laboratory functions on a single small device and that are able to manage
extremely small fluid volumes.

Communications
Radiofrequency and microwave MEMS applications are introducing a important
surplus value in wireless communications. Low loss, high Q-factor, high linearity
and a good power handling are all the MEMS features that make this technology
more suitable for this kind of applications with respect to traditional
implementations. The use of MEMS in this field permits to produce wireless
handsets, base stations and satellites with the key properties of low-power
consumption, low area occupation and enhanced re-configurability, which can
result in superior functionalities and performances.

Automotive
Electronic technologies in the automotive industry have been introduced starting
from the 1960s, gradually replacing mechanical systems and hydraulic actuators.
Today, high-end vehicles feature up to 100 different sensors among which about
30 these are now MEMS, and the percentage is forecasted to grow. Some of the
main sensing applications in the automotive sector concern the active safety (ABS,
ESP, TCS, and so on), intelligent light positioning, intelligent airbags, vehicle
monitoring, satellite navigation systems and enhanced antitheft systems. To
implement these automatic controls, gyroscopes and accelerometers are the most
used MEMS devices.

Commercial applications

MEMS application are well established in specialized markets, primarily
automotive, industrial and medical, and the conditions are mature for impacting the
consumer market for a wide spectrum of applications. Some of these are ink-jet
print heads, silicon microphones, hard disk drive free fall protection, gaming
interfaces and digital still camera image stabilization. The consumer market is
looking for tiny, low cost, low-power consumption devices. Consumer devices are
all battery-operated and are becoming smaller and thinner. Furthermore, the
product life cycle of consumer devices is shorter than the one in automotive
markets; therefore, this make MEMS system suppliers to face an increasing
reduction in time to market for developing new products.

Chapter 1.Testing of mixed-signal MEMS sensor systems

8

Industrial applications

Requirements for safety in workplaces requires ah high accuracy of the sensing
solution used to detect the dangerous operating conditions. MEMS technology
supply these requirements, so also in industrial applications like safety systems,
process control, equipment position, impact detection and environmental
monitoring this technology has been widely used in the later years. Recently,
another industrial segment grown significantly: the so called micro-drives. These
micromechatronic systems consist of elements capable of processing information
and energy and can be employed for fine refinements and advanced operations in
which extreme accuracy is required. Moreover, MEMS devices are also used in
instruments for synthesizing and analyzing (bio)chemical materials of higher
quality, at higher throughputs and against reduced costs. Finally, MEMS devices
can be effectively employed for industrial robots, as the technology can apply to
tactile sensors, navigation, or proximity sensors.

Military and aerospace applications
Military and aerospace fields were the first major users of the MEMS technology.
MEMS technology has enabled smaller, low power, and low cost micro-instruments
currently including pressure, flow rate, acceleration, angular velocity, and MEMS
actuators such as valves, synthetic jets, boundary layer trip devices, micro jet
engines and microthrusters that have supported a variety of aerospace missions.
Some of the major military and aerospace applications are microsatellites,
micro-propulsion systems, navigation assistance and equipment monitoring,

Optical applications

A very important branch of MEMS family are the micro-opto-electro-mechanical
systems (MOEMS). They were used for the first time in 1990 for fiber optic
telecommunication applications, but, after a brief crisis, they started to be used in
other kind of applications. The most important fields were MOEMS are employed
are Digital Micromirror Devices (DMD) for the projection of images, spectrometers
used to measure properties of light over a specific portion of the electromagnetic
spectrum, barcode scanners, Infrared Focal Plane Array (IRFPA) for the image
sensing, and picoprojectors.

1.1.2 Design and testing of a MEMS based devices

The design of a MEMS device is a very challenging activity, because requires a
multidisciplinary approach due to the heterogeneity of its components. In fact,
these components have mechanical, electrical, thermal, electrostatic, and fluidic
interactions. This complexity requires structured design techniques to manage
each activity involved in the design of this kind of devices. Although the design of
the MEMS sensor(s) and of the sensor interface integrated circuit are crucial tasks
for the success of the device, testing activities, that includes prototyping,
characterization and calibration play a key role for the production of a winning
product.
Figure 1-2 shows the fundamental steps that characterize the life-cycle of a MEMS
based device. The design starts from an idea, arisen from market analysis, needs,
lacks, and so on, an high level description is defined. It can include a block diagram
of the components the device suppose to have and the interaction among them,

Chapter 1. Testing of mixed-signal MEMS sensor systems

9

focusing on the target application the device will be designed to. Once the
requirements are defined, both the MEMS and the sensor interface are developed.
These steps are characterized by different activities that includes both design and
testing tasks. In fact, the MEMS component, once designed, must be simulated
and prototyped before starting to produce it. Likewise, the sensor interface, during
the design and once the design is accomplished, must be simulated to verify its
correctness. These two steps are strictly coupled, because the design of the
sensor interface requires knowledge about the structure of the MEMS, particularly
during the MEMS system modeling level (see paragraph 1.2.1). When both the
sensor interface and the MEMS component(s) are developed, these components
are packaged together. The type of packaging process depends on the adopted
approach for the implementation of the microsensor system (see paragraph 1.3.1).

Figure 1-2, Flowchart of the life cycle of a MEMS system

The following step consists on the testing of all the functionalities of the device and
its characterization. For a sake of simplicity in the representation of the flowchart

Chapter 1.Testing of mixed-signal MEMS sensor systems

10

the characterization has been inserted after the packaging. Actually, the
characterization involves different stages of the life cycle of the device. The
purpose of the characterization is to verify that the design is correct and the device
will meet all specifications, execute a so called test program to control an automatic
test machine (see paragraph 1.4).
The last step before the production is the calibration. It consists on a set of
measurements of the characteristic parameters when some appropriate stimuli are
applied on the device and, on the basis of the measured value with respect to the
data produced by a reference measurement unit, the characteristic transfer
function is corrected in order to obtain a certain accuracy and under certain
conditions.
The final step is the delivery to the customers. Also this step can be considered a
testing activity, because the customer itself will test the device.
The next paragraphs describes all this steps in detail, focusing particularly on
testing operation connected to the described activity.

1.2 Design of MEMS sensors

The design of MEMS sensors, as any complex engineering process, requires the
definition of a formal design flow, in order to provide a structured and manageable
design environment, to permit to spread a technology over a large audience and to
formalize a detailed interface of each step and the interaction among them.
A good definition of a design flow allows to enable complex engineering design in
the shortest time and through few fabrication iterations. For the definition of a
MEMS sensor design flow the first approach was to embed the required design
tools into a traditional analogical VLSI design flow. This solution, however, does not
address the significant differences between the two technologies. VLSI design
flow, in fact, almost exclusively involve a single physical domain: the electric
domain, whereas MEMS design requires multiple domains. Moreover, while in
VLSI modeling the layout is generated after modeling the functionality of the circuit,
in MEMS design the layout itself (intended as geometry, orientation and position of
the basic elements) is an essential component for the description of the
functionality of a MEMS. For these reasons, the design flow for MEMS sensors
requires an ad-hoc design flow.
The MEMS design flow block diagram is shown in Figure 1-3. Starting from the
combination of the idea and a feasibility study based on a general architecture, the
MEMS design flow begins with the product definition. During this phase, the device
specifications, intended as sensitivity, noise, temperature stability and die size are
defined. Costs are evaluated in this phase too. The next step consists on the
developing of a Finite Element Method (FEM) model to define the MEMS
geometry. This phase permits also to extract the characteristic device parameters
by simulation, and this parameters are used to develop a high level MEMS model,
used to start designing the sensor interface circuit (see paragraph 1.3). Once the
MEMS geometry is completely defined and respects the device specifications, the
device layout must be generated. To do so, usually the same tools used for the
electronics layout are used. Before the production step is very important to perform
the layout verification in order to discover and correct errors. This step consists of
two actions: the verification of the match between the process specifications and

Chapter 1. Testing of mixed-signal MEMS sensor systems

11

the layout realization through a Design Rule Check (DRC) and the verification of
the compliance between the realized layout and the sensor schematic through a
Layout Versus Schematic (LVS) check. Another optional step before production is
the layout simulation (also called post layout simulations). This phase permits to
verify the design correctness, and to tune the mechanical device properties used in
the system level description to enhance the MEMS high level model. Moreover,
simulating the geometry allows to find errors that are missed in previous models
due to high approximations.

Figure 1-3. MEMS design flow block diagram

1.2.1 MEMS modeling

Modeling and analysis of devices and systems are complex subjects. Modeling
occurs at many levels and uses a variety of modeling paradigms. Four modeling
levels can be identified: System, Device, Physical and Process. All the levels are
strictly coupled among them.

Chapter 1.Testing of mixed-signal MEMS sensor systems

12

The top level is the system, in which the MEMS is modeled together with the
sensor interface. In this level either of block diagram descriptions or
lumped-element circuit models can be used. Both lead to a coupled set of ordinary
differential equations (ODE) to describe the dynamical behavior of the system.
Often these equations are written in a specific form as a coupled set of first-order
ordinary differential equations for the state variable of the system. In this form the
equations are referred as state equations for the system. The tool usually
employed for system level models is Simulink

TM
.

The bottom level is the process, in which the process sequence and photomask
designs for device manufacturing are created. Process modeling at this level is a
highly sophisticated numerical activity, so a number of commercial CAD tools have
been developed: they are generically referred as technology CAD or TCAD. These
CAD tools allow to predict device geometry from the mask and process sequence.
However, the role of the designer is fundamental during this phase, because the
correct material properties must be selected, and these properties depend on the
detailed process sequence.
The physical level models the behavior of the real device in three dimensional
continuum. The governing equations are partial differential equations (PDE), and
various analytical models can be used to find closed-form solutions in ideal
geometries; however, to model a realistic device it is necessary to use either
approximate analytical solutions to the PDE’s or highly meshed numerical
solutions. Different numerical modeling tools permits to simulate at the physical
level, using either finite-element, boundary-element or finite-difference methods.
However, to model electrostatic forces, mechanical behavior, coupled electro
mechanics and damping effects commercial finite-element and boundary-element
tools (for instance, Ansys

TM
 and Comsol Multiphysics

TM
) are necessary.

The device level is used to create a simplified model able to interact with the entire
device and their associated circuitry. In fact, while the physical model is adapt to
simulate the physical behavior, to interact with the system level without introducing
excessive overload it is necessary to reduce a reduced order model. This model
must be developed in a form that permits rapid calculation and insertion in a
system level simulator. However, it must be energetically correct, conserving and
dissipating energy when it should, have the correct dependence on material
properties and device geometry, represent both static and dynamic device behavior
for both small (linear) and large (non linear) amplitude excitation, and agree with
the results of the 3D simulation of the physical level and with the results of
experiments on suitable test structure.
There is no order in the developing of the different modeling levels: the designer
can create models directly at the system level, or starting from one of the other
levels. For example, the designer could start from a physical device description
with all the device dimensions and the material properties and then use physical
simulations tools to calculate device behavior, capture this behavior in a reduced
order model and finally insert it into a system-level block diagram. Or alternatively
the designer could simply use a parameterized reduced order model to represent a
particular device and defer until later the specification on device dimensions to
achieve the desired performance.
In conclusion, the operation of MEMS modeling is a fundamental step in MEMS
design, because it permits to analyze the behavior of the sensor the designer is

Chapter 1. Testing of mixed-signal MEMS sensor systems

13

going to build, evaluating also the interaction with the system it will be part of. This
modeling phase allows to develop a mathematical representation of the MEMS
sensor before building experimental prototypes, avoiding the costs of a wrong
actual prototype. For this reason, modeling is also called ―numerical prototype‖.

1.2.2 MEMS layout

The MEMS layout is the last step before the device production. A MEMS process is
based on the different steps of deposition, pattern and etching. A schematic
representation is shown in Figure 1-4.

Figure 1-4. Schematic representation of a MEMS physical process

A structural layer of polysilicon (called epi poly and characterized by typical
thickness of 11 um) is used to build the moving structure of the MEMS (light blue in
figure). This moving structure is suspended over an etched pit and is anchored to
the substrate with well defined anchor points. The position of these anchors define
the MEMS motion which can be characterized by a rotating motion or/and a tilting
motion. If the device is a capacitive structure, as the device shown in figure above,
electrodes positioned under the moving structure are used to detect the motion
through the capacitance variation between the moving structure and the electrodes
themselves. The electrodes are made up of thin polysilicon (typical 100nm thick)
defined as buried poly (blue layer in figure). The different signals are applied to the
different mechanical structures by using appropriate connections between the
mechanical parts and the MEMS pads. These connections are realized with both
epi poly and buried poly paths which are vertically connected through ―vias‖.
Since all MEMS processes are based on the same phases, it is possible to abstract
them in a layered structure, where each layer represents a process step. Each
process can be defined in terms of the manufacturing steps needed for each layer
together with the characteristic properties of the material used and the geometrical
dimensions of the layers. In the MEMS design methodology this information is

Chapter 1.Testing of mixed-signal MEMS sensor systems

14

captured in a layout technology file and a layout design rules file which customize
an appropriate layout tool. The tools used for this purpose were not originally
intended for MEMS (e.g. Virtuoso tool of Cadence

TM
 environment), so MEMS

layout designers still face some common issues and roadblocks while attempting to
create lithographic masks that correspond with the original device design,
specifically in the areas of drawing, design rule checking (DRC) and output. In fact,
these tools provide only rectangles as typical geometries, whereas MEMS
structures involves arbitrary geometries like arcs, curves, and so on. In addition, in
MEMS layout understanding the three-dimensionality of the topography is required.
Moreover, while typical transistor blocks may cover 20x20 micrometers areas,
MEMS geometries may have 5 micrometers features, and an overall dimension of
1mm. This wide range in size can result in constant zooming in and out during the
design process. Thus, some MEMS designs require the ability to snap to corners,
midpoints or user specified relative distances without zooming in. Finally, also the
MEMS process requires DRC (Design rules check) and LVS (layout versus
schematic check) to find errors before tape-out, but the same tools used for IC
cannot be used for MEMS process because of the free-form nature of that, which
requires to vary design rules depending on the MEMS fab and associated tooling,
and many DRC tools are not able to perform operations on all-angle polygon
geometries. So, the implementation of these tools also for MEMS is required to
have a more reliable design flow.

1.3 Design of the conditioning system

The creation of the MEMS sensor is only the first phase of the develop of a sensor
chip. In fact, the information produced by the MEMS must be converted into a form
that may be easily manipulated by every components that could interact with it. So,
it is necessary to design an electronic circuit able to do it, called sensor interface.
The functions implemented by a sensor interface can range from simple
amplification or filtering to A/D conversion, calibration, digital signal processing,
interfacing with other electronic devices or displays, and data transmission (that
can be handled by wired or, recently, wireless connection). Since the appearance
of the first integrated circuit (IC), Very-large-scale integration (VLSI) technologies
has been used to make sensor interface circuits, combining discrete sensors with
application-specific integrate circuits (ASICs) or circuits on a printed circuit boards
(PCB). With the birth of miniaturized sensors (microsensors), realized using IC
technologies and materials, it has been possible to integrate the interface circuit
and several sensors on the same chip or in the same packages, reducing the cost
of measurement systems, the size of the whole system and its reliability.
However, the design of the sensor interface for microsensor systems is very
complex for different reasons. This kind of systems, indeed, show worse
performance due to weak signals and to offset and nonlinear transfer
characteristics. Moreover, most of the traditional circuit techniques cannot be used
because they rely on accurate component matching and complex analog functions
that will make the device weak with respect to aging and degradation. In addition, it
requires sensor specific design techniques to increase accuracy and to reduce the
power consumption.

Chapter 1. Testing of mixed-signal MEMS sensor systems

15

For these reasons, microsensor interface features are strictly coupled with the
microsensor the interface must control and the package, because they depend
heavily on the quantity to be measured, the physical effect used, the system
architecture and the application.

1.3.1 Microsystem vs. Micromodule

There are two possible approaches for implementing microsensor systems: the
microsystem approach and the micromodule approach [4]. In the microsystem
approach, the sensor and the interface circuitry are integrated on the same chip,
whereas, in the micromodule approach, the sensor and the interface circuitry are
integrated on different chips, and they are included in the same package (SoP) or
mounted on the same substrate.
Both the approaches have advantages and disadvantages. In the first approach,
the microsensor must be designed taking into account the material characteristics
given by the standard IC process used and any specific processing step has to be
performed after the completion of the standard IC fabrication flow, limiting the
possibility to improve the sensor performances. Moreover, there are also
disadvantages about the cost and the yield. In fact, when the feature size of the
technology reduces, while the cost per unit area of the IC is compensated by the
area reduction, this is not true for the microsensor, because its size does not
depend only on the technology, but also on physical constraints. In addition, the
yield for a microsensor is generally lower than for ICs; so, having both elements in
the same chip, force to discard a chip when a defect on the microsensor is
discovered, even if the IC is working. However, this approach also has a lot of
advantages. In fact, the system assembly is simple, inexpensive, and independent
of the number of interconnection needed. Moreover, the parasitic due to the
interconnections between the sensors and the interface are minimized, and also
other parasitic effects are compensated by the use of the same technology that
allows to achieve good matching between elements of the two components of the
system.
In the second approach, it is possible to use different technology for the sensors
and the interface, allowing to choose expensive submicron technologies for the IC
and low cost technology for the sensor. Using two different materials, it is possible
to optimize the performance separately, reducing the cost and increasing the yield.
This approach, however, has a number of drawback. First of all, the assembling is
quite expensive and it is a source of possible failures; moreover, the number of
interconnections allowed between the sensors and the IC is limited, and these
interconnections produces high and unpredictable parasitic. Finally, matching
between elements of the sensor and elements of the interface circuitry cannot be
guaranteed.

1.3.2 Functions of a microsensor system

 As we already said in the introduction, the components of a sensor interface
strictly depend on the quantity to be measured, the physical effect used, the
system architecture and the application. So, it is more suitable to talk about
functions instead of components [5, 8].
Figure 1-5 reports the set of function that constitutes the typical structure of a
sensor interface. Each element represented in the figure can be implemented as

Chapter 1.Testing of mixed-signal MEMS sensor systems

16

single component or subsystems or can be distributed in different components or
sub-components. Moreover, some parts can be implemented also outside the
sensor interface by the application that uses the system. The decisions as to which
functions are implemented where form an important discussion in modern sensor
systems design, and depend strictly on the designer choices and the target
application. The scheme in figure, however, is not constraining, so some functions
can miss and other functionalities can be implemented in the system. For example,
while the forward chain is mandatory to extract the information from the MEMS
sensor, not all the systems implement the feedback chain that is used only in the
―closed loop‖ sensor category.

Figure 1-5. Functions of a sensor system

A generic sensor system can be described starting from the sensing element, that
can be defined as a component that receives the energy from the physical entity
being sensed. This form of energy is converted to electrical energy by the
transducer. As we already said in the introduction, microsensors produce weak
signals, so it is necessary to increase the amplitude of the signals. The role of the
amplification function is to translate an electrical signal to one of a different
amplitude, that may be expressed as a voltage, a current or a charge. The
amplification factor is the gain. Also the conversion between two signal forms (for
instance from current to voltage) and the level translation within digital systems can
be considered as part of the amplification function. The Offset/linearity
compensation is the process of suppress the offset and nonlinearity, which can be
originated from imperfection or the characteristic of the sensor itself, from the
sensor characteristic. More details on the compensation process are described in
paragraph 1.5. The filtering function identifies all the operations that acts on a AC
signal to modify its phase or frequency response. So, other than traditional filter
such as low-pass filters, it includes also processes such as time integration and
differentiation. The last function of the forward chain is the information extraction. It
represents the activity of conversion from the data provided by the sensor interface
to information. Different action can be part of this category: in fact, the conversion
of sensor data in a wired communication protocol is a part of it, but also the
manipulation and the processing of the data to produce other kind of information

Chapter 1. Testing of mixed-signal MEMS sensor systems

17

can fall within it (see Chapter 4). So, all the operation concerning the processing of
the data produced by the system can be considered as a part of this function, and
can be placed in different locations of the processing chain (inside the chip, in a PC
outside the chip, in a Field Programmable Gate Array (FPGA), and so on).
The last two functions regards only a subset of the available typology of sensors.
These kind of sensors use a ―closed loop‖ topology in order to control its condition
on the basis of the output signal. With the Feedback signal conditioning is intended
the process of producing the required feedback signal from the forward signal. To
achieve this task, all the functions described for the forward chain can be used.
The Actuator function is the process of converting the electrical signal provided by
the feedback chain in the appropriate form of energy, depending on the sensor
requirements. Usually, the form of energy required for the feedback input is the
same of the output to the transducer, but it is not mandatory.
From a functional viewpoint it is not possible to describe some of the most used
components that characterize a typical sensor interface, because their position and
implementation depends on how the designer choose to distribute the functions
described above. To make up for this lack, the next paragraph illustrates a typical
microsensor interface circuit.

1.3.3 Typical microsensor interface circuit

A typical microsensor interface circuit is composed by a set of components used to
implement most of the functionalities described in the previous paragraph. Figure
1-6 shows a block diagram of a generic sensor interface, for a three sensing
elements system [4]. This architecture is valid for both microsystem and
micromodule sensors.

Figure 1-6. Block diagram of a generic sensor interface

Chapter 1.Testing of mixed-signal MEMS sensor systems

18

A microsensor system interface is typically composed by some analog front-end
circuit (amplification and low-level processing), one or more analog-to-digital (A/D)
converters, a digital signal processor, and an output interface. Although processing
is performed more efficiently with analog techniques, in the presence of harsh
environmental conditions, the trend is to minimize the analog section, moving the
A/D converter toward the input and leaving complex processing to the digital
section, because signal processing in the digital domain is more robust than in the
analog domain thanks to the larger noise margin. So, the design of the A/D
converter turn out to be a critical task, because its bandwidth and dynamics range
specifications become more severe than in a almost fully analog design. As we can
see in Figure 1-6 a feedback chain is reported, although it is not mandatory as we
already explained in the previous paragraph. But in this case, using the backward
chain is not useful only for ―closed loop‖ sensor category, but it is used also to
adjust system parameters in the analog front-end to optimize its performance,
depending on the output signal.
The role of the analog front-end is to transform the raw sensor signal into
something suitable for the subsequent A/D converter. The functions implemented
in the analog front-end are typically limited to amplification and filtering, in order to
keep the analog side as small as possible. Since the analog-front end is directly
connected to the sensor, its features depend strongly on the kind of sensor
considered.
After the analog front-end, one or more A/D converters connect the analog side to
the digital side. In order to supply the reduction on the analog domain, it is
necessary to design these components accurately. Its design depends hardly from
the signal produced by the analog side. For example, consider a sensor providing
a maximum output signal of 10 mV on top of an offset voltage of ±100 mV. If we
want to resolve 0.1% step by connecting an A/D converter directly to the sensor
and performing the offset cancellation in the digital domain, we need 14-bit
resolution. But if we implement some sort of offset cancellation in the analog
domain in front of the A/D converter, the required resolution drops to 10 bits. So,
designing an A/D converter requires to identify the signal we have to ―translate‖
and requires to reach a compromise among its size (that depends on the number
of bits), the complexity of the analog front-end, the sampling time and the sampling
noise we can tolerate. On the basis of the method used to reduce the quantization
error, two families of A/D converter are identifiable: Nyquist rate and oversampled
A/D converters. The first family increases the resolution of the quantizer, thus
making the step size smaller; the second family, instead, increases the sampling
rate above the Nyquist rate. The first family is imperative in high-frequency
applications, simply because the use of oversampling would lead to an impractical
speed of operation.
Connected to the A/D barrier, there is the core of the signal processing in modern
microsensor system: the digital processing. The most important signal processing
functions required for sensor applications are filtering, calibration, and control.
Filtering is used to limit signal bandwidth and remove out-of-band spurs or to
decimate the output signal of oversampled A/D converters. The response of
integrated sensors is often nonlinear. In many cases, therefore, interface circuits
have to include a calibration section to linearize the transfer characteristic of the
sensor, avoiding the undesirable and unpredictable effects due to nonlinear terms.

Chapter 1. Testing of mixed-signal MEMS sensor systems

19

Moreover, since aging often modifies the response of the sensor during the lifetime
of the device, the programmability of the calibration function is also important.
Linearization and calibration are typically implemented in the digital domain to
exploit the flexibility of digital signal processing. The most common techniques for
sensor calibration are based on lookup tables or polynomial correction. Another
important function typically implemented digitally in microsensor systems is the
control of the system operation. This includes the timing generation, the selection
of the mode of operation (for example, acquisition, calibration, transmission, and
self-test), and the generation of the feedback signal for adjusting the sensor or
analog front-end characteristics.
The last part of the chain is the output interface, whose role is to convert the sensor
output signals into a standard communication protocol, keeping the number of
wires limited to avoid cost and reliability problems. Serial bus systems are the best
candidates to solve these problems, since they require a minimum number of wires
and allow simple transmission protocols to be implemented. One of the most used
bus is the Philips I

2
C bus system that has been specially developed to interconnect

integrated circuits. This system allows relatively small distance data transmission
through a serial connection using only four lines. The I2C bus is a multimaster bus,
since more than one device can initiate and terminate a data transmission.
However, to avoid degradation of the message, only one device at a time can be
the master. Finally, depending on the application, specific bus interfaces can be
used and possibly be compatible with standard computer systems,like the SPI bus
and the Ethernet. Another approach to solve the wiring problem is to use wireless
interface. The most promising approach for wireless interfaces, especially when
short-range interconnections are required, is the Bluetooth standard. Several fully
integrated Bluetooth transceivers are available on the market, either as commercial
parts or as IP blocks to be included in custom integrated circuits without
considerable design effort. Other solutions for wireless interconnections, especially
for applications operating over longer ranges, are based on cellular phone
standards or on wireless LANs.
Designing of a sensor interface must keep in mind also some other kind of
requirements that are outside the implementation of a single component of the
system, but regards the design approach of the whole system and the application
itself. Some applications, indeed, may require real-time response: in the case of
human-like sensing, real-time means that a few milliseconds, while for control or
recognition of fast-moving objects such as cars or planes, real-time can imply
several megahertz of bandwidth. Electronic equipment is becoming more and more
portable, leading to battery-operated sensor systems with a small volume and
weight. These features imply microsensor technologies, special packaging and
assembling, low-voltage and low-power design methodologies, robustness, and
shock resistance.

1.4 Testing and characterization of the SoP

Testing activity involves several different figures, depending on the phase of the
life-cycle of a chip. When a new chip is designed and fabricated for the first time,
testing should verify correctness of the design and the developing of the test
procedures. During this first phase of testing, also the designers of the chip are

Chapter 1.Testing of mixed-signal MEMS sensor systems

20

involved and it may ever take place in the design laboratory rather than in a factory.
Based on the result, both the design and the test procedures may be changed.
This first phase is called verification testing.
A successful verification signals the beginning of production, that means large
scale manufacturing. In this phase, called manufacturing testing, fabricated chips
are tested in the factory.
The last phase of testing of a chip is done by the customer itself to ensure quality.
This testing is known as acceptance testing and is conducted either by the user or
for the user by some independent testing house.
The basic principle of digital testing is the application of binary patterns (called also
test vectors) to the input of the circuit and the comparison of the response with the
expected one, as shown in Figure 1-7. This test is done automatically by the use of
automatic test equipment (ATE) that is a powerful computer operating under the
control of a test program written in a high level language [6, 7].

Figure 1-7. Basic principle of digital testing

1.4.1 Type of testing

Chip testing can be classified, depending upon the specific purpose it
accomplishes, as characterization, production, burn-in and incoming inspection.
The characterization testing is performed on a new design before it is sent to
production. The purpose is to verify that the design is correct and the device will
meet all specifications. Functional tests are run and comprehensive AC and DC
measurements are made. Probing of internal nodes of the chip, commonly not
done in production testing, may also be required during characterization. A
characterization test determines the exact limits of device operating values, testing
the worst case, because devices passing this test will work for any other
intermediate conditions. This kind of tests produce a pass/fail decision. Each test is
done on a statistically significant sample of devices and it is repeated for every
combination of two or more environmental variables. During this kind of testing,
design errors are diagnosed and corrected, chip characteristics are measured for

Chapter 1. Testing of mixed-signal MEMS sensor systems

21

setting final specifications and the test program is developed. Some of the tests
done during the characterization phase is repeated also throughout the production
life of the device in order to verify if improvements in the design and the process
yield can be done. Moreover, characterization can be used to verify the failure
causes of pieces discarded during the production test.
The production testing comprehends less tests than characterization because its
aim is to determine whether the device meets specifications. So, the vector may
not cover all possible functions and data patterns but must have a high coverage of
modeled faults. The preparation of the production testing procedures must keep
the duration as low as possible, because every devices must be tested. So, each
test must determine if a piece passes or not; if a fault diagnosis is necessary, the
piece must be examined by the characterization testing. This kind of testing is not
repetitive, but its aim is to simply verify if a piece respects all relevant
specifications.
Burn-in testing is a special type of testing: its aim is to verify the robustness of a
device over a long period of time. Correlation studies show that the occurrence of
potential failures can be accelerated at elevated temperatures. Two types of
failures are detected by burn-in: infant mortality failures, often caused by a
combination of sensitive design and process variation, may be screened out by a
short-term burn-in in a normal or slightly accelerated working environment, and
freak failures, that require long burn-in time in an accelerated environment. During
burn-in, we subject the chips to a combination of production tests, high
temperature, and over-voltage power supply.
The incoming inspection testing perform incoming inspection on the purchased
devices before integrating them into the system. The test procedures used during
this testing phase can be the same of the production, more comprehensive than
that or ad-hoc for the target application. It is done for a set of random samples,
whose size depends on the quality and the system requirements.
A single test can be classified in one of the following two types: parametric or
functional. Parametric tests are those tests that regards electrical failures; for
instance short test, open test, leakage test, and so on. These tests are usually
technology-dependent. Functional tests, indeed, determine whether the internal
digital logic and analog sub-systems in the chip behave as intended. They check
for proper operation by testing the internal chip nodes. These tests may be applied
at an elevated temperature, at several voltages and at varying timing conditions
(e.g. clock frequency) to guarantee specifications.

1.4.2 Automatic test equipment

The tests described in the previous paragraph are executed by a tester, whose
purpose is to drive the inputs and to monitor the output of a device under test
(DUT); testers are also called ATE (automatic test equipment). So, the ATE is an
instrument used to apply test patterns to a DUT, analyze the responses from the
DUT and mark the DUT as passed or not. These machines are controlled by a
workstation or a PC where the test program is executed. The test program contains
the set of operation that the ATE must execute to conduct testing. Because its
syntax depends on the machine it is used, the tools used to generate patterns (test
pattern generator, or TPG) commonly generate a tester-independent program

Chapter 1.Testing of mixed-signal MEMS sensor systems

22

which can be customized for the used machine. Most of these machines provide a
choice of input signal waveforms, permit to mask output signals, are able to sense
impedance state and offers a variety of sophisticated capabilities.
The tester has one or more test heads, which contain buffering electronics local to
the DUT, but one mainframe with common instrumentation. To automate the
loading of DUT(s) in the test head(s), usually the ATE is connected to a handler.
Thus, while one chip is being tested in one test head, another chip can be loaded
into a second test head, so the tester overlaps mechanical handling of parts with
electrical testing of parts. Some ATEs can be designed to test several devices at
the same time: this testing approach is called multi-site testing. In multi-site testing,
single test heads have been designed to handle multiple packages simultaneously,
so it contains more than one socket. Using this approach it is possible to test
multiple DUT at the same time with a reduced cost, because most ATE instruments
can be replicated in the tester and most operating systems allow to execute the
program designed for one site in multiple sites using duplicate resources in the
tester, simply modifying it to address different resources. The limits of this
approach are the number of instruments installed in the ATE to handle all of the
required pins and the available type of handling equipment.

1.4.3 Testing of sensor systems

Testing of MEMS sensor systems are quite different from testing of CMOS devices
and packages. Indeed, the techniques used for traditional devices cannot test
specific MEMS-related issues such as moving parts, temperature, humidity,
pressure, and so on. Special chambers, probes, sample holders, test structures,
detection systems, sample preparation techniques and electronics are required.
Some points must be considered when testing MEMS systems: first of all, the
tester must be able to test influences such as temperature, high-G vibrations,
pressure and vacuum, because the environment at the sensor ring is often very
harsh. Second, the device often has openings through which the medium carrying
the sensor/actuator signals is exposed directly to the microsystem chip inside the
package. This means that the device is exposed to unwanted environmental
influences and must be tested in a completely shielded environment such as a
vacuum chamber. Moreover, the packaging techniques used for microsystems
devices are normally device-specific or application-specific and tend to have failure
mechanisms, which differ substantially from those of other electronic components
and systems. This requires a high level of equipment customization. In addition,
many MEMS are used in safety-critical applications where long-term reliability is
critical. Finally, substrate handling is often difficult because common pick and place
systems and pin drives could damage the micromechanical parts.
However, different companies already provides ATE machines able to manage
testing of MEMS systems.

1.5 Calibration and performances evaluation

One of the most important phase of the design of a sensor system is the calibration
and performance evaluation. Obtaining the maximum in terms of performance,
intended as minimum error in the measure with respect to the physical variable,
resolution, sensitivity, and so on, at the lowest possible cost is a challenging

Chapter 1. Testing of mixed-signal MEMS sensor systems

23

activity. In order to accommodate the effects of interfering and modifying inputs,
non-ideal sensing devices, process variations and time variations it is necessary to
modify the system design or to add some new elements to it. Filters on the
conditioning chain, negative feedback and compensation in one or both the analog
or digital domains are some of the processing functions applied to the sensor
read-out with the scope of improving sensor signal quality, following the process of
calibration or measurement of the sensor's characteristics. The easiness in the
adoption of these techniques in MEMS sensor, with respect to the old approach
that uses discrete sensors, is one of the reasons of the success of this technology.

1.5.1 Performance parameters and sensor errors

To achieve the goal of obtaining a ―good‖ sensor some quality parameters must be
defined. A list of some of the most important parameters is reported in Table I [8].
Obviously it is impossible to obtain a sensor system that satisfies the optimum for
all of these parameters; a trade-off among them must be reached, depending on
the application, the cost and the design constraints.

Table I – Performance parameters

Quality
parameter

Definition Ideal value

Full scale
output
(FSO)

Algebraic difference between
upper and lower endpoints of
output

Whatever is required by the
downstream electronics,
usually in the volt range, for
voltage signals

Error

Difference between measured
physical variable and true value
of the physical variable (usually
expressed in percent of FSO)

0%

Offset
Sensor output for zero applied
input

0 (assuming zero referenced
voltage output, although
some systems, for instance
4-20 mA voltage loop would
require an offset of exactly 4
mA)

Hysteresis

Maximum difference in the
sensor output when the value is
approached first with increasing
input and second with
decreasing input, expressed in
percent of FSO

0%

Chapter 1.Testing of mixed-signal MEMS sensor systems

24

Quality
parameter

Definition Ideal value

Linearity

Closeness of calibration curve to
a specified straight line (usually
measured as the maximum
deviation of calibration point
from
straight line as percent of FSO)

0% error

Sensitivity
Magnitude of change in the
sensor output with respect to
change in the physical variable

Whatever is required to allow
measurement of the
minimum input required to be
detected

Accuracy
Ratio of error to FSO expressed
in percent

0% error

Repeatability

Agreement between
independent measurements
made under identical conditions
(maximum difference in output
readings given as % of FSO)

0% difference

Resolution

Smallest change in the physical
variable that results in a
detectable change in the sensor
output

Infinitesimal

Frequency
response

Change with frequency of
output/input magnitude ratio and
phase difference for sinusoidal
varying input

Flat to infinity

Cross-
sensitivity

Sensitivity of sensor to another
variable than the physical
quantity under measurement

0%

Stability

Ability of sensor to reproduce
output for identical input and
condition over time (expressed
in percent of FSO)

0% error

These parameters are also valid to characterize the sensing element itself (see
paragraph 1.2) and, in this case, they are useful during the design of the sensor

Chapter 1. Testing of mixed-signal MEMS sensor systems

25

interface to develop the conditioning system (see paragraph 1.3). In this phase,
however, they are used to evaluate the performance of the whole system to obtain
information about its characteristics and select the best pieces during the
production phase.
The set of errors the sensor system may fall can be classified in two categories:
systematic errors and random errors. The systematic errors category such as
inaccuracy of system parameters and parasitic effects, streaming from the sensor
design, its fabrication processes and/or the read out electronics groups all the
errors that are deterministic, and in most cases measurable and sensor type
specific. Systematic error batch calibration or compensation is generally applied to
alleviate such undesirable effects if the errors are large enough as to take the
sensor's accuracy outside the desired range. An automated calibration process
could then be performed by placing many sensors in a controlled environment and,
via a bus, measuring each sensor output and programming the integrated
calibration function. The random errors category, instead, contains all the errors
that arise either from random variation in the production process or from the
environment. These kind of errors are device dependents, so it is possible to
compensate them through individual calibration.
The most common errors are offset, gain, range or full-scale error, non-linearity,
cross-sensitivity, hysteresis and drift. Whilst hysteresis and drift are common in
some sensor types, all other errors are present to a higher or lesser degree in all
sensor types. These are, moreover, very difficult to compensate, even if some
techniques to compensate these kind of errors are available in literature. For the
other typology, starting from the assumption that all the error can be approximated
to a linear function, can be corrected during the calibration phase. In fact, usually
sensor systems are equipped with programmable offsets and gains, and the
integration of complex signal processing elements permits to compensate this kind
of errors also applying complex techniques; in some cases, it is possible to apply
also non-linear correction techniques.

1.5.2 Sensor calibration

ISO defines the calibration as ―the set of operation which establish, under special
conditions, the relationship between values indicated by a measuring instrument or
a measuring system, or values, represented by a material measure, and the
corresponding known value of a measurand‖. This definition identifies the
calibration process as a measurement activity. The calibration, however, can
include also the correction of the sensor characteristics; so, it can be defined as the
procedure of correcting the transfer function of a sensor, using a reference
measurement system in order to guarantee a specified input-output relationship
with a certain accuracy and under certain conditions. In practical, to calibrate a
sensor it is necessary a reference sensor and, on the basis of the comparison
between the measure obtained under some stimuli (the source of the stimulus
depends on the physical quantity measured by the sensor itself) by the reference
with the one obtained by the sensor under calibration, it is possible to determine
the error with respect to the desired sensor transfer characteristic. After this
information is extracted, adjustment or compensation of the sensor characteristic
can be applied in order to obtain a more accurate transfer function. During the
calibration phase, however, other useful properties can be extracted; complex

Chapter 1.Testing of mixed-signal MEMS sensor systems

26

systems, indeed, requires to measure different system parameters to evaluate the
optimal setup of the conditioning system. The number of measurements required
mostly depends on two factors: the way in which the sensor user will be accounting
for the sensor non-ideal behavior and the time and cost investment in the process
of calibration, which reflects in the sensor cost. In fact, the process of calibration
requires time to be executed, because measurements throughout their range have
to be taken. If a measure must be done for each device, the calibration can take a
lot of time, increasing the cost of the MEMS sensor. In devices with a slow
response time, the cost increases even further.
After a calibration session is terminated, the result of a calibration is stored in a
document or a database. These data are used to verify if the measurements fall
between set limits: the sensors which do not calibrate within the set limits are
simply rejected. So, also the cost of the discarded piece and the cost of their
calibration in terms of time are virtually added to the cost of the successful sensors,
when assessing the overall cost of the sensing application. To reduce the
calibration’s cost, a first optimization to the process is to calibrate several sensors
in the same run; this solution requires a more complex equipment and the
calibration in this kind of setups can take more time, but the total time taken is
significantly reduced.
The activity discussed in this thesis regards the calibration of inertial sensors (see
Chapter 3), so the next paragraphs illustrates in detail the peculiarities of the
calibration process for this kind of sensors.

1.5.3 Calibration of inertial sensors

Inertial sensors, differently to other non mechanical sensing devices, require a
more complex equipment to perform a calibration session. In fact, mechanical
stimuli must be applied to the device in order to compare the measured value with
the reference.
To calibrate an inertial sensor, it must be mounted in a mechanical machine able to
stimulate the sensor with a proper physical stimulus. Some of these test
equipments are: Accelerometer turntables, rate table, vibration and shock machine
and centrifuge. The mounting fixture (i.e. the board and the mass where the piece
is mounted on the machine) might contain one inertial sensor or contain two or
more sensors in order to increase test productivity by testing several sensor
simultaneously; simultaneous sensor testing can also help distinguish between
noise inherent to the individual sensors and noise from common seismic and other
input. But, in this case, Care must be taken to avoid sensor-to-sensor crosstalk,
such as mechanical coupling through the mounting fixture, electronic coupling
through a common power supply system, or electromagnetic coupling between
closely spaced sensors or signal lines. When mechanical measurements are
involved, it is necessary to take care of external noise due to vibration of the floor
of a building, local cultural activities (such as automobile and other traffic, rotary
equipment in the building in which the test station is housed, fans in test
equipment, and even people walking by the test station), seismic activity and so on.
Moreover, the mounting fixture should be designed to not have any structural
resonance near the resonance frequencies of the sensor under test.

Chapter 1. Testing of mixed-signal MEMS sensor systems

27

Accelerometer turntable

This machine is used to perform various gravity field laboratory tests on an
accelerometer. Figure 1-8(A) shows a scheme of a typical accelerometer turntable
configuration. As we can see, the accelerometer is placed in the machine so that
its sensing axis (IA) is perpendicular to the rotation axis; this is necessary to
calibrate bias and scale factor using the local gravity as a reference and IA
misalignment using the local vertical. However, to measure cross-sensitivity, it is
necessary to align the IA to the rotation axis. Rotation of the machine between IA
up and down is used to determine whether there is any shift or transient in an
accelerometer’s output across a change in input between plus and minus the local
value of gravity. Up-down testing is also used to calibrate accelerometer scale
factor and bias, with results that are insensitive to misalignments although the
results could be aliased by other model parameters, such as nonlinearities, if they
are not known from other tests. A set of subsequent up-down movements permits
also to measure the stability of scale factor and bias. If the fixture is equipped with
slip rings it is possible to measure the angular velocity and acceleration sensitivity
by rotating the mounting fixture continuously.

Figure 1-8. Test machines: (A) Accelerometer turntable; (B) Two-axis rate table;
(C) Vibration machine [3]

Chapter 1.Testing of mixed-signal MEMS sensor systems

28

Rate table

Various tests can be done on a gyroscope using a rate table: Long-term drift and
noise tests are done with the rotary table in a fixed position, such as with IA vertical
or with IA parallel or perpendicular to the earth’s rotation vector. Continuous
rotations of the rate table at different rates and directions about the axis parallel to
the gyro IA are used to calibrate gyroscope bias and scale factor, although gyro
bias is more accurately calibrated in a drift test, after compensation for sensed
earth rotation rate. A gyroscope’s dead zone is evaluated as follows: First, place
the gyro IA perpendicular to the table rotation axis. Second, rotate the table slowly
through the position where its IA is perpendicular to the earth’s rotation vector. The
dead zone, if any, typically occurs where the bias is cancelled by the input rate.
Figure 1-8(B) shows a two-axis rate table. Rate table are usually equipped with slip
rings in order to allow continuous rotation. Another technique to avoid the use of
slip rings (only for data lines) is to send data by a radio link; for power lines, in any
case, slip rings are necessary.

Vibration machine

This machine is used for both accelerometer and gyroscopes in order to perform
various laboratory tests (Figure 1-8(C)). A frequency sweep on a electrodynamics
vibrator can look for any structural resonances in the sensor that would be revealed
by shifts in sensor output at vibration frequencies where there are resonances.
Shifts and transients are sought in the sensor output across exposure to vibration
and shock levels encountered in applications. Performance through random
vibration and shock can also be determined, such as whether the signal processing
used for the sensor adequately compensates for any vibration rectification effects.
Tumble and rotation rate calibrations before and after exposure to vibration and
shock can determine the repeatability of bias, scale factor, and other parameters
across vibration and shock. Sine vibrations at various levels and along various
sensor axes are used to calibrate sensor model nonlinearities. Sine vibrations
along an accelerometer’s IA are used to measure the accelerometer’s transfer
function.

Centrifuge

The use of a centrifuge allows to determine the sensitivity of gyroscopes and
accelerometers to high-level sustained acceleration. It usually rotates in the
horizontal plane about a vertical rotation axis so that the inertial sensor under test
senses an acceleration of rω

2
 along the centrifuge arm and the local value of

gravity in the vertical up direction, where r is the arm radius and ω the centrifuge
rotation rate. If the centrifuge angular rate exceeds a gyroscope’s angular rate
capability, then either the gyroscope has to have its IA perpendicular to the
centrifuge rotation axis, or the gyroscope must be mounted on a counter-rotating
table at the end of the centrifuge arm. Calibration rotation rate and tumble tests
before and after the centrifuge exposure can determine whether there are any
shifts in bias, scale factor, and other gyroscope or accelerometer model
parameters across the centrifuge exposure. One of the main uses of a precision
centrifuge is to calibrate accelerometer nonlinear model coefficients.

Chapter 1. Testing of mixed-signal MEMS sensor systems

29

1.6 The future of MEMS based systems

The MEMS business is moving very fast, but it is still a very fragmented market [2].
Some points has been put in evidence by the CEO of Yole Développement:

- A limited number of applications have a market size above $200M;
- Simplification of manufacturing is still an objective;
- MEMS packaging and software development are more and more adding

value: sensor integration (in silicon or in SoP) and sensor fusion are key
challenges for the industry;

- The development of new MEMS applications is taking years to be
commercialized: In average, 4 years from first developments to first
commercial product and $45M of investment.

On the other hand, the diffusion of this kind of technology in consumer electronic
application is changing the business.
Several large companies are working on the optimization of their process, but a lot
more work must be done to be after the dynamic market of consumer applications.
In fact, time-to-market and cost reduction are increasingly assuming a key role in
the developing of a MEMS sensor system.
Moreover, the necessity of new functionalities like sensor fusion requires a
redesign of the structure of electronic companies by introducing strong software
engineering teams, in addition to the set of multidisciplinary entities required for the
design of MEMS devices. Figure 1-9 shows the strategies of integration of different
typologies of sensors to obtain additional features.

Figure 1-9. Motion sensor combos: strategies of integration [2]

Chapter 1.Testing of mixed-signal MEMS sensor systems

30

As we can see, different combinations of sensors can be adopted to produce new
functionalities by fusing their information. In a long term view, all these three types
of sensors can be combined together to obtain a stand-alone multi-sensor device
able to trace the position of the device itself with a high degree of reliability. Not
only the consumer business is interested on these combined devices, but also all
part of the industry: medical, defense, telecommunication will all benefit from the
high scale production of this combo-sensors.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

31

2 CHARACTERIZATION OF MEMS AND PROTOTYPING OF
THE SENSOR INTERFACE

Nowadays MEMS devices are employed in many areas, such as communications,
automotive, signal sensing and space technology. The continuous progress in
MEMS fabrication technologies led to the development of MOEMS that represent
the outstanding state of art for projection technology. The increasing success of
these systems stems from their low-power consumption, low manufacturing cost,
miniaturization and their capacity for integration with electronic circuits. On the
other hand, testing and characterization of MEMS and MOEMS systems, whether
in the development or production phase, can be very challenging compared to pure
electrical tests due to the intrinsic multi-domain nature of such systems [9]-[14].
Moreover, the design of the sensor interface itself is a very difficult process,
because traditionally it is based on a simplified model of the MEMS sensor to
simulate the behavior by the use of CAD tools during the developing of the ASIC.
High volume, high-cost, and accurate measuring systems are necessary to
characterize and test MEMS and MOEMS, especially to examine motions,
deflections and resonance frequencies of the mechanical structures that are the
distinguishing characteristics of these systems [15]-[16]. A variety of custom
systems relying on interferometry have been developed for deflection
measurement but they require a significant amount of development time.
Alternatively, there are a variety of commercial deflection measurement systems
based on scanning Laser-Doppler vibrometers. However, even though these
systems feature very accurate results, they are often very expensive [17]-[22].
This chapter illustrates two architectures to achieve these tasks effectively and
efficiently.
In the first paragraph a fast-developing and low-cost characterization and testing
environment for MEMS and MOEMS is presented [23]. The environment is based
on a platform for sensor interface developing called Intelligent Sensor InterFace
(ISIF). ISIF platform can be used as a complete solution for sensor signal
conditioning as well as an actuation electronic driver for MEMS and MOEMS
[24]-[25]. The test environment can be customized thanks to the large
programmability of the ISIF platform (input channels, signal conditioning blocks). All
these customizations can be easily achieved using a simple graphical interface
developed with LabVIEW

TM
. The paragraph is organized as follows: the first part

describes the ISIF platform, then the test environment and the scanning
micromirror used as case study, and how the proposed test and characterization
environment has been used to characterize the micromirror are described. Finally,
the results of the tests are shown and the conclusions are drawn.
In the second paragraph a bridge solution based on bi-synchronous First-In First-
Out (FIFO) structures for frequency conversion, using a custom protocol with
priority paths managing is described [26]-[28]. The IP bridge is configurable both
during the implementation phase and at run-time execution. The size and number
of locations for the FIFOs can be chosen at synthesis time, while the output
frequency can be modified at run-time. The on-chip communication between the
main CPU and our module can be configured for AMBA AHB or APB protocols,
which are de-facto standards in embedded systems [29]. The design internally

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

32

requires a protocol change to be able to provide clock frequency conversion and
information transmission as fast as possible, using the lowest number of pads. To
convert back our custom protocol in a standard one an IP must be foreseen in the
external FPGA (in case AHB or APB are used in the FPGA the proposed IP bridge
can be replicated). This solution allows the use of an FPGA to design new
functionalities that may be included in the final MEMS device. It has been chosen
not to integrate the bridge in the ISIF platform, but in a final sensor interface
platform based on ARM9 microprocessor, in order to evaluate its performance in
the 0.18 μm Bipolar C-MOS D-MOS (BCD8) technology. However, the next step is
to integrate it in the ISIF platform in order to provide a complete MEMS prototyping
environment. In this paragraph, after a brief analysis of the state of the art, a
detailed description of the IP design and architecture is reported. Then, test results
and CMOS synthesis data are exposed. Finally, the results of the integration of the
IP bridge in a real sensor interfacing platform implemented in BCD8 technology are
presented and the conclusions are drawn.

2.1 ISIF: a low-cost and flexible platform for the
characterization and the conditioning of MEMS sensors

2.1.1 ISIF platform

The ISIF chip was developed and implemented in a 0.35 μm BCD (Bipolar C-MOS
D-MOS) technology. Figure 2-1 shows the ISIF block diagram. The platform
provides a set of programmable analog and digital IPs (Intellectual Properties)
directly on silicon. The IPs are configurable together with relevant interconnections
and interfaces with DSP software routines running on the embedded processor.
These routines emulate hardware blocks and/or are used to perform calibrations
and compensations on measured data.

Figure 2-1. ISIF block diagram

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

33

The ISIF platform features four different input channels (Figure 2-1) that allow the
direct interconnection of the system with the sensor. Moreover all the analog and
digital IPs are fully programmable by a set of status registers linked together in a
serial JTAG-like chain. For these reasons, different interfacing architectures, data
paths and signal processing chains can be quickly implemented and evaluated on
the field thus allowing a fast and a flexible interfacing, characterization and test of
the sensor.

2.1.1.1 Analog section
The analog section of the ISIF is mainly composed by four input channels for signal
acquisition and conditioning (Figure 2-1). The input stage (Figure 2-2) is made up
of a charge amplifier, which can sense voltage, current, resistance and
capacitance, thus covering MEMS needs in terms of signal acquisition and
feedback information. Then, the signal is filtered and properly shifted and amplified
by the subsequent blocks in order to fit the input dynamics of the Sigma-Delta
ADC. The analog section features several DACs that provide the driving signals for
the sensor.

Figure 2-2. Input channel block diagram

2.1.1.2 Digital section
The digital section includes several peripherals such as CACHE, ROM, RAM and
EEPROM memories and some IPs for digital signal processing. The core of digital
section is based on a LEON processor [30]. The LEON is a general purpose
processor based on a 32-bit RISC SPARC-V8 compliant architecture which
features hardware multiplier and divider, interrupt controller, memories busses and
standard peripherals like timers, watchdog, UART (Universal Asynchronous
Receiver Transmitter) and SPI (Serial Peripheral Interface). The set of DSP IPs
includes a modulator, a demodulator, a 6 DACs controller, a sine wave generator,
which can provide up to 16 waves with 3 different frequencies and programmable
phases. All these IPs can be accessed at their inputs and outputs via hardware
and via software allowing a higher degree of flexibility in the hardware/software
partitioning. The CPU can perform some DSP routine as well, like digital filtering.
These routines can be easily integrated with the real DSP blocks creating a flexible
and an ad-hoc DSP chain for different kinds of MEMS. As an example, a digital

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

34

hardware/software PLL (Phase Locked Loop) has been implemented on a fast
prototyping board (Figure 2-3).

Figure 2-3. Signal chain

2.1.1.3 Software
A ROM memory is used to store the boot and some firmware utilities. The
dedicated software runs in the RAM and can be downloaded via UART from a PC
or stored on an external SPI EEPROM and then loaded by the boot utilities at the
start-up via SPI interface. Developed firmware utilities are used: (i) to configure the
whole analog front-end, (ii) to change the digital blocks configurations and
interconnections, (iii) to perform useful routines like temperature and non-linearities
compensation, (iv) to handle the output communication for debug monitoring and
data logging for post processing.
Many safety market requirements are pushing towards the use of hardware-only
solutions. Unfortunately, these types of solutions are not suitable for the earlier
stages of a system development where maximum flexibility is required to explore
quickly and inexpensively the wide system design space. Moreover, a hardware-
only approach would require too many parameters and bits of configuration for
trimming, which are not compatible with our area and power consumption
requirements. For all these reasons the ISIF platform features a LEON embedded
processor. The LEON provides a library of signal processing software modules,
which are designed with the aim of matching real hardware devices so that a future
hardware-only implementation (which is necessary for the mentioned reasons) will
be costless. The LEON processor offers (i) good signal processing features, (ii)
guarantees high flexibility, (iii) the required computational power for these real-time
software IPs implementation, and (iv) an easy system updating as well, due to
possible system modification and new requirements. It is worth noticing that the
aim of the ISIF platform is not achieving the best performances, especially in terms

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

35

of area and power consumption, rather is providing an as wide as possible set of
IPs (real and/or software emulated) which can offer the largest number of possible
solutions for MEMS characterization. In the final ASIC device, software routines
can be quickly replaced by corresponding hardware IPs with a low risk and low
cost for redesign minimizing time to market as well.

2.1.1.4 High Voltage Board
In order to satisfy the requirements in term of driving of some types of MEMS or
MOEMS (like micromirrors), a high voltage analog driving board has been
developed. It basically includes high voltage amplification stages, which can shift
and/or amplify the output voltage of ISIF DACs (Figure 2-14).

2.1.2 Fast-developing and low-cost characterization and test
environment

A fast-developing and low-cost test environment for MEMS and MOEMS has been
developed. The approach is based on the use of the ISIF and on the following flow:

 design space exploration;

 preliminary configuration of the ISIF and connection to the MEMS;

 first results, cross-check with expected results, run-time minor changes of
the configuration and settings of the IPs;

 tests on final configuration;

 comparison and validation with FEM simulations;

 analysis of data and results.
A test environment has been set up in order to configure the interface system. A
LabVIEW

TM
 Graphical User Interface (GUI) has been developed in order to easily

configure the ISIF. The GUI is able to apply minor changes to the configuration of
all the IPs’ settings at run-time as well. Once the configuration of ISIF has been set
by the user-friendly GUI, the LabVIEW

TM
 software generates a text file with the

settings of all the analog and digital IPs. The text file is used by the LEON firmware
compiler and the settings are taken as parameters for the configuration chains of
the different IPs.
A run-time configuration mode is possible as well. This type of configuration is used
mainly when minor run-time changes of the configuration are needed. A firmware
module running in the LEON firmware implements a communication protocol with
the LabVIEW

TM
 software running in the PC. Following this protocol, the GUI is able

to set every IP’s configuration register.
Resuming, the easily configurable interface architecture of ISIF, combined with this
flexible configuration software, allow us to fast set up a test and characterization
environment for different MOEMS, in contrast with the usual big amount of time
needed to set up traditional (and often more expensive, even if more precise)
characterization setups. Moreover, the run-time reconfigurability of the architecture
speed-up also the eventual minor architectural changes, that in other setup could
require a complete revision of the overall test architecture.
The GUI is depicted in Figure 2-4 where the configuration of a DAC is taken as an
example.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

36

Figure 2-4. LabVIEW
TM

 GUI

2.1.3 Test and characterization of a double axis resonating
micromirror

2.1.3.1 Physical description and principle of operation of the micromirror
The structure under test is a double axis scanning micromirror used for image
projection purposes together with laser sources [31]. It basically consists of a
circular polysilicon mirror plate covered with aluminium and connected to a gimbal
frame by a pair of polysilicon torsion springs (Figure 2-5). The micromirror is a dual
axis structure: the slow axis has a resonance frequency of about 700 Hz while the
resonance frequency of fast axis is about 30 KHz. The working principle of the
device is the following: the fast axis enables the micromirror tilting around the y
direction while the slow axis enables the micromirror tilting around x direction. Both
axes are electrostatically actuated by means of vertical comb drives. Each vertical
comb drive consists of a set of rigid electrodes bound to the substrate, and a set of
moving electrodes linked to the axis and suspended over an etched pit.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

37

Figure 2-5. Micromirror structure

When a voltage is applied between the fixed and the movable electrodes, an
electrostatic torque arises and induces the motion of the axis. The movable fingers
rotate around the torsional axis until the electrostatic torque (Te) and the
mechanical restoring torque (Tm) of the springs reach the equilibrium condition [32].
The equations that describe the micromirror motion are:

 (1)

 (2)

where Nf is the number of the fingers of each comb drive, V is the applied voltage,
C is the capacitance between a fixed and a movable finger, K is the torsional spring

constant and finally is the rotation angle. The previous expression highlights that
the capacitance versus angle relationship is a fundamental parameter to model
each micromirror axis at the resonance frequency as well as the torsional spring
constant. These parameters have been extracted from the results of electrostatic
simulations performed with a FEM tool (COMSOL Multiphysics

TM
) as will be

described in the next paragraph. This device has an actuation voltage up to 90 V.

2.1.3.2 Electrostatic FEM simulations
The relationship between the capacitance and the rotation angle has been
extracted performing several electrostatic simulations with COMSOL Multiphysics

TM
.

In order to speed up the simulations without losing in generality and accuracy, we

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

38

adopted a simplified model of the structure which consists of only one movable
finger between two fixed fingers (Figure 2-6).

Figure 2-6. Simplified structure used for electrostatic simulations

As previously mention, the micromirror requires an actuation voltage up to 90 V,
thus in our electrostatic simulations the upper half part of the fixed fingers is biased
at 90 V while the movable fingers are kept at 0 V. From simulation results the
electrostatic energy (Wes) stored between the fingers can be extracted and
consequently the capacitance can be calculated as follows:

 (3)

where V is the bias voltage of the fixed fingers.
In order to automatically extract several capacitance values for several rotation
angles, a MATLAB

TM
 routine has been developed. This routine performs a rotation of

20° (from −10° to +10°) of the movable finger with steps of 1° and calculates the
capacitance value for each step. Since COMSOL Multiphysics

TM
 is MATLAB

TM

compliant, the routine has been directly imported in the COMSOL environment and
used to obtain the capacitance versus rotation angle waveform (Figure 2-7). The
capacitance versus angle relationship (Figure 2-7) for the micromirror fast axis is
not symmetric in respect to the deflection angle, since both the fixed and the
movable fingers are staggered in the vertical direction. This displacement is
necessary to generate the electrostatic force that enables the structure deflection.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

39

The analytical expression for the relationship between the capacitance versus
angle relationship is the fifth order polynomial expression (4) and has been
extracted fitting the curve of Figure 2-7 in MATLAB

TM
 environment.

(4)

where C is the capacitance expressed in fF and is angle expressed in radiant.

Figure 2-7. Capacitance versus angle relationship for the micromirror fast axis

2.1.3.3 Mechanical Simulations for the resonance frequency extraction
Each micromirror axis must be driven at the resonance frequency in order to reach
the maximum rotation angle for a given voltage amplitude. Thus the study of the
micromirror resonance frequencies is a key issue to perform a correct driving of the
device.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

40

Figure 2-8. Fast axis motion at its resonance frequency

The eigenfrequency analysis has been carried out performing a mechanical FEM
simulation in which no loads have been applied to the structure and the fixed
boundaries have been set with appropriate constrains.
Table I shows the six lowest fast axis resonance frequencies obtained from the
eigenfrequency analysis.

Table II – Resonance frequencies for the micromirror fast axis

1. f1(Hz) 2. f2(Hz) 3. f3(Hz) 4. f4(Hz) 5. f5(Hz) 6. f6(Hz)

7. 10938 8. 18597 9. 29945 10. 36889 11. 55249 12. 65730

The f3 resonance frequency (Table II) is related to a torsional motion of the
micromirror axis in and out the x-y plane, as shown in Figure 2-8, and the value of
this resonance frequency is confirmed by experimental results.

2.1.3.4 Mechanical Simulations for the K extraction
In order to have a complete characterization of the micromirror, the torsional
constant of each micromirror axis is needed. The purpose of this section is to show
how these constants have been calculated for the micromirror under study by
performing FEM mechanical simulations.
For simplicity in this section only how to calculate the torsional constant of the
micromirror fast axis will be shown, the procedure to calculate the torsional
constant of the slow axis is the same.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

41

The strategy adopted is the following: two opposite forces (±FZ) have been applied
at the two opposite sides of the mirror plate in the direction of the z-axis (Figure
2-9) and then a parametric simulation has been performed by setting the FZ module
as parameter.

Figure 2-9. Forces applied to the micromirror plate

From these mechanical simulations different values of the z-displacement (zdispl)
have been extracted for different value of the applied force and this data has been
used to find the mechanical torque (Tm) and rotation angle, as shown in (5) and (6)

 (5)

 (6)

where r is the micromirror plate radius.
The force module has been swept between 0 and 12 mN, thus obtaining the curve
Torque versus angle shown in Figure 2-10. Fitting this curve in Matlab

TM

environment the relationship between torsional torque and rotation angle has been
extracted:

 (7)

Where Knonlin=7.458e-9 N*m/rad

3
, Klin=1.358e-5 N*m/rad and T0=-9.903e-14 N*m.

From the comparison between the magnitude of the K values and the constant
term T0 we can gather that T0 can be neglected without losing in accuracy.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

42

Moreover, even though the relationship extracted from Matlab
TM

 fitting shows a non
linear behavior of the fast axis due to the cubic term, the latter is not appreciable
(as shown also in Figure 2-10) and consequently can be neglected.

Figure 2-10. Mechanical Torque versus rotation angle for the fast axis

2.1.3.5 Electrical Model
The results of COMSOL electrostatic simulations and MATLAB post-processing have
been used for the development of an equivalent electrical model in CADENCE

TM

environment for each micromirror axis.
In this section the model of the micromirror slow axis is shown. The slow axis can
be divided in four quadrants (SA1,SA2, SA3 and SA4 as shown in Figure 2-11(a))
and each quadrant can be described with its equivalent capacitance.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

43

(a)

(b)

Figure 2-11. (a) Micromirror layout; (b) Slow axis model

Figure 2-11(b) shows the Cadence model of the micromirror slow axis, the blocks
on the left side represent the equivalent capacitance of SA1 and SA2 quarter slow
axis, while the blocks on the right side represent the equivalent capacitance of SA3
and SA4 quarter slow axis.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

44

The model describes the micromirror from a capacitive point of view and has
shown its effectiveness in the design of the electronic circuitry for the micromirror
driving and conditioning.
As already said each block represents the capacitance versus time relationship of
a quarter axis at the resonance frequency. The capacitance versus time

relationship C(t) has been extracted starting from C() (4) and assuming that the

rotation angle is a sinusoidal time dependent waveform at the resonance
frequency.
In order to have an expression that can be implemented in HDL language the C(t)
expression has been approximated by performing its Fourier transform with the use
of the MATLAB Fourier function. Thus obtaining a C(t) function expressed as sum of
sine e cosine functions multiplied for appropriate coefficients, as shown in (8).

 (8)

Where CP is the parasitic capacitance of the moving structure versus the substrate,
Nf is the number of finger correspondent to a quarter axis, C0 is the static
capacitance, Cn and Sn are the coefficient of the Fourier Transformer and ωr is the
slow axis resonance frequency.
Each block of Figure 2-11(b) is the description in HDL language of the Fourirer
transform of a quarter axis plus the parasitic capacitance between the moving
structure and the substrate extracted from laboratory measurements.
The signals sin_minus and sin_plus represent the micromirror nodes that are
connected to the driving stages of the ISIF in the real device and vbias is the
constant low voltage applied to the fixed mirror electrodes. In our simulations and
laboratory tests vbias has been fixed to 0V. C0 and C1 are the parasitic
capacitances between different comb drives and were evaluated with the ISIF
platform as described in the following section. SA terminals are used for sensing
purposes. A similar model has been developed for the fast axis following the same
procedure.

2.1.3.6 Simulink
TM

 model
The characteristic micromirror parameters, extracted as shown in previous
sections, have been used to build up a Simulink

TM
 model for each micromirror axis

(Figure 2-12) which has been successfully verified via experimental
measurements. The model has proved his effectiveness in the high level study of
the micromirror conditioning system.
The Simulink

TM
 model represents the micromirror behavior from both a mechanical

and an electrostatic point of view. In this section only the model of the fast axis will
be shown, but the model of the slow axis has been developed by following the
same procedure.
The micromirror fast axis is driven by applying to the fixed fingers of the opposite
comb drive the two voltage signals (9) and (10)

 (9)

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

45

 (10)

where VBIAS is the DC polarization voltage, VA is the amplitude of the sinusoidal
actuation voltage signals and fR is the resonance frequency of the axis.
The torque momentum responsible for the micromirror rotation is the difference
between the two electrostatic torques that arise from the application of voltage (9)
and (10) and is expressed by (11).

 (11)

In the model of Figure 2-12 the driving voltages leftdriveV _ and rigthdriveV _ generate

an electrostatic torque which is the input of the block that implements the
mechanical transfer function of the micromirror axis. The output of this block is the
rotation angle of the fast axis and it becomes the input of the two blocks which
represent the capacitive behavior of the micromirror fast axis. Indeed the first one
implements the derivative of the capacitance versus angle relationship while the
second one implements the capacitance versus angle curve. The first block is used

to generate the
d

dC
terms which appear in the electrostatic torque expression (11)

while the second block is used to extract the capacitive signals (Csr and Csl of
Figure 2-12) that will be used in the read out electronic circuit.

Figure 2-12. Block diagram of the Simulink
TM

 model for the micromirror fast axis

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

46

Figure 2-13. Rotation angle versus time curve for the micromirror fast axis

Simulation results show the effectiveness of the developed model. In fact the angle
extracted from simulations is a sinusoidal rotation angle characterized by amplitude
equal to 7.8 degrees as shown in Figure 2-13. This result is in accordance with
experimental measurements performed in laboratory as will be shown in the
following section.

2.1.4 Test and characterization with ISIF flow

The aim of the previously described simulations and of our test and
characterization environment is to obtain a model of the device as close as
possible to the real device.
Electrostatic simulations do not allow for example the evaluation of the parasitic
capacitance values and effects in a simple way (i.e. the measurements of parasitic
capacitances is mandatory for the evaluation of the interaction between the
different comb drives and between the two axes of the mirror). A solution would be
using a complete device geometry, perform 3D FEM electrostatic and dynamic
simulations and extract the capacitance values in a similar way as described in the
previous section. The two main drawbacks of this approach are the high
computation power and long time required to perform such kind of simulations. The
strategy we followed is to use the correlations between simulation results and test
results performed exploiting the high flexibility of the ISIF platform. In this way it is
possible to reduce the test and characterization costs and time without losing too
much in accuracy.
The testing set-up used in laboratory is set equal to the voltage source
configuration used in the CADENCE electrical simulations. The results of the tests
are used to validate and improve the model accuracy and the electrical simulations
are performed again. Summarizing, the two important goals achieved are: the
development of an electrical model as close as possible to the real micromirror that

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

47

can be used for a more accurate design of the final driving and sensing blocks and
a complete characterization of the device.

2.1.4.1 Setup and static capacitance measurement
The micromirror has been tested and characterized using the development board
of Figure 2-14 following the approach previously described. Firstly, the MEMS has
been connected to the ISIF and the static capacitances (parasitic capacitances
included) of the structure have been measured. The capacitances were measured
detecting the gain of the input channel charge amplifier with the capacitance under
test used as part of it and a known feedback capacitance. The driving sine wave
was provided by the numeric controlled oscillator of the ISIF linked to a DAC with
the High Voltage section (HV section) bypassed. The most important results were
the evaluation of several capacitance values: (i) the static capacitances between a
slow axis driving electrode and the Moving Structure (MS) are about 100 pF, (ii) the
capacitances between a fast axis driving electrode and the MS are about 30 pF,
(iii) the capacitance between the MS and the Substrate is about 660 pF.

Figure 2-14. Test and Characterization setup

2.1.4.2 Dynamic ΔC measurements
A key point of the test and characterization of the micromirror has been the
measure of the dynamic capacitances (ΔC) from the sensing electrodes. The
capacitance variation is directly related to the position of the moving structure’s
fingers in respect to the fixed sensing electrodes; thus it is possible to detect the
mirror position measuring the ΔC variation. The sensing signal is acquired by the
input channel, amplified, filtered, and converted in digital.
Firstly, an open loop analysis has been performed in order to detect the resonating
frequencies of the micromirror axis. In Figure 2-15 the results of a measure
performed on the slow axis are shown: the y-axis represents the digitally converted
value of sensing signal, the x-axis represents the driving signal frequency. The

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

48

driving signal is a 90 V peak-to-peak sine wave with a 45 V DC component. As we
can see from the graph, the resonant peak of the slow axis is at about 735 Hz; the
fast decreasing behavior of the amplitude is due to the fact that the signal is the
composition of two contributes: the ΔC signal and the coupling signal due to
parasitic capacitances. The ΔC signal is affected by a phase inversion due to the
phase delay of the mechanical structure response which appears just after the
resonant peak, while the coupling signal has no phase inversion; the sum of these
two contributions causes the behavior represented in Figure 2-15. The mechanical
deflection angle of the slow axis has been evaluated in ±8° using a laser source.
The maximum deflection angle of the slow axis that can be achieved for different
driving frequencies is shown in Figure 2-16. The same analysis has been
performed on the fast axis. The maximum deflection angle of the fast axis that can
be achieved for different driving frequencies is shown in Figure 2-17.

Figure 2-15. Digital amplitude of the sensing signal versus frequency extracted
from the open loop analysis on slow axis

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

49

Figure 2-16. Maximum deflection angle versus driving frequency extracted from
the open loop analysis on slow axis

Figure 2-17. Maximum deflection angle versus driving frequency extracted from
the open loop analysis on fast axis

Secondly, a closed loop driving on the slow axis has been performed. Figure 2-18
shows the functional block scheme of the loop system. An Automatic Gain Control

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

50

(AGC) has been implemented to control the driving amplitude. A second order PLL
fixes the frequency of the sine wave generated by the NCO so that the micromirror
driving signal and the signal sensed by the ISIF input channel are 90° out of phase.
The mechanical response of the micromirror introduces a 90° phase delay when
the axis is driven at its resonant frequency.
The sensing signal is detected by the input channel, filtered, digitally converted and
sent to the demodulator, which generates two control signals, the first one for PLL
frequency locking and the second one for gain control. These two signals are
processed by the software DSP, which implements a PI (Proportional Integral)
control, whose outputs are connected respectively to the NCO and the modulator
for frequency and amplitude driving.

Figure 2-18. Closed loop driving block diagram

2.2 Pin-limited frequency converter bridge for fast prototyping
of custom functionalities in platform-based sensor
interfaces

2.2.1 State of the Art Review

During the last years, the use of platform-based systems is widely spreading,
especially in the automotive field, for sensor interfacing and conditioning
[24][33][34]. The adoption of configurable/programmable platforms, adaptable to a
large set of sensors, is particularly useful during the first steps of a new design to
speed up the comprehension of the system before developing ad-hoc architectures
[25][35].
Several solutions have been developed to allow the communication between an
ASIC and a programmable chip, but none of them allows pin-limited connections
via external plugs. An example should be represented by the incorporation of
FPGA cores into the ASIC [36]. This strategy offers high performances, but
reduces system flexibility, because FPGA’s number of gates can be embedded is a
relative small percentage of the total ASIC gates. Instead, using an external
solution, it is possible to choose the suitable technology (FPGA or DSP or
Microcontroller) for the out-of-chip IPs.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

51

For the IP bridge design presented in this paragraph we inherited the experience in
downscaling technique from the GALS (Global Asynchronous, Local Synchronous)
architectures, whose main characteristic is the partition of the SoC into isolated
synchronous islands that have independent frequency and phase clock [37].
Differently from them, we have not used bisynchronous FIFOs to synchronize
different clock domains [38], but to downscale the clock to reduce interferences
generated by high frequency transmission in mixed signal systems.

2.2.2 Project Design Flow

The bridge is basically intended to be implemented on ASIC solutions, including
bridge IPs in the final project. During project flow we had to consider the main
advantages of various technologic solutions:

 ASIC: high performances and better integration for analog and digital
circuits in mixed signal design;

 FPGA: best in terms of versatility and reconfigurability;

 FPGA to ASIC interface: needed during prototyping and testing phases
and for particular applications not included into chip design (external
System on Programmable chip – SoPC).

We made a first implementation of key blocks on FPGA platform to verify timing
and area constrains in terms of slacks and standard cell number. After this phase,
we have implemented all the design on FPGA. In this way we have been able to
perform a preliminary test of the whole bridge, communicating with different IPs on
the same FPGA that have been initially discarded from the first ASIC
implementation. We have been able to test both the bridge and a side part of the
final ASIC project to refine and optimize critical parameters to evaluate the
implementation of new IPs on ASIC project. The IP bridge is finally integrated on
ASIC technology (see case study in Section 5).

2.2.3 IP Bridge Architectural Design

The frequency conversion takes place using bi-synchronous FIFOs (Figure 2-19).
Each FIFO manages two different totally uncorrelated clock domains (one for
writing and one for reading operations) basically maintaining a strict division
between them, comparing only the two read and write location indexes.
For example, if we consider a single FIFO that has been written at the fastest clock
and has been read at the slowest one, we perform the domain conversion with the
only passage of the index indicating the last written location to the slowest domain.
In this way a read operation can be performed in the right location. The reading
index is incremented every read operation until empty condition is verified. The
dual passage is operated by sending the last read location to repeat the previous
described procedure in the fastest domain to handle writing operations correctly,
checking if the condition of FIFO full is not verified. Both indexes are gray-coded
before the frequency conversion to increase the tolerance to errors. The indexes
are sent to the other domain by a triple registration through D flip-flops barrier (the
first one clocked with the starting clock frequency and the second couple with the
arrival clock frequency) to avoid meta-stability conditions. The comparison on each
couple of indexes (last written and read locations) in the same domain for each
side of the FIFO presents two main advantages: (i) the system could guarantee a

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

52

correct synchronization having at its disposal all the information about the other
domain at its own clock frequency, (ii) empty and full conditions can be detected by
index comparison.
The write pointer always points to the next word to be written and, similarly, the
read pointer always points to the current FIFO word to be read; on reset, both
pointers are set to zero, which also happens to be the next FIFO word location to
be written. On a FIFO-write operation, the memory location that is pointed to by the
write pointer is written, and then the write pointer is incremented to point to the next
location to be written, the empty flag is cleared and a valid read operation is now
possible.
Referring to Figure 2-19, full flag is managed by system clock domain. We need
this condition to avoid mismatches with the master writer and with the whole
system on the ASIC. All the design is synchronized with system clock, so we
preferred to keep this condition for every communication and interrupt at the ASIC
side. In normal operation conditions (no full), write pointer and its gray coded
version into downscaled clock domain are incremented every write operation. In
case of full state, gray coded write pointer is not incremented until a valid write
operation (out of the full condition, so after at least a read) is done. In this way the
gray coded pointer is equal to the write pointer minus one. After a read operation,
the two write pointers are re-synchronized. For empty state in downscaled clock
domain we have a dual situation. In this way, full and empty states can be
separately managed simply by index equality comparison for each side without
having the two flags set at the same time.

Figure 2-19. Bi-synchronous FIFO

DATA IN DATA OUT

READ POINTER

IN SYSTEM

CLOCK DOMAIN

- GRAY CODED -

WRITE POINTER

IN DOWNSCALED

CLOCK DOMAIN

- GRAY CODED -

READ POINTER

(DOWNSCALED

CLOCK DOMAIN)

READ POINTER

(DOWNSCALED

CLOCK DOMAIN)

- GRAY CODED -

WRITE POINTER

(SYSTEM CLOCK

DOMAIN)

G

G

DOWNSCALED

CLOCK

SYSTEM

CLOCK

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

53

In Figure 2-20 the pinout of the IP bridge is presented. The whole module,
described as a parametric VHDL IP cell, is an AHB lite standard slave; its
completed architecture is shown in Figure 2-21.
The main manager (e.g. an AHB master) of the ASIC cannot access directly to the
slaves on the off-chip FPGA. It must write (read) only into (from) the transmission
(reception) FIFOs; the access to the desired slave is made by an interface that
operates the final protocol change on the external module.
The bridge is a critical bottle-neck for the whole system in terms of performances,
and the main limit is represented by the lowest frequency clock domain. The
proposed system operates in single transfer mode, so the interface does not
provide signals to manage burst operations. This feature is not necessary, and
hence is not supported, because of the low frequency needed by pads.
Three FIFOs are necessary to implement the write/read transaction between the
ASIC and the external device. A first write-only FIFO, FIFO1 in Figure 2-21,
operates the frequency conversion on data representing the address of the desired
out-of-chip device. The second write-only FIFO, FIFO2 in Figure 2-21, operates in
the same way on data to be written at the previously specified location. For a
writing operation on off-chip slave devices the master must operate two transfers:
the first to FIFO1, sending the address of the desired device as data, and the
second to FIFO2, providing the effective data to be sent to the off-chip device. In
case of reading, the second operation does not take place. The read operation
terminates with the storing of the data read in FIFO3. This executes the frequency
upscale on data read from out-of-chip IPs and appears as a read only module for
the master side. When a new data is ready, an interrupt is asserted. In this way,
the bus is not locked during the read operation that usually is slow, due to the off-
chip clock frequency lower than the on-chip one.

Figure 2-20. IP bridge pinout

HWRITE_A

HTRANS_A

HADDR_A [31..0]

HSEL_FPGA

HREADY_A

HWDATA_A [31..0]

DATA_BUS [32..0]

INT_A

HRDATA [31..0]

HRESP_A

SD-AHB_BRIDGE(ASIC)

CLK2

RST_n

CLK1

NEW_D

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

54

We chose to represent each FIFO as an address inside a single slave, masking the
external module to the bus’ master, to avoid bus locking for long time. In fact,
during a read operation, if all the slaves on the FPGA could be directly accessed by
the master, the bus should be locked for all the time needed to transmit the
address to the external unit and to receive the data. Considering the downscaled
domain, this period of bus inactivity could delay CPU activity too much. Writing the
FIFO as a standard slave, the CPU can perform other operations during the
communication with the external device that is fully independent from the system
core.
During the master design, the number of IPs needed in the prototyping phase
could not be known. So, address sending as data of an AHB write operation on
bridge slave location, can enhance the flexibility of the system, allowing IP
addiction on FPGA without master modifications.

Figure 2-21. IP bridge architecture

To better understand the adopted strategy, in the following a simple C code extract
is shown.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

55

// Address of fifo designed to keep addresses

#define BR_FIFOADDR (*((volatile unsigned long*) 0xE000AB00))

// Address of fifo designed to keep addresses for high priority

transmissions

#define BR_FIFOADDRHP (*((volatile unsigned long*) 0xE000AB04))

// Address of fifo designed to keep data to write

#define BR_FIFODATAW (*((volatile unsigned long*) 0xE000AB08))

// Address of fifo designed to keep data to write for high priority

transmissions

#define BR_FIFODATAWHP (*((volatile unsigned long*) 0xE000AB0C))

// Address of fifo designed to keep data to be read

#define BR_FIFODATAR (*((volatile unsigned long*) 0xE000AB10))

// Address of fifo designed to keep data to be read for high

// priority transmissions

#define BR_FIFODATARHP (*((volatile unsigned long*) 0xE000AB14))

// Address of status register

#define BR_STATUS (*((volatile unsigned long*) 0xE000AB18))

// Address of pend register

#define BR_PEND (*((volatile unsigned long*) 0xE000AB1C))

// Address of counter register

#define BR_COUNTER (*((volatile unsigned long*) 0xE000AB20))

// Address of counter HP register

#define BR_COUNTERHP (*((volatile unsigned long*) 0xE000AB24))

// Address of mask register

#define BR_MASK (*((volatile unsigned long*) 0xE000AB28))

/**

 * Example of low priority write procedure

 **/

int write_data(uint addr_fpga_slave, int data)

{

 // full flag for fifoaddr or fifodataw is set

 if((BR_STATUS & 0x4) == 1 ||

 (BR_STATUS & 0x10) == 1)

 return -1; // Error

 // Write fpga IP address in fifoaddr with Write flag set

 BR_FIFOADDR = addr_fpga_slave | 0x1;

 BR_FIFODATAW = data;

 return 0; // OK

}

/**

 * Example of low priority read procedure using polling

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

56

 **/

int read_data(uint addr_fpga_slave, int& data)

{

 // full flag for fifoaddr is set

 if((BR_STATUS & 0x4) == 1)

 return -1; // Error

 // Write fpga IP address in fifoaddr

 // with Write flag clear (read operation)

 BR_FIFOADDR = addr_fpga_slave & 0xFFFFFFFE;

// wait until new data flag is set

while(BR_STATUS & 0x1);

 data = BR_FIFODATAR;

 return 0; // OK

}

In the proposed IP bridge (see Figure 2-21) the paths have been duplicated with
different addresses to support the management of different priority transfers. So, a
high priority (HP) transfer request by the master CPU will be served immediately at
the end of the current transaction.
The entire writing structure is managed by a finite state machine, called ―bus writer‖
in Figure 2-21, that performs the empty checks on address FIFOs (respecting their
priority) and then transmits address and data. Note that the target device that
manages AHB transmissions on external side receives the information about the
kind of operation to perform (read or write) through the LSB of the address, exactly
as happens into the ASIC side. Figure 2-22 shows the meaning of pinout in
transaction from the ASIC to the FPGA. To minimize the number of pins, the
information about address, data and type of operation are multiplexed on the same
bus. Particularly, during the addressing phase the meaning of the pinout is the
following: the external unit is addressed by the AHB master with a 30 bits string
word (DATA_BUS[31..2]), bit 1 of the DATA_BUS is not meaningful and bit 0
indicates if the transaction is a read or a write operation. Note that during the data
communications phase DATA_BUS [31..0] contains the 32 bits word to be
transferred. Communications are synchronized through a bit inside each
transmission (NEW_D represented by DATA_BUS[32], see Figure 2-22) that
toggles every time a new data is ready on the bus.
The other manager for reading operations, called ―bus reader‖ in Figure 2-21,
operates in a similar way, waiting for a new data signal from the FPGA and
performing reading FIFOs storage. The notification of a new data from an external
device is represented by the toggling of the NEW_D pin in Figure 2-21, which
causes a read interrupt request to the ASIC’s CPU. The NEW_D pin from FPGA to
ASIC is unidirectional and isolated from the DATA_BUS because it contains the
information about multiplexer commutation. Figure 2-23 shows the meaning of
pinout in transaction from the FPGA to the ASIC. The 32 bits read data is
transferred through the bits DATA_BUS[31..0].
In a transmission to the bridge (from the off-chip FPGA), an error bit is provided to
inform the ASIC if current read data is not valid due to an error occurred during off-
chip operations. To minimize the pinout we choose to change the meaning of the

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

57

bit 32 of the DATA_BUS with respect to Figure 2-22, using it as an error flag (see
Figure 2-23). Summarizing the total number of pads results equal to data width
plus two.

Figure 2-22. Meaning of pinout in transaction from ASIC to FPGA

Figure 2-23. Meaning of pinout in transaction from FPGA to ASIC

The number of locations for each single FIFO can be defined by the IP’s user
during the synthesis phase, setting a VHDL generic’s value. Because of the way
the FIFO is designed, the number of locations must be greater than two: this
constraint is introduced to allow the distinction of full and empty state conditions.
To keep a priority path sense and to minimize area occupation, it is always
recommended to implement a small priority queue.
An AHB interface block implements AHB lite protocol and FIFO (or internal
registers) control, checking the full or empty conditions for write and read FIFOs
respectively. For data writing, only one clock cycle is needed. The HRESP signal is
always set, except in case of illegal operations (write on a read only register or vice
versa) or non-existent internal addresses requests.
The data latency, corresponding to time between AHB information sampling and
first data available on bidirectional bus structure, can be expressed as follow:

 (12)

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

58

where Tdown_clock is the period of the downscaled clock. To explain equation (12) we
have to consider two components: one cycle for double flip-flops barrier and
another needed to FIFO to make data available since enable signal reception.
Latency is greater or equal to this quantity, depending on relative skew between
the two clocks that cannot be greater than a downscaled clock cycle.
To monitor each path, the user can access some registers such as a control
register that provides reset signals for each single FIFO. Due to the different clock
frequencies, the reset operation requires several clock cycles to be executed, as
shown in Equation (13), where Tsys_clk and Tdown_clock are the periods of the AHB
clock and of the downscaled clock, respectively:

 (13)

Two faster and two slower cycles are needed to pass through synchronization flip-
flops and come back. Two additional faster clock cycles are required to set the
reset flag at the beginning of the operation and to automatically remove the reset
request into the dedicated register. As seen from previous equation (12), a clock
cycle for each domain must be added to consider worst case on relative skew
between the two clocks.
The reset requests into the control register are automatically removed by a
dedicated hardware and the CPU must check that all requests have been removed
before starting further operations.
There are several other registers the user can access in read, write or read/write
mode (depending on the specific register selected) for real-time transfer
monitoring. All accesses to registers are synchronized by the system clock signal.
These registers allow to monitor the status of each FIFO and to read all the
interrupt events that can be also selectively masked. Two counters give the
instantaneous value of the location that will be involved in the upcoming operation
for the correspondent reception FIFO.

 Control register allows to send the reset signal to each FIFO selectively.

 Status register is used to read the presence of a new data, the full and
empty signals and error on data for each FIFO; this register is read only.

 Pend register holds the information about the source of interrupt request,
after being masked by means of the mask register, with the following
convention for each bit; this register is read only.

 Mask register is used to set or not the possibility to generate an interrupt
request when a protection is activated as a result of an external fault.

2.2.4 Implementation and test results

Several tests have been performed on the bridge to identify the working domain in
terms of temperature and supply voltage, see Figure 2-24 and Figure 2-25.
For the synthesis, we have used a new mixed signal technology, called BCD8,
developed by ST Microelectronics for industrial and automotive applications [39].

The BCD8 features high-density 0.18 m logic with 1.8 V supply voltage plus
higher-voltage devices at 5 V, 12 V and with DMOS up to 70 V. Tests have been
performed on post-place and route models, using tech libraries by

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

59

STMicroelectronics, including six different operating conditions: T=-40°C and
V=1.95V, T=25°C and 1.8V, T=85°C and V=1.6V, T=150°C and V=1.95V, T=150°C
and V=1.55V, T=150°C and V=1.08V. Indeed for automotive IP macrocells is
essential the characterization in all different conditions considering temperature
ranges from -40 to 150 °C.
The target speed is 100 MHz for the AHB system clock while the downscaled
frequency for output pads is 10 MHz. The off-chip frequency has been evaluated
as the best trade-off between pads’ efficiency and global communication speed. A
much higher downscaling factor will represent a bottleneck in our case study where
the off-chip FPGA is used to perform signal processing tasks.
Figure 2-24 shows the bridge area vs. the size of the FIFOs, considering 32 bits
data (so with 34 pads), nominal operating conditions and the adoption of two
different priority paths. Figure 2-25 presents the area occupation and the worst
time slack or a target configuration of 8 FIFO locations and 4 FIFO_HP locations at
different operating conditions.

Figure 2-24. Bridge area vs. different size of the FIFOs

2.2.5 Case Study of an Automotive Smart IC Sensor

We have integrated the IP bridge described above in an ARM926 (a 32 bits 100
MHz CPU) based architecture, synthesized in BCD8 technology. The aim of the
architecture is the implementation of a flexible framework for closed loop control of
MOEMS (Micro Opto-Electro-Mechanical System) sensors; flexibility is obtained
through real-time software management of the whole control system.
The specific case study refers to MOEMS sensors used to project images on car’s
glass by a single micromirror, in case of bad visibility conditions and for driver’s
assistance, identifying the control and monitoring requirements before final SoP
(System on Package) integration. A side target is also the performance test and the
constraints identification of the new mixed signal BCD8 technology.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

60

The proposed architecture is characterized by an analog part for sensors’ driving
control and sensing reading, described in [31][40]. A digital acquisition and
processing part implements the control loop and the monitoring system. We use
the bridge described in 2.2.3 to communicate with an off-chip FPGA used to realize
a simplified generic FPGA. Figure 2-26 shows the ASIC communicating with
external FPGA through the bridge and the block diagram of our test framework for
the digital part respectively.

Figure 2-25. Bridge slack time and area vs. temperatures and supply voltages

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

61

The design foresees three different clock domains: 100 MHz for IPs on AHB bus
(ARM9, memory controller, interrupt controller…), 50 MHz for APB IPs
(demodulator, UART, timers…) and 10 MHz for output pads dedicated to FPGA
connections. Memory resources are an on-chip SRAM for image data (76800 byte
for VGA resolution) and two off-chip memories (8Mx16 Flash and 256Kx16x16
SRAM). The custom bridge is connected to the AHB bus matrix needed to separate
instructions and data flows (multi-layer AHB architecture). Total area occupation is
roughly 31 mm2. The integration of the bridge in this architecture does not increase
the complexity of the system, because it has a simple AHB slave interface.
Moreover, thanks to its transparency due to FIFO capability, it does not introduce
overhead in system performances. The area occupation, as we have seen before,
depends on FIFO width, so, during the synthesis phase, it is necessary to strike a
balance between area occupation and efficiency, on the basis of estimated traffic
on the external bus. The area overhead of the bridge, configured as in Figure 2-25,
is less than 0.21 mm2. A little complexity increase is introduced into the
microprocessor software since a routine is needed to periodically send the required
information from the external device (FPGA) through the bridge bus.
Summarizing, the integration of this module in AMBA based embedded
architectures is easy and costless, but requires a preliminary study based on
sensor’s target.

Figure 2-26. Micromirror ASIC and FPGA connection through bridge

2.3 Conclusions

In the first part of this chapter, a fast-developing and low-cost test and
characterization environment for MEMS and MOEMS has been presented. The
system exploits the ISIF a new platform for sensor interface development. The ISIF
together with a High Voltage hardware section and a graphical user interface has
allowed us to create a laboratory test environment which can easily and rapidly
explore different types of architecture for MEMS and MOEMS characterization and
test.

Chapter 2. Characterization of MEMS and prototyping of the sensor interface

62

As a case of study for our environment, the characterization and test of a double
axis resonating micromirror has been performed. After the static and dynamic
capacitance measurements performed with an open loop driving approach, a
closed loop control driving has been developed. In order to validate this type of
approach and to develop an electrical model of the micromirror, the results of the
measurements have been compared with results of several electrical simulations.
The comparison between the simulations results and the test result are reported in

Table III.
On the other hand, the second part of the chapter presented a solution for
interfacing AMBA-based architectures of smart MEMS sensors with an external
device, solving the problems concerning low-frequency bus constraints, mixed
signal substrate noise vulnerability and limited number of pins. The proposed
bridge exploits bi-synchronous FIFOs to scale the clock and re-maps the AMBA
AHB protocol on a reduced off-chip bus. In this way, it is possible to communicate
with all the IPs synthesized on the external FPGA side implementing a symmetric
bridge on it. The modularity of the architecture allows the use of this IP also with
external FPGAs containing different kinds of buses, not only AHB.
In general, this bridge could be used into every application that needs clock
domain conversion such as switches running at different rates or devices requiring
slow peripherals. Test results demonstrate that this module is suitable also for
worst operational conditions, so the IP could be used in critical situations typical for
sensor applications. The adoption of Gray coding and double FF re-sampling
increases the system tolerance to errors and avoids metastability conditions.
The integration of this solution in the ISIF platform completes the lack of this
architecture concerning the design of new functionalities that are not provided
natively by the platform itself, simply connecting an FPGA to the bridge interface
and implementing the new functionality in the external device.
This IP, as part of a full custom analog and digital architecture for a smart
automotive sensor based on ARM9 processor, has been implemented also to test
the performances and the constraints of the new mixed signal BCD8 technology.

Table III – Comparison between simulation results and test results (slow axis)

Frequency (Hz)
Measurements
82 fingers (mV)

Simulations
82 fingers (mV)

736 117 128

1472 81 78

2208 28 32

2944 20 17

NOTE: The number of fingers of each comb drive is 82.

Chapter 3. Verification testing and calibration

63

3 VERIFICATION TESTING AND CALIBRATION

The verification testing and the calibration of MEMS device are probably two of the
most important steps in the developing process of this kind of devices. In fact, the
aim of the verification testing is to check the correctness of the design and of the
test procedure in laboratory before starting the production phase, and the aim of
the second is to improve the performance of the device, correcting the transfer
function of the sensor exciting it with an appropriate physical stimulus.
The verification testing is a very challenging activity, because each device has its
own pinout, its interface, and its peculiar characteristic, so it requires to set up a
custom test environment each time a new device is developed. This reengineering
activity entails a growth of costs and time-to-market. So, the reengineering time
should be reduced as much as possible, standardizing the applications that interact
with the device to provide a common interface that allows to reuse the same tests
developed for other products. Some applications are available in the marketplace
to achieve this goal, but all of these suffer from different drawbacks, as
incompatibility, non concurrent access to the device, absence of libraries to
manage laboratory instruments, and so on. The use of this approach, moreover,
permits to define the test program directly in the laboratory, reducing the time a test
machine is used to debug the test procedure.
About the calibration of the sensor, to achieve this goal very expensive test
machines are used. These machines allow to calibrate different pieces
contemporarily and to handle the socketing of each piece automatically, in order to
calibrate pieces continuously. The cost of this machine can be quantified in terms
of cost for the equipment and cost for the usage time. While the first one depends
on the machine vendor, the second one is dependent on the allocation time
disposed by the MEMS device developer. So, in order to minimize the costs, a
solution to avoid the use of the production machine for the debug of the calibration
algorithm is desirable.
In this chapter, two solutions to achieve the goal of optimize the verification testing
and the calibration in terms of reengineering time and costs are illustrated.
The first paragraph presents DevCom, a framework whose aim is to solve the
issues concerning the verification phase. DevCom is a client-server architecture
that allows the communication between one or more test machine (e.g. a PC) with
a MEMS device that communicates using a digital communication protocol. This
architecture provides a common interface that permits to implement application
with any kind of programming languages and tools under platform that support the
Microsoft .NET framework. Moreover, it permits to access the device also from a
different machine than the one physically connected to the MEMS, using the client
API (Application Programming Interface). The server is split into three layers to
allow the extension of the framework in a second time with add-on concerning the
low level communication layer (hardware abstraction layer, HAL) and the layer that
implements the rule about the protocol itself. The paragraph starts with an overview
of the state of the art, then it describes the architecture, starting from an overall
description that explains the adopted solution for the communication between the
client and the server, and then it is described in detail the characteristic and the
solution adopted to implement both the client and the server. Finally, the hardware

Chapter 3. Verification testing and calibration

64

and low level software layer used for the communication with SensorDynamics’
inertial sensors is described.
The second paragraph describes CaLVal, a complete low-cost and flexible
calibration environment composed by a hardware structure to stimulate the piece
under test (PUT) with movements and to connect the PUT with the PC, and a
software architecture, developed using NI LabView 8.2 to control all the hardware
components, to communicate with the PUT and to elaborate sampled data in order
to obtain useful information. In this paragraphs each part of the architecture is
described, and in the last part it is illustrated a case study concerning how we use
the base architecture to develop a complete calibration and evaluation environment
for a 3D gyroscope produced by SensorDynamics AG.

3.1 Universal communication framework: DevCom

3.1.1 State of the art

Data acquisition for testing of inertial sensors is a challenging procedure, because
it requires complex setups [3][41]. With the introduction of mixed-signal MEMS
sensor systems, splitting the acquisition phase and the elaboration of data is not
necessary anymore, because this kind of systems provides a digital interface to
communicate with the outer world. This new kind of devices, however, introduces
other issues concerning the availability of different digital protocols and different
languages and applications for the implementation of the test procedures. Indeed,
depending on the communication protocol implemented in the MEMS device, it is
necessary to develop a set of drivers that permits the interaction between the test
machine and the MEMS itself. Moreover, different software applications for
supporting test activities and programming languages for the developing of custom
test procedures are available in the marketplace, but they are usually not
compatible each other. For example, a typical application used for the
implementation of test procedures is LabView by National Instruments, because it
provides a set of library to control different kind of instruments. The problem of this
development environment is that it is not fully compatible with other programming
languages, (i.e. python), so customizing the test procedure with external features is
almost impossible. Moreover, LabView does not permit to access to the device
from different applications concurrently, and this is a strong drawback during the
evaluation of a MEMS, because it is very useful to change some internal
parameters during data acquisition to check how the system reacts to changes in
real-time. On the other hand, programming languages allow to manage concurrent
access to the device and other advanced features, but they do not offer common
library for the implementation of communication protocols and for the control of
laboratory instruments.
Other than issues concerning the testing and evaluation of a MEMS device,
another critical aspect of the life-cycle of a chip is customer support. Recall a piece
to verify the reasons of a possible malfunctioning is an expensive procedure in
terms of costs, time and reputation. So, the possibility to remotely investigate the
malfunctioning is really interesting.
Some solutions are available in literature. Reference [42] illustrates a multi-sensor
acquisition system, capable of acquiring data and decoding digital protocols from
many different electronic controlled systems, but it is an ad-hoc solution that cannot

Chapter 3. Verification testing and calibration

65

be easily adapted to different environments and scenarios; moreover, the provided
software allows only the collection of data, whereas their elaboration is demanded
to other software. Reference [43] describes an Automated Test Station that allows
an accurate measurement of gyroscope characteristic, but, as the previous, it
requires a well-defined hardware to work, so it is expensive and it can be used only
for limited applications. Reference [44] presents a data acquisition system
developed using NI LabView for BioMEMS, but it is also adaptable for generic
MEMS. The limitation of this architecture is the adoption of a proprietary
development environment that increases costs and limits its flexibility and
adaptability.

3.1.2 Architecture

3.1.2.1 Overall description
DevCom is a client-server architecture based on Microsoft .NET framework 3.5;
particularly it uses the Windows Communication Foundation (WCF) API to manage
the communication between the server and the set of clients that desire to interact
with it. Figure 3-1 shows a block diagram of the whole architecture.

Figure 3-1. Block diagram of DevCom architecture

DevCom has been developed to allow the communication between a generic
device and a generic application. To do so, it has been split in layers to permit the
introduction of new add-in (concerning the driver layer) for the addition of new
communication protocols. In this paper it will be described only the FTDI driver
(described in section III), because it is used to implement the SPI and I2C protocols
used for the communication with the SensorDynamics (SD) devices. However, as
an add-in, it has been also developed a SW partition for the implementation of a
custom UART protocol.
About the communication between server and client, the WCF API offers different
solutions [45]. Among them, we select to provide two different bindings (a binding
is a consistent, canned set of choices regarding the transport protocol, message

Chapter 3. Verification testing and calibration

66

encoding, communication pattern, reliability, security, transaction propagation, and
interoperability): the NetTcpBinding and the WSHttpBinding. We choose to support
two protocols because they offer complementary functionality that will cover all
possible scenarios. In fact, the first one is a binary-encoded protocol, developed
over TCP, so it is faster than other HTTP based protocol, but it is not a standard
protocol, so it is almost impossible to implement a non-WCF version of this one.
The second one, instead, is a text-encoded protocol, developed over HTTP, so it is
slower that the previous, but it is based on the W3C Web Service standard [46], so
it can interoperate also with non-WCF clients.
Apparently the second binding seems to be useless in our context, because
DevCom itself provides a client API for the interconnection. Actually it can be used
to communicate with the server without installing the client API, but simply using
the browser. Moreover, using the TCP binding it is impossible to access the server
outside an intranet.
The communication using the WSHttpBinding provides also an authentication
phase based on the exchange of certificates, and uses the HTTPS secure
communication protocol to encrypt all communication on the channel and to
provide for integrity and privacy. The NetTcpBinding, instead, does not provide any
kind of security and authentication protocol, because we suppose that, inside an
intranet, every terminal is authorized to access to the server, and no encryption is
provided for the same reason and, what’s more, this procedure slows down the
transmission.

Figure 3-2. Hypothetical scenario of DevCom architecture

Figure 3-2 shows a hypothetical scenario in which DevCom could work. For
instance, a terminal in an office can access to a lab PC using the TCP binding to
execute a test in a machine inside the lab. Another use case could be that a seller
wants to show a customer how the device works, and so he can connect his

Chapter 3. Verification testing and calibration

67

terminal to the lab PC using the web service protocol. Another case could be the
connection to a customer computer to provide support in case of malfunctioning.
Finally, a generic case is when a user want to access to a generic PC where the
DevCom server is running.

3.1.2.2 Server
The server application is the real core of the framework, because it manages the
concurrency among different clients, it incorporates the rule to access to the device
and implements the server-side endpoints to expose the application to the net.
It is split in three layers: the first layer deals with the communication between the
hardware and the framework; the second layer provides the concurrency and
access management; the last layer implements the endpoints that listen to
requests for connection from the clients and, moreover, offers a configuration
interface to the user of the machine where the server is running.
About the first layer (called Driver layer), it is a library (or a set of libraries, if more
than one are installed) that interprets the requests from the upper layer and convert
them to commands for the hardware and, if necessary, returns data. Moreover, this
layer deals with all the configuration operations for the connected device.
Concerning this layer, it is possible to develop new libraries to support different
kinds of hardware and protocol, and install them as a plug-in of the application. In
fact, when the server application is started, it searches for installed libraries and
make them available for interaction.
The driver layer is composed by a 32 bit addressable register bank for the
configuration of the driver and a set of methods to write and read the register bank
and to send/receive data to/from the device. The use of the register bank has been
necessary because we do not have an a priori knowledge of which parameters
must be configured for the reasons explained before. So, the meaning of each
register is assigned by the developer during the implementation of the driver
library. For example, in an implementation of a UART driver, register 0 could be the
baud rate, register 1 the parity, and so on. Speaking about the communication, two
kinds of approach are provided: immediate and queued. An immediate operation
simply executes the requested operation as well as the request arrives; on the
other hand, when a queued operation is requested, it is not executed immediately,
but the information it contains is stored in a queue: when the executeQueue
operation is requested, all the operation in the queue are executed sequentially.
Obviously, also commands to manage the queue are provided. The queued
approach has been introduced to reduce the delay among different requests for a
command, to support atomic set of operation from a single client. In fact, during a
sequence of immediate operations, a second client could request for an operation
that could be executed between two of the operations requested by the first client.
The aim of the concurrency and access management layer is to guarantee the
coherence among different call from different clients and to manage the access to
the device. For example, if a client is running a long operation, this layer queues
requests from other clients until the running operation is terminated. Moreover, it
introduces a simple access control to permit a client to have the exclusive control
of the writing operation. The access rights are shown in the following table:

Chapter 3. Verification testing and calibration

68

Table IV – Device access right

 Read Write WrEx

Read X X X

Write X X

WrEx X

To implement the access right control engine, an access right descriptor is
provided for both the clients and the device. The device has the more restrictive
right among the connected device. When a client opens a device, the requested
right is compared with the current access right of the device (if already opened): if
the check fails an exception is thrown, otherwise the client is connected to the
device. Keep track of the access right of the clients is necessary because, if a
client with the more restrictive access right disconnects, the device right must be
updated with the new restrictive access right.
The last layer provides all communication features and an interface for the
configuration of the server. It is the running application and it appears as an icon in
the tray bar. Right clicking on it, it is possible to disable the server, to allow local
connection only, to execute the server at the startup and to see which clients are
connected to it and which devices are connected to the machine.

3.1.2.3 Client
The client is actually a library that is installed using two different mechanisms for
interoperability: the Global Assembly Cache (GAC) that is a .NET assemblies
cache for Microsoft’s CLR platform and the COM interface that is the old approach
adopted by Microsoft for the interoperability.
The first approach has been introduced because it is faster than the other, but it
has the drawback that only .NET application can use the application stored on it.
So, it has been introduced also the second approach, because it is supported by
almost all applications and programming languages developed for Microsoft
Windows operative system.
The aim of the client library is, at first, the managing of the connection handshake,
i.e. the protocol selection (TCP or HTTPS), address and port selection and the
creation of a secure connection (if necessary). Moreover, it manages server
exceptions and connection problems and errors. About the interface, it provides the
same as the server, so it is possible to trigger commands about the configuration
and the communication with the device. In addition, methods to check the status of
the connection and to create or close it are also provided.

3.1.3 DevCom for SD sensors

3.1.3.1 SD74x series inertial sensors
DevCom has been initially developed to interact with the SD74x series of 2D/3D/6D
inertial sensors produced by SensorDynamics AG. These chips are QFN SoP

Chapter 3. Verification testing and calibration

69

composed by a MEMS sensor and a mixed-signal ASIC for the conditioning of the
sensor itself and for the communication with the outside world. The supported
communication protocol are SPI and I2C, and it has been implemented a custom
data-link protocol over them. The configuration of the ASIC is done through a 128
byte register bank: writing appropriate data on it, it is possible to configure gains,
offsets, phases, and so on. The output of the system is also transmitted using the
same approach: setting an opportune flag it is possible to mask a portion of the
register bank, replacing that part with a set of 16 bit register that contains the
output.

3.1.3.2 FTDI driver
The driver developed for the communication with the SD74x sensors are based on
the FT2232H Dual High Speed USB to Multipurpose UART/FIFO IC by FTDI Ltd.
This device has the capability of being configured in a variety of industry standard
serial or parallel interfaces, and for some synchronous serial protocol (JTAG, SPI
and I2C) it provides a Dual Multi-Protocol Synchronous Serial Engine (MPSSE) to
simplify the design. Moreover, it can be used to control GPIO pins. Figure 3-3
shows the board it has been developed to connect the FT2232H device and the
sensor. As we can see, two sockets are provided, because the prototype was
packaged in CLCC packages.

Figure 3-3. Board for SD sensor communication

The interface used to control the FT2232H chip is based on buffered commands
constructed as a combination of CODE/VALUE(s) ASCII strings. Each command is
stored in an internal buffer and then they are executed sequentially.
The DevCom FTDI driver implements the data-link protocol, constructing the frame
on the basis of the request it receives and then it converts the frame in commands
for the FT2232H chip. The develop of queued commands has been simplified by
the buffered approach of the FTDI chip: in fact, when an operation is requested by

Chapter 3. Verification testing and calibration

70

the upper layer, the driver layer simply convert it in the appropriate set of
commands for the FT2232H and then it saves them in a character buffer. When the
executeQueue operation is requested, the whole character buffer is sent to the
FT2232H internal buffer.

3.1.3.3 Applications
As an integration of the DevCom framework, a set of additions has been designed
to facilitate the developing with some of the most common applications and
programming languages:

 LabView 7.1.1 library of Virtual Instruments: using the .NET support

provided by LabView starting from the version 7.1.1, we develop a set of
VIs whose aim is to create an instance of the client class, manage the
connection and supply the configuration and communication commands to
LabView users;

 Excel 2003 spreadsheet: a Visual Basic for Application (VBA) example
has been created to demonstrate how to use the COM object provided by
DevCom inside the Microsoft Office suite;

 Python 2.6 wrapper: a wrapper class that uses the COM object has been

developed to provide an easy-to-use interface for this programming
language;

 .NET applications suite: a set of application has been also developed to

support the most usual operations (collect and plot data, configure the
regbank, and so on).

3.2 Low-cost architecture for the calibration and evaluation of
IMSS for small and medium volumes production: CaLVal

3.2.1 Overall description

CaLVal (Calibration and Valuation using LabView
TM

) is composed by a hardware
structure to stimulate the piece under test (PUT) with movements and to connect
the PUT with the PC, and a software architecture to control all the hardware
components, to communicate with the PUT and to elaborate sampled data in order
to obtain useful information.
The aim of this architecture is to offer a low-cost and flexible system for the
calibration and evaluation of inertial measurement units, providing a tool usable
also in small and medium production processes.
Moreover, another target was to design a portable hardware, so that it could be
possible to insert it in other instruments like a oven.
Speaking about low-cost, obviously it is intended as ―as lower as possible‖, and in
its estimation it is included also costs in trainings. So, considering that LabView

TM

is the most popular IDE for electronic system control, we choose to use it for the
implementation of the software. About flexibility, the developer must be able to
introduce new components without being forced to modify parts of the base
software architecture. LabView

TM
 is not the best environment for this kind of

purposes, but we have organized the software in layers, so only minor
modifications are required to integrate new elements in that.

Chapter 3. Verification testing and calibration

71

3.2.2 Hardware design

The hardware must be able to provide the required power to the chip, to stimulate
the sensor along all three axes and to connect the communication bus to the PC.
The core of the hardware architecture is a pair of Megatorque® Motor System by
NSK, positioned orthogonally as shown in Figure 3-4. Each motor can rotate up to
10 s

-1
 and accelerate up to 800s

-2
.

Motors are controlled by a UART protocol through a EDC driver unit. Several
commands are available, so it is possible to set the angular velocity, the
acceleration, the target position and so on. Moreover, it is possible to generate
movements also using predefined or custom patterns (sinusoids, saw tooth, and so
on). As shown in Figure 3-4, aligning motors orthogonally permits to generate
movements to stimulate all three axes.

Figure 3-4. Motors movements in CaLVal

To provide the power, a Agilent E3646A has been used. It is a cheap DC power
supply able to provide up to 20 Volts and 60 Watts, and it is controllable using
GPIB interface.
To implement the digital communication protocol, it has been used the NI
PCI-6220, a PCI board by National Instruments that is able to generate and
capture analog and digital signals, with frequency up to 1MHz for synchronized
signals. We choose this board because it is a good trade-off between cost and
capability; moreover, it is controllable using the NI-DAQmx driver software provided
together with LabView

TM
.

Chapter 3. Verification testing and calibration

72

To connect the bus and other useful signals to the PUT it has been designed a
PCB that can be easily fasten over the secondary engine base. A block diagram of
the board is shown in Figure 3-5.
Because the PCI-6220 produces 5 Volts signals and most of the chips works at 3.3
Volts, we equipped the board with a set of level translator to generate the signal
to/from one of the digital buses. We provided the board also with a power regulator
to generate the power; it was not really necessary, because the required power is
generated by a power supply, but it permits to suppress any noises from the power
line due to long lines or electromagnetic fields in the lab.
Because it is possible to calibrate also temperature sensor that might be included
in the chip, we equipped the board with the Analog Devices ADT7301, a 13-bit
temperature sensor connected to the SPI bus.
Four lines are dedicated for the implementation of the SPI bus, but a group of other
ten bi-directional lines are available for the implementation of other kinds of digital
buses (I2C, UART, and so on). By means of a socket in the common board, it is
possible to connect a custom board, designed to map the signals to the chip’s
socket correctly and to insert custom components, if necessary. Figure 3-5 shows
the block diagram of the custom board for the SD74x sensor family (see paragraph
3.2.4) that included a step-up regulator used to generate the required voltage for
OTP programming.
Finally, the common board is equipped with a 32-pin connector; through a flat cable
it is connected to another PCB whose purpose is to connect each signal to the right
instrument.

Figure 3-5. Board block diagram

Chapter 3. Verification testing and calibration

73

3.2.3 Software design

The developing of a software that permits to control all instruments and machine, to
communicate with different digital protocols, including custom implementations of
standard ones, and that is enough flexible to integrate custom components and
implement ad-hoc test procedures was very challenging. Moreover, the software
should be easy to extend by the most part of people that work in the electronic
field. So, NI LabView

TM
 was an inevitable choice, because we suppose that most of

the people know this IDE or, however, implementing a test procedure as blocks
and signals is easier than using procedural languages for most of them.
This IDE, however, introduced a lot of difficulties concerning the requirements of
flexibility and expandability.
To supply this kind of difficulties, we chose to split the architecture in layers, so that
it is possible to insert new components without being compelled to change other
parts of the system. Figure 3-6 shows the block diagram of the whole software.
In next paragraphs each layer will be described in detail.

Figure 3-6. Layered software composition

3.2.3.1 Instruments
This common component is a set of libraries that can be used by all layers. It
comprises a group of VIs, one for each instrument that is used, or will be used by
the architecture. In the base version of the architecture, it includes a VI for the
control of the motors, one for the power supply and one for the temperature sensor.
The VI for the motors permits to modify the status of each motor separately. It
includes command to initialize the device, to set the angular speed and
acceleration and to modify the current position; moreover, it includes a command to
detect the current position, in order to verify if the target position has been reached
(it is useful when data are sampled during the movement).
The VI for the power supply permits to control the E3646A. It provides command to
initialize the device, to set current and voltage for both channels and to turn on/off

Chapter 3. Verification testing and calibration

74

the power. By now, only a subset of the commands offered by the Agilent power
supply are implemented, but it is possible to modify this VI, if necessary, without
compromise the correct working of the rest of the application.
The VI for the temperature sensor uses the implementation of the SPI protocol in
the communication layer (see paragraph 3.2.3.2). It simply permits to read the
current temperature from the sensor, in order to use it as a reference value during
the calibration of parts of the chip that are temperature-dependent.

3.2.3.2 Communication layer
The role of this layer is to provide the low level drivers for the communication with
the PCI-6220 board. It implements different digital protocols (SPI, I2C, UART, and
so on), and it is designed to be expanded with other custom protocols. To permit
the insertion of new protocols, it itself has been split in two sub-layers: a lower layer
that implements the frames in terms of bits to be sent in the digital lines and a
higher layer that provides an interface to the upper layer in the stack of the entire
software. Concerning the lower layer, for example, in the SPI protocol it describes
the data should be sent in MOSI, CSN and SCL lines. Moreover, it captures the
data from the MISO lines and returns the read data. The upper layer, instead,
provides some mechanisms to abstract the physical communication. Two
interfaces are provided: normal and queued request.
About the normal request, it is possible to query a single read or write operation,
passing the payload (that is chip dependent) to the lower layer, and getting back
the data read.
The queued request, instead, permits to insert different operations (read, write) in a
queue, so that they can be sent to the physical layer one behind the other, without
the delay due to the software elaboration (preparation of the payload, construction
of the frame, sending to the bus, reading back the data, construction of the result).
So, this layer implements three commands to manage the communication: Initialize
queue that empties the queue and reinitialize internal signals; insert command that
enqueue the specified operation; send queue that prepare the data to be sent to
the lower layer, send them to it, receives the results and reconstructs the data
depending on the queue it has been sent.
The queued requests is useful when it is necessary to sample data as fast as
possible: for example, to collect data from the sensor channels to compute the
Fourier transform.
The normal request, on the other hand, is useful when a single operation must be
done, because it requires a single operation instead of three.

3.2.3.3 Test procedures
This layer is product-dependent: here the procedures necessary to calibrate and
evaluate the chip, depending on the product, are implemented. However, there are
defined some standard practice to implement a procedure. In fact, for each product
there is the possibility (and it is suggested) to define some configuration files
containing parameterized information (for example, the desired sensitivity) and
YMS limits (it is mandatory, see paragraph 3.2.3.5). These files are stored in a
well-defined path. To access to the main configuration file, a VI has been created:
passing the project name, the procedure label and the parameter name it returns
the written value.

Chapter 3. Verification testing and calibration

75

It is a good practice to keep the output produced by every test procedure standard.
To achieve it, the test procedure finite state machine (FSM) must be boxed in a
standard template, as shown in Figure 3-7.

Figure 3-7. Test procedure template

The template uses the logging VI to indicate in the log file (see paragraph 3.2.3.5)
information about the progress of the procedure itself. So, it has been defined a
pair of header/trailer sections, each one indicating the test procedure it is running
and the current step.
After creating the new test procedure, it is necessary to specify the project it is
related to and a test code in the application configuration file (see paragraph
3.2.3.4).

3.2.3.4 Single piece application
This layer implements a GUI to execute a procedure in a single piece. This GUI
has been implemented to avoid the generation of log files related to the YMS
(paragraph 3.2.3.5), so it is used during a debug session of the test procedure
itself, or during the engineering phase, when the chip behavior is analyzed and the
default values is being defined.
The GUI allows to select the project name, the test code (each test procedure has
a code associated to it) and other information related to the location and chip
identification. Starting from these information, when the application is executed it
runs the selected test procedure, using the ―Call By Reference Node‖ internal VI,
passing the right path as argument. The path associated to a test code is stored in
a application configuration file. This file is a set of tuple <testcode, path>, grouped
by project codes. So, when the application is launched, it search for the testcode
specified in the GUI by the user, in the group of paths related to the selected

Chapter 3. Verification testing and calibration

76

project, and then it opens the extracted VI and executes it. Obviously, the insertion
of the right path in this configuration file, when a new test procedure is
implemented, is a test procedure developer’s job.
Concluding, also the GUI’s controls of the front panel are filled dynamically when
the application is launched, on the basis of the keys in the configuration file.
The appearance of the GUI is similar to the user interface provided by the YMS,
shown in Figure 3-8.

3.2.3.5 Logging and Yield Management System
These are two separated portions of the software, but they are included in the
same paragraph because the scope of both of them is to create files to store
information about the PUT.
The logging component is simply a VI, but due to its importance it has been
classified as a separate component. This VI permits to create two kinds of file: a
DB file and a LOG file. Each of them is composed by a header section and a
content section. The header file is the same for both files, and contains information
about the current test procedure, as the project name, the code of the test
procedure, the current date and time and so on. It is filled by the single piece
application (paragraph 3.2.3.4), but the test procedure itself can add other entries
in that portion of the file (i.e. ID information, see paragraph 3.2.4).
The content section of the DB file is composed by a set of <parameter : value>
tuples: each tuple reports the computed value for each parameter it has been
calibrated/evaluated. The LOG file content section, instead, is a superset of the
content section of the DB file. In fact, it contains both the tuples and other
information the developer of the test procedure desired to log on file.
So, the VI receives as inputs the file type (DB or LOG), the two field data
(parameter and value) for DB file, or the value only for LOG file, and the section
(header or content). The VI keeps the inserted value during the entire execution of
a test procedure, so it is possible to add elements in every part of the application.
When the test procedure starts, it is necessary to specify the file name and the
path, and this task is done by the single piece application. Likewise, the application
executes the finalization of the logging VI, saving the produced data at the end of
the test procedure.
The Yield Management System is the last layer of the stack: its role is to collect
data from different pieces, estimating the percentage of good pieces and
discarding the failed ones. The front panel provided by this VI is shown in Figure
3-8. It is similar to the front panel of the single piece application: in fact, it extends
the single piece application, producing other information on the basis of the DB file.
The aim of the YMS is to compare the parameters extracted during the test
procedure with some thresholds defined by the test engineer. In details, for each
parameter four thresholds are defined: one range is used to detect if a parameter is
in spec or not, and the other range is used to distinguish parameters that are not in
spec but are acceptable for other uses. To do so, a limit file for each project is
defined. The limit file is a XML file containing a table for each test procedure; each
table contains the four thresholds for each parameter, and for each range a BIN
number that identifies the tray where to place the piece if the range is not satisfied
(this information is useful when a pick and place handler is used). In fact, when a
parameter fails, the YMS interrupts the execution without parsing other parameters

Chapter 3. Verification testing and calibration

77

and the piece is located in the specified tray. If all parameters are in spec, the
piece is located in the default tray (zero). An example of limit table is shown in
Table V.

Figure 3-8. Front-end of the YMS manager

The generated DLOG file is composed by three section: a global header section, a
limit section and a piece section. The global header section contains information
about the YMS session, i.e. date, time, project, test code, and so on. The limit
section quotes all defined limits for the specified project and test procedure. The
piece section contains information about the single piece has been tested; it is split
in two parts too: a header part containing information about the piece itself, and a
content part containing, for each defined parameter’s limit, if it is failed or passed,
and a overall result that indicated if a parameter has failed.

3.2.4 Case study: SD740

CaLVal architecture has been used to calibrate and evaluate the SD74x series
inertial sensors already described in paragraph 3.1.3.1. These products
communicate using both SPI and I2C protocols, so we did not need to create a

Chapter 3. Verification testing and calibration

78

new low level VI for the communication. However, another VI has been create to
hide the creation of the payload: so, it constructs the payload using the address
and data specified by the caller, sends the payload to the SPI communication layer,
receives data and returns the read value (if any). Moreover, because these sensors
use a register bank of 128 byte registers for the configuration, but the logical
registers are not byte-aligned, another VI has been implemented to mask it. This VI
receives the mnemonic name of the register as parameter, the operation
(read/write) and the data (if a write operation is requested), and extracts, from a
text file that has been specified during the initialization phase, where the register is
located (start bit) and the length of the register; once these information are
available, the VI executes the communication layer’s VI one or more times
depending on the position of the logical register. For example, if a write operation
has been requested in the regname register, the start position and the length of the
register are extracted (suppose start = 20, length = 5); then the start and the end
physical addresses are calculated (start = 2, end = 3); after that, ―partial‖ registers
are read, where with partial is intended registers whose bit are only partially written;
then the read data are masked, shifted and pasted together to create the new
values of the physical registers; finally, new data are physically written. Actually, to
avoid the execution of a lot of accesses to the bus by the software that would have
introduced delays, an image of the register bank has been created: so, multiple
read/write operations does not really act to the bus, but simply modify the image
inside the VI. To transfer the new register bank, an upload command must be
explicitly called. Obviously, also a download command is provided to align the
clone with the original register bank.
The new stack for the SD74x product family is shown in Figure 3-9.

Figure 3-9. Software layers including SD74x family components

Chapter 3. Verification testing and calibration

79

Using the new communication VI, three test procedure has been created: trimming,
performance and OTP burning. The latter test procedure really does not measure
anything, but it has been inserted as test procedure because it is an integral part of
the production process. The flow charts of the other test procedures have been
reported in Figure 3-10.
By now, a detailed description of the algorithms have been implemented is not
allowed, but we can describe the secondary step of the trimming test procedure as
an example (regarding the 3D gyroscope).

(a)

(b)

Figure 3-10. Flow chart of (a) trimming (b) performance

The aim of this step is to compute the gain of the secondary chain, in order to
rotate and scale the data obtained by the MEMS on the basis of the specs. To
explain how to obtain it, we need to point out that a cross compensation matrix has
been inserted in the chip’s secondary chain, in order to allow the combination of
the three channels to rotate and scale the gyroscope’s output.
The algorithm starts applying positive and negative movements with a well-defined
speed (it is a parameter in the project’s configuration file) along all the sensible
axes and, during the movements, data from all channels are sampled and the
mean of the samples extracted for each movement is calculated. A sensitivity
matrix is created, using the following formula:

 (14)

Chapter 3. Verification testing and calibration

80

Where Si
pos

 and Si
neg

 are the collection of samples obtained during positive or
negative movement along i axis, for all channels (the result of the mean is a row
vector). For row ≠ column, Sens_matrix[row, column] is the projection of one axis
over the others, and it is called Cross axis. Once computed the Sens_matrix, to
obtain the gain matrix it is necessary to invert it and multiply the Sens_matrix by
the desired sensitivity (it is a parameter in the project’s configuration file too).
Starting from the gain matrix, only a part of the resulting gains are written in the
cross-compensation matrix, the remaining part is distributed along the secondary
chain’s gain stages.
Other than the algorithms themselves, another mechanism has been added in the
test procedures for the SD74x family: the ID evaluation and auto-generation. It is a
VI that permits to verify if a piece has an ID: if not, a new unique ID is assigned and
written in the OTP, otherwise the ID is read from the register bank. This operation
is done during the first stage of each test procedure, so each of these also adds
the computed ID in the header section of the logging files.
Concluding, also the modification of the configuration files and the creation of limit
file has been done: so, the new projects and test procedures are added to the
application configuration file, the folder containing the project files is created and a
limit table for each test procedure has been defined (an example of this kind of
table is shown in the following).

Table V – Example of limit file for trimming stage

ID
Param
Name

Meas
Unit

Trimming

Min1 Max1 Bin2 Min2 Max2 Bin3

1 Bias deg/s -1 1 2 -2 2 3

2 Noise deg/s 0.1 1 2

... ...

3.3 Conclusions

Laboratory activities, both concerning the characterization of inertial mixed-signal
sensors and their calibration are critical tasks, because requires a complex
engineering work. In fact, it is necessary to develop the low level layer for the
communication with them, the test procedures for the calibration and the
characterization, a set of software to verify malfunctioning, and so on. These
operations, in general, are required every time a new kind of device is produced,
since the used technologies could be changed. Moreover, the develop of the
calibration algorithm usually requires the use of production machine, entailing high
costs connected to the occupation of a complex machine for activities not directly
connected to the production.

Chapter 3. Verification testing and calibration

81

DevCom has been developed to reduce the engineering time, because it increases
the reusability of the produced software, providing a common interface for every
devices. This can be possible allowing the addition of new low level drivers to
communicate with the ASIC under analysis. So, when a new device is produced, it
is necessary only to develop a single portion of the framework and all the software
that uses DevCom become compatible with this one. Another characteristic that
improves the efficiency of the test and maintenance phases is the possibility to
access to the device remotely. This allows to check the status of a device remotely
and to change its configuration, both during a test procedure or when the device
has been already delivered to customers.
To develop DevCom we choose to use .NET framework 3.5, because it already
provides the support for distributed application (WCF API). This has been a risky
choice, because it worked only under Microsoft operative systems at the time the
architecture has been developed. During this time, however, the team of MONO
project [47] has extended the port of .NET framework for Linux systems until
version 3.5, so DevCom is now fully portable also on this operative system.
CaLVal, on the other hand, overcomes the problematic of using expensive
production machines for the debug of the calibration algorithm proposing a flexible
low-cost calibration environment that proposes itself as an alternative equipment
for the design of the algorithm. By the use of a low-cost dual axis engine to
stimulate the MEMS sensor, and through the use of a flexible software framework
developed in LabView, a software development environment typically used by
electronic engineer, it is possible to create a simplified automatic test equipment.
In this context, an example of application for the calibration and the evaluation is
presented. The target of this application is a 3D MEMS gyroscope developed by
SensorDynamics AG. This application uses the CaLVal environment to set up also
a minimal yield management system that can be used to estimate the yield of this
product.

Chapter 4. Data processing

83

4 DATA PROCESSING

MEMS sensors are widely used in many consumer and automotive applications,
due to their low cost, small size and low power consumption. However, there are
also some disadvantages: MEMS sensors suffer from higher errors than other
expensive sensors. In particular, gyro drift is a problem in many applications that
require a high precision. In an orientation tracking system the problem is that, with
the simple integration of the gyro data to obtain the angular position, the drift error
is always increasing, so that after some time the information of the angular position
is meaningless.
To avoid this problem, some other kind of sensors must be used in addition to
gyros, such as an accelerometer or a magnetic compass, so as to obtain an
external reference for the angular positioning system.
The introduction of new functionalities [48-51] by the use of sensor fusion
algorithms is becoming the new target for the next years in MEMS sensor systems
design, as explained in paragraph 1.6. For this reason, in this chapter two different
algorithm for the sensor fusion are approached. The first algorithm [52] is actually a
preliminary evaluation, based on a fully software algorithm for the sensor fusion
that has been used to estimate how much the errors in MEMS sensor data affect
the estimation, and if it is possible to suppress them in some manner. The second,
instead, is an algorithm that has been designed so that it can be implemented in
the sensor interface itself [53]. It is based on a simplified Kalman filter and uses
quaternions to represent the angular position.

4.1 A preliminary evaluation using a fully software algorithm

4.1.1 Overview

This paragraph describes a simplified algorithm that combines the information
provided by a 3D axis gyroscope and a 3D axis accelerometer. It is realized as a
graphical demo for the micro machined integrated gyro and acceleration module
produced by SensorDynamics AG [54].
This SoP integrates two high performance sensors (gyroscope and accelerometer),
oriented according to two perpendicular axis, and one ASIC. The gyro sensor
works on the principle of the Coriolis Effect and on a capacity-based sensing
system: rotation of the sensor causes a shift in response to an oscillating silicon
structure resulting in a capacitance change. The accelerometer is based on a
classical spring-mass structure with one degree of freedom: the acceleration on the
given direction causes a linear capacitance change. The role of the ASIC is to
detect changes in capacitance and transform them into a digital output, which is
proportional on angular rate or linear acceleration. Both sensors are continuously
monitored by an independent safety survey system.
This demo allows to point out the features of this SoP and to demonstrate how it is
possible to elaborate the information produced by this sensor to obtain further
complex ones, which could be applicable in several fields. However, as it is shown
in the following, it suffers for the influence of noise in the measured data, so it has
been impossible to detect the linear position.
The demonstrator consists of a board equipped with three SD modules and a
microprocessor connected to them: the running on firmware collects information

Chapter 4. Data processing

84

from the modules and sends them to a PC, which is running the graphical demo
software. Then, this GUI processes the received data for moving a virtual 3D car in
according to the board’s movement.

4.1.2 The architecture

4.1.2.1 Hardware and Firmware
The main hardware device which characterizes the system is a board equipped
with three accelerometer/gyroscope modules and a microcontroller to control them
and to manage the information they produce.
The core of the board is the ATMega128 microcontroller by Atmel. The sensors are
placed along the three axis as showed in Figure 4-1.
Figure 4-2 shows the block diagram of this board.

Figure 4-1. 3D view of the board

They communicate with the microcontroller through a shared SPI bus, and the CS
and reset signals are generated using GPIO pins. The core communicates with
other devices through a USB port. Since the microcontroller is not equipped with a
USB controller, we use an UART to USB Bridge controller by FTDI chip Ltd that is
able to send data faster than simple RS232. The board is also equipped with an
RS485 interface for testing.
The communication between SD sensors and the microcontroller is managed
according to a master-slave paradigm where the host always acts as the master
and the sensor as a slave. The communication can be thought as based on a
per-session mode: the core starts a session by sending a fixed size message to the
sensors in turn. The requests are driven periodically using a timer: the
microcontroller alternatively requests the values of the rate and of the acceleration
to all three sensors.
The communication between the microcontroller and the external device (i.e. PC) is
obtained making polling on the UART’s char received register; when a character is
received, the main routine read which data is requested decoding the received
char and then sends the requested data.

Chapter 4. Data processing

85

Figure 4-2. Block diagram of the board

4.1.2.2 Software
This section describes the algorithms adopted to simulate the rotational and
transactional movement of the car in the GUI. For 3D motion representation we
have chosen to use the Irrlicht Engine, an open source high performance real-time
3D engine written and usable in C++ [55].
For a simpler explanation we are going to describe the algorithms as sequential;
actually, the graphical management and the elaboration block are two different
processes.

Rotation algorithm

The first problem to deal with is the representation of the car position. To represent
the motion of the model, we use a rotation matrix for keeping track of the position
of the car’s axis with respect of absolute axis (the horizon axis). This matrix is
constructed as follow:

 (15)

where u = [x, y, z] is the position of the absolute reference system, whereas
v = [i, j, k] is the position of the car’s relative reference system. Each column of the
matrix represents the component of one of the three relative axis in respect of each
absolute axis.
Starting on a known position of the car at the software’s reset (the car model lean
on its wheel in a horizontal surface), the algorithm computes the initial offset
between the car model and the board mounted in: during the running phase this
offset will be removed from the angle’s value received by the board. Always at the

Chapter 4. Data processing

86

reset phase, the software sets the rotation matrix to identity matrix, because the
car’s relative axis’ position agrees with the absolute axis’ position.
The algorithm for updating the rotational position is composed by two sections: one
of them elaborates the values received by the board; the other one computes the
new values for the rotation matrix and updates it.
In detail, the first section removes the offset to compensate for the initial
displacement as showed above. Then, it applies a threshold to avoid infinitesimal
change of the angular velocity that could cause integration’s divergence. Finally, it
applies a simple mobile mean filter to integrate the angular velocity obtaining the
rotation angles.
The second section, at first, convert the elaborated values from degree to radiant;
then it updates the rotation matrix using the following formulas:

 (16)

 (17)

where:

 a = j, b = k for rotation around x axis;

 a = i, b = k for rotation around y axis;

 a = i, b = j for rotation around z axis.

After computing the new values for the elements of the rotation matrix, it is
necessary to orthonormalize the rotation matrix, because of approximation errors;
in fact, it is possible to have values of the rotation angles which do not satisfy the
conditions of orthogonal rotation.
The current position is obtained using the following formulas:

 (18)

Figure 4-3 shows the flowchart concerning the rotation algorithm.
As we described above, when the application starts or the reset button is pressed,
the offset is estimated and the 3D car is oriented into default position; after that, the
application begins the elaboration explained above. The result of the elaboration is

Chapter 4. Data processing

87

then plotted in the GUI. Then, at the end of the angular position computation, the
3D car is rotated according to the rotation matrix using the graphical engine
interface.

Figure 4-3. Rotation algorithm flowchart

Translation algorithm
The translation algorithm is more challenging than rotation algorithm for two
reasons: first of all, the accelerometers measure also the gravity, so it is necessary
to eliminate this unwanted acceleration to avoid a ―fall effect‖ in the graphical
model; secondly, computing the values of the angles from the angular velocity
requires single integration, whereas computing position from the acceleration
requires a double integration. So, it was necessary to find a trick to eliminate this
error.
The solution for the elimination of the gravity effect utilizes the rotation matrix. The
gravity, in the absolute reference system, is represented by a vector equal to the
opposite of z-versor. This vector is decomposed into relative board’s coordinates
and the resulting components are subtracted from the measured acceleration’s
values.
For eliminating the double integration problem is necessary to introduce a
constraint in the movement or to add another reference of measurement (i.e. an
optical sensor or a GPS device). To avoid this, it was chosen to modify the position
of the 3D model following the velocity. So, the model’s position vector is equal to
the measured velocity vector.
 This solution avoids the implementation of a cam that follows the model because,
if the graphical model would follow the translation movement, it gets out of the
screen almost immediately. The velocity, instead, returns to zero when there is no
movements, so the algorithm keeps the model always centered on the screen.
Summarizing, after subtracting the gravity, the algorithm applies a threshold to
avoid infinitesimal change of the acceleration that could cause integration’s
divergence and integrate its output values using a mobile mean low pass filter;

Chapter 4. Data processing

88

then, it converts the acceleration, oriented according to the angular position of the
car, to absolute reference system. Finally, another low pass filter is applied for
finely calibration.
Figure 4-4 shows the flowchart concerning the acceleration algorithm.
When the application starts, it subtracts the estimated gravity value and evaluates
the right movement according to the algorithm described above, and then it plots
the filtered values on the GUI and updates the 3D car position. If the
autocalibration ON/OFF button is pressed, the cross-compensation is enabled: it
allows correcting the angular position periodically, based on gravity orientation
estimation, as it is described in the next paragraph.

Figure 4-4. Acceleration algorithm and cross-compensation flowchart

Cross-compensation algorithm
This algorithm allows correcting angular position using both acceleration and
angular velocity information.
It runs periodically, avoiding too much pervasive modification that could
compromise the real sampled movement representation. So, when the user doesn’t
move the car model, the algorithm starts correcting the angular orientation
according to gravity estimation. Figure 4-4 shows how this algorithm appears on
the block diagram.
The algorithm computes the mean and the variance of the acceleration without
subtracting the gravity; then, if the sum of every accelerations variance is lower

Chapter 4. Data processing

89

than a threshold it means that the car is not moving so it can start updating the
rotation matrix. To do this, it normalizes the mean’s values according to these
formulas to obtain the z column of the inverse of the new rotation matrix:

(19)

Since the choice of the start vector is unconstrained, it identifies which axis is
nearer to the correspondent in the rotation matrix to make a softer update of the
matrix:

 (20)

The greater of them determinates which axis will be calibrated next, according to
Gram-Schmidt’s orthonormalization (l in the following formulas).

 (21)

Finally it orthonormalize the last axis, completing the matrix, and compute its
inverse to obtain the new rotation matrix.

Critical parameters

Controlling and time critical applications, such the one described above, are
characterized by several critical parameters. In this demo the parameters that it
was necessary to calibrate are the frequency of the timer in the firmware and the
ones concerning the dead zone and low pass filters.
The first one is a function of the speed of the SPI bus, because in one timer period
the firmware could either process the last received message and prepare the new
message to transmission or sending the data on the SPI bus. So, the minimum
timer’s period must be:

 (22)

The other parameters, instead, are chosen according to visual empirical
simulations.

Chapter 4. Data processing

90

4.2 An integrated sensor fusion algorithm for the orientation
tracking

4.2.1 State of the art

Many papers propose sensor fusion algorithms to estimate the angular position.
Almost all the papers refer to quaternions to represent it, because the use of
quaternions instead of the Euler angles eliminates the problems related with the
singularities and the gimbal lock. Different types of Kalman filters and state
equations are used to describe the system.
In [56], an Extended Kalman filter is used with a three rate gyro and three
accelerometers. The state equation is composed by the quaternion and also by the
angular velocity and the gyro drift. The system has a good estimation of roll and
pitch angles, and there is also a low correction on yaw angle.
For a better estimation of the yaw angle, a magnetic compass, in addition to the
gyro and the accelerometers, is used in [57]. The process is described with the
quaternion and the angular velocities, and a linear Kalman filter is developed. In
particular, to avoid the use of an Extended Kalman filter, the read equation of the
filter is not composed by the data of the MARG sensor (magnetic, angular rate and
gravity), but is composed by a quaternion, which is estimated with a Gauss-Newton
method from the sensor data. This simplifies the filter design, but implies a quite
complicated algorithm of estimation of the quaternion.
In [58] and [59] an adaptive filter is developed for a MARG sensor unit for
automotive use. When the sensor is in high acceleration mode, the angular position
is calculated mainly with the data of the gyro, updating the quaternion. The
accelerometers are used to estimate the roll and pitch angles, and the magnetic
compass to estimate the yaw angle. The angle estimation is more influential in the
state correction when the system is in non-acceleration mode.
In [60] an Unscented Kalman filter is used instead of the traditional Extended
Kalman filter, because the Unscented filter is deemed to be more accurate and less
costly to implement. In [61] there is a comparison between the Extended Kalman
filter and the Unscented Kalman filter: the resulting precision is found comparable,
but the Unscented filter requires much more computation time.
It is noteworthy that all these works refer to discrete sensor systems, where the
filter algorithm is processed on a microcontroller or a PC. This work, instead,
proposes the design of a simplified Kalman filter and relevant fixed point
architecture to be integrated together with the 6D Inertial Measurement Unit (IMU)
sensor.

4.2.2 System modelling

Matlab Simulink was used to build a model of our system and to verify the correct
operation of the filter. The state equation is composed by the quaternion only,
because the addition of other variables does not increases significantly the
precision of the angular estimation, but requires a lot more of hardware
requirements. The state equation is the following:

 (23)

Chapter 4. Data processing

91

Where
 is the quaternion representing the rotation of the body-frame, united to

the IMU sensor, respect to the inertial n-frame, and
 is the rotational matrix,

derived from the quaternions properties.

 (24)

This matrix is formed by the angular velocities , and measured by the gyro.

Equation (14) is a time-continuous equation that can be easily transformed in the

time-discrete equation to be used in our system, obtaining matrix that relates
the state evolution of the system using only the gyro data. To ensure data integrity,
the quaternion must be normalized with a unit norm. A correction equation that
uses the data from the accelerometers has to be introduced. From the estimated
angular position an estimated gravity vector can be calculated using the direction

cosine matrix
 , assuming constant the g-force acceleration :

 (25)

This estimated gravity vector will be compared with the measured gravity , which
obviously suffers of high errors, because the accelerometers do not measure the
gravity only, but also the external accelerations of the system. For this reason, the
correction factor must be weighted with the Kalman gain , a coefficient that is
calculated from the statistics of the noise covariance matrices of the system.

 (26)

 and are the a priori and a posteriori error covariance matrices, and are

the error covariance matrices of the read and the state equation of the filter,

assumed constant at each filter iteration, and are the Jacobean matrices of
the partial derivatives respect to the quaternion and to the noise, of the nonlinear
equation (25), which relates the quaternion to the estimated gravity.

Chapter 4. Data processing

92

Figure 4-5. Kalman filter algorithm.

Before calculating the gain , the a priori error covariance
 , evaluating the error

in the state estimation with the state equation only, needs to be calculated:

 (27)

Finally, the a posteriori error covariance matrix that is needed for the following
step of the filter is obtained.

 (28)

In this work, considering that the system may be subject to high external
acceleration, the covariance matrix of the measurement noise has a quite high
estimation:

 (29)

After some tests, the following value was found as the best fit for the process noise
covariance matrix :

 (30)

and the following value was chosen to initialize the starting covariance matrix:

Chapter 4. Data processing

93

 (31)

In order to have a better angular estimation, [63] uses a complementary filter on
the gyro and accelerometers data. In this work, a dead zone on the gyro data is
applied with a limit of 0.01 radiant for second, while a low-pass filter on the
accelerometer data will be evaluated in a future work.

4.2.3 Algorithm simplifications

There is no problem to run this kind of filter on a PC, but the goal is to obtain an
integrated system, with minimal area complexity and power consumption. For each
filter iteration about 600 multiplications, 400 additions, a square root and 13
divisions are required and so some algorithm simplifications with negligible
performance degradation were devised.

First, the a priori error covariance
 is approximated with the a posteriori error

covariance . This is based on the assumption that the angular position estimation
before the correction is approximately the same as after the angular position
correction. This is always the case when the frequency of the filter iteration is
greater w.r.t. the gyro drift.

Second, a pre-computed value of is used. This is a tuning parameter of the filter

that has been calculated offline, from an average of the values assumed by in
some runs of the filter. Then, the following value was calculated:

 (32)

To allow a faster evaluation of the initial position, a higher value of is used in the
first 50 iterations of the filter.

 (33)

A higher value of implies a higher value of , so that the accelerometers are
especially used to calculate the initial position of the system.

Third, because the matrix is pre-computed, the determinant used to invert a
matrix in the calculation was considered a constant, so that 9 division
operations were eliminated.
Fourth, it was checked that the normalization operation on the quaternion, that
involves the calculus of a square root and 4 divisions, can be eliminated when the
Kalman filter is working, because the norm of the quaternion is controlled by the
filter itself.
Following this simplification, the final amount of operations is estimated as 400
multiplications and 300 additions.

Chapter 4. Data processing

94

4.2.4 Simulations

The Simulink model was experimentally tested with SensorDynamics Cube Demo
sensor, described in [52]. It is composed by three orthogonal SD755 sensors, each
integrating a gyro and an accelerometer (see Figure 4-6). Thus, the Cube Demo
sensor simulates a 6D integrated sensor, not yet available. The maximum declared
gyro bias is ±0.5°/s at 25°C and ±1°/s within the entire temperature range.
The test were carried out with a test equipment specially designed for gyro
calibration, which allows to rotate the sensor on two axes with an accuracy of
0.01°; the data were imported in the Matlab workspace and processed with the
Simulink model. For clarity, the following results are presented for the x axis angle,
or roll angle, but it was verified that the results obtained are valid for both roll and
pitch angle, whereas for the yaw angle there is no filter correction.

Figure 4-6. SensorDynamics Cube Demo sensor

A first test was carried out with the still sensor to verify the influence of the drift on
the angular position estimation. With the filter inactive, the drift is quite high, about
30 degree per minute, as shown in Figure 4-7.

Chapter 4. Data processing

95

Figure 4-7. Drift on the x axis

With the Kalman filter active, the drift is eliminated: Figure 4-8 shows that, after the
initial position correction caused by the high starting value of , the angular
position is stabilized with a maximum error of 0.7° in a simulation of 120 seconds.

Figure 4-8. Drift correction on the x axis with the Kalman filter

We performed a test also to verify the capacity of the system to correctly estimate
the initial position of the sensor, even if it is upside down at the startup. The result
is very encouraging, because the estimation of the angular position is corrected
after 0.5 seconds only, as shown in Figure 4-9.

Chapter 4. Data processing

96

Figure 4-9. Initial angular position estimation on the x axis

Subsequently, the path in the second column of Table VI was set in the test
equipment and the mean square error of the angular position estimated by our
model was calculated. Table VI shows that, when the filter is not active, the drift is
quite high, but with the simplified Kalman filter the mean square error is very low.

Table VI – Rotation sequence

Time (s)

Angular positions for the x axis

(deg)

Position

expected (deg)

Kalman

filter off

Kalman

filter on

11.25 20.00 18.70 19.73

14.25 0.00 -1.70 -0.25

17.25 45.00 42.90 44.94

20.50 0.00 -2.55 -0.17

23.50 45.00 42.00 45.01

26.50 135.00 131.55 134.88

29.50 45.00 40.25 44.46

32.50 135.00 129.40 134.29

35.50 180.00 173.30 179.80

Chapter 4. Data processing

97

Time (s)

Angular positions for the x axis

(deg)

Position

expected (deg)

Kalman

filter off

Kalman

filter on

38.50 135.00 128.10 135.75

41.50 180.00 171.75 180.61

50.00 0.00 -9.40 -0.26

Mean square

error
 28.27 0.17

4.2.5 Bit true model

A quantized Simulink model was built and tested to simulate fixed point
architecture. The rotation sequence of the previous test was utilized to calculate
the mean square error, varying the number of bits used to represent each single
parameter. Table VII shows the results obtained by varying the number of bits for
the quaternion q, the A matrix and the P and K matrices.
For the quaternion, the optimum number of bits to obtain the best precision without
increasing the logic complexity is 20 bits. For the A matrix representation, even if
there is a small increase of precision with the use of 24 bits, 20 bits are
recommended to avoid an explosion of the system complexity. Finally, the use of
16 bits is adequate to represent P and K matrices. With the use of the above
mentioned arithmetic precision, a final RMS value of 0.19 was obtained, with only a
slight degradation w.r.t. the simplified floating point model, whose RMS is 0.17.

Table VII – Mean square error related to the number of bits
used for data representation

Mean square error

Number of

bits used

for data

10 bit 12 bit 16 bit 20 bit 24 bit

quaternion - 8.86 0.24 0.19 0.19

A matrix 2.36 0.75 0.29 0.19 0.18

P and K

matrices
- 0.23 0.19 0.19 -

Chapter 4. Data processing

98

4.3 Conclusions

In this chapter two sensor fusion algorithms for the estimation of the position has
been presented.
The first algorithm, that can be considered as a preliminary evaluation of the
possibility to combine the information of different typologies of sensor to obtain
other functionalities, show that it is possible to develop algorithms for the
approximation of movements with a high degree of precision for what concerns
rotational movement. For translational movement, instead, it is not possible to
obtain the instantaneous position using only an accelerometer yet; in fact, another
measure reference is necessary for compensate errors due to double integration.
The proposed algorithm for the modeling of the translational movement fit our
specific issue well, but it is not a general solution. In fact, it is not applicable in
applications that need the knowledge of the linear position time after time. So, for
this kind of problems, it is still necessary another reference or the imposition of
constraints.
Starting from this evaluation, it has been chosen to implement a more reliable and
efficient algorithm that could be easily implemented on a chip. At first, a Simulink
model of a Kalman filter for an orientation tracking system with 6D IMU sensors
was experimentally tested with SensorDynamics Cube Demo sensor. Then, some
simplifications of the Kalman filter algorithm has been proposed and it has been
verified experimentally that the filter is able to correct the gyro sensor drift and also
the initial position at system startup, even if the sensor is upside down. Finally,
Simulink model was quantized and the precision loss in fixed point architecture has
been evaluated by varying the number of bits used to represent each data. These
results are fundamental to finalize the digital design of an integrated system for
integrating the orientation tracking in a future 6D IMU sensor.

Conclusions

99

5 CONCLUSIONS

In the first part of this research a complete analysis of the design flow of a smart
sensor based on MEMS technology has been carried out proposing different
solutions to minimize the costs and the time-to-market optimizing all the stages
concerning the testing.
The whole design flow of a MEMS based architecture has been analyzed, and
three critical stages in terms of costs and time-to-market has been identified: the
MEMS device characterization and the sensor interface prototyping, the verification
testing and the calibration. These stages has been analyzed to find out alternative
solutions with respect to the state of the art.
To reach the goal of optimizing the first stage, an environment for the
characterization and testing of MEMS and MOEMS devices has been developed.
This highly customizable environment permits to achieve the goal of characterizing
MEMS and MOEMS sensors reducing the time for the setup of a testing
environment and the costs for the adoption of more expensive solutions. As a case
study, the environment has been used to characterize a micromirror, showing how
it is possible to compute parasitic capacitance values and effects by the use of the
correlations between simulation results and test results obtained using this
platform, instead of simulating them that requires a high computation power and a
long simulation time. The high reconfigurability of this platform permits also to use it
for the prototyping of the sensor interface, but not to design new functionalities. To
make up for this lack, a bridge for the communication between an ASIC and an
FPGA using a reduced number of pin has been designed, and its integration in a
sensor interface platform based on ARM9 microprocessor has been illustrated as a
case study. Future work is to integrate the bridge in the ISIF platform in order to
provide a complete MEMS prototyping environment.
The verification testing concerns the evaluation of the correctness of the design
and the developing of the test procedures. It takes place in the laboratory by the
collaboration of the designers and the test engineers. This stage requires the setup
of a new test environment each time a new product must be tested. In order to
reduce the reengineering time, a client-server architecture for the communication
between one or more test machine and the MEMS device has been developed. It
provides several digital communication protocols and offers a common interface
that permits to implement test procedures using different IDEs and any kind of
programming language. Providing a common framework for all the sensor devices
that use digital protocols, it allows to reduce the setup time and to reuse the same
testing applications used by other devices. As a case study, the framework has
been used for the communication with SensorDynamics’ inertial sensors.
The calibration stage is the most critical in terms of costs, because it requires the
use of expensive ATE machines. Although non recurrent costs cannot be reduced,
because these machine are fundamental for the calibration and the evaluation of a
piece during the production, minimizing the usage time reduces recurrent costs
considerably. For this reason, a low-cost hardware/software architecture for the
calibration and the evaluation of a MEMS chip has been developed. By the use of
a pair of motor system placed orthogonally it is able to stimulate the PUT with
movements, and thanks to the flexibility of the software, the architecture can be

Conclusions

100

easily adaptable to different kind of devices. Although its main goal is to reduce the
usage time of an ATE machine during the developing of the calibration algorithm, it
is also possible to exploit the architecture also in small and medium production
processes.
The focus of the second part of this research is the evaluation of sensor fusion
algorithms to combine the outputs of different kind of sensor in order to provide
new and more complex information together with the one offered by the sensors
themselves. In this context, a preliminary analysis of the behavior of this kind of
algorithms in the elaboration of noisy data from the MEMS sensor has been done
by the use of a fully software algorithm for the sensor fusion. Then, an algorithm for
the sensor fusion based on a simplified Kalman filter has been developed. For this
algorithm, it has been also built and tested a quantized Simulink model to simulate
a fixed point architecture in the perspective of its synthesizing together with the
conditioning chip. In the future, artificial intelligence techniques will be evaluated in
order to compare the performance of our solution with other algorithms.

References

101

REFERENCES

1. ―Yole market research‖, http://www.yole.fr [Online]
2. Eloy J.C., Yole Développement. ―What can we expect in 2011 in the MEMS

business...?‖, http://www.i-micronews.com/ [Online]
3. IEEE Std 1554™-2005, IEEE Recommended Practice for Inertial Sensor

Test Equipment, Instrumentation, Data Acquisition, and Analysis,

Institute of Electrical and Electronics Engineers Inc., 2005.
4. Korvink J. G., Paul O., MEMS: A Practical Guide to Design, Analysis, and

Applications, William Andrew Publishing and Springer, 2006.
5. Pallaá S-Areny R., Webster J.G., Sensors and signal conditioning, John

Wiley & Sons Inc., 2001.
6. Wang L.T., Stroud C.E., Touba N.A., System-on-chip test architectures,

Elsevier Inc., 2008.
7. Bushnell M.L., Agrawal V.D., Essential of Electronic Testing for digital,

memory and mixed-signal VLSI circuits., Kluwer Academic Publishers,
2002.

8. Gaura E., Newman R., Smart MEMS and Sensors Systems, Imperial
College Press, 2006.

9. Kerkhoff H. G., ―Testing of MEMS-Base Microsystems‖, European Test
Symposium, Tallinn May 22-25 2005, pp. 223 - 228

10. Technical Digests of the Annual IEEE International Conference on MEMS.
11. Proceedings of SPIE, The international society for optical engineering.
12. Islam Md. F., Mohd M.A., ―On the use of a mixed-mode approach for MEMS

Testing‖, International Conference on Semiconductor Electronics, Kuala
Lumpur Dec. 2006, pp.62-65

13. Deb N., Blanton R. D., ―Built-in-self-test of MEMS Accelerometers‖, Journal of
Micro-Electro-Mechanical Systems, Vol.15, n.1, 2006

14. Courtois B., Karam J. M., Mir S., Lubaszewski M., Székely V., Rencz M.,
Hofmann K., Glesner M., ―Design and Test of MEMS‖, VLSI Design, Goa 07-
10 Jan. 1999, pp.270-275

15. Chen L., Huang Y., Fan K., ―A Dynamic 3-D Surface Profilometer With
Nanoscale Measurement Resolution and MHz Bandwidth for MEMS
Characterization‖, IEEE Trans. On mechatronics, vol.12, no.3, 2007

16. Bosseboeuf A., Petitgrand S., ―Characterization of the static and dynamic
behaviour of M(O)EMS by optical techniques: Status and trends‖, Journal of
Micromechanics and Microengineering, vol.12, pp.S23-S33, 2003

17. MSV 300—Micro Scanning Vibrometer, ―Polytec PI product information‖,
Tustin, CA

18. Lawton R. A. et al., ―MEMS characterization using scanning laser vibrometer‖,
SPIE 1999 Symp. Microelectronic Manufacturing, 1999

19. ―Reliability, Testing and Characterization of MEMS/MOEMS‖, Proceedings of
SPIE, http://www.spie.org/

20. Lawrence E. M., Speller K. E., Yu D., ―Laser Doppler vibrometry for optical
MEMS,‖ SPIE, Ancona Jun. 18–21 2002, vol.4827, pp.4827–4834

http://www.i-micronews.com/
http://www.spie.org/

References

102

21. Ong A.O., Hock F.E., ―Motion Characterizations of Lateral Micromachined
Sensor Based on Stroboscopic Measurements‖, IEEE Sensors Journal, vol.7,
n.2, 2007

22. Dong Z., Huang D., Zhang D., Wu W., ―An Automatic MEMS Testing System
based on Computer Microvision‖, IEEE ICMA, Luoyang Jun. 2006.

23. Battini F., Volpi E., Marchetti E., Cecchini T., Sechi F., Fanucci L., Hofmann
U., ―A fast-developing and low-cost characterization and test environment for
a double axis resonating micromirror‖, Microelectronics Journal, Vol.41, n.1,
2010, pp. 778-788

24. D’Ascoli F., Tonarelli M., Melani M., De Marinis M., Giambastiani A., Fanucci
L., ―Intelligent sensor interface for automotive applications‖, ICECS 2005,
Gammarth Dec. 2005

25. Iozzi F., Fanucci L., Giambastiani A., ―Fast prototyping flow for sensor
interface‖, IEEE Ph.D. Research in Microelectronics and Electronics, Otranto
Jun. 2006

26. Cecchini T., Sechi F., Saponara S., Fanucci L., ―AHB-Compliant Bridge with
Programmable Frequency Downscaling for Efficient off Chip Digital
Communication of Pin-limited Automotive Smart IC Sensors‖, Sensors and
transducers, Vol.8, n.1, 2010

27. Cecchini T., Sechi F., Saponara S., Fanucci L., ―Pin-limited Frequency
Converter IP Bridge for Efficient Communication of Automotive IC Sensors
with Off-chip ECUs‖, IEEE IDAACS 2009, Rende Sep. 21-23 2009,
pp.167-171

28. Cecchini T., Sechi F., Bacciarelli L., Mostardini L., Battini F., Fanucci L., De
Marinis M., ―Pin-limited frequency downscaler AHB bridge for ASIC to FPGA
communication‖, DSD 2008, Parma Sep. 3-5 2008, pp. 367-372

29. ARM IHI 0033A, ―AMBA 3 AHB-lite protocol specification‖, v1.0 2008
30. ―Gaisler research home page‖, http://www.gaisler.com [Online]
31. Hofmann U., Oldsen M., Quenzer H., et al., ―Wafer-level vacuum packaged

micro-scanning mirrors for compact laser projection displays‖, SPIE, San Jose
Jan. 22-23 2008 , vol.6887, pp.100−114, 2008

32. Patterson P.R., Hah D., Nguyen H., Toshiyoshi H., Chao R., Wu M.C., ―A
Scanning Micromirror With Angular Comb Drive Actuation‖, 15th IEEE
International Conference on Micro Electro Mechanical System, Las Vegas
Jan. 20-24 2002, pp. 544-546

33. Serafini L., Carrai F., Ramacciotti T., Zolesi V., ―Multi sensor configurable
platform for automotive applications‖, IEEE DATE 2006, Munich, pp 219-220

34. Vincentelli A.S., Di Natale M., ―Embedded systems design for automotive
applications‖, IEEE Computer, vol. 40, issue 10, pp.42-51, 2007

35. Battini F., Tonarelli M., Fanucci L., Giambastiani A., De Marinis M.,
―Experiencing with AMR sensor conditioning in automotive field‖, IEEE PRIME
2007, Bordeaux Jul. 2–5 2007, pp. 1-5

36. Zuchowski P.S., Reynolds C.B., Grupp R.J., Davis S.G., Cremen B., Troxel
B., ―A hybrid ASIC and FPGA architecture‖, IEEE ICCAD 2002, San Jose Nov.
10-14 2002, pp.187-194

37. Miro Panades I., Greiner A., Sheibanyrad A., ―A Low Cost Network-on-Chip
with Guaranteed Service Well Suited to the GALS Approach‖, IEEE Nano-net
2006, Lausanne Sep. 14-16 2006, pp.1-5

http://www.gaisler.com/

References

103

38. Miro Panades I., Greiner A., ―Bi-Synchronous FIFO for Synchronous Circuit
Communication Well Suited for Network-on-Chip in GALS Architectures‖,
IEEE Networks-on-Chip, Princeton May 6-7 2007, pp.83–94

39. Riccardi D., Causio A., Filippi I., Pregnolato L.V.A., Galbiati P., Contiero C.,
―BCD8 from 7V to 70V: a new 0.l8um Technology Platform to Address the
Evolution of Applications towards Smart Power ICs with High Logic Contents‖,
IEEE ISPSD '07, Jeju May 27-31 2007, pp.73 – 76

40. D’Ascoli F., Melani M., Fanucci L., Bacciarelli L., Ricotti G., Pardi E., Vincis F.,
Forliti M., De Marinis M., ―A Programmable and Low-EMI Integrated Half-
Bridge Driver in BCD Technology‖, IEEE DATE 2008, Munich Mar. 10-14
2008, pp. 879 – 884

41. Graebe R.H., Poe C.C., Conductron-Missouri, ―Digital Techniques to Test
Analog Systems‖, IEEE Transactions on Aerospace and Electronic Systems,
AES-2 Issue 4, 1966, pp. 791-797

42. Baronti F., Marraccini E., Roncella R., Saletti R., Manni G., Palama G., ―Multi-
sensor multi-protocol acquisition system for luxury-yacht production test and
characterization‖, Signals, Circuits and Systems (SCS), Jerba Nov. 6-8 2009,
pp.1-6

43. Qureshi M.A., Ahmed I., Hassan A., ―Automation of testing and qualification of
inertial rate sensors‖, Computer, Control and Communication, Karachi Feb.
17-18 2009, pp.1-6

44. Rokkam M., Chatni M.R., ul Haque A., De Carlo A.R., Robinson B.F.,
Irazoqui P.P., Porterfield D.M., ―High-density data acquisition system and
signal preprocessor for interfacing with microelectromechanical system-based
biosensor arrays‖, Review of Scientific Instruments, volume 78, 2007

45. Löwy J., Programming WCF Services, 2nd ed., O'Reilly Media Inc., 2009
46. Booth D., Haas H., McCabe F., Newcomer E., Champion M., Ferris C.,

Orchard D., ―Web Services Architecture‖, W3C Working Group Note, 2004
47. ―Novell, Mono project website‖, http://mono-project.com/ [Online]
48. Seongbae L., Gi-Joon N., Junseok C., Hanseup K., Drake A.J., ―Two

dimensional position detection system with MEMS accelerometer for mouse
applications‖, Design Automation Conference, 2001. Proceedings Volume ,
Issue , 2001 pp.852-857

49. Young K., Li D., ―A Motion Capture System Using Accelerometers‖ [Online]
50. Mizell D., ―Using Gravity to Estimate Accelerometer Orientation‖, Seventh

IEEE International Symposium on Wearable Computers (ISWC’03), White
Plains Oct. 21-23 2003

51. Algrain M.C., Saniie J., ―Estimation of 3D angular motion using gyroscopes
and linear accelerometers‖, IEEE Transactions on Aerospace and Electronic
Systems, Vol.27, Issue 6, pp.910–920, 1991

52. Sechi F., Fanucci L., Maci E., Giambastiani A., Rocchi A., De Marinis M.
―Demonstrator of 3 axis gyroscope/accelerometer using embedded 3D demo
architecture‖, DSD 2008 (WIP session), Sep. 3-5 2008

53. Sabatelli S., Sechi F., Fanucci L., Rocchi A., ―A sensor fusion algorithm for an
integrated angular position estimation with inertial measurement units‖, DATE
2011, Grenoble Mar. 14-18 2011

54. ―SD755 - Micromachined Integrated Gyro and Acceleration Module
Specification‖, Sensordynamics AG, 2007

http://mono-project.com/

References

104

55. ―Irrlicht Engine website‖, http://irrlicht.sourceforge.net/ [Online]
56. Kim A., Golnaraghi M. F., ―A Quaternion-Based Orientation Estimation

Algorithm Using an Inertial Measurement Unit‖, PLANS 2004, Apr. 26-29
2004, pp.268-272

57. Yun X., Lizarraga M., Bachmann E.R., McGhee R.B., ―An Improved
Quaternion-Based Kalman Filter for Real-Time Tracking of Rigid Body
Orientation‖, IROS 2003, Las Vegas Oct. 27-31 2003, Vol.2, pp.1074-1079

58. Marins J.L., Yun X., Bachmann E.R., McGhee R.B., Zyda M.J., ―An extended
Kalman Filter for Quaternion-Based Orientation Estimation Using MARG
Sensors‖, IROS 2001, Oct. 29 - Nov. 3 2001, Vol.4, pp.2003-2011

59. Wang M., Yang Y., Hatch R.R., Zhang Y., ―Adaptive Filter for a Miniature
MEMS Based Attitude and Heading Reference System‖, PLANS 2004, Apr.
26-29 2004, pp.193-200

60. Kraft E., ―A Quaternion-Based Unscented Kalman Filter for Orientation
Tracking‖, IEEE International Conference of Information Fusion, 2003,
pp.47-54

61. LaViola Jr. J.J., ―A Comparison of Unscented and Extended Kalman Filtering
for Estimating Quaternion Motion‖, IEEE American Control Conference, Jun.
4-6 2003, Vol.3, pp.2435-2440

62. Khoder W., Fassinut-Mombot B., Benjelloun M., ―Inertial Navigation Attitude
Velocity and Position Algorithms using Quaternion Scaled Unscented Kalman
Filtering‖, IECON 2008, Orlando Nov. 10-13 2008, pp.1754-1759

63. Lee H.J., Jung S., ―Gyro Sensor Drift Compensation by Kalman Filter to
Control a Mobile Inverted Pendulum Robot System‖, ICIT 2009, Gippsland
Feb. 10-13 2009, pp.1-6

64. Vicci L., ―Quaternions and Rotations in 3-Space: The Algebra and its
Geometric Interpretation‖, Microelectronic Systems Laboratory, Department of
Computer Science, University of North Carolina at Chapel Hill, 2001

65. Kuipers J.B., Quaternions and Rotations Sequences: A Primer with
Applications to Orbits, Aerospace and Virtual Reality, Princeton University
Press, 1999

66. Kalman R.E., ―A New Approach to Linear Filtering and Prediction Problems‖.
Transactions of the ASME–Journal of Basic Engineering, 1960

67. Welch G., Bishop G., ―An Introduction to the Kalman Filter‖. Department of
Computer Science, University of North Carolina at Chapel Hill, 2001

68. Grewal M.S., Andrews A.P., Kalman Filtering: Theory and Practice Using
Matlab, Second Edition, John Wiley & Sons, 2001

69. Chui C.K., Chen G., Kalman Filtering: with Real-Time Applications,
Springer, 1991

http://irrlicht.sourceforge.net/

