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Abstract 

Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home 

automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this 

evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also 

become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, 

the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-

free product, as each spin results in loss of time and effort. 

Software-based simulation systems present the main technique to ensure the verification of the design 

before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such 

bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to 

inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, 

post-silicon techniques permit the designers to verify the functionality through the physical 

implementations of the design. The main benefit of the methodology is that the implemented design in the 

post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the 

designers to validate their design more exhaustively.  

This thesis presents five main contributions to enable a fast and automated debugging solution for 

reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic 

vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments.    

The first contribution presents a debugging system capable of providing a lossless trace of debugging data 

which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as 

intermittent errors in the implemented design. The contribution also describes a solution to enhance 

hardware observability. It is proposed to utilize processor-configurable concentration networks, employ 

debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging 

system at run-time to save the time required for design re-compilation as well as preserve the timing closure.  

The second contribution presents a solution for communication-centric designs. Furthermore, solutions for 

designs with multi-clock domains are also discussed.  

The third contribution presents a priority-based signal selection methodology to identify the signals which 

can be more helpful during the debugging process. A connectivity generation tool is also presented which 

can map the identified signals to the debugging system. 

The fourth contribution presents an automated error detection solution which can help in capturing the 

permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed 

solution works for designs even in the absence of golden reference.  
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The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a 

novel idea of using a recurrent neural network for debugging when a golden reference is present for training 

the network. Furthermore, the idea was also extended to designs where golden reference is not present.  

  



 

 

v 

 

 

Acknowledgements 

First and foremost, I would like to express my deepest gratitude to my supervisor Prof. Dr. Diana Göhringer.  

Only her continuous support of my research, timely words of motivation, and vast amount of patience have 

enabled me to accomplish this thesis and transform me into an engineer that I am today. I could not think 

of having a better advisor and mentor than her for my Ph.D study. 

Besides my supervisor, I would like to thank Prof. Dr. Heinrich Theodor Vierhaus for his valuable 

comments for improvement of the thesis. Moreover, I am especially grateful to Prof. Dr. Rainer G. Spallek 

for his constructive suggestions during the course of my research. I would also thank the rest of my Ph.D 

committee members: not only for their valuable comments and words of encouragement, but also for the 

hard questions which inspired me to broaden my research horizon from different perspectives. 

I would like to thank my fellow colleagues for the thought-provoking discussions, for the tireless efforts 

we put in to achieve deadlines, and also for the fun we made together in the last four years. At ADS, I wish 

to extend my gratitude to Gökhan, Ariel and Ahmed for their collaborations. Also, I thank my friends in 

ESIT, Ruhr Universität Bochum who were always there to advise me whenever I faced technical issues. In 

particular, I am extremely grateful to Prof. Dr. Michael Hübner for his advices and encouragement. 

 Last but not the least, I would like to thank my family: my parents and to my brother and sister for their 

moral support and continuous prayers throughout inscription of this thesis and my life in general. 

 

 

 

 

 

 

 

 





 

 

vi 

 

 

 

 

      

 

 

 
 

 

 

 

 

I dedicate this thesis to my parents and family 

 

 

 

 

 

 

 

 

 

 





 

 

vii 

 

 

Preface 

The research contributions presented in this thesis were published in papers [Khan1-8]. Specifically, 

Chapter 3 comprises the contents of papers [Khan1, Khan3, Khan4]. In this chapter, we discussed a cycle-

accurate debugging solution for FPGA-based systems along with different techniques for visibility 

enhancement such as concentration networks and incremental insertions.  

Chapter 4 contains content from papers [Khan2, Khan4, Khan8]. In these papers, we discussed debugging 

of multiprocessing systems and multi-clock domain systems. In Chapter 5, research work regarding 

priority-based signal selection has been submitted and will be published subsequently. Chapter 6 was first 

published in paper [Khan5]. We, later on, extended the work to include FPGA-in-the-loop and debugging 

for cases when the golden reference is unavailable. The extended work was published in paper [Khan6]. 

The idea for chapter 7 was published in [Khan7]. The idea was later extended to elaborate the artificial 

intelligence techniques. The enhanced paper is also submitted for publication. 

In all cases, I explored the ideas, conducted the research work, performed the experiments and drew the 

conclusions under the guidance of Prof. Dr. Diana Göhringer, who also provided editorial support for my 

manuscripts as well. 
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Chapter 1 Introduction 
  

1.1 Motivation 

Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home 

automation, etc. to name a few. The Integrated Circuits (IC) constitute the backbone of these devices  [1]. 

As envisioned by Moore’s Law [2], the modern integrated circuits have developed into extremely complex 

devices capable of performing sophisticated functions such as information processing, mathematical 

computation, signal processing, control engineering, etc. Modern ICs now comprise of billions of transistors 

[3]. With this evolution, ensuring that the device fulfills the designer’s expectation under varying conditions 

has also become a great challenge. 

Modern ICs are designed to perform a specific task with utmost efficiency and are then directly 

implemented on the silicon which are termed as Application Specific Integrated Circuits (ASIC). This 

practice requires a lot of design time and effort. Whenever an error is encountered, the process is restarted; 

termed as design re-spin. It is desired to minimize the number of spins required to achieve an error-free 

product, as each spin results in loss of time, cost and effort. Similarly, some use cases require frequent 

design up-gradation which is accomplished through Field Programmable Gate Arrays (FPGA). As the 

FPGAs are used in the field environment, error-free operation is necessary. 

In order to ensure an error-free design, conventionally, the designers perform simulation (e.g. Mentor 

Graphics ModelSim [4]) for verification of the design before fabrication phase also termed as pre-silicon 

verification. Simulation is popular in the design community due to its ease-of-use, ability to view the 

behavior of internal signals which can help to debug the design, apply a fix, and re-simulate to verify the 

intended behavior. Though this used to work in the past when devices were smaller, modern integrated 

circuits designs have become too big which are proving very difficult to simulate. This concern was verified 

during the development of Intel Core i7 microarchitecture [5] because software simulation of the IC was 

found to be a billion times slower than actual silicon. Similarly, Mentor Graphics conducted a study which 

highlighted that though the design complexity doubled every 18 months, design productivity doubled every 

39 months. This was due to the fact that half of the design effort was spent on a complex system verification 

flow as shown in Figure 1.1 [3].  

Hence, the focus shifted towards virtual prototyping for speeding up the design verification process. 

However, as the designs become complex, virtual prototyping also suffers because of speed issues. As 

stated in the IBM report [6], the implementation of a prototype with a target frequency of 1.6 GHz was able  
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to achieve 10 Hz only when simulated on the HDL level. Thus, it can be concluded that using the simulation 

for verification becomes impractical for complex designs for complete test spectrum.  

1.2 Debugging in the Post-Silicon Era 

Because of such limitations of software-based simulation systems, hardware simulation also termed as post-

silicon debug emerged as a better alternative. Although the designers always try to ensure an error-free 

hardware design through simulation before fabrication, few design errors (bugs) are likely to escape the 

simulation process. Such bugs subsequently appear post-silicon. Finding such bugs is time-consuming due 

to inherent invisibility of the hardware and hence significantly affect the time-to-market. As stated in the 

International Technology Roadmap for Semiconductors (ITRS) report, post-silicon validation remains a 

key challenge in the design process [7].  

Instead of behavioral simulation of the design in the pre-silicon phase, post-silicon techniques permit the 

designers to verify the functionality using the physical implementations of the design. The main benefit of 

the methodology is that the implemented design in the post-silicon phase runs many orders-of-magnitude 

faster than its counterpart in pre-silicon thus allowing the designers to validate their design more 

exhaustively. This concept can also be used as an alternative circuit verification technique by configuring 

the prefabricated logic resources available on the FPGAs with any new design as many times as needed. 

This feature makes FPGAs best suited for prototyping [8]. Consequently, designers are increasingly turning 

towards FPGAs to prototype their design [9].  

When unexpected behavior is observed in the post-silicon era, it becomes imperative to find its root-cause 

through debugging. The debugging process can be divided into two distinct phases. Firstly, it is required to 

collect relevant signal trace data from the circuit and secondly, to utilize the collected data from the first 
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Figure 1.1:  A conventional system verification flow 
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step for error detection [10]. This thesis will focus both of them by first developing methods to collect the 

faulty trace data and subsequently perform error detection. 

However, the post-silicon debugging methodology suffers from a main limitation. The debugging task 

becomes difficult on the hardware such as FPGAs or Application-Specific Integrated Circuits (ASICs), due 

to the invisibility of the hardware. During the pre-silicon simulation, all internal signals present in the circuit 

are observable. However, post-silicon, typically the signals present at the I/O interface device can be 

investigated. The problem is exacerbated due to the fact that the transistor density has surpassed the I/O pin 

density resulting in a scarcity of the I/O pins. Furthermore, out of those available I/O pins, only a limited 

number of pins are available for debugging, making the debugging task even more difficult. 

Hardware visibility can be enhanced in multiple ways. Typically, trace-buffers based logic analyzers can 

be placed in the design before implementation. These instruments placed into the design can solve the 

visibility problems. The intended signals required to be debugged are connected to the probes of the 

Integrated Logic Analyzer (ILA) which then record the transitions of the connected signals unintrusively 

into on-chip memory during the at-speed operation of the design. After the signal behavior has been 

captured, the logic analyzer sends them to the connected PC and a suitable waveform viewer can be used 

for visual analysis as is done during the pre-silicon simulation. The trace-based debug environment for 

increasing hardware visibility is shown in Figure 1.2. 

As stated, the ILA needs on-chip memory resources. But the available resources are limited. This results in 

a key bottleneck of the trace-based instruments i.e. only a subset of circuit signals can be observed for only 

a subset of the circuit operation time. Since such subset of circuit signals is quite small, the observable 

subset must be determined before the hardware implementation. A change in this subset of signals typically 

requires a reimplementation (also termed as a re-spin) of the design which may consume multiple hours, or 

even days [11]. Hence, a major challenge to a debug engineer is: to select a subset of trace signals when the 

nature of any potential bugs is still unknown. A wrong selection of the subset may limit debug productivity 

severely. 

The other issue encountered during the debugging process is the selection of a subset of the circuit operation 

time. Due to the limited trace resources for the debugging process, normally a complete trace of the design 

 

Figure 1.2:  Trace buffers for visibility enhancement 
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circuit cannot be captured. Hence, the trace capture is limited to a few hundred clock cycles depending on 

the trace window of the trace buffers which in turn depend upon the depth of the trace buffer. Debugging 

using limited data as described earlier is not easy. Such limited trace will be referred in this thesis as lossy 

trace.  In the typical ILA-based debugging systems, a trigger signal is used to start the capture process 

which lasts depending upon the trace window of the trace buffers. Such systems are able to capture 

permanent errors such as functional errors, logic errors, stuck at faults because these debugging systems 

are able to capture them even using a lossy trace. However, certain errors may not last for long i.e. the errors 

may be intermittent. Examples of intermittent errors are configuration memory errors or the state changes 

in flip-flop or memory cells [12]. These errors are a source of major concern for safety-critical or life-

critical applications which cannot be captured from lossy debugging systems like ILA. These errors can be 

explained better with an example. A system consists of a number of components. Suppose the system is not 

functioning correctly due to an open or a shorted resistor. In both cases, the system will produce permanent 

error. Such error can be captured even by lossy debugging since its value will not change during the course 

of monitoring. However, sometimes, due to certain reasons such as change in temperature, humidity or 

electrostatic discharge, the resistor changes its resistance for few clock cycles: resulting in an intermittent 

error. Capturing such errors using lossy debugging may prove to be a challenge.  

Typical FPGA Debug Flow 

 At this stage, it seems beneficial to discuss a typical debug flow as shown in Figure 1.3. At stage 1, the 

circuit is designed using a Hardware Description Language (HDL) or High-Level Synthesis (HLS). 

Subsequently, the functionality of the design needs to be verified using behavioral simulations. As pointed 

out earlier, the complete verification of the design for complex systems may not be possible due to the 

speed limitations of behavioral simulators. Hence, only constrained-random testing [13] may be preferred 

since higher testing coverage may not feasible. Design verification is performed by acquiring the complete 

set of signals which are then displayed using waveform viewers. At this stage, complete visibility of the 

design is possible since all signals from the HDL designs are available for the complete duration of the test 

run. 

Upon satisfaction with the results of the functional verification at the pre-silicon level, the design is moved 

to the post-silicon verification stage. This permits more comprehensive verification coverage; like booting 

an operating system on the hardware is possible owing to the higher speed of the design. However, at this 

stage, the hardware is inherently invisible. Hence, trace-buffers are inserted into the design to increase the 

visibility of the implemented design. The major difference from the pre-silicon verification is that only 

limited number of pre-selected signals can be recorded over short timeframes (owing to limited trace buffer 

resources) which will be referred in this thesis as lossy debugging data. Changing the signal set or the 

timeframe requires a complete re-spin (re-compilation) of the design which is a time-consuming process.   
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1.3 Research Challenge and Contributions 

 The long-term objective of this thesis is to present a comprehensive debugging solution which can be used 

to debug permanent such as logic errors which produce an unintended behavior and intermittent or non-

deterministic errors such as the errors which result in a bit-flip for single as well as multiple clock based 

designs and for cycle-based as well as event-based systems. The five contributions of the current research 

work that enable to achieve the above-stated goal are as follows: 

1. A post-silicon debugging approach is presented that allows cycle-based lossless debugging with 

effectively unlimited trace using limited Block RAMs (BRAM). Because of the lossless nature of the debug 

data, the cycle-accurate replay of the debugging data is possible. Since a very small trace-buffer is used, 

the proposed solution is also applicable to designs where only limited resources are available for debugging. 

This methodology ensures capturing permanent as well as intermittent errors. Concentration networks have 

been proposed to enhance hardware observability. Such networks allow changing the signal subset without 

re-compilation. Observability can further be enhanced by partial reconfiguring the debugging system at 

run-time hence saving the compilation time. Data compression can be utilized to transmit the data more 

efficiently. This contribution was published in papers [Khan1, Khan3, Khan4]. 

2. The solution for embedded processors is also presented. The debugging methodology is extended to 

multiple processors and multiple clock systems. This makes possible cycle-accurate replay for a broad 

spectrum of IPs. The solution for communication-centric designs is also presented. This contribution was 

published in paper [Khan2, Khan4, Khan8]. 

3. Although, few “important” signals can be identified manually by the designers. For complex designs, the 

debug engineer needs not to have complete knowledge of the whole design. In order to increase the time-

efficiency of debugging, it is essential to automate the signal selection so that the most relevant signals are 

 

Figure 1.3:  Typical FPGA debug flow 
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selected for observation on priority. Moreover, automated connectivity generation tool is also presented. 

This contribution was published in papers [Khan3]. 

4. An automated error detection solution has been proposed which helps in capturing permanent as well as 

intermittent errors without continuous monitoring of debugging data which can be quite cumbersome for 

very large trace data files. This contribution is published in [Khan5]. Moreover, in many cases a Golden 

Reference (GR) of the design may not be available. Debugging such designs can be extremely difficult due 

to the absence of a known reference. An automated error detection methodology is introduced which can 

capture permanent as well as intermittent errors even in the absence of a GR. This contribution was 

published in [Khan6]. 

5. Using artificial intelligence for post-silicon debugging is a new idea. We proposed to use the Recurrent 

Neural Network (RNN) for debugging when a GR is present for training the RNN. Furthermore, the idea 

was also extended to designs where GR is not present. This contribution is published in [Khan7]. 

The following subsections offer a brief overview of each contribution; a detailed explanation is presented 

in the subsequent chapters of this thesis.  

 Cycle-accurate Lossless Debugging with Replay 

A new cycle-accurate debugging methodology with effectively unlimited trace window is presented in sheer 

contrast of the ILA based debugging techniques which offer a limited trace window. A processor (ARM in 

case of Xilinx Zynq device [14] or Microblaze [15] for rest of the Xilinx FPGA families, also possible for 

other FPGA families with minor modifications) is utilized to collect the data from onboard trace buffers (4 

KB BRAM). Once the trace buffers are full, the DUT (Device Under Test) is stopped and then the data is 

transferred to the terminal through Ethernet without user intervention where it can be saved to the memory 

devices like Hard Disk Drive (HDD), Secure Digital (SD) Card, etc. At the terminal, the data is logged to 

a log file and it can be used for debugging using open-source waveform viewers or HDL simulators.  

Chapter 3 describes the implementation of our proposed debugging system. The verification of the response 

of an FPGA-based embedded design can be performed by simulation. When a problem on the physical 

hardware is encountered and debugging is required, traditional debugging systems are normally used. 

However, because of the limitations of debugging systems in capturing a large trace of data, debugging 

becomes difficult. If the design is not complex, traditional debugging systems like ILA may be sufficient. 

For more complex designs, debugging can be cumbersome with small data sets. In those situations, the 

proposed approach can be used. Since very small trace-buffers are used, the proposed solution is also 

applicable to designs where only limited resources can be spared for debugging. This methodology ensures 

capturing permanent as well as intermittent errors. The approach furthermore synchronizes the captured 

data automatically with a terminal, without any interaction by the user. The data is saved in text files and 
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then converted to Value Changed Dump (VCD) format which can then be displayed and analyzed by any 

open-source waveform viewer. The solution is therefore cost-effective as well.  

The most important issue related to debugging is the limited observability of the hardware. The visibility 

can be enhanced through the inclusion of access networks in modern FPGAs. Access networks can be used 

in a variety of applications including debugging. When used in debugging systems, the number of inputs to 

the debugging systems can be greatly increased. This eliminates the need to re-synthesize the design due to 

any change in the signal set which results in saving debugging time and reducing the time to market. Using 

supervisory control by a processor, required networks can be configured just by minor software 

modification. Two different designs for access networks are introduced with respect to the available 

resources. The resource utilization for the two techniques has also been calculated.  

Another important point to keep in mind is that the debug logic should not affect the placement of the design 

during instantiation or after removing the debugging circuitry from the DUT: as it may change the time 

response of the design and may require further analysis. This issue is addressed through Dynamic Partial 

Reconfiguration [16] of the debugging system. Moreover, other applications can also use the resources 

reserved for the debugging system when debugging is not required.  

Another issue is that the trace generation is faster than trace transmission which results in a bottleneck at 

the transmission channel. Software-based trace compression is proposed to address the trace transmission 

bottleneck with no extra hardware overhead. 

 Debugging Coverage 

Complex errors which cannot be traced with lossy debugging systems like ILA can be recorded with the 

proposed debugging solution. The extension of the proposed solution for multi-core and multi-clock 

systems is also be discussed. The solution for communication-centric designs is also be presented.  

 Observability Enhancement Tools 

Furthermore, connecting thousands of nodes to the access network is also a complicated issue. A tool using 

IP-XACT files for automatic network generation is proposed in this chapter. The tool generates a Tcl file 

which creates the network automatically. A priority-based signal selection mechanism has also been 

presented which can identify the signals with most error probability. The signal selection along with the 

automatic connectivity generation framework can be extremely helpful during the debugging phase. 

 Automated Error Detection  

Scan and trace buffer based techniques were devised to increase hardware visibility. These techniques 

require onboard logic resources in order to save the debugging data and consequently only provide lossy 

debugging trace. But the errors can be intermittent [17], also termed as soft i.e. they may not be permanent. 
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Errors of such type are difficult to observe using traditional trace buffers or scan chain approaches due to 

its random nature. Such errors can be tackled with cycle-accurate lossless debugging techniques [Khan1]. 

However, the problem remains to find out the technique which can help in capturing the errors without 

manual analysis of debugging data on each clock transition. Another problem is to find out the methodology 

which can help in finding the intermittent errors in the absence of a GR. 

These problems were resolved by our rule-based inference system [Khan5] [Khan6] which finds the errors 

by providing an unlimited capture window by intruding into the DUT through clock management. It 

eliminates the need for human intervention required to monitor the debugging data on every clock 

transition. Rule-based inference system performs a correspondence analysis for identifying the relationship 

between the input data and the GR.   

 Automated Debugging using Artificial Intelligence  

An automated error detection solution by using artificial intelligence is proposed which can help in 

capturing the permanent as well as intermittent errors without continuous monitoring of debugging data on 

every clock transition. Cycle-accurate debugging is performed through RNN. Our proposed solution 

depends heavily on machine learning techniques for trace diagnostics as well as for bug localization.  

Results have shown that localizing potential bugs in the system can be done with or without the presence 

of a GR. This helps in problem identification and hence increases time-efficiency.  

This contribution is published in [Khan7]. 

1.4 Significance of the Presented Work 

This thesis focus on debugging of complex designs including multi-clock and multiprocessor based 

systems. Fabricating a chip for design verification is quite expensive, hence, FPGA-based prototypes also 

become a good alternative to perform comprehensive verification. Since almost 50% of the design time is 

actually spent on verification [18][19][7], frequent designs spin is quite normal. Because of the 

reconfigurable nature, the FPGA-based prototyping can be both cost and time-efficient.  

This thesis makes significant contribution in the field of automated error detection by using techniques such 

as inference and machine learning resulting in assisting the tedious task of debugging.  

1.5 Thesis Organization 

 The thesis is organized as shown in Figure 1.4. Chapter 2 provides a detailed background on FPGAs, their 

device architecture, the current state-of-the-art in debugging and the different solutions available.  

In Chapter 3 we presented our cycle-accurate lossless debugging solution capable of providing effectively 

an un-limited trace window. The methodology includes access network, incremental debug insertion and 

data compression. 
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Chapter 4 presents various techniques to enhance debugging coverage. Hence, improvements have been 

suggested so that the proposed methodology can undertake to debug multiprocessor and multi-clock 

systems.  

Chapter 5 presents visibility enhancement tools. Such tools include automated connectivity generation and 

priority-based signal selection.  

Chapter 6 demonstrates automated error detection. The proposed rule-based inference system is presented 

to automate the debugging process.  

In Chapter 7, debugging based upon RNN is presented which can be used for debugging with or without 

the GR.  

Finally, this thesis will be concluded in Chapter 8 along with future research directions. 

Parts of this thesis have been published in papers [Khan1-8].  
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Chapter 2   Background and Related Work 
 

Since this research work will be referring to FPGAs and its device utilization, it seems appropriate to review 

the field-programmable gate array architecture. In section 2.2, the main challenge of post-silicon debugging 

along with different techniques used to enhance the hardware visibility will be discussed. In section 2.3, 

the state of the art with specific focus to this thesis: Cycle-accurate lossless debugging with replay, 

debugging coverage, observability enhancement tool, automated error detection and cycle-accurate 

debugging of embedded designs using artificial intelligence, will be covered.  

2.1  Review of Field-Programmable Gate Arrays 

FPGAs are semiconductor devices with prefabricated logic blocks that can be used to design a broad range 

of applications. The devices have some similarity with ASICs in the sense that both have prefabricated 

logic to perform specific functions. However, the main difference between the technologies is that ASICs 

are hard-wired to perform the specific tasks throughout its lifetime. FPGA, on the other hand, is a 

reconfigurable device which can be erased and reconfigured with any design. Although, due to this 

flexibility, the FPGA consumes more silicon (about 20–30x), operates slower (3–4x) and consumes more 

dynamic power (10x) as compared to an equivalent standard-cell ASIC  (90nm) [20]. 

FPGA Architecture 

FPGAs consists of flexible reconfigurable hardware due to its requirement of general-purpose applications. 

Commonly, FPGAs utilize a synchronous 2D island-style architecture. However, several other variants like 

asynchronous [21] or time-multiplexed [22] also exist. The island-style architecture comprises of the four 

components namely the I/O interfaces, soft-logic, hard-logic and a routing network. The routing network is 

flexible and hence can provide desired connectivity. As the name indicates, the I/O and logic resources are 

arranged in rows and columns in the form of islands across the device. As shown in Figure 2.1, the I/O pins 

are used to provide desired connectivity with the outside world. These bidirectional pins support various 

standards and voltages since the exact mode of communication is not known in advance. In an island-style 

architecture, I/Os are found on the FPGA peripheries although some exceptions are also present [30]. 

Soft-logic resources are the reconfigurable component of FPGAs. These components are configured to 

implement the desired logic. Combinational Logic Block (CLB) is the main constituent of the soft-logic 

resources. Generally, a CLB consists of slices which are connected to a switch matrix for routing to other 

FPGA resources. A slice consists of Look Up Table (LUT). However, the number of LUT or its inputs 

depend upon the specific device family [23]. The LUT is the core of the soft-logic resources comprising of 

memory cells connected to a multiplexer; any function can be realized by configuring the memory array of 

the LUT with appropriate contents (known as LUT mask). The select-lines of multiplexer allow the contents 

of the LUT to be forwarded to the LUT output.  
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The Configurable Logic Blocks (CLB) architecture depend upon the device family. For 7 series FPGA, a 

CLB comprises of two slices. The slices (CLBs) can be configured by the respective tools to implement 

any logic function. The slices are differentiated into SLICEL and SLICEM where SLICEM can use their 

LUTs as distributed memory [23]. A typical slice inside a CLB for 7-series FPGAs is illustrated in Figure 

2.1. Being a reconfigurable component, a LUT in a 7 series FPGA can be configured either as a 6-input 

LUT with one output or two 5-input LUTs with separate outputs. The output of the LUTs can be registered 

in flip-flops. Four 6-input LUTs along with 8 flip-flops, multiplexers and arithmetic carry logic units join 

together to form a slice.  

Hard-logic refers to the predefined blocks present in the FPGA which are tailored to accomplish certain 

tasks more efficiently i.e. Digital Signal Processors (DSP), memory blocks (BRAM), embedded CPUs, 

clock distribution networks, etc. Although the BRAM, DSP, and CPU can also be implemented through 

soft-logic, the dedicated hardware resources are more optimized to perform their specific tasks. The 

hardware logic interspersed throughout the device is also illustrated in Figure 2.1. 

The routing network performs interconnection among on-chip hardware components like I/O, soft-logic 

and hard-logic resources for efficient communication. Multiplexers are used to make the system flexible. 

Based upon their utility, these are organized into either the Switch Blocks (SB) or the Connection Blocks 

(CB). As depicted from their name, SBs are used for selecting the output of the resource permitted to use 

the wire. On the other hand, CBs select the sink(s) which will receive the output of the prior block. The 

select lines of these multiplexers are connected to memory cells which can be programmed to implement 

the desired connectivity.  

2.2 Challenges in the Post-Silicon Era: Error Detection 

One point worth highlighting before stating the challenges addressed in this thesis is that its scope is limited 

to post-silicon debugging and is not related to fault injection and fault coverage.  Fault injection is a 

technique which helps in understanding how the system will behave when subjected to unusual stresses 

[24]. Hence, faults are induced at the hardware level to simulate how hardware failure affect the system.  

Similarly, fault coverage is defined as the number of faults detected out of the potential faults [25]. In order 

to better predict the test escape rate, faults should be weighted by their probability of occurrence.  Contrary 

to the above, this work focuses to find permanent or intermittent errors during prototyping and post-silicon 

hardware validation phase. Hence, it is necessary to check the use-case scenarios such as booting an 

operating system, etc. to validate its performance. 

Moore in his famous paper predicted that the number of transistors per square inch would keep on doubling 

every 12 months [2]. Although the pace has slowed down a bit in recent years however, still the data density 

keeps on doubling every 18 months [26]. This exponential increase in the number of transistors made 

possible to realize complex digital circuits. However, this complexity of digital designs also resulted in 
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making the verification and debugging a daunting task. A recent study by Wilson Research Group and 

Mentor Graphics [27] found that about 50% of the total time spent is consumed in the verification phase.  

Furthermore, they also highlighted 42% of this verification time is actually spent in the debugging process. 

It is also pointed out that due to asynchronous interactions between clock domains, flaws may become 

visible only after system integration [28]. 

The preceding paragraph clearly highlights the importance of debugging in a product design phase which 

is the main topic of this thesis.  This thesis will focus on permanent errors such as functional errors i.e. the 

logic errors which produce an unintended behavior as well as intermittent errors or soft errors which may 

produce a glitch due to fabrication defects. Instances of functional errors are a state machine caught in an 

endless loop or a wrong implementation of a mathematical function; Examples of intermittent errors are 

configuration memory errors or the state changes in flip-flop or memory cells. Such errors are a source of 

major concern for safety-critical or life-critical applications.  

Functional errors are easy to debug through logic or behavioral simulation because of unlimited 

observability [29] and quick turnaround time between finding the bug, identification of the root-cause and 

bug-fix. Upon observation of an error, verification engineers can find out the design error manually or 

through the use of automated techniques [30]. However, logic simulation is slow, especially for large 

designs. As stated in the IBM report [4], the implementation of a prototype with a target frequency of 1.6 

GHz was able to achieve 10 Hz only when simulated on the HDL level. This demonstrates that using the 

simulation for verification becomes impractical for complex designs for complete test spectrum.  

Apart from its slow response, simulation-based verification may also be in-conclusive. Although designers 

try to ensure optimum performance of a hardware design through simulation before fabrication, few design 

errors (bugs) are expected to escape the simulation and will show up in the post-silicon process. Finding 
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Figure 2.1: Simplified FPGA architecture 
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such bugs is time-consuming and significantly affect the time-to-market. As stated in the International 

Technology Roadmap for Semiconductors (ITRS) report, post-silicon validation poses an important 

challenge [7].  

Hence, the focus is being shifted towards hardware solutions. However, the main problem of the hardware 

remains in its invisibility [31]. In order to view the signal, it needs to be routed to an I/O pads[32] which 

can then be attached to external logic analyzers [33]. Although this solution works at FPGA speeds, it is 

limited to the number of I/O pads. Morris [34] pointed out that more than 40% of FPGA designs are I/O 

limited. Furthermore, the ratio of logic to I/O in FPGAs is also increasing [35] which leaves even less 

number of I/Os for debugging. All these limitations complicate the debugging problem. However, it is vital 

for designers to have full visibility inside the chip because, in the case of a malfunction, the root-cause can 

only be found after identification of the bug.  

In order to ease the debugging process, different techniques have been discussed in the literature as 

illustrated in Figure 2.2. The techniques can be broadly categorized into two main types such as cycle-based 

synchronization/granularity and event-based. Cycle-based methods observe the states at every clock cycle. 

Contrarily, the event-based methods observe the states at specific events such as transactions or handshakes 

[36]. Normally event-based debugging is adopted in situations where cycle granularity is not really 

required. Cycle-based debugging can further be broadly categorized into scan-based or trace-based. In the 

following paragraphs, the two post-silicon debugging techniques namely scan-based and trace-based 

debugging will be reviewed in more detail.  

 

Figure 2.2: Debugging overview 
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 Scan-based Error Detection 

Scan chain, also known as boundary scan or Joint Test Action Group (JTAG), is the methodology to access 

interconnects of Integrated Circuits (ICs) for increased visibility. JTAG is not only used for testing the 

functionality of interconnects and ICs, but also for programming. The main component of scan-chain is the 

scan cell. A typical scan cell is shown in Figure 2.3. The scan cell approach involves capturing a snapshot 

of the DUT when required. This is achieved by either scanning all FPGA Flip-Flops (FF) and BRAMs using 

FPGA logic instead of transistor logic [37] or through the read-back methods explained in [38]. 

Typical examples of JTAG are BoardScope [39] and JBits [40] but they have been discontinued. 

FPGAXpose by Sandbyte can be quoted as a commercially available product in JTAG category [41].  

However, the main issue with the JTAG approach is its operation at a slower clock rate than the rest of the 

design. Scan-based debugging provides complete visibility however for only one cycle at a time. Hence, 

for large designs, the debugging time increases proportionally.  

The main technique for visibility enhancement in scan-based debugging is data compression. It is achieved 

by connecting only a subset of the flip-flops to the scan chains. This results in decreasing the time between 

scan-dumps thus allowing to single-step the design more quickly [42].  

As claimed in [43] most of the recent ICs have built-in scan-chains already, it happens to be a zero-cost 

solution. Carbine et al. [44] describe using observation-only scan technique capable of observing internal 

nodes in Intel processors. Holdbrook et al. [45] used scan-chains for isolating timing errors between flip-

flops by a “cycle-stretch” technique by comparing scan-dumps to their simulated counterparts. Rootselaar 

et al. [46] presented a multi-stage breakpoint technique for debugging multi-clock domain designs. 

The main benefit of scan-based debugging beside zero overhead is that almost complete state of the design 

can be captured. However, this requires the circuit to be halted exactly at the point of interest which is quite 
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Figure 2.3: Scan-based debug instrumentation 
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tedious for circuits operations at MHz frequencies [47][48]. Moreover, the circuit can also be single stepped 

for a better understanding of the behavior of the circuit [49]. In BackSpace [50], the authors augmented 

formal analysis techniques with limited on-chip visibility to generate predecessor states that lead to the 

erroneous state. The proposed methodology captures the crash state by using a lossy signature. The retrieved 

information is then processed using formal technique of the respective RTL to compute a set of possible 

predecessors of the crash state. The computed states are then validated by using them as “breakpoints”. 

This methodology then iteratively computes predecessors to the recent crash state hence going back in time. 

The methodology tolerated non-determinism to the extent that the error is not rare. Chuang et al. [42][51] 

proposed to copy the snapshots of the FPGA state periodically into shadow flip-flops connected together 

as scan-chains. This allows the values to be transferred to off-chip memory without affecting the circuit 

under debug. Observability can be enhanced through state reconstruction by combining successive traces.  

Hsu et al. [19] presented a data expansion technique which was able to select essential signals which could 

then be used to find out missing signal values. The authors claimed to require only a subset of signals to 

attain full visibility. A similar technique claimed to monitor 4%–15% of all nodes to ensure full visibility. 

However, specific details of the techniques are unknown since they have been employed in a commercial 

product [52]. 

Several FPGAs have a readback [53][54] feature which permits to capture the current user state present in 

CLB registers, BRAMs, Distributed RAMs (DRAM) and Shift Register Logic (SRL) non-destructively 

through a supported interface e.g. BoardScope [39]. Readback-Capture can be carried out by anyone of 

these interfaces: Internal Configuration Access Port (ICAP), Processor Configuration Access Port (PCAP), 

SelectMap, or JTAG [55]. Tiwari et al. [56] suggested inserting a watch-point circuit which could improve 

the efficiency to monitor predefined signals for a runtime-configurable trigger condition. This enabled to 

stop the design at specific events which sped up the process [57]. However, 2~8 seconds are required to 

view just one flip-flop using readback-capture techniques [58]. Asaad et al. [6] proposed a cycle-accurate 

and cycle-reproducible system which could run at speed and stop at the point of interest. The state of the 

FPGA can then be read through readback. The system can then be single stepped to get a cycle-by-cycle 

waveform. Khan et al. [59] proposed a board-level debugging tool which was able to correlate the registers 

present in the netlist to their respective locations in configuration memory. The entire state of the FPGA 

could then be retrieved through readback. The results of the readback are compared with the simulation 

results and any mismatch is highlighted. Shanker et al.  [60] proposed a spatial debugging methodology 

through readback. The author claimed to halt the DUT at any specific clock cycle without any 

instrumentation or re-programming.  Iskander et al. [58] proposed a debugging and validation platform 

which could provide either a high-level abstraction or a low-level bit view for validation of hardware 

designs. The platform was able to place hardware breakpoints through partial reconfiguration and upon 

meeting the breakpoint, any register could be readback to an extra Microblaze processor which served as 



 

 

 

16 

 

primary monitor. Li et al. [61] proposed a readback based soft-core debugger which was able to monitor 

external memory. Tzimpragos et al. [62] proposed to use readback for multiple asynchronous clocks. 

Features like single stepping and waveform reconstruction could then be utilized for enhancing the 

debugging capability.  

From the discussion it becomes clear that readback provides a complete spatial trace of the design at a 

specific instance. However, an important requirement for readback is to freeze the design state by stopping 

the clock which makes the process too slow. 

 Trace-based Error Detection 

Another debugging methodology is based upon trace buffers which use block memories to log trace data 

by utilizing FPGA resources [4]. Data is saved to the BRAMs during runtime and extracted afterward to 

use it for debugging purposes. The trace buffer methodology is shown in Figure 2.4. 

Due to resource limitation, often circular buffers are used to implement on-chip trace circuitry which 

resemble a sliding window. ILA cores offered by the FPGA manufacturers also use trigger signals to either 

start or stop this window resulting in a limited debug window [63]. In other words, the trigger signal remains 

a major bottleneck since the data can be monitored only after the core has been triggered and even after the 

trigger, a limited debug window is available. Consequently, ILA-based approach captures only a subset of 

the temporal trace depending upon the depth of the trace buffer. Debugging with a limited trace data 

becomes time-inefficient.  

Commercial tools like Xilinx Chipscope [64] and Altera SignalTap II [65] use the trace buffer methodology. 

One drawback in the commercially available tools is that the signal set for the trace buffer block has to be 

identified during design time. Therefore, any changes require re-synthesis of the trace buffer block. The 

greater number of design re-spins increase debugging time [66]. In order to address this problem, a method 

of incremental synthesis has been proposed [67]. But recompiling would still be required which is again 

time-consuming. Synopsys’s Identify [68] made it possible to modify the trigger condition at runtime but 

changing the signals under observation still required design recompilation. Certus [69] used a multiplexer 

 

Figure 2.4: Trace buffers 
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network which made it possible to pre-instrument large number of interesting signals prior to compilation 

so that subset of signals can be selected during debugging.  

Due to limited hardware resources, trace buffers only offer limited debug window. Hybrid logic analyzers 

have been introduced (Figure 2.5) to address the limited window size problem. This methodology combines 

the ILA core from FPGA manufacturers and traditional logic analyzers. One example is the Agilent and 

Xilinx co-developed logic analyzer including an external traditional logic analyzer and an ILA [70]. Internal 

signals are tapped to ILA and the data is saved to the trace buffers for debugging and output pins are 

monitored by the Agilent logic analyzer. However, this system is not cost-effective since extra hardware is 

required.  Furthermore, the data is saved in trace buffers which require FPGA resources in case of ILA and 

also the memory of the Agilent logic analyzer for monitoring the pins. Hence in case of hybrid logic 

analyzers, the debugging methodology still remains memory dependent. 

Emulation systems are also used for debugging. Exostiv has developed an FPGA debugging solution [71] 

in which a data collection and saving block technique has been implemented. This solution can be connected 

to a PC through its high-speed port and the data can be viewed on the PC. However, the system requires 

Exostiv hardware for debugging. Few other emulation platforms are available such as Cadence Palladium 

[72], Mentor Graphics Veloce [73] and Synopsys ZeBu [74] which provides good observability with 

simulation frequency up to 2MHz. However, such solutions are costly (about $1 million) and hence may 

not be cost-efficient in many design projects. One thing worth mentioning is that scan-based and trace-

based solutions are not mutually exclusive. Cell processor designers [47][48] highlighted that starting and 

stopping the clock precisely can be quite challenging during scan-based debug. Hence, they suggested 

adding a trace and trigger functionality which allowed the full-speed data logging into a trace window of 

132 bits wide by 1024 trace depth.  

Trace-based debugging can be categorized into iterative or non-iterative tracing. Gao et al. [75] presented 

the concept of a suspect window to identify a range of clock cycles in which a bug may have originated 

before being observed. The authors proposed to first identify the beginning of this error bearing suspect 

window using non-intrusive tracing. Meanwhile performing the scan dumps, circuit is single-stepped to 

attain fine-grained observability. Another iterative tracing technique based upon lossy compression is 

 

Figure 2.5: Hybrid logic analyzers 
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presented in [76]. It suggests to collects lossy traces of signal data surrounding an error (identified through 

comparison with behavioral model) iteratively hence progressively zooming in to the root cause of their 

bug. Yang proposed a similar iterative approach [77] where three sessions were required to capture the 

error.  The authors used lossy compression to identify a suspect window. The second pass was used to 

identify the suspect clock cycles. In the third pass, the methodology was able to capture the error. However, 

the methodology is valid only for deterministic and reproducible errors. A similar technique is suggested 

by Ko et al. [78] which employs state restoration to enhance the visibility of flip-flops present in the design. 

The authors proposed to monitor the don’t care inputs of logic gates (such as the inputs of an AND gate) 

and inferring the unknown values through backward and forward propagation. However, data restoration is 

not possible for designs having high logic depth between flip-flops.  

In the above cases, data compression is used to increase the quantity of trace data which can be stored on 

the on-chip trace buffers, hence, enhancing the debug capability through more data collection. It is 

performed to compactly record the available data. Due to limited on-chip trace buffers capacity, data 

compression is employed to increase the amount of recorded information. Since the debugging data is not 

known apriori, an adaptive compression technique is needed which may require extra hardware resources 

making the trace compression unfeasible.   

In TAB-BackSpace [79], the authors proposed to select an entry from the trace dump and set it as breakpoint 

hence effectively eliminating the need to perform formal analysis. In further extension of their work, the 

authors proposed nuTAB-BackSpace [80] which improves the earlier work by dealing non-determinism. 

Jung et al. [81] proposed a 2-D compaction method for expanding the depth of the trace window of a trace 

buffer. The authors performed three debugging sessions and were able to maintain the 2-D compaction 

capability irrespective of the error patterns which was not the case with [77]. However, the technique 

required GR for comparison which may not be available in certain cases. 

The non-iterative trace-based debugging can further be classified into lossy and lossless trace. All 

commercial logic analyzers such as Xilinx ILA [82] or Altera SignalTap [65] fall in the lossy tracing 

category because of their limited trace window. Another example of this limited window based non-iterative 

debugging is the debug overlay as proposed by Hung [83]. Similar work was done by Eslami et al. [84] 

however; the main difference is the trigger circuitry insertion at debug time which was missing in earlier 

works. Hale et al. [85] proposed to use the leftover Shift Register Logic (SRL) for debugging in resource-

constrained designs.  

Error detection has proven to be difficult due to lossy debugging data. Researchers explored different 

lossless trace techniques to get more trace data. Lossless trace-based debugging can be classified into non-

intrusive and intrusive debugging. Live tracing has been adopted by many researchers for enhancing the 

debugging capability. Blochwitz et al. [86] proposed a non-intrusive technique with lossless trace. The 
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authors proposed to utilize the free I/O pins of the FPGA for data transmission through PCIe. However, 

only few signals can be debugged depending upon the availability of free I/O pins. Backasch et al. [87] and 

Decker et al. [88] proposed modular redundancy for lossless trace. The authors proposed to have redundant 

copies of the design. An on-chip comparison is made at run time and only the difference is transferred for 

off-chip analysis. However, since multiple copies of the hardware are required on-chip, the technique is 

resource-intensive. Deutsch et al. [89] suggested debugging using on-chip DRAMs. They suggested to save 

the GR on-chip and perform comparison between the received data and the GR. Once the difference is 

found that difference can be transmitted for analysis. However, the technique depends on the provision of 

GR. In the absence of GR, these techniques will not be useful. 

Panjkov et al. [90] proposed an intrusive debugging technique by saving data on the on-chip BRAMs. The 

authors suggested stopping the clock of the DUT when the on-chip trace buffers are full so as to avoid data 

loss. They adopted an emulation system which can be used to transfer the data from on-chip trace buffers 

to the emulation system memory. After data transfer, the emulation system can start the clock of the DUT 

again. However, the authors used quite big BRAMs (1MB) which leaves very little BRAMs resource for 

main design. Furthermore, the proposed solution required excessive user intervention for clock 

management.    

2.3 Related Work Specific to Chapters 3–6 

This section describes previous related work specifically to each of the contributions of this thesis. 

 Cycle-accurate Lossless Debugging with Replay 

As stated in the previous section, only those signals can be monitored which are available at the I/O pins of 

the FPGA. FPGA vendors introduced ILA [82][65] cores to solve this problem which can be placed in the 

design and used to debug the hardware. These logic analyzers that are embedded in the design can solve 

the visibility problems. But since these logic analyzers consume FPGA resources, they offer only a limited 

window for debugging resulting in a lossy trace. Hence, a new solution is required that addresses the 

visibility and limited window size issues. 

A post-silicon debugging methodology based upon Device Start and Stop (DSAS) approach is presented 

that allows cycle-based lossless debugging with effectively unlimited trace using limited BRAMs. In the 

rest of the thesis, we will be referring to the proposed debugging system as DSAS for short. In DSAS, we 

suggested to start and stop the clock based on the occupancy of trace buffers.  The clock to the DUT is 

stopped instantly when the trace buffers are full. The clock is automatically started when the trace buffers 

are empty after the data transfer. Consequently, the DUT is clock gated a fixed number of clock cycles 

determined by the depth of the trace buffers which results in cycle-accurate lossless trace of debugging 

data. This lossless trace is recorded to ensure capturing permanent as well as intermittent errors. The 

recorded trace can then be replayed offline. Cycle-accurate replay makes it possible to replay the recorded 
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trace cycle-by-cycle. Hence, post-silicon, complete cycle-accurate details can be reconstructed which can 

be very helpful to capture permanent as well as intermittent errors during the debugging process. 

Due to utilization of small trace buffer, the proposed solution is also applicable to designs where only 

limited resources can be spared for debugging.  

 Access Network Generation 

ILA cores utilize scarce FPGA resources, resulting in the monitoring of only limited number of signals. 

This necessitates the identification of the signal set required to be monitored during verification. However, 

the portion of the circuit required to be debugged during verification phase may change over time and is 

likely un-predictable at design time. If more signals require monitoring during verification, then re-

synthesis is generally required. However, for complex designs, re-synthesis consumes lot of time, adversely 

affecting the time to market. 

A flexible network solution permits the user to select the signals of interest, then a suitable debugging 

system can be used to process these signals as per debugging requirements. For connecting a large number 

of signals without the requirement to re-synthesize, a type of flexible networks called access networks [91] 

were proposed. These networks allow re-configuration of signals without having the need to re-synthesize 

the design iteratively just for debugging. However, such networks are heavily dependent upon hardware 

resources. An efficient access network is needed, which is able to provide connectivity with a minimum 

impact on the hardware resources.  

The idea of utilizing a network for SoC communication is not new [92]. These networks are generally used 

for communication between a CPU and connected peripherals by using packet-based networks. Packet-

based networks provide a very good option for SoC communication. However, such networks are not 

suitable for synchronous and high bandwidth applications such as debugging. Rather, indirect, non-

blocking networks similar to the ones used for conventional telephone networks are more suited for 

applications which require synchronous high bandwidth communication [93]. Furthermore, such networks 

do not require real-time configuration. It is configured once for each application and does not require to 

entertain incremental connection requests. Therefore, the network is only required to be re-arrangeably non-

blocking [94]. 

Research on non-blocking multistage networks permits connections from any input to any output of the 

network. These networks are usually called permutation networks because they provide all possible 

permutations of the inputs to the output side of the network. The Clos network can be used for constructing 

a re-arrangeable non-blocking permutation network having a low area cost[94]. In order to further reduce 

the network cost, the Benes network can be utilized which recursively replaces the middle stage of a Clos 

network with another Clos network [91]. But, such permutation networks are probably more flexible than 

needed. In a few cases, connecting every network input to every network output is not required. Instead, 
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the ability to connect any input to any output is generally required. This flexibility can be utilized for 

lowering the cost of the access network. 

A lot of research has also been performed on unordered networks [95][96]. A class of unordered network, 

called concentrators, can be used for connecting a large number of inputs to a fewer number of outputs. 

Hence, such networks offer a good mean as an interface. But, while some concentrator designs have lower 

depth as compared to permutation networks, they are not necessarily more cost-effective than permutation 

networks for every possible configuration. Therefore, choosing the appropriate network architecture 

becomes difficult since the size of the network (numbers of inputs and outputs), and its effect on cost and 

depth must be considered before finalizing an architecture [91]. 

Altera Signal Probe [97] permits designers to reserve I/O pins on the FPGA so that internal signals can be 

connected to the outside world. On these spare I/O pins, up to 256 predetermined signals can be multiplexed 

through soft-logic which can be changed through the JTAG interface. A programmable logic core-based 

debugging system [98] comprising an access network was introduced which can be controlled by the PLC 

to select the signals required to be debugged. Poulos et al. [99] proposed to employ bitstream modification 

for changing the selected set more quickly. However, due to I/O pins limitation [34], pin reservation for 

debugging may be difficult. Microsemi Action Probe circuitry makes it possible to observe any four nets of 

a circuit in real-time which can be chosen dynamically [100]. However, the less number of nets remain a 

limiting factor. 

The primary purpose of the access network is to efficiently connect the nodes to the debugging system. 

Although, this can be performed manually but involves a lot of effort and yet error-prone. In [90], a script 

tool was utilized for extraction of design nodes from HDL simulators. The IP-XACT standard [101] 

completely describes the interfaces for the elements present in an architecture in which four schemata 

acquire their main descriptions namely the design, component, bus and abstraction definitions. The design 

description acquires all the components present inside the architecture including the interconnections 

between the components and the external pins. The component description acquires the configurations that 

are part of each component including the bus interfaces and their ports, channels, address maps, clock and 

reset signals. For communication bus, the bus and abstraction definitions are provided as complimentary 

descriptions. The bus definition acquires the high-level attributes of a bus, including the connection method 

and addressing. The abstraction definition, on the other hand, captures the low-level attributes including 

the name, width and the direction of the ports. Connectivity between an access network and a debugging 

system can be generated utilizing the interface definitions described in this standard.  This approach helps 

to reduce the human intervention required to perform manual connections between the debugging system 

and the access network. 
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 Incremental Debug Insertion through Dynamic Partial 

Reconfiguration 

Trace based debugging solutions mainly operate on the design before Place And Route (PAR). Such tools 

instrument trace buffers and their connections to the original user circuit before mapping. This results in 

fewer resources to be available for the original design. Moreover, debug circuitry insertion can alter the 

placement of the design. It can prove to be hazardous for the design; such as the hardware design may not 

fit in the FPGA device due to resources used by the trace buffers. Furthermore, sometimes, the timing 

behavior of the design is affected due to design recompilation hence, resulting in a bug to change or 

disappear [84]. 

Another aspect is that the instrumentation is normally performed after observing a failure.  Hence, an 

iteration of the design process is required. Certus by Mentor [69], permits pre-instrumentation of a large 

signal set before compilation, a subset of signals can then be chosen for observation during debugging. This 

methodology provides more runtime flexibility than other tools. However, preselection of a set of signals 

required to be observed is still needed, before the debugging data is available. 

In contrast, incremental synthesis can be used to make modifications in a fully placed-and-routed circuit 

whilst preserving the original design as much as possible [102][103][104]. For FPGAs, the main objective 

is to displace the minimum number of placed design blocks and existing nets to realize the objective.  

Incremental insertion provides many benefits i.e. reduction in re-compilation time during the design 

process, preservation of timing closure for an engineering change or for improving the debugging resilience 

[105]. The idea has already been used for design prototyping and debugging [106] in both Xilinx tools and 

Altera Quartus II. Once, any portion of the circuit is marked as preserved, it is re-implemented only when 

its hardware description is changed. However, when the connections required to be debugged are changed 

for Xilinx ChipScope, the design requires re-implementation.  

Graham et al. [107] proposed to place unconnected trace-buffers in the design at compile-time. Upon 

requirement, incremental bitstream modifications [108] can then be performed for changing the trace 

connections before testing. However, this technique requires reservation of FPGA resources at synthesis 

time, hence, preventing their use by the original circuit. Likewise, Poulos et al. [99] suggested modifying 

the LUT masks which led to more area-efficient multiplexer circuitry. 

Wheeler et al. [37] proposed a design-level scan to connect memory elements such as FFs and embedded 

RAMs in sequence by utilizing the FPGA resources. However, the technique suffers from a high area 

overhead as FPGA resources are utilized for implementation of the scan-chains in the design. In [109], the 

authors suggested to pre-insert trace buffers in the design. Subsequently, low-level bitstream modification 

was performed to connect the trace buffers to the desired signals by using incremental techniques. However, 

still pre-reservation of FPGA resources is required which makes them unavailable to the original design. 



 

 

 

23 

 

Furthermore, trace buffers are required to be removed after the completion of the debugging process, which 

may change the placement and routing of the design. 

Hung et al. [110] proposed a virtual overlay network which multiplexes the debuggable signals to the trace 

buffers already instantiated into the free FPGA resources for avoiding unnecessary design re-spins. But, the 

technique needs spare hardware resources which may not be available. A framework termed Dynamic 

Modular Development (DMD) [38] utilized the Xilinx partial reconfiguration flow to accelerate the 

embedded design process. The design modules were partitioned into separate partially reconfigurable 

regions. Subsequently, the embedded modules which do not require further modifications were merged 

automatically into the surrounding static region. Resultantly, rapid turnaround times were achieved through 

partitioning of frequently modified modules into separate partial reconfigurable regions[111]. 

A bitstream modification methodology was presented in [107] which allows bitstream modification after 

the PAR process.  The ILA is instantiated into the design before netlisting. The signals of interest can be 

connected to the ILA by modifying the partial bitstream. This results in reducing the time consumed on the 

PAR process. However, when the signal set is altered, re-routing is required which can affect the time to 

market. Moreover, logic analyzer is required to be removed from the design after design validation which 

may affect timing closure of the validated design. Lagadec et al. [112] presented Software-like debug 

features such as breakpoints or watchpoints for enhancing debugging capability in reconfigurable platforms. 

However, recompilation of design was required whenever breakpoints or watchpoints were changed. 

A new reconfigurability based debugging methodology was proposed [99] which enables monitoring of a 

large number of internal signals for any arbitrary number of clock cycles through limited external pins. This 

eliminates the need to perform iterations of re-synthesis, placement and routing processes. The 

methodology is realized by instantiating a multiplexer (MUX) into the design, with the potential signals 

required to be traced, connected to the MUX inputs. By reconfiguring the bitstream for select signals, 

different signals can be selected. The main drawback of this methodology is that the register contents are 

required to be shifted in one clock cycle, hence, affecting the maximum frequency 𝐹𝑚𝑎𝑥 of the design. 

Abramovici et al. [113] proposed a design-for-debug infrastructure, called distributed reconfigurable fabric. 

It had components widely distributed in the FPGA and was able to debug a large number of signals. Through 

reconfigurable programmed logic, it was able to implement various debug paradigms, such as signal 

capture, assertions, and what-if analysis used to accelerate the debugging process. But, the design still 

requires synthesis and implementation after instantiating the debugging architecture along with the 

requirement of significant hardware resources. 

In a few intrusive debugging pieces of research [114][115], the clock of the embedded design was controlled 

for retrieving the debugging data. However, such works required breakpoints for stopping the clock. 

Resultantly, the system state very close to the breakpoint could only be monitored. An intrusive debugging 
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approach [90] based upon controlling the clock, through monitoring the occupancy of trace buffers was 

presented. However, the approach requires scarce FPGA resources (1MB RAM), emulation hardware and 

along with external intervention for data handling. In our previous work [Khan1], DSAS was introduced 

which needed only 4KB RAM for logging the data. Consequently, even resource deficient FPGAs can be 

instantiated with the proposed debugging system supporting an automated data saving process. However, 

in these intrusive debugging methodologies, debugging system is instantiated before the PAR process 

which in many cases is too time-consuming. By utilizing the Dynamic Partial Reconfiguration (DPR) [16] 

for debugging, the time consuming frequent recompilation can be avoided. Since the reconfiguration of an 

embedded design is very fast as compared to recompilation (tens of milliseconds versus minutes to hours), 

the debugging process can be sped up by taking advantage of partial reconfiguration. 

 Data Compression 

In order to increase the amount of trace data that can be stored on the on-chip trace buffers while keeping 

the trace buffer size constant, compression of debugging data was proposed [116]. In spite of trace data 

compression, data generation rate is faster than data transmission which results in a bottleneck at the 

transmission channel and consequently loss of debugging data. Hence, an efficient compression technique 

for lossless streaming data is required which can improve off-load time of the debugging data and help in 

faster data dispensation through the transmission channel.  

The efficiency of the trace data compression is described in terms of Compression Ratio (CR). CR can be 

calculated by the following equation.  

𝐶𝑅 =  
𝑆𝑖

𝑆𝑜
= 𝑛 ∗

𝑁

𝑆𝑜
                                                        (𝐸𝑞. 2.1) 

Where 𝑆𝑖 is the size of the uncompressed data stream (n is the total number of time frames and N is the 

number of bits per frame) and 𝑆𝑜 is the size of the compressed data stream. 

Similarly, compression percentage is defined by: 

𝐶 = [1 −
1

𝐶𝑅
] ∗ 100                                                      (𝐸𝑞. 2.2) 

Data compression is classified into two main techniques: Lossy and lossless trace data compression [117]. 

The data compression methodology is decided by the user depending upon requirements. Lossy data 

compression techniques such as JPEG or MPEG use in-exact approximations and partial data discarding to 

represent the data and are suitable for applications where the minor loss of fidelity doesn’t affect the quality 

of data. Lossy data compression methods result in high CR while still meeting the requirements. As 

suggested by [117], CR for lossy compression can be >100. 
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Lossless compression techniques allow the original data to be perfectly reconstructed from the compressed 

data. Lossless data compression is suitable for environments which are prone to errors because of data loss. 

However, because of this limitation, high compression ratios are not possible. Moreover, compression ratios 

are highly dependent on input data. Shannon [118] established the fundamental limit to lossless data 

compression. The limit which he termed as entropy rate H is dependent upon the statistical nature of the 

data. He claimed that it is possible to compress the data in a lossless manner with CR close to H. It is 

mathematically impossible to exceed H.  

ILA-based compression methods can be classified as special-purpose methods or generic methods. Special-

purpose methods usually employ trace reduction techniques by sampling data at specified intervals or by 

eliminating the redundant data. Generic methods can be classified into depth compression [119] and width 

compression [120]. Depth compression is based on capturing as large number of samples as possible during 

debugging by re-running the debugging process. However, the technique is valid only for deterministic 

input sources. In width compression, the debug window size remains the same and compression is attained 

by re-constructing more number of signals than are captured by the trace buffers. 

Lossless trace compression techniques (not limited to ILA based data compression) can be divided into two 

main categories, statistical compression techniques and dictionary based compression techniques.  

Statistical compression techniques such as Huffman coding or arithmetic coding techniques provide better 

CR [121] by using variable-length codes. Shorter codewords are used for symbols with high occurring 

frequency and less occurring frequency symbols with longer codewords. However, the implementation of 

statistical coding algorithms requires two passes of the input data. In the first pass tree-based codeword 

structure is generated, based upon the occurring frequency of the incoming data, and in the second pass the 

data is coded. Because of two passes, the coding will be slow and hence not suitable for real-time 

applications. An adaptive Huffman coding algorithm was introduced in [122] in which the codewords are 

generated based upon the change in the probability of incoming data and hence occurrence frequencies and 

the binary tree are updated in just one pass.  However, a hardware implementation of adaptive Huffman 

coding based upon tree-based codewords was able to achieve a throughput of 1 bit/cycle which do not meet 

requirements in high throughput application. In order to solve the problem, an ordered codeword tables 

based Huffman coding was suggested but with extra area overhead [123].  

Dictionary-based compression algorithms such as Lempel-Ziv compression algorithm (LZ77) and its 

various variants LZW, WDLZW [118], achieve compression by coding a symbol or a sequence of symbols 

with shorter codewords which are represented by the indices of the dictionary. However, the dictionary is 

required to be transmitted along with the data which results in an overhead added to the compressed data. 

An adaptive dictionary-based compression scheme was suggested to avoid this problem [124]. However, 

in order to search the dictionary efficiently, a search engine called content addressable memory (CAM) is 
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used [125]. However, such dedicated hardware requires large resources [116]. Bitmask based compression 

technique was introduced in [126] which considers the difference in a few bit positions (Hamming distance) 

and stores that information in the compressed data. However, the CR depends on the number of bit changes 

considered during compression. Salama discussed LZ77 implementation using systolic arrays but systolic 

arrays suffer due to portability between designs [127]. Basu discussed the use of a static dictionary for small 

amount of errors [128] however the technique is dependent upon the availability of golden trace data and 

limitation of the presence of only small number of errors. Zhang et al. [129] introduced a new design for 

compressor which focuses more on throughput but still, it requires hardware resources for implementation. 

It is evident from the preceding discussion that statistical compression techniques provide high CR but 

throughput is quite low for real-time applications. Dictionary-based compression algorithm provides high 

throughput at the cost of huge area overhead. The above-mentioned solutions can be adopted for FPGA 

designs with spare hardware resources. However, for debugging solutions having a controlling processor 

for data handling, the same processor can be used for software data compression without the need to use 

FPGA hardware. This solution can eliminate the data transmission bottleneck without any extra hardware 

resource and hence can be used to achieve a high data rate. The main contributions of this chapter are: 

1. It presents a software-based lossless debugging data compression technique for a processor-

controlled debugging environment. As far as we know, it is the first work which presents the 

software data compression for any intrusive debugging technique for embedded designs. 

2. The technique provides high compression efficiency with no architecture overhead.  

 Debugging Coverage 

 Embedded Processor Debugging 

The most recent trends for FPGA based systems covered by the Wilson Group Research report shows that 

the number of embedded processors is constantly growing [27]. The report claims that 64% of the designs 

now comprise of embedded processors. Keeping in view the above, it is imperative to provide a solution 

for embedded processors. As the embedded processors contain software applications running on the 

hardware, their debugging requires different technique which will be discussed in this chapter.  

 Event-based Multiprocessor Debugging Methodology 

The number of embedded processors in FPGA based designs is constantly growing as highlighted in Wilson 

Group Research report [27] (Figure 2.6). The report claims that 43% of the designs now contain 2 or more 

processors. Keeping in view the above, we felt it imperative to provide a solution for multiprocessor 

systems. Although, the solution presented in the previous section is applicable to multiprocessor systems. 
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For a SoC level, it has been normally referred that the bit/cycle level is not effective for debugging; the 

transaction level is more desirable [130][131][132]. In this section, we will present a communication-centric 

(transaction-based) debugging solution centered around an event-based debugging methodology. 

Communication architectures play an important role in a SoC’s design and performance [133]. Before 

Network-on-Chip(NoC), MPSoCs and SoCs used to have a common bus for interconnection between 

different cores in a system. With the increase in the number of cores present in a SoC, the efficiency of the 

common bus system decreased and it became a bottleneck for the system, limiting its speed [134]. Hence, 

NoC was suggested to improve the communication speed between the SoCs or MPSoCs. The NoC consists 

of a number of routers depending on the network size and it uses switching methodologies such as Virtual 

Cut-through, Store-and-Forward and Wormhole etc. [135]. 

NoCs utilizes different routing algorithms for routing the data keeping in view certain conditions in the 

network such as congestion or the amount of traffic. The common routing algorithms are XY-, west-first-, 

north-last-, and negative-first-routing [135]. Such algorithms are used to increase the performance by 

reducing the delay and maximizing the traffic utilization of the network. This makes it possible to increase 

the number of cores in an MPSoCs or SoC without adversely affecting the performance. However, the 

major drawback is that the network starts blocking the traffic due to high data traffic. This may cause certain 

problems in the network such as livelock, deadlock and starvation. Livelock and deadlock problems can be 

resolved by choosing an appropriate routing algorithm. Starvation can be prevented through implementation 

of a fair system in which all the packets have the same priority or through reservation of a specific 

bandwidth for low priority packets [135]. However, when such problems are encountered, debugging is 

usually required for sorting out the cause. 

 

Figure 2.6: No. of embedded processors in design projects [27] 
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For a specific system, the NoC can be connected in different ways for achieving optimum performance. 

Therefore, there are different basic network topologies such as tree, mesh, torus, polygon, butterfly, star 

and ring topology [135].  Hence, NoCs may utilize different types of switching methodologies besides a 

variety of routing algorithms along with diverse network topologies for inter-chip communication. Due to 

such complexities traditional debugging techniques used for bus-based SoCs cannot be applied. Because of 

such complexities of the NoCs, traditional debugging methods used for bus-based SoCs may not be 

sufficient.  

The most commonly used debugging technique is JTAG, originally proposed to perform system 

management tasks. Battaline et al. [136] suggested using JTAG as an interface to perform NoC debugging. 

However, such solutions no longer remain cost-efficient due to area requirement and speed limitations. 

Ciordas [132] presented a NoC analyzer which was able to perform NoC transaction monitoring at run-

time. For transaction monitoring, the analyzer offered four different levels of abstraction. The levels start 

from low-level monitoring of the router data to the event abstraction level, where all analyzer modes can 

be configured at run-time. The transaction monitor, capable of monitoring the most difficult packetization, 

was implemented at the cost of one-fifth of the router area, where the total increase in the NoC area was 

found to be around 5% for several audio/MPEG SoCs. Due to connection monitoring, traffic was introduced 

in the NoC. The traffic introduced in comparison to the traffic of the monitored connections varied from a 

penalty of 41% in the connection-oriented memory-mapped scenario to a gain of 63% in the transaction 

event-based data-streaming scenario. However, as the analysis results of the traffic are also transmitted 

through the NoC, chip resources are seriously affected. 

A graphical interface for NoC debugging was introduced by Möller [137]. The authors presented a tool 

called Hermes debugger, which took an events list as an input exported from an MPSoC, simulated through 

ModelSim. Hermes debugger used a graphical interface called NoCScope [137]. The main task of Hermes 

debugger was to interpret the changes in NoC signals over time and update NoCScope accordingly. 

Vermeulen [138] presented a NoC monitoring infrastructure which could be instantiated at design time and 

was able to do performance analysis at real-time. However, the results of traffic analysis were transported 

through dedicated links hence, negatively affecting the chip resources. Stepniewska [139] presented an 

embedded debugging system for NoCs. A debugging enhancement was suggested to support the 

communication-centric debug of the system being designed. It was possible to enable and disable the 

functionality for each PE inside the network. The system was modeled in Verilog HDL and synthesized for 

Xilinx Virtex-5 FPGA. The cost of the presented tool was found out to be not more than 15% of the whole 

system in the worst case.   

Goeders [140] presented a new signal-tracing technique which was specially designed for circuits, 

optimized by an HLS tool. The solution was proposed for debugging HLS circuits in the presence of 
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compiler optimization. The authors utilized a dynamic tracing technique which used the HLS schedule to 

determine the signals relevant for tracing each cycle. Then, the behavior of these signals was stored in on-

chip memory. The system was found to be capable of recording the relevant data path registers for 180x 

longer than conventional tracing methods.  

Cheng [141] proposed an RTL debugging methodology for an event-driven FPGA-assisted co-simulation 

system. The authors connected the internal nodes of the hardware to a PCI-extended bus instead of scan-

chains which resulted in reducing the resources utilization by the debug logic. The presented method saved 

30-50% of the hardware resources and 40-70% of the compile time. Run-time debugging was also possible 

as the signal under debug was sampled and updated at every simulation cycle. Co-simulation performance 

was found to be directly affected by an increase in the number of debugging probes.  

 Multi-clock Domain Debugging Methodology 

Debugging for multi-clock domain system remains a critical design area because of the increasing number 

of multi-clock domains. As stated in Wilson Group Research report [27], the number of asynchronous clock 

domains is increasing with more than 50% design projects currently employing at least more than 2 clock 

domains as shown in Figure 2.7. 

Main approaches for multi-clock domain debugging can be either a real-time trace such as ILAs or a run-

stop and resume technique [89]. The first techniques use trace buffers to save the data with a non-intrusive 

approach i.e. without interfering with the normal function of the DUT (Device Under Test). The latter 

approach is based upon the BreakPoint-based Debugging (BPD) which sets the breakpoint to stop the 

system, dump the debugging data and then resume the operation. 

 

 

Figure 2.7: No. of clock domains in design projects [27] 
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For transaction-level debugging, the authors suggested a socket-based emulator [142]. Software running on 

the host PC was used for controlling the debugging hardware. On the contrary, this research work suggests 

an on-chip soft-processor such as Microblaze for controlling the debugging HW. The software platform 

was connected with the hardware JTAG.  

In [143], the authors introduced a test access mechanism controller which used BPD at the cycle level 

granularity by gating the clock of all components in the SoC. The authors proposed that BPD can be 

superimposed with cycle-level granularity instead of handshake approaches which work on transaction-

level of granularity. The authors suggested the IP to first become the master to access the bus. Hence, if the 

design comprises of many IPs, the IP with low priority may have to wait for a long time before it gets access 

to the bus. During this waiting phase, the design cannot be stopped until the handshake process is finished. 

Otherwise, the risk of data loss is eminent because of broken transactions. Hence, a synchronizer is 

necessary to take care of meta-stability issues [144]. However, because of the delays present in the 

synchronizer, it is difficult to gate the clocks in different clock-domains which may result in data 

invalidation [145]. This data invalidation was addressed by inserting a configurable synchronizer based 

upon the ratio of the operational frequencies. 

In [146], the authors introduced a methodology to debug multiple clock designs. The authors introduced a 

HW/SW technique to address the data in-validation problem. The software was used to set up the breakpoint 

and calculate the appropriate time for issuing the pause signal. The hardware mainly was a clock controller 

which converted the pause signal from the software into a clock gating signal. The stop signal is necessary 

to stop the DUT at appropriate time to avoid any data loss. The mechanism could stop the DUT at the cycle 

specified. 

In [147], the authors proposed an architecture for stopping the clock and dumping the scan in the presence 

of multiple asynchronous clock domains. The authors suggested a round-robin architecture for stopping 

multiple clocks so that data invalidation is prohibited. However, the authors used scan dump as the main 

technique. In [62], the authors proposed a solution involving readback for non-intrusive hardware 

debugging in the presence of multiple clocks. The clock stop signal from the main clock controller is used 

as an enable signal for multiple independent clocks. The main issue with the proposed solution is that it can 

readback the systems states at a specified clock cycle. But continuous tracing of the debugging data is not 

possible. 

The main issue with embedded systems with multiple clocks is data invalidation which includes data 

repetition and data loss [148]. Two main solutions to the problem are the handshaking and the FIFO 

buffering [146]. The FIFO requires buffers, synchronizers, and counters; hence it suffers from latency 

issues. In [149], a low latency data transfer interface was presented which worked by aligning the different 

clock domains at a certain time. This scheme allowed data transfer without setup or hold time violations.  
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In [150], the authors proposed a low latency adaptive interface for Globally Ratiochronous Locally 

Synchronous (GRLS) designs. Such systems are defined as the designs in which several individual modules 

or partitions in a large design utilize a local synchronous clock within the module itself but communicate 

with one another at frequencies which are a submultiple of a single frequency [151]. In contrast, Globally 

Asynchronous Locally Synchronous (GALS) are the designs in which individual modules in a large design 

use a local synchronous clock within the module but communicate asynchronously with one another [152]. 

A periodicity cycle of the two clock domains is used in a heartbeat fashion to ensure that the data in-

validation is prevented. The proposed solution is used to set breakpoints and then stop the clocks when the 

system hits the breakpoints. Then the data is shifted out for debugging. The clock stop signal is also 

communicated to other clock domains for maintaining the synchronization 

As stated in the preceding paragraphs, all the methodologies for debugging multiple-clock embedded design 

are good. However, the methodologies present the solution to a different problem. i.e. how to avoid data-

invalidation or data-aggregation when the clock is stopped through breakpoints. Such solutions are helpful 

when we know the location of the problem. In many cases such as intermittent errors i.e. the errors which 

are not permanent, the breakpoint based debugging techniques do not help. In order to capture such issues, 

continuous lossless debugging data is required to filter out the faulty data as was covered in our presented 

Device Start and Stop (DSAS) based debugging methodology [Khan1]. DSAS can be enhanced to multiple 

clock domains making possible the cycle-accurate debugging for multiple clock systems. In order to ensure 

that no data-invalidation takes place, the clock is gated based on the occupancy of trace buffers instead of 

stimuli from the simulation environment. Consequently, the DUT is clock gated a fixed number of clock 

cycles depending upon the depth of the trace buffers. Moreover, the trace buffers and the DUT are driven 

from the same clock hence, synchronization is not affected.  

The main feature in our design is that we stop all the clocks deterministically by using the depth of the trace 

buffers as a clock gating parameter. The proposed design can handle GALS as well as GRLS designs. In 

our GALS-based debugging design, we clock the DUT and the trace buffers with its own clock. This helps 

in prohibiting data invalidation.  

 Observability Enhancement Tools 

 Signal Priority-based Connectivity Mapping 

In order to meet the time to market requirements, the error-free design must be finalized at the earliest. 

Since 50% of the design time is actually spent on debugging, making the debugging process faster is a 

challenge [27]. Debugging can be made faster by circumventing the inherent invisibility of hardware. 

Although the DSAS approach presented in this research work permits a cycle-accurate replay of the design 

however, only for limited number of signals. Concentration networks were introduced to extend the 

observability to all available nodes. Concentration networks allow changing the signal subset without re-
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compilation. However, many large designs have tens of thousands of debugging nodes. It may be 

cumbersome to connect these nodes to access networks. An automatic tool capable of providing 

connectivity generation is required. Moreover, in order to find the bugs as soon as possible, priority-based 

signal selection can be performed to select the signals based upon more probability for the errors. This 

necessitates devising an algorithm so that most relevant signals are debugged on priority.  

Ko et al. [78] proposed a trace signal selection methodology that focused on an algorithm to estimate the 

states of the signal data which can be restated by monitoring specific gates in the circuit netlist. They also 

calculated the state restoration by measuring the ratio of total flip-flop states restored after applying the 

solution, to the original amount of trace data without restoration. The authors argue that a higher restoration 

ratio results in better signal selection. However, their method does not consider the “effectiveness” of the 

reconstructed data. For instance, a shift register’s states can easily be restored, however, such restoration 

does not help in debugging. Furthermore, the authors applied their methods to small designs raising 

concerns about the scalability of the proposed methodology. 

Liu et al. [153] proposed a trace signal selection methodology which focuses on the enhancement of error 

detection capability. Yang et al. [77] suggested a different methodology based upon error coverage. They 

suggested to inject the errors into the design, and through simulation, tried to find out the sensitivity of the 

flip-flops to such errors. This methodology enabled to choose signals which maximize error coverage. 

Similarly, Gao et al. [75] proposed a signal selection algorithm based upon error coverage in the fan-in 

cones so as to minimize the error suspect window.  

Through an effective signal selection methodology, if state reconstruction is employed, even those states 

can be reconstructed which were not traced. Chatterjee et al. [154] proposed a state restoration based signal 

methodology utilization the simulation signals. In their work, they suggested to simulate the restoration 

process over few clock cycles and measure the restoration ratio. SAT-based methods [155][156] have also 

been proposed to select the signals considered to be most efficient in unobserved signals restoration. Apart 

from the above-referred methods, Wilton et al. [157] suggested performing signal selection at the HDL 

level. The main advantage of the technique is that working at a higher level of abstraction reduces 

complexity, resulting in a selection of signals directly consistent to the designer level of abstraction. This, 

in turn, helps in better understanding of the signal dependencies which makes the signal selection process 

easier. 

Functional coverage has also been considered for design validation which takes into account how 

comprehensively a design has been exercised for faults [158][29]. Finite state machine (FSM) based signal 

selection capture the number of states, state transitions, or paths through the FSM that has been visited or 

taken during validation [159]. Hung et al. [160] presented a methodology which computes the expected 

number of state space which can be ruled-out by observing a specific set of signals. However, the proposed 
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methods are only valid for functional errors. Signal selection-based upon bit flip detection was proposed 

by Vali et al. [161]. The authors proposed an algorithm which focuses to improve the detection of bit flips 

during post-silicon detection. However, the authors considered very small designs for their research work 

and its scalability to large designs is unknown.  

In all the above works, the authors used state restoration, error propagation, formal methods or state 

machine based signal selection methods. However, none of these research works focused on signal selection 

based upon the presence of patterns in the simulation results which is the focus of this research work. 

Furthermore, most of the above-referred signal selection methodologies focus only on functional errors. 

However, the proposed signal selection technique works for both the functional as well as intermittent 

errors. 

 Automated Error Detection  

Because of the lossless nature of the proposed debugging solution (DSAS), the collected data is huge. 

Although, now the debugging difficulty due to limited data has been resolved since any amount of lossless 

trace as desired by the designer can be acquired. However, debugging is still challenging because human 

interpretation is required to find out the bugs. Therefore, the debugging difficulty increases with an increase 

in design complexity which in turn increases the design time. It is a practical requirement to test and debug 

any embedded design before deployment. But, testing and debugging processes have associated time and 

cost implications. For complex designs involving large and rapidly changing debugging data, manual 

analysis of the data is difficult. However, if the received debugging data can be associated to software 

verification environment, the debugging process can become much easier.  

Currently, the main methodologies for hardware debugging through software are as follows. 

 Debugging through Software  

Verification by simulation can be regarded as the main technique for performing functional verification of 

the hardware design. MATLAB / Octave [162] functions can be utilized for building a debugging and 

testing environment. The method is flexible and occasionally RS-232 serial cable may only be needed[163] 

as shown in Figure 2.8.  

 

 

Figure 2.8: Debugging through software 
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Limited high-level programming may be used which can automate the verification process, reducing the 

amount of user intervention needed for verification and debugging of complex designs. Sometimes, the 

manual analysis of the test results creates a bottleneck in the verification process. Debugging of complex 

hardware designs can be accelerated by using high-level verification software [164]. The main benefit of 

using MATLAB / Octave as verification software is that complex programming tasks can be implemented 

in few MATLAB commands [165]. 

Although this debugging technique is simple, it incurs delay-time limitation. The main reason for such 

limitation is the analog-to-digital conversion (or vice versa depending upon the requirement) and the 

transmission time between the DUT and the processor. The delay for Ethernet may be less than serial 

communication. However, such software-based debugging solutions may not be appropriate for FPGA-

based designs which operate at very high frequencies.   

 Hardware co-simulation based Debugging 

A hardware co-simulation based debugging model is discussed in [166][167]. In this framework, first, the 

algorithm is implemented in MATLAB. Based upon the algorithm, system architecture is finalized and 

subsequently, the modules are implemented and verified in MATLAB / Simulink. After verification, GR is 

obtained. Then, this GR is utilized for RTL coding. Hardware co-simulation can then be performed as 

illustrated in Figure 2.9. 

As evident, the design process needs to start from MATLAB. But, if the algorithm is difficult or completely 

impossible to implement in MATLAB, the process of hardware generation cannot be started. 

 Knowledge-based Automated Debugging System 

An expert system integrates a knowledge base which contains the accumulated experience, and an inference 

engine which applies the knowledge base to a particular situation, based upon a set of rules [168] as shown 

in Figure 2.10. The expert system capabilities can be enhanced by inserting data to the knowledge base or 

to the rules. Such systems may contain machine learning capabilities which allow them to improve their 

performance based on experience.  

 

Figure 2.9: Hardware co-simulation based debugging  
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Usage of a knowledge base for system debugging is not new. In [169][170], an expert system was presented 

to debug Pascal programs. This expert system proved helpful for locating and correcting errors in Pascal 

programs. Moreover, a knowledge-based automated debugging system was presented in [171]. The system 

was used for debugging of Pascal-based programs by determining possible causes for runtime, compiler 

and logic errors. 

 Rule-based Inference System 

Based upon the expert system analogy, a methodology is proposed for easing the debugging process by 

using a visual debugging tool, implemented in MATLAB, and hence, utilizing the power of MATLAB for 

system debugging. We have proposed a new verification method for hardware debugging by using 

MATLAB as a tool and rule-based inference system as a verification method. In the proposed verification 

system, a GR is used which can either be defined using the inference system or user-defined. The objective 

is to find the bugs without requiring to run the system intermittently. This is accomplished by debugging 

the complete window at once and using the power of the MATLAB-based debugging system to reduce the 

debugging time and hence, the overall design cycle. 

 FPGA-in-the-loop based Debugging using Rule-based Inference 

System 

FPGA-in-the-loop (FIL) based simulation/emulation can also be used for capturing design errors. 

Transactions are used as the main technique for debugging. The debugging system generates a stimulus 

(seed) and waits for the response hence completing a transaction. The same cycle is repeated intermittently 

and the data is used for debugging.  

A simulation/emulation architecture was proposed in [114]. Transactions were used for communication 

between the DUT and the debugging environment. The authors suggested the idea of controlled and 

uncontrolled time. A clock based upon a controlled time was generated to control the DUT hence creating 

a cycle-accurate framework.  

 

Figure 2.10: Expert system 
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Nakamura et al. [172] introduced a similar transaction-based approach which utilized communication 

through shared registers for transferring the data. The framework utilized a clock enable for the verification 

target, hence maintaining a consistent absolute time between the software and hardware environment. As 

the methodology is based on transactions, it needs a stimulus in the form of a test vector. Subsequently, it 

records the output of the DUT through the software environment. But, limited debugging of the DUT was 

possible. Hutchings et al. [173] introduced unified hardware debugging environment. Simulation or 

hardware execution was made possible through an API by using runtime control and breakpoints. However, 

Xilinx configuration readback feature [174] was used for the research work. Hence, data from intermediate 

combinational signals were not available. 

Yang et al. [175] introduced a cycle-accurate debugging methodology for FPGAs. It used an internal node 

probing technique which increased the FPGA internal visibility through scan chain insertion. However, the 

design observability was reciprocally related to the area overhead or the co-simulation speed.  

An event-driven runtime debugging methodology for FPGA-based co-simulation was proposed [141]. 

When the stimulus was changed, an output of the DUT was updated. To keep the resource consumption 

low, data recording circuitry such as scan chains or trace buffers were not used. Debuggable ports and 

signals were directly connected to the bus through multiplexer logic. Therefore, the methodology may be 

valid for designs having a low frequency of event change or for small designs. Data loss is imminent for 

large designs. 

 Asaad et al. [6] proposed a cycle-accurate and cycle-reproducible emulation system for multicore systems. 

The approach worked by stopping the clock at the region of interest. Then, Xilinx configuration readback 

feature was used for debugging. However, configuration readback can only read the state of the FPGA at 

an instance. Hence, catching intermittent errors is extremely difficult because of their random nature. 

Furthermore, the process is slow as the configuration memory also contains information about the 

architectural details of the FPGA besides state elements. Though the authors proposed to use breakpoints, 

appropriate insertion of breakpoints needs a detailed knowledge of the system. 

For simulation acceleration, Koczor et al. [176] considered a transaction-based method. The process was 

controlled by the software running on the PC. Through their suggested emulation system, FIL simulation 

was also possible by utilizing MATLAB modeling methodology. Huang et al. [177] presented a transaction-

based HW/SW verification environment. The authors discussed different scenarios such as RTL/FPGA co-

simulation or SystemC-FPGA co-simulation. However, they focused on transaction-based HW/SW 

validation.  

In the transaction-based FIL debugging methodologies presented in the preceding paragraphs, stimuli are 

generated by the simulation environment.  Depending upon the stimuli, response from the DUT is awaited 
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to capture the errors. However, the presented methodologies are not suitable to find errors (such as 

intermittent errors) in DUTs which do not operate on this stimulus / response cycle.  

Intermittent or soft errors can only be captured through cycle-accurate lossless debugging systems. 

However, for such debugging systems, manual interpretation and analysis of the test results for each 

transition constitutes a bottleneck. Hence, an automated error detection is required which can perform 

correspondence resulting in automation of the analysis process.  

Many researchers utilized an MATLAB/Octave model of the DUT as GR. However, for complex designs, 

it can be time-consuming to first create a DUT model and then perform the comparison. This problem was 

tacked through high-level validation methodology [38]. It works by performing either a behavioral, post-

synthesis or post-implementation simulation and storing the results. The cycle-accurate response of the 

DUT is then compared with the simulation results. However, due to the unavailability of lossless debugging 

data, the authors suggested an output data capture window.  Debugging data outside the capture window 

was discarded. Consequently, they compared only a subset of the DUT output to the simulation output.  We 

proposed DSAS-based debugging [Khan1] which is capable of capturing functional as well as intermittent 

errors owing to its apparently unlimited trace window. Hence, we integrated the DSAS into the rule-based 

inference system [Khan5] for performing correspondence analysis between the lossless debugging data and 

the HDL simulation data of either a behavioral model, a post-synthesis or a post-implementation model of 

the DUT used as a GR. However, to the best of our knowledge, there is no debugging methodology which 

can capture intermittent errors in the absence of a GR.  

 Automated Debugging using Artificial Intelligence 

Predictive analysis techniques can be integrated with post-silicon validation for bug detection. Machine 

learning can be used for detection of anomalies. i.e. any deviation from normal behavior. However, training 

data is required to learn the correct behavior.  The training data can be labeled as passing (positive label) 

or failing (negative label) samples. In normal operation, training is usually done on passing samples instead 

of negative samples. This is because the passing samples are more frequently available than the failing 

samples as was done in [178]. 

Similarly, data prediction can also be employed for design validation. The test data retrieved from the DUT 

can be used as input to a machine learning algorithm which can then be used to make predictions about the 

bugs occurring on new designs as proposed in [179]. Machine learning methodology can be used to model 

a problem by using the input and output datasets. Hence, it makes possible to fully ignore the mathematical 

representation of the system, which in turn reduces the modeling complexity [8].    

An error localization strategy was presented in [180]. The iterative machine learning-based approach was 

able to localize the errors by using the same regression tests multiple times on the prototype. One major 

difference between the proposed and the earlier approaches [50][181][182] is that failing results can also 
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be used for error localization. The authors used the machine-learning algorithm DBSCAN for this purpose 

[183]. Based on the passing and failing test results, the framework was able to identify the time and 

occurrence of these errors. The authors used the framework presented in [153] for their experimentation. 

Through a series of executions and interaction between the passing and failing trace result, the authors were 

able to localize errors. 

In [184], the authors suggested enhancing the observability of the internal signals at the post-silicon level 

through a learning algorithm. The methodology is based upon the idea that the unknown signals can be 

decided based upon the value of its nearest neighbors. The authors proposed a debugging methodology 

based upon the nearest neighbor algorithm which could then be used for fault localization.  

In [185], the author suggested using data mining for pattern extraction. They further suggested using the 

methodology for functional verification by using data mining techniques. In [186], the authors proposed to 

use machine learning techniques for automating the diagnosis of trace dump and bug localization. The trace 

dump processed through Map-reduce and K-mean clustering was used to identify the rare test segments. 

The authors used commercial post-silicon debugging framework [69] for trace capture. 

It is evident from the preceding paragraphs that many researchers have applied clustering-based machine 

learning to lossy debugging systems (like ILA) for bug detection and error localization by using clustering 

techniques. In [187], the authors proposed that the time series data can be predicted using an RNN. Cycle-

accurate lossless trace dump resembles time series data which can be achieved through clock management 

of the DUT. In [Khan1], a methodology is discussed which generates continuous stream of lossless data by 

automatically stopping the clock based upon the occupancy of the trace buffer. Similar techniques can be 

used to generate lossless time series debugging data. Hence, in this research work, an RNN based machine 

learning framework is proposed which can be used to automate the debugging process even in the absence 

of GR. To the best of our knowledge, nobody has used RNN to lossless cycle-accurate trace-dumps which 

can be extremely helpful to predict the debugging data. 

2.4 Summary 

When an error is encountered in a circuit, it becomes important to find the root-cause of this error. The error 

can be found out either through a scan-based or a trace-based instrument. In this chapter, we reviewed both 

of these techniques along with their merits and demerits.  

We also discussed different techniques to enhance the on-chip observability. In this regard, we reviewed 

access networks, priority-based signal selection, data compression and incremental insertion techniques. 

We also reviewed different automated error detection techniques which can eliminate human interpretation 

for capturing functional or intermittent errors. 
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Chapter 3 Cycle-accurate Lossless Debugging with 

Replay 
 

Because of the limitations of software-based simulation systems, the focus shifted towards hardware 

simulation. However, the major problem faced by hardware remains its invisibility [31]. Due to invisibility, 

only the signals available at the pins of the FPGA can be monitored. FPGA vendors introduced ILA cores 

as a remedy, which can be instantiated in the design and used for hardware debugging. These embedded 

logic analyzers can solve visibility problems. However, these logic analyzers consume FPGA resources 

resulting in a limited trace for debugging which can also be termed as lossy trace. Debug becomes difficult 

due to this lossy trace. Traditional debugging solutions require a tradeoff; if more debug trace is required, 

more hardware resources need to be reserved for debugging. However, if maximum available resources are 

reserved for debugging hardware, still, only few thousand clock cycles can be monitored. Hence, a 

debugging solution is needed which can provide a lossless, cycle-accurate trace of debugging data while 

utilizing minimal resources at the same time. Furthermore, these logic analyzers also require a suitable 

trigger signal for debugging data logging. This requirement becomes a key bottleneck since it needs the 

debug engineer to have complete understanding of the hardware design. In order to solve this issue, a new 

methodology is introduced that addresses the limited trace size issues. The proposed methodology also gets 

rid of the trigger requirement. 

Moreover, changing the signal set during debugging is quite common. Traditionally, when the signal set is 

changed, a recompilation of the design is required. Frequent recompilations increase the debugging time 

making the debugging process time-inefficient. Although this issue has been addressed by several 

researchers as already covered in Chapter 2. Still, an augmented solution providing a lossless trace of any 

signal along with ability to change the signal set without recompilation could be helpful during the 

debugging process.  

Another issue faced during the debugging process is data transmission bottleneck. As the debugging data 

generation is faster than the data transmission through available means such as Ethernet etc, a bottleneck is 

created on the transmission side. Any solution which can accelerate the data transmission could improve 

the time-efficiency of the debugging process. 

Another issue is the instantiation of the debugging circuitry besides the DUT. Then the PAR process is 

conducted. The placement of the debug circuitry can affect the timing closure of the hardware design. 

Furthermore, after verification, the debug core is required to be removed from the design. This may affect 

the timing closure of the design once again. Hence the main challenges are: 

1. To provide a resource-efficient lossless cycle-accurate debugging solution while getting rid of the 

trigger signal at the same time. 
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2. Time-consuming recompilation should be avoided. 

3. To resolve the data transmission bottleneck.  

4. Resource utilization by other applications when debugging is not required.  

5. The debug circuitry may affect the timing behavior of the design. 

The above-mentioned challenges have been addressed in subsequent sections in this chapter.  

3.1 Cycle-accurate Lossless Debugging with Replay   

This chapter presents an FPGA debugging methodology utilizing device run and stop approach. As 

previously mentioned, the main problem in debugging is to increase the debugging trace in such a way that 

lossless debugging data can be acquired. Although there can be numerous solutions as mentioned in Chapter 

2, we proposed the idea of managing the clock of the DUT in order to acquire lossless debugging data by 

using limited BRAMs. The debugging system starts and stops the DUT based upon the occupancy of trace 

buffers. Since the debugging data is saved to external memory on the connected PC, there is no limitation 

on the quantity of data being monitored. The methodology guarantees a debugging system which is capable 

of providing a lossless debugging trace by controlling the clock using cycle-based synchronization. The 

recorded trace can then be replayed offline [188]. Cycle-accurate replay makes it possible to replay the 

recorded trace cycle-by-cycle. Hence, post-silicon, complete cycle-accurate details can be reconstructed 

which can be very helpful to capture functional as well as intermittent errors during the debugging process. 

 Debugging Framework  

This section presents the proposed debugging method based on the device start and stop approach. The 

processor (ARM in the case of Xilinx Zynq device, Microblaze for rest of Xilinx FPGA families, also 

possible for other FPGA families after minor modifications) is employed to gather the data from onboard 

trace buffers (4KB BRAM). When the trace buffer is full and the signal is sent to the clock manager for 

stopping the clock of DUT, Direct Memory Access (DMA) core moves the data from the BRAM to the 

memory connected to the processor. The processor then transports the data from memory to the terminal 

(PC) using Ethernet where it is saved to any memory devices like HDD, SD Card, etc. During the data 

transmission phase, the DUT is stopped hence no data is lost.  At the terminal, the data is logged to a log 

file. The log file is in *.txt format. First the data is de-multiplexed and then converted to VCD [189] format 

so that the trace data can be examined through waveform viewers, such as GTKWave [190]. A block 

diagram of the debugging methodology is shown in Figure 3.1. 
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The main benefits offered by the proposed technique are a cycle-accurate trace, unlimited debug window, 

minimal use of scarce FPGA resources, no loss of debugging data and no requirement of an external 

emulation system. User intervention for saving the data after the BRAM is full is also not required. 

Furthermore, open-source waveform viewers can be used while using DSAS approach, removing the 

dependency to use proprietary software. Hence, the solution is cost-effective as well.  

 Signal Selection Module 

The signals which are required to be monitored are routed through the signal selection module. The signals 

can be traced after selection. Although the trace signals have been limited to 16 to reduce resource 

consumption, the traced signals can be increased if sufficient FPGA resources are available. Hence, the 

signal selection module ensures full visibility of the FPGA. 

 Trace Buffers 

Monitored data is saved to the trace buffer. BRAMs available on the FPGA fabric are utilized as trace 

buffers. Their size can be selected by considering the available resources. In order to limit resource 

utilization, only 4KB BRAM is used. Thus, during one DSAS cycle (one read/write operation), 4KB of 

trace data is moved from BRAM to the external memory.  DMA is utilized to speed up the data move from 

trace buffer to memory. Besides speeding up the shifting of data, it also spares the processor for data 

transmission via the Ethernet interface. 

 Clock Manager 

When the trace buffer is full, a clock gating signal is conveyed to the clock manager to stop the DUT clock 

as shown in Figure 3.2. Clock manager keeps polling for the signal status. Upon receiving the signal, the 

clock to the DUT is halted.  

 Read and Write Data Arbiter 

This finite state machine eliminates the need for manual intervention. It starts and stops the clock based on 

the occupancy of trace buffers instead of stimuli from the simulation or emulation system.  The clock to the 

DUT is stopped instantly when the trace buffers are full. The clock is automatically started when the trace 

 

Figure 3.1:  Debugging model 
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buffers are empty after data transfer. Consequently, the DUT is clock gated a fixed number of clock cycles 

depending upon the depth of the trace buffers. The block diagram of the arbiter is shown in Figure 3.3. 

The read and write arbiter accepts two inputs, x (buffer full) and y (buffer empty). Based upon these signals, 

it generates read and write commands for the trace buffers and clock gating signal for the DUT. As the state 

machine depends on its present state, the proposed state machine can be categorized as a Moore Machine 

[191].  Initially, both inputs are 0 keeping the machine at Init State. When the input to the state machine x 

is 0 and y is 1, the state is changed to Write state (read=0, write=1) hence generating a write command. 

When the FIFO is partially latched, its input x and y changes to 0 keeping the machine in its current state. 

When the buffer becomes full after capturing the data; it changes the input x to the state machine to 1 and 

y to 0. This forces the FSM to moves to Read state (read=1, write=0) hence generating a read command. 

When the FIFO is partially read, input x and y changes to 0 keeping the machine in current state. After the 

data has been read from the buffer, the buffer is empty again forcing the input to the state machine x to 0 

and y to 1. This forces the FSM to moves to Write state (read=0, write=1) and the cycle continues. 

The data written and read from the buffers is moved to memory through DMA. The data is then transferred 

to the terminal using Ethernet.  
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Figure 3.3:   Read and write arbiter 
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3.2 Access Network Generation 

The debugging system proposed in Figure 3.1 can be utilized to acquire lossless debugging data. However, 

such solutions utilize scarce FPGA resources for logging data to trace buffers. This severely limits the 

number of monitored signals necessitating to employ specialized techniques for enhancing the number of 

monitored signals. During the design verification process, the portion of the design which requires 

debugging may change over time and cannot be anticipated during design time. If the signal set is required 

to be changed during debugging, then re-synthesis is required. However, re-synthesis consumes a lot of 

time especially for large designs hence, adversely affecting the time to market. 

The above-narrated problem can be solved by utilizing a flexible network which permits the verifier to 

choose the signals of interest. A suitable debugging system can process these signals as required. Such 

networks permit reconfigurability of the signal set at debug time hence eliminating the requirement to 

resynthesize the design for debugging. Such networks also need hardware resources. Hence, a resource-

efficient access network is needed, which provide efficient connectivity at the cost of minimum hardware 

overhead.  

In this section, two different access network methodologies will be presented i.e. gate-based and 

multiplexer-based. The focus of these two methodologies will be to reduce the hardware resources required 

for an access network: for large designs, abundant resources may not be available for such networks.  

 Access Network Description  

During the design phase, the behavior of the design during the verification phase cannot be predicted. 

Hence, it is extremely difficult to identify the error-prone signals so that they can be connected to the 

debugging system. Instead, the designer normally selects a much larger signal set from the design for 

connecting them to the debugging system. In order to connect a very large set of nodes to the debugging 

system, large hardware resources are required. Consequently, for effective resource utilization, the number 

of signals that can be processed simultaneously must be limited. A processor configurable access network 

can be utilized to accomplish this task as shown in Figure 3.4. The technique provides connectivity to the 

available nodes without requiring re-synthesis of the design by changing the contents of the configuration 

register.  

A synchronized output for all the available nodes connected to the access network can be observed through 

the configuration register. This can be accomplished by re-starting the test from time T0 (the starting time 

of the debugging session) when the signal set is changed. This technique ensures a completely synchronized 

state of all the monitored signals which can then be used for debugging. 
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There are multiple ways to realize an access network such as concentration network, multiplexer network 

or permutation network [91]. Concentration network has been claimed to provide the best performance by 

using the least resources [95]. However, because of unnoticeable difference in resource utilization between 

the multiplexer and concentration network, the claim has not been proven [90]. In this research work, we 

will be presenting two different approaches for realizing an access network namely the gate-based approach 

and the multiplexer-based approach.  

 Gate-based Access Network 

For this research work, we have chosen 16 signals as the extracted set (see Figure 3.5). However, it must 

be highlighted that more signals can also be extracted at the cost of extra hardware resources. We have 

defined the upper bound on the number of signals to reduce resource utilization. Moreover, debugging may 

become cumbersome for the DSAS approach in case of too many extracted signals [Khan1].  

 

Figure 3.4: Access network interconnection applied to a DUT 
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Figure 3.5: Gate-based access network 
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The signal set can be changed through a selection register which can be configured by the processor to 

realize any signal selection hence, allowing full visibility of the design. The number of debug-able signals 

can range from hundreds to thousands, depending on design complexity and hardware limitations. We 

proposed a specifically designed input selection module (m x m) having an enable port which can be utilized 

to disable or enable the selector. When an input selection module is enabled, the complete set of signals 

present at its input are connected to the OR gates. Each OR gate has as many inputs as the number of input 

selection modules. Only the output of an enabled selection module is valid at a specific time. The output of 

the rest of the selection modules is not valid.  Instead of the proposed input selection module, another type 

of network known as a hyper-concentrator can also be utilized. A hyper-concentrator is a network with x 

inputs and x outputs in such a way that any input set can be mapped to any contiguous output set 

disregarding the ordering of the outputs. Narasimha et al. [192] presented a hyper-concentrator design, 

which has a low cost in terms of switches and reasonably low network depth. The outputs of hyper-

concentrator are registered to ensure network operation at the speed of the integrated circuit. However, such 

concentrator designs are complex hence, we have used the self-designed selection module. 

 Multiplexer-based Access Network 

We have also proposed an access network by following the multiplexer based approach. This type of 

network comprises of n inputs and m outputs, where n is always greater than m. The proposed network has 

the capability to choose any subset of inputs while the same is missing in the first methodology. The n 

inputs are divided into k groups, where k is the quantity of input selection modules. We suppose that the 

size of each of these input groups is ≤ m, where m is the total number of outputs. 

The proposed network comprises of two stages as shown in Figure 3.6. In the first stage, each of the k input 

groups is considered independently. A special type of input selection module (m × m) is utilized whose 

 

Figure 3.6: Multiplexer-based access network 
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control port is used to select the required signals at the output. As previously explained, a hyper-

concentrator may be used instead, but in such case retaining the ordering of outputs is not possible. Hence, 

we have proposed an input selection module which maintains the order of the output. In the second stage, 

outputs of the k input selection modules are combined by utilizing a multiplexed bus structure. Multiple 

cascaded stages of multiplexers can be used to extend the network as required. This implementation offers 

advantages over the gate-based solution because the selection of the input signal to the multiplexer stage is 

possible. Configuration registers can control any input selection through the input selection module or the 

multistage multiplexers. Consequently, any set of input signals can be selected. The controlling processor 

can, therefore, control the access network through the configuration registers by issuing appropriate control 

words. The technique ensures full visibility by changing the contents of the configuration register. Hence, 

frequent re-synthesis of the design just for changing the signal set can be avoided. JTAG [136] can also be 

utilized to configure the access network instead.  

3.3 Data Compression 

In section 3.1, a new methodology for lossless FPGA debugging was presented. The proposed debugging 

system collects the data from onboard trace buffers. Once the trace buffers are full, the DUT is stopped by 

the clock manager and then the processor transfers the data to the terminal through Ethernet. It was 

highlighted that one read/write cycle resulted in moving 4KB of trace data to external memory. It was noted 

that data generation is faster than data transmission through Ethernet. Hence, off-loading the data to the 

server/terminal creates a bottleneck.   

In order to increase the amount of trace data that can be stored on the FPGA while keeping the trace buffer 

size constant, compression of debugging data was proposed [76]. However, in spite of trace data 

compression, transmission channel bottleneck still exists which results in loss of debugging data. An 

efficient lossless compression technique for continuous streaming data is required which can improve off-

load time of the debugging data and help in faster data dispensation through the transmission channel.  

In this section, a new methodology is introduced that addresses the data transmission bottleneck. The 

research work presents an efficient lossless trace data compression technique for processor-based embedded 

designs. It addresses the bottleneck at the transmission channel by decreasing the off-load time of the trace 

data through data compression with no architecture overhead. It must be highlighted that the proposed 

scheme should be used if the hardware resources are limited. For designs having abundant hardware 

resources, any hardware-based data compression scheme may be adopted. 

 Data Compression Methodology 

Many compression techniques have been introduced which provide excellent compression but at the cost 

of huge area overhead. However, keeping in view the FPGA resources, a compression technique is needed 

which can not only provide good compression but also introduces small area overhead. An important point 
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to note is that during data transfer from or to memory, the data is handled as bytes or words. Based upon 

the above-mentioned constraint and ensuring fast processing with good compression performance, Simple-

9 (Sim-9) algorithm with minor modification has been employed as shown in Figure 3.7 [193].  

The Simple-9 algorithm is based upon 32 bit binary numbers. When we want to save binary numbers, 

normally we have lots of leading zeros [193]. The main idea of the algorithm is that one 32-bit word should 

be used to store as many values as possible. Based upon the algorithm, the block diagram of the Simple-9 

(Sim-9) methodology is shown in Figure 3.8. 

The least significant 4 bits are used to store a selector which represents the information regarding bit width 

used to store data in the remaining 28 bits. As the name depicts, the selector utilizes 9 distinct values to 

store the values as shown in Table 3-1.  However, when the data is transmitted through Ethernet, it becomes 
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Figure 3.7: Simple-9 algorithm 
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Figure 3.8: Simple-9 block diagram 
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important to identify the last frame along with the number of entries. We utilized the leftover selector values 

to identify the last frame and termed the compression methodology as Modified Simple-9 or simply     

MSim-9.  

It is pertinent here to explain the algorithm with an example. Consider the following 14 integers as input. 

{6,4,1,3,1,5,7,1,1,13,21,12,1,19} 

At step 1, it is required to find the bits needed to represent the integers which are given below. 

{3,3,1,2,1,3,3,1,1,4,5,4,1,5} 

As evident, the maximum bit width for the first 9 integers is 3. After consulting Table 3-1, maximum of 9 

entities can be encoded using a bit width of 3 utilizing 0010 as selector. After deciding the selector, the 

entities are put into the output word sequentially after placing the selector at the least significant bits. Hence, 

the output word comes out to be {001 001 111 101 001 011 001 100 110 0010}. As one bit is unused for 

bit width 3, the final output word after appending 0 as the most significant bit becomes {0 001 001 111 101 

001 011 001 100 110 0010}. Similarly, the maximum bit width for next 5 entities is 5. Hence, these entities 

can be encoded using bit width of 5 with selector 0100. Hence, the resulting output word can be formulated 

as {10011 00001 01100 10101 01101 0100}. Unused bits can be padded at the last as {000 10011 00001 

01100 10101 01101 0100}. Similarly, the algorithm can be iterated for complete data set. 

After going through the previous example, the compression of data can be visualized. The 14 integers which 

were previously represented by 14 words can now be represented by only 1 word. In the second example, 

the 5 words have been compressed into 1 word.   

 

Table 3-1: Simple-9 selector description 

Selector Number of encoded entities Bit width (Bw) Number of unused bits 

0000 28 1 0 

0001 14 2 0 

0010 9 3 1 

0011 7 4 0 

0100 5 5 3 

0101 4 7 0 

0110 3 9 1 

0111 2 14 0 

1000 1 28 0 

1001 Last Frame with 14 entries 

1010 Last Frame with 9 entries 

1011 Last Frame with 7 entries 

1100 Last Frame with 5 entries 

1101 Last Frame with 4 entries 

1110 Last Frame with 3 entries 

1111 Last Frame with 2 entries 
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 Data Decompression 

Decompression is necessarily a reverse operation of compression. When the encoded data is received at the 

decompression module, the selector is examined. Based upon the selector as per Table 3-1, the module 

decides about the number of entities compressed in a specific 32-bit packet. The next step is to extract the 

data entities from the data packet. Block diagram of data decompression module is shown in Figure 3.9. 

In order to explain the decompression process, the previous example can be utilized. Once the 

decompression module receives the compressed data such as {0 001 001 111 101 001 011 001 100 110 

0010}, the unused bit is discarded. This results in the received data to be {001 001 111 101 001 011 001 

100 110 0010}. Then, based upon the selector, the bit width is decided as 3. Consequently, the output 

integers can be decoded as {6,4,1,3,1,5,7,1,1}. Similarly, the next output word is decoded as 

{13,21,12,1,19} 

 Fast FPGA Debugging by Data Compression 

In order to coordinate the debugging activities, we have utilized a debugging processor as mentioned in 

section 3.1. The same processor (ARM for Zynq [14] and an embedded processor for FPGA families 

without Zynq) can also be utilized for data compression in order to fix the data transmission bottleneck. 

The processor reads the data from the trace buffer and then compresses the data by running a software 

routine before data transfer. The compressed data is then transferred through Ethernet. After data reception 

at the terminal, the compressed data is passed on to the MATLAB environment. The received data is first 

Selector
Calculator Data 

Separator

Compressed 
data Bw

Least 
significant 

4 bits

OutPut Data

Most Significant 28 Bits

Data 
Dependant
Tokenizer

 

Figure 3.9: Decompression module 
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Figure 3.10: Fast debugging by data compression 



 

 

 

50 

 

decompressed and then de-multiplexed. Further data processing is then carried out inside the MATLAB 

environment. A block diagram of the debugging methodology is shown in Figure 3.10. 

The main benefits of the technique are an effectively unlimited debug window (since the embedded design 

is not being clocked during data dispensation) resulting in no loss of debugging data and fast data transfer 

through the transmission channel by using data compression at the processor with no area overhead. 

 Interfacing 

The debugging system hardware is connected to the terminal through Ethernet using the user datagram 

protocol (UDP). UDP has been implemented using Xilinx LWIP utility. But LWIP allows a maximum 

transmission unit (MTU) of 1500 bytes per packet with an overhead of 28 bytes [194]. In this research 

work, the payload is defined as 1024 bytes.  

In order to receive the data at the terminal, an array of 1024 bytes has been reserved. So the server expects 

valid data of 1024 bytes per packet. But the output data packet has been compressed into an unknown 

number of bytes. Hence the transmitted packet does not have a fixed number of data bytes. When the data 

is received at the server, the data is saved in the 1024 bytes long reserved array. After the reception, the 

array is composed of valid data proceeded by garbage values. This poses a problem at data decompression. 

However, this problem can be solved by writing FFFFFFFFh at all memory locations of the reserved array. 

When the data is received at the terminal, the Winsock based application overwrites the data array. The 

data (FFFFFFFFh) can then be filtered before data processing for decompression. Once the debugging data 

has been received at the terminal platform, it is used by MATLAB for debugging. In order to control the 

whole process of debugging and streamlining the process, a graphical user interface has been developed 

using Matlab GUIDE. 

The compressed data can then be transferred through Ethernet. Hence, without any change in hardware 

design and without using any FPGA resources, a speedup for debugging is achieved. 

3.4 Incremental Compilation for Embedded Designs using Dynamic Partial 

Reconfiguration 

On-chip visibility enhancement solutions such as ILAs mainly operate on the design before the (PAR) 

process. When the signal set is required to be changed, a recompilation is required which can be time-

consuming for large designs. Moreover, these tools instantiate the user circuit with trace buffers before 

mapping, resulting in fewer resources available for the original design. It can prove to be hazardous for the 

design, such as the hardware design may not fit in the FPGA device due to resources used by the trace 

buffers. Another problem is that the insertion of debug circuitry and frequent re-compilation can alter the 

placement of the design. This can affect the timing behavior of the design  due to design recompilation 

which may result in a bug to change or disappear [84]. The timing behavior may be affected both during 

instantiation or the removal of the circuitry after the debugging process.  
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Hence, we can summarize the problems encountered due to trace-based debugging circuitry as follows: 

a. Time-consuming recompilation is required whenever debug instrumentation is added to the design. 

b. As the trace circuitry is instantiated before the PAR process, fewer resources are available for the 

design. 

c. The debug circuitry may affect the timing behavior of the design. 

The above-mentioned problems can be addressed by utilizing DPR [16] for debugging.  

 Incremental Compilation using Dynamic Partial Configuration 

By using the Dynamic Partial Reconfiguration (DPR) flow, any portion of the FPGA can be reconfigured 

at run-time while the rest of the design remains active. DPR provides the flexibility to change a portion of 

the hardware components present in the design by reconfiguring it to another mode of operation. This is 

achieved by reusing the hardware resources present on the FPGA without the need to halt the rest of the 

system. The idea can be extended for configuring the Debugging System (DS) to the DUT through DPR at 

runtime. Consequently, the process of repeating the FPGA design flow in order to instantiate the DS to the 

DUT and frequent re-implementation of the complete system on the FPGA is not required. Moreover, the 

hardware resources utilized by the DS can be reused for other Reconfigurable Modules (RM) when 

debugging is not required as shown in Figure 3.11. An added advantage is that as the locked static partition 

is isolated from the dynamic partition, the timing behavior of the design is not affected. 

Xilinx DPR design flow [195] is utilized for the proposed debugging solution. As required by the DPR 

design flow, the system is partitioned into a static and a Reconfigurable Region (RR). In our case, the DUT 

is present in the static region which will not be changed during runtime. The DS will be partitioned on the 

RR.  The same RR can also be used by another RM when the debugging is over. The HDL files of the DUT 

and the DS are required for the DPR design flow. Floorplanning is performed for ensuring efficient 

hardware utilization. The DPR tool flow outputs partial bitstream files for every RM of the system and a 

complete set of full bitstream files for every configuration mode. Time of reconfiguration  𝑡𝑟𝑒𝑐𝑜𝑛𝑓 is the 

 

Figure 3.11: Using DPR to load the Debugging System (DS) 
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time consumed to switch to a new operation mode. As the time of reconfiguration  𝑡𝑟𝑒𝑐𝑜𝑛𝑓  i.e. the time 

required for switching to a new operation mode is dependent on the size of the RR, it should be optimized 

for hosting the largest RM. 

Figure 3.11 shows the proposed reconfigurable system with three RMs (DS, Blank and another 

Reconfigurable Application (RA)). DUT with one of the RMs constitutes a full configuration mode. Any 

RM is dynamically configured to the RR according to its time slot. Hence, the resources on the 

reconfigurable region allocated for the DS can be reused by other RMs when the DS is not activated. This 

requires the interconnections or the routing between the DUT present on the static partition and DS or 

another RM on the reconfigurable region to be changed according to the configuration mode. A 

reconfigurable rerouting technique should be adopted in order to maintain a validated data flow between 

the DUT and the RM as shown in Figure 3.12. In a previous work [196],  a rerouting technique has been 

proposed which can also be utilized for reconfiguring the interconnections between the static region and 

reconfigurable region at runtime. 

 DPR-based Debugging Methodology  

The proposed dynamic and partial reconfigurable methodology can be applied to any debugging system 

such as DSAS. This helps in solving problems such as recompilation time, resources availability and timing 

behavior. In this approach, the DUT is present in the static partition and the DSAS debugging system is 

configured as the reconfigurable part. The DUT can continue its normal operation if debugging is not 

required. However, when the debugging system is required, it is dynamically configured to the DUT using 

a partial bitstream. Then, the debugging system clocks the DUT present on the static partition and logs the 

debugging data to the trace buffers. When the trace buffers are full, the debugging system stops the clock 

to avoid any data loss. During the intermediate period, the debugging system transmits the data to external 

memory and once finished it starts clocking the DUT again. Hence, the methodology results in a continuous, 

lossless debugging stream with an effectively unlimited debug window. Moreover, the re-compilation of 
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Figure 3.12: Routing between the static and RR 
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the design is no more required since the debugging system is configured to the DUT through a partial 

bitstream. The debugging data is sent to the terminal using an Ethernet interface or a UART which is then 

saved in a log file. A block diagram of the proposed debugging approach is shown in Figure 3.13. 

The proposed technique offers many benefits, such as the debugging of embedded designs due to lossless 

debugging data. Due to the utilization of DPR for debugging; frequent recompilation of the design is not 

required. FPGA resources can be re-utilized for other applications when debugging is not required. Another 

benefit is the preservation of timing closure when the debugging system is removed from the design. 

3.5 Experimentation and Results 

The debugging methodology proposed in the preceding sections has been tested on the Digilent Zedboard 

[197], which has an XC7Z020-484 FPGA. Xilinx Vivado 2017.1 was used for the design process which 

was carried out on Intel Core i7-6700 CPU running at 3.4GHz and having 16GB of RAM.  

 Cycle-accurate Debugging with Replay 

In order to explore different aspects of the proposed debugging solution, it has been tested with two different 

use cases: an obstacle avoidance system for a robotic vehicle and an image processing application. Before 

discussing the results, it seems beneficial to highlight that the debugging system comprises of hardware 

which could also malfunction. Hence, any debugging system malfunction must be ruled out before 

commencing any debugging session. Several researchers have addressed the problem and suggested to 

utilize Triple Module Redundancy (TMR) [198] to rule out any malfunction with the hardware itself. 

However, for the sake of this research work we have assumed that the debugging system is error-free and 

is qualified to debug the DUT. 
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Figure 3.13: Debugging methodology 
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 Obstacle Avoidance System for a Robotic Vehicle as Use Case 

The platform utilized for this research work is a 4 wheeled skid steer robot. Each wheel can be controlled 

independently which results in a highly controllable platform. Incremental encoders attached to each motor 

and eight ultrasonic sensors for closed-loop operation result in precise localization and environment 

sensing. Utilizing the vehicle information, the control module calculates the control signal required to 

maintain safe distance from the upcoming obstacle. The control signal is then transmitted to the actuation 

mechanism to divert the vehicle to avoid the obstacle.  This results in re-shaping the path of the robot to 

avoid the obstacles in the traversed path. 

During the course, the robot rotates at right angles to avoid the obstacle as shown in Figure 3.14. The block 

diagram of the technique (Figure 3.15) shows that data from the ultrasonic sensors and encoders are sent to 

the controller unit to perceive the environment and compute the corresponding control signals to avoid the 

obstacle. Then, the linear and rotational velocity from the controller are transformed into the right and left 

wheel velocity by using the odometry model of the robot. The Obstacle Avoidance (OA) algorithm uses 

this information along with the data from the sensors to localize the robot. If the ultrasonic sensors do not 

sense any obstacle, the robot continues to move in its designated path. However, once an obstacle is sensed 

and the threshold distance between the robot and obstacle is reached, the robot stops at a fixed threshold 

distance from the obstacle. Then, it calculates the width of the obstacle through triangulation. The robot 

compares the distance from its current position to the right (Option A) and to the left (Option B) corners of 

the object to decide the shortest path for avoiding the obstacle and follows the path until it reaches the 

destination.   

Encoder and IMU sensors are used to determine the robot’s position and orientation. However, these sensors 

may not give the exact position and orientation due to sensor errors. Therefore, Extended Kalman Filter 

(EKF) is used to apply the sensor fusion technique to reduce the effect of such errors and better estimation 

of the optimal position and orientation of the robot. 
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Figure 3.14: Obstacle avoidance technique 
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Integration between EKF and the OA algorithm is implemented as shown in Figure 3.15. Data from an 

accelerometer, magnetometer and gyroscope is fused using EKF to have an optimal estimation of the 

position and orientation of the robot. Then, these estimated values are used to avoid the obstacle. 

 Debugging of an image processing system  

The second use case is a Gaussian filter based image processing system as shown in Figure 3.16. The filter 

has a window generator in which the image width, height and size of input pixel data can be specified. For 

the current experimentation, input image comprises of 1000 x 1700 pixels with each pixel having 8-bits. 

The second stage of the filter is a Gaussian 7 x 7 kernel. Output of Gaussian kernel is a 16-bit image pixel. 

Both of these modules are designed in VHDL. After verification and qualification, the Intellectual Property 

(IP) core is exported to Xilinx Vivado for its use as DUT. 

 Synthesis Time 

When the proposed debugging system is synthesized besides the DUT, it needs more time for synthesis 

than the DUT alone. However, it is worth mentioning that synthesis requires more time even when ILA 

core is used for debugging the DUT. In order to explore the average synthesis time required for DSAS and 

 

Figure 3.15: Block diagram of obstacle avoidance system 
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Figure 3.16:  Gaussian filter 
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ILA, we utilized the OA system and a Gaussian-based image processing application.  Figure 3.17 shows 

the difference in synthesis time between the Xilinx ILA-based debugging design and the presented DSAS 

approach. The negligible difference may be due to more hardware resources required by the DSAS as 

compared to ILA. The advantage of the presented DSAS approach is the availability of lossless trace of 

debugging data.  

 Lossless Data Acquisition  

Figure 3.18 shows the debugging data of our Gaussian image processing DUT plotted in MATLAB. The 

operating frequency of the design is 100 MHz which results in a clock cycle of 10 ns. Hence about 140000 

samples have been acquired (1400000 ns/10 ns). Image input “pixel in” data entered the image processing 

module. Based upon this input data, corresponding filtered output “Img out” is presented in the second 

plot. As can be noticed, “Valid out” turns to 1 after ½*(6w+6) i.e. 3003 samples (where w=1000 is the 

image width) signifying that a valid output is available. It is worth highlighting that only limited number of 

samples can be acquired when debugging with ILA. In order to get another trace, ILA core requires to be 

triggered again. But the DUT is running resulting in data loss between successive triggers. Furthermore, 

the maximum depth of trace buffer allowed for Xilinx ILA is 131272. Hence, in the present case, ILA 

would not have been able to acquire the complete data set. On the contrary, this is not the case with DSAS 

because the DUT is stopped during the data transfer phase. The complete lossless dataset can therefore be 

acquired for debugging. This completeness of data acquired through the proposed approach makes 

debugging of the designs faster and easier. 

 

Figure 3.17: Average synthesis time (in Minutes) 
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The main reason of faster debugging using DSAS is that lossless debugging trace (about 140000 samples 

shown in Figure 3.18 but not limited) can help in visualization of the complete set of events against lossy 

trace by ILA. Consequently, debugging using DSAS-based approach has resulted in 30% less time on 

average as compared to the ILA-based approach [Khan1]. However, the presented data is user-specific 

since it depends upon the debugging expertise of the user. Still, it highlights the benefits offered by the 

DSAS approach. 

Another point worth mentioning is that debugging through DSAS is cost-effective because of the use of 

open-source waveform viewer like GTKwave hence, removing the dependency to use proprietary software. 

 Debugging Results  

We used the proposed DSAS for debugging the obstacle avoidance system presented in section 3.5.1.1 As 

mentioned in [199], the most important parameters for robot localization are the x and y coordinates in a 

global frame of reference and its change in orientation angle. Hence, we used the X and Y coordinates of 

the robot to plot Figure 3.19. As can be seen, in the absence of any obstacle, the robot continued to move 

in its designated path. However, when the ultrasonic sensors detected an obstacle and the predefined 

threshold distance between the robot and obstacle was reached, the robot stopped and then calculated the 

width of the obstacle through triangulation. It then decided to avoid the obstacle by following the shorter 

 

Figure 3.18: DSAS waveform 
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side. The robot then rotated 90 degrees to avoid the obstacle and continued the process until it reached the 

other side of the obstacle. Then it continued following its original path.  

The orientation of the robot is plotted in Figure 3.20. We calculated the orientation of the robot by 

orientation formula (𝜃 = 𝑡𝑎𝑛−1(
𝑦

𝑥
))  to demonstrate the usage of the proposed debugging system. The 

lossless tracing data in x and y coordinates accumulated by the proposed debugging system is used to plot 

the orientation in radians. 

 

Figure 3.19: Movement in the X, Y coordinates 

 

 

 

 

Figure 3.20: Orientation in radians 
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 Resource Utilization 

Resource utilization of the proposed DSAS system has been compared to the Xilinx ILA in Figure 3.21. 

The ILA core is instantiated to the obstacle avoidance system and synthesized with debug window (data 

depth) of 1024, 2048, 4096 and 8192. 16 signals having maximum data width of 32 bits (≈ 16 ∗ 32 =

512 𝑏𝑖𝑡𝑠) are monitored. It can be noticed that the resource utilization of the presented debugging approach 

is much less as compared to the Xilinx ILA. For the window size of 1024, the resource consumption of the 

presented solution is comparable. However, in the case of ILA, increasing the window size results in an 

increase in resource utilization. Implementation failed when the windows size reached 16384 because ILA 

requires more hardware resources (RAMB36) than are available on the Zedboard. This rise in resources is 

due to the different debugging methodologies. ILA stores debugging data on the FPGA in RAM blocks. On 

the contrary, DSAS approach transfers data to the external memory, consequently requiring only minimal 

resources. 

 Access Network  

In this portion of the results section, resource utilization of two types of access network namely the gate-

based and the multiplexer-based will be discussed. It is iterated that the results are based upon 

implementation on the Zedboard without incorporating any DUT. The number of outputs are fixed at 16. 

 Gate-based Access Network Resource Utilization 

The resources utilization for the gate-based approach is plotted in Figure 3.22. The percentage of resource 

utilization is shown in Figure 3.23.  

 

Figure 3.21: Resource utilization 
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Noticeably, the resources required for this approach are quite small. Even with 4096 inputs and 16 outputs, 

the utilization of LUTs and flip-flops is 2.5% and 4% respectively. With fewer inputs, resource utilization 

is even less. However, this technique has one drawback that the selection within the input signals group is 

not possible. If signal selection within the group is not required, the approach can be utilized.  

 

 

Figure 3.23: Percentage resource utilization on a Zedboard for the gate-based approach 
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Figure 3.22: Resource utilization on a Zedboard for gate-based approach 
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 Multiplexer-based Access Network Resource Utilization 

source utilization for the multiplexer-based access network is shown in Figure 3.24 and percentage of 

utilized resources is presented in Figure 3.25. 

An access network with 4096 inputs and 16 outputs consumes 12% of the resources of a Zedboard. The 

resource utilization is even less for networks with fewer inputs. The main benefit offered by this approach 

is that, instead of groups as proposed in the previous approach, any subset of signals can also be selected. 

Hence, for cases where redundant resources are available, this approach is suggested due to its flexibility.  

As evident from the results, both approaches i.e. the gate-based and the multiplexer-based approach have 

their merits and demerits. Depending upon the available resources and the requirements, a suitable approach 

 

Figure 3.24:  Resource utilization on a Zedboard for the multiplexer-based approach 
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Figure 3.25: Percentage resource utilization on a Zedboard for the multiplexer-based approach 
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can be selected. The resulting design can then be controlled by a processor to achieve the desired 

connectivity.  

 Data Compression  

DSAS utilizing MSim-9 has been implemented on a Zedboard comprising the ARM Cortex-A9 processor 

running at 100MHz. We utilized the earlier mentioned DUTs such as Gaussian filter based image 

processing system and the OA system to generate the trace data. The Msim-9 compression methodology 

was then used to compress the debugging trace. The results are displayed in Table 3-2. 

  

Table 3-2: CR results for different trace data 

S. No. Data Stream CR 

1 Gaussian 3.27 

2 OA NA* 

                                 * Not Applicable 

 

It is evident from Table 3-2 that the compression is highly dependent upon the incoming data stream. The 

CR was calculated using Eq 2.1. For the image processing DUT, the % CR was found out to be 70%. The 

high CR was because of the presence of 8-bit input and 16-bit output trace data. When such data were 

compressed using MSim-9, several debug traces could be interleaved in one word compressed data resulting 

in better compression. However, for the OA use case, the compression of the data was not possible due to 

the presence of the signed integers. It has been discovered that the compression methodology is suitable for 

trace data having unsigned integers, fixed-point integers etc. But when the data lacks the earlier mentioned 

attributes, compression is not useful.  

In order to compare the MSim-9 compression methodology with other available alternatives, we have 

performed trace compression for the earlier mentioned data streams using LZW compression method 

illustrated in Figure 3.26. LZW compression methodology starts with a dictionary of 256 characters 

(utilizing 8 bits) and using standard character set. Then it reads successive 8-bit data and encodes it with 

the number that represents its index in the dictionary. Every time it encounters a new string, it adds the 

strings to the dictionary. Whenever it encounters a substring which is already in the dictionary, it just reads 

a new character and concatenates it with the current string to create a new entry in the dictionary. The 

dictionary is limited to 4096 entries to prevent it from consuming too much memory space.  

Percentage compression results for our defined data streams are given in Figure 3.27. It can be noticed that 

the percentage compression is highly dependent upon the incoming data. The CR for MSim-9 is greater 

than LZW for Gaussian-based image processing use case but less for the OA use case.  
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In order to compare the execution speed of the two compression methodologies, the two compression 

methodologies were implemented on the Zedboard utilizing ARM Cortex-A9 processor. Table 3-3 shows 

the time taken by the two compression techniques to compress 1 KB of data. MSim-9 took about 1000µs 

to compress the data while LZW took about 3 times more time to compress the same amount of data. LZW 

takes more time for compression because LZW algorithm requires frequent dictionary consultation. 

However, MSim-9 does not require dictionary consultation and is not compute-intensive. Hence, it is about 

3 times faster than LZW. Furthermore, as the data compression is implemented for speeding up the 

transmission of debugging data through Ethernet for resolving the data transmission bottleneck, MSim-9 is 

better suited because it consumes less time for data compression.   

 

Figure 3.26: LZW algorithm [236] 
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The MSim-9 can be recommended for software-based debugging data compression for certain data types. 

The methodology provides speedup for data transmission without utilizing scarce FPGA resources and 

without any area overhead. For other data types, any other alternative such as LZW can be utilized. 

 

Table 3-3: Timing comparison 

S. No. Methodology Clock cycles Time taken 

1 MSim-9 619939 929.5µs 

2 LZW 1841748 2761.24 µus 

 

 Incremental Compilation using Dynamic Partial Reconfiguration 

As highlighted in section 3.4, the main purpose of incremental compilation methodology is to reduce the 

re-compilation time, better utilization of the hardware resources and addressing the timing closure due to 

debugging circuitry. During investigation of re-compilation time, we compared the traditional debugging 

flow with the proposed DPR-based debugging flow. The test specifications were the same as mentioned in 

section 3.4.3. The difference in synthesis time between the two methodologies was found to be negligible. 

When the debugging system was synthesized as a reconfigurable module, the time taken by the process was 

about 23 minutes as compared to the traditional flow (without DPR) which consumed 17 minutes. However, 

the major benefit of the proposed methodology is the capability of partial reconfiguration. The DPR-based 

debugging system is flexible because the debugging circuitry can be configured to the DUT at run-time, 

obviating the need for repeating the design flow as required in the traditional debug flow. Hence, the design 

time required to instantiate the debug circuitry with the DUT can be reduced. Moreover, the re-compilation 

 

Figure 3.27: Percentage compression 
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of the design is needed whenever the signal set is required to be changed in the traditional design flow.  In 

contrast, re-compilation of the design is no longer required for the presented solution due to the 

concentration network. Furthermore, the hardware allocated to the debugging circuitry can be re-used by 

other applications when debugging is no more required.   

 Resource Utilization 

Resource utilization for the presented debugging system is presented in Figure 3.28. The debugging system 

has been synthesized with a trace window of 64 and 1024. 16 signals are debugged, each having a maximum 

data width of 32 bits. It is evident that the presented debugging system consumes more resource with the 

increase in the trace window because additional BRAM blocks are needed as trace buffers. Although, the 

trace window size does not have any impact on the quality of the debugging data because the presented 

debugging methodology ensures the completeness of the data. Still, debugging with a larger trace window 

is beneficial because more data is acquired in one cycle and hence it is faster. We have also compared the 

resource utilization with our earlier work (DSAS with trace window of 64) [Khan1]. As can be seen, we 

have been able to significantly reduce the BRAM utilization (10%) at the cost of a minor increase in 

registers and LUTs utilization. The main reason for better resource utilization is that in the previous work 

we utilized BRAMs for FIFO synthesis. However, for the current work, we utilized FPGA logic elements 

which were found to be more hardware efficient. It is worth noting that the resource utilization for “Window 

1024” is nearly equal to DSAS [Khan1] (having a trace window of 64). Thus, the debugging data can be 

acquired quickly by using the same hardware resources as the earlier version. As suggested by Xu et al. 

[200], it is generally recommended to keep the debugging hardware cost lower than 10% of the original 

design. The proposed design meets this criterion. Furthermore, in proposed solution, the debugging system 

is configured only if required. Otherwise, the hardware resources not in use of the debugging system can 

be utilized by any other reconfigurable modules. Another feature is that, unlike the traditional design flow, 

the proposed DPR-based debugging solution is not an integral part of the static design. Hence, after the 

 

Figure 3.28: Resource utilization 
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DUT present on the static partition has been debugged, the debugging system can be disconnected from the 

DUT without affecting its routing or the timing closure; because the partitions are totally isolated at internal 

routing level. On the contrary, clock error may occur due to re-routing of the design when the ILA is 

removed from the DUT in traditional design flow. 

 Power Utilization 

Another benefit offered by the technique is its low power consumption. Clock management during data 

transmission imitates clock gating which helps in reducing the dynamic power consumption. During 

experimentation, it was noticed that our debugging methodology also results in power saving as shown in 

Table 3-4.  

The static power consumed by the Zedboard (including PS+PL) without configuring the FPGA with the 

DUT bitstream was found as 2.4W. Through current sense jumper J21, the power consumed by the DUT 

was measured to be about 3.3W. The DUT after configuring the DPR-based debugging methodology 

consumed 3.36W. Hence, the power consumed by the proposed debugging system was found to be about 

0.06W (3.36W-3.3W). When we investigated the reason for such low power consumed by the proposed 

solution, it was revealed that the DSAS debugging methodology imitates clock gating which is known for 

reduction in dynamic power consumption [201]. In order to investigate the effect of clock management 

performed by our debugging methodology, we removed our debugging system from the DUT. We then 

gated the clock of the DUT at 1000 Hz to observe its effect. It was observed that DUT with modified 

clocking consumed 3.24W. Hence, the clock gating resulted in sparing 0.06W (3.30W-3.24W).   

 Deployment Time 

DPR consumed 260ms for employing our debugging system to the DUT where 𝑡𝑟𝑒𝑐𝑜𝑛𝑓 is the time of 

reconfiguration required for reconfiguring the FPGA (≈2MB) at run-time through the JTAG configuration 

mode. On the contrary, the traditional flow may need minutes to hours depending upon the design 

complexity.  

 

Table 3-4: Power utilization 

 Design Description Total Consumed Power 

(Including PS+PL) 

1 DUT 3.3W 

2 DUT with DPR-based debug methodology 3.36W 

3 DUT with clock gating 3.24W 
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3.6 Summary 

When a hardware problem is encountered which requires debugging, generally traditional debugging 

approaches are utilized. For uncomplicated designs, traditional debugging solutions may be enough. 

However, due to unavailability of lossless data trace, debugging becomes cumbersome for complex designs. 

In such situations, the DSAS approach proves to be an alternative.  

Before transmission, the debugging data is initially saved on the FPGA hence a trace buffer is required. 

The trace buffer size is adaptable and currently set to 4KB. The proposed debugging approach provides a 

lightweight alternative requiring fewer resources than other published work in the field. Moreover, captured 

data synchronization with the terminal is performed automatically eliminating user interaction. The data is 

logged to text files, subsequently converted to VCD format and can be presented and analyzed by any open-

source waveform viewer. The solution is, therefore, cost-effective.  

So far we have discussed the features and the contributions introduced by the proposed methodology. 

However, the work has few limitations. The main limitation of the approach is that sometimes the modules 

need to be debugged while running (capturing external streaming data such as an external HDMI input). 

The methodology in its current state cannot undertake such problem. This issue can be resolved through 

the inclusion of synchronizers. The debugging system disables the synchronizer between the external 

streaming device and the DUT during the debugging data transmission phase and will be enabled once the 

DUT is ready to receive the data. However, for external devices which do not follow a streaming protocol, 

the proposed solution may not work.  

A similar problem is faced when the DUT cannot be halted e.g. a live network controller where packets are 

dropped if the DUT is stopped. Such situation is quite complicated. A solution could be to use the event-

based debugging methodology. Another solution could be to use dedicated I/O pins for streaming without 

buffering the data as is done by some emulation systems. But even such emulation system is limited to 

spare I/O pins which may not be available for some designs. 

During the debugging process, changing the signal is quite common. Traditionally, whenever the signal set 

is changed, a recompilation of the design is required. Access networks can be utilized to enhance the 

debugging system’s access to the input nodes. This reduces the frequent need to re-synthesize the design 

just for debugging. Two different methodologies for generating an access network are proposed. The 

resource utilization for both approaches has also been reported. It was highlighted that the gate-based access 

network uses fewer resources but lacks in flexibility. On the other hand, the multiplexer-based access 

network consumes more resources but offers additional flexibility. The main limitation of the access 

network is that it requires hardware resources for implementation. The multiplexer-based access network 

being more flexible requires extra resources. Moreover, the resource requirement keeps on increasing with 

the increase in dimension of the access network. Hence, for resource deficient designs, inclusion of an 

access network in a design can be problematic. 
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Another issue discussed in this chapter is the data transmission bottleneck. A novel debugging methodology 

is proposed which utilizes software-based trace compression to address the data transmission bottleneck. 

The results indicate that the technique performs better than other alternatives. Furthermore, the proposed 

methodology results in no extra hardware overhead as the data compression has been carried out on the 

processor side. However, software processing is required to add data to packets. This processing consumes 

time resources. Furthermore, as already covered in the results, the Msim-9 algorithm used in this research 

work may not be able to compress certain data types.  

Debugging requires instantiating the DUT with the debugging system and identifying a set of potential 

error-prone signals for debugging. Then the PAR process is conducted. The process is iterated with the 

changing signal set until the verification of DUT. These processes need hardware and time resources. 

Furthermore, after verification, the debug core is required to be removed from the design. This may affect 

the timing closure of the design requiring further analysis. Such issues were addressed by debugging 

through DPR-based incremental insertion. The proposed methodology configures the debugging system to 

the design at runtime which eliminates the need to go through the time-consuming PAR process. 

Furthermore, the resources set aside for the debugging can be used by other applications when debugging 

is not required. However, one limitation of the proposed solution is that, upon design finalization, the blank 

bitstream needs to be part of the finalized design. Although blank bitstream does not result in dynamic 

power dissipation, however, it still results in static power dissipation which may not be negligible. 
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Chapter 4 Debugging Coverage  
 

The most recent trends for FPGA based systems covered by the Wilson Group Research report shows that 

the number of embedded processors is constantly growing [27]. The report claims that 64% of the designs 

now comprise of embedded processors. It further claims that 43% of the designs now contain 2 or more 

processors. Hence, it is imperative to provide a solution for embedded processors. As the embedded 

processors contain software applications running on the hardware, their debugging requires a different 

technique which will be discussed in this chapter.  

DSAS methodology presented in the previous chapter utilizes cycle-based synchronization by utilizing 

clock gating. However, large designs which require data transmission between different IPs, stopping the 

clock for an individual IP may result in data loss. Such loss can be prevented by inserting synchronizers 

which will be presented in this chapter. The proposed solution is directly applicable to multiprocessor 

systems. However, it has been normally suggested that the cycle level (or cycle-based) is not effective for 

multi-core debugging: event-driven debugging (such as the transaction-based) is considered more desirable 

[130][131][132]. An event-based debugging methodology based upon transactions will also be presented. 

Such methodology abstracts the view from cycle granularity to transaction granularity for reducing the 

debugging difficulty [202]. 

Debugging for multi-clock domain system remains a critical design area because of the increasing number 

of multi-clock domains. As stated in Wilson Group Research report, the number of asynchronous clocks is 

increasing with more than 50% design projects currently employing at least more than 2 clock domains 

[27]. Hence, a solution for multi-clock domain designs will also be proposed. 

4.1 Embedded Processor Debugging 

DSAS can be utilized for debugging any hardware design. However, due to its ability to generate a 

continuous stream of lossless data, the methodology is ideally suited for complex embedded 

microprocessors (Figure 4.1). Two different embedded microprocessors are utilized as use cases in order 

to validate the proposed methodology. The embedded processor is treated as a black box and all interfaces 

originating from the processor are continuously monitored. This results in providing a complete picture of 

the activities performed by the embedded processor. The two processors are detailed below. 

1. The first embedded processor utilized as the use case is Xilinx Microblaze [15]. Microblaze is 

debugged by connecting its external interfaces to the debugging system. However, Microblaze 
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already has a dedicated debugging port (trace port) which can be used to retrieve the status of some 

internal registers which are not available on other interfaces. The proposed debugging system can 

be connected to this trace port for a continuous, lossless stream of data. Lauterbach has provided a 

debugging solution to debug Microblaze through the trace port [203]. It needs an external hardware 

module required to be connected to the trace port for acquiring trace data hence not cost-effective. 

By contrast, the proposed debugging system can be utilized to debug any interfaces (not limited to 

a trace port) without extra cost. 

2. The second use case is an embedded processor based upon the RISC-V architecture, chosen to 

highlight the usability of the presented debugging system. The microprocessor (ORCA developed 

by Vectorblox) [204] is an open-source core utilizing RV32IM architecture. RISC-V cross compiler 

toolchain is also available to perform software compilation. The core has low hardware utilization 

and therefore, is suitable for small FPGAs [205]. However, the core does not have a dedicated 

debugging solution and is hard to debug. Our proposed debugging solution can be used for 

debugging of the core. 

Black-box approach was utilized for debugging of the microprocessors. Hence, all the exposed interfaces 

(including AXI interfaces) are required to be monitored.  The microprocessor fetches the instruction from 

the memory which is first decoded and then executed. The execution of the instruction results in either 

saving the data to the memory or using the data for processing the next instruction. In the first case, the data 

can be acquired by the debugging system when it is being written to memory. In the second case, after 

processing, the data will be saved to memory. The proposed methodology results in a continuous lossless 

data stream, hence, monitoring the interfaces results in the debugging of the microprocessors. The internal 

registers can also be debugged if they can be made visible to the debugging system.  

 

 

Figure 4.1: Embedded processor debugging 
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Clock Management 

Because of the data transfer bottleneck, data generation is faster than the data transmission. Hence, when 

the trace buffer is full, the microprocessor is required to be halted so that the data is sent to the terminal 

without data loss. The processor can be halted by writing to the Control and Status Register CSR (0x800). 

However, we chose to halt the processor by managing the clock. This was accomplished through a custom-

made clock manager which can stop the clocking of the processor once the trace buffers are full. Another 

solution is also available for Xilinx FPGAs. For stopping the clock, Xilinx clocking wizard IP [206] has a 

power-down option which can also be utilized. Although this option was provided for power gating, the 

same function can be used for debugging eliminating the need for any custom made IP.  However, in the 

presence of any logic which gets reset if not clocked, the proposed design may not work. Hence, such logic 

must first be removed in order to get a continuous lossless stream of debugging data from the embedded 

processor. 

4.2 Event-based Multiprocessor Debugging Methodology 

This section presents our event-based debugging solution for NoC. The proposed debugger can be utilized 

for faults diagnosis and network analysis. The system is generic and can be easily adapted to a variety of 

NoCs. It also supports the analysis of NoC at different levels of abstraction. The debugging system can be 

used to control the DUT through an interactive computer application. This makes possible the problem 

detection along with data analysis such as log files, utilization reports and network visual illustration. 

Hence, the proposed NoC analysis solution results in the detection and correction of faults. The NoC 

debugger presented in this section was implemented to perform debugging on a NoC called RAR-NoC 

(Reconfigurable and Adaptive Routable NoC) [207]. In the following paragraph, RAR-NoC will be 

concisely explained to clarify the instantiation of the debugging system to the NoC and subsequent data 

monitoring. 

RAR-NoC comprises of reconfigurable routers (Figure 4.2) which can be added or removed from the 

network at runtime. This allows adjusting the size and topology of the NoC for fulfilling the requirements. 

Furthermore, hotspots can be avoided by selecting an appropriate routing algorithm for individual message. 

This results in better division of traffic on the network channels resulting in increased data throughput. The 

routers utilize wormhole switching. The packets are transmitted as flits; header flit, payload flits and tail 

flit. The tail flit is required to mark the end of the packet and can also carry payload. On the other hand, the 

header flit includes information regarding the destination and the desired routing algorithm. Either west-

first (WF) or XY routing algorithm can be chosen. The bit width of the flits can be configured at design 

time. However, the minimum bit width is 5-bits for holding the routing algorithm (1-bit) and the destination 

address (4-bits). The Local port of the router connects the Processing Element (PE) to the router, while 
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North, East, South and West ports connect the router with other adjacent routers.  The arbiter utilizes round 

robin algorithm to connect only one input port to one output port simultaneously. The latency of the routers 

when using WF algorithm is 2 cycles for header flits and 1 cycle for the remaining flits, while for XY 

algorithm, the latency is 1 cycle for all flits. The most important aspect of RAR-NoC is being deadlock-

free. The utilized routing algorithms feature turn models which prevent building circles when used either 

individually or when the two algorithms are combined. 

PE (either ARM or MicroBlaze) and the NoC are connected through Network interfaces (NI). Hence, the 

NI acts as a bridge between different PE interfaces; AXI for ARM and AXI-Stream for Microblaze, and the 

NoC. A DMA core is used to connect the ARM processor with the NoC. The DMA core receives data from 

the AXI Memory Mapped port of the processor, converts them into AXI Stream and sends them to the NI. 

Internal registers of the DMA are required to be configured previously for the DMA to work (Figure 4.3). 

The DMA is configured through the GP port of the ARM processor. In order to receive data at the ARM 

processor from the NoC, the same operation is performed in reverse. 

 

Figure 4.2:  RAR-NoC router architecture [207] 

 

  

 

 

 

 

Figure 4.3: Developed network interface for connecting the ARM processor to the RAR-NoC [207] 
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In order to completely monitor the NoC, the debugging system (Figure 4.4) monitors all interconnections 

between the PEs and the routers and between the routers themselves. FIFOs are used for data collection 

which are continuously observed to prevent data overflow. When the FIFO occupancy reaches a certain 

threshold, defined at design time, the processor is interrupted to immediately perform a read operation to 

avoid data loss.   

The data acquired is huge and increases proportionally with the number of routers and the number of 

endpoints. Hence, managing the complete set of data collected from all nodes simultaneously and 

transmitting it to the terminal results in a data transmission bottleneck. In order to cope with this bottleneck 

due to the generated data traffic in the network, the debugging mechanism was designed with two clock 

domains. The debugging system runs at a higher speed than the NoC itself; with debugging system running 

at 100 MHz and the NoC running at 10 MHz. Hence, the data is generated at 10 MHz but dispensed at 

100MHz. This results in the faster dispensation of data to the terminal and permits a lossless data 

transmission.  

The process undergoes the following steps: 

1. The ARM processor establishes a communication link with the Terminal through Ethernet utilizing 

User Datagram Protocol (UDP) [208]. Once the link has been established, the processor initializes 

the debugging system and then waits for an interrupt from PL. 

2. The debugging system starts logging the debugging data in the FIFOs. Once they are full, an 

interrupt is raised for the processor. Processor starts interrupt handling. First the processor initiates 

a burst read through the Direct Memory Access Controller (DMAC) seeking maximum bandwidth.  

 

Figure 4.4: Network and debugging system diagram 
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3. The processor continuously transmits data to the terminal until all available data has been 

transmitted.  

4. The data is received at the terminal and processed by a specifically designed computer application. 

The results are then displayed on the screen.  

As illustrated in Figure 4.4, multiple monitors are required to debug each node. The number of monitors 

required for debugging a NoC can be calculated as given in  Eq. 4.1 and shown in Table 4-1, where r denotes 

the number of rows and c denotes the number of columns in the NoC: 

𝑓(𝑟, 𝑐) = 6 ∗ 𝑟 ∗ 𝑐 − 2 ∗ 𝑟 − 2 ∗ 𝑐                    (𝐸𝑞. 4.1) 

Where 

𝑟 > 0, 𝑐 > 0 

 

Table 4-1: Number of monitors needed in debugging the system 

No. of rows and columns f(r,c) 

2x2 16 

3x3 42 

4x4 80 

5x5 130 

 

In order to uniquely identify the source of debugging data during the decoding process, a unique signature 

is assigned to each monitor in the debugging system which is transmitted alongside the data. Figure 4.5 

shows the format of the encoded debugging data before transmission through the monitor. Transactions are 

allocated unique IDs to avoid synchronization issues at the receiver. The transaction time besides the 

transaction ID is also encoded into the debugging data to identify the start or end of a transaction as shown 

in the figure. For a 2x2 network, 16 monitors are required. The quantity of the monitors increases with the 

increase in the size of the network. This in turn also increases the quantity of debugging data required to be 

collected and transmitted to the terminal. As illustrated in Figure 4.4, data from 4 monitors is combined in 

a collector through AXI stream interconnect and then logged to a FIFOs.  

 

Figure 4.5: Debug data encoding description 
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As data from the monitors arrive simultaneously at the slave ports of the AXI stream interconnect for 

logging to the FIFO, a 32x4-bytes (where 4-bytes is the width of the debug data) data FIFO is also included 

in the design to prevent data loss during round-robin arbitration.  

 Data Collection 

During the data collection process, debugging data is collected from individual FIFOs which is then 

organized as shown in Figure 4.6. The data is organized and the counter port of the FIFO is monitored 

continuously in the Data Organizer. As previously pointed out, the quantity of debugging data increases 

with the NoC size. Hence, for a 1x2 and 1x3 NoC, a single FIFO depth is 512; for 2x2 and 2x3 NoC, a 

single FIFO depth is 1024; for a 3x3 NoC, a single FIFO depth is 2048. 

 Data Organization 

The Data Organizer is required to maintain the correct order of the debugging data. Ordering the data at the 

terminal is not time efficient keeping in view the huge quantity of the data. Data Organization at the 

hardware provides a speed-up due to hardware acceleration. This relieves the off-chip host (terminal) from 

the data ordering process which is left to decode the data and display the results. 

In order to prevent data loss, the data organizer is implemented as an array called order array as illustrated 

in Figure 4.7. The array uses two pointers, one is called p_pull and the other is the p_push. The two pointers 

initialize from zero. Whenever new data is logged to the array, p_push is incremented until the array is 

filled. Similarly, when the data is read from the order array, p_pull is incremented until the array is empty. 

Both pointers work in a circular buffer fashion, which implies that they do not start from zero and end at 

the maximum value of the array. If p_push reached its final value and the array is not full, it will be 

initialized to zero forming a circular buffer array. Similarly, if the p_pull reached the end of the array when 

the array is not yet empty, it will be set to zero. The main operation is illustrated by the order array in Figure 

4.7. Initially, both pointers are at position zero as shown in Figure 4.7(a). When data is pushed to the array, 

 

Figure 4.6: Data collection 
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p_push is incremented as shown in Figure 4.7(b) where green color indicates the occupied cell of the array. 

Since no data has been retrieved from the array, the pointer pull is still at its initial position. The operation 

continues in the same fashion. Figure 4.7(c) indicates the data added and read from the array which makes 

the circular fashion become clear. As can be seen, after certain read and write operations the valid data lies 

between p_pull and p_push in a circular fashion.  

Since the data organizer is used for ordering data from 4 FIFOs, it is 4-bits wide. Each bit is assigned to a 

specific FIFO; bit 0 is assigned to FIFO 0 and bit 1 corresponds to FIFO 1 and so on. The array has (4xFIFO 

depth) cells. Each cell of the order array represents a time slot indicating the data has been stored in one or 

more FIFO(s). As a worst-case scenario, data will be stored in one FIFO at an instance hence requiring the 

number of cells in an order array 4 times the depth of one FIFO. 

At each clock cycle, the FIFO count is monitored. An increase in FIFO count shows new debugging data 

is stored in the FIFO. Hence, the bit specific to the FIFO in the order array is set to 1. At each clock instance, 

the count values of all FIFOs are monitored and new cell value (between 0000 and 1111) is formulated and 

then added to the order array. The p_push is then incremented. 

When the data is required to be extracted from the FIFOs in response to a read request, the four-bit cell 

pointed by the pointer (p_pull) is analyzed. The data from the FIFO specified by the cell is then extracted. 

If the cell indicates to extract data from more than one FIFO, FIFO 0 and FIFO 3 has the highest and lowest 

priority respectively. This approach ensures the correct ordering of the debugging data upon extraction. 

Besides correct ordering, data organizer also safeguards against data loss. On each clock cycle, the FIFO 

count is compared to preset threshold value and an interrupt is raised upon violation. In response to the 

interrupt, the FIFOs specified by the order array are read by the processor. The ARM processor reasserts 

 

Figure 4.7: Order array circular accessing fashion. (a) Initial condition of the pointers, (b) data 

added to the array but none is read yet, (c) data added and read which makes the circular fashion become 

clear. (Green means occupied cell of the array) 
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the interrupt after the data transmission process is complete. Hence, a two-way communication channel is 

established between processor and PL. Data organizer also compares the FIFO count to FIFO maximum 

depth in order to identify any data overflow. In case of an overflow, output of the Data Organizer is set to 

a specific value which signals an overflow and hence the data collected should not be trusted. However, 

such a scenario should not occur since the debugging system has been designed to ensure that the overflow 

is not possible. 

Furthermore, the data organizer also handles another case in which the communication is terminated or 

interrupted during a transaction. Terminating a transaction during data transmission results in data loss. In 

order to solve such a problem, an additional register was implemented at the output which saves the last 

transaction. When the transaction is resumed after interruption, the data in this register is transmitted first 

and then normal process is continued.  

 Software Running on ARM 

ARM is used as a controlling processor to perform the data transfer between the on-chip debugging system 

and the off-chip host used to perform the required data processing. The ARM processor is used as part of 

the NoC along with its role in debugging. In order to speed up the data transmission, the ARM processor 

uses the DMA for burst read transactions of varying lengths.  

A dependency mechanism is implemented on the PEs in the network. The PEs seek permission before 

starting the main C function. The ARM sends permission after enabling the interrupt in the PL. 

Subsequently, the NoC starts receiving data from different PEs while the debugging system starts the data 

collection and interrupts generation. 

Upon detection of an interrupt, the processor reads the total occupation of the four FIFOs through the Data 

Organizer. The processor then sets the DMA parameters based upon the FIFO occupancy and data is read. 

After the read operation, the interrupt is exited. The processor then sends the data to the terminal. The 

process is repeated iteratively.    

Once the terminal receives the end signal from ARM, it starts generating the output in either a log file, a 

utilization report of the NoC connections or a visual representation of the transactions through the Qt based 

framework [209] which controls the whole debugging process.  
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4.3 Multiple Clock Domain Debugging Methodology 

So far we have been discussing debugging single clock domain designs. Multiple clock domain debugging 

becomes complicated because of data invalidation due to synchronization issues. In the following sections, 

two different techniques will be presented to tackle the data invalidation problem. 

Two frameworks using GALS and GRLS methodology will be presented in the preceding paragraphs. 

GALS designs utilize synchronous clocks in individual modules but such modules communicate 

asynchronously with one another. On the other hand, GRLS designs are synchronous at the module level 

but such modules communicate at rationally-related frequencies with one another.  

 Cycle-accurate Multiple Clock Domain Debugging using GALS 

Methodology  

In order to solve the data in-validation issue, we have proposed a HW/SW debugging scheme as presented 

in Figure 4.8. The main modules of the debugging system are the trace buffer, synchronizer and clock 

controller. 

 Data logging 

DSAS clocks the DUT only when the trace buffers are empty. At the same time, the trace buffers are 

provided with a controlled write (Con_write) which latch the debugging data from the connected nodes of 

the DUT. The debugging data is latched for a fixed number of clock cycles depending upon the depth of 

 

Figure 4.8: Multi-clock trace-based debugging using GALS methodology 

 

Clock
Controller

DUT
1

SynchronizerTrace Buffer
Controlled

 Clock

Signal Selection 
 by Processor

Access 
Network

Selection
Register

16 signals
here

Clock
Controller

DUT
2

Synchronizer

Device start/stop signal

Controlled
 Clock

Selection
Register

Processor
Control

Access
Network

Debugging Data

DUT1
Clock

DUT2
Clock

Slave
clock

Master
clock

Master
clock

Device start/stop signal

Con_write

Trace Buffer

16 signals
here

Signal Selection 
 by Processor

Data transfer control

Data transfer control

Slave
clock

Full

Empty

Data

Con_read

Con_write

Full

Empty

Data

Con_read



 

 

 

79 

 

the trace buffers. When the trace buffer is almost full, the clock of the DUT is gated. At the same time 

Con_write signal is asserted low to avoid any data loss. 

 Synchronization 

Once the data is latched in the trace buffers, the trace buffer full signal is communicated to the synchronizer. 

The synchronizer then waits for the data transfer command from the controlling processor. The controlling 

processor issues a read command to the synchronizer which subsequently asserts controlled read 

(Con_read) to the trace buffer to high. The transfer of the data then takes place. As can be noticed during 

the controlled read process, the DUT is clock gated. When the trace buffer is empty, the synchronizer asserts 

the Con_read to low. Upon noticing that the trace buffers are empty, the clock controller automatically 

clocks the DUT and simultaneously asserts the Con_write to high and the data is again latched in the trace 

buffers and the cycle continues. 

The synchronizer has two clock domains. The Slave clock is the DUT clock and the Master clock is the 

debugging system clock. In order to resolve the clock domain crossing, we used a synchronizer which 

removed cycle mismatch between the two different clock frequencies. The synchronizers utilize an 

independent clock asynchronous FIFO buffer with one clock input connected to the local clock and the 

other clock input connected to the global clock. Although other solutions have also been reported by several 

researchers as already covered in Chapter 2, we have adopted the asynchronous FIFO since it resolves the 

meta-stability and clock domain crossing issues once and for all. The main advantage of the FIFO-based 

synchronization is that they do not affect the locally synchronous module operation [210]. 

 Clocking  

One important aspect of the proposed debugging system is the clocking scheme. We used the DUT clock 

as a clock source for all sub-modules of the debugging system [Khan1]. This removed the data invalidation 

issue as the debugging system was completely synchronized with the DUT due to being clocked with the 

same clock hence either data invalidation or data aggregation did not take place.  

The methodology proposed here is somehow similar to the one presented in [211]. The problem highlighted 

in [211] was that setting debug granularity at the cycle level for a communication-centric approach may 

break the undergoing handshake which leads to broken transactions resulting in data invalidation. In this 

research work, we resolved this issue by linking the clock control and Con_write with the capacity of trace 

buffers. This resulted in complete synchronization. The synchronizer not only helps in clock domain 

crossing but also synchronizes the Con_read signal with the transactions. The data transfer control signal 

from the processor is matched with the Full signal from the trace buffer. Once both conditions are fulfilled, 
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the Con_read signal is issued. The data transfer control signal becomes an integral part of the handshake 

procedure between the DUT and the debugging system. 

As obvious from Figure 4.8, the DUT does not receive an input data to generate the output. Hence no data 

in-validation takes place at the input side. The Output synchronizer takes care of the output synchronization. 

However, for cases where the DUT receives input from any other module IP through a handshake, a similar 

synchronizer is required at the input as well. The block diagram of the model with input and output 

synchronizers is shown in Figure 4.9. 

The input synchronizer accepts the data from any input module once the empty signal from the trace buffers 

is high and data transfer control from the processor control is also asserted. Then it transfers the data to the 

DUT and also asserts Con_write to enable the trace buffers for data write. The methodology ensures lossless 

cycle-accurate debugging data for multiple-clock systems. The only requirement is that the debug-able 

DUTs need to connect to other modules through the proposed input and output synchronizers. 

 Cycle-accurate Multiple Clock Domain Debugging using GRLS 

Methodology 

The methodology mentioned in section 4.3.1 ensures that no data-invalidation takes place because of 

multiple clock domain crossings. This is ensured by using the DUT clock for synchronization inside the 

debugging modules. This methodology works well for debugging the DUT with reference to its own clock. 

However, sometimes it becomes eminent to debug the DUT with reference to the debugging system clock 

because it becomes easy to relate signals from different clock domain with reference to a standard clock 

domain.  

A solution for the described problem is shown in Figure 4.10. A notable difference of the proposed solution 

from the one proposed in section 4.3.1 lies in the connection of the debugging modules i.e. the trace buffers, 

input synchronizer, output synchronizer and the access network with the debugging system clock instead 

 

Figure 4.9: Multi-clock trace-based debugging with input and output synchronizers 
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of the DUT clock. This methodology helps in sampling the DUT data at the debugging clock frequency and 

produces debugging results at the granularity of debugging clock.  

4.4 Experimentation and Results 

The experiments presented in this section has been tested on the Digilent Zedboard comprising an 

XC7Z020-484 FPGA. Xilinx Vivado 2017.1 was used for the design process which was carried on Intel 

Core i7-6700 CPU running at 3.4GHz and having 16GB of RAM.  

 Embedded Processor Debugging 

After instantiating the DUT with the debugging circuitry, a continuous lossless stream of debugging data 

can be received. We chose a small data management application to illustrate the functionality of the 

proposed debugging system. The application performs simple data handling but when facing an interrupt, 

it leaves its normal mode of operation and starts a data printing task. In order to debug the microprocessor, 

we connected the debug test probes to the data bus for monitoring the data written to and read from the 

memory. The results of the test are shown in Figure 4.11. 

Figure 4.11 shows the read data and write data plotted as RDATA and WDATA respectively. Similarly, 

read address and write address are plotted as ARADDR and AWADDR.  Although, the figure shows only 

18000 samples of each metric to make the figure more readable. It must be highlighted that the methodology 

can be used to acquire millions of continuous lossless data samples for every metric. Hence, the lossless 

 

Figure 4.10: Multi-clock trace-based debugging using GRLS methodology 
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data so acquired can be used to perform software re-construction which can be beneficial for software 

debugging. 

 Multiprocessor Debugging Methodology 

The testing approach is centered on the idea of generating traffic on all lines in the NoC. The PEs seek 

permission from the ARM to start the application. The permission is granted only if the interrupt controller, 

DMA and the debugging system have been set up and the communication channel with the terminal has 

been established to avoid any debugging data loss. 

The debugging system generates data at the beginning and the end of a packet. Therefore, the packet length 

or the number of flits of the packet are important for observing the debugging performance.  Consequently, 

the debugging system should be tested using the worst-case scenario comprising the minimum packet length 

(i.e. two flits). It is considered as the worst case because the debugging system needs to monitor every time 

a PE sends the data which proves that if the system performs for minimum packet length, it can be assumed 

to work for different traffic scenarios.  

The debugging results are then compared to the total transactions logged by the monitors during the 

debugging process. The data flow illustration is also tracked to ensure normal operation. The debugging 

 

Figure 4.11: Debugging data plotted by MATLAB 

 



 

 

 

83 

 

system is considered reliable if no discrepancy is found. It should be kept in mind that debugging system 

latency from the monitors to the FIFO is 2 clock cycle. Logging data to the FIFO can take multiple clock 

cycles depending upon the frequency of the transactions. 

 Debugging Overhead 

The most important issue regarding NoC debugging is the overhead. In order to calculate the overhead, we 

first measured the resource utilization for different NoC sizes with or without the debugging system. The 

NoC sizes considered for this research work were 1x2, 1x3, 2x2, 2x3 and 3x3. The resource utilization of 

the NoC and the debugging system overhead is presented in Table 4-2. 

 It is evident that the debugging system constitutes about 33% percent of the NoC resources on average. 

However, the debugging system consumes only a portion of the resources. After investigation, it was found 

out that the interconnects used in the debugging system are the main source of debugging system overhead. 

 

Table 4-2: Debugging overhead for different NoCs (in percents of FPGA hardware resources) 

NoC size LUT Registers Memory LUTs Slices BRAMS 

1 x 2 

NoC     8.04 4.67 1.60 14.14 11.79 

Debugging 
System 

5.45 3.22 2.52 9.62 1.43 

1 x 3 

NoC     11.44 6.19 2.52 19.11 20.36 

Debugging 
System 

6.50 4.15 3.49 11.96 1.43 

2 x 2 

NoC     15.08 7.77 3.44 23.05 28.93 

Debugging 
System 

8.07 5.24 5.56 14.22 2.86 

2 x 3 

NoC     21.45 10.60 5.28 32.50 44.64 

Debugging 
System 

10.09 7.01 7.17 18.56 2.86 

 

In our design, we have utilized 4 AXI Stream interconnect and 1 AXI memory mapped interconnect in 

order to connect to the FIFOs and other slave interfaces during data collection. Those interconnects 

consume hardware resources. In order to investigate the effect of these interconnects on the debugging 

system overhead, we calculated the hardware overhead for a 3x3 NoC with and without the interconnects 

as shown in Figure 4.12 and Figure 4.13. Interconnects were found to consume about 60% of the debugging 

system resources. 
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Another reason for the comparatively higher overhead of the debugging system, particularly the Memory 

LUTs, is the order array. The order array discussed in section 4.2.2 was implemented using Memory LUTs 

which could also be implemented using BRAMs if reduction in Memory LUTs is desired. The increase in 

debugging system resource utilization as a ratio of the NoC size is illustrated in Figure 4.14. It can be 

observed that the resource utilization ratio of NoC to debugging system decreases with an increase in NoC 

size.  

 

 

Figure 4.12: Debugging Overhead for 3x3 NoC 
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Figure 4.13: Debugging overhead for 3x3 NoC without interconnects 
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 Cycle-accurate Multiple Clock Domain Debugging Methodology 

In this section, we will use two case studies to explain our proposed multiple clock debugging methodology. 

In the first case study, we will use cycle-accurate multiple clock domain debugging using GALS 

methodology for debugging of a secure IoT system. In the second case study, we will use a skid steer robotic 

platform used for obstacle detection to illustrate the debugging using GRLS methodology.  

As mentioned in [62], the main areas of comparison for the debugging system should be the following: (a) 

resources utilization, (b) configuration time and (c) usability. We have added data completeness as the 

fourth metric to take care of lossless nature of debugging data. 

 Multiple Clock Domain debugging using GALS 

Our first case study represents a secure IoT system with two IP cores. The first IP core realizes a constant-

time implementation of Curve 25519 [21] which enables the authenticated exchange of a secret session key. 

The second IP core realizes a side-channel protected implementation (similar to [22]) of the low-energy 

block cipher PRINCE [212] to enable bulk data encryption, e.g., sensor data or network traffic. The 

hardware components are connected through the 32-bit standardized AXI-Lite interface to the PS-side as 

shown in Figure 4.15.  

The Processing System (PS) is used to encrypt and decrypt the data with the PRINCE IP core. To reach a 

high encryption throughput, it is a realistic assumption that the cipher block runs at a faster clock domain 

than the key exchange (which happens only once at the beginning of a session). Consequently, Curve runs 

 

Figure 4.14: Resource utilization ratio of NoC to debugging system 
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with a frequency of 15 MHz and PRINCE runs with 80 MHz having an asynchronous relationship with one 

another and with the debugging clock which runs as 100 MHz. The design is implemented as a side-channel 

protected design to defend against the well-known threat of power side-channels [20] which is relevant 

whenever an adversary can obtain physical access to a device. 

The data encryption system was connected to the debugging system as explained in section 4.3.1. Figure 

4.16 shows the debugging data acquired by the proposed debugging system. We used the encryption system 

to perform encryption on a sine wave as shown in first subplot. The data was encrypted as shown in the 

second subplot. We used the same encryption system to decrypt the data. The data after decryption is shown 

in the third subplot. Clearly, the data after decryption resembles the input data stream shown in first subplot. 

 

Figure 4.16: Debugging results 
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Figure 4.15: Secure IoT system 
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Hence, the debugging system was able to acquire the data-trace without any data loss which is the 

distinguishing characteristic of the DSAS-based debugging system. 

 Multiple Clock Domain Debugging using GRLS 

In order to explain our proposed debugging system for GRLS-based DUTs, we used a skid steer robotic 

platform hardware as shown in Figure 4.17. Each of the wheels can be controlled individually, allowing the 

robot to translate and rotate freely in any direction. It is also possible to know its current position due to the 

sensors that are attached to the axis of each DC motors to move the wheels. Additionally, ultrasonic sensors 

are mounted on its edges, allowing the implementation of the obstacle avoidance algorithm. Consequently, 

there is a need to implement different IP cores to control the actuators and sensors mentioned before.  

The robotic vehicle receives a command to move to a certain destination at a certain velocity. The PS 

computes the velocity commands and sends them to the velocity control module which translates such 

commands to a PWM signal. The signals are then applied to the DC motors so that the robotic vehicle can 

move in the desired direction. As a closed-loop, the quadrature encoders attached to the wheels are used to 

identify the direction in which they are rotating. Besides, this IP counts the number of pulses in a fixed 

period of time (ticks) to compute the speed of the robot. Consequently, its frequency is tightly linked to the 

DC motors and their drivers. In this case, four PWM signals are produced, one for each motor and the duty 

cycle is varied to change the speed accordingly. The obstacle identification module is used to trigger the 

Ultrasonic Sensors and read their output so that the processor can calculate the distance of any obstacle in 

the vicinity of the robot accordingly.  

 

Figure 4.17: Robotic hardware 
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Based upon the description of the platform, it can be concluded that the verification of the hardware is quite 

complex because of its tight coupling to actual sensors. Consequently, the verification cannot be performed 

in the absence of actual sensors. But, the hardware verification is desired before its integration with actual 

sensors. We circumvented the problem by devising an in-loop test as shown in Figure 4.18. We used the 

processor to generate velocity commands based upon the destination as usual. These velocity commands 

are used by specially designed speed emulator IP introduced to emulate the DC motor and quadrature 

encoder. Based upon the velocity commands from the PS, the speed emulator generates different signal 

frequencies synchronous with the global clock (100MHz) making it a GRLS system. These changing signal 

frequencies emulate different speed by altering the number of pulses which are then used by velocity 

measurement IP to figure out the speed of the robot.  

During the verification phase, the speed emulator generated 5MHz, 10MHz and 20MHz frequencies 

synchronous to the debugging clock (100 MHz). When the speed emulator output signal was altered based 

upon the signal from the velocity control module, it was found that the change in frequency resulted in a 

change in the number of ticks as expected. We further found out that doubling the frequency resulted in an 

almost doubling the tick count. This points out that the hardware is performing its desired function. 

 Resource Utilization  

Resource utilization of the presented debugging system for multiple clock domain is shown in Figure 4.19. 

16 nodes with data width of 32 bits each (≈16*32 signals) were monitored for the said research work. In 

comparison to earlier published work [Khan4] [Khan1], the resources consumption has increased. The main 

reason for the increase in the resources is the use of separate trace buffers and synchronization modules for 

 

Figure 4.18: Robotic hardware verification 
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multiple clock domains. The resource utilization increases proportionally with the number of clock 

domains. The almost linear trend is shown in Figure 4.20. 

 Configuration Time 

The second most important metric for evaluation of the debugging system is the configuration time. 

Bitstream regeneration is not required for selecting new signals to analyze since the signal set can be 

changed at debug-time through the use of selection register instead of compile time. This methodology, by 

 

Figure 4.19:  Resource utilization 
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Figure 4.20: Effect of multiple clocks on hardware utilization 
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itself, results in shorter development times. In contrast, ILA based approaches monitor a small number of 

signals at a time.  

Any change in the signal set requires new re-compilation of the design which is a time-consuming process. 

One technique to address the problem is to anticipate the problem causing signals and select all of them in 

advance for complete special trace. However, this solution requires the necessary resources allocated for 

debugging purpose. Furthermore, even if re-compilation is not required in such case, still ILA-based 

approaches capture only a subset of the temporal trace depending upon the depth of the trace buffer.  

 Data Completeness 

The proposed methodology fundamentally differs from the existing debugging techniques such as readback 

through scan [62] or breakpoint-based [143] as mentioned in the related work. The existing solutions can 

capture data after hitting a breakpoint and hence data after the breakpoint can be captured and that too for 

limited clock cycles. This essentially results in the lossy debugging data. On the other hand, the proposed 

solution captures a lossless stream of debugging data because of its cycle-accurate nature and hence allows 

a complete replay of the debugging data which can capture intermittent errors. 

4.5 Summary 

In this chapter debugging of embedded processors, multiprocessors and multi-clock systems have been 

covered in detail. During debugging of embedded processors, the processor is treated as a black box and all 

interfaces originating from the processor are continuously monitored. This results in providing a complete 

log of the activities performed by the embedded processor. It has been found that the proposed solution can 

be used to debug embedded processors taking advantage of the continuous lossless debugging data stream. 

However, the design has one limitation; it can monitor interfaces and nodes external to the processor. 

However, internal nodes and registers such as program counter etc. which are not visible to the debugging 

system cannot be debugged. 

An event-based NoC debugging framework was also proposed for debugging of NoCs. The system has two 

main components, on-chip debugging hardware and an off-chip host. On-chip debugging is based on the 

idea of debugging all connections between the PEs and the routers and the routers themselves. Monitors 

connected directly to each interconnection in the NoC can monitor the start and end of the packets being 

transferred. Data is collected and saved until the memory is almost full. The processor is then interrupted 

to read the data and send it to the off-chip host for data processing and analysis which can then be used for 

debugging the NoC.  

Importance of NoCs is increasing with each passing day due to the requirement of faster devices which 

suggests more PEs inside the system. Consequently, the NoC consumes a lot of resources resulting in the 
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availability of limited resources for the debugging system. As evident from the results, with an increase in 

the size of the NoC, the resource required for debugging increased proportionally. This emphasizes the need 

to reduce the debugging system overhead. As a first approach for decreasing this overhead, AXI stream 

interconnects utilized in the debugging framework should be avoided, replacing them with a custom 

interconnects specifically designed for this purpose.  Internal FIFOs of the AXI stream interconnect could 

also be avoided by replacing them with a pipelined architecture which performs the same role with fewer 

resource. Furthermore, utilization of the Memory LUTs can be reduced by implementing the order array 

using BRAMs. This introduces a latency of one clock cycle when the data is first time written to the array. 

However, it does not affect system performance.  

The third problem addressed is the debugging of multi-clock systems. The multi-clock debugging becomes 

difficult due to the presence of multiple clock domains because of data in-validation or data aggregation 

issues. In order to carry out the task, we presented a debugging solution for multiple clock domains. We 

proposed debugging using GALS and GRLS methodologies. Synchronizers were used to take care of data 

in-validation problems. Results have proven that the proposed techniques can be efficiently used for 

debugging with small resource overhead.  

 





 

 

 

92 

 

Chapter 5 Observability Enhancement Tools 

 

The DSAS debugging methodology greatly enhanced the lossless trace data collection due to clock 

management. Later, the access network was augmented to the debugging system which increased its signal 

monitoring capability. The access network allowed to change the signal set at runtime through its 

configuration register. This eliminated the re-compilation required for changing the signal set and enhanced 

the capability of the debugging system to monitor large number of signals. However, connecting thousands 

of nodes manually can lead to errors. An automatic tool which can connect the DUT to the access network 

can be extremely helpful. Such connectivity generation tool flow will be presented in this chapter.  

During the connection of the DUT with the access network, a criterion is required to map the signals of 

DUT to the Network. Such mapping can be generated based upon heuristics. However, connecting the 

signal set heuristically cannot be considered a smart design. As the access network can have thousands of 

nodes, probing these nodes to find the error-prone signals is time-inefficient. If the error-prone signals can 

somehow be identified, monitoring such signals at the first hand can point towards the health of the 

hardware design. Hence, a new criterion for signal selection will be presented which can increase the 

debugging efficiency by improving the time efficiency. 

In this chapter, we will first introduce an automated connectivity generator which can enhance on-chip 

visibility of signals buried deep inside the hardware. Subsequently, we will be introducing a selection 

methodology based upon the signal priority. 

5.1 Automated Connectivity Generation  

Concentration networks allow changing the signal subset without re-compilation by providing connectivity 

from the nodes to the debugging system. Although, the connections can be performed manually but needs 

a lot of effort and the procedure is still error-prone. In [90], a script tool was utilized for extraction of design 

nodes from HDL simulators. The IP-XACT standard [101] completely describes the interfaces for the 

elements present in an architecture in which four schemata acquire their main descriptions namely the 

design, component, bus and abstraction definitions. The design description acquires all the components 

present inside the architecture including the interconnections between the components and the external pins. 

The component description acquires the configurations that are part of each component including the bus 

interfaces and their ports, channels, address maps, clock and reset signals. For a communication bus, the 

bus and abstraction definitions are provided as complimentary descriptions. The bus definition includes the 

high-level attributes of a bus, such as the connection method and addressing. The abstraction definition, on 

the other hand, captures the low-level attributes, such as the name, width and the direction of the ports. 
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Connectivity between an access network and a debugging system can be generated utilizing the interface 

definitions described in this standard.  This approach helps to reduce the human intervention required to 

perform manual connections between the debugging system and the access network. 

The connectivity-generation tool flow presented in this section extends from the work [213], adding a step 

for automatic connectivity generation between the DUTs and an access network. The tool uses IP-XACT 

descriptions to capture the interfaces from all the components present in a design, including the design itself 

and the interconnections between the components. The main purpose of IP-XACT [214] standard is to ease 

design integration so that it can be reused in different development tools. It was created by Spirit 

Consortium for facilitating the exchange of IPs between different vendors so that they can be integrated 

easily in different electronic design automation (EDA) tools. Currently, it is regulated by Accellera as an 

IEEE 1685-2014 standard. An IP-XACT description acquires the parameter choices made for configurable 

aspects of an IP. It then becomes easier to integrate such IPs in different designs using development tools 

from different vendors.  

The connectivity generation process is started by declaring the interconnections and the ad-hoc connections 

in the design schema. Interconnections are defined as the point to point connections between two bus 

interfaces. Ad-hoc connections directly connect two ports without using the interconnects or bus interface. 

This includes external pin (input and output) connections to component ports, e.g. clock and reset signals, 

or any component port feeding to other components without a protocol such as a clock divider. 

The connectivity-generation tool flow comprises of three steps, as shown in Figure 5.1. The generated files 

help in automating the debugging process by ensuring the correct connectivity. Each step will be described 

in the proceeding sections. 
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Figure 5.1: Flow of the developed tool 
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 IP-XACT Descriptions Generation  

As shown in part 1 from Figure 5.1, the first step of the proposed connectivity tool uses a SystemC model 

to generate the IP-XACT descriptions.  This is the main entry point of the tool. The tool accepts model files 

as input and outputs the IP-XACT descriptions for every component in the design and also for the design 

itself.  

Tool SCiPX was used for translation of the SystemC model files to IP-XACT whose detailed description 

can be found in [214]. 

 Connectivity Extraction 

As illustrated in Figure 5.1, the second step of the proposed tool accepts files from two sources. First, the 

files generated in step 1 are inputs to the second step. Secondly it gets the IP-XACT descriptions for the 

communication protocols, provided by the vendors, which are segregated into bus definitions and 

abstraction definitions. This results in lowering the complexity of the previous step. 

This step can also serve as an entry point for designs in which the internal components of the architecture 

are already available and only the connectivity from the DUT to the access network needs to be generated. 

During this step, connectivity information present in the IP-XACT descriptions is extracted and then passed 

on to the next step. The tool analyzes the design descriptions which have a complete list of all connections. 

For the interconnections, it is important to find the correct bus and abstraction definitions used for defining 

the signals. However, each ad-hoc connection has two possibilities. It is required to find out if an input pin 

is feeding internal pins, or a component's output pin is feeding other pins. 

 Connectivity Generation 

In the third step of the proposed method as illustrated in part 3 from Figure 5.1, the tool receives a mapping 

file of the DUT nodes desired to be connected to specific pins of the access network.  

Using the extracted information after parsing the IP-XACT descriptions in the second step along with the 

desired port mapping, the tool generates connections for the signals present in the mapping.  

The output of this step is a Tcl script which contains the commands required to automatically connect the 

DUT nodes to the access network. Once connected, the controlling processor can be used to provide desired 

connectivity for debugging or other requirements. 

5.2 Priority-based Signal Selection  

As stated in section 5.1.3 and also evident from Figure 5.1, a connectivity mapping file is required to map 

the signals from the DUT to the access network for observation. In order to increase the time-efficiency of 
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debugging, it is essential to select the most relevant signals for observation. The challenge is compounded 

by the fact that the signal with greater probability of errors must be selected before design implementation, 

even when the response of the design is unknown. Although, some “important” signals can be selected 

manually by the designers. However, for complex designs the debug engineer needs not to have complete 

knowledge of the whole design. Another benefit of the automated signal selection is that it will decrease 

the turnaround time between implementation re-spins which may take hours for design recompilation hence 

reducing the debugging time. 

Several researchers have tackled the signal selection problem from various dimensions. Priority decision 

based upon the signal restoration of untraced signals was performed by Ko et al. [78] and Basu et al. [128]. 

Similarly, signal relevance based upon error propagation was done by Yang et al. [77]. Chatterjee et al. [154] 

proposed simulation-based priority for signal restorability. Hung et al. [160] suggested performing priority 

decision based upon connectivity. We suggest to conduct the signal selection based upon the presence of 

correlation in the trace data. 

This was accomplished by using an inference system [Khan5] [Khan6] which makes inference regarding 

the prioritization of signals (Figure 5.2). The inference system accepts the debugging data from the 

simulation model and can draw certain inferences by using the rules in its ruleset. Rules set consists of 

cross-correlation, autocorrelation and linear regression. As the signal selection is made when the hardware 

is still not available, the behavioral simulation model is utilized as the input to our inference system. 

However, if post-synthesis or post-implementation simulation results are available, they must be given 

preference.  

 

Figure 5.2: Inference system 
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The inference system uses different rules to search for the presence of a pattern in the received simulation 

data so that the signal selection can be made based upon the found pattern. Autocorrelation is conducted to 

reach two important conclusions: 

i. To detect the non-randomness in data 

ii. To recognize the repeating data series if the data is non-random. 

The main algorithm performed by the inference engine (Figure 5.3) is: 

1. It performs autocorrelation and finds the peaks present in the autocorrelation coefficient. For non-

random data, one or more values of the autocorrelation coefficient should be significantly non-zero. 

2. For normalized autocorrelation function, if the second and third highest peaks are greater than 0.2, 

the data is assumed to be non-random.  

3. The corresponding dataset between the maximum and second-highest autocorrelation coefficient is 

retrieved.  
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Figure 5.3: Signal priority flow diagram (algorithm 1) 
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4. Step 3 is repeated for the second-highest and third-highest autocorrelation coefficient.  

5. The two datasets are compared. If identical, the signal is selected for higher priority.  

6. If the autocorrelation coefficient approaches zero except the maximum at lag 0, the inference engine 

exits the autocorrelation function. 

 

As a side note, the uncorrelated data does not essentially mean randomness. Data, not exhibiting significant 

autocorrelation, can still demonstrate non-randomness. Therefore, the inference engine applies another rule 

i.e. linear regression. During linear regression, the inference engine performs linearization of the debugging 

data. Then, it uses Eq. 5.1. to calculate the slope at each clock interval.  

m =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
                                                                (𝐸𝑞. 5.1) 

In order to construct the template, we also need the x-intercept which is calculated by Eq. 5.2. 

b = 𝑦2 −  (
𝑦2 − 𝑦1

𝑥2 − 𝑥1
  ) ∗ 𝑥2                                      (𝐸𝑞. 5.2) 

After linearization, the inference engine performs autocorrelation of the slope function of the received 

signal. If the data exhibits a relationship within itself, it should be manifested when the autocorrelation of 

the slope function is performed. The dataset between the maximum and the second-highest autocorrelation 

coefficient (of slopes of the data set) is extracted from the dataset. Similarly, the process is repeated for the 

second and third highest peaks of the autocorrelation function as explained in the algorithm in Figure 5.4. 

If the retrieved slope dataset from the two steps matches with one another, the concerned signal is prioritized 

for signal selection. In few cases, the data sets at step 6 do not compare. In such cases, the signal is tested 

for the number of states in the data. The number of states is calculated for the entire signal set at each cycle 

transition. The signal with the lowest number of states is given priority over other competing signals. The 

reason for priority to minimum number of states in data is that debugging may become easier by using 

clustering-based debugging techniques. 

5.3 Experimentation and Results 

We used a specifically designed data sorter IP as DUT to illustrate the proposed signal selection 

methodology. The basic building block for the implemented data sorter is shown as highlighted in Figure 

5.5. It has two inputs and two outputs. The “sort” block makes a comparison between the two inputs. It 

transfers the bigger input to Out_A and the smaller one to Out_B. This basic block can be concatenated to 
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extend the design for more than two inputs. In our design, we extended the basic block to sort out four 

inputs as shown in Figure 5.5. 

In order to illustrate our signal selection methodology, we connected the input of the data sorter IP with 

different pseudorandom signal generators to provide different inputs to be sorted overtime on each clock 
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Figure 5.5: Data sorter 
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Figure 5.4: Signal priority flow diagram (algorithm 2) 
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cycle. Each pseudorandom number generator block takes a constant value as its initial seed as shown in 

Figure 5.6. 

Based on the seed, the pseudorandom number generators create input for the sorter DUT. The data sorter 

produces an output on every clock cycle as shown in Figure 5.7. The HDL simulation data from the DUT 

is then exported to the terminal. It is evident from the figure that signal selection can be quite challenging 

if the decision is based upon visual features. Once the simulation data is received, the inference system 

performs the signal selection algorithms in the predefined order to decide the signal priority. 

In order to decide the priority of signals, the inference system started from Algorithm 1. As specified in the 

algorithm, the inference system performed the autocorrelation of the input signals to decide the priority. In 

the above-referred use case, the inference system performed the algorithm on the four signals namely 
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Figure 5.6: Data sorter with number generators 

 

 

Figure 5.7: Simulation results for signals Out_A, Out_B, Out_C, Out_D 
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Out_A, Out_B, Out_C and Out_D. The results of the autocorrelation performed as per Algorithm 1 (Figure 

5.3) are shown in Figure 5.8. In the figure, the autocorrelation coefficient has been plotted against the lag 

for four output signals. The autocorrelation coefficient for signal Out_A has multiple peaks demonstrating 

some sort of autocorrelation among different sequences of the signal. Hence, signal Out_A is selected for 

the highest priority among other candidate signals. However, for the remaining three signals, no peaks were 

found indicating that the signals do not have an autocorrelation. Resultantly, priority for remaining signals 

could not be decided at this stage. 

 Based on the results from Algorithm 1, the inference system moved to Algorithm 2. Following the 

algorithm, the inference system switched to linear regression. First, the linearization was performed at each 

transition and then the slopes of the complete data were calculated. The autocorrelation of the slopes, as 

shown in Figure 5.9 clearly shows that certain peaks are present in the slope dataset of signal Out_B 

demonstrating a strong correlation in signal Out_B. Then the algorithm as per Figure 5.4 was followed to 

ascertain the presence of patterns. However, no such peaks were reported in signals Out_C or Out_D 

demonstrating that the signals Out_C or Out_D do not exhibit enough correlation amongst the slope dataset. 

Hence Out_B can be prioritized as an outcome of algorithm 2. 

When the signals have been prioritized based upon the proposed algorithms, the priority among the left-

over signals is decided by the number of states present in the signals. Since the signals Out_C or Out_D do 

not demonstrate any correlation, the priority amongst them is decided based upon the number of distinct 

states as shown in Table 5-1.  

 

Figure 5.8: Signal priority decision by algorithm 1 
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Hence, based upon the number of distinct states present in signals Out_C and Out_D, signal Out_C is 

selected for priority mapping ahead of signal Out_D. In case of multiple signals falling in the same category, 

the priority is decided based upon the first occurrence. In the current use-case, we have considered four 

signals and used our proposed signal selection methodology to prioritize the signals. However, the proposed 

methodology can be utilized for any number of signals. 

 

 

 

 

 

 

Figure 5.9: Signal priority decision by algorithm 2 
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Table 5-1: Number of states 

Signal name Number of states 

Out_C 128 

Out_D 246 

 

5.4 Summary 

In this chapter, signal priority-based connectivity mapping was proposed. The connectivity generation tool 

accepts input files in several formats and generates a Tcl script which can be used to automate the 

connection process. The tool works well for simple hierarchy. However, one key limitation is that when the 

hierarchy becomes complex due to several levels of the parent-child relationship; the tool fails to respond. 

A signal selection methodology for trace buffer-based post-silicon debugging of hardware designs was also 

presented. The methodology uses the simulation results to identify the signals which can be prioritized.  

Based on two proposed algorithms, the signals exhibiting pattern sequence are identified which can then be 

prioritized for debugging at first place. Such signals can be automatically connected to concentration 

networks thus eliminating human errors. During the debugging phase, the signals selected through the 

proposed methodology can identify the functional as well as intermittent errors. The proposed methodology 

can be used with debugging systems capable of generating lossless trace of debugging data.  
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Chapter 6 Automated Error Detection 

 

As stated by Wilson Group Research report [27], almost 50% of the design time is spent on verification. 

The report further claims that 42% of the verification time is spent on the actual debugging process. The 

main reason behind the enormous time being spent on debugging is the increased size, complexity and 

higher operating frequencies of the FPGA designs. All these factors drastically affect the vulnerability of 

such devices to bugs or errors. 

Such bugs or errors can be broadly divided into permanent, intermittent or transient errors [12]. Permanent 

errors may result due to design or logic errors.  Instances of permanent errors are a state machine caught in 

an endless loop, wrong implementation of a mathematical function, open or short transistors, or timing 

violations, etc. Such errors may be easy to debug due to their permanent or stuck-at nature. Upon 

observation of an error, verification engineers can find out the design error manually through simulation or 

ILA-based debugging methods. Intermittent errors or soft errors arise from Single Event Upsets(SEU) 

which occur due to electromagnetic interference, manufacturing imperfections or operating conditions. 

Such SEUs result in configuration memory upsets or the state changes in flip-flops or memory cells which 

result in intermittent errors. Similarly, transient errors may occur due to neutron or alpha particles. As there 

is very minute difference between transient or intermittent errors; for the sake of this work we will consider 

both intermittent or transient errors in the same category. These errors are a source of major concern for 

safety-critical or life-critical applications. Such errors are difficult to observe by using traditional trace 

buffers or scan chain approaches owing to their random nature. However, they can be captured through 

cycle-accurate lossless debugging techniques. However, the issue remains: 

1. Is there any technique which can help in capturing both the permanent and intermittent errors 

without continuous monitoring of debugging data on every clock transition manually?  

2. Is there any methodology which can help in finding the intermittent errors when the GR is not 

available? 

In order to tackle the issue (i), we introduced a rule-based inference system [Khan5] which can find the 

permanent and intermittent errors by providing an unlimited capture window by intruding the DUT through 

clock management. It also eliminates the human intervention required to monitor the debugging data on 

every clock transition. This is achieved by performing a correspondence analysis to identify the relationship 

between the input data and the GR.  The effectivity of such solution can further be enhanced by 
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supplementing a stimulus-driven environment.  Hence, rule-based inference system is augmented with an 

FIL debugging technique to achieve debug automation.  

The issue (ii) can be addressed by enhancing the rule base of the inference system which can select an 

appropriate rule to identify the intermittent errors when the GR is not present. 

In order to highlight how the above-mentioned issues have been tackled in this research, the following two 

use case will be used: 

1) Image processing techniques are very useful in robot localization and mapping. A configurable 

convolutional filter can be utilized for illustrating the proposed debugging methodology. In this case study, 

the rule-based inference system uses a GR to find debugging errors without requiring to monitor each 

transition manually. By employing the power of the numerical computation-based Software Debugging 

Environment (SDE), debugging the complete trace at once, reduces the debugging time and resultantly the 

overall design cycle.  

2)  A data sorting algorithm which receives N inputs and sorts them in ascending order. Here, the rule-

based inference system can capture the errors in the absence of a GR.  

Therefore, the preceding case studies will be used for highlighting the following main contributions: 

1. Rule-based inference system is introduced which can find permanent and intermittent errors by 

using the lossless debugging trace. 

2. Rule-based inference system will be extended to include the FIL simulation. SDE generates a 

stimulus for the DUT. The response of the DUT is utilized to perform the correspondence analysis 

between the received debugging data and the simulation data from either a behavioral model, a 

post-synthesis or a post-implementation model of the DUT used as a GR.  

3. Rule-based inference system can be enhanced to find intermittent errors in the absence of a GR by 

augmenting the rules set 

6.1 Debugging using a Rule-based Inference System   

DSAS provides cycle-accurate lossless debugging trace due to clock gating. The data is then transferred to 

the terminal for analysis. However, as the trace data generated by DSAS is huge, it is painstaking to find 

permanent or intermittent errors without monitoring of debugging data on every clock transition manually. 

In this section, a new verification method for hardware debugging namely the rule-based inference system 

is proposed as shown in Figure 6.1. In the proposed verification system, the rule-based inference running 

on the PC uses the GR, which can either be defined using the inference system or user-defined, to find the 
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bugs without requiring to run the system incessantly / intermittently. This is accomplished by debugging 

the complete trace at once by utilizing numerical computing environment such as MATLAB or Octave; this 

reduces the debugging time and hence, the overall design cycle. 

 Rule-based Inference System  

Rule-based inference system is the main computing engine of the proposed methodology. Hence, it is 

worthwhile to explain it in more detail. Figure 6.2 illustrates three main parts of the inference system namely 

the knowledge base, the inference engine, and the rules set. The inference system integrates a knowledge 

base containing the accumulated experience and an inference engine which applies the knowledge base to 

a particular situation, based upon a set of rules. The inference system capabilities can be enhanced by 

inserting data to the knowledge base or to the rules. The knowledge base can be populated with three types 

of data sets namely model results, database or the user-defined results. The inference engine is the core of 

the system. Its main features include retrieving data from the knowledge base, selecting an appropriate rule 

from the ruleset, applying the rule to the received trace data and the retrieved data from the knowledge base 
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Figure 6.1: Debugging by rule-based inference system 
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Figure 6.2: Rule-based inference system 
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and the interpretation of the results. If the model results are unavailable, the inference engine can mine for 

one in the database (if a similar design was debugged in the past and results were saved to the knowledge 

base) and uses the dataset as a template. 

The data mining process to mine for appropriate results in the database is illustrated in Figure 6.3. When 

the inference engine is loaded with the logged debugging data-trace, it generates a list of keywords based 

upon the received data.  The keyword is generated by using the maximum occurrences of a sample and 

maximum consecutive occurrences of a specific sample in the debugging data. Using the keywords, the 

database is searched and all relevant files are retrieved. At step 3, the log file containing the debugging data 

and the retrieved files from the database are employed to create dictionaries. Then, the generated keys from 

the dictionaries are compared against each other to find out the difference. At step 5, the file having the 

minimum key difference between the debugging data and the retrieved files is picked as a potential 

candidate for loading to the inference engine. If the difference in keys between the debugging data log file 

and the selected candidate is less than 10%, the candidate file is populated to the inference engine. 

Otherwise, the file is discarded and the logged debugging data is saved in the knowledge base by using the 

keyword at step 1 for future use.  

Rules set consists of cross-correlation, autocorrelation and linear regression. If an appropriate file from the 

knowledge base is available, the inference engine performs cross-correlation to find the disparity between 

the debugging data and the retrieved data from the knowledge base. Cross-correlation function indicates 

the correspondence between the database and the debugging data. The maximum cross-correlation value is 
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Figure 6.3: Data mining process 

 



 

 

 

107 

 

obtained when the two datasets perfectly match. The lag between them can also be found. 

Result interpretation is the last task of the inference engine. A cross-correlation coefficient of 0.0 portrays 

no match. A cross-correlation coefficient of 1.0 depicts a perfect match. This implies that one dataset can 

be inferred from the other, either directly or by using a positive scale factor. A cross-correlation coefficient 

of -1.0 represents maximum negative correlation, implying that one dataset can be derived from the other 

using a negative scale factor. Coefficient values between 0 and 1 depict a partial match. A cross-correlation 

coefficient greater than 0.90 may suggest a very good similarity between the datasets [215]. However, for 

debugging, a perfect match is needed. The inference engine also points towards the lag against maximum 

cross-correlation. Then, the lag is utilized to synchronize the two data sets. After synchronization, all 

mismatch instances can be found. Hence, the rule-based inference system can make debugging easier by 

performing the correspondence analysis. It may save a significant amount of time by eliminating the human 

interpretation. 

 FIL Debugging with a Rule-based Inference System   

The rule-based inference system can be made more effective by augmenting a stimulus driving mechanism 

(used to generate a stimulus) which can be collectively termed as SDE.  This results in a hardware-software 

co-debug environment. In the proposed FIL debugging methodology, the DUT is connected to the DSAS. 

A UART or Ethernet interface is utilized for connecting the debugging system to the SDE. The debugging 

controller receives the stimulus from the SDE and applies it to DUT, which responds to this stimulus. The 

response from the DUT is logged to the trace buffers. The debugging system retrieves the data from onboard 

trace buffers and transmits it to the terminal. Saved data is utilized by Octave-based SDE employing a rule-

based inference system approach. A block diagram of the DSAS-based FIL debugging is illustrated in 

Figure 6.4. 

Additionally, the model of the DUT may not be available in certain cases or it may be too time-consuming 

to generate one. To sort out this problem, we have adopted a High-Level Validation (HLV) strategy in our 

FIL-based debugging solution as presented in Figure 6.5. HLV performs a behavioral, post-synthesis or a 

post-implementation simulation using a stored, prepared or randomly generated input data. Then, it saves 

the results in the database. Such simulations produce a continuous stream of cycle-accurate simulation data. 

Consequently, during the normal workflow, we already have verified simulation results. Such verified 

results can be utilized as a GR for DUT validation. After software verification, we move towards hardware 

validation. At the second stage, the log file containing the simulation results along with the input data is 

exported to the SDE. SDE extracts the input data from the log file and applies it to the DUT. The cycle-

accurate response of the DUT is then compared with the simulation results obtained at stage one. 
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Thus, the approach compares the hardware trace data against the set of expected results obtained from 

simulation. However, this self-checking approach does not function with pseudorandom inputs [216]. One 

remedy to such a problem is to generate a pseudorandom input dataset and apply the same inputs first to 

the simulation model and then to the DUT. Both outputs can then be compared.   

Different high-level simulation models from HDL simulators can be utilized. Hence, no additional time is 

required in devising a simulation model as the case with MATLAB-based FIL [166]. Subsequently, the 

rule-based inference system can be used to detect discrepancies.  The main advantage of this technique is 

an FIL testing of an embedded design which can provide cycle-accurate debugging data. Moreover, the 

debugging data can be compared against behavioral simulation, post-synthesis or post-implementation 

simulation results. 
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Figure 6.4: DSAS-based FIL 
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 Software Debugging Environment (SDE)  

The software debugging environment controls the debugging process by generating the stimulus required 

for the DUT, receiving the response and analyzing the results. For debugging systems capable of providing 

a continuous lossless trace of data such as DSAS, manual comparison required for result analysis creates a 

bottleneck. Usage of the high-level numerical computing environment can accelerate the verification 

process. Consequently, it reduces the user intervention needed to verify and debug complex designs.  

Rule-based inference system has already been described in the previous section.  Figure 6.6 illustrates three 

main parts of the inference system namely the knowledge base, the inference engine, and the rules set. One 

notable difference, in this case, is that the simulation results generated by HLV are also utilized by the 

inference system for decision making. These results are mined from the knowledge base and used as a GR 

as explained in the previous section. 

 However, sometimes the GR may not be available. The proposed debugging methodology provides a 

solution to such problems by enhancing the capabilities of the rule-based inference system as shown in 

Figure 6.7 . When the inference engine is unable to find the GR, it switches its rule from cross-correlation 

and conducts autocorrelation of the received trace data. During such autocorrelation operation, the inference 

engine tries to locate any pattern strings in the received trace data so that its values may be predicted based 

on the located pattern. Autocorrelation is performed to reach two important conclusions.  

1. To detect the non-randomness in data 

2. To recognize the repeating data series if the data is non-random. 

The main algorithm implemented by the inference engine in this scenario is: 

1. It performs autocorrelation and finds the peaks present in the autocorrelation coefficient. For non-

random data, one or more values of the autocorrelation coefficient should be significantly non-zero. 

 

Figure 6.6: Software debugging environment 

 

Rules

Inference 
Engine

User Defined Results

Model Results

Database

Debugging
Data

Analysis
Results

Knowledge Base

Stimulus

Simulation Results

Rule-based inference system



 

 

 

110 

 

2. For normalized autocorrelation function, if the second and third highest peaks are greater than 0.2, 

the data is assumed to be non-random.  
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Figure 6.7: GR generation algorithm 
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3. The corresponding dataset between the maximum and second highest autocorrelation coefficient is 

retrieved.  

4. Step 3 is repeated for the second highest and third highest autocorrelation coefficient.  

5. Compare the two datasets. If identical, use the retrieved data to generate the GR.  

6. Debugging using the generated GR. 

As a side note, the uncorrelated data does not essentially mean randomness. Data, not exhibiting significant 

autocorrelation, can still demonstrate non-randomness. Therefore, the inference engine applies another rule 

i.e. linear regression. During linear regression, the inference engine performs linearization of the debugging 

data. Then, it calculates the slope and the x-intercept at each clock interval using equation 𝐸𝑞. 5.1 and 

𝐸𝑞. 5.2 respectively. The GR template can be constructed using the calculated slope and x-intercept. 

After linearization, the inference engine performs autocorrelation of the slope function of the received 

signal. If the autocorrelation coefficient approaches zero except the maximum at lag 0, the inference engine 

exits the autocorrelation function. When a relationship exists within the data, it should be manifested when 

the autocorrelation of the slope function is performed. The dataset between the maximum and the second 

highest autocorrelation coefficient (of slopes of the data set) is extracted from the dataset. Similarly, the 

process is repeated for the second and third highest peaks of the autocorrelation function as previously 

described in the algorithm. Subsequently, the two retrieved datasets between the first-second and second-

third peaks are compared. If identical, the slope dataset can be used for generating the debugging template. 

Finally, the cross correlation between the generated template and the received data is performed. The results 

are then interpreted to find the disparity between the generated GR and the received trace. Hence, the rule-

based inference system can perform debugging even in the absence of GR by conducting the 

correspondence analysis. It may save a significant amount of time by eliminating the human interpretation. 

The main benefit of the proposed debugging methodology is that contrary to the limited window based 

debugging systems, the DSAS approach can acquire an extremely large lossless trace. It can monitor 16 

signals (with 32 bits each resulting in 512 bits) simultaneously where each signal may have millions of 

samples. Manual comparison of such huge dataset may become time-inefficient since every single transition 

needs to be compared with the corresponding transition from the GR (sample number in this case). By 

adopting the rule-based inference system, debugging becomes easier as the debugging data is plotted with 

relevant GR overlay. Moreover, the system performs the cross-correlation (or an appropriate rule) and plots 

the results. The problem aggravates due to the unavailability of the GR. In such a case, rule-based inference 

system attempts to generate a GR by identifying any pattern strings after analyzing the debugging data. 

However, if the simulation results are neither present nor can be generated, the user can load his own 
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template for populating the knowledge base; because, the expected output is generally known. However, if 

the knowledge base is devoid of any template, manual debugging can still be performed. After debugging, 

when the user is satisfied with the results, the database can be populated for future use. 

6.2 Experimentation and Results 

In this section, we will present two use cases to highlight our debugging methodology. In the first use case, 

we will utilize the GR generated by the Octave-based model of the convolutional filter. In the second use 

case, we will implement a pseudorandom data sorter IP to explain the debugging using GR developed 

through HLV methodology. The same IP will be used to present the case in which a GR is not available. 

Subsequently, we will use the inference engine to perform debugging. The proposed methodology has been 

verified on the Zedboard [197] featuring a Xilinx’s XC7Z020-484 FPGA. An Intel Core i7-6700 CPU 

running at 3.4GHz with 16GB RAM was used for the SDE. 

 Error Detection by Model-generated GR  

The methodology has been validated by an image processing application as DUT, using Xilinx Vivado HLS 

2017.4 [217] for the design process. The IP consists of two AXI4-Stream ports that serve as input and 

output ports for data and an AXI4-Lite port that is utilized to configure the 3x3 convolutional kernel. 

Besides, the control port of the IP is utilized for controlling the IP from the processor. The IP generated 

through HLS is imported into Vivado.  

SDE generates a stimulus and sends it to the DUT through the debugging system, and also to the Octave-

based simulation model of the DUT. The DUT responds to the stimulus which is then latched to the trace 

buffers and subsequently, transmitted to SDE for FIL validation.  

The SDE running on the PC has five main tasks as shown in Figure 6.8. The first one is to establish a 

communication channel between the PC and the FPGA. Later, the SDE reads each image from the hard 

drive of the PC, previously resized to 256x256 and converted to grayscale, and sends them one after another 

to the FPGA as stimulus. Then, it receives the processed image from the FPGA, as a transaction. The SDE 

waits till the complete response from the FPGA has been received. Subsequently, the same stimulus is 

applied to the Octave-based simulation model based on Eq. 6.1. Finally, the original image and the results 

from both sources, i.e. the FPGA and Octave are displayed. Correlation between these last two is performed 

to verify the accuracy of the implemented DUT.  

Code implemented in Vivado HLS is employed in Octave with minor modifications. The main difference 

between the filter implemented in HLS and the one in Octave is that in Vivado HLS, the image is streamed 

via the AXI-Stream interface. Hence, the generated IP only waits until the number of pixels shown in Eq. 

6.2 have been received for starting the convolutional process, regardless of the fact that the entire image is 
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not available yet. This is achieved by using a line buffer to cache the incoming data. Then, this sliding 

window is multiplied by the filter kernel to obtain the convolution as shown in Eq. 6.1. The proposed 

debugging system can then be utilized to perform the functional verification of the hardware IP.  Debugging 

system probes are connected to the input and output ports of the DUT to achieve cycle-accurate debugging 

data. 
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                                (Eq.6.1)  

                                                                         Dim Dim(COLS*(kernel -1))+(kernel )                                (Eq.6.2)

 Where COLS is the number of Columns in the image and Dimkernel is the dimension of the kernel.  

In  Figure 6.9, the input and output of the image processing DUT are presented. Figure 6.9(a) shows the 

input to be applied to the DUT and the Octave model. The Sobel filter kernel is applied to the DUT and the 

Octave model. Then, the SDE sends the image to the DUT for performing the image filtering. The 

debugging system gathers data from the probes and logs it to on-chip trace buffers. The controlling 

processor acquires the data from the trace buffers and transmits it to the SDE.  Figure 6.9(b) shows the 

debugging data after Sobel edge detection by the DUT.  

Set up communication channel with FPGA

Read image from hard drive and send it to FPGA 
as stimulus

Receive response from FPGA

Apply stimulus to model

Apply rule-based inference system
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Figure 6.8: Process flow for SDE 
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In many cases, the visual response of the DUT is considered adequate. However, the accuracy of the results 

acquired from the hardware IP and the Octave model can be confirmed by utilizing the rule-based inference 

system. Once, the relevant data has been loaded into the inference engine, it performs cross-correlation 

between the two datasets and shows the result. The outcome of the cross-correlation function is an array of 

data presenting the similarity between the debugging data and the database. A 256 x 256 8-bit pixel image 

is equal to 64 KB of data. Manual comparison between such huge datasets is time-consuming. However, 

the inference engine provides a time-efficient comparison. Figure 6.9(c) shows the debugging data plotted 

besides the output from the Octave-based model including the computed correlation coefficient. The 

correlation coefficient is 1.0 which indicates that the response from the FPGA matches perfectly with the 

octave model of the DUT. This highlights that the hardware is free from permanent or intermittent errors.    

 Error Detection by HLV-generated GR 

In the absence of a model of the DUT, debugging can be performed by utilizing HLV methodology. In 

order to explain our HLV-based debugging methodology, we have utilized the data sorter IP as DUT. The 

data sorter already explained in section 5.3 is used to sort inputs in ascending order. We used the IP shown 

in Figure 5.6 as it allows to alter the seed from the SDE if desired.  

Vivado tools, explained in Figure 6.5, are employed to perform the simulations. After post-implementation 

simulation, our test bench saves the result in a log file. It also appends the seed values to the simulation 

results. The simulation results are then loaded into the knowledge base of the inference system. SDE reads 

the log file containing the simulation results. It retrieves the seed and applies them to the hardware-based 

pseudorandom number generator. Utilizing this seed, the pseudorandom number generator generates input 

for the data sorter. Then, the data sorter produces an output at each clock cycle. Subsequently, the DUT is 

debugged through DSAS. The debugging system probes are connected to the DUT pins. Once, the trace 

buffers connected to the DUT are full, the DUT is stopped by the clock manager. Then, the debugging data 

is exported to the SDE. Accordingly, the debugging environment is split between the hardware data capture 

(a) Image Sent from PC to FPGA (b) Image Sent from FPGA to PC (c) Image filtered in Octave (Correlation 1.0)  

Figure 6.9: Debugging by FIL 
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mechanism and the Octave-based SDE. This technique reduces the simulation time because, instead of a 

full software solution, a hardware/software environment has been created for providing hardware 

acceleration. After receiving the debugging data, the inference system loads the post-implementation 

simulation results from the knowledge base. Then, the inference engine performs cross-correlation between 

the data received from the DUT and the simulation results, and plots the cross-correlation coefficient against 

the lag. 

In order to debug the data sorter, the design was operated at 100 MHz resulting in a clock cycle of 10 ns. 

At each clock cycle, it is essential to analyze the outputs of the data sorter IP with the post-implementation 

simulation results to validate the IP design. Manual analysis of the output at each clock cycle is highly 

inefficient. It is worth highlighting that limited number of samples for each signal have been shown in the 

Figure 6.10 only to improve the visibility of the transitions. However, the DSAS can acquire un-limited 

number of such samples. Consequently, it is imperative to adopt an automated solution, such as rule-based 

inference system, to improve the time efficiency. In Figure 6.10, acquired debugging data has been plotted 

besides the simulation results (generated through HLV) from the knowledge base. Although, the received 

and the GR have been superimposed, still, it cannot be conclusively claimed that the two are identical. In 

order to find out the dissimilarities between the debugging trace and the simulation results, inference 

process is performed. The inference engine performs cross-correlation between the acquired debugging 

data and the dataset from the knowledge base and displays the results. Hence, if a mathematical model is 

not available or modeling is too time-consuming, HLV can be utilized for populating the knowledge base 

with the simulation results. This saves the time spent on generating the simulation model.  

 

Figure 6.10:    Debugging data after applying rule-based inference system 
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The output of the rule-based inference system output is plotted in Figure 6.11. The cross-correlation 

between the post-implementation simulation results and the debugging data from the hardware IP has been 

performed. At lag 0, the correlation coefficient between the two results is 1.0 which indicates a perfect 

match between the debugging data and the simulation results. This also highlights that the data sorter 

hardware IP matches perfectly with its simulation results. Hence, it can be concluded that the hardware is 

free from permanent or intermittent errors.  

However, the plots also indicate a potential design weakness. As is evident, the plots have certain peaks, 

repeating after regular interval. Consequently, it indicates that the pseudorandom number generators 

replicate the number generation process after fixed number of cycles. In practical scenarios, it can be a 

potential weakness in the design required to be addressed.   

From the above two experiments, it is evident that the inference system can be used for decision making 

without going through all the data, resulting in a time-efficient solution. In the presence of an error, either 

permanent or intermittent, the cross-correlation coefficient will have a value less than 1. In such case, the 

inference system indicates the lag against the maximum cross-correlation coefficient. This provides a 

starting point for further investigation. Once, the maximum correlation against the lag is found, the 

inference system synchronizes the two datasets with each other. It then points out all mismatch instances 

between the two datasets which are the errors in this case.  

 

Figure 6.11: Cross-correlation between the simulated and actual results 
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 Error Detection in the absence of GR 

The debugging is possible even if the GR is not available. In the absence of a template for comparison, the 

rule-based inference system attempts to generate a template based upon the received debugging data. In 

order to test this particular scenario, the GR for data sorter was removed from the knowledge base. Upon 

realizing the absence of a GR, the inference system switched to autocorrelation rule. The acquired data 

from the DUT was utilized to perform autocorrelation. Then, the algorithm mentioned in section 6.1.3 was 

followed to generate the GR. The generated GR was utilized to perform cross-correlation. The results from 

autocorrelation rule were identical to the ones as displayed in Figure 6.11. This experiment demonstrated 

that the inference engine was able to successfully generated the GR. Hence, it can be concluded that the 

proposed methodology can be used for debugging designs which do not have a GR. 

In order to investigate further, an arbitrary stream of data was generated as presented in Figure 6.12. Since, 

the data was arbitrarily generated, its GR was unavailable. When the inference system remained unable to 

find the GR in the database, it switched to autocorrelation rule. The autocorrelation of the signal is 

displayed in Figure 6.13. It is evident that the autocorrelation is in-conclusive due to the absence of the 

peaks. Consequently, the rule was again switched to linear regression. Initially, linearization was performed 

for finding the slopes of the complete dataset at each transition. Subsequently, autocorrelation was 

conducted for finding the randomness in the slope set of the generated data as shown in Figure 6.14. The 

data has multiple peaks clearly indicating that the data is not random. Then, the algorithm as mentioned in 

Figure 6.7 was applied to find the slope set between the peaks in the autocorrelation function. Finally, the 

GR was generated based upon the retrieved slope set and cross-correlation was performed to identify the 

errors. 

 

Figure 6.12:  Arbitrary generated data 
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However, it is important to highlight one key point. The methodology works only if the received data trace 

contains recurring patterns and is highly correlated. In certain cases, permanent errors which occur due to 

design or logic errors, such as wrong implementation of a mathematical function, may also result in 

recurring patterns. Such permanent errors cannot be captured through the proposed solution. However, 

intermittent errors which may occur due to electromagnetic interference, manufacturing imperfections or 

operating conditions can be captured.   

 Resource Utilization 

The resource utilization for the proposed debugging system is presented in Figure 6.15. The results have 

been compared with the FIL [218]. As can be seen, the resource consumption of registers in [218] is less 

than the proposed solution. However, for most designs, registers are not the limiting factor e.g. in Zedboard, 

 

Figure 6.13: Autocorrelation of generated data 

 

  

 

Figure 6.14: Autocorrelation of slopes of the generated data 
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there are 106400 registers available.  Hence, the difference in the register consumption between FIL with 

DSAS and [218] is about 1%. In terms of resource utilization, the main limiting factor are BRAMs. In case 

of BRAM/FIFO, we have achieved better resource utilization. 

6.3 Summary 

FPGA-based embedded designs need to be verified. A suitable debugging system can save a lot of time and 

effort. Besides, if a hardware-software debugging approach is utilized, debugging can become easier. Such 

hardware-software solution is presented in this chapter which proposes to utilize inference for decision 

making. A rule-based inference system was proposed which can find the permanent or intermittent errors 

by performing cross correlation between the lossless debugging data and the GR. It eliminates the need for 

human interpretation required for monitoring the debugging data on every clock transition by performing a 

correspondence analysis for identifying the relationship between the input data and the GR.  

However, sometimes it is more useful to perform FPGA-in-the-loop for finding errors. The presented 

approach was found useful for DUTs which utilize a stimulus/response cycle. The proposed work showed 

that debugging can still be performed by using behavioral, post-synthesis or post-implementation 

simulation results if a MATLAB/Octave model is not present. Moreover, in the absence of GR, the proposed 

rule-based inference system can be used to identify the errors by finding the recurring patterns in the 

received debugging data and subsequently using the pattern for generating the GR. 

 

Figure 6.15: Resource utilization 
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The main limitation of the methodology comes into question when the received trace data does not contain 

recurring patterns and is not correlated e.g. the data is highly random. In such cases, the methodology will 

not be able to generate the GR and hence will not function as intended. 
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Chapter 7 Automated Debugging using Artificial 

Intelligence  

 

The visibility can be increased by the inclusion of scan or trace-based techniques. Still, the manual analysis 

of the massive amount of trace data is not time-efficient. During the post-silicon debugging process, the 

following two scenarios are of utmost concern: 

 Diagnostic of the design to verify how closely it resembles with any available (GR). 

 Design debugging, in the absence of any reference behavior for the Design Under Test (DUT), to 

identify the root cause of the error by identifying the cycle and the debugged design signals 

responsible for defect occurrence. 

In this chapter an intrusive debugging technique is presented which permits a cycle-accurate lossless 

debugging by managing the clock of the DUT. The proposed solution depends heavily on Recurrent Neural 

Network (RNN) based machine learning technique for trace diagnostics as well as for bug localization even 

in the absence of a GR which in many scenarios may not be available. This helps in automating the problem 

identification and hence will increase time-efficiency.  

The main contributions of this chapter are: 

1. Propose an RNN based debugging methodology for automating the debugging process in the post-

silicon validation cycle when the GR is available. 

2. Show that the presented debugging methodology for automating the debugging process still works 

in the absence of the GR. 

7.1 Cycle-accurate Debugging by RNN  

 Design Methodology  

The proposed debugging methodology utilizes DSAS which results in a lossless cycle-accurate debugging 

trace of the DUT as shown in Figure 7.1. The acquired lossless debugging data resembles a time data series. 

This time data series can be used to predict future samples by using RNN. Hence, this research work is 

based upon utilizing an RNN, running on the terminal (PC), to predict the future samples of the time data 

series which in this case is the cycle-accurate debug trace.  
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Different factors like seasonality, trend, randomness etc. can affect the accuracy of the time series 

prediction. The authors in [183] studied the effect of such factors and pointed out that randomness has the 

biggest negative impact on prediction. They also highlighted that the accuracy decreased with an increase 

in the forecasting horizon. Keeping in view the above two factors and emphasizing upon the accuracy of 

predicted data being used in the debugging process, we laid the following conditions upon the trace data to 

be debug-able. 

1. The data should not be random. This can be ensured by checking the randomness using the Wald-

Wolfowitz run tests [219]. It is a non-parametric test which checks the hypothesis that a series of 

data is random. It finds the total number of runs along with the positive and negative values from 

a reference value. It then tests whether the number of positive and negative runs are distributed 

equally in time.  

2. Trace data to be covariance stationary. This implies that the time series does not hold any hidden 

relationships between different time points and the behavior is stable. Stationarity can be 

ascertained by measuring the mean and the variance. A statistical test which gives a good insight 

into the behavior of the data is Augmented Dickey-Fuller test (ADF) [220]. ADF tests whether a 

unit root is present in a time series sample; the presence of unit roots indicates non-stationarity. 

The proposed methodology for debugging should be used if the training data is stationary. RNN 

can still be used for forecasting time series data even if the time series is not stationary. However, 

while using the RNN for debugging, it is a better approach to apply it for stationary trace data. 

3. The forecasting horizon should be minimum. The prediction of future samples can be performed 

with the following two options 
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Figure 7.1: Debugging through RNN 
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i. Train on {𝑦𝑡 , 𝑦𝑡−1, 𝑦𝑡−2 … }  to predict {𝑦𝑡+𝑖, 𝑓𝑜𝑟 1 ≥ 𝑖 ≥ 𝑠 ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑠} 

ii. Train to predict {𝑦𝑡+1}, iterate to get {𝑦𝑡+𝑖, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖} 

In order to keep the forecasting minimum,  the second option is followed as recommended in [183]. 

Furthermore, training and testing is performed on (80%, 20%) basis respectively. 

The time-series prediction algorithm was implemented on the terminal (PC) by using RNN. RNNs are best 

suited for time series data prediction because of their ability to remember their inputs by making use of 

their memory. This enables the RNN to make precise predictions about the upcoming data. The 

methodology utilizes the sliding window method by using the data from previous 50 time steps to predict 

the value at the next time step. Using the previous samples, the trained RNN makes prediction for t+1 

sample. Hence, the RNN can be represented by the 𝐸𝑞. 7.1. 

�̂�𝑡 =   𝛼0    +  ∑ 𝛼𝑗

3

𝑗=1

𝑔 (𝛽0𝑗    +  ∑ 𝛽𝑖𝑗𝑦𝑡−𝑖

50

𝑖=1

)                          (𝐸𝑞. 7.1)  

Here 𝑦𝑡−𝑖,  𝑤ℎ𝑒𝑟𝑒 (𝑖 = 1,2, … … 50) are the time lagged inputs and �̂�𝑡  is the predicted output. 𝛼𝑗 and 𝛽𝑖𝑗 

are the connection weights. α0  and β0j are the bias terms. 𝑔(x) is the activation function. 

The error 𝑒𝑡 between received 𝑦𝑡 and predicted �̂�𝑡  at time t is: 

𝑒𝑡 = 𝑦𝑡 − �̂�𝑡                                                                                                           (𝐸𝑞. 7.2)  

As the RNN is highly trained and cross-validated, assuming 𝑒𝑡 = 0, the received input sample should be: 

𝑦𝑡 =  �̂�𝑡                                                                                                                  (𝐸𝑞. 7.3) 

which states that the predicted value is similar to the received sample and hence can be used to verify the 

received one. Similarly, the continuous stream of previous input samples can be used to predict the 

forthcoming sample iteratively. 

However, when 𝑒𝑡 ≠ 0, it indicates that the received and predicted values do not coincide with one another 

highlighting the presence of a bug in either the trace data or the trained model itself. As the RNN is highly 

trained and the trace data observes the three conditions mentioned earlier, it can be assumed that the 

predicted value is correct thus highlighting the need to debug the suggested error at the indicated location. 

However, after analyzing the proposed error, if it is found that the trace data do not contain any error, it 

points towards the error in the trained model. The newly received error-free trace data can be used for 

further training of the RNN and subsequently the improved RNN can then be employed for debugging.  



 

 

 

124 

 

 RNN Implementation 

The proposed RNN comprises of 1-dimensional input layer, three hidden layers of sizes 50, 100, 50 and 

eventually a 1-dimensional output layer. Single input and output stages are used for the proposed 

methodology. However, the same idea can be extended to many to one or many to many neural networks 

as well. The last layer is the dense layer because it is a feedforward case. The proposed neural network is 

based upon the Keras library [221] using tensor flow as the back-end. A sequential model including stacked 

layers is used. 

Mean squared error model is used to find the error during the forward propagation. The partial derivative 

of the error, adjusted through the back propagation process, is used by the Adam optimizer [222]. Adam is 

chosen because of its ability to converge faster as it "adapts" to the gradient and loss updates. An important 

hyper parameter is the learning rate. It controls how quickly or slowly the RNN will learn by determining 

the size of the step. During experimentation, different initial learning rates were tried. However, due to 

highly varying training dataset, 0.0001 was selected as initial learning rate as it gave a good approximation 

of the function. Exponential decay rates for the estimates of first and second moments i.e. (mean and 

variance) are chosen to be 0.9 and 0.999 respectively. 

In order to cater for exploding gradient problem, ReLU is used as the squashing function. The squashing 

function does not allow the gradient to saturate which helps in resolving an abnormally high gradient. 

LSTM is utilized to include a memory to the neural network so that it can memorize its past states as well. 

The LSTM also solves the vanishing gradient problem. In order to improve convergence, normalization is 

performed on the data before feeding it to the RNN. The data is de-normalized before plotting because it is 

easy to correlate it with the input data. Number of epochs have a significant effect on the optimization of 

the RNN. For a big dataset, one epoch may be enough. However, for a debugging problem the training 

dataset is usually small. Hence more epochs may be needed for an optimized solution. This issue is 

discussed in detail in the results section. 

The RNN processes the trace data for training. The RNN can be trained based upon a GR for the specific 

DUT. However, in the absence of a GR, the neural network can be trained from the received trace from the 

debugging system. It can use a portion of the data for training and validation. Hence, 5% of the training 

data was used for validation. Once the data has been segregated into the training and validation datasets, 

the datasets are divided into batches i.e. the number of samples required by the network to perform a 

parameters update. After experimentation, a batch size of 512 was found to produce good results.   

However, as stated by [223], in some datasets the Adam optimizer do not generalize as good as some other 

optimizers available (such as Stochastic Gradient Descent (SGD) with momentum). In such cases, the loss 
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function after the use of optimizers may be compared with different alternatives to find out the best option 

to be used as an optimizer for the encountered dataset.  

Moreover, sometimes, the loss function does not converge to a minimum defined value. In such cases, 

training with RNN using different optimizers and hyper parameters should be performed to find an 

optimized solution which results in a converging loss function.  The trained neural network can then be 

used in the prediction phase. Once the RNN is trained, any new input data is validated by the trained 

network. The incoming test data along with the predicted data is presented to the user for view. Furthermore, 

manual analysis of the test results constitutes a bottleneck for cycle-accurate debugging systems due to the 

enormous lossless stream of data. A trained neural network is used in this research work which helps to 

localize potential bugs and draw conclusions to speed up the debugging process.  

7.2 Experimentation and Results 

The result section has been divided into three subsections. In the first subsection resource utilization for the 

proposed debugging system with unlimited trace window will be explained. In the second subsection, the 

results of debugging using the proposed methodology will be explained. In the third one, the training 

requirements will be described. 

The proposed methodology has been tested on the Digilent Zedboard, which has an XC7Z020-484 FPGA. 

Xilinx Vivado 2017.1 is used for designing the hardware. The RNN portion of the debugging system was 

implemented on the terminal (PC) using Python programming language. The Python-based RNN was 

implemented on Intel Core i7-6700 CPU running at 3.4GHz and having 16GB of RAM.  

 Resource Utilization 

Resource utilization of the presented debugging methodology is shown in Figure 7.2. Since the debugging 

system does not constitute the main part of the design, it is desired to restrict its hardware utilization.  It 

was noticed that the resource utilization of the presented solution is growing with an increase in debug 

window, because more BRAM blocks are required as trace buffers. Hence, the debugging system is 

synthesized with a trace window of 64 samples. 16 signals are monitored with a data width of 32 bits each.  

The resource utilization is compared with a similar research [Khan1]. It is evident that the resources have 

been reduced to almost 2% of the available ones. Consequently, the proposed solution can be applied to 

designs where availability for debugging resources is limited.  
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 Debugging through RNN 

The Obstacle Avoidance (OA) system first mentioned in section 3.5.1.1 is used as use case for this research 

work. The OA algorithm was implemented in hardware. The controller, EKF, odometry calculation, 

comparison module etc. are some of the hardware implemented modules. In order to increase the visibility 

of the hardware, the debugging system as mentioned in section 7.1.1 was incorporated into the hardware 

design for debugging. 

The robot in question was used for obstacle avoidance. During the course of its operation, it traversed a 

path in the x, y coordinates.  The resulting orientation of the robot is shown in Figure 7.3. We will use the 

time series data of the orientation to illustrate the usage of proposed RNN for debugging. The lossless 

tracing data accumulated by the proposed debugging system resembles a time data series. Hence, an RNN 

can be used to ease the debugging process. If a GR is available, the debug trace from the GR can be used 

for training phase. Once trained, the debug trace data from the DUT can be predicted using the trained RNN 

which can then be used for bug localization. This methodology is explained in section 7.2.2.1.  

However, in many cases, the GR is not available. In the absence of GR, the debug trace data generated by 

the DUT can be used for training. The portion of trace data known to be error free can be used to train the 

RNN. Then this trained RNN is used for debug data prediction. This methodology will be explained in 

section 7.2.2.2. 

 

Figure 7.2: Resource utilization 
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 Debugging using GR 

In the first experiment, we supposed to have a verified OA system which can be used to generate GR. First 

the robot was moved from the same start point and end goal and avoid the obstacle as shown in Figure 7.3. 

After data collection, normalization was performed during the data preparation phase. The data was then 

used to train the RNN. Subsequently, the trained RNN was used to predict the time data series. The 

predicted data is de-normalized so that it can be compared with the debug trace data. 

Predicted time series data has been plotted against the actual time series data as shown in Figure 7.4. The 

red line shows the actual time series data and the olive green line in the figure shows the predicted data. As 

can be seen, the predicted data closely resembles the actual data. 

 Debugging without GR 

During the last experimentation, the OA system was used to generate the GR and trained our RNN based 

upon the GR. However, in most cases a GR is not available for training. In such cases, the received 

continuous lossless debugging time series trace data can be used for RNN training. The trace data used for 

training should be error free. This can be ascertained by using hardware checkers as suggested by Bertacco 

et al. [224]. Furthermore, the received data for training should fulfill the conditions mentioned in Section 

7.1.1. For the current experiment, we used about 1800 samples for training as indicated in Figure 7.3. The 

 

Figure 7.3: Orientation in radians 
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aim of the experiment was to let the RNN predict the received data after training. Then the trained RNN 

was utilized for prediction of about 300 actual incoming samples. This predicted data sample is compared 

with the received trace data for bug identification as shown in Figure 7.5. The actual received trace is shown 

in red color while the predicted data is shown in olive green.  

It can be seen that the RNN was able to predict the incoming data quite efficiently. After about 30 samples, 

the predicted data mismatched with the actual data for few samples. However, the RNN was still able to 

identify the trend. Then, it kept on predicting the incoming data exactly. As evident from the figure, the 

RNN has been able to predict the incoming data after training from the received data. This eliminates the 

 

Figure 7.4: Actual vs predicted time series data 

 

 

 

Figure 7.5: Debugging without GR 
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requirement of GR and lets the user to debug the DUTs once they have been trained from incoming error-

free data.   

The error normally resembles rarely occurring behavior i.e. intermittent or outlier for which the neural 

network is not trained. Consequently, the RNN fails to follow the trend of such outlier. Such outliers (bugs) 

can then be easily isolated during the debugging phase. In order to illustrate the effectiveness of the 

proposed approach, we induced a self-created error into the test data as depicted in Figure 7.5. As, the RNN 

is trained based upon the error free received data, it was able to predict well during the test phase. However, 

since the RNN was not trained for the rarely occurring induced error, it failed to predict the test data during 

the occurrence of error. This phenomenon is illustrated in Figure 7.6 by a possible error. If we compare the 

response of the RNN when encountered with this self-induced bug to the previous illustration of sudden 

data variation, it becomes evident that RNN was able to follow the trend shortly after the occurrence of 

sudden data variation because it was trained for such variation. However, the RNN utterly failed to predict 

the data during the presence of self-induced bug because the RNN was not trained for the bug and hence 

was unable to predict it. This can be witnessed from the abrupt response of the RNN during the occurrence 

of self-induced error. Whenever an error is encountered during the test phase, a similar behavior is expected. 

Consequently, this phenomenon can be utilized in bug identification. Intermittent errors or bugs, resembling 

an outlier behavior, can be easily identified using the presented RNN approach. 

 

Figure 7.6: Debugging with introduced bug 
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 Training Requirement 

 Training Dataset 

The most important condition for training an RNN and later use it for testing is the provision of the training 

data. The error in a DUT is considered to be random i.e. it can occur at any time. Hence, a large dataset for 

training may not be available. We considered this scenario quite reasonable because if training with small 

dataset can be performed, training with large datasets will be definitely more accurate (assuming similar 

variance in both datasets). In the presented use case, training was performed with 1800 samples only. The 

data between training and testing was split as (80%,20%) respectively which resulted in predicting about 

300 samples for the dataset in question.  

 Time Requirement 

An important consideration during the experimentation was the training time required by the RNN. During 

the course of experimentation with the OA use case, the loss function was found to be quite high because 

of small dataset for training. This issue was resolved by increasing the number of epochs. We performed 

the experimentation with different epochs, each time using the trained RNN for data prediction as shown 

in Figure 7.7. It was found out that the increase in the epoch have a positive effect on the data prediction. 

The training time taken by the RNN for different epochs is shown in Table 7-1.  It is evident that the increase 

in the number of epoch results in a decrease in loss function while increasing the training time. Another 

point worth mentioning is that initially the loss function decreases quite rapidly with an increase in the 

number of epochs. Subsequently, the increase in the number of epochs has very nominal effect on the loss. 

 

Figure 7.7: Effect of increase in epochs on the data prediction 
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It was found out that epoch 50 or 100 gave a good prediction of the OA system with small training dataset. 

However, if big dataset is available for training, less number of epochs are needed.  In our results in section 

7.2.2, we used 100 epochs for the generation of results. 

 

Table 7-1: Training time 

Epoch Training time (s) Loss function 

1 9.9 0.9179 

10 45.5 0.1779 

50 210.8 0.1648 

100 516.0 0.1642 

200 1159.8 0.1640 

500 3115.6 0.1637 

1000 6947.9 0.1635 

 Bug Localization  

The proposed methodology can be iterated for bug localization. Once a bug has been identified in a specific 

node in a DUT, the remaining nodes of the DUT in its vicinity can be probed further to localize the bug. 

7.3 Summary 

This research work presents a cycle accurate debugging technique using RNN for trace diagnostics as well 

as for bug localization. Our proposed solution depends heavily on machine learning techniques for trace 

diagnostics as well as for the bug identification.  Results have shown that localizing potential bugs in the 

system can be done with or without the presence of a GR. The methodology will help in problem 

identification and hence will increase time-efficiency.  

One limitation of the proposed methodology is that it is valid for stationary data. This limitation restricts 

the proposed work to DUTs whose output is not derived from continuously changing inputs. Although this 

restricts the scope of the work, using the predicted data for debugging needs to be error free which can be 

ensured through the stationarity of the data. Another limitation of the proposed solution is that it is valid 

for non-random data. Hence, the technique should not be applied to random or near random data. These 

conditions restrict the debugging solution to certain data types. If trace data does not fulfill the above 

mentioned conditions, the proposed solution should not be applied. However, the problem occurs when 

some of the conditions are fulfilled and the others do not. In such cases, it remains an intelligent guess to 

adopt the presented methodology for debugging. 

Sometimes, the presented methodology suffers from a limitation that the loss function does not converge 

to a minimum defined level (say 0.2). In such cases, different optimizers and hyper parameters can be tried 
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to train the RNN for an optimized solution. The proposed solution should be used if the loss function has 

been converged to the minimum defined level during training. 

One point is worth highlighting. The methodology works irrespective of the presence of GR. When the GR 

is present, the RNN can be trained and later used to predict all type of errors such as permanent errors or 

intermittent errors. However, when the GR is not available, the methodology can be used to capture 

intermittent errors or outliers.  
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Chapter 8 Conclusion and Future Work 
 
 
 
This thesis entails five contributions that together provide an automated solution for error detection in 

FPGA-based designs. In this concluding chapter, the main challenges of this research work are re-iterated 

along with the summary of the individual contributions, and their significance. In the last section of this 

chapter, limitations of this research work along with future research directions are discussed. 

8.1 Conclusion 

Due to continuous rise in the number of hardware resources, the design verification is becoming 

increasingly difficult for FPGAs. Pre-silicon techniques such as behavioral simulation have been found to 

ensure the functional verification. However, comprehensive verification coverage is not possible due to 

speed limitation of simulation-based verification methodology.  

For the reasons mentioned above, focus shifted towards post-silicon prototyping for design validation. Post-

silicon validation results in speeding up the design verification since designs can run many orders-of-

magnitude faster when implemented on FPGAs. However, the main challenge faced in post-silicon phase 

is the limited observability. One of the main solutions to enhance the visibility of on-chip hardware is to 

insert trace-buffers into the design. This results in logging a limited number of signals for limited number 

of clock cycles on the trace-buffers. In order to receive the data again, these trace buffers need to be 

triggered once again after being emptied through data transfer for off-line analysis. But the real-time 

embedded design is on the run resulting in loss of trace data. All errors which occur prior to trace buffer 

triggering are lost. These errors sometimes referred to as intermittent errors can be extremely problematic.  

Due to resource limitation, limited number of signals can be monitored for limited number of clock cycles.   

All these factors result in limited observability which restricts the debugging capability. Another important 

issue is the manual analysis of trace data. For debugging systems which provide lossless trace data, manual 

analysis of the trace data can be too time consuming which may hamper the debugging process. 

Furthermore, intermittent errors are a one-off event. Finding such an error in lossless trace logs manually 

is not time-efficient.  

The main contribution of Chapter 3 is a debugging system capable of providing a lossless cycle-accurate 

trace of debugging data. Lossless data can be captured with minimal resources in contrast to other solutions 

which are either cost-inefficient or require on-chip hardware resources. Such solutions are not practical for 

smaller FPGAs due to the absence of the required on-chip hardware. Hence, we proposed to stop the clock 

of the DUT during the data transmission phase and re-start it once the data has been transferred and the 

trace-buffers are ready to receive the data from 16 signals with very small trace buffers (only 4KB). 
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Although, limited number of signals are sufficient for small designs. However, often the designs are 

complex having thousands of signals. Observability enhancement of such designs is also important. 

In order to increase the observability, we introduced a processor configured access network. We presented 

two solutions with a multiplexer-based approach and a gate-based approach. The multiplexer-based 

approach is more resource demanding however it offers more flexibility. However, if the design is short in 

resources, gate-based access network can also provide the desired observability. All the desired signals can 

be connected through the access network to the debugging system. From the available ones, 16 signals are 

selected heuristically through the selection register. Since, the error-prone signals are not known, we may 

keep on iterating on the signals without being able to capture the error. 

Another contribution is the software-based data compression. For DSAS, the bottleneck lies in the data 

transmission. Hence, we proposed to compress the data before Ethernet transmission. This results in 

speeding up the data transmission. It may be noted that the same results could have been achieved through 

hardware-based data compression. However, the compression-core requires hardware resources making the 

design only feasible for resource-available designs. However, the proposed data compression solution is 

suitable for resource deficient designs.   

Preservation of timing closure is another challenge. The main technique for embedded system design is that 

it is synthesized and implemented to find any errors. If an error is encountered, the design is synthesized 

and implemented after inserting the debug circuitry. However, the debugging circuitry uses the same 

resources as the embedded design which may affect the timing closure. After debugging, the debugging 

circuitry need to be removed from the design which may again affect the timing closure. We resolved this 

issue through DPR. We synthesized and implemented the debugging system as a dynamic partition at design 

time. If needed, the debugging system can be reconfigured at run-time. After design finalization, the blank 

bitstream can be left as an integral part of the design. This helps in preservation of timing closure. 

Furthermore, when the dynamic debugging partition is not in use, the resources are free to be used by other 

applications. 

The main contribution of Chapter 4 is the debugging system capable of debugging multiprocessor and 

multi-clock designs. Stopping the clock can be problematic for multi-clock systems since this may result in 

data-invalidation. We presented a synchronizer-based design which can manage clocking of the multi-clock 

designs using GRLS and GALS methodology. This solution takes a cycle-based approach for debugging. 

However, another debugging paradigm is the event-based debugging. Such systems record data only when 

an event takes place. We also provided a solution for such designs for the sake of completeness though it 

is not the main problem tackled in this thesis. This solved the problem of limited clock cycles. However, 

the limited number of signals were addressed in Chapter 4. 
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In Chapter 5, we tackled the observability issue from another angle. Although the observability can be 

enhanced using an access network, the signals required to be connected are selected heuristically. Since, 

the error-prone signals are not known, we may keep on iterating on the signals without being able to capture 

the error. A better approach would be to identify the signals with more restoration probability of errors and 

map them to the access network on priority, so that we may not be wandering around to capture the error. 

The problem was resolved through the inference system which checks the presence of correlation in the 

trace data and prioritize signals accordingly.  

In Chapter 6, two problems were encountered. The main issue of lossless debugging systems is to propose 

a technique for capturing the errors without going through manually analyzing the debugging data on every 

clock transition. Another issue is to find a methodology for finding the intermittent errors when a GR is not 

available. In order to resolve the mentioned problems, automated error detection through a rule-based 

inference system was proposed. The inference system performs correspondence analysis to draw 

conclusions. For DUTs which work on stimulus/response phenomenon, FIL-based debugging was also 

proposed. The debugging system generates a stimulus for the DUT. The response of the DUT is used to 

perform the correspondence analysis between received debugging data and the HDL simulation data from 

either a behavioral model or a post-synthesis/post-implementation model of the DUT used as a GR.  

Another issue encountered in this chapter was debugging in the absence of a GR. We devised a methodology 

which can search for correlation in the received debugging data and can generate its own GR. Once the GR 

has been generated, the rule-based inference system can perform correspondence analysis between the 

received data and the generated GR. The proposed methodology can not only identify the errors but it can 

also identify the location of error generation and the clock cycle. 

In Chapter 7, debugging of embedded designs by using recurrent neural networks was proposed. Lossless 

trace data presents a unique opportunity since it can be used as time series data. Recurrent neural networks 

have been found to be very useful in time-series data prediction. An RNN-based debugging methodology 

was suggested for automating the debugging process. The proposed solution depends heavily on machine 

learning techniques for trace diagnostics as well as for the bug localization.  Results have shown that 

localizing potential bugs in the system can be done with or without the presence of a GR, which in many 

scenarios may not be available. This will help in problem identification and hence will increase time-

efficiency.  
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8.2 Future Directions 

In this part of the thesis, the future directions of the current research work are discussed. 

In Chapter 3, DSAS debugging system for lossless debugging was proposed. One point worth highlighting 

is that the proposed and the ILA-based debugging approaches are not mutually exclusive. Hence, DSAS 

can be used in conjunction with ILA. If the designer has complete understanding of the design and can set 

the ILA to trigger appropriately and is able to debug by using the limited window, ILA gives a very good 

solution. But in cases where FPGA resources are limited or debugging becomes difficult due to size 

limitations, DSAS can be used for debugging of complex designs. As a future work, a trigger circuitry can 

also be augmented with DSAS which can be used in a specific debugging problem. 

Another issue is that trace buffers depth can be variable which is decided by the user. The depth directly 

affects the debugging time. Debugging time decreases with the increase in trace buffer depth. Hence, an 

automated solution using intelligent methods which can help in deciding an optimum trace-buffer depth 

can be quite interesting. 

Sometimes, the modules need to be debugged while receiving external streaming data as input. A solution 

to this problem has been addressed through the inclusion of synchronizers. However, if the external devices 

do not follow a streaming protocol, the proposed solution may not work. A similar problem is faced when 

the DUT cannot be halted. In such cases, event-based methodology as already presented can be utilized. 

Another solution could be to use I/O pins for transmission. In such systems, few I/O pins are dedicated 

solely for debugging and the debugging trace data is sent to the terminal through such dedicated pins as is 

done for some emulation systems.  

An access network was proposed to enhance the observability. The main limitation of the access network 

is that it also requires hardware resources for implementation. As the number of spare hardware resources 

are not known before design implementation, the optimized access network is not possible. Debug overlays 

can be utilized as possible solution in such cases.  

In order to resolve data-transmission bottleneck, software-based data compression was proposed. The main 

benefit in using software-based compression is that hardware resources are not required. However, it 

requires processing time which may not be negligible. Furthermore, the Msim-9 algorithm proposed in this 

research work may not be able to compress data for certain data types. In such cases, the time required to 

compress the data goes in vain. 

Similarly, debugging through DPR-based incremental insertion was also proposed. It is meant to utilize 

hardware resources when debugging is not required and preserving the timing closure. However, upon 

design finalization, the blank bitstream needs to be part of the finalized design in order to preserve the 
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timing closure. The blank bitstream consumes less power than the reconfigurable module partial bitstream, 

however, it still dissipates power which must be kept in mind before leaving it as part of the design [201]. 

In Chapter 4, DSAS-based debugging solution was utilized for embedded processors. It has been found that 

the solution can be used to troubleshoot bugs in complex SoCs where it is difficult to identify issues in the 

absence of a continuous stream of lossless data. As the methodology is based upon debugging external 

interfaces and nodes, all memory accesses can be recorded which can be used to perform software 

reconstruction.  

In the same chapter, we proposed event-based debugging for NoC. The system is divided into two main 

parts, an on-chip debugging hardware and an off-chip debugging software. The on-chip hardware is based 

on the idea of debugging all connections through hardware monitors. With an increase in NoC sizes, more 

resources are utilized by the NoC, leaving aside limited resources for the debugging system. Hence reducing 

the resources required for the debugging system is extremely important. The first way to decrease this 

overhead is to avoid using the AXI stream interconnect and replace it with a custom interconnect that should 

be designed for this specific purpose. Another solution could be to avoid the use of the internal FIFOs of 

the AXI stream interconnect and replace them with a pipelined architecture which could perform the same 

role with less resource. The hardware could also be improved to add different abstraction levels. For 

example, the system could monitor the payload being sent beside the start and end of a packet. Some 

information could be collected such as the monitoring number of flits inside a packet and other information 

that could be needed for a specific application. All those functionalities could be added without major 

changes in the hardware. 

Similarly, software debugging application can also include a fault detection algorithm such as deadlock or 

livelock detection algorithms. Those algorithms can make use of the data already being collected and then 

the routers can be configured to solve the problem in real-time. This would make the proposed debugging 

system as a self-healing system.  Real time debugging and fault detection could be also added to the system. 

This could be achieved by adding a new functionality to the debugging software: stop or pause some PEs 

in the system. This could be done by sending a request to the ARM processor which could then send an 

interrupt signal to the targeted PE forcing it to stop executing its code and to wait for resume permission.  

In Chapter 5, signal priority-based connectivity mapping was proposed. The connectivity generation tool 

accepts input files in several formats and generates a Tcl script which can be used to automate the 

connection process. The methodology uses the simulation results to identify the signals which can be 

prioritized through the proposed pattern extraction technique. The connectivity generation tool works well 

for simple hierarchy. However, one key limitation is that when the hierarchy becomes complex due to 
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several levels of parent child relationship; the tool fails to respond. As a future work, the tool need to be 

made generic for complex hierarchies.  

In Chapter 6, rule-based inference system was proposed which can find the errors by performing cross 

correlation between the lossless debugging data and the GR. It eliminates the need for human interpretation 

required for monitoring the debugging data on every clock transition by performing a correspondence 

analysis for identifying the relationship between the input data and the GR.  

Similarly, FIL-based debugging was proposed to capture permanent or intermittent errors which work on 

stimulus/response cycle. The debugging system software environment generates a stimulus and waits for a 

response from the DUT which is then analyzed by rule-based inference system against a GR for its 

correctness. The methodology also works in the absence of GR. It was demonstrated that errors could still 

be identified by finding recurring pattern in the received debugging data and using the pattern for generating 

GR which could then be used for debugging. However, the methodology works for signals with strongly 

correlated data. The main limitation of the methodology comes into question when the received trace data 

is not correlated e.g. random data. The methodology will not be able to generate the GR in such cases and 

hence will not function as intended. It is a challenge to propose algorithms for signals which do not exhibit 

strong correlation in itself. 

In Chapter 7, debugging framework using recurrent neural network was presented which permits a cycle-

accurate lossless debugging by using RNN based machine learning technique for trace diagnostics as well 

as for bug localization. However, one limitation of the proposed methodology is that it is valid for stationary 

data. Another limitation of the proposed solution is that it is valid for non-random data. Hence, the technique 

should not be applied to random or near random data. Such conditions restrict the proposed solution to 

certain data types. If trace data does not fulfill the above mentioned conditions, the proposed solution should 

not be applied. However, the problem occurs when some of the conditions are fulfilled and the others do 

not. As a future work, it sounds interesting to analyze the effect of such conditions on data prediction. 

Sometimes the loss function does not converge to a minimum defined level during the training phase. In 

such cases, different optimizers and hyper parameters need to be tried to train the RNN for an optimized 

solution. Work can also be done to identify the best set of optimizers and hyper parameters for an optimized 

solution. 
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