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Abstract

With technology scaling advancement and globalization of integrated circuit (IC) manufac-
turing, a host of vulnerabilities affect dependability of computing hardware. Each integrated
circuit chip is born with a unique personality due to process variations and grows uniquely due
to operating conditions, workload and environment. Hence, design-time solutions for depend-
ability, based on deterministic models, are no longer sufficient for ICs fabricated at nanoscale
technology nodes. There is a need for runtime analysis of the state of a system and adoption
of appropriate mitigation actions to ensure dependability.

Transistors are prone to workload-dependent aging phenomena that increase delay in circuit
paths leading to false computations. In addition, specific workloads can induce accelerated
aging leading to reduction in reliable lifetime of a chip. Apart from aging, transient compu-
tational errors (soft errors) can be caused by chip exposure to radiations that can result in
abnormal behavior in critical systems. The propagation or masking of such errors is dependent
on the workload executed on the system. Fabricated chips can also include malicious circuits
called hardware Trojans, deliberately inserted during chip design or manufacture, that can
compromise security. Due to the stealthy nature of inserted malicious circuits before their
activation, it is extremely difficult to verify the chip as Trojan-free.

The complexity of these dependability issues makes simple dependability modeling and
mitigation inefficient. This complexity arises from various sources including design (technology,
device, circuit and architecture) parameters, fabrication parameters, runtime workload and
environment. This is the motivation to explore machine learning and runtime methods that
can potentially deal with such complexities.

In this thesis, we propose solutions to ensure dependable operation of computing hardware
under different workload and environmental conditions. We devise machine learning techniques
to model, monitor and mitigate various dependability effects. Different learning methods are
used to identify low cost workload observables and to build prediction models that correlate
the workload observables with dependability metrics corresponding to reliability and security
attributes. We also developed low cost hardware monitoring circuits that can capture the
workload observables during runtime with lower area and power overheads. In contrast to
the state-of-the-art techniques exploiting micro-architectural observables for monitoring, we
explore the potential of workload characterization at logic level of hardware abstraction. We
identify better logic level features to enable fine-grained runtime monitoring. This logic-level
analysis also comes with several knobs to tune for higher prediction accuracy and lower over-
heads.

We experimented this philosophy of identifying logic-level observables based on learning
methods and implementing low cost monitors to enable adaptive mitigation of static aging,
dynamic aging, radiation-induced soft errors and also to identify the activation of hardware
Trojans. In this regard, we developed a prediction model to track the workload impact on aging
degradation of a chip that can be used on-the-fly to decide upon mitigation techniques such as
task migration, dynamic voltage and frequency scaling. This prediction model is implemented
in software that potentially ranks workloads based on their aging stress severity. To ensure
resilience against accelerated aging effect, we propose a monitoring hardware that monitors
a subset of critical flip-flops for an accelerated aging phase of the workload and raise a flag
when a timing-critical path experiences severe aging stress. We implemented a technique to
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relax the stress by the execution of a specific subroutine that exercises the critically stressed
timing paths. We propose a technique to estimate the online soft-error vulnerability of memory
arrays and logic cores based on the monitoring of a small set of flip-flops in the design. We also
developed a method based on anomaly detection to identify workload signatures of hardware
Trojan payload during runtime activation of a Trojan as a last line of defense. Based on these
experiments, this thesis demonstrates the potential of advanced feature extraction at logic-
level of abstraction and learning-based prediction based on runtime data to achieve better
dependability for hardware designs.
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Zusammenfassung

Mit dem Voranschreiten der Technologieskalierung und der Globalisierung der Produktion
von integrierten Schaltkreisen eröffnen sich eine Fülle von Schwachstellen bezüglich der
Verlässlichkeit von Computerhardware. Jeder Mikrochip wird aufgrund von Produktionss-
chwankungen mit einem einzigartigen Charakter geboren, welcher sich durch seine Arbeitsbe-
dingungen, Belastung und Umgebung in individueller Weise entwickelt. Daher sind determin-
istische Modelle, welche zur Entwurfszeit die Verlässlichkeit prognostizieren, nicht mehr aus-
reichend um Integrierte Schaltkreise mit Nanometertechnologie sinnvoll abbilden zu können.
Der Bedarf einer Laufzeitanalyse des Zustandes steigt und mit ihm die notwendigen Maß-
nahmen zum Erhalt der Zuverlässigkeit. Transistoren sind anfällig für auslastungsbedingte
Alterung, die die Laufzeit der Schaltung erhöht und mit ihr die Möglichkeit einer Fehlberech-
nung. Hinzu kommen spezielle Abläufe die das schnelle Altern des Chips befördern und somit
seine zuverlässige Lebenszeit reduzieren. Zusätzlich können strahlungsbedingte Laufzeitfehler
(Soft-Errors) des Chips abnormales Verhalten kritischer Systeme verursachen. Sowohl das
Ausbreiten als auch das Maskieren dieser Fehler wiederum sind abhängig von der Arbeit-
slast des Systems. Fabrizierten Chips können ebenfalls vorsätzlich während der Produktion
boshafte Schaltungen, sogenannte Hardwaretrojaner, hinzugefügt werden. Dies kompromit-
tiert die Sicherheit des Chips. Da diese Art der Manipulation vor ihrer Aktivierung kaum zu
erfassen ist, ist der Nachweis von Trojanern auf einem Chip direkt nach der Produktion extrem
schwierig.

Die Komplexität dieser Verlässlichkeitsprobleme machen ein einfaches Modellieren der Zu-
verlässigkeit und Gegenmaßnahmen ineffizient. Sie entsteht aufgrund verschiedener Quellen,
eingeschlossen der Entwicklungsparameter (Technologie, Gerät, Schaltung und Architektur),
der Herstellungsparameter, der Laufzeitauslastung und der Arbeitsumgebung. Dies motiviert
das Erforschen von maschinellem Lernen und Laufzeitmethoden, welche potentiell mit dieser
Komplexität arbeiten können.

In dieser Arbeit stellen wir Lösungen vor, die in der Lage sind, eine verlässliche Ausführung
von Computerhardware mit unterschiedlichem Laufzeitverhalten und Arbeitsbedingungen zu
gewährleisten. Wir entwickelten Techniken des maschinellen Lernens um verschiedene Zu-
verlässigkeitseffekte zu modellieren, zu überwachen und auszugleichen. Verschiedene Lern-
methoden werden genutzt, um günstige Überwachungspunkte zur Kontrolle der Arbeitsbe-
lastung zu finden. Diese werden zusammen mit Zuverlässigkeitsmetriken, aufbauend auf
Ausfallsicherheit und generellen Sicherheitsattributen, zum Erstellen von Vorhersagemod-
ellen genutzt. Des Weiteren präsentieren wir eine kosten-optimierte Hardwaremonitorschal-
tung, welche die Überwachungspunkte zur Laufzeit auswertet. Im Gegensatz zum aktuellen
Stand der Technik, welcher mikroarchitektonische Überwachungspunkte ausnutzt, evaluieren
wir das Potential von Arbeitsbelastungscharakteristiken auf der Logikebene der zugrun-
deliegenden Hardware. Wir identifizieren verbesserte Features auf Logikebene um feingran-
ulare Laufzeitüberwachung zu ermöglichen. Diese Logikanalyse wiederum hat verschiedene
Stellschrauben um auf höhere Genauigkeit und niedrigeren Overhead zu optimieren.

Wir untersuchten die Philosophie, Überwachungspunkte auf Logikebene mit Hilfe von Lern-
methoden zu identifizieren und günstigen Monitore zu implementieren um eine adaptive Vor-
beugung gegen statisches Altern, dynamisches Altern und strahlungsinduzierte Soft-Errors zu
schaffen und zusätzlich die Aktivierung von Hardwaretrojanern zu erkennen.
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Diesbezüglich haben wir ein Vorhersagemodell entworfen, welches den Arbeitslasteinfluss
auf alterungsbedingte Verschlechterungen des Chips mitverfolgt und dazu genutzt werden
kann, dynamisch zur Laufzeit vorbeugende Techniken, wie Task-Mitigation, Spannungs- und
Frequenzskalierung zu benutzen.

Dieses Vorhersagemodell wurde in Software implementiert, welche verschiedene Arbeit-
slasten aufgrund ihrer Alterungswirkung einordnet. Um die Widerstandsfähigkeit gegenüber
beschleunigter Alterung sicherzustellen, stellen wir eine Überwachungshardware vor, welche
einen Teil der kritischen Flip-Flops beaufsichtigt, nach beschleunigter Alterung Ausschau hält
und davor warnt, wenn ein zeitkritischer Pfad unter starker Alterungsbelastung steht. Wir
geben die Implementierung einer Technik zum Reduzieren der durch das Ausführen spezifis-
cher Subroutinen auftretenden Belastung von zeitkritischen Pfaden. Zusätzlich schlagen wir
eine Technik zur Abschätzung von online Soft-Error-Schwachstellen von Speicherarrays und
Logikkernen vor, welche auf der Überwachung einer kleinen Gruppe Flip-Flops des Entwurfs
basiert.

Des Weiteren haben wir eine Methode basierend auf Anomalieerkennung entwickelt, um
Arbeitslastsignaturen von Hardwaretrojanern während deren Aktivierung zur Laufzeit zu
erkennen und somit eine letzte Verteidigungslinie zu bilden. Basierend auf diesen Experi-
menten demonstriert diese Arbeit das Potential von fortgeschrittener Feature-Extraktion auf
Logikebene und lernbasierter Vorhersage basierend auf Laufzeitdaten zur Verbesserung der
Zuverlässigkeit von Harwareentwürfen.
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1 Introduction

The past fifty years of semiconductor industry was an era of aggressive technology scaling
reaching to sub-10 nm device sizes. The tremendous improvement in complexity (in terms of
number of transistors) and performance (in terms of operating frequency) achieved for various
microprocessor generations is illustrated in Fig. 1.1 [1]. According to Moore’s law, the number
of transistors in a semiconductor chip doubles every 18 months due to technology scaling [2].
This enables chips with increasing complex functionality, higher performance and lower per-
function cost for every new generation. For example, the central processor chip of IBM z14
processor contains 6.1 billion transistors [3] in contrast to less than a billion transistors in
IBM z10 released a few years before z14 [4]. The average transistor cost reduced by 10× due
to technology scaling from 130 nm node to 14 nm node [5]. Even the latest smartphones
like iPhone XS can do 5 trillion operations per second in comparison to Cray 2, the fastest
supercomputer of early 1990s, capable of only 1.9 billion operations per second [6]. As a
result of the increase in performance and cost reduction in implementing complex functional-
ities, semiconductor chips have revolutionized automotive, space, healthcare, multimedia and
communication domains [7].
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Figure 1.1: Illustration of complexity and performance increase with technology scaling advancement
in microprocessors for the last four decades [1].

In the modern society, the ubiquity of semiconductor chips demands dependable operation
for an expected lifetime. Dependability is defined as the ability to deliver trusted service [8].
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1 Introduction

With technology scaling advancement, many dependability challenges aggravate and hence,
failure rate increases [9]. Smaller device sizes bring increasing variations between transistors
during fabrication and also vulnerability to different environmental and runtime variations.
The failure-free operation of a chip can be significantly affected by different reliability mech-
anisms such as device aging or radiation-induced soft errors [10]. Device aging refers to a set
of degradation mechanisms that affect transistor properties, eventually leading to unexpected
failures in computation. Soft errors are caused by alpha particles from packaging materials or
neutrons from cosmic rays that may strike a semiconductor chip, and temporarily induce a
wrong value in a memory cell or a circuit node leading to system failures. In addition to these
sources of unreliabilities, several security threats have emerged due to the increasing globaliza-
tion of semiconductor design and fabrication stages [11]. Each step in the design of a complex
system-on-chip (SoC) is vulnerable to security issues such as inclusion of stealthy malicious
logic called hardware Trojans, by third-party vendors [12]. Because of the ever increasing com-
plexity, the verification and test efforts fall short to ensure secure operation of chips. Hence,
techniques to ensure dependability of hardware designs with reliability and security as the two
most relevant attributes are attaining primary focus in today’s computing world.

The design-time solutions against reliability and security challenges in the context of de-
pendable hardware design can be less efficient in the new era where chips are exposed to
complex runtime variations. The rate of degradation of integrated circuits due to aging of
transistors can significantly vary with the type of workload executed on them, the operat-
ing temperature, and the variations in supply voltage [13]. The vulnerability of circuits to
radiation-induced soft errors also varies with the workload nature, and other runtime param-
eters [14]. The role of design decisions to ensure security in semiconductor chips is limited
due to the threat of additional hardware inclusion at a later stage in the fabrication pro-
cess [15]. Hence, in addition to design-time optimization of circuits for better reliable and
secure operation, runtime monitoring is required to guide appropriate adaptation actions.

Cost-effective runtime monitoring can assist in tuning several knobs available to alleviate
the impact of dependability issues. In modern-day systems, a large number of sensors and
monitors are incorporated to track several runtime parameters such as power consumption
and supply voltage [16]. With rising dependability requirements in various domains [17], there
is a need for dependability monitors and models to make runtime decisions that can ensure
dependable operation of a chip.

1.1 Problem statement and objective

Semiconductor chips, after fabrication, are utilized in different ways and are exposed to differ-
ent set of runtime parameters. Hence, solutions for dependability problems cannot be static
and needs to be adaptable against variations during lifetime operation of each chip. It is
essential to use runtime data to make predictions on the status of various degradation and
vulnerability parameters. Accurate prediction models are required in this regard which can
guide adaptation actions in a proactive manner.

One of the transistor aging mechanisms known as Bias Temperature Instability (BTI) de-
grades the threshold voltage of a transistor that eventually results in slower switching of logic
gates made of these transistors [39]. Aging of transistors leads to degradation of circuit de-
lays, eventually increasing the number of timing violations, and a decrease in the expected
lifetime [18]. If the degradation rate can be tracked in a fine-grained manner, appropriate
adaptation actions such as adaptive voltage scaling [19], body biasing [20] or reliability-aware
task mapping [21] can be taken. In the case of radiation-induced soft errors, each phase of a
workload executed on a design, such as a processor, can have a specific nature causing higher
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or lower vulnerability towards soft error events measured in terms of vulnerability factor.
Prediction of accurate vulnerability factor during runtime can enable cost-effective protection
mechanisms. In the case of security threats, malicious hardware (hardware Trojans) can get
activated during runtime, and the prediction of the Trojan activation serves as a last line of
defense. With increasing complexity of systems, the runtime monitoring and prediction of
these parameters meet several challenges. The generation of enormous amount of runtime
data during workload execution on a hardware block necessitates careful spatial and temporal
selection of probing points in the hardware block. Reuse of existing monitors cannot be always
an effective solution due to the granularity of access and hence, new cost-efficient runtime mon-
itors with less overheads are required. Predictions from the patterns in runtime data needs to
be fast and accurate to enable proactive mitigation of dependability issues.

Modern systems incorporate a range of sensors and monitors (e.g., razor flip-flops [22],
critical path monitors (CPM) [23]) to track the impact of several reliability mechanisms on
the functionality and performance of a circuit. These reliability mechanisms include aging
due to Bias Temperature Instability (BTI) [10] and supply voltage fluctuations. In addition,
additional hardware is added in the form of redundant units or error correction units in order to
tackle the impact of radiation- induced soft errors [10]. With these sensor data available online,
suitable adaptation policies can be triggered on-the-fly that can help in resilient operation of
a system. However, the fundamental problem of the above method lies in the fact that these
sensors monitor the effect (e.g., path delay increase due to BTI) of a reliability phenomenon
rather than its cause (nature of workload). Hence, the adaptation policies can only be triggered
after a measurable degradation occurs on the circuit. In addition, to secure against activation
of hardware Trojans, performance-monitor based detection techniques are deployed. However,
these monitors can be tampered by an adversary. In short, dependability-aware selection of
appropriate features to monitor runtime data and development of prediction models that can
predict accurately from the selected features are the needs of the hour.

The objective of this thesis is to enable runtime predictions on different dependability
mechanisms by logic-level data analysis, and by exploiting machine learning techniques for
workload compaction and representation. Different learning methods are used to identify low
cost workload observables, and to build prediction models that correlate the workload observables
with reliability and security metrics.

1.2 Contribution of this Thesis

In this thesis, we target the improvement of overall dependability of integrated circuits by
analyzing the impact of runtime variations on various reliability and security issues as illus-
trated in Fig. 1.2. We devise machine learning techniques to model, monitor and mitigate
various dependability effects originating from imperfections in device fabrication, design is-
sues, and impact of runtime workload and environment. We target early runtime prediction of
the impact of a workload phase on resilient operation of a circuit. This information about the
impact of a workload phase can guide proper mitigation actions proactively such as relaxation
of aging stress or tackling vulnerability of a circuit to soft errors. In this regard, these learn-
ing techniques can be used to correlate workload patterns to corresponding impact on system
dependability under aging, soft errors and malicious Trojans. We propose a methodology to
monitor hardware designs online, and predict dependability metric values on-the-fly based on
prediction models constructed offline. Our technique involves workload analysis to extract hid-
den information that describes the relationship between the workload executed on the design,
and corresponding values of dependability metrics (Eg: circuit-path-delay increase).

The workload data (set of system states over time) is analyzed in the logic level to maximize
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the information content to use for reliability and security analysis. However, this increases the
complexity of analysis and hence, we deploy domain-specific feature selection and feature en-
gineering techniques to capture important features of a workload segment. In this regard,
suitable workload observables are identified offline using correlation analysis and feature elim-
ination techniques. A prediction model is built offline to correlate the workload observable
with the dependability metric under consideration. Low cost hardware monitors are proposed
to track the workload observables online and the monitoring information is fed to software
predictors to make early predictions on the reliability and security metrics.

Dependability

Reliability

Security

Static Aging

Dynamic Aging

Soft Error

Hardware 

Trojan

 Dynamic Aging Prediction Model 

 Dynamic Aging Monitoring Hardware 

 Joint Time Sampling and Space Sampling

 Static Aging Detection Model

 Static Aging Monitoring Hardware 

 Subroutine based Static Aging Mitigation

 Soft-Error Vulnerability Prediction Model 

 Soft-Error Vulnerability Monitoring Hardware

 Vulnerability Prediction of Memory and Logic 

 Hardware Trojan Detection Model

 Logic-level Anomaly Monitoring Hardware 

Contributions

Figure 1.2: Overall contributions of this thesis in different attributes of dependability.

In particular, the novel contribution of this thesis are listed below.

� Dynamic Aging Monitoring and Delay Prediction [24]: Dynamic aging of tran-
sistors due to Bias Temperature Instability (BTI) involves aging stress and recovery
phases resulting in long term degradation of circuit paths. This mechanism degrades
path delay over time leading to timing failures. Direct monitoring of path delays based
on actual measurements can only track a coarse-grained aging trend. We propose a fine-
grained aging monitoring scheme based on estimating runtime aging stress of workloads.
A prediction model generated offline based on workload stress analysis is implemented
online with a low overhead monitoring hardware to make predictions on aging rates.
As a result, we can achieve timely workload-stress estimations and aging rates during
runtime that can be used in turn to take appropriate proactive and fine-grain mitigating
actions and prevent the circuit from aging at higher rates.

� Static Aging Monitoring and Mitigation [25, 26]: Circuits are exposed to accel-
erated aging rates (static BTI) while the transistors are stressed for extended period
of time without any recovery phase. This scenario can occur based on the nature of
workload phase and it can lead to early timing failures as one year of dynamic BTI
stress is similar to a few hours of static BTI stress. To address this problem, we iden-
tify correlated static aging phases of timing critical flipflops in an offline correlation
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analysis and deploy a runtime monitoring scheme to raise a flag when the circuit enters
an accelerated aging phase. A synthetic subroutine based mitigation technique is also
proposed to relax the aging stress by exercising aged gates and flip-flops. This leads to
an improvement in the overall lifetime of the circuit compared to the case where only
dynamic BTI is considered.

� Soft-Error Vulnerability Prediction [27, 28]: The vulnerability of a system to
soft errors is dynamic in nature due to various masking effects in different levels of
abstraction. Hence, it is desirable to have a vulnerability prediction scheme that can
turn on and off online protection mechanisms in a cost-effective manner. In this regard,
we proposed a low overhead soft-error vulnerability prediction scheme by monitoring
only a small number of flip-flops during runtime. Our prediction model can predict
the online vulnerability of a whole system comprising of memory arrays and logic cores
significantly more accurate than the state-of-the-art prediction techniques based on
performance counters.

� Runtime Hardware Trojan Detection [29]: During the age of globalization of chip
design and fabrication, untrusted designs in the form of third-party intellectual property
(3PIP) poses a threat of malicious hardware inclusion in the form of hardware Trojans.
The stealthy nature of these Trojans makes them hard to be identified before in-field
operation of the chip. Hence, runtime techniques serve as a last line of defense. The
state-of-the-art runtime detection techniques monitors functionally defined (semanti-
cally significant) signals to capture Trojan activation and these signals are vulnerable
to be masked by a rogue designer. We propose an anomaly detection technique based on
logic-level signals (semantically insignificant) that are hard to be masked by an adver-
sary at a 3PIP level. We could achieve high classification accuracy on the identification
of Trojan activation by monitoring the workload profile of a small number of flipflops
in the processor core.

All aforementioned techniques involve workload characterization of open-source processor
designs at logic level of abstraction. To accelerate the workload characterization, a Field-
Programmable Gate Array (FPGA) implementation of open source processor core was used
with cross-compiled workloads executed on the FPGA platform. We have used Leon3 [30] and
OpenRISC 1200 [31] processor designs along with SPEC [32] and MiBench [33] workloads.
For prediction model generation, python-based scikit-learn library [34] was used. In short,
the workload execution environment was developed on a real FPGA platform in addition to a
post-synthesis simulation environment that can carry out cycle-accurate workload simulations.

1.3 Outline

This chapter describes the motivation and contribution of this thesis. The rest of this thesis
is organized as follows:

Chapter 2 provides a brief description of each reliability and security challenge considered in
this thesis. The discussion spans from the basic physical effects governing the application-level
impact of the dependability issues to the state-of-the-art runtime techniques available in the
context of this thesis.

In Chapter 3, our methodology to cost-efficiently address the need for dynamic aging pre-
diction is presented. Our fine-grained aging monitoring scheme to analyze and compare the
aging stress of workloads during runtime is discussed. Offline prediction model construction
based on machine learning is explained with examples and the overhead of online monitoring
hardware is calculated. Further, space and time sampling techniques are described to reduce
power and area overheads of monitoring.
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Chapter 4 presents the worst-case scenario of circuit delay degradation due to static aging
and analyzes the impact on different processor designs. A low overhead runtime monitoring
scheme is detailed along with a mitigation scheme based on software subroutines. The lifetime
improvement due to the proposed monitoring and mitigation scheme is also reported.

In Chapter 5, a low overhead runtime soft-error vulnerability prediction schemes for memory
arrays and logic cores of a system is presented. The offline prediction model construction
based on two machine learning algorithms is discussed in detail. The overall design of the
online monitoring scheme to observe a small set of flipflops is explained with corresponding
overheads.

Chapter 6 discusses a scheme for the runtime prediction of hardware Trojan activation. An
anomaly detection technique based on monitoring the workload profile of selected circuit nodes
is presented. The prediction accuracy achieved on a Trojan-inserted open source processor core
executing several workloads is reported.

Finally, Chapter 7 concludes the thesis and a discussion on future implication of this work
is given.
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2 Background

In this chapter, the basic challenges to dependable hardware design in the age of aggressive
technology scaling and globalized chip fabrication are discussed. In the context of this thesis,
a brief introduction to dependability, various reliability and security challenges, and their run-
time impact are discussed. Furthermore, a brief introduction to machine learning techniques
is also provided.

2.1 Dependability Challenges: Overview of Hardware Reliability
and Security

A computing system is said to be dependable if it can be trusted with its intended functionality.
Dependability is the system property that integrates reliability, availability, safety, security and
maintainability [8]. The emphasis on these different attributes can be different based on the
underlying application. In the context of this thesis, security and reliability attributes are given
a higher emphasis, and the term dependability is used as a hypernym as shown in Fig. 2.1.

Dependability

Confidentiality

Integrity

Availability

Reliability

Safety

Maintainability

Security

Scope of this thesis

Figure 2.1: Illustration of the attributes of dependability in the scope of this thesis [8].

Fault Error Failure

Figure 2.2: Dependability threats and their causal relationship [8].

According to [8], security is defined as the concurrent existence of confidentiality, integrity
and availability. Confidentiality is satisfied only if there is no unauthorized disclosure of
information. Integrity demands no improper alterations to system state. Availability can
be described as the readiness of correct service. Reliability is termed as a measure of the
continuous delivery of correct service.
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2 Background

In addition to the different attributes of dependability as discussed previously, dependability
threats are manifested in the form of faults, errors, and failures as illustrated in Fig. 2.2. Fault
can be a physical defect on a device. An error in the functionality of a system can be caused by
a fault. If an external service is affected by the propagation of this error, a failure is said to be
occurred. In short, a fault produces an error, that in turn causes a failure. It can also happen
that a fault remains dormant or an error may not propagate based on other characteristics of
a system.

With a general overview of the different attributes and threats of dependability, we exam-
ine the specific reliability and security aspects tackled in this thesis. With technology scaling
advancement, a host of vulnerabilities affect reliability of VLSI designs. In a modern SoC
design, billions of transistors are packed in a single chip and this increases the complexity of
verification and test efforts. In addition, several transistor degradation mechanisms such as
aging cause slowing down of computations over time eventually leading to failures. Transient
soft errors, caused by radiations, are another reliability issue that can cause bit flips in circuit
nodes that can eventually propagate to cause system failures. The runtime dependence of
these reliability issues adds an additional layer of complexity that makes design-time solutions
inadequate. On the other hand, the globalization of chip design and fabrication stages in-
troduces serious security concerns. The possibility of malicious hardware inclusion in a chip
called hardware Trojan at any stage of design flow emerges as a major security threat for
government bodies and other customers of the chip. In the following sections, we present an
in-depth discussion on specific reliability and security challenges.

2.2 Reliability Challenges

Reliability R(t) is defined as the probability that a computing system performs correct func-
tionality for a given period of time t under specified conditions without any failure [35]. In
the realm of hardware design, sources of unreliabilities include aging of transistors, radiation-
induced soft errors, process variation, susceptibility to noise, and increasing complexities in
different hardware abstraction levels. The severity of these reliability issues on a particular
chip is largely dependent on the usage scenarios. To quantify the reliability of a system, dif-
ferent metrics such as Mean Time To Failure (MTTF) are used. The MTTF of a system is
the time for which the system is expected to operate without any failure.

In the context of this thesis, two reliability issues, (a) circuit aging phenomenon, and (b)
radiation-induced soft error are discussed in detail.

2.2.1 Circuit Aging
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Figure 2.3: NBTI Aging Models [36]
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Figure 2.4: Illustration of stress and recovery phases due to NBTI

Circuit aging refers to the various degradation or wear-out mechanisms that make circuits
less reliable over time leading to the occurrence of failures before the end of expected device
lifetime. The degradation mechanisms include Bias Temperature Instability (BTI), Hot Carrier
Injection (HCI), Time Dependent Dielectric Breakdown (TDDB) and electromigration (EM).
BTI, HCI and TDDB degrade the transistor characteristics. BTI causes an increase in the
threshold voltage of a transistor that is turned on. Both PMOS (by Negative Bias Temperature
Instability (NBTI)) and NMOS (by Positive Bias Temperature Instability (PBTI)) transistors
are prone to this effect in advanced technology nodes. This effect can necessitate additional
timing margin compromising performance of circuits to prevent early timing failures. HCI is
caused by the high lateral electric field due to drain-to-source voltage (Vds) of a transistor
leading to the penetration of gate oxide by high energy carriers. This leads to a degradation
in the threshold voltage of the transistor which eventually can cause timing failures. TDDB
causes degradation of gate oxide characteristics leading to a leakage path through the oxide.
In the worst case, it can cause a hard breakdown or permanent damage of the transistor.
Electromigration causes wear out of interconnects due to high current density causing timing
delays, open circuit or short circuit. In the context of this thesis, we describe BTI models and
the effect of BTI on circuit delay in detail.
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Figure 2.5: Comparison of ∆Vth due to D-BTI (duty cycle (α)=0.5) and S-BTI.

Bias Temperature Instability (BTI) is one of the major reliability threats in nanoscale tech-
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nology nodes. Although both PMOS and NMOS transistors are affected by Negative Bias
Temperature Instability (NBTI) and Positive Bias Temperature Instability (PBTI) respec-
tively, we limit our analysis to NBTI. NBTI can cause an increase in the threshold voltage (Vth)
of transistors along with a decrease in transconductance (gm) and saturation current (IDsat)
at negative gate voltages and elevated temperatures. The modeling of this phenomenon is
complicated due to a recovery phase that involves a partial recovery of transistor degradation
when a positive gate voltage is applied. The long-term effect of NBTI on a design is heavily
dependent on the type and history of stress due to the workload under execution.

NBTI can be explained using two different mechanisms, (1) Reaction-Diffusion (RD)
model [37, 38], or (2) Trapping/Detrapping (TD) Model [39, 40]. According to RD model,
increase in threshold voltage occurs due to the breaking of covalent (Si-H) bonds at interface
resulting in the generation of interface traps as illustrated in Fig. 2.3a. The increase in Vth is
assumed to follow a power law relation with the time under stress and an exponential relation
with the applied stress voltage.

The TD model proposes a fundamentally different phenomenon to explain the threshold-
voltage increase, i.e., the capture and emission of charge carriers by interface traps as illustrated
in Fig. 2.3b. The capture time constant determines the probability of trapping and emission
time constant determines the probability of detrapping. The threshold voltage increases grad-
ually with the change in number of occupied traps and hence, follows a logarithmic relation
in Vth shift. TD model assumes a logarithmic relation with stress time and an exponential
relation with temperature and stress voltage.

In short, both aging mechanisms assume a stress phase and a recovery phase for a transistor
under NBTI as shown in Fig. 2.4 based on the type of bias applied. During a normal workload
execution, the bias of a transistor alternates causing alternate stress and recovery phases. In
long term, the cumulative effect of NBTI heavily depends on the type of workload executed
on the design.

The Vth increase under dynamic stress estimated using a long-term NBTI model for time
duration t can be expressed as in equation 2.1 [41],

∆Vthd =

(
n2Kv

2αCt

ζ2t2ox(1− α)

)n
, (2.1)

where tox is the oxide thickness, ζ is the diffusion coefficient, α is the stress duty cycle, n is
the time exponent, typically 0.16, and Kv is a function of Vgs, Vth and temperature.

In short, since long-term NBTI effect (termed as dynamic BTI (D-BTI)) involves recovery
phases after most of the stress phases (stress duty cycle < 1), the overall effect on Vth and
thereby, on the circuit delay is minimal for a short duration of a few hours.

The worst-case increase in Vth, and therefore the circuit delay, occurs when there are con-
tinuous stress phases and no recovery phases (stress duty cycle = 1). This scenario, termed
as static BTI (S-BTI), induces accelerated aging. The Vth shift under static stress (∆Vths) is
given by equation 2.2 [41],

∆Vths =
(
Kv

2t
)n
. (2.2)

The Fig. 2.5 compares the threshold-voltage increase due to S-BTI and D-BTI. It can be
observed that the increase in Vth due to one week of D-BTI stress is equivalent to a few
seconds of S-BTI stress. In other words, circuits under S-BTI experience accelerated aging
stress and this scenario needs to be considered for worst-case timing analysis.

Aging-induced Timing Failures

The aging mechanism described in the previous section increases the threshold voltage of
transistors in a CMOS circuit. In the circuit level, the current driving capability of transistors
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are affected and it takes more time to charge the output capacitance of logic gates, eventually
leading to an increase in propagation delay of logic gates in a circuit. This is demonstrated in
Fig. 2.6 with the transfer characteristics of a CMOS inverter having an aged PMOS transistor.
Due to aging, the output signal (Vout) of the inverter achieves switching with an additional
delay (d). This aging-induced delay is a function of degraded threshold voltage of the transistor
and this relationship can be approximated as shown in equation 2.3 [42],

d ≈ C

(Vdd − Vth)σ
, (2.3)

where C and σ are technology parameters, Vdd is the supply voltage and Vth denotes the
threshold voltage of the transistor.

In a standard-cell based digital design, a hardware block is designed to be executed at a
specific clock frequency, which is a function of the worst-case delay of the circuit. A static
timing analysis (STA) [43] of the circuit is carried out to determine the worst-case delay of
a circuit and the path corresponding to the worst-case delay is termed as critical path. Due
to variations in fabrication process, and also due to the runtime variations, the critical paths
may change over time from pre-silicon to post-silicon and also during operational lifetime.
Hence, a large number of critical paths and near-critical paths need to be considered for aging
analysis during design-time. In this scenario, circuits are designed with an additional delay
margin termed as guardband to compensate for the variations in circuit delay expected to be
introduced by process variation and other runtime variations. This guardbanding technique
ensures reliable operation of circuits by compromising the attainable performance.
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As the aging mechanisms introduce additional delay in timing paths, some of the path
delays could get degraded over time leading to a timing violation causing timing failures. This
is illustrated in Fig. 2.7 when the aged CMOS inverter becomes part of a timing path. The
switching event at signal B is registered in the flipflop at the end of the timing path only if
the signal arrives before the latching window of the flipflop. When the delay increase in the
inverter causes a late switching at B with respect to the clock signal, flipflop registers a wrong
value causing a timing error or failure.
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Figure 2.8: The dependence of Vth on signal probability (SP) [44]

These delay degradations of timing paths are heavily workload dependent. The aging-
induced delay of a logic gate is a function of the fraction of time the input of the logic gate
remains at logic 1. The probability that a circuit node having a value of 1 is termed as the signal
probability (SP) of that circuit node. The dependence of threshold voltage degradation on SP
is illustrated in Fig. 2.8 [44]. For a processor design, the workload under execution determines
the SPs of internal circuit nodes and hence, the aging-induced circuit delay degradation.

Runtime Aging Monitors

Based on workload and runtime parameter variations such as temperature and supply voltage,
aging-induced critical path delay of circuits varies. Hence, it is important to monitor the delay
of a circuit over time to ensure reliable operation of the chip. Different aging monitoring mech-
anisms include in-situ sensors, silicon odometers, tunable replica circuits and representative
path-based monitoring.

� In-situ sensors: This method tracks the circuit delay in the presence of aging based on
modification of flip-flops which are located on the potential critical paths. Most of these
flip-flops double-sample the data, first on the normal clock, and then on a delayed clock
or by using a delay element. The sampled values are compared with a comparator to
analyze whether the delay degradation encroached on the guard band. An example of
an in-situ sensor called razor flipflop is shown in Fig. 2.9. Razor is employed for error
detection and correction of delay path failures [22]. A shadow latch controlled by a
delayed clock is employed along with a normal flipflop. A comparator compares the
values in the latch and flipflop for any error. The original value is restored from the
latch in case of a timing error.

� Silicon odometers: The beat frequency between a stressed Ring Oscillator Surrogate
circuit (ROSC) and a reference ROSC is used to capture the effect of aging in silicon
odometers [45]. The whole circuit is composed of two free-running ring oscillators
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Figure 2.9: Razor flipflop deployed in a timing path to monitor the delay and restore the correct value
in case of a timing error [22].

Figure 2.10: Illustration of BTI monitoring by measuring the beat frequency between two ring oscillators
with one of them under stress and the other used as a reference [45].

and a phase comparator as shown in Fig. 2.10. During normal operation of the chip,
one of the ROSCs is stressed with a voltage VDD STR and no stress is applied to the
reference ROSC. During measurement periods, both ROSCs are brought to VDD NOM .
The frequency degradation of stressed ROSC compared to the reference ROSC can be
translated to aging degradation.

Figure 2.11: Illustration of tunable replica circuits that can be tuned to match the delay of critical
paths for monitoring [46].

� Tunable replica circuits (TRC): A TRC has a digital delay sensor and it can be tuned
to match the delay of a critical path at test time. As shown in Fig. 2.11, TRCs are
composed of different logic stages such as inverters, NAND, NOR, pass gates and re-
peated interconnects to make the delay sensitivity similar to the critical path. TRCs
are inserted adjacent to each pipeline stage in a design to track the local critical-path
delays [46]. These are completely separated from the pipeline stages and hence, do not
cause performance reduction.

� Representative critical path based monitors: Monitoring based on representative critical
reliability paths (RCRPs) keeps a stand-alone circuit that is synthesized by identifying
shared delay segments between different critical paths. Workload of these selected
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Figure 2.12: Representative critical reliability paths showing representation of critical paths with or
without workload sampling [47].

delay segments can also be sampled to more accurately represent the critical reliability
paths [47]. As illustrated in Fig. 2.12, without workload sampling, the delay segments
can be connected together and the transitions can get propagated to induce aging in
RCRP. In the case of workload sampling, multiplexers and buffers are inserted to sample
workload impact such that the stand-alone RCRPs experience similar aging stress as
functional circuit.

Runtime Aging Mitigation Techniques

Since aging phenomenon is heavily workload dependent, several runtime techniques are used
to achieve aging mitigation or balanced aging of different hardware components. Advanced
task mapping can be employed on multi-core systems in order to balance aging of different
cores by mapping tasks based on their aging stress [48].

Along with task mapping, dynamic voltage and frequency scaling (DVFS) schemes can be
tuned for joint optimization of reliability and performance [49]. Aging-induced degradation
can also be recovered or frozen by allocation of idle intervals among cores. Hence, aging-aware
adaptive runtime task allocation can be used to target a lifetime requirement by setting a
proper idle/activity ratio. Dynamic cooling mechanisms can be used to reduce temperature
such that aging gets slowed down [50].

Adaptive voltage scaling and adaptive body biasing techniques can also be used to control
aging of circuits [51]. The current driving capabilities of two NBTI-stressed PMOS transistors
with and without adaptive body biasing are compared in Fig. 2.13 [20]. This illustrates that
the decrease in drive strength caused by NBTI can be compensated by tuning the body voltage
of transistors. Supply voltage is another parameter that can be tuned to reduce the NBTI-
induced aging rate. As shown in Fig. 2.14, the Vth degradation is higher for a higher supply
voltage (VDD).
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Figure 2.13: Illustration of the driving strength ((IDSp)) of two aging-stressed PMOS transistors, one
with and the other without adaptive body biasing [20].
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2.2.2 Soft Error

Soft error is defined as a transient error occurring in a computing system due to faults caused
by particle strikes. This can be caused typically by alpha particles from the packaging material
or neutrons from cosmic radiation. As shown in Fig. 2.15, a particle strike can generate large
number of electron-hole pairs in the substrate of a transistor. Based on the amount of charge
generated and a defined-parameter called critical charge for a circuit, an error might or might
not occur in a circuit. The critical charge (Qcrit) is defined as the minimum charge necessary
to cause a malfunction in a circuit [52]. If the charge induced by the particle strike reaches
above Qcrit, a bit flip can occur in the circuit and this wrong value can propagate to the output
of a system causing a malfunction or failure. Soft error rate is usually expressed in terms of
Failure-in-Time (FIT), i.e., number of failures in one billion hours (109).

With technology scaling, transistors become smaller, hold less charge, and hence, more
vulnerable to particle strike. On the other hand, shrinking sizes make it harder to get struck
by particles. The soft error rate of a particular device depends on how these opposite effects
interplay.
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Figure 2.15: Effect of alpha-particle strike on a transistor eventually leading to soft error.

Soft-Error-Vulnerability Estimation

A particle strike can cause a malfunction in a transistor’s operation that can result in a change
in the output of a logic gate or a bit flip in a latch or memory cell. During the execution of a
program, these bit flips can get masked and may not result in a user-visible error. To calculate
the probability that an internal fault results in an externally visible error, the intrinsic FIT
rate of a transistor needs to be derated by a number of vulnerability factors.

Architectural Vulnerability Factor (AVF) is defined as the probability that a bit-flip will
propagate to a user-visible output [53]. A higher value of AVF of a bit indicates its higher
vulnerability to cause a soft error. The circuit structures that need protection can be identified
by their AVF values. A bit flip in a branch predictor does not cause a user-visible error in a
program execution unlike a bit flip in a program counter. Hence, AVF of a branch predictor is
0% and AVF of a program counter is 100%. For other blocks such as instruction queue, AVF
can vary between 0% and 100% based on the workload under execution. The overall soft-error
rate (SER) of a chip can be defined as equation 2.4.

Overall SER = circuit-level SER×AVF (2.4)

A soft error can cause either a silent data corruption (SDC) in a circuit or a detectable
unrecoverable error (DUE). The former affects the data integrity of the system while the later
affects availability of the system. A silent data corruption (SDC) can be understood as an
error in the data output that the user cares about. In contrast, detectable unrecoverable error
(DUE) is defined as a detectable error that can cause a potential crash, however without any
data corruption that user cares about.

There are several methods to calculate AVF of a hardware block. Statistical fault injection
(SFI) is one of these methods that involves insertion of a large number of random faults in a
system and subsequent checking of the percentage of these faults propagated to the output as
an error [52]. To reach a statistical significance, the number of simulations required for SFI is
quite large.

In the context of this thesis, we describe two soft-error vulnerability estimation techniques,

� Architecturally Correct Execution (ACE) analysis for addressable structures
such as memory blocks

� Error Probability Propagation (EPP) Analysis for logic blocks such as pipeline
stages.

Architecturally Correct Execution (ACE) analysis estimates vulnerability of a bit based on
the fraction of clock cycles that bit needs to be correct for error-free program execution [54].
For a program execution of 1 million cycles, let us assume that a bit needs to be correct for
only 0.3 million of cycles for the error-free execution of a program. During the remaining 0.7
million cycles, if an erroneous value of the bit does not affect the program output, then the
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AVF of the bit is 0.3. The bit is termed as ACE bit for the 0.3 million cycles where a correct
value is required and as an unACE bit for the remaining 0.7 million cycles. In short, a bit
is ACE for a specific clock cycle if the bit can potentially propagate to the output and result
in an error. The AVF of any hardware structure can be calculated based on ACE analysis.
The AVF of a memory cell is the fraction of time the cell contains an ACE bit. The AVF
of a memory block is the average AVF of all the bits in the memory block. For a hardware
structure with N bits, AVF is defined as in equation 2.5 [52].

AV Fstructure =

N∑
j=0

ACE clock cyclesj

N × Total clock cycles
(2.5)

To estimate the soft error vulnerability of sequential logic blocks, a method based on error
propagation probability is used [55]. A faulty value needs to propagate through combinational
logic gates and needs to get latched by a flip-flop in order to be considered as an error. Hence,
two levels of masking factors need to be considered in this scenario, (1) logic derating and (2)
timing derating. Logic derating accounts for the probability that a glitch passes through the
combinational logic gates and reaches at the input of a flipflop. Timing derating represents the
overlap of the erroneous transient with the latching window of the flipflop such that a wrong
value gets latched. The soft error rate of a node where the glitch originates can be determined
as in equation 2.6

SERnode = Nominal FIT× Logic Derating× Timing Derating (2.6)

, where Nominal FIT represents the technology-dependent raw soft-error rate.

The vulnerability factor or derating factor for a sequential logic block can be estimated as
the product of probability of propagation from the node of origin to a flip-flop and the latching
probability.

Impact of Runtime Masking Effects and Workload Execution

The particle strikes cause a bit flip or a wrong logic gate output and this erroneous value might
not propagate to a user-visible output due to several masking effects. These masking effects
can act at different levels of abstraction such as logic, architecture or application.

The masking mechanisms at different levels of abstraction is discussed below.

1

0

0
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1

Figure 2.16: Illustration of logical masking or propagation of transient pulse from the input of a logic
gate for different input combinations.

� Gate-level Masking: The gate-level masking mechanisms include logical, electrical and
latching-window masking. Logical masking occurs if the erroneous value reaches to the
input of a logic gate that do not have a role in determining the output (e.g. 0 as input to
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an OR gate). Logical masking depends on the circuit topology and input since different
logic paths are activated for different set of inputs [56]. The masking of transient pulse
by different logic gates is illustrated in Fig. 2.16. For an AND gate, a transient pulse at
one of the input gets masked if the other input is logic 0. For an OR gate, a transient
pulse at one of the input gets masked if the other input is logic 1.
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Figure 2.17: Illustration of electrical masking in the form of several stages of transient pulse attenuation.

Electrical masking occurs if the transient pulse gets attenuated before reaching the
input of the flip-flop. This masking depends on the gates through which the transient
propagates. As shown in Fig. 2.17, the transient glitch gets attenuated after propagating
through a logic gate. This attenuation can eventually result in a masking while passing
through several logic gates in the path before reaching the input of a flip-flop.
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Figure 2.18: Illustration of latching-window masking where the transient pulse reaches outside the latch-
ing window of a flipflop.

Latching-window masking occurs when the propagated transient pulse reaches the input
of a flipflop outside its latching window and hence, gets masked. To get stored in a
flipflop on a specific clock cycle, the input signal should arrive at that clock edge within
a time window shown as latching window in Fig. 2.18.

� Architectural and Application-level masking: In an architectural scope, an erroneous
bit can get masked if it is written before being read. In application-level masking, an
error bit in an instruction operand gets masked if a multiplication by zero is performed.

The masking of an error heavily depends on the workload under execution. The vulnera-
bility of a processor to soft errors can vary across different workloads or even across different
workload phases [57]. Hence, it is desirable to activate expensive protection mechanisms during
high vulnerability phases and turn-off or switch to low protection mode during low vulnera-
bility phases.

Soft Error Reduction Mechanisms

There are several device-level and circuit-level modifications that can help in reducing soft-
error vulnerability of hardware blocks. However, these techniques cannot be adapted according
to variations in vulnerability during runtime. Hence we look into dynamic runtime techniques
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that can be tuned to achieve low or high protection according to the instantaneous vulnerability
of the chip.

� Redundant Multi-Threading (RMT) [52]: This technique involves redundant execution
of two identical threads for some time frame and the outputs are compared for any
differences in the micro-architectural states. This technique provides excellent fault
detection coverage at the cost of high performance overhead.

� Instuction Queue (IQ) squashing [58]: The scheme involves squashing of instructions
that sit in vulnerable storage structures for longer durations. In the case of an instruc-
tion queue, a cache miss can cause instructions to reside for longer periods of time and
hence, need to be squashed to lower the vulnerability.

� Adaptive Checkpointing and Restart: For efficient failure management, a checkpointing
scheme at an adaptive rate can be used on the basis of failure history [59]. This scheme
uses application replication and adapt the checkpoint period based on current failure
rate.

2.3 Security Challenges

The hardware-part of a system was traditionally considered as a root of trust unlike its soft-
ware counterpart. However, hardware-based vulnerabilities emerged due to the distributed,
globalized and multi-step characteristics of IC design cycle [11]. In the supply chain, there are
various entry points for an adversary to break the trust. It can occur during purchase of intel-
lectual property (IP) cores from third-party design houses, fabrication in untrusted foundries
or usage of third-party test facilities. The adversary can cause security issues in several ways
by intruding the semiconductor supply chain. Stealthy malicious logic in the form of hardware
Trojans can be inserted in a chip that can only get activated when a very rare combination
of events occur which makes it extremely hard to detect. IP piracy is another attack where
an adversary pirates the IP and illegally claims ownership of it. An untrusted foundry can
manufacture excess copies of an IC and sell them illegally. Reverse engineering is another
problem where an untrusted foundry extracts the design to the desired abstraction level. In
addition, there can be side-channel attacks that extract secret information from a chip by lis-
tening to several physical parameters such as power consumption, electromagnetic emanations
and photonic emissions. IC counterfeiting involves selling of illegally forged components by IC
vendors. In the context of this thesis, we describe hardware Trojans in detail.

2.3.1 Hardware Trojans

With increasing complexity of semiconductor design, higher time-to-market pressure and in-
creasing expenses, hardware firms have moved away from the vertical manufacturing model,
where design specification to delivery was carried out in-house [60]. Many of these intermedi-
ate steps are outsourced in the current horizontal manufacturing model, and there are security
issues arising from untrusted third-party design houses and foundries. An untrusted foundry,
a computer-aided-design (CAD) tool, or a rogue designer at an IP design house can insert an
additional hardware block, which can disrupt the functionality of a system after long in-field
operation. This malicious circuitry is termed as a hardware Trojan that can be stealthy, and
hard to get activated during chip testing or verification phases.

Trojan Architecture with Trigger and Payload

A functional hardware Trojan will have a trigger part and a payload part as shown in Fig. 2.19,
where the payload modifies an internal signal A to A′ when the trigger logic is activated. The
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Figure 2.19: Illustration of a hardware Trojan architecture with a trigger logic and payload.

trigger logic activates the payload when a specific input vector is applied or the system enters
a specific state. This activation condition can have very low probability to occur and this
keeps the Trojan dormant under normal workload execution. Once the trigger is activated,
the Trojan payload manifests as a change in the internal values of the hardware that can cause
an information leakage, a denial of service (DoS) or a degradation in performance.

Trojan Taxonomy

Hardware Trojan designs are classified based on several features such as their insertion phase,
abstraction level, activation mechanism, effects and location. The detailed taxonomy as shown
in [61] is illustrated in Fig. 2.20. A short description of each characteristic is given below.

� Insertion Phase: Trojans can be inserted at various stages of the IC design cycle. In the
specification phase, design constraints or functional specification can be altered. In the
design phase, Trojan can be included as a part of third-party IP blocks or standard-cell
designs. During fabrication phase, masks can be tampered or fabrication parameters can
be altered to accelerate failure mechanisms. Untrusted IC testing can weaken Trojan
detection probability by altering test vectors or by ignoring strategic faults. During
assembly and packaging phase, the printed circuit board (PCB) on which the tested
chip is deployed can have wires that are intentionally manipulated to leak side-channel
information.

� Abstraction level: Trojans can also be classified based on the abstraction level at which
they can be inserted. In the system level, the communication protocols and intercon-
nections can be affected. In the development environment, a compromised CAD tool
or an altered script can inject Trojans in designs. Each functional block in the form
of registers and signals can be accessed at the register-transfer level and hence, a rare
functional deviation of a module can be crafted in this level. In the gate level, the
whole design is an interconnection of millions of gates and hence, Trojans with a small
footprint can be inserted by adding a few extra logic gates. The power and timing
characteristics of a circuit can be altered by modifying device sizes at transistor level.
In the physical level, width of metal layers can be manipulated to achieve malicious
effects.

� Activation Mechanism: Trojan classification can also be carried out based on how they
get activated. There are always-on Trojans, and Trojans getting activated only when a
specific trigger condition becomes true. This trigger condition can be activated inter-
nally or externally.
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Figure 2.20: Hardware Trojan Taxonomy based on different characteristics of Trojans [61]

� Effects: A Trojan can belong to a specific class based on its effect or payload. The Trojan
activation can change the functionality of the chip, downgrade the chip’s performance,
leak sensitive information or cause the chip to be unavailable for a user.

� Location: The location at which a Trojan is inserted can also vary, and this can be
another criterion for classification. Trojan can be embedded into a processor core as
part of one of its pipeline stages. It can lead to a change in the manner in which some
of the instructions get executed. Trojans in memory blocks or their interface units
can prevent access to certain memory addresses or cause data corruption. The chip’s
peripheral components can be manipulated to alter the data communication between a
processor and external modules.

� Power Supply: The manipulation of the required supply voltage to the chip can cause
more failures.

� Clock Grid: The clock grid can be manipulated to introduce clock skew, jitter or change
the frequency to targeted components.

Trojan Detection Methods

Several measures can be taken to maintain a chain of trust to prevent Trojans at various
levels [62]. However, it is not possible to conclude that an integrated circuit is Trojan-free.
Traditional test and verification methods target the original functionality of the design corre-
sponding to the specification. The design is not tested for functionalities outside the specifi-
cation and hence, Trojans can exist without getting exposed in these stages. In this scenario,
specific hardware Trojan detection methods are needed in addition to traditional test and
verification methods.

In general, there are destructive and non-destructive techniques to detect Trojans [63]. In
destructive techniques, a chip after fabrication is reverse-engineered by delayering, imaging and
analysis. The gate-level netlist can be recovered through this process, and a fingerprint based
on power, temperature and electromagnetic profiles is created. The profiles of other chips
are compared with the fingerprint of the reverse-engineered chip to detect Trojan signatures.
Non-destructive Trojan detection techniques can be classified into invasive and non-invasive.
Non-invasive techniques do not make any design alterations. Invasive techniques add additional
circuitry in the existing design to aid Trojan detection.

Non-invasive techniques involve comparison of the characteristics of a chip with a golden
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model. This can be carried out during test or after deployment. Some of the specific techniques
used in this category are discussed below.

� Runtime Detection: Runtime detection approaches are considered as the last line of
defense against Trojans, which are hard to get activated during pre-silicon and test-
ing phases. There are techniques to monitor the real functionality of chips during
runtime [64]. When a deviation in normal functionality is detected, appropriate coun-
termeasures can be triggered. In addition, verifiable hardware guard modules are used
to monitor the functionality of a processor with periodic checks [65].

� Logic Testing: In logic testing techniques, statistical generation of advanced test vectors
is carried out to maximize the triggering probability of Trojans. Trojans are hard to be
activated if inserted in circuit nodes with low controllability and observability. Hence,
test vectors are generated to increase the toggling rate of nodes, such that it improves
the probability of Trojans to get activated compared to random patterns [63].

� Side-Channel Analysis: The extra logic inserted as part of Trojan circuitry can affect
path delays, current transient or power consumption of the chip. These effects caused
by Trojan circuit can be captured by measuring these physical parameters through side-
channel analysis. The main challenge is to differentiate the effect of a Trojan from that
of process variation.

2.4 Machine Learning Basics

The increasing complexity of hardware designs, and the complex dependence of several re-
silience mechanisms on the usage pattern of the ICs in the field of operation make determinis-
tic modeling of these mechanisms inaccurate. Hence, data-driven modeling based on machine
learning algorithms emerges as a potential alternative to generate prediction models in the
field of reliability and security. In this context, a description of relevant machine learning
algorithms and methods are discussed.

Based on the form of data available for learning, learning methods can be classified into
supervised and unsupervised. In supervised learning, a function, mapping the input and
output variables, is inferred from data samples that are labeled with the class they belong to.
Unsupervised learning is used for extracting patterns in a set of data samples that are not
labeled.

2.4.1 Supervised Learning Techniques

In supervised learning, data samples are annotated with the corresponding class labels that are
meant to be predicted for unseen samples. Supervised learning algorithms can be attempted
to solve classification or regression problems. In classification, each sample belongs to a class
and the prediction model is generated to predict the class of a sample from the feature values
of the sample. In a regression problem, the prediction output is a real value instead of a label.
In the context of this thesis, two supervised learning algorithms are discussed in detail, (1)
Support Vector Machines, and (2) Decision Trees.

Support Vector Machines

Support Vector Machines (SVMs) belong to the class of supervised learning techniques that can
be used for both classification or regression problems. SVMs construct a hyperplane or a set of
hyperplanes to separate data samples belonging to different classes. If the data is not linearly
separable, a kernel trick is used with specific functions to map the data samples to a higher
dimensional space, where the samples can be linearly separated. The different kernels used
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Maximum-margin
hyperplane

Support Vectors

Figure 2.21: Illustration of linear two-class classification with maximum-margin hyperplane in support
vector machines.

in SVM include polynomial function, Gaussian radial basis function, and hyperbolic tangent
function. SVMs are efficient in high dimensional space, and also are memory efficient.

For a classification problem involving two classes, the training data set of n samples with m
feature dimensions can be expressed as pairs in the form (Xi, yi)

n
i=1, where Xi denotes feature

vector with features x1, x2, ..xm, and yi denotes the target class label for each corresponding
sample Xi. The objective is to find the optimal hyperplane that separates the data points
in these two classes with maximum margin. The data samples that are used in defining the
hyperplane are called support vectors.

With these set of data points, a hyperplane wX + b = 0 as shown in Fig. 2.21 needs to be
found that maximizes the distances between the hyperplane and the nearest data points to
both classes. Two other lines are shown with equations w ∗ X − b = 1 and w ∗ X − b = −1
such that the region marked by w ∗ X − b ≥ 1 belongs to class 1 and the region marked
by w ∗X − b ≤ −1 belongs to class 2. The distance between these two lines is 2

||w|| , and the
maximum-margin hyperplane lies in the middle of these two lines. The problem of classification
can be formulated as an optimization problem, i.e., minimizing ||w|| subject to yi(w∗Xi–b) ≥ 1
for i = 1, 2, ..n.

For non-linear classifications, different kernel functions are used to map the data points to
a higher dimensional space. SVM-based estimators can be generated by selecting appropriate
kernels, kernel parameters and a soft margin parameter (C). There is a trade off between
maximizing the margin and minimizing the training error and this can be controlled by tuning
value of C. Increasing the value of C can provide better accuracy over training data, but
this may cause overfitting or poor generalization performance on unseen data. In radial basis
kernel, the influence of a single training sample can be controlled by gamma parameter.

Decision Tree Learning

A learned model can be represented by a decision tree, and it approximates a discrete-valued
function to make a prediction on the target value. Classification of a data sample is achieved
by traversing the learned tree from the root node to one of the leaf nodes based on the attribute
tests given at each node split. Decision trees can also be used to solve regression problems,
where the prediction target can take real values.
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Learning is achieved by deciding the best attribute test to split at each node starting
from the root node. The quality of split is estimated based on different metrics such as Gini
impurity or information gain [34]. Information gain is based on the concept of entropy. The
decision is made by calculating the entropy of training data, and estimating information gain
achieved by each split. Information gain can be considered as the reduction in entropy due
to a specific attribute split, and the attribute that causes maximum reduction in entropy
(maximum information gain) will be selected for splitting the root node. This is repeated until
the leaf nodes are reached.

A decision tree based on the example given in [66] is shown in Fig. 2.22. The four attributes
in this 14-point data set are outlook (sunny, overcast, rain), temperature (hot, mild, cool),
humidity (high, normal), and windy (weak, strong), and the target variable is playTennis
with binary (yes or no) values. The entropy (H) of a collection of samples S with positive
and negative labels can be represented as equation 2.7,

H(S) = −
n∑
i=1

pi log2 pi = − log2 p+ − log2 p− (2.7)

where p+ represents the fraction of positive samples in S, and p− represents fraction of
negative samples in S. The entropy of the 14-sample data set with nine positive and five
negative samples can be represented as equation 2.8.

H(S(9+, 5−)) = − 9

14
log2

9

14
− 5

14
log2

5

14
= 0.940 (2.8)

The core of learning using decision trees lies in deciding which attribute to be selected
to split each node in the tree. To decide between the attributes Humidity and Wind, the
information gain (IG) of both attributes are calculated as the reduction in entropy caused by
the split as in equation 2.9 [66],

IG(S,A) = H(S)−
∑

ν∈Values(A)

|Sν |
|S|

H(Sν) (2.9)

where V alues(A) denotes the set of values that attribute A can take, and Sν is the subset
of S for which attribute A has the value ν.

With the attribute Humidity, the data set S[9+, 5−] is split into a subset S1[3+, 4−] for
Humidity = High, and S2[6+, 1−] for Humidity = Low. With the attribute Wind, the
data set S[9+, 5−] is split into a subset S3[6+, 2−] for Wind = Weak and S2[3+, 3−] for
Wind = Strong.

Outlook

Wind
Humidity

Sunny Rain
Overcast

Yes

High Normal
Strong Weak

YesNo
YesNo

Figure 2.22: Illustration of a decision tree demonstrating a two-class classification [66].
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Figure 2.23: Illustration of information gain comparison between two attributes [66].

The information gain in the case of these two splits illustrated in Fig. 2.23 can be calculated
as in equation 2.10 and equation 2.11 [66].

Gain(S,Humidity) = 0.940− 7

14
0.985− 7

14
0.592 = 0.151 (2.10)

Gain(S,Wind) = 0.940− 8

14
0.811− 6

14
1.0 = 0.048 (2.11)

Since Gain(S,Humidity) is higher, Humidity is chosen over Wind to decide splitting of
the root node.

The decision-tree based models are interpretable white box models. However, they are
prone to overfitting and hence, techniques such as pruning are required to reduce overfitting
with smaller tree size.

2.4.2 Unsupervised Learning Techniques

Unsupervised learning techniques are used when the training data has a set of feature vec-
tors with no target values. In this case, the objective is to find similar groups in the data
(clustering), discover distribution of data in the input space (density estimation) or reduce
dimensions (dimensionality reduction) of the data [67]. Clustering involves grouping of data
samples into clusters such that a sample is more similar to the cluster it is assigned than the
other clusters. In the context of this thesis, a popular clustering technique called k-means
clustering is described in detail.

K-means Clustering

The objective of k-means clustering is to find clusters and cluster centers from an unlabeled
data set. Starting with a fixed number of clusters, k-means minimizes within-cluster variance
by iteratively moving the cluster centers [68].

The steps followed in k-means after fixing an initial set of cluster centers are as follows [68].

� For each cluster center, identify the set of data points lying nearer to that center com-
pared to other cluster centers.

� the mean of data points in each cluster is calculated, and this mean becomes the new
cluster center for each corresponding cluster.

These two steps are repeated until convergence. The initial cluster centers are randomly
chosen. Since it falls into local minima, the whole process is repeated several times to develop
better models.
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2.4.3 Ensemble Techniques

Ensemble learning involves employing multiple estimators for a prediction model. In this way,
the combined prediction performance will be better than the prediction performance of any
individual estimator. According to the methods in which the base learners are combined,
ensemble learning can be divided into bagging, boosting and stacking. The two steps in
ensemble learning are (1) generating multiple base learners, and (2) combining these base
learners to form the composite predictor [68].

In bagging, several base learners are generated from bootstrapped samples of training data
independently, and a combination of their predictions is used as the final output as shown in
Fig. 2.24. In most cases, the average of the estimator outputs is taken as the final output.
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Figure 2.24: Illustration of bagging technique.

In boosting, a sequential generation of base learners is followed. The initial learner can be
simple, and the subsequent learner is trained upon the training samples that are inaccurately
predicted by the initial learner. This sequential process of generating estimators is illustrated
in Fig. 2.25 with each estimator giving higher weight for samples inaccurately predicted by the
previous estimator. A weighted average of the estimator outputs is used as the final prediction.
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Figure 2.25: Illustration of boosting technique.
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2.4.4 Feature Selection

In learning problems, the target variable may be determined by only a subset of the input
features. In this case, if irrelevant features are used in function approximation, the model
complexity increases, and this leads to overfitting. In addition, the computational cost of
prediction will increase with more number of features. Hence, it is desirable to select only
those features that are involved in a functional relationship between inputs and output. Feature
selection techniques are classified into filter and wrapper methods. Wrapper methods generate
a prediction model on a subset of training data, and estimates the error rate to decide the
performance of the feature subset. This is a computationally intensive process. Filter methods
employ metrics such as correlation coefficient or mutual information to eliminate irrelevant
features at low computational cost. Some of the feature selection techniques are discussed
below.

� variance threshold [34]: The variance of each feature is calculated, and the feature is
eliminated if the variance is below a threshold value. A feature of zero variance has no
information.

� univariate feature selection [34]: This technique selects the relevant features based on
univariate statistical tests. The input features that possess strong statistical correlation
with the output variable are selected.

� recursive feature elimination [34]: An initial model is generated with all features and
the importance value of each feature is estimated based on feature coefficients. The
least important feature is eliminated, and then the model is again constructed with
the remaining features. This process is repeated until the required number of features
remains.

2.5 Summary

In this chapter, a background of dependability along with the major attributes and threats
are discussed. The reliability challenges, the impact on circuit timing and soft error vulnera-
bility, and various reliability monitoring and mitigation techniques are explained. Afterwards,
security challenges are discussed with an emphasis on hardware Trojans. Finally, a brief in-
troduction on machine learning terminologies and algorithms is provided in the context of this
thesis.
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3 Dynamic Aging Monitoring and Delay
Prediction

3.1 Overview

Run-time solutions based on online monitoring and adaptation are required for resilience in
nanoscale integrated circuits, as design-time solutions and guard bands are no longer suffi-
cient. Bias Temperature Instability (BTI)-induced transistor aging, one of the major reliabil-
ity threats in nanoscale VLSI, degrades path delay over time and may lead to timing failures.
Chip health monitoring is, therefore, necessary to track delay changes on a per-chip basis
over the chip lifetime operation. However, direct monitoring based on actual measurement of
path delays can only track a coarse-grained aging trend in a reactive manner, not suitable for
proactive fine-grain adaptations.

In this chapter, we propose a low cost and fine-grained workload-induced stress monitoring
approach, based on machine learning techniques, to accurately predict aging-induced delay.
We integrate space and time sampling of selective flip-flops into the runtime monitoring in-
frastructure in order to reduce the cost of monitoring the workload. The prediction model is
trained offline using support-vector regression and implemented in software. This approach
can leverage proactive adaptation techniques to mitigate further aging of the circuit by moni-
toring aging trends. Simulation results for realistic open-source benchmark circuits highlight
the accuracy of the proposed approach.

The rest of the chapter is organized as follows. Section 3.2 introduces the work in detail,
presents a motivation and also lists the contributions. Section 3.3 overviews related prior work.
Section 3.4 describes the overall methodology underlying aging monitoring and prediction. Sec-
tion 3.5 presents the method used for designing and training the prediction model. Section 3.6
explains the online stress-monitoring technique used for aging prediction. Experimental results
are presented in Section 3.7. Finally, Section 3.8 summarizes the chapter.

3.2 Introduction, Motivation and Contributions

Design-time solutions and guard bands for resilience are no longer sufficient for integrated
circuits (ICs) fabricated at nanoscale technology nodes. This is due to large variations in
the fabrication process, workload, and working conditions, which makes design-time solutions
inefficient and impractical [69, 70]. Therefore, there is a need for run-time solutions based
on real-time monitoring and adaptation. Chip manufacturers incorporate dynamic adapta-
tion strategies such as voltage/frequency scaling, body biasing, and thermal management in
response to slow-down due to aging, high temperature, current surge, process variations etc.,
but the adaptation policies are static. The decisions taken in response to system behavior are
“hard-coded”, e.g., in look-up tables, boot ROM, firmware, etc.; hence, today’s adaptation
methods are more reactive than predictive, and there is no solution available to train the
adaptation policy dynamically in response to changes in chip behavior.

Most existing delay monitoring schemes can only support reactive aging mitigation tech-
niques [22, 71, 72]. A reactive mitigation approach can be too late to prevent the occurrence
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of a system failure. Hence, there is a need for proactive aging mitigation where suitable adap-
tation actions are adopted in advance. An ideal proactive delay monitoring technique should
be capable of capturing fine-grained aging trends, i.e., monitoring aging trends in the scale
of typical workload phases (in the order of milli/micro seconds). Some of the existing proac-
tive techniques require the system to be physically aged in order to capture the aging trends
[71, 73]. The time-constant for aging is in the order of weeks or months. Hence, these methods
cannot be used for fine-grained aging monitoring to support proactive aging mitigation.

The design of an effective aging-aware delay monitoring scheme for proactive aging mit-
igation is challenging for two reasons: (i) it is impractical to accurately measure the delay
degradation of a circuit over a short time period. This is because traditional delay monitoring
sensors track path delays, and the path-delay degradation for a short time period is too small
for these sensors to capture, i.e., they can only track coarse-grained aging trends; (ii) degrada-
tion rate depends on the currently running workload and working conditions. In other words,
different workloads can degrade the timing of various circuit paths differently and the sensors
placed during design time cannot capture this workload effect.

In this chapter, we present a method to perform low-cost and fine-grained workload-induced
stress monitoring for accurate aging-induced delay prediction. The key idea here is to track
recent circuit activity and extrapolate these trends to activate different mitigation measures,
which include task migration [74], dynamic voltage and frequency scaling (DVFS) [75], adaptive
body biasing (ABB) [76], and core power gating [75], based on the severity of the captured
stress. This approach involves the ranking of workloads or workload phases based on their
aging-stress severity. This ranking can then be used to activate aging mitigation techniques
proactively. Note that the aging computation and prediction in this work are made on the
basis of aging projection. The circuit is simulated with a representative workload for a short
time period and the extracted behavior of the circuit is then extrapolated to estimate the aging
trends. The workloads are then ranked based on these trends.

It has been shown that the impact of workload on aging can be computed on the basis
of the gate-level signal probabilities (SPs) [77]. However, it is computationally impractical
to simulate large designs at the gate-level on a cycle-by-cycle basis for realistic workloads.
In addition, online monitoring of circuit node SPs of a large design with millions of gates is
impractical due to area and power overhead constraints. We show in this chapter that, to rank
workloads in terms of severity of aging, we can also use the SPs of a small set of flip-flops as a
surrogate measure of signal probability. These flip-flops are chosen at design time by carefully
studying the correlation between aging and flip-flop SPs for representative workloads. We
utilize Support Vector Machines (SVM) to develop a predictive model for estimating aging
based on SPs. This model is subsequently utilized at run-time as a software thread to evaluate
the online workload-induced aging-stress severity. Moreover, the monitoring of a small set
of flip-flops reduces the hardware cost of monitoring and is computationally less burdensome
since not all flip-flops in the design need to be monitored at runtime. Furthermore, we propose
a technique to sample these selected flip-flops infrequently in order to reduce power overhead.

Our experiments on two embedded processors running realistic workloads show that the
accuracy of the proposed aging prediction method is extremely high (the prediction is nearly
perfect), even in the case when the prediction is based only on the SPs of 0.64% of the total
number of flip-flops. The key benefits of the proposed aging prediction method are listed
below: (i) Proactive: the aging trend is predicted before a measurable delay degradation
happens, hence countermeasures can be considered in a timely manner (ii) Accurate: the
simulation results show that the correlation coefficient of actual aging trends and predicted
aging trends is extremely high (higher than 0.9, where 1.0 indicates perfect correlation), (iii)
Low overhead: since the proposed technique is based on the SP values of a small set of
flip-flops, it imposes minimal area and power overhead.
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A space-sampling approach is proposed that selects a small set of flip-flops offline based
on their aging information; only these flip-flops are monitored during runtime. We introduce
two different techniques to achieve space sampling: (1) correlation-based and (2) fan-in cone-
based flip-flop selection. We advocate the fan-in cone-based method as the preferred approach
because of its lower offline-characterization requirements.

3.3 Related Work

Worst-case guard-bands have been used in industry for many years. Designers use this con-
servative approach to ensure that circuits will operate under worst-case temperature, voltage,
and workload conditions [78][79]. However, these worst-case assumptions are too pessimistic
and hence, performance of the circuits are significantly compromised [71][80]. In addition, due
to statistical behaviour of aging mechanisms, similar devices may age differently even for the
same environmental and workload conditions, which makes aging in the field even less pre-
dictable [81]. Finally, guard bands cannot keep up with aging challenges in newer technologies
[82][83].

An alternative approach for achieving resilience is referred to as on-line circuit failure pre-
diction. This approach predicts the occurrence of a failure before errors actually occur [71].
Prediction requires information collection in real time on temperature, signal activity, signal
delay, etc, and analysis of the data. Such information is usually collected through ring os-
cillators, temperature sensors, delay sensors, and special circuit structures. Circuit failure
prediction can be used to take actions to prevent the chip from failing, and these actions are
collectively referred to as on-line self-healing [84][85].

Dynamic reliability management (DRM) techniques were proposed in [86][87].

In [88], the processor uses runtime adaptation to respond to changing application behavior
to maintain its lifetime reliability target. In [89], architectural-level models were developed for
lifetime-reliability-aware analysis of applications and architectures. In [90], selective redun-
dancy is applied at the micro-architectural level. The method proposed in [91] slows aging
through application scheduling and voltage changes at key moments. In [92], the processor
relies on compute cycles in which computations get finished early under higher supply voltages,
followed by idle cycles that provide relaxation to recover from aging.

Dynamic adaptation is often implemented through the use of embedded lookup tables
(LUTs). The adaptation policies are encoded and stored in the LUTs, but they are predeter-
mined at design time. A representative LUT-based adaptation policy was proposed in [93].
When a hardware unit changes its state from standby to active mode, the power-management
unit fetches a codeword from the LUT, which is provided as input to the adaptive body-bias
controller. Another LUT-based technique adjusts the power-supply voltage and body bias to
compensate for aging [94]. In [95], a LUT stores, on a case-by-case basis, the optimum values
of body bias, supply voltage, and clock frequency to compensate for droop and temperature
variations. In [73], a built-in proactive tuning (BIPT) system was proposed, based on a canary
circuit that generates predictive warning signals. In [96], the authors proposed control policies
to achieve better energy efficiency and lower cost than worst-case guard-banding. Dynamic
cooling was introduced as an additional tuning parameter.

A number of the above methods have been adopted for industrial circuits. In [97], the de-
sign of a Texas Instruments 3.5G baseband and multimedia applications processor is presented.
This SoC consists of multiple independently controlled power domains that use dynamic volt-
age/frequency scaling and adaptive voltage scaling. In addition, it implements adaptive body
biasing [95]. In [98], runtime adaptation techniques are described for Intel’s Itanium architec-
ture microprocessor. The core supply voltage and clock frequency are dynamically modulated
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Figure 3.1: The difference in ∆Dmin at different time points in the lifetime of a circuit.

in order to maximize performance within the power envelope [99]. In [100], the SmartReflex
power-management techniques implemented on the OMAP3430 Mobile Multimedia Processor
are presented. Active power reduction is achieved through aggressive voltage/frequency scaling
and process compensation.

To enable adaptive aging mitigation, online monitoring of circuit degradation is required.
State-of-the-art monitoring methods include in-situ sensors [22][71], tunable replica circuits
[72], and representative critical reliability path based monitoring [101]. However, these moni-
toring methods suffers from three problems: (i) additional hardware or design modifications,
which are undesirable due to their associated area and power overhead, (ii) intrinsic conflict
between the accuracy of the method and hardware overhead, and (iii) existing techniques can-
not track short-term aging trends, since they are designed to capture an aggregated measure
of the degradation when a significant delay increase takes place. Therefore, the mitigation
techniques based on these monitoring systems are reactive. Proactive aging mitigation has
been advocated as a promising approach that can be more effective than reactive techniques
[71, 73].

The proposed method is conceptually different from any critical-path based aging prediction
method [101, 102]. During the online phase, critical-path monitoring methods rely on aging
sensors. These sensors measure the actual path-delay increase, which typically occurs in longer
time-scales. Even if high-resolution aging sensors [103] are used to capture the aging rate, the
circuit delay needs to increase at least a few pico seconds in order to be detectable. The
duration required for this minimum aging-induced delay increase (∆Dmin) is typically in the
scale of days or weeks. In addition, circuit aging has a logarithmic relationship with time, i.e.,
the rate of circuit delay degradation decreases over time. Hence, the sensors cannot provide
aging-rate information within an acceptable time for mitigation actions. Fig. 3.1 shows ∆Dmin

at different points of time in a three-year operation of the circuit. It implies that an aging
sensor of resolution 1 ps requires around 44 days to capture a delay increase in a processor
operating at 1 GHz after three years of operation. Since the circuit is closer to a timing
failure after three years in comparison to its initial state, this significant increase in ∆Dmin is
unacceptable for any aging mitigation technique.

In contrast, our method evaluates the aging stress imposed by the workload-under-execution
which does not require the physical aging of any of the critical paths. The flip-flops are tracked
online to capture the characteristics of the workload, and we obviate the need to track the
physical delay increase of the corresponding circuit path. As a result, we can achieve timely
workload-stress estimations and aging rates that can be used in turn to take appropriate
proactive and fine-grain mitigating actions and prevent the circuit from aging at higher rates.
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3.4 Proposed Methodology

The proposed aging prediction method is based on tracking the severity of the workload-
induced run-time stress. This information can be used to guide fine-grained proactive aging
mitigation policies. The flip-flops in the design that can represent the workload information
are identified based on their behaviour during offline workload characterization. A prediction
model is constructed based on the correlation between the behaviour of these selected flip-flops
and the aging behaviour of the circuit under different workload executions. These selected flip-
flops are monitored during runtime using additional monitoring hardware in order to extract
their online behaviour. This extracted information is translated by the prediction model to
corresponding aging trends. The output from the aging prediction model can be used to
proactively actuate aging mitigation measures. Details about aging mitigation measures are
not presented in this chapter since the focus here is on aging prediction.

The overall flow of the method can be divided into two parts: (1) Offline correlation analysis,
which consists of representative flip-flop selection, and prediction model generation, (2) Run-
time stress monitoring. During offline correlation analysis, a small set of representative flip-
flops are selected whose signal probabilities correlate with the aging trend of the entire circuit.
Then, based on the SPs of these representative flip-flops, an aging-severity prediction model is
generated by extracting workload information. This prediction model is deployed as a software
in the system. During runtime, on-chip hardware is used to capture the features relevant for
predicting aging-induced delay, which are then fed to the prediction model in real time. This
hardware, samples the states of these representative flip-flops at runtime to extract their signal
probabilities, using a so-called time sampling scheme, which is then sent to the software-based
prediction model, trained and developed at design time, to predict aging severity of the running
workload.

The subsequent sections describe the details of the offline correlation analysis and runtime
monitoring schemes, respectively.

3.5 Offline Correlation Analysis and Prediction Model Generation

During design time, the effect of workload on aging-induced delay is analyzed. A set of
representative workloads is applied to the circuit and the SPs of all nodes are calculated for
each workload. The amount of circuit delay is projected by assuming the same amount and
type of workload over a fixed period of time. The delay of each gate is updated based on the
SP values and then aging-aware static timing analysis is performed [102]. In this way, the
aging-induced delay corresponding to each representative workload is obtained. We select a
small set of representative flip-flops that can represent the aging behaviour of the whole circuit
as explained Section 3.5.3. The SPs of these representative flip-flops together with the circuit
delay values are used to train an SVM-based model. The goal here is to capture the impact
of workload on circuit delay by constructing an analytical aging-prediction model.

The flow-chart in Fig. 3.2 illustrates the procedure of construction of the aging prediction
model. In summary, this phase involves: (i) estimation of BTI-induced delay degradation,
flip-flop SP extraction and selection of representative flip-flops, and (ii) construction of an
aging prediction model using SVM.

3.5.1 Aging-Induced Delay Degradation and SP Extraction

Bias Temperature Instability (BTI)-induced threshold voltage degradation of the transistors
in logic gates depends on their input SP values. For each representative workload, SPs of the
primary inputs are propagated in order to determine the SPs of the internal nodes. This is
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Figure 3.2: Flow-chart showing the steps involved in the offline characterization phase.

achieved by annotating the SP values of the primary inputs and carrying out zero delay simu-
lation using Synopsys Power Compiler. The resulting SPs of the internal nodes are extracted
from the switching-activity-interchange-format (SAIF) file generated by Synopsys Power Com-
piler. SPs and switching activities are required for power-profile analysis, and commercial logic
simulators have a built-in feature to dump such information for desired signals and time in-
tervals in a SAIF file. The SP values at the inputs of each logic gate are then translated to
the threshold-voltage degradation of the transistors within these gates.

During logic synthesis, the Standard Delay Format (SDF) file of the circuit is generated,
which contains the delay information about all the flip-flops and logic gates in the netlist.
For each workload under consideration, these delay values of logic gates are updated to aging-
induced delay values based on the SP values at the gate inputs. Static timing analysis with the
updated gate delays yields an estimate of the aging-induced critical delay of the circuit. Note
that STA is block-based and it implicitly considers the delay increase in all possible circuit
paths.

Aging-aware timing analysis is carried out using the following steps:

1. Define the circuit netlist as a graph with logic gates as nodes and the wires as the
edges.

2. Traverse through the graph, covering the forward cone of each flip-flop in the circuit
until the next flip-flop in the path is reached.

3. For each node in the circuit, the propagation delay until that node is calculated by
performing sum and max operations in a block-based analysis.

4. The maximum delay for the entire circuit is obtained in this way and is defined as the
aging-induced circuit delay.

The only difference of this approach from conventional STA carried out by a commercial
tool is that, we use aging-induced delay values of logic gates to compute circuit delay.
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3.5.2 Predictor Training Using Support-Vector Machines

The next step in the offline phase is to train a predictor based on a training set consisting of
the flip-flop SPs and aging-induced delay for several representative workloads. In this work,
we use SVM, a supervised learning algorithm, to train the predictor. SVMs are very popular
because of their resilience to over-fitting, robustness to outliers, and high prediction accuracy
for a wide range of applications [104].

The delay shift due to BTI is a deterministic function only when the SP values of all nodes
in the critical/near-critical paths are available in the online phase. Since it is expensive to track
SPs of all of these nodes, we track a few selected flip-flops and deploy SVM to get accurate
aging estimation at low cost. Note that we do not record and use the SPs of all the flip-flops
in the design. Therefore, it is not feasible to use deterministic methods that rely on a large
volume of data. SVM is efficient in this scenario since it utilizes a small subset of features
after feature elimination.

An SVM-based model is trained based on the set of (SP,Delay) pairs from the final training
set. Before the training process, each set of SPs in the training set is converted to a vector
form. We refer to this vector as the SP vector. For training an SVM-based predictor, the
SP vectors are mapped into a higher-dimensional feature space and an optimal hyperplane
(regression line) is constructed in this space. Let (xi, yi)

S
i=1 denote the training set, where

xi ∈ Rd, and yi ∈ R. The training set consists of S SP vectors, x1, x2, ..., xS , and each SP
vector has d features and a corresponding target value (aging-induced delay), yi, which is a real
number. In this work, the ε-support-vector regression technique has been used. The objective
of ε-support-vector regression is to find a regression line that fits most points with in ε-margin

(ε > 0), as shown in Fig. 3.3. The equation has the following form: f(x) =
S∑
i=1

βik(x, xi) + b,

where b = 1
S

S∑
i=1

(yi − βi
|βi|ε − (

S∑
j=1

βik(xi, xj))), k(xi, xj) is the kernel function used to map

the SP vectors to a high-dimensional feature space, and (αi)
S
i=1 are the Lagrange multipliers

introduced during the process of derivation of this equation.

To illustrate the SVM-based regression methodology, consider a hypothetical scenario with
four training workloads. In addition, assume that this system has five flip-flops. We form the
training set as shown in Table 5.1, where the second column in each row corresponds to the set
of SPs and the third column corresponds to the normalized aging-induced delay value. Using
this training set and a linear kernel, we obtain the following model to predict aging-induced
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Figure 3.3: Illustration of the support-vector regression model.
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Table 3.1: Hypothetical training set with four data samples

Workload Set of SPs Normalized Aging-Induced
{SP1,SP2,SP3,SP4,SP5} Delay

W1 0.1, 0.1, 0.4, 0.8, 0.2 0.4

W2 0.2, 0.6, 0.2, 0.1, 0.5 0.8

W3 0.1, 0.4, 0.1, 0.6, 0.5 0.1

W4 0.2, 0.1, 0.7, 0.4, 0.3 0.6

delay based on a given set of SPs (s = {s1, s2, s3, s4, s5}):

f(x) = 4.45 · s1 + 1.67 · s2 + 0.22 · s3
+0.20 · s4 − 2.31 · s5 + 0.01 (3.1)

Suppose we have a set of SPs {0.2 0.1 0.7 0.4 0.3}, which is the fourth row in Table 5.1, as
the input to our model. The aging-induced delay is evaluated to be y = 0.6 using (5.5). Let us
consider a second set of SPs {0.1 0.2 0.6 0.1 0.1}. In this case, the model evaluates to y = 0.7.

The runtime of the prediction model depends on the number of its variables, i.e., the number
of monitored flip-flop SPs. Since a typical design has millions of flip-flops, the runtime can
be considerably large. Moreover, it is extremely expensive to monitor all the flip-flops in
every clock cycle. In the following sub-sections, we describe space and time sampling-based
approaches to reduce these overheads.

3.5.3 Representative Flip-Flop Selection (Space Sampling)

We propose two methods to select a small subset of flip-flops whose SPs are highly correlated
to aging-induced delay: (i) Correlation-Based Flip-flop Selection and (ii) Fan-in Cone-Based
Flip-flop Selection.

Correlation-Based Flip-Flop Selection

In correlation-based flip-flop selection, flip-flops are selected based on their behaviour for dif-
ferent workloads under consideration. The overall flow of this method is illustrated in Fig. 3.4.
During workload characterization, several workloads with varying characteristics are executed
on the synthesized gate-level netlist of the chip. The SPs of flip-flop values under various
workloads are extracted. For the same workloads, aging-induced delay values due to the
workload-stress are also extracted using the aging-analysis framework. A feature-selection
method is then employed to select significant flip-flops whose SPs are highly correlated with
aging-induced circuit delay. The benefits of employing feature selection are: (i) it reduces
overfitting by eliminating redundant data, (ii) it improves accuracy by eliminating irrelevant
data, and (iii) it reduces training time by reducing the size of the training set.

Let us assume that N workload phases are available at design time for training. The
aging-correlation analysis flow, explained in Section 3.5, can be used to generate a training
set {(SPi, Delayi)}Ni=1 of size N , where the set SP contains the SPs of all M flip-flops SPi =
(SPij)

M
j=1 and Delayi represents the aging-induced delay under each workload phase in our

design. Our goal is to find a set of m flip-flops, m � M , whose SPs are highly correlated
with aging-induced delay. This can be carried out using a univariate feature-selection method
that takes the set of N {(SPi, Delayi)}Ni=1 pairs and the parameter m as input and returns m
features (flip-flops). These m features are selected using an m-best feature selection algorithm
in which the correlation between each individual feature and the circuit delay is evaluated,
and the m best features are retained as the output [105].
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Figure 3.4: Overall flow of space-sampling techniques to identify representative flip-flops.

To illustrate the correlation-based flip-flop selection method, consider the hypothetical sce-
nario explained in Section 3.5.2. The Pearson correlation coefficients [106], which take values
in [−1, 1], are used to represent the correlation between the SP of flip-flop i, 1 ≤ i ≤ 4, and
the delay value. The Pearson correlation coefficient between two sets of values, (xi)

n
i=1 and

(yi)
n
i=1, is evaluated as follows:

r =
n∑
i=1

(xi − x̄)(yi − ȳ)

/(√√√√ n∑
i=1

(xi − x̄)

√√√√ n∑
i=1

(yi − ȳ)

)
(3.2)

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi. We obtain the correlation coefficients for the five

(SP,Delay) pairs to be 0.2, 0.5, 0.8 and 0.4, respectively. Therefore, Flip-flop 2 (FF2) and
Flip-flop 3 (FF3) are selected as being the most effective for prediction. Similarly, if our
objective is to select the best three flip-flops, then Flip-flop 2, Flip-flop 3, and Flip-flop 4 are
selected.

Fan-In Cone-Based Flip-Flop Selection

Although the correlation-based method provides high accuracy, it demands very high char-
acterization effort, especially for larger designs with large number of flip-flops. The accuracy
of the correlation-based method depends on the number of data samples, i.e., the number
of workloads characterized. Moreover, the simulation of a sufficient number of workloads for
correlation analysis is extremely time-consuming. The details of runtime will be discussed in
Section 3.7.5. Hence, we propose a more practical method that selects flip-flops independent
of workload characteristics.

In fan-in cone-based sampling, flip-flops are characterized by the gates in their fan-in cones.
We assume that flip-flops with a larger number of logic paths through them hold more infor-
mation in terms of workload since the flow of logic values during workload execution occurs
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through flip-flops. Intuitively, the overlap in fan-in cones of flip-flops is assumed to represent
the amount of redundancy in the information. If one flip-flop has a significant overlap in its
fan-in cone with another flip-flop, only one of them needs to be selected for monitoring. For
example, consider the scenario shown in Fig. 3.5. The gates present in the fan-in cones of
flip-flops FF1, FF2 and FF3 are shown along with the overlap in their fan-in cones. Hence,
from FF1, FF2 and FF3, only FF1 and FF2 are selected for monitoring.

Figure 3.5: Fan-in cone characteristics of flip-flops.

The overall flow of fan-in cone-based flip-flop selection is shown in Fig. 3.4. The synthesized
gate-level netlist of the design is required for fan-in cone analysis. A fan-in cone analysis
framework captures the logic gates in the fan-in cone of each flip-flop. This involves a backward
traversal of timing paths starting from the flip-flop input until we reach a primary input or
another flip-flop’s output. In this way, a fan-in cone matrix M is generated of size n×m, where
n and m refer to the number of flip-flops and gates in the design, respectively. Each element
Mij in the fan-in cone matrix can be either ‘0’ or ‘1’, representing the absence or presence of
the gate Gj in the fan-in cone of flip-flop FFi, respectively. For a realistic design, the size of
the fan-in cone matrix would be huge for further computations. Hence, heuristics are used to
eliminate a few rows or columns. This includes (i) elimination of flip-flops with only a few
gates in their fan-in cone, and (ii) elimination of flip-flops with exactly the same gates in their
fan-in cone. Thus we obtain a reduced fan-in cone matrix for further processing.

The set of flip-flops with unique logic gates and minimum overlap in their fan-in cones is
identified using k-means clustering with the reduced fan-in cone matrix as the input. The
k-means clustering method, an unsupervised machine learning technique for feature selec-
tion [107], can generate k clusters with each cluster containing flip-flops having similar fea-
tures, i.e., significant overlap in their fan-in cones. The representative flip-flops for monitoring
can be obtained by selecting one flip-flop from each such cluster.

Since we observed (from our results) that the effectiveness of the fan-in cone-based method
is comparable to that of correlation-based method, we propose to use the former for flip-flop
selection. Even though we are not advocating the use of correlation-based flip-flop selection,
we utilize it to evaluate the effectiveness of fan-in cone-based selection.

In contrast to [108], the fan-in cone based algorithm in the proposed method does not
consider the critically aged paths explicitly. The flip-flops are characterized by the presence
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of unique gates in their fan-in cone, thereby unique information flow is expected the specific
fan-in cones. We define the presence or absence of gates in the fan-in cone of flip-flops as
the features. Subsequently, k-means clustering is carried out to reduce the large number of
flip-flops into a few flip-flop clusters, based on their features. One flip-flop from a cluster can
represent the workload information contained in that cluster. In other words, the clustering
of flip-flops is carried out to eliminate redundant workload information, unlike in [108], where
clustering is based on correlation between path delays or adjacency of nodes. Our objective is
to find the minimum number of flip-flops having unique information to cover a maximum of
gate states (signal probabilities).

3.5.4 Time Complexity of Flip-Flop Selection Methods

The execution time required for flip-flop selection methods is an important concern. The
runtime for correlation-based flip-flop selection is much higher compared to fan-in cone-based
selection due to the extensive workload characterization required to generate a sufficient num-
ber of training and testing samples.

We derive an expression for the runtime of fan-in cone-based flip-flop selection method in
the worst-case. It is not possible to derive a simple closed-form expression for the runtime of
correlation-based flip-flop selection method since it involves extensive workload characteriza-
tion. Let the number of gates in the circuit be G, the number of flip-flops be F , and the number
of signals (nets) be N . In order to generate the fan-in cone characteristics, a depth-first search
is carried out starting from the flip-flop’s input node until the traversal reaches the output of
another flip-flop or a primary input. Therefore, for each flip-flop, the time required for finding
the fan-in cone is O(G + N). Since there are F flip-flops in our circuit, the runtime required
for generating the fan-in cone matrix is O(F (G+N)).

The runtime of the heuristic used to eliminate flip-flops with the same gates in their fan-in
cone is O(F 2G) since the comparison of two vectors of length G takes O(G) time. The runtime
of the heuristic used to eliminate flip-flops whose fan-in cone has gates less than 5% of the
number of gates in the largest fan-in cone is O(F ), if we assume that we can obtain the size of
a vector in unit time. The runtime of k-means clustering algorithm is O(nkdi) [109], where n
is the number of input vectors (F in our problem), k is the number of clusters, d is the size of
each vector (G in our problem), and i the number of iterations needed until convergence. The
number of iterations until convergence is often small, and results only improve slightly after
the first ten iterations. Therefore, the number of iterations until convergence is limited to ten
in most implementations of k-means clustering algorithm. As a result, we can consider i as a
constant in our analysis. We then obtain the runtime of the k-means clustering algorithm to
select a fixed number of representative flip-flops as O(FG). Since G� F for large designs, we
conclude that the runtime of the fan-in cone-based flip-flop selection method is O(F (FG+N)).

3.5.5 Time Sampling

The proposed aging-induced delay prediction method is based on the SPs of a small number of
representative flip-flops. However, monitoring the representative flip-flops in every clock cycle
to extract their SPs can be expensive in terms of total power consumption. This overhead
in power consumption can be reduced by time-sampling the flip-flops instead of monitoring
them in every clock cycle. In time-sampling, the flip-flops are sampled at regular intervals
of time. For example, x% time-sampling implies that the flip-flops are sampled in x% clock
cycles out of the total number of clock cycles in a workload segment. It is intuitive to see
that the SP value of a flip-flop evaluated with a low sampling rate approximately represents
the original SP value since SP is the average logic value of the flip-flop over the whole period
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Figure 3.6: Illustration of flip-flop SP monitoring methodology.

under consideration.
Fig. 3.6 shows the additional hardware required to perform time sampling. A shadow latch

and a counter are added to monitor the SP of each representative flip-flop. We also require a
frequency divider to generate the clock for the shadow latches from the functional clock. The
frequency divider is designed based on the time-sampling rate. For example, if we choose 1%
time-sampling, then a divide-by-100 frequency divider is needed to generate the clock for the
shadow latches. The clock generated for the shadow latches cannot be used for the counters
as we have to take into account the setup time of the flip-flops used to design the counter. We
therefore use a delayed clock for the counters.

Our results in Section 3.7 show that, even with very low sampling rates, significantly high
prediction accuracy can be achieved.

3.6 Run-time Stress Monitoring

The SPs of the flip-flops relevant to the aging prediction are monitored during run-time using a
synchronous-up counter, as shown in Fig. 3.6. The counter is enabled whenever the output of
the flip-flop being monitored takes logic value ’1’; therefore, the counter tracks the number of
clock cycles for which the flip-flop output takes logic value ‘1’. The outputs of all the counters
in the design are sampled at uniform time intervals, and these values are stored in a buffer.
It should be clarified that the sampling frequency mentioned here is the frequency at which
the counter values are sampled while time-sampling rate described in Section 3.5.5 specifies
the frequency at which monitoring flip-flops are sampled. The sampling frequency to sample
the counter values is decided at design time based on the characteristics of the representative
workloads. The sampling frequency also determines the width of the counter that needs to
be implemented. For example, if the output of a counter is sampled every 1000 clock cycles,
then we need a counter that is at least 10 bits wide. Some additional control logic, as shown
in Fig. 3.6, is also required to reset the counters after every sampling operation. The buffered
outputs of all the counters are then transferred to the SVM-based prediction model, and then,
this model translates these workload phase characteristics to aging-induced delay. The system
can then take an appropriate protection measure based on the predicted aging trend.

There are two methods that can potentially be used to implement the prediction software.
In the first method, the predictor is executed as a thread on any idle core on-chip. The role
of this software thread is to collect flip-flop SP data from every core on-chip. These data,
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Figure 3.7: Results obtained using joint time-space sampling of flip-flops.

which are stored in a buffer on every core (Fig. 3.6), are transferred from one core to another
based on a handshake mechanism. The core on which the thread is executing broadcasts
a read signal to all the other cores. The core that is ready for this read operation sends
back an acknowledgement (permission to read). Once the core executing the thread receives
an acknowledgement from another core, it starts reading data from the buffer on that core
and stores them in its buffer. In this way, data from all the cores are collected before the
aging prediction process is started. This method of executing the prediction software does not
require any additional hardware. However, an idle core may not always be available, in which
case the system operation has to be interrupted to execute the prediction software. Moreover,
migrating the predictor between different idle cores also involves overhead.

The other method is to execute the prediction software on a dedicated programmable mi-
crocontroller. The microcontroller communicates with every core on-chip to obtain flip-flop SP
data. Therefore, it is necessary to define the interface between the microcontroller and the on-
chip hardware. In [110], the communication between the energy management microcontroller
and the processor core occurs through through the industry-standard Inter-Integrated Circuit
(I2C) interface. The microcontroller can read and write to the registers on every on-chip core
through this interface. Therefore, the flip-flop SP data can be accessed by the microcontroller
through the I2C interface using buffer read operations. This method of implementation of the
prediction software does not interrupt the processes running on any core, and therefore, has
minimal performance overhead. However, additional hardware cost is incurred to implement
the dedicated microcontroller on-chip.

3.7 Experimental Results

The effectiveness of the proposed approach was evaluated using two open-source embedded
processors implemented at RTL, namely Leon3 and OpenRISC 1200 (OR1200), with running
realistic application workloads. We implemented an SVM-based predictor, and the dependence
of the prediction accuracy on the number of monitored flip-flops and on the time-sampling rate
were studied for both processors. We also compared the accuracy of the two proposed flip-flop
selection methods. Experiments were run on a 64 bit Linux machine with 16 GB of RAM and
quad-core Intel Xeon processors running at 2.53 GHz.
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3.7.1 Experimental Setup

OR1200 is five-stage pipeline embedded processor based on the 32-bit ORBIS32 instruction
set architecture (ISA). Leon3 is a 32-bit processor based on the SPARC-V8 RISC ISA. The
processor was synthesized using Synopsys Design Compiler with Nangate 45 nm library [111].
Our method is not limited to any particular technology node. The aging model used for
evaluation can be easily updated to incorporate any newer technology node.

Six programs from MiBench, namely crc32, bitcount, qsort, susan, sha, stringsearch, and
basicmath, were executed on the synthesized netlists of Leon3. Each workload was divided
into several smaller workload segments of 103 clock cycles to collect the required number of
workload samples for training and validation. Workload samples constituting the training set
were used to construct a predictive model, and those constituting the test set were used to
evaluate the accuracy of the predictive model. The aging-induced circuit delay values of Leon3
was computed using an NBTI based aging analysis framework. The SPs of the flip-flops in
Leon3 were obtained for each workload phase from a SAIF file generated by performing a
post-synthesis simulation in ModelSim. The SVM algorithms used to train and validate the
aging predictor were implemented using Scikit-learn [34] with the built-in LibSVM software
package.

For aging analysis, the entire logic core of the processor (including all combinational and
sequential elements), except memory blocks (such as caches and register files), is considered to
be a single circuit. Aging-aware STA is carried out on this core logic to extract aging-induced
circuit delay. In our analysis, we have not included any analog blocks in the circuit. However,
analog blocks can be included in the timing paths as black boxes if their propagation delays
are defined.

3.7.2 SVM training and validation

The training data set for each processor benchmark consisted of 2000 SP vectors and their
corresponding aging-induced delay values. A non-overlapping set of 2000 SP vectors and their
corresponding aging-induced delay values were used to test the prediction model. The best
values for the Radial Basis Function (RBF) kernel parameters used in the SVM model were
determined using a five-fold cross-validation approach. In this approach, the training set was
divided into five equal subsets and each subset was validated using a model trained on the
remaining four subsets. A grid search was carried out on the parameters and the parameter
values corresponding to the highest cross-validation accuracy were chosen. The prediction
model was then trained using these best parameter values and the complete training set.

3.7.3 Evaluation of Prediction-Accuracy

We have selected representative flip-flops based on the two different space-sampling techniques
as mentioned in Section 3.5.3. The metric used to evaluate the accuracy of prediction is the
Pearson correlation coefficient.

Furthermore, we applied time-sampling techniques to reduce the frequency at which the
selected representative flip-flops are sampled.

Joint Space-Time Sampling

Fig. 3.7 illustrates the results for joint space-time sampling on Leon3 and OR1200 processors.
Joint time-space sampling involves selection of a set of flip-flops with space-sampling and
further sampling of the logic values in these flip-flops at a pre-defined time-sampling rate. We
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Table 3.2: Step by step correlation of SPs to aging-induced circuit delay.

Pearson Correlation Coefficient (SP –>Delay)
LEON3 OR1200

Circuit Nodes Flip-flops Circuit Nodes Flip-flops

Number of Features Selected

64 0.9893 0.9865 0.9889 0.9835
32 0.9889 0.9846 0.9862 0.9813
16 0.9846 0.9786 0.9719 0.9713
8 0.9767 0.9565 0.9589 0.9323

obtained the results for four different time-sampling rates (1%, 0.1%, 0.01% and 0.001%) and
four sets of flip-flops with different sizes (8, 16, 32, 64).

The prediction accuracy, evaluated as the Pearson Correlation Coefficient, under fan-in
cone based flip-flop selection and correlation-based flip-flop selection is above 0.85 for sampling
rates greater than 0.001% and flip-flop selection size greater than 8. The overall trend shows
a significant reduction in accuracy when time-sampling rate reduces to 0.001% from 0.01%.
Moreover, the prediction accuracy increases with an increase in number of selected flip-flops for
correlation-based approach. However, it is not necessarily the case for the fan-in cone-based
approach. The reason is that fan-in cone-based selection is a heuristic approach; therefore,
it does not necessarily find optimal solutions. As a result, there are some cases in which the
accuracy decreases even when more number of flip-flops are selected.

Since the correlation-based flip-flop selection method takes into account the nature of work-
load running on the chip, this method can provide better results for sufficiently large number
of flip-flops. Hence, for a selection of 64 flip-flops, correlation-based flip-flop selection method
provides a higher accuracy of 0.9784 compared to 0.9603 of fan-in cone based flip-flop selection
method in Leon3 for a 1% time-sampling rate. However, as the number of flip-flops selected is
reduced to 8, fan-in cone based sampling predicts with a better accuracy of 0.9514 compared
to 0.8993 of the correlation-based method for Leon3. Hence, it is important to choose between
these methods based on the feasibility and cost of flip-flop monitoring.

In summary, the key take-away messages from these results can be outlined as follows:

� A lower time-sampling rate can be adopted to reduce the power overhead of monitoring
without compromising the accuracy of aging prediction.

� Hardware monitoring costs can be reduced by selectively monitoring a small number of
flip-flops while maintaining high prediction accuracy.

� The proposed fan-in cone based flip-flop selection heuristic, with much lower runtime
and complexity, is as effective as correlation-based flip-flop selection method having
large runtime requirements.

Step-by-step correlation

The increase in threshold voltage of a transistor due to BTI depends on the SP at the gate
terminal of that transistor. For accurate aging calculation, we require SP values for all internal
nodes of the circuit netlist. Instead of monitoring the SP values of the internal nodes directly,
we use flip-flop SPs to predict the aging trend. Table 3.2 compares prediction accuracies with
two different observables (feature vectors): (1) SPs of circuit nodes, (2) SPs of flip-flops in the
circuit. Note that we perform feature selection to eliminate insignificant features.

The results show insignificant variation in the Pearson Correlation Coefficient when the
number of features exceeds 16. In other words, the aging-information loss while compacting
circuit-node SPs to flip-flop SPs is insignificantly small.
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Figure 3.8: Timing simulation results for the time-sampling hardware.

3.7.4 Validation of Time-Sampling Hardware Design

The proposed method employs a time-sampling hardware as described in Section 3.5.5 that
mainly consists of a shadow latch and a synchronous up-counter to monitor flip-flop SPs. We
validated our design by carrying out timing simulations using its VHDL model. The model
was implemented to sample eight flip-flops in 1% clock cycles out of the total number of clock
cycles in a workload segment (assumed to be 105). Fig. 3.8 shows timing simulation results for
this design. The clock signals for the shadow latches (sampling clock) and counters (counter
clock) in our design are generated from the functional clock. The flip-flop values are sampled
by the shadow latches when the sampling clock is high, and the counters are updated on the
rising edge of the counter clock.

3.7.5 Overheads

For area and power estimations, the processor logic cores along with their corresponding mem-
ory blocks were considered. The overheads associated with the time-sampling hardware are
extracted by adding it to the original processor netlist and the updated netlist is re-synthesized.
The size of the counter is estimated based on the size of a workload segment, i.e., the number
of clock cycles constituting one workload segment and the time-sampling rate chosen. For in-
stance, if the workload segment is of size 106 with a time-sampling rate of 1%, a 14-bit counter
is required.

Performance Overhead

Static Timing Analysis (STA) is carried out on the circuits using Synopsys Primetime to
estimate the performance overhead. The results show that the additional hardware does not
affect the maximum circuit delay, hence no performance overhead. This can be attributed to
the re-optimization carried out by the synthesis tool to compensate for the additional load
added to the output of the monitoring flip-flops. However, this re-optimization can increase
the area overhead. In addition, the software thread executing the predictive model to compute
aging can cause performance overhead. This overhead is dependent on the sampling frequency,
i.e., how often the counter values are sampled to compute aging, and also on the runtime
required for each computation. For instance, if the aging computation is performed every
106 cycles and if each computation takes 40 cycles, the performance overhead incurred by the
software-thread execution is 0.004%.
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Area and Power Overhead

The area overhead incurred due to the additional hardware for eight flip-flops under monitoring
is 0.42% for Leon3 and 0.38% for OR1200 with 0.001% time-sampling. The size of the counters
required to track SPs decreases with a reduction in the time-sampling rate. Moreover, a part
of this area increase is due to the optimization carried out by the synthesis tool in the form
of resizing of gates. Therefore, the actual area overhead will be lower than the values that we
obtained.

For Leon3 and OR1200, the power overheads for a time-sampling rate of 0.001% were found
to be as low as 0.07% and 0.12%, respectively. The dynamic power overhead of the monitoring
hardware is significantly reduced with lower time-sampling rates, and hence, the overall power
overhead becomes lower. In other words, the leakage power of the monitoring hardware has
the major contribution to overall power overhead.

Overhead at Design Time

The correlation-based flip-flop selection required an estimated CPU time of 9.5 hours while
fan-in cone based flip-flop selection required only 21 minutes. Therefore, the runtime for
correlation-based flip-flop selection is much higher compared to fan-in cone-based selection.
Since the effectiveness of the fan-in cone-based method is comparable to that of correlation-
based method, we advocate the use of the former for flip-flop selection. In addition, the runtime
in our setup to train the SVM model offline with the selected 64 features (flip-flops obtained
through fan-in cone based flip-flop selection) was less than one minute for both processors.

3.8 Summary

We have proposed a method to predict the aging-induced delay based on flip-flop SPs. Unlike
existing delay-monitoring schemes based on hardware sensors, our method imposes minimal
area and power overhead since we rely on the SPs of a small number of flip-flops, which can
be obtained by attaching simple counters to the flip-flop outputs. This method also makes
it possible to capture fine-grained aging trends that can support proactive aging mitigation
techniques. Simulation results for two embedded processors demonstrates that the proposed
method can accurately predict workload-induced aging trends.
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4.1 Overview

The previous chapter discussed the reliability effect of Bias Temperature Instability (BTI)
under normal workloads. The worst-case effects of BTI occur during specific workload phases
in which flip-flops on a critical path do not switch their logic values for a long duration. These
inactive flip-flops in the circuit experience accelerated workload-dependent static-BTI stress.
The aging effect of static BTI for a few hours has been shown to be equivalent to one year of
aging due to dynamic BTI, which can eventually cause circuit failure. The techniques available
to mitigate static-BTI stress during standby mode of circuits are pessimistic, thereby limiting
the performance of the circuit. To address this problem, we propose a runtime monitoring
method to raise a flag when a timing-critical flip-flop experiences severe static-BTI stress. To
reduce the monitoring costs, we select a small representative set of flip-flops offline based on
workload-aware correlation analysis and these selected flip-flops are monitored online for static
aging phases. Our experiments conducted on two processors show that less than 0.5% of the
total number of flip-flops is required to be selected as representative flip-flops for S-BTI stress
monitoring. We also propose a low-overhead mitigation scheme to relax critical flip-flops by
executing a software subroutine that is designed to exercise critical flip-flops.

The rest of the chapter is organized as follows. Section 4.2 introduces the work in detail,
presents a motivation and also lists the contributions. Section 4.3 overviews the aging models
and related prior work. Section 4.4 describes the overall methodology underlying S-BTI esti-
mation of flip-flops, selection of representative flip-flops and mitigation techniques. Section 4.5
explains the offline stages of S-BTI characterization, correlation and mitigation analysis. Sec-
tion 4.6 covers online monitoring and mitigation of static aging. Experimental results are
presented in Section 4.7. Finally, Section 4.8 summarizes the chapter.

4.2 Introduction, motivation and contributions

In nanoscale technology nodes, Bias Temperature Instability (BTI) is one of the predominant
runtime reliability concerns in digital design [112, 113]. BTI, in effect, increases the magnitude
of the threshold voltage of transistors in the circuit over time, which in turn increases the
maximum circuit delay and causes timing failures in the system [114, 115]. The degradation
depends on the workload profile of the flip-flops (FF) and logic gates in the circuit, which
can only be determined during runtime. Hence, the effect of BTI under worst-case workload
conditions should be evaluated and accounted for in the design in order to ensure resilient
system operation.

BTI involves two phases of stress (threshold voltage (Vth) increases) and recovery (Vth
decreases), based on the logic value at the gate terminal of the transistor [40, 116]. During
lifetime operation of the circuit, the stress and recovery phases alternate, causing dynamic
BTI (D-BTI), and the corresponding delay degradation in D-BTI-stress is a function of the
duty cycle, i.e., the ratio of the stress-phase duration to the total runtime.

In contrast, long periods of inactivity in parts of the circuit can result in static BTI (S-BTI)
stress [41]. This phenomenon can accelerate the aging effect on circuit delay degradation. The
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delay degradation due to S-BTI stress of a few hours on logic circuits can be equivalent to
D-BTI stress for one year [41]. The critical point of operation of a circuit is when the circuit
enters a dynamic phase after a long duration of static-stress phase. A worst-case timing
analysis should be carried out considering this critical point of operation. Techniques have
therefore been presented to consider this effect on clock-gated circuits [117, 118].

In processors, depending on the workload under execution, there exists long durations of
inactivity in a large number of flip-flops. Some of these flip-flops correspond to the most sig-
nificant bits of address registers and exception-handling registers. In most workloads, these
flip-flops are rarely accessed, hence they are inactive for extended periods of time. The work-
load phases inducing S-BTI stress for the flip-flops in a processor vary in both space and time.
Hence, an offline-only estimate of the S-BTI stress in these flip-flops results in a pessimistic
guardband thereby compromising circuit performance.

Most related work on aging stress estimation is based on D-BTI analysis [119–122]. The fact
that logic elements (gates, latches and flip-flops) in a processor experiences static BTI stress
during normal operation is supported by results presented in the literature [41, 117, 118, 123]
and the effect on flip-flops in particular is analyzed in [124, 125]. Accelerated static aging
scenarios are considered in [117, 118], but these methods are focused only on the stand-by
mode of operation. The flip-flops that are vulnerable to Static Aging Phases (SAPs) due to
specific workload scenarios are not considered in the analysis. On the other hand, accelerated
aging behaviour of flip-flops under S-BTI stress has been pointed out in [124]. In this work, the
flip-flops under S-BTI stress are characterized by their extremely low or high signal probability
values and a selective replacement of vulnerable flip-flops at design time is proposed as a
solution. However, for the same signal probability value, the longest SAP duration can vary
significantly. Hence, this approach underestimates the runtime variation of signal probabilities.
In general, all these methods ignore the workload dependency of S-BTI on timing-critical flip-
flops. In other words, runtime monitoring of SAPs in critical flip-flops is essential to ensure
reliable operation of the circuit.

Our aim in this work is to develop a low-overhead solution to identify workload phases as well
as the specific timing-critical flip-flops experiencing S-BTI stress during those workload phases
when the circuit is in functional mode. Our proposed method comprises of two phases: (1)
an offline characterization of static-stress behaviour of flip-flops under workload execution; (2)
online monitoring of selected representative flip-flops to enable BTI-aware runtime adaptation.
During the offline phase, we identify critical flip-flops based on workload characterization
and aging-aware timing analysis. To reduce the overhead of online monitoring, we perform
offline correlation analysis to select a small subset of critical flip-flops as the representative set
based on the correlation between their static-stress behavior under different workloads. These
representative flip-flops will be monitored during runtime to generate an alarm signal when they
experience long durations of S-BTI stress. Our experimental results on two processor designs
show that only less than 0.5% of the total number of flip-flops in a processor is required to
represent the flip-flops that are vulnerable to S-BTI.

For online monitoring, we propose a low-overhead monitoring hardware that is connected
to the output of the representative flip-flops. The area and power overheads imposed by the
additional hardware are less than 0.25% for both processor designs. The monitoring hardware
checks for SAPs in representative flip-flops and marks them as being critical if no recovery in
the form of a switching event occurs in a pre-defined interval.

To minimize the impact of static aging on critical flip-flops, we propose a technique sim-
ilar to Software-based Self Test (SBST) [126, 127], which is a non-intrusive test method for
processors. We design a subroutine, consisting of a sequence of instructions, to activate the
switching of critical flip-flops. This subroutine is executed periodically, yet infrequently, when
flip-flops enter the critical phase as defined by the monitoring methodology. The instruction
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sequence is generated by a combination of two different techniques: (1) by exploiting a se-
quential Automatic Test-Pattern Generation (ATPG) technique, typically used for generating
test patterns targeting different kinds of faults in a circuit-under-test, and (2) by selecting
instructions based on behavioral analysis of critical flip-flops, similar to software-based func-
tional testing. In the ATPG-based technique, we define stuck-at-faults at the targeted flip-flop
outputs, which are defined as pseudo-primary outputs for the ATPG tool, and treat the gen-
erated test patterns as a sequence of instructions for the processor by restricting the patterns
to be legal instruction formats. The flip-flops inaccessible by this technique are handled by a
behavioral analysis method that finds trigger scenarios and corresponding instructions from
the behavioral netlist of the design. Finally, the sequences of instructions selected by these
two techniques are padded with another selected sequence of instructions to generate the sub-
routine. The instruction padding is carried out to nullify the effect of the execution of this
subroutine on the system state. This subroutine execution relaxes static aging in flip-flops
without leaving any footprint on the system state.

The corner-case scenarios of accelerated static aging are dependent on the nature of work-
load phases and our aim is to identify such problematic phases by monitoring a few selected
flip-flops. These selected flip-flops are identified offline and found to be highly likely to have
workload profiles that induce accelerated static aging. The selected flip-flops are surrogates
for phases of inactivity and these phases are correlated across many such flip-flops. Hence,
long phases of inactivity in a few flip-flops can represent similar long inactivity phases in other
critical flip-flops. In terms of relaxation, we induce activity (transitions) in all critical flip-flops
and not just the representative flip-flops.

4.3 Related Work

Most of the prior work in the literature considers only D-BTI to estimate the aging stress in
flip-flops [119–122]. This approach is not suitable for processors since the aging stress of the
flip-flops depends entirely on the workload profile. Hence, aging due to S-BTI needs to be
considered as the worst-case scenario.

A different approach takes into account the static-aging scenarios by considering the system
operation in both sleep mode and standby mode for worst-case analysis [41]. In this method,
the identification of the timing-critical points in different modes of operation of the circuit has
been carried out. These critical points occur when the circuit enters a dynamic stress phase
after a long inactive phase, which has maximum BTI effect, thereby causing more timing
violations. The end of the standby mode of a circuit has been identified as the critical moment
for timing analysis, as the gate and path delays are maximum at that instant. However, apart
from proposing a model to evaluate worst-case timing analysis in statically stressed circuit-
paths, this work does not consider the case of individual flip-flops under static stress during
runtime.

Several mitigation techniques for S-BTI have been introduced based on input-vector control
and internal-node control [117, 118]. In [117], an internal-node control technique is proposed
to minimize the effect of S-BTI on idle functional units in standby mode. However, a node
control circuitry needs to be added to the output of each controlled gate, which introduces
considerable overhead. In this work, only standby mode scenarios were considered. In addition,
this method ignores the static aging effect in flip-flops. In [128, 129], the static aging effect
under clock gating scenarios is considered. These approaches are orthogonal to our work and
can be added alongside our technique.

A gate-replacement algorithm [123] together with optimal input-vector selection has been
proposed in [118] to mitigate the S-BTI effect. In this work, a co-optimization has been carried
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out to reduce BTI and leakage effect. However, this method considers D-BTI only during active
mode of the circuit and S-BTI only during standby mode of the circuit. In other words, the
S-BTI effect in flip-flops during active mode is ignored in the analysis.

In [124], a mitigation technique based on selective optimization of flip-flop standard cells
operating under near-S-BTI stress is proposed. However, the longer durations of SAPs of flip-
flops have not been considered. For example, a signal-probability (SP) based analysis would
mark a flip-flop of SP of 0.5 under its workload profile as non-critical. However, this flip-flop
might have a workload phase of several million clock cycles where it stores a logic value of
0 which does not affect its overall SP. Hence, an SP-based analysis of aging will miss such
flip-flops or such workload phases that trigger worst-case scenarios. Moreover, this approach
is pessimistic as it does not consider the impact of realistic workload on S-BTI and how it
changes across different workloads. In addition, this method concentrates on the S-BTI effect
on flip-flops and completely ignores the corresponding static stress on logic gates.

In existing techniques, standby or sleep mode is the only scenario considered for S-BTI
stress analysis. However, we have found that a large number of flip-flops are under S-BTI
stress during normal operation, i.e., not necessarily in the standby mode and their phases of
static aging can significantly vary across different workloads. For instance, in our experiments,
around 20% of the flip-flops in Leon3 were found to be critical due to S-BTI during active mode
of operation. For example, an overflow-flag flip-flop in register-access stage of the integer
pipeline has a static aging duration of 4.29 million clock cycles in Leon3 under MiBench
workloads sha and susan smooth. This is equivalent to around 42 minutes of D-BTI based
aging degradation. Hence, an offline estimation of S-BTI stress and a solution based on an
offline estimate will be pessimistic. Therefore, we propose a runtime monitoring technique
to track SAPs of flip-flops and to adopt corresponding mitigation measures under critical
conditions.

By considering the aging effects on flip-flops, the aging effects on combinational gates are
implicitly considered. The flip-flop values can be considered as a representative of the bias on
entire logic block at any given clock cycle in the normal operation of a circuit since the flip-flop
states can be translated to the corresponding logic values of circuit nodes. The combinational
logic gates in the forward cone of a flip-flop under static aging may also experience static aging
effect. These logic gates release their stress while the associated flip-flop gets switched if the
switching is not masked. Our proposed method can address S-BTI in both sequential elements
(FFs) and combinational logic gates.

In addition, our analysis of static aging phases can be extended to consider Positive Bias
Temperature Instability (PBTI) [130] as well. For example, SAPs can be redefined as any
workload phase in which a transistor has an input of a constant logic 0 or logic 1. The
mitigation technique remains the same as it requires only a single switching to relax static
PBTI effect. Since the flip-flops are switched back to their original state, they undergo both
0→ 1 transition as well as 1→ 0 transition. The 0→ 1 and 1→ 0 transitions at the input of
an inverter relaxes the PMOS transistor and NMOS transistor, respectively.

4.4 Proposed Methodology

The SAP of a flip-flop in a circuit is defined as the time interval for which the logic value of
the flip-flop remains constant. In processors, for instance, the higher significant bits of address
registers, exception handling registers, etc. are rarely exercised by typical workloads. Hence,
these registers/FFs store a constant value for an extended period of time. In a typical design,
the flip-flops under long SAPs of millions of clock cycles can cause accelerated aging of the
circuit paths. This increased critical path delay can result in a catastrophic failure of the
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Figure 4.1: Overview of the proposed technique.

circuit when an infrequent switching event occurs subsequently. Hence, it is crucial to monitor
these critical flip-flops during runtime to report their criticality as well as to adopt mitigation
techniques to prevent a timing failure. In addition, the set of flip-flops experiencing static
aging can be different for different workloads. For instance, we observed that the number
of critical flip-flops in Fabscalar for six different workloads can vary from 5 to 376. Hence,
providing countermeasures during the design of critical flip-flops will be both inadequate and
expensive.

Overview of the proposed technique is shown in Fig. 4.1. The proposed technique identifies
vulnerable flip-flops in a processor for different workloads based on the duration of static
aging. We employ representative workloads that can capture the circuit behaviour in general,
covering a wide field of applications. A correlation analysis based on the static-stress behaviour
of the flip-flops is carried out to extract a small subset of representative flip-flops. These
representative flip-flops are then monitored online for the time-point at which they enter an
SAP. Once a flip-flop enters SAP, a criticality counter watches the length of this SAP for a
threshold. If the flip-flop crosses the threshold, a flag is raised as an enabler for the mitigation
methods. In other words, the criticality status of the representative flip-flops are reported to
a software thread in regular intervals and the software thread initiates mitigation measures.

We propose mitigation in the form of execution of a software subroutine when the criticality
of a flip-flop is reported. This software subroutine is designed in the offline stage by searching
for suitable instructions in the ISA of a processor that can switch the flip-flops identified
as critical. The main advantage of such a software-based approach is that the software can
be updated to mitigate the aging effect of newer workloads not seen in the offline phase. For
example, a workload, which is not considered in the offline characterization stage, could impose
severe static aging on a flip-flop marked as non-critical in the offline stage. This static aging
scenario can be better handled by the mitigation scheme through a software update.

The steps involved in the proposed framework can be divided into two phases: (1) offline
phase (Section 4.5.1), which involves offline characterization, static aging correlation of flip-
flops and mitigation analysis; (2) online phase that includes online monitoring of critical flip-
flops for static aging and subroutine-based mitigation of static aging (Section 4.6).
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Figure 4.2: Steps involved in the offline characterization phase.

4.5 Offline Phase

The offline phase of the proposed technique involves (1) a characterization and correlation
analysis of static aging in flip-flops under different representative workloads and, (2) the gen-
eration of a subroutine that on execution can mitigate static aging during functional operation
of a circuit. The two stages are described in detail in Section 4.5.1 and Section 4.5.2.

4.5.1 Offline characterization and correlation analysis

In the offline characterization step, several workloads are simulated to identify the flip-flops
that possess critical static aging behaviour. The different steps involved in offline characteri-
zation are illustrated in Fig. 4.2.

The first step is the execution of several representative workloads on the synthesized gate-
level netlist of the design. The value change dump (VCD) files generated in this process are
analyzed to extract SAPs of different flip-flops. For example, the clock cycle index corre-
sponding to each switching event in a flip-flop is extracted. If the interval between two such
switching events in the flip-flop is above the threshold (for instance, 1 million clock cycles of
constant value), that flip-flop is considered to have an SAP in that interval. The SAPs are
extracted under each workload for a flip-flop. The flip-flops with at least one SAP of duration
above a threshold are identified as the first set of candidates (Ssap) for further analysis. A
BTI-aware timing analysis is carried out in parallel to extract another set of flip-flops (Stc)
that belongs to critical or near-critical paths. An SAP in these flip-flops can potentially lead
to a circuit failure, hence these flip-flops are significant for our analysis. The flip-flops on near-
critical paths can become timing-critical due to aging effect, hence those flip-flops are also
included in our analysis. In the next step, the intersection of these two sets of flip-flops, that
belong to critical or near-critical paths and possess SAPs in workload characterization, are
identified as critical flip-flops (Scrit = Ssap∩Stc). The overhead of monitoring all these critical
flip-flops during runtime can be considerably large. Hence, we propose a method to select a
group of representative flip-flops for monitoring. The proposed method analyzes the correla-
tion in SAPs of critical flip-flops to extract the required representative flip-flops. We explain
critical-path based flip-flop selection and correlation-based representative flip-flop selection in
the subsequent sections.
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Figure 4.3: Correlation analysis of flip-flops based on the overlap of concurrent SAPs.

Critical-path based flip-flop selection

The critical-path based flip-flop selection involves a D-BTI-aware static timing analysis (STA)
to extract critical and near-critical paths. D-BTI induced delay degradation of a logic gate
depends on the signal probability at its input nodes. The signal probability (SP) values at
input nodes for all gates in the design are extracted by executing representative workloads.
These SPs are translated to aging-induced delay values using D-BTI models [116]. An STA
is carried out based on the computed gate delays to extract post-aging critical paths of the
circuit. Flip-flops from critical or near-critical paths only are considered for monitoring. For
any such path, both the start-point flip-flop and the end-point flip-flop are considered. This
is because, the static aging-induced delay can affect the clock to output delay (Tclk−>Q) and
set-up time (Tsu) for the start-point flip-flop and end-point flip-flop, respectively [124]. The
selected set of flip-flops are then analyzed for correlation in the next phase.

Correlation-based representative flip-flop selection

The SAPs of different flip-flops located on critical paths can be significantly correlated. For
example, the most significant bits (MSBs) of address registers share the same SAPs since
these bits are exercised only when a specific set of instructions is executed. We exploit the
correlation between SAPs of flip-flops to reduce the overhead of monitoring. The key idea is to
select a set of representative flip-flops that can represent the SAPs of all the critical flip-flops
based on a correlation analysis. The workloads used for the offline correlation analysis should
be carefully chosen to represent the online behavior of the chip.

We define the start and end points of an SAP as the clock cycles at which the flip-flop
enters the SAP (tstart) and the clock cycle at which it exits the SAP (tend) by a switching
event, respectively. A correlation coefficient cannot be simply used between two flip-flops,
since a single SAP of significant misalignment in start or end point for these two flip-flops can
lead to a false-positive prediction of static aging during runtime.

Two flip-flops, FF1 and FF2, are defined to be correlated if their SAPs satisfy two con-
ditions: (1) all SAPs should be above a minimum critical duration, Tsad min defined based
on the aging model (tFF1

end − tFF1
start, t

FF2
end − tFF2

start > Tsad min ), and (2) for each concurrent

SAP pair in FF1 and FF2, the start points ( tFF1
start, t

FF2
start ) and end points ( tFF1

end , tFF2
end )

should be the same or be different by no more than a misalignment threshold Tma, i.e.,
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end − t
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end

∣∣∣ , ∣∣∣tFF1
start − t
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start

∣∣∣ < Tma. For instance, Tma can be considered as 1% of Tsad min.

The correlation between flip-flops is illustrated in Fig. 4.3. Out of the three pairs of flip-
flops, the only correlated pair is FF1 and FF2 based on the above conditions. In summary,
different sets of correlated flip-flops by the correlation analysis can be selected. Note that the
correlation defined here is binary and can only admit two possibilities: (1) perfect correlation,
(2) no correlation.

For each workload, the invalid flip-flop SAPs are eliminated based on SAP duration. Corre-
lation analysis is carried out between all concurrent SAPs of each pair of flip-flops. If correlated,
the pair of flip-flops is added to a correlated group. This process is repeated until all flip-flop
pairs are examined during correlation analysis. Thus, the correlated flip-flop groups are ob-
tained for each workload under consideration. Since two flip-flop groups from two different
workloads can include a common flip-flop, an intelligent choice of representative for a group,
as detailed in the following, can reduce the total number of representative flip-flops.

The selection of the minimum number of representative flip-flops in this case can be for-
mulated as a minimal hitting-set problem [131]. This problem is known to be NP-complete,
hence heuristic solutions are necessary. In our case, let the correlated flip-flop groups under all
workloads be represented as sets S1, S2, ..., Sn. We construct a representative flip-flop set RS
by adding one element selected from each correlated flip-flop set. The objective is to minimize
the size of RS by a suitable choice of elements from each set.

We adopt a greedy approach to find the minimal hitting set. The flip-flop belonging to the
largest number of flip-flop groups has been selected as the element of choice at each iteration.
Before each subsequent iteration, all the flip-flop groups represented by already-selected flip-
flops are removed from further consideration. This process is repeated until all the flip-flop
groups are removed. The set of selected flip-flops in each iteration constitutes the representative
flip-flop set.

We derived an expression for the time complexity of the pairwise correlation analysis. Let
the number of timing-critical F in a circuit be p . The maximum number of SAPs in any
flip-flop can be considered as a finite constant for a given duration of a workload. The runtime
to delete all SAPs below Tsadmin is O(p). The pairwise correlation across all flip-flops to
determine correlated flip-flops has a complexity of O(p2). Hence, the overall time-complexity
to generate the correlated flip-flop groups is O(p2 + p), i.e., O(p2).

To calculate the time complexity of the greedy approach for minimal hitting-set selection,
let the number of flip-flops in an flip-flop group be n and the number of flip-flop groups for a
workload be m. The runtime to select the flip-flop belonging to maximum number of flip-flop
groups is O(mn). The flip-flop groups that can be represented by the selected flip-flop can
be eliminated in O(m). This process is repeated m times to generate the minimal hitting
set. Hence, the time complexity of this greedy approach to select representative flip-flops is
O(m(nm+m)), i.e., O(m2n).

4.5.2 Offline static aging mitigation analysis

The next step after the identification of critical flip-flops and representative critical flip-flops
is to mitigate the effect of static aging. This is achieved by developing a software subroutine
that can access the critical flip-flops to switch their value, and thereby relax the effect of static
aging.

Flip-flop switching can also be achieved by adding extra combinational logic for each crit-
ical flip-flop. However, the number of critical flip-flops can be very large (as shown later in
Table 4.3) for a design, making a hardware solution very expensive. Hence, a software based
solution is desirable. Moreover, a software-based solution provides the flexibility to modify
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Figure 4.4: Flow chart showing the steps involved in ATPG-based subroutine generation

the mitigation approach online and thereby, to tackle the static aging effect of an anomalous
workload that was not considered in the offline characterization phase

Our proposed software subroutine can be designed offline by exploring cross-layer access
mechanisms that can switch the critical flip-flops from the software layer. The cross-layer
access is enabled implicitly without any microarchitectural-level or gate-level modification.
The subroutine should also be constrained in such a way that its execution should not leave
any footprint on the architectural state of the processor. The designed subroutine is stored
on-chip and executed on receiving a trigger from the static aging monitoring hardware.

One of the most important characteristics of our mitigation scheme is that it is not hard-
wired. The subroutines are reconfigurable on-the-fly. Hence, our approach has the flexibility
to revisit the list of critical flip-flops online and if any of the omitted flip-flops are found to be
under accelerated static aging, the subroutines can be modified to include specific instructions
that can exercise these flip-flops and relax their aging-induced degradation.

We propose a three-stage process to generate a software subroutine that can be executed to
relax flip-flops under critical static aging. The first stage involves an ATPG-based detection
of suitable instruction sequences that can exercise the critical flip-flops. While this technique
can be fully automated and the number of patterns (instructions) to toggle those critical
flip-flops can be optimized, it has limited coverage as it uses the sequential ATPG features.
Therefore, those flip-flops that cannot be exercised by this technique, can be handled in a
second stage that involves a semi-manual selection of instructions based on the functionality
of the critical flip-flops under consideration. These generated subroutines can potentially alter
the microarchitectural state of the processor and hence, it is important to add additional
instructions that achieves state restoration. In this regard, the third stage of instruction
padding is added in the process flow to select and add instructions that can switch back the
flip-flop values back to their original state. The three stages are described in detail in the
subsequent sections.

ATPG-based toggling instruction sequence

In post-silicon testing of digital integrated circuits, test patterns generated in pre-silicon stage,
are used to test for various modeled faults, such as stuck-at-faults, transition faults, and path
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Figure 4.5: Illustration of ATPG-based subroutine generation settings for mitigating static aging.

delay faults. This automatic test pattern generation (ATPG) process can be exploited to
generate instruction sequences that mitigate critical static aging of flip-flops. Our aim is to
find the instruction sequence that on its execution, causes switching of the critical flip-flops.
To find such an instruction sequence, ATPG should be carried out with the critical flip-flop
output nodes defined as stuck-at-fault targets while they are defined as pseudo primary outputs
(no further propagation is necessary) and the input stimuli limited to those corresponding to
the instruction bits in a processor core (legal opcodes and instructions). In this setting, the
input patterns that can switch the flip-flop can be extracted and a dis-assembler is used to
convert the test patterns to corresponding instruction sequences.

The complete instruction-sequence (subroutine) generation settings for a typical processor
design is illustrated in Fig. 4.5 and the corresponding process flow is shown in Fig. 4.4. The
synthesized and flattened gate-level netlist of a processor is used for sequential ATPG analysis.
This netlist is augmented with an instruction-filter logic to filter out the illegal instruction
patterns that can be generated in the analysis. The instruction-filter logic converts any illegal
instruction pattern to a pattern corresponding to nop instruction. The critical flip-flop outputs,
identified from the offline characterization stage, are added as target stuck-at-faults to the fault
list. The primary inputs excluding the instruction bits are marked as X, such that these are
not used in pattern generation.

A typical ATPG process for a given target fault involves three phases:

� initialization of the circuit to a defined state.
� activation of the fault target.
� propagation of the fault effect to the primary output.

In our case, we are only interested in the initialization and activation phases. Hence, we define
the target flip-flop outputs as observable nodes or primary output nodes to obsolete the fault
propagation phase.

The ATPG for the processor design needs to be executed in full-sequential mode with no
scan cells inserted, such that the controllability is limited to primary inputs corresponding
to the instruction word. However, some of the instruction words corresponding to the test
sequence can remain unimplemented or undefined in the instruction set architecture (ISA) of
the processor. To filter such patterns, an instruction-filter logic is attached at the input of
the processor netlist as shown in Fig. 4.5 and the combined netlist is used for test pattern
generation. The patterns observed at the output of the instruction-filter logic is collected and
converted to the corresponding instructions in the ISA of the processor using a dis-assembler.
This sequence of instructions forms the subroutine to be used for static aging mitigation.
Since we utilize standard ATPG tools to generate test patterns, several optimizations are
possible in this process of subroutine generation. For example, the number of instructions in

56



4.5 Offline Phase

the subroutine can be significantly reduced by employing ATPG optimizations to reduce the
number of test vectors. In addition, a single test pattern that targets multiple critical flip-flops
can be generated by executing ATPG for a set of stuck-at-fault targets.

Although ATPG-based subroutine generation and execution is a low-overhead solution to
mitigate static aging, there are a few limitations for this approach. First, it might be extremely
difficult to find patterns that can switch flip-flops that are dependent on a specific state of the
system, for example, a flip-flop indicating overflow. In addition, since we employ sequential
ATPG, the probability to find a pattern (coverage) is lower than that of a full-scan mode.
Moreover, the instructions that can be included in the subroutine are also limited. For example,
a jump or a conditional branch instruction to an arbitrary address cannot be included in the
subroutine, as it disrupts the sequential execution of subroutine. Hence, the corresponding test
vectors should be filtered by the instruction-filter logic. This filtering reduces the probability
to find a successful fault-activation pattern using ATPG. However, an alternative approach to
include the branching instructions would be to execute the subroutine in a test state similar
to Microprocessor Hardware Self-Test (MIHST)-based approach in [132]. In this manner, the
processor executes instructions provided by MIHST unit, but does not control the execution
flow.

Functionality-based instruction sequence

The flip-flops that could not be switched by the sequential ATPG-based approach are analyzed
to find their functionality in a processor logic and then we manually combine instructions
that can switch the state by creating specific scenarios. For example, an overflow flip-flop
could be switched by an add operation with suitable operands. A list of critical flip-flops and
their switching scenarios are described in Table. 4.1. For example, the special register bit
corresponding to a window invalid mask could be switched by executing a special instruction
called Write Window Invalid Mask (WRWIM) in SPARC architecture [133].

The flow-chart for the functionality-based subroutine generation is explained in Fig. 4.6.
The critical flip-flops in the flattened processor netlist that can be switched by SATPG are
disregarded in the generation of functionality-based subroutine (Sfunc). The remaining critical
flip-flop instances in the post-synthesis processor netlist are analyzed to extract the hierarchical
path from the top module. For example, consider the flip-flop c0mmu dcache0 r reg SIZE 0
from the synthesized netlist of Leon3 processor. This flip-flop belongs to a signal in the integer
pipeline unit storing the size of data word to be handled in a store/load instruction. For
this information, the signals in the pre-synthesis behavioral description corresponding to the
flip-flop instances are extracted. The next step is to find the trigger conditions of these signals
from their corresponding behavioral code. For the flip-flop instance under consideration, the
trigger condition corresponds to a match with a subopcode of load instruction. To enable these
trigger conditions, proper instruction sequences need to be found from an ISA (instruction set
architecture) analysis. In this example, the instruction to make the trigger condition true
is a load instruction, i.e., ldd [%r4], %r5. The combined instruction sequence for all critical
flip-flops forms a sub-routine (Sfunc) that is stored on-chip along with SATPG. Examples of
such subroutines for both methods are shown in Table 4.2.

Instruction Padding

The execution of the subroutines (SATPG and Sfunc) during normal operation of the processor
can alter the processor state. Hence, an instruction padding step is followed; i.e., a few
instructions are added to the subroutines, such that the system state is restored. These
additional instructions can only be selected semi-manually based on the foot-print analysis of
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Table 4.1: Functionality based flip-flop switching

Flip-flop Switching Scenario

Special register bit for trap type Divison by zero
Register bit for load type load of a double word
State bit in division unit Special division operation
Window invalid mask (WIM) bit Execute instruction WRWIM (write WIM)
Annul bit in exception stage Instruction-induced exception trap
Interrupt request enable Write process status register ( WRPSR)
Current Window Pointer (CWP) bit Write process status register ( WRPSR)
Divison unit flag Special division operation

Consider Critical FF with 
Index i

Processor Netlist 

ISA analysis

Trigger Signals

 Accessible by 

SATPG_padded?

Hierarchical Path Extraction of 
FF

Search for Trigger condition

Increment 
Index i

Yes

No

RTL description of 
module containing FF

Instructions to activate
 Trigger Signals

Subroutine (Sfunc) 

Figure 4.6: Flow chart showing the steps involved in functionality-based subroutine generation

Table 4.2: Examples for subroutine generation

ATPG based subroutine

st %r1, [addr 1]; st %r2, [addr 2]; st %l5, [addr 3]; st %o4,
[addr 4]; orcc %o0, -0x2ae, %l5; sdiv %o4, 0xb55, %g0;
mulscc %r2, %r2, %r1; ld [addr 1], %r1; ld [addr 2], %r2;
ld [addr 3], %l5; ld [addr 4], %o4;

Functionality based subroutine
(Register bit for load type)

st %r5, [addr] ; ldd [%r4], r5; ldd [addr], %r5
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the initial instruction sequence. For example, if the content of a register would get affected
by the execution of ATPG-based subroutine (SATPG), then a few instructions are added at
the beginning of this subroutine to backup the register content in memory (store instruction)
and at the end of the subroutine to restore the register content to its earlier value (load
instruction). In short, the generated subroutines are padded with selected instructions such
that the combined sequence leaves no footprint on the architectural state of the processor.

4.6 Online Phase

The online phase of our proposed technique involves (1) monitoring of representative critical
flip-flops for static aging phases, and (2) mitigation of static aging using synthetic subroutine
execution. The two stages are explained in detail in Section 4.6.1 and Section 4.6.2.

4.6.1 Online Monitoring of Static Aging

The representative flip-flops selected in the offline phase are monitored online to identify the
critical workload phases that can induce accelerated static aging of the circuit. Our proposed
method deploys a monitoring hardware that generates a criticality report and sends the report
to a software at regular intervals. The software keeps track of the flip-flops which continuously
lie in critical state in each report. If the flip-flops are observed to be in a SAP above a
threshold duration, an activation signal for mitigation measures is generated by the software.
The mitigation measures are carried out to relax the accelerated aging occurring in these most
critical flip-flops. This is achieved by enforcing a switching event on critical flip-flops.

Monitoring Hardware

The monitoring hardware used to track static aging in flip-flops is illustrated Fig. 4.7. The
representative flip-flops selected in the offline phase are connected to the monitoring hardware.
A switching event in a representative flip-flop can be translated as the recovery phase of the
corresponding flip-flop group. Hence, we track switching events in these flip-flops to report
the recovery event to the software. To achieve this, the representative flip-flops are observed
by a switching-event detector. This detection circuit generates a pulse at its output when
a logic transition occurs in the corresponding flip-flop. The output of the switching-event
detector is encoded using a priority encoder. In any given clock cycle, a non-default value at
the output of the priority encoder indicates the index of the flip-flop that switches its state in
that particular clock cycle. If two representative flip-flops switch their states in the same clock
cycle, priority encoder ensures a valid output by encoding either of these switching events.
Since the representative flip-flops are least correlated among themselves, the probability of a
switching event at the end of a concurrent SAP pair occurring simultaneously in any two of
them is almost zero. Hence, the encoding of switching events can be carried out with high
accuracy.

We maintain a criticality word in a critical-flag register to represent the recovery/aging
state of the corresponding representative flip-flop. All representative flip-flops are marked as
critical at the beginning of each monitoring interval. The start and end of each such interval
are determined using a timer. For example, the bits of the critical-flag register are all set to
’1’ in the beginning of a monitoring interval. For each switching event that occurs in any
representative flip-flop, corresponding flip-flop index is generated at the output of the priority
encoder. The flag bit in the critical-flag register corresponding to this index is reset to ’0’ to
mark the recovery state of that representative flip-flop. This process is repeated until either
(1) all the flip-flops are marked to be recovered or (2) the monitoring interval ends. The
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critical-flag register content is sent to the software at the end of each such monitoring interval.
The software maintains a criticality Look-Up Table (CLUT) that marks the flip-flop index
along with the criticality grade. If a flip-flop is marked as critical for two consecutive intervals,
the criticality grade is incremented. Appropriate mitigation measures are adopted when the
criticality grade of a flip-flop exceeds a pre-defined threshold.
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Figure 4.7: Illustration of the online static aging monitoring hardware.

The status of the flip-flops in the detection circuit are tracked in the criticality look-up table
(CLUT) and hence, the state of these flip-flops can be switched after a critical static aging
phase (SAP). Moreover, the flip-flops in the monitoring hardware do not belong to critical or
near-critical path. Hence, these flip-flops can make a recovery before they reach a worst-case
scenario.

The area overhead of the monitoring hardware can be reduced by replacing the priority
encoder with AND gates at the output of the switching event detectors (SEDout). The
critical-flag register (CFF ) should switch to zero when a switching event is detected and
should not respond to any further switching event in a monitoring interval, i.e, the AND gate
is connected as CFFin = CFFout&SEDout.

In modern microprocessors, software threads can access machine specific registers (MSRs)
in less than a microsecond [134]. The monitoring interval of our proposed method can be
in the order of milliseconds (corresponding to an SAP duration in the order of million clock
cycles) for a 1 GHz processor, hence, the critical-flag register can be accessed by the software
with almost no performance overhead.

The system-level support is required in the case of communication between monitoring
hardware and the software which tracks static aging status of critical flip-flops. The status
can be read in uniform intervals by reading a single critical-flag register as shown in Fig. 4.7.
For example, in ARM-based designs, a custom register can be easily created and a memory
map block or a co-process access interface can be implemented for read and write [135].

4.6.2 Online Mitigation of Static Aging

The software associated with static aging monitoring setup, as explained in Section 4.6.1,
maintains a criticality grade for each critical flip-flop. If any of the monitoring flip-flops crosses
a pre-defined threshold, a trigger is activated for mitigation and the subroutine, designed
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Figure 4.8: Illustration of switching event propagation from flip-flops under static aging to the logic
gates under static aging in their forward fanout cone.

offline for mitigation, is executed. During the execution of this subroutine, the static aging
critical flip-flops switch their values and relax the accelerated aging effect. The subroutine is
constrained not to leave any residual footprint on the functional state of the processor. Hence,
the switched flip-flop states are reversed with consequent switchings such that the system state
is restored.

In addition to critical flip-flops, most logic gates in the forward fan-in cone of these flip-flops
can also get recovered from S-BTI stress by the execution of the subroutine. In other words,
the static aging effect on the logic gates can be intuitively correlated to the static aging of
one or more flip-flops in their input cone. Hence, in most cases, a switching event in these
flip-flops is sufficient to generate a switching in these gates and thereby, a relaxation in their
static aging.

For example, consider the circuit shown in the Fig. 4.8. The flip-flop B is considered to be
under static aging storing a logic value of 0. The value is propagated forward in its fan-out
cone accelerating the aging based degradation of transistors in gates G1, G2 and G3. The
inputs of these gates and of the corresponding transistors in these gates will undergo switching
(from 0 to 1 and also from 1 to 0) when the flip-flop B switches from 0 to 1 for a short duration
and then, 1 to 0 (to restore its original state). These switchings leads to a relaxation of the
accelerated static aging in these gates.

Note that, here G4, G5 and flip-flop A are shown to have normal switching activity and
hence, are not under static aging. Hence, they do not mask the propagation of switching events
from flip-flop B in its forward cone. Otherwise, if any of G4, G5 or flip-flop A happens to
be under static aging, then the flip-flop A and the corresponding flip-flops in the fan-in cone
of G4 and G5 should also be switched along with B to ensure a relaxation in the logic gates
under stress.

In addition, the sequence of switching events mitigates aging effects on both NMOS and
PMOS transistors, i.e., of PBTI and NBTI, respectively [130]. In short, the execution of the
proposed subroutine can induce both 0→ 1 and 1→ 0 transitions at PMOS and NMOS tran-
sistors, leading to the relaxation of both NBTI and PBTI stress. In addition, these transitions
are propagated to the logic gates in the forward fanout cone of the flip-flop, thereby leading
to their relaxation.

The switching of logic value of a flip-flop can also be translated as corresponding switching
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Figure 4.9: Illustration of static aging relaxation of the internal transistors of a master-slave flip-flop
on subsequent switching events.

events at the input of transistors inside a flip-flop. For example, let us consider a standard
master-slave flip-flop under accelerated static aging phase as shown in Fig. 4.9. When there is a
forced switching at the D input of the flip-flop, the internal inverters undergo a corresponding
switching activity at their inputs. Hence, a switching event from 0 to 1 and a subsequent
switching from 1 to 0 relaxes all transistors in the invertors.

The relaxation effect due to a switching event is explained in [41]. A switching of logic value
at the input of the statically aged transistor introduces a fast initial exponential transient [136]
of the relaxation component. The value of this transient is dependent on the technology node
under consideration. For latest nodes, there is a distribution of time-constants considered for
relaxation and drop in ∆Vth is observed in discrete voltage steps [137]. A relaxation model
defined for the 65 nm node assumes a relaxation time constant in the range of microseconds
and in later nodes, this value tends to decrease [138]. In addition, our mitigation technique
can be adjusted to increase the time under relaxation by inserting NOPs in the subroutine
before restoring the system state.

4.7 Experimental Results

The runtime dependency of static aging characteristics is evaluated for two processors. The
monitoring hardware is validated using a Register-Transfer Level (RTL) implementation. Thus,
the area and power overheads for the additional hardware are estimated. For this set of
experiments, the representative flip-flops are extracted for the Leon3 [139] and Fabscalar [140]
processors for different workloads. Experiments were run on a 64-bit Linux machine with 16 GB
of RAM and quad-core Intel Xeon processors running at 2.53 GHz. Leon3 is a 32-bit embedded
processor based on the SPARC-V8 RISC Instruction Set Architecture (ISA) having seven
pipeline stages. Fabscalar is a superscalar out-of-order processor based on PISA (Portable
ISA) having eleven pipeline stages. For both processors, we used a single core configuration.
The processors are synthesized using Synopsys Design Compiler with the Nangate 45 nm
library [111]. The gate-level netlist of Leon3, synthesized for a maximum operating frequency
of 485 MHz, contains 35,400 logic gates and 2356 flip-flops. The gate-level netlist of Fabscalar,
synthesized for a maximum operating frequency of 740 MHz, contains 133,142 logic gates and
7563 flip-flops.

Six workloads from the MiBench workload suite [141] and six SPEC [32] workloads are
executed on Leon3 and Fabscalar, respectively and VCD files were generated for the flip-flop
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Figure 4.10: Results demonstrating the variation in percentage of (a) union of critical flip-flops of all
workloads (UCF), and (b) representative flip-flops (RFF), with the minimum duration of
SAPs for Fabscalar and Leon3 processors.

outputs. A VCD parser is used to extract the SAPs in each flip-flop. A BTI-aware STA has
been carried out using an in-house framework to extract the critical path slacks. The flip-
flops belonging to the critical paths, having a slack less than 10% of the maximum slack, are
selected for correlation analysis. For Leon3 (Fabscalar), out of a total of 2356 (7563) flip-flops,
we extracted 451 (536) flip-flops on critical paths for further analysis.

4.7.1 Representative flip-flop selection

For each workload, flip-flops were selected based on a minimum SAP duration. For instance,
the number of selected flip-flops of Leon3 and Fabscalar for each workload with a minimum
SAP duration of 3 million clock cycles are shown in Table. 4.3. The union of the sets of
critical flip-flops of Leon3 and Fabscalar for different workloads were found to be 42 and 450,
respectively. In addition, for each workload, flip-flops were grouped into several sets where
each set comprises of flip-flops having significant SAP correlation as defined in Section 4.4. In
other words, a single flip-flop from each such correlated set of flip-flops can be selected as that
set’s representative. However, since these sets across workloads are not disjoint, the selection
of minimum number of representative flip-flops is not trivial.

We employed a greedy algorithm to select representative flip-flops by solving the minimal
hitting-set problem as shown in Section 4.5.1. In our approach, only 7 flip-flops are required
to represent the static BTI stress in 42 critical flip-flops in Leon3, which has 2356 flip-flops in
total. The number of representative flip-flops to be selected can be further reduced by using
more efficient algorithms to solve the minimal hitting-set problem.

The average runtime required for pairwise correlation analysis of flip-flops for different
workloads was less than one minute. The runtime required for the greedy algorithm to solve
the minimal hitting set problem was less than ten seconds.

The minimum SAP duration can be increased to focus on the most critical workload phases.
For a typical design, minimum SAP can be evaluated based on the increase in circuit delay due
to S-BTI, and the safety margin defined for timing analysis. Our post-synthesis simulation
setup can only handle small workloads with a few hundred million processor clock cycles
due to runtime constraints. Even with a few hundred million cycles we executed using post-
synthesis simulations, in our academic setup, we could confirm the existence of static BTI and
long durations of inactivities in some flip-flops. With larger workloads, the effect on delay
degradation can be critical and may lead to timing failures.

In Fig.4.10, the minimum SAP duration is varied from 0.5 million to 3 million clock cycles
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to extract the number of representative flip-flops for both processors. The results show that
the number of flip-flops to be monitored for a minimum SAP duration (Tsad min) of 3 million
clock cycles are 7 (0.30% of the total number of flip-flops), and 36 (0.48% of the total number of
flip-flops) for Leon3 and Fabscalar, respectively. The reduction in the number of representative
flip-flops can be attributed to two factors; (1) the flip-flops having shorter SAPs get filtered out
when Tsad min increases, (2) the number of correlated flip-flops increases due to the reduction
in number of SAP pairs to be considered for correlation analysis, i.e., the correlation criteria
is relaxed.

For different workloads running on two processors, we have proved that a large number
of flip-flops are undergoing static aging in a correlated manner, hence a few flip-flops can
represent the whole behaviour. In specific cases, if the correlation is not valid, we may need
to adopt new low overhead solutions.

4.7.2 Mitigation Measures

For mitigation, we execute a subroutine that can switch the critically aged flip-flops to relax
their aging. The subroutine generation process is explained in Section 4.6.2. The ATPG-based
instruction sequence for Leon3 netlist was generated using Synopsys Tetramax by masking the
primary outputs and constraining the irrelevant primary inputs. The static aging critical
flip-flop outputs are added in the fault list with stuck-at-faults assigned. We executed a full-
sequential ATPG with no scan cells inserted to find the patterns that can switch the critical
flip-flops. The fault propagation was filtered out by assigning the flip-flop outputs as observable
primary outputs.

For generating the subroutine, we fixed the criticality threshold for SAP as 3 million clock
cycles. The runtime of ATPG tool to develop the subroutine was less than one minute. The
results showed that 21 flip-flops (50%) out of 42 flip-flops under critical static aging in Leon3
processor could be switched by the ATPG-based subroutine within 53 clock cycles. The rest
of the flip-flops could be switched by creating specific scenarios as explained in Section 4.5.2
and illustrated in Table 4.1. The switching scenarios involving division operation consume 36
clock cycles in Leon3 divider unit and other switching scenarios require 3 clock cycles each.
Hence, the total number of clock cycles required for the execution of the functionality-based
subroutine is extracted as 123 clock cycles.

4.7.3 Overheads

The proposed method employs a monitoring hardware comprising of switching event detectors,
a priority encoder and a criticality-flags register, to monitor S-BTI stress on critical flip-flops.
This monitoring hardware is connected to the outputs of the representative flip-flops in the
synthesized gate-level netlist of the processors.

The extra hardware added for S-BTI stress monitoring has resulted in an additional area
overhead of 0.22% for Leon3 and 0.09% for Fabscalar. The power overhead of the monitor-
ing hardware is estimated as 0.04% for Leon3 and 0.05% for Fabscalar using Synopsys Power
Compiler tool. The leakage power of the monitoring hardware dominates in power overhead
since the flip-flops under S-BTI switches infrequently during their operation. The additional
load at the output of the flip-flops under monitoring did not cause an impact on the overall
circuit delay. The area overhead is estimated by synthesizing the processor cores twice, once
with the monitoring hardware added to it and then, without the monitoring hardware. The
area overhead of the proposed technique is negligible (<0.22%) compared to that of internal
node control [117] (1.6%) and input vector control [118] (3.5%). For the flip-flop re-designing
technique [124], area optimization leads to 0.81% increase in power consumption, which is one
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order of magnitude higher compared to our technique (<0.05%). These methods also report
performance improvement in the form of static-aging guardband reduction [117, 124]. In our
case, we can adjust the corresponding minimum SAP duration, to achieve the desirable guard-
band reduction. The mitigation technique employing software subroutines lead to negligible
performance overhead. This subroutine is executed only once in three million clock cycles in
the worst case and no additional circuit is added for this mitigation.

The subroutine to mitigate 42 critical flip-flops in Leon3 consumes 176 clock cycles (123
and 53 clock cycles for functionality-based and ATPG-based subroutines, respectively) for a
critical SAP duration of 3 million clock cycles. The corresponding performance overhead in
the worst case is only 0.0059%.

4.7.4 Lifetime Enhancement

Our method can effectively track SAPs and trigger mitigation actions enabling the circuit to
recover completely from static aging effect. We compared the lifetime improvement of our
approach with conventional methods that re-design flip-flops to tackle static aging. Another
conventional method is to reduce the frequency of operation (reactive approach) to take care
of aging once the circuit has degraded. We propose a proactive mitigation approach, by
introducing short interruptions to static aging acceleration phases, preventing the early failure
of the device. The lifetime of a circuit is defined as the duration for which the circuit reliably
operates within its delay margin. The lifetime improvement was calculated by comparing the
worst case scenarios occurring in two cases, i.e., (1) without SAP monitoring, and (2) with SAP
monitoring. For the first case, the circuit, which was simulated for the effect of dynamic aging
for 2.9 years, experiences the worst case when an SAP occurs in its critical or near-critical
paths. If the total increase in circuit delay exceeds the timing margin, a failure occurs and
the lifetime for error-free operation is significantly affected. For the second case, a significant
lifetime improvement can be achieved by mitigating SAP effect with the proposed monitoring
technique. The lifetime improvement is calculated for a case where (a) an SAP of 3 million
clock cycles stresses the circuit on top of a dynamic aging stress of 2.9 years to the case where
(b) SAP effect is mitigated and dynamic aging of 2.9 years is the only aging effect.

In conventional methods [117, 118, 124], the lifetime impact on the circuit and the required
timing guardband is due to dynamic and static aging of the circuit. In contrast, our runtime
monitoring method eliminates the chance of a timing failure due to static aging. Hence, in our
analysis, we observed a 1.9X lifetime improvement (2.9 years to 5.5 years for a minimum SAP
of 3 million clock cycles) by applying the proposed technique to these processor designs.

4.8 Summary

We have highlighted the importance of determining the workload phases that causes static-
BTI stress in timing-critical flip-flops of processor designs. We have emphasized the need for
runtime monitoring of critical flip-flops. We have described the design of runtime monitoring
hardware that can raise a flag when the critical flip-flops experience severe aging stress. We
select a small set of representative flip-flops to track the static aging phases of all critical
flip-flops, thereby reducing the area and power overhead for monitoring. The area and power
overheads imposed by the monitoring hardware are less than 0.25% for two processor designs.
We have also presented a low-overhead static aging mitigation method based on the execution
of a software subroutine designed offline.
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5.1 Overview

Radiation-induced soft errors are a major reliability concern in circuits fabricated at advanced
technology nodes. Online soft-error vulnerability estimation offers the flexibility of exploiting
dynamic fault-tolerant mechanisms for cost-effective reliability enhancement. We propose a
generic run-time method with low area and power overhead to predict the soft-error vulner-
ability of on-chip memory arrays as well as logic cores. The vulnerability prediction is based
on signal probabilities (SPs) of a small set of flip-flops, chosen at design time, by studying
the correlation between the soft-error vulnerability and the flip-flop SPs for representative
workloads. We exploit machine learning to develop a predictive model that can be deployed
in the system in software form. Simulation results on two processor designs show that the
proposed technique can accurately estimate the soft-error vulnerability of on-chip logic core,
such as sequential pipeline logic and functional units as well as memory arrays that constitute
the instruction cache, the data cache, and the register file.

The rest of the chapter is organized as follows. Section 5.2 introduces the work in detail,
presents a motivation and also lists the contributions. Section 5.3 overviews the preliminaries
and related prior work. Section 5.4 describes the proposed soft-error vulnerability prediction
method. Experimental results and evaluation are presented in Section 5.7. Finally, Section
5.8 summarizes the chapter.

5.2 Introduction, motivation and contributions

Soft errors, caused by high-energy neutrons from cosmic rays and alpha particles from the
packaging material, have become a major reliability concern for nanoscale integrated circuits.
Higher transistor densities coupled with aggressive supply-voltage scaling and lower noise
margins have led to an exponential increase in the radiation-induced soft-error rate (SER)
[142]. Memory arrays such as caches and register files are major contributors to the overall
SER [142, 143]. Additionally, the rates of flip-flop Single Event Upsets (SEUs) are comparable
to SRAM cell SEU rates in recent technology nodes and are expected to dominate in future
technologies [142]. Protection against soft error is costly in memory arrays (such as error
correction codes [144]) and even costlier for sequential logic [145]. Rapid, but accurate, soft-
error vulnerability evaluation for all these components is crucial for system-level dependability
analysis and optimization.

Soft-error-resilience is typically achieved by implementing error correction codes (ECCs),
hardening techniques or by performing system-level reliability optimization at run-time. In
the ECC-based approach for memory arrays, the soft-error vulnerability of each memory array
is evaluated at design time with respect to several representative workloads, and a coding
technique that satisfies the reliability requirement of the intended application is implemented
[146]. For sequential logic on the other hand, offline SER analysis is used to identify vulnerable
sequential elements are identified, and these are selectively hardened by adding redundant tran-
sistors to ensure a feedback path that can restore the logic value in the event of an upset. The
SER can be estimated using statistical fault injection [147], radiation testing [148], or architec-
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tural vulnerability analysis [146, 149] for memory arrays and simulation-based fault injection
analysis [150], signal-probability based error propagation [151] and RTL-level vulnerability fac-
tor propagation [152] for sequential logic. However, this approach imposes considerable area
and power overheads, even for applications that are not associated with high reliability re-
quirements. For example, the simple single error-correction double error-detection (SECDED)
technique requires seven additional columns for protecting a 32-bit memory, which results in
21.9% area (and proportional power) overhead. For sequential logic, hardening of vulnerable
sequential cells can result in an area overhead of 20% [144] and proportional power overhead.

In online system-level reliability optimization techniques, the soft-error vulnerability is es-
timated at run-time, and protection measures such as task replication or selective ECC ac-
tivation are used only for critical tasks with relatively high soft-error vulnerability. In addi-
tion, there is a wide range of online protection mechanisms that can be turned on and off
at runtime. For instance, it is possible to dynamically turn off one thread in a Redundantly
Multithreaded (RMT) system which detects faults by comparison of the execution of two
identical threads [153]. Similarly, turning off ECC activation before a ‘read’ can improve per-
formance [154]. Vulnerability reduction mechanisms, such as activation of pipeline flushing
can also be determined during runtime. Instruction throttling and selective redundancy are
also runtime controllable, as explained in [155]. To deploy these online protection mechanisms
efficiently, it is necessary to know the soft-error vulnerability of an upcoming workload phase
during runtime. In this regard, different techniques to predict soft-error vulnerability have
been proposed in the literature [57, 153, 154, 156]. However, online soft-error vulnerability
estimation is challenging due to limited access to system-state during runtime. In short, a
cost-efficient system should be able to handle worst-case scenarios with full-fledged protection
mechanisms and less-vulnerable scenarios with basic protection mechanisms. To establish such
flexibility in protection mechanisms, there is a need for soft-error vulnerability prediction.

The online soft-error vulnerability of a memory array can be estimated by modifying the
RTL model of the processor to mimic the error-propagation behavior of the data stored in
memory arrays by adding and tracking flag bits [57]. However, its implementation for all on-
chip memory arrays requires extensive modifications to the RTL model of the processor. An
alternative solution is to predict the soft-error vulnerability of memory arrays using existing
performance counters [153, 154, 156, 157]. The accuracy of this approach depends on the num-
ber of performance counters as well as the sampling time intervals, and thus, it is not effective
for embedded processors with only a few performance counters. In the case of sequential logic
blocks, offline techniques ([152],[151],[150]) used to estimate soft-error vulnerability ignore the
workload dependence of vulnerability. Online techniques include emulating the error injection
online by setting an error bit [57] and evaluating quantized vulnerability factor using linear
regression [154]. However, these online methods concentrate on logic blocks instead of flip-
flops, which are one level lower in granularity compared to logic blocks, hence they can only
achieve limited accuracy. Therefore, there is a need for a generic technique that can accurately
estimate the online soft-error vulnerability without any major modifications to the design.

In this chapter, we propose a general technique to estimate the online soft-error vulnerability
of the entire system (a combination of memory arrays and sequential logic cores) using support
vector machines and gradient boosting techniques. The correlation is based on the signal
probabilities (SPs), i.e., the probability that a signal/node takes logic value ‘1’, of a small subset
of representative flip-flops. These flip-flops are chosen at design time by carefully studying
the correlation between soft-error vulnerability of processor components and flip-flop SPs for
several representative workloads. We exploit two different machine-learning techniques to
develop a predictive model for estimating soft-error vulnerability based on SPs. These models
are subsequently utilized at run-time as software threads to evaluate the online soft-error
vulnerabilities. In contrast to existing techniques, our technique can be easily implemented on

68



5.3 Related Work and Preliminaries

any system as it relies only on the SPs of a few flip-flops, which can be obtained by attaching
simple counters to the flip-flop outputs.

Our approach aims at prediction of the vulnerability of the entire system including sequen-
tial logic core. Our experiments on two embedded processors show that the accuracy of the
proposed soft-error vulnerability prediction method is very high for both memory and logic soft
error rates with a very low number of of representative flip-flops. Therefore, the key benefits of
the proposed soft-error vulnerability prediction method, when compared to existing methods,
are its accuracy and applicability to a broader range of hardware designs.

5.3 Related Work and Preliminaries

Accurate SER estimation is a key requirement for performing cost-effective reliability opti-
mization. The SER of a hardware component c is computed as [146]:

SERc = FITc × V Fc (5.1)

where failure in time (FIT) is the error-generation rate of the target hardware component,
which depends on the fabrication technology, the type of component (e.g. SRAM cell, flip-flop,
or combinational logic cell), and working environment. For instance, a typical 6T-SRAM cell in
45 nm technology has an error-generation rate of 1095 errors per million cells per billion hours
of operation at sea-level [158], and this rate increases nearly 500 times at an altitude of 40,000
feet [159]. For a typical flip-flop implemented in 45 nm technology, the error generation rate
is reported as 300-433 errors per million cells per billion hours of operation [160]. In Equation
(5.1), the vulnerability factor (VF) is the conditional probability that an error generated in
the target hardware component results in a system-visible failure. The VF depends on the
hardware implementation and characteristics of the running workload.

The VF of a system can be categorized into two groups, namely,

1. Memory Vulnerability Factor (MVF) and
2. Logic Vulnerability Factor (LVF).

The VF corresponding to storage structures such as caches and register files is termed as
MVF. For MVF, any memory cell in a storage structure is considered as a potential source
of error. LVF refers to the VF corresponding to a sequential logic core of a processor that is
made of a control unit, pipeline stages and arithmetic units, as well as other random logic,
accelerators, etc. However, combinational logic elements are less susceptible to soft errors [161–
163] and hence, we consider only soft error events in sequential elements (flip-flops and latches)
for LVF computation. However, the proposed methodology is easily extensible to consider
combinational logic cells as error sites as well.

In order to identify vulnerable components/workloads, SER estimation studies typically
focus on VF assessment as FIT is mostly a technology concern. VF is very sensitive to the
workload characteristics, and hence, it can significantly vary across different workloads and
also across different execution phases of the same workload. Moreover, MVF significantly
varies between different memory arrays. This sensitivity of MVF to workload characteristics
can be seen in Fig. 5.1a. In this figure, the variation of the MVF is depicted for four MiBench
workloads [141]. These MVF values were obtained for the instruction cache and the register
file in a 32-bit, SPARC-V8 ISA-based Leon3 processor. In Fig. 5.1b, the variation in LVF of
the logic core and pipeline stages of Leon3 for different benchmarks are depicted. The LVF
values also tend to vary across workloads and within a single workload. Moreover, the LVF of
different pipeline stages are significantly different.
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Figure 5.1: The VF of the memory arrays and sequential logic blocks in Leon3 for three MiBench
workloads (experimental setup described in Section 5.7).

Offline vulnerability estimation

A common approach for offline VF estimation is Monte-Carlo-based fault injection [147, 164,
165], in which errors are injected in random bits and cycles, and the effect of these errors
on the circuit outputs is observed. The accuracy of fault-injection techniques depends on the
number of injected faults, and as shown in [166], achieving an acceptable level of accuracy
requires large number of samples, which translates to very high runtimes. The study in [167]
shows that high-level error injection techniques can be highly inaccurate when compared to
flip-flop error injection techniques.

For MVF, architecturally correct execution (ACE) analysis [149], which has lower compu-
tation times compared to fault-injection-based techniques, is an alternative approach for the
MVF estimation. In ACE analysis, the lifetime of a bit is divided into ACE and un-ACE
intervals. A time interval is classified as un-ACE interval if it can be proven that a soft error
in this interval does not result in an error at the circuit output. The fraction of time for which
a bit is in ACE state during the execution of the workload is the MVF of that bit.

For LVF estimation of sequential circuits, signal probability based analysis of error propa-
gation has been proposed in [151]. A system-level analysis in terms of mean time to manifest
error for a flip-flop has been carried out in [168] for small sequential circuits. A combination
of sequential circuit simulation and statistical fault injection has been proposed in [169] for
system-level soft error analysis. In [152], a hybrid technique, that combines a higher level
ACE analysis and propagation of the extracted VF values through RTL level node graph,
has been used to compute the LVF of sequential bits. A mixed-mode simulation combining
RTL-level and high-level simulations is adopted in [170] to estimate soft-error vulnerability of
uncore components with high speed-up. In [171], a rapid vulnerability estimation technique
(RAVEN), which is based on local fault simulations and probabilistic calculations, is proposed.

Offline VF estimation is typically used to identify the most vulnerable components and
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protect them by hard-coding the measures for soft-error-resilience at design time. However,
this solution results in unnecessary performance and power penalties due to the application
of protection measures even during phases of low soft-error vulnerability. Our technique is
complementary to all these offline VF estimation techniques, since estimation of VF online
requires an offline characterization that can be achieved by any of the above techniques.

Online vulnerability estimation

Online VF prediction can be accomplished by adding virtual flag bits to the RTL model of
the processor to emulate the error-propagation behavior from the target structure [57]. The
flag bit of the target structure is set to ‘1’ to emulate the injection of an error, and the
next instruction that has this structure in its path propagates the flag bit. The processor
is then monitored for a fixed number of clock cycles to determine the effect of error on the
workload under execution. As with offline fault-injection techniques, this is repeated multiple
times to compute the average error-propagation probability. This technique requires extensive
modification to the processor RTL model as each register and memory entry has to be equipped
with a flag bit to propagate virtual errors along with the normal data.

In [172], store-instruction traces leading to cache block evictions are tracked online to
estimate live time of cache blocks. Although, this method is proposed in [172] primarily to
shorten the dead-time vulnerability period of cache blocks, it can be extended to predict VF,
assuming repetitive program behavior. However, this approach entails significant overhead
since it involves tracking history of instruction traces for all cache lines to estimate VF.

Another effective approach for online MVF estimation is to predict the soft-error vulner-
ability using available performance counters. Although such performance counters are im-
plemented for other purposes, they tend to be correlated with the VF of different compo-
nents [154]. This approach has been used for estimating the VF of cache arrays [157], issue
queue [153, 154, 173], re-order buffer [154, 173], and load/store queue [153, 154] in out-of-order
processors. In all these studies, different learning models such as simple linear [157], boosted
regression tree [173], Bayesian Additive Regression Trees (BART) [174], Support Vector Re-
gression and Artificial Neural Network [175] are exploited to predict VF from architectural-level
features.

For complex super-scalar and out-of-order processors, the availability of a large number of
performance counters (e.g., 160 in [153]) can be exploited to obtain an accurate VF prediction.
However, there are only a few micro-architectural performance counters in embedded proces-
sors (simple in-order processors), and as shown in Section 5.7, this approach is not effective in
predicting VF for such processors. In addition, these performance counters are not designed
for VF prediction, and hence, they may not be accessible at the required granularity level in
many processor architectures.

Existing online techniques [57, 154] estimate the vulnerability of logic elements at a higher-
level of granularity, i.e., for logic blocks, but ignore flip-flop or latch-level vulnerability analysis.
Hence, the accuracy of LVF prediction is significantly compromised, i.e., around 10% reduction
in accuracy according to our results.

5.4 Proposed Methodology

We predict the VF of memory arrays (MVF) and logic cores (LVF) based on the SPs of logic
flip-flops. The reasoning behind MVF prediction is that any data transfer from/to memory
arrays is not only propagated through logic flip-flops, but also controlled by them. Therefore,
the values of flip-flops contain useful information such as access types (read/write), usage
(invalid entries), and the stored data. To further motivate the use of flip-flop SPs for predicting
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the MVF of memory arrays, some preliminary results are presented in Fig. 5.2. This figure
shows the MVF values of the instruction cache and the SP of a particular flip-flop in Leon3
during the execution of a workload from MiBench. The MVF extraction method is explained
in Section 5.7.1. From this figure, we can clearly observe that the MVF of the instruction
cache is highly correlated to the flip-flop SP. This particular flip-flop was identified using the
correlation-based flip-flop selection method, explained in Section 5.5.2. The variations in MVF
values for different workloads occur in different timescales as illustrated in Fig. 5.1a. For a
workload with MVF varying in a scale of thousands of cycles, prediction accuracy as claimed
in this work is practically sufficient. If MVF varies in every cycle, a better observable than
SPs of flip-flops will be required.

Similarly, the LVF of a logic core can also be predicted using SPs of a small set of flip-
flops. Since LVF is dependent on the error propagation probability on circuit paths, which in
turn depends on the SPs of off-path nodes [151], flip-flop SPs serve as a reasonable candidate
to predict LVF. The variation in LVF across different workloads or workload segments is
dependent on the variation in SPs of circuit nodes. Hence, flip-flop SPs as an observable to
predict LVF is an intuitive choice.

The proposed technique can be divided into two phases: (i) offline VF-correlation analysis
and prediction-model generation, (ii) run-time vulnerability prediction. The VF-correlation
analysis is performed to find the most relevant flip-flops for predicting the VF of memory
arrays and logic core. A machine learning based VF prediction model is also developed in this
phase. During runtime, counters are connected to the selected flip-flops and the count values
are fed as input to the machine-learning model to compute the online VF of the memory arrays
and logic cores.
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Figure 5.2: Variation of instruction-cache MVF of Leon3 and SP of a selected flip-flop during MiBench
workload execution.

5.5 Offline Correlation Analysis

The representation of workload dependency of VF in terms of a parameter that can be mea-
sured online is the primary goal of an offline correlation analysis. The VF depends on the
system state over multiple clock cycles. The MVF of a memory array at a particular clock
cycle depends on the memory access trace, not only for the past but also for the future clock
cycles, as data written earlier may be accessed later. This means that the MVF cannot be
estimated based only on the current status of the system. Therefore, the system status over
millions of clock cycles has to be monitored. Similarly, the LVF of the logic core depends on
the logic values of the circuit nodes during the propagation of an error through the circuit
paths in multiple clock cycles. Hence, the workload phase of the processor needs to be con-
sidered for both LVF and MVF estimation. However, it is impractical to monitor the values
of all flip-flops (i.e., system state) over millions of clock cycles. Hence, the entire workload
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execution time is divided into smaller segments of constant size and the SPs of flip-flops across
each workload segment are used to abstract the system state across that workload phase.

The overall flow of the offline phase is shown in Fig. 5.3. The MVFs of all on-chip mem-
ory arrays, LVF of logic core, and SPs of all flip-flops are obtained for different segments of
workloads. Each workload is partitioned into workload segments of equal duration and a fixed
number of workload segments are randomly selected as the training set. Hence, we obtain
a comprehensive training set with elements having diverse characteristics. Next, a subset of
flip-flops whose SPs (SP1) are highly correlated to the MVF of each memory array and another
subset whose SPs (SP2) are highly correlated to the LVF of logic core, are determined using
support vector machines and gradient boosting techniques, respectively. Subsequently, two
different predictive models are built based on SPs of these two sets of flip-flops. The necessity
of these two different sets of representative flip-flops and predictive models can be attributed to
the difference in error residency and propagation in memory and logic core leading to different
SP1 → LV F and SP2 →MV F correlations.
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Figure 5.3: Offline correlation analysis and prediction model generation.

The SP of flip-flops over each workload segment can be obtained by performing post-
synthesis logic simulation. Since SPs and switching activities are required for power-profile
analysis, commercial logic simulators have a built-in feature to dump such information for
desired signals and time intervals in a switching-activity-interchange-format (SAIF) file. We
use this feature to compute SPs of flip-flops across each workload segment.

Simple counters with sizing according to the length of workload segments are attached to
the representative flip-flops in the design phase in order to sample flip-flops online and store
SPs. These counter values serve as the input to the vulnerability prediction model when
deployed online.

5.5.1 Vulnerability Factor Estimation

Any offline VF estimation technique can be used to obtain the VF of each memory array or
logic block. In general, computing the VF of a hardware structure at a particular clock cycle
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involves the estimation of the fraction of bits in that structure that can result in an erroneous
output.

MVF estimation

The estimation of MVF can be carried out using ACE analysis [149] or Monte-Carlo-based
fault injection methods [147, 164, 165] as explained in Section 5.3. Since fault injection analysis
is computationally expensive for generating sufficient data samples, ACE analysis is chosen for
this work.

The MVF values of three on-chip memory arrays, namely (i) instruction cache, (ii) data
cache, and (iii) register files, can be computed using ACE analysis [149]. For each of these
memory arrays, the initial step is to track the clock cycles in which a read or a write operation
occurs during the execution of a workload. The addresses to which the read or the write
operations occurs and the access type for each of those operations are recorded. This informa-
tion can then be used to determine the ACE and un-ACE intervals for each memory location.
Consider the example in Fig. 5.4, which shows the access pattern for a particular address in
a memory array. If a write operation occurs in clock cycle n1, followed by a read operation
in clock cycle n2, then the interval [n1, n2] is considered as an ACE interval. If a subsequent
write happens in clock cycle n3, then the interval [n2, n3] is considered as an un-ACE interval.
This analysis is repeated for all the addresses in the memory array. The AVF of the memory
array can then calculated as the ratio of the average number of ACE bits in a cycle and the
total number of bits in that array.
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Figure 5.4: Illustration of ACE and un-ACE intervals based on the read and write access patterns.

LVF Estimation

For the LVF estimation of a logic core, (a) the error propagation probability of an SEU
occurring at any flip-flop in the circuit to the input of the next reachable flip-flop in the timing
path, and (b) the probability that this error getting sampled within the timing window of the
reachable flip-flop needs to be considered. The error propagation and sampling probabilities
are dependent on logical and temporal masking factors [151], respectively, in this case.

For example, consider a soft-error event occurring in a flip-flop F shown in Fig. 5.5. The
flip-flops in its forward cone are considered as reachable flip-flops (flip-flop E in this case) for
the error to get propagated. Logical masking depends on the type and input value of logic
gates in the propagation path that determines whether the error gets masked. For example,
if the SP value of node b (SP bW1) during the execution of workload segment W1 is 0, then the
AND gate connected to node b would mask the error propagated from F . Hence, the logical
masking effect depends on the SP values of off-path nodes, or in other words, the nature of
workload under execution.

To quantify the logic masking effect, we can use any of the previously proposed error-
propagation techniques [55, 151]. In these techniques, the relative probability that an error is
propagated to a circuit node is calculated based on the type of logic gates in the circuit path.
For each logic gate, a set of equations represent the probabilities that an error at its input
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Figure 5.5: Flip-flop SEU due to particle strike and error propagation scenario in a timing path.

propagates to the output. In this way, the probabilities at the input node of each reachable
flip-flop in the forward cone of a fault site is computed and is termed as logical masking factor.
Similarly, the temporal masking factor represents the masking of an error if it propagates
relatively late to the latching flip-flop which has a fixed timing window for the error to get
latched [55]. Then, the latching probability (LP ) at the input of each reachable flip-flop is
calculated as the product of logical and temporal masking factors.

For a flip-flop FF1, failure probability (FP ) is calculated based on the latching probability
of all of its reachable flip-flops in its fan-in cone [151] as shown in Eq. (5.2).

FPFF1 =
∏

i∈FF,PO
1− LPFFi,POi(FF1) (5.2)

Overall FP or LVF of a logic core is calculated as the average of the computed FPs of all
n flip-flops in the circuit as expressed in Eq. (5.3).

LV F =

∑n
j=1 FP (FFj)

n
(5.3)

For each workload segment, the LVF of the circuit is estimated by analysing the forward
cone of all the flip-flops in the netlist. Initially, the circuit nodes are assigned SP values
obtained from the post-synthesis logic simulation of the processor core. For each flip-flop in
the core, block based analysis is carried out to calculate the four value propagation probabilities
of each node. Additionally, STA is carried out to extract the circuit path delays. From the
path delays and propagation probabilities, FP and in turn LVF of the circuit is estimated.
This is repeated for all workload segments to generate pairs of SP vectors and LVF values.

5.5.2 Correlation-Based Flip-Flop Selection

The proposed online VF prediction technique relies on the run-time SPs of flip-flops. However,
it is impractical to monitor SPs of all flip-flops at run time. Moreover, the complexity of the
prediction model depends on the number of its variables, i.e., the number of monitored flip-flop
SPs. Therefore, we use a correlation-based flip-flop selection method to select a small subset
of flip-flops whose SPs are highly correlated to the VF of the target component.

Let us assume that N workload segments are available at design time. The VF-correlation
analysis flow, explained in Section 5.5, can be used to generate a training set consisting of N
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pairs of (SP, V F ), where the sets SP and V F contain the SPs of all M flip-flops and the VF
values of all memory arrays and the logic core in our design, respectively. For each memory
component or logic block, our goal is to find a set of m flip-flops, m ≤M , whose SPs are highly
correlated with the VF of that component. This is done using a univariate feature selection
method that takes the set of N (SP, V F ) pairs and the parameter m as input and returns m
features (flip-flops). These m features are selected using an m-best feature selection algorithm
in which the correlation between each individual feature and the VF is evaluated, and the m
best features [105] are retained as the output. The N (SP

′
, V F ) pairs constitute the final

training set for the predictive model, where the sets SP
′
, SP ′ ⊂ SP , and V F contain the SPs

of the m best flip-flops and the VF of all components in our design, respectively.
To illustrate the correlation-based flip-flop selection method, consider a hypothetical sce-

nario with five training workloads. In addition, assume that this system has four flip-flops
and two memory arrays. We form the training set as shown in Table 5.1, where the second
column in each row corresponds to the set of SPs and the third column corresponds to the VF
values of the two memory arrays, Mem 1 and Mem 2. The Pearson correlation coefficients,
which take values in [−1, 1], are used to represent the correlation between the SP of flip-flop
i, 1 ≤ i ≤ 4, and the VF values of the two memory arrays. The Pearson correlation coefficient
between two sets of values, (xi)

p
i=1 and (yi)

p
i=1, is evaluated as follows:

r =

p∑
i=1

(xi − x̄)(yi − ȳ)

/(√√√√ p∑
i=1

(xi − x̄)

√√√√ p∑
i=1

(yi − ȳ)

)
(5.4)

where x̄ = 1
p

∑p
i=1 xi, ȳ = 1

p

∑p
i=1 yi and p is the number of samples. We obtain the correlation

coefficients for Mem 1 to be 0.8, 0.4, 0.5 and 0.6. The correlation coefficients for Mem 2 are
0.7, 0.9, 0.6 and 0.7. Therefore, if we want to select the best two flip-flops for Mem 1, then
Flip-flop 1 and Flip-flop 4 are selected. Similarly, if our objective is to select the best three
flip-flops for Mem 2, then Flip-flop 1, Flip-flop 2, and Flip-flop 4 are selected. The number of
flip-flops to be selected depends on the accuracy of the prediction model constructed from the
flip-flop data. For unacceptably low accuracies of the predictor, the flip-flop selection process
needs to be revisited to extract a larger number of features.

Table 5.1: Hypothetical training set with five data samples

Workload Set of SPs VF Value VF Class
{SP1,SP2,SP3,SP4} Mem 1 Mem 2 Mem 1 Mem 2

W1 0.1, 0.2, 0.1, 0.7 0.4 0.2 −1 −1

W2 0.3, 0.2, 0.5, 0.7 0.3 0.3 −1 −1

W3 0.4, 0.5, 0.2, 0.1 0.7 0.1 +1 −1

W4 0.3, 0.7, 0.1, 0.4 0.1 0.5 −1 +1

W5 0.7, 0.1, 0.4, 0.4 0.6 0.3 +1 −1

5.5.3 VF Predictor Training

The next step in the offline phase is to train a predictor based on the final training set obtained
from the correlation-based flip-flop selection procedure. To build the prediction model offline
based on correlation between SP vectors and VF values, suitable machine learning techniques
can be employed. The technique used should be carefully chosen based on the type of data and
the complexity of the correlation function. For MVF prediction, the ability of support vector
machines (SVMs) to extract linear combination of features and the high predictive power makes
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them an appropriate choice [176]. For LVF prediction, gradient boosting machine (GBM) has
been used to attain better prediction accuracy since the correlation tends to be more complex.

MVF Predictor Training Using Support Vector Machines

In this work, we use SVM, a supervised learning algorithm, to train the MVF predictor. SVMs
are very popular because of their resilience to over-fitting, robustness to outliers, and high pre-
diction accuracy for a wide range of applications [104]. Since our training samples are limited
in number, SVM is expected to perform better than other supervised learning techniques. An
SVM-based classifier is trained for each memory array based on the set of (SP,MV F ) pairs
from the final training set. Instead of directly using the MVF values for training a prediction
model, each MVF value is assigned a class by dividing the MVF range, [0, 1], into n classes.
The MVF values in the ith class, 1 ≤ i ≤ n, are in the range [ i−1n , in ]. This conversion is
justified because our goal is to predict phases of high vulnerability during workload execution
for selecting the appropriate adaptation action (such as enabling or disabling ECC, task mi-
gration and so on) depending on the severity of MVF, and the actual value of MVF is not of
much significance.

Before the training process, each set of SPs in the training set is converted to a vector
form. We refer to this vector as the SP vector. For training an SVM-based predictor, the
SP vectors are mapped into a high-dimensional feature space and an optimal hyperplane
(classifier) is constructed in this space. Prediction for new input vectors are made using this
function. Let us consider a two-class classification problem to begin the discussion about an
SVM based classifier. Let (xi, yi)

S
i=1 denote the training set, where xi ∈ Rd, and yi ∈ {-1, 1}.

The training set consists of S SP vectors, x1, x2, ..., xS , and each SP vector has d features and
a corresponding target value (MVF), yi, that is either +1 or −1. The goal in SVM-based
classification is to find an optimal separating hyperplane, as shown in Fig. 5.6, to separate one
class from another.

The classifier can be considered as a function f(x) such that, those vectors xi for which
f(xi) is positive are placed in one class, while vectors xi for which f(xi) is negative are placed
in another class. If the number of classes K > 2, then it is a multi-class classification problem.
According to [177], one-versus-one method is an efficient way to tackle multi-class classification

problems. In this method, k(k−1)2 (all possible pairs of classes) two-class classifiers are trained,
and then, a voting mechanism is used to classify inputs from the test set.

Elements of class-2

Support vectors

Optimal Classifier

Maximum margin

y = +1

y = -1

Elements of class-1

Figure 5.6: Illustration of two-class SVM classification.

To illustrate the SVM classification methodology, consider the hypothetical scenario ex-
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plained in Section 5.5.2. We divided the MVF values in the training set into two classes: low
MVF [0-0.5) and high MVF [0.5-1]. Moreover, the low MVF class is denoted by ‘−1’ and the
high MVF class is denoted by ‘+1’. In this scenario, we need to train an SVM-based classifier
for each memory array. The second column in Table 5.1, where each row in this column cor-
responds to the set of SPs, and the MVF classes for Mem 1 and Mem 2 in the fourth column,
constitute the training set for Mem 1 and Mem 2, respectively.

Using the training set for Mem 1 and a linear kernel, we obtain the following predictive
model to classify a given set of SPs (s = {s1, s2, s3, s4}) into low MVF and high MVF classes:

f(s) = sgn(0.508 · s1 − 1.481 · s2 + 1.736 · s3
+0.950 · s4) (5.5)

Suppose we have a set of SPs {0.1 0.3 0.2 0.1} as the input to our model. The MVF class is
evaluated to be y = −1 using (5.5).

LVF Prediction Using Gradient Boosting

In comparison with the simple correlation shown in Fig. 5.2 for MVF prediction, which was
established using SVM, LVF prediction requires a more robust technique. For determining the
complex correlation between SP vectors and LVF values, we found that a stagewise approach
combining several classifiers is more effective. We used a different supervised learning method
based on decision trees to predict LVF; this method is referred to as gradient boosting ma-
chine (GBM) [176]. In comparison to SVM, gradient boosting provides better accuracy and
scalability for LVF prediction.

Decision tree is a learning method that is relatively fast to construct and are immune
to the effects of outliers. Hence, this method can be resistant to irrelevant features in our
data. The major concern with decision trees is their inaccuracy in prediction, but it can be
dramatically improved by a technique called boosting. The idea of boosting is to combine the
outputs of many “weak” classifiers to produce a powerful “committee”. The prediction from
all of these classifiers are then combined through a weighted majority vote to produce the final
prediction [176]. Gradient boosting is robust to over-fitting.

As in the case of SVM, the training set consists of S SP vectors, x1, x2, ..., xS , and each SP
vector has d features and a corresponding target value (LVF), yi. The goal of training is to find
an approximate function F̂ (x) that minimizes the expected value of a loss function L(y, f(x)).
This is achieved in the form of a weighted sum of functions hi(x), called weak learners, i.e.,
small decision trees of fixed size. This additive model introduced by gradient boosting can be
expressed as in Eq. 5.6, where M is the number of classifiers used and γm is the weight of each
classifier.

F (x) =
M∑
m=1

γmhm(x) (5.6)

This additive model is built in a sequence of several stages as shown in Eq. 5.7.

Fm(x) = Fm−1(x) + γmhm(x) (5.7)

The decision tree hm(x), at each stage, is selected in such a way that the loss function gets
minimized. In gradient boosting, the steepest descent technique is employed to solve the
minimization problem [178].

For LVF prediction, as in the case of SVM, we use SP vectors as the feature vectors and
LVF values as the target values. For our classification problem, we make use of an ensemble
of decision tree classifiers to boost the prediction performance. Initially, with a base classifier,
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Figure 5.7: Illustration of flip-flop SP monitoring methodology.

we assign equal weights to all training samples. This base classifier can be inadequate and
may not classify all samples with high accuracy. In the next step, a second classifier is used
to predict the misclassified samples with high accuracy. This is achieved by assigning higher
weights to those samples that are misclassified by the base classifier and lower weights for
correctly classified samples. In this way, an overall high accuracy is achieved by utilizing all
the classifiers used in such a series of predictions.

5.6 Run-time Vulnerability Prediction

The signal probabilities of the flip-flops relevant to the VF prediction are monitored during run-
time using a synchronous-up counter, as shown in Fig. 5.7. The counter is enabled whenever
the output of the flip-flop being monitored takes logic value ’1’; therefore, the counter tracks
the number of clock cycles for which the flip-flop output takes logic value ‘1’. The outputs of
all the counters in the design are sampled at uniform time intervals. The sampling frequency is
decided at design time based on the characteristics of the representative workloads. A higher
sampling frequency is chosen if the VF value changes more frequently during the execution of
a workload. On the other hand, a lower sampling frequency is chosen if the VF value does not
change very frequently. The sampling frequency also determines the width of the counter that
needs to be implemented. For example, if the output of a counter is sampled every 1024 clock
cycles, then we need a counter that is at least 10 bits wide. Some additional control logic, as
shown in Fig. 5.7, is also required to reset the counters after every sampling operation.

The outputs of all the counters are then transferred to the SVM (GBM) based prediction
model, and then, this model translates these workload phase characteristics to MVF (LVF).
The system can then take an appropriate protection measure based on the predicted MVF
(LVF) value. We prefer a software implementation of the predictor for the following reasons:
(1) hardware implementation results in area overhead, (2) soft error vulnerability estimation
does not require cycle-by-cycle observation using on-chip hardware.
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The prediction software can be implemented as a thread that runs concurrently with other
threads on every core. The role of this software thread is to use the counter outputs to predict
MVF of the memory arrays and LVF of the logic core. This method of executing the prediction
software does not require any additional hardware. However, some performance overhead is
incurred because of the regular execution of the software thread.

5.7 Experimental Results

The effectiveness of the proposed approach was evaluated using two open-source embedded
processors, namely OpenRISC 1200 (OR1200) and Leon3. We implemented an SVM-based
predictor for MVF prediction, and the dependence of the prediction accuracy on the number of
monitored flip-flops was studied for different memory arrays. We also compared the accuracy
of the proposed method with a performance-counter-based method [153]. For LVF prediction,
we implemented a GBM-based predictor since it delivered better accuracy.

5.7.1 Experimental Setup

OR1200 is a five-stage pipeline embedded processor based on the 32-bit ORBIS32 instruction
set architecture (ISA). Leon3 is a 32-bit processor based on the SPARC-V8 RISC ISA. The
processors were synthesized using Synopsys Design Compiler with Nangate 45nm library [111].

Six programs from MiBench, namely crc32, bitcount, qsort, susan, sha, stringsearch, and
basicmath, were executed on the synthesized netlists of Leon3 and OR1200. These workloads
belong to categories such as automotive and industrial control, network, security, telecom-
munications, and office automation with different program characteristics. Each workload
was divided into several smaller workload segments of 105 clock cycles to collect the required
number of workload samples for training and validation. Since we randomly mixed workload
segments from different types of workloads, the prediction accuracy is not specific for any
particular workload. Workload samples constituting the training set were used to construct a
predictive model, and those constituting the test set were used to evaluate the accuracy of the
predictive model. The workload segment size is chosen as 105 clock cycles based on the trend
of change in VF values during workload execution as shown in Fig. 5.1. Moreover, the huge
runtime of post-synthesis simulation of the design makes it almost impossible to extract suffi-
cient data samples for a prediction model if workload-segment size is in the order of millions
of clock cycles.

For MVF prediction, the MVF values of the instruction cache, the data cache, and the
register file were computed using the ACE analysis technique described in [149]. An LVF
extraction framework based on error-probability propagation as explained in Section 5.5 was
utilized to generate LVF values for the logic cores. The SVM and GBM algorithms used to
train and validate the VF predictors were implemented using Scikit-learn [34] with built-in
LibSVM software package.

The SPs of the flip-flops in Leon3 and OR1200 were obtained for each workload segment
from a SAIF file generated by performing a post-synthesis simulation in ModelSim.

5.7.2 Validation Experiments

In our case, since it takes significantly large runtime to generate each training sample, we
needed to obtain fairly accurate prediction models based on a feasible (and limited) number of
training samples. For training, we used an equal number of samples in the training phase for
both MVF and LVF prediction-model construction. In this way, the choice of the number of
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samples represents almost equal offline characterization effort to train MVF and LVF prediction
models.

For MVF prediction, the training data set for each processor benchmark consisted of 300
data samples and the remaining 300 data samples were used to test the prediction model. The
best values for the Radial Basis Function (RBF) kernel parameters used in the SVM classifier
were determined using a five-fold cross-validation approach. In this approach, the training set
was divided into five equal subsets and each subset was validated using a model trained on
the remaining four subsets. This technique is usually adopted to avoid overfitting when the
sample size is limited. A grid search was carried out on the parameters and the parameter
values corresponding to the highest cross-validation accuracy were chosen. The prediction
model was then trained using these best parameter values and the complete training set.
After this training process, the model was tested on a test set with 300 data samples. The
“test set” here represents unseen data that can be used to estimate the generalization error
or out-of-sample error when prediction model is applied on newer samples. Since, we had
more data samples available from MVF characterization compared to LVF characterization,
the extra samples were added in the test set.

For LVF prediction using GBM, we have used 300 data samples for training and the re-
maining 100 data samples to test the model. To find the appropriate values of the tuning
parameters of GBM, we performed a grid search with five-fold cross validation similar to that
for MVF prediction.

5.7.3 Classification Results
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Figure 5.8: Comparison of accuracy scores (SA) of the proposed method with PCM (prediction based on
performance counters as explained in Section 5.7.4) for (a) Leon3, and (b) OR1200 memory
arrays by varying number of monitored flip-flops (FF).

We defined three MVF classes: low MVF [0− 0.33), medium MVF [0.33− 0.66], and high
MVF (0.66− 1.0]. We can increase the number of MVF classes as required and it depends on
the type of mitigation action to be performed. Our method is not restricted to any particular
number of MVF classes. The prediction accuracy of the proposed method was evaluated using
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accuracy score (SA), defined as follows:

SA(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

1(ŷi = yi), (5.8)

where ŷi is the predicted MVF-class-label of the i-th sample, yi is the corresponding true
MVF-class-label, and 1(ŷi = yi) is the indicator function, i.e., 1(ŷi = yi) = 1 if ŷi = yi and
1(ŷi = yi) = 0 if ŷi 6= yi. In other words, SA is the fraction of correct predictions over nsamples.
A value of ‘1’ for SA shows a perfect match between the actual MVF-class-labels and the
predicted MVF-class-labels. Therefore, the closer the value of SA is to ‘1’, the higher is the
prediction accuracy.

The MVF prediction accuracy varies with the number of flip-flops used in the prediction
model, as shown in Fig. 5.8. The results are presented for the instruction cache, the data
cache, and the register file. The SA values for the instruction cache and the data cache of
both Leon3 and OR1200 exceed 0.9, even in the case when only a single flip-flop is used in
the prediction model. The slightly lower values of SA for register files can be attributed to
its smaller size compared to caches. The register file size of Leon3 is 13% of the cache size.
Therefore, the read and write accesses to each address location of register file become more
frequent. This random nature of accesses can reduce prediction accuracy. Moreover, the read
and write accesses in the case of register file is heavily dependent on the nature of instructions
under execution. On the other hand, access to a cache location entirely depends on cache
utilization at that instant and pipeline-stall events.

In most cases, there is an architectural explanation for the flip-flops with highest correlation
to the MVF values. For instance, consider the instruction cache of Leon3. We discovered that
the single flip-flop with the highest correlation to the MVF of the instruction cache has the
pipeline-hold signal, i.e., the signal that stalls the pipeline in the case of a cache miss, in its
fan-in cone. The pipeline-hold signal is representative of the cache misses occurring in the
processor, which in turn represents the write accesses to the instruction cache. Since the MVF
computation based on ACE analysis largely depends on the write and read accesses to the
instruction cache, the selection of this particular flip-flop is justified.

If only three LVF classes are used for LVF prediction, the prediction accuracy can be low
when the data points fall near the class boundaries. Hence, we increased the number of classes
to five and represented the misclassification by attaching a level of severity.

We achieve this by assigning higher penalty to a misclassification if the predicted LVF class
and actual LVF class are too far apart. The severity in misclassification can be represented
using a confusion matrix as shown in Fig. 5.9 where the adjacent rows (columns) represent
classes that have LVF values close to each other. The class labels 0, 1, 2, 3 and 4 represents the
LVF classes; [0− 0.2), (0.2− 0.4), (0.4− 0.6), (0.6− 0.8), and (0.8− 1] respectively. The value
(color) of an element in the confusion matrix C represents the number of prediction events
corresponding to that particular element. For example, if a data sample belonging to class 3
is wrongly predicted as class 0 by the prediction model, the value of C0,3 will get incremented.
The samples classified correctly will appear in the main diagonal of the confusion matrix, i.e,
(Ci,j where i=j). From Fig. 5.9, it is evident that most of the wrongly classified samples belong
to an adjacent class to the true class label. In other words, very few samples are misclassified
with a significantly large error. To quantify the prediction accuracy, we define a metric called
weighted accuracy score (SW ) as shown in Eq. (5.9):

SW =
1

nsamples

∑
i,j

(1− i− j
nclasses − 1

)Ci,j , (5.9)

where nsamples is the total number of samples and nclasses is the total number of classes.
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Figure 5.9: Confusion matrix showing predicted and true class labels for LVF prediction for the logic
core of Leon3. The number of test samples corresponding to each VF class is overlayed on
the matrix.

The results for LVF prediction are shown in Fig. 5.10. For Leon3 and OR1200, with eight
flip-flops being monitored, we were able to reach a significantly high accuracy of 0.82 and 0.88,
respectively. The accuracy is not significantly improved with an increase in the number of
representative flip-flops, hence there is no benefit in monitoring more flip-flops.

5.7.4 Comparison with Related Work

We implemented an MVF estimation method based on performance-counter monitoring (PCM)
for comparison. Performance counters were implemented on Leon3 and OR1200 to track
the instruction cache hit rate, the data cache hit rate, and the instructions per cycle (IPC).
Similar to [153], linear regression was employed to correlate the MVF of memory arrays with
performance counter values. For a fair comparison, we used SA as the metric for evaluating
the accuracy of the PCM-based method. However, to employ SA as the evaluation metric,
we had to divide the actual and the predicted MVF values into three classes, as explained in
Section 5.7.3.

The comparison results are also shown in Fig. 5.8. The SA values of the proposed method,
even in the case when the prediction is based the SP of a single flip-flop, is significantly higher
than the PCM-based method for all three memory arrays of both the processors. On average,
we obtained a 38% increase in the accuracy score with our method when compared to the
PCM-based method. The higher accuracy of the proposed method can be attributed to the
additional logic-level masking information obtained from flip-flop monitoring that cannot be
extracted from performance counters. However, if performance counters are available as a
part of the processor system, they can be added to our feature list to extract any additional
architectural-level information for building the predictor.

Although there are some existing techniques that predicts the vulnerability factor of logic
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Figure 5.10: Variation in Weighted Accuracy Score (SW ) for LVF prediction with the number of repre-
sentative flip-flops selected for Leon3 and OR1200 logic cores.

blocks [57, 179], the analysis is carried out only at the architectural level. For example, in [57],
the relative AVF prediction error (as a percentage of real AVF) for four processor structues is
estimated as around 30%. Since our method relies on the flip-flop level observables for better
granularity and analyzes entire logic core, the misclassification rate of only around 20% (or
one-class error in most cases) can be considered as a significant improvement.

5.7.5 Overheads

The proposed method employs synchronous up-counters to monitor flip-flop SPs. These coun-
ters are connected to their corresponding flip-flops in the synthesized gate-level netlist of Leon3
and OR1200. The updated netlist is re-synthesized and optimized using Synopsys Design Com-
piler to extract the associated overheads. The size of these counters is determined in the offline
phase based on the size a workload segment, i.e., the number of clock cycles constituting one
workload segment. For instance, a workload segment of 105 cycles requires a 17-bit counter.

Performance Overhead

Performance overhead is estimated by conducting a Static Timing Analysis (STA) on the
circuits using Synopsys PrimeTime. The STA reports no increase in maximum circuit delay;
therefore no performance overhead is caused by the additional hardware. Although one might
expect some performance penalty due to higher load at the output of monitored flip-flops,
the synthesis tool re-optimizes the circuit netlist to satisfy the timing constraint. However,
this re-optimization may incur some area overhead. In addition, some performance overhead
is expected due to the software thread executing the predictive model to compute the VF.
However, this overhead depends on the sampling frequency, i.e., how often the counter values
are read to compute the VF, and also on the runtime required for each VF computation. For
example, if the VF computation is carried out every 105 cycles and if it requires 50 cycles for
each VF computation, the performance overhead caused by the software-thread execution will
be 0.05%.
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Figure 5.11: Variation of prediction accuracy with workload-segment size (WS) for different hardware
structures in Leon3.

Area and Power Overhead

The additional hardware added for the MVF prediction of the three memory arrays and LVF
prediction of the logic core considered in this work results in an area overhead of 0.93% for
Leon3 and 0.70% for OR1200. Note that a part of the increase in area can be attributed to
the resizing of gates in synthesis-driven optimization, hence the actual area overhead of the
proposed method is lower than what is reported above. For Leon3 and OR1200, the power
overheads were found to be as low as 0.93% and 0.77%, respectively.

5.7.6 Optimization Prospects

The sampling of flip-flop values to estimate SP can be carried out infrequently to reduce the
dynamic-power consumption due to N -bit counters. This approach can also reduce the area
overhead. For example, a 17-bit counter for each memory array or logic core is required for
a workload segment of 100K clock cycles without any sampling. However, if flip-flops are
sampled once every thousand cycles, we require only a 7-bit counter for the hundred sampled
cycles. For our case of a logic core with three on-chip memories, this approach reduces the
number of flip-flops in counters by 40. However, an additional 10-bit counter is required to
count until 1000 to indicate the sampling-clock-cycle. In summary, such a sampling approach
could reduce area overhead by 44%.

The variation in accuracy obtained for experiments with different workload-segment sizes
is shown in Fig. 5.11. There is no uniform trend for prediction accuracy across different
hardware structures with increase in workload segment size. This can be attributed to the
temporal variation in rate of change of VF for different workloads. In other words, the optimal
workload-segment size can differ across workloads and workload phases. It can be observed
that the accuracy of prediction for different hardware structures differs with the choice of
workload-segment size. Hence, to achieve better accuracy, careful choice of workload-segment
sizes for different hardware structures is recommended. For instance, register-file workload
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Figure 5.12: Variation of overheads with workload-segment size for Leon3 processor.

profiling can be carried out in workload-segment size of 500K cycles for better accuracy. On
the other hand, 100K segment size can be chosen for instruction cache.

The variation of area and power overheads with workload-segment size is illustrated in
Fig. 5.12. With a 100 K to 200 K change in workload-segment size, the only change in
monitoring hardware is in the size of the counter deployed to track SPs that needs to be
changed from 17-bit to 18-bit. Hence, the overall increase in overheads is negligibly small.

5.8 Summary

We have proposed a method to predict the VF of memory arrays and sequential logic blocks
during run time. Unlike state-of-the-art VF prediction methods that require a large number of
performance counters, the proposed method relies on the SPs of a small number of flip-flops,
which can be obtained by attaching simple counters to the flip-flop outputs. Therefore, the
proposed method can be applied to a broad range of hardware designs. Simulation results for
embedded processor designs demonstrate that the proposed method can accurately predict the
VF of on-chip memory arrays and logic core with minimal area and power overhead.
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6.1 Overview

As the globalization of chip design and manufacturing process becomes popular, malicious
hardware inclusions such as hardware Trojans pose a serious threat to the security of digital
systems. Advanced Trojans can mask many architectural-level Trojan signatures and adapt
against several detection mechanisms. Runtime Trojan detection techniques are considered as
a last line of defense against Trojan inclusion and activation. In this chapter, we propose an
offline analysis to select a subset of flip-flops as surrogates and build an anomaly detection
model based on the activity profile of flip-flops. These flip-flops are monitored online and
the anomaly detection model implemented online analyzes the flip-flop data to detect any
anomalous Trojan activity. The effectiveness of our approach has been tested on several
Trojan-inserted designs of Leon3 processor. Trojan activation is detected with an accuracy
score of above 0.9 (ratio of the number of true predictions to total number of predictions) with
no false positives by monitoring less than 0.5% of the total number of flip-flops.

The rest of the chapter is organized as follows. Section 6.2 introduces the work in detail,
presents a motivation and also lists the contributions. Section 6.3 overviews preliminaries
and related work. Section 6.4 describes the overall methodology underlying hardware Trojan
detection. Experimental results are presented in Section 6.5. Finally, Section 6.6 summarizes
the chapter.

6.2 Introduction, motivation and contributions

Hardware security has emerged as a major concern today as major semiconductor companies
have moved towards outsourcing of various stages of hardware design and fabrication to un-
trusted third-party vendors [12, 61, 63]. Many solutions have been discussed to keep a check
on untrusted foundries [180, 181]. A hardware Trojan is generally defined as a malicious mod-
ification of a hardware design by an adversary at any stage of design or manufacturing of a
chip. The modification of third-party IPs [182] of processor cores can be leveraged to cause the
entire functional sabotage of a System-on-Chip. Moreover, malicious modifications of hard-
ware in the form of a hardware Trojan is possible in any stage of chip design and any design
abstraction level, leading to Denial of Service (DoS), information leakage, chip destruction, or
functional failure [183].

Several offline and runtime techniques have been proposed to detect hardware Trojans
inserted at different stages of chip design and manufacturing [184–188]. A holistic solution is
hard to achieve since it is extremely difficult to confirm the presence of a Trojan without a
golden netlist. Logic and functional-level tests can fail to detect Trojans that are very hard
to get activated [189]. In this scenario, runtime detection techniques serve as the last line of
defense.

There are several runtime techniques proposed in the literature based on verifying legitimate
operations of the processing units. Some of these techniques include system-level monitoring
of slack time during bus operation [182], including a hardware property checker to detect per-
mitted and prohibited behavior [190], assertion-based dynamic checkers [191], reconfigurable
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logic to verify standard communication protocols [64], and processor protection unit [192] to
verify legitimate operation of the pipeline. A different class of techniques that analyzes run-
time parameters of the circuit includes thermal profile analysis [193], path-delay signature
analysis [194], and performance counter monitoring and prediction [195]. In general, these
techniques either verify predefined properties of hardware designs or depend on semantically
significant features such as performance counters that are prone to manipulation. In both cases,
an advanced Trojan designed by an adversary can potentially mask the specific anomalous sig-
natures in these observables or mimic legitimate operations. In our context, a semantically
significant signal can be defined as a signal that implies and contains its functionality in the
design document available to a human designer.

In our approach, we consider any functionally-defined (semantically significant) signal in the
description of an IP as prone-to-manipulation during IP design and hence, not reliable as an
observable/feature to represent normal behavior of the IP. We rely on signals in the gate-level
netlist that are generated by a synthesis tool and hence, inherently obscure or semantically
insignificant as our representative of normal IP behavior. For example, the information content
of performance counters is dispersed in numerous memory elements and logic gates at the
netlist-level such that the information of these counters are still available in the activity profile
of relevant circuit nodes even when the counter registers are manipulated.

The activity profile, or more specifically, the workload profile (Lp or average logic value
of a circuit node over a period of time) of flip-flops in the netlist is identified as a suitable
surrogate to represent the workload pattern. The Lp tends to vary with the execution of
different workloads on the circuit. The patterns in the variation of this average value can be
studied offline to distinguish between the effect of a Trojan payload and a real workload. A
group of circuit nodes having maximum sensitivity to workload variation during the execution
of real-world applications can be selected as representatives to keep track of a workload moving
out of its normality.

A small subset of representative flip-flops is selected offline based on a feature selection
technique to monitor the online workload pattern. An anomaly detection model is constructed
offline to detect anomalous Trojan activation phases online by analyzing the activity profile
of the selected flip-flops. This anomaly detection model can also be updated online based on
incremental learning such that the model can get adapted to different online scenarios that
are different from workloads used in offline training.

Our results on four different Trojan-inserted designs of the Leon3 processor show that
the Trojan activation can be detected with an accuracy score (ratio of the number of true
predictions to total number of predictions) of above 0.9 with no false positives by monitoring
less than 0.5% of the total number of flip-flops in the design. The extra monitoring hardware
causes only a negligible area and power overhead of less than 0.5%.

6.3 Preliminaries and Related Work

Hardware Trojans, in our context, are defined as malicious hardware units added to a chip
during any of design and manufacturing stages. These Trojans can cause Denial-of-Service,
change of functionality, or performance degradation. The Trojan architecture has two sections;
(1) a Trojan trigger, and (2) a Trojan payload.

A majority of Trojans are designed to get activated only rarely on a trigger condition such
that the hardware components corresponding to these Trojans remain stealthy and inactive in
the test or verification phases. Trojan trigger can be a rarely-true condition in a behavioral
description code. For example, a Trojan gets triggered when the processor executes a specific
sequence of instructions or when a specific instruction gets executed n times where n is tracked
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Figure 6.1: Threat model showing stages of Trojan insertion and activation in SoC design flow along
with the proposed detection technique.

in a counter.

Trojan payload is the effect of Trojan activation once the Trojan gets triggered. This
payload circuit can change the values of internal nodes or overwrite registers or status flags.
For example, in a processor pipeline logic, this can be manifested as a corruption of address
bus, data bus or instruction register.

The threat model we considered in this work is illustrated in Fig. 6.1 along with the pro-
posed detection mechanism. Similar threat models based on an untrusted netlist of a processor
IP core have been discussed in previous work [196]. The hardware Trojan can be inserted by
an adversary in a 3PIP [12] design team as a modification of pipeline behavior of a processor
core. We defined the threat model specifically for third-party processor IP cores [196]. For
other IPs with a specific functionality, it would be easier to find Trojan payloads from workload
profile of circuit nodes when the hardware deviates from its functionality. The processor IP
can have varying legal usage scenarios while executing general-purpose workloads which makes
the Trojan-payload detection harder. The processor Trojans can functionally affect an entire
chip eco-system leading to a Denial of Service, change in functionality or degradation of per-
formance. These Trojans are hard to get triggered because of their extremely low probability
of true-activation conditions. The functional verification and test stages cannot detect these
Trojans with traditional verification and test mechanisms since these Trojans remain inactive
during these phases. In this scenario, runtime detection techniques are necessary to track the
behavior of such untrusted systems and report anomalous operation when the Trojans get
activated.

In addition to the traditional 3PIP threat model, we also consider an adversarial modifi-
cation of the IP to mimic normal behavior under Trojan activation as shown in Fig. 6.2. For
example, abnormal behavior of a 3PIP core due to Trojan activation can be masked by an
adversary designing the untrusted core by including an alternative pseudo-monitoring unit.
When the Trojan trigger is activated, functional unit of the core is disabled or deviated from
the normal functionality. In addition, a pseudo-monitoring unit streams unsuspicious recorded
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Figure 6.2: Illustration of a Trojan attack scenario including manipulation of architectural-level moni-
tors to mask the attack.

data to mimic a normal behavior of functional unit. In this way, a Trojan detection algorithm
in a trusted core monitoring the untrusted core can be unaware of the attack.

The use cases of our approach are limited to Trojan payloads that results in a change in
normal workload pattern. Hence, the Trojans causing leakage of information would be outside
of our threat model. Our approach is applicable to Trojans that remain active at least for
a duration in the order of microseconds if the processor is clocked at 1 GHz. In standard
benchmarks [61] used in previous work, a Trojan remains active permanently once it gets
triggered and hence, our assumption is valid. The novelty of this work lies in the attack
scenario we considered (Fig. 6.2) and the usage of unstructured data for Trojan detection as
a more reliable runtime observable and as less prone to manipulation.

There are several Trojan detection techniques applicable during design, verification or test
phases that exploits specific properties of Trojan nets such as low controllability and observ-
ability, unusage of circuit parts, side-channel signatures etc. In [197], transition probabilities
of nets in a netlist are modeled using geometric distribution and lower transition probabilities
at suspicious nets are increased by inserting dummy flip-flops. A functional analysis technique
(FANCI) proposed in [198] exploits the notion of control value (influence of each input on
the output) to find suspicious wires in a design based on truth-table analysis. Properties of
Trojan trigger nets such as low controllability and observability [199] and rare/seldom usage
(unused circuit identification (UCI) [200]) have also been used to identify suspicious signals. A
Trojan detection algorithm called HaTCh is proposed in [201] that uses logic testing to black-
list unactivated transitions in internal wires and raises exception on untrusted transitions. A
machine learning technique based on one-class support vector machines (SVM) is used in [202]
to detect Trojans from IC images obtained by reverse engineering. An anomaly detection
technique on side-channel leakage has been used to detect Trojans in [203]. In [204], a static
Trojan detection method is proposed based on SVM that analyzes netlist to classify nets as
Trojans or normals. To achieve higher Trojan detection coverage, a genetic-algorithm based
ATPG technique has been proposed in [205]. However, these techniques are all offline and can
be complementary to our runtime Trojan detection technique for advanced Trojans that are
hard to be traced offline.

The Trojans that are stealthy and operating through legitimate set of actions can only be
detected after their activation during runtime. There are several techniques discussed in the
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literature for runtime Trojan detection and are complementary to side-channel and other test-
time approaches [12]. In [182], hardware Trojans built into the slave IP cores of heterogeneous
Multi-Processor System-on-Chips (MPSoCs) are targeted and the slack time during the bus
operation in MPSoCs is monitored to detect the Trojans. A runtime Trojan detection using
machine learning methods is proposed in [206] that targets many-core router communication
attacks. However, these approaches are limited to system-level monitoring and can detect a
suspicious behavior only if it is escalated to system-level communication.

Advanced Trojans combining hardware and software are targeted in [190] by verifying per-
mitted and prohibited behavior of ICs using a hardware property checker. In a similar way,
assertion-based dynamic checkers are proposed in [191] for detecting malicious inclusions in
processor designs. However, these approaches cannot be comprehensive since it is impracti-
cal to take into account every possible Trojan behavior of a processing unit in the property
checker.

The reconfigurable logic proposed in [64] performs checks on user-specified security vio-
lations and verification of correct implementation of standard communication protocols. A
processor protection unit (PPU) proposed in [192] verifies legitimate operation of a pipeline
by checking the opcode, the required cycles of execution for each instruction and the proper-
ties of specific internal signals. For complex designs, the verification of different properties of
a processing unit is very expensive and such approaches are not sufficient to detect Trojans
executing legitimate operations.

In [193], the effect of Trojan activation on power consumption of a chip is analyzed by
checking the thermal profile. The power consumption waveforms with and without hardware
Trojans are analyzed with machine learning techniques to detect Trojan activation in [207].
In [208], chaos theory is applied to interpret power consumption data to capture Trojan ac-
tivation during runtime. A ring-oscillator based on-chip thermal sensor grid is employed to
detect Trojan activation in [209]. However, these approaches are not beneficial for Trojan acti-
vation scenarios having negligible impact on the side channels. Path delay characterization is
carried out and an authentication scheme based on path delay signatures is proposed in [194].
This approach is expensive for large designs such as processor cores as the number of paths
increases exponentially with logic elements. In addition, these signatures can get distorted
due to runtime variations and can lead to many false positives in Trojan detection. A Trojan
detection scheme based on analyzing performance counter values by machine learning tech-
niques is proposed in [195]. This technique can be less effective if the adversary can manipulate
performance counter registers.

In general, many of the runtime detection techniques perform several checks to verify the
legitimate operation of a processing unit. Advanced stealthy Trojans can manipulate system
level signals to satisfy these known checks. Any semantically significant feature in a processor,
such as a performance counter, can be altered by a Trojan activation and cannot be trusted as a
representative of trustable runtime behavior. In this regard, we exploit the dispersed workload
information available in the logic-level data flow of a processor. The signals in the logic level
of abstraction are semantically insignificant for an adversary and hence, hard to manipulate or
mask. For example, although the performance counter registers can be overwritten in the RTL
code by an adversary, the logic-level flip-flops in the data path terminating at performance
counter registers are still accessible. We implement an anomaly detection model by selecting
representative flip-flops as features instead of micro-architectural registers that are prone to
manipulation due to their tag. Our technique should be considered as a final runtime defense
to detect Trojans that have escaped the offline test and verification based detection schemes.
In other words, our approach is orthogonal to other runtime techniques [182, 192, 206] and
does not compete with them. Our approach can be successful in a scenario in which other
techniques depend on a non-trustable observable to predict Trojan activation.
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6.4 Proposed Methodology

The main focus of this work is to select appropriate features from a processor netlist for the
representation of normal behavior of the processor unit during runtime and thereby, enabling
the detection of Trojans by exposing anomalous behavior. In other words, we select a subset of
signals from an unstructured implementation (gate-level netlist) of an untrusted IP such that
the correlation of selected signals with the functionality of the IP can be used as an indicator
of abnormal behavior (activation of Trojans). The behavioral semantics of the nets and signals
are inherently obscured in the unstructured representation (gate-level netlist) due to various
synthesis steps, and there is no one to one correspondence. This property of unstructured
observables (signals) prevents an adversary, who blocks semantic observables, from breaking
through the proposed approach. Hence, we select representative signals from the gate-level
netlist and implement a monitoring hardware on a trusted core [210, 211] to monitor these
selected signals (unstructured observables). An anomaly detection algorithm executed on the
trusted core analyzes the monitored data to detect Trojan activation. It should be noted that
the gate-level signal is monitored for its dynamic workload footprint rather than any static
controllability or observability measurements.

According to our threat model defined in Section 6.3, a system integration team receives
an IP in the form of a synthesizable RTL or synthesized netlist from the untrusted IP provider
such that they could run simulations to verify the functionality of the IP and run system-level
simulations to validate system integration. In this scenario, we assume that we could execute
workloads on the untrusted processor IP and extract relevant features from the netlist based
on the workload data.

The representative features are selected by analyzing the logic-level data flow in a processor
under workload execution during an offline characterization phase. We analyze the scope of
workload profile (Lp) of a small subset of signals in a processor core as a representative feature
for anomaly detection. Selection of average logic value (Lp) as a feature reduces the hardware
cost of feature extractor significantly compared to other feature transforms like wavelets or
checksums. Lp is chosen as the representative feature since the information content in Lp of
signals is similar to that of a performance counter that tracks, for example, cache hit signal
over a period of time. Since performance counters are not specifically designed for the purpose
of Trojan detection, they are limited in information content, unreliable and also might not be
accessible in the required granularity.

Out of all signals in a given gate-level netlist, we limited our search space only to state
elements or flip-flops for two reasons; (1) the bits stored in flip-flops in a clock cycle define the
state of a system at that clock cycle and hence, contain information of all nets in a netlist,
(2) a flip-flop output can be connected to monitoring hardware with minimum modifications
to critical timing paths. During later stages of physical design and scan flip-flop insertion,
although more flip-flops may get added to the design, the selected flip-flops still contribute
significantly to the core functionality.

The number of signals that should be masked in the RTL in order to hide the Trojan does
not correspond to the same number of signals in a synthesized netlist. For example, if the
signal probability of a flip-flop in the synthesized netlist is masked, this information is still
partially available in the fan-in and fan-out cone of the flip-flop. Hence, a flip-flop or a gate
in the fan-in or fan-out cone of a flip-flop can be selected and the same information can be
extracted by a signal-probability propagation. In this scenario, the masking of the gate-level
information is very difficult for an attacker.

During the offline phase, the representative flip-flops are identified by feature selection
techniques that maximizes the overall workload information content. The workload profile of
selected flip-flops under the execution of different workload segments are analyzed to build an
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Figure 6.3: Proposed flow showing offline characterization, prediction model construction and its online
deployment.

anomaly detection model. A monitoring hardware is deployed online to capture the flip-flop
Lp values to a trusted core [210, 211] for analysis. The anomaly detection model implemented
online as a software thread on the trusted core analyzes the flip-flop Lp values to detect Trojan
activation. The incremental anomaly detection model gets updated online with each verified
non-anomalous sample and thereby, increasing prediction accuracy over time.

It should be noted that we have not used synthetic workloads for our characterization. We
used standard MiBench [212] workloads for training, and tested our trained model on workloads
that have not been encountered during training phase. These workloads belong to categories
such as automotive and industrial control, network, security, telecommunications, and office
automation with different program characteristics. The workloads can also be chosen based
on the intended application of the IP.

The proposed technique can be divided into two stages: (1) offline characterization and con-
struction of anomaly-detection model, and (2) online monitoring and incremental prediction,
as shown in Section 6.4.1 and Section 6.4.2, respectively.

6.4.1 Offline Characterization and Construction of Anomaly-Detection Model

The different steps in an offline characterization phase are illustrated in Fig. 6.3. It is assumed
that the 3PIP processor core as a part of the design is untrusted according to the threat
model defined in Section 6.3. Different workloads are executed on the gate-level netlist of the
processor IP using a post-synthesis simulation and the activity of circuit nodes are captured
in a value change dump (VCD) file. Each workload is considered to be made of several
equal sized workload segments. For each workload segment, corresponding Lp of flip-flops
is extracted from the VCD file to represent the behavior of the processor in that workload
phase. To reduce the number of flip-flops as representatives, a feature selection technique is
used. From the selected representative flip-flops, an anomaly detection model is constructed
based on isolation forest (iForest) algorithm [213]. This model is implemented online to detect
anomalous Trojan activation.
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Representative Flip-flop Selection

Since a design team can only characterize normal behavior of a processor, we can only use
non-anomalous Lp samples in our training. Hence, the feature (flip-flop) selection process is
carried out with training data corresponding only to a single class (non-anomalous). A design
team cannot be expected to have access to anomalous class samples in the training phase. In
this scenario, filter or wrapper-based feature selection techniques cannot be used. Hence, we
eliminate features based on their information content and mutual redundancy.

To evaluate information content, we employed variance threshold algorithm [214] that re-
moves low variant features. In this method, features with zero-variance (no change in values
across all workload samples) and also variance less than a specific threshold value are removed.
By tuning the variance threshold, we can reduce the number of flip-flops to be selected for
further analysis. The decision of a threshold depends on how many flip-flops are needed to
be selected to achieve an acceptable trade-off between area overhead and Trojan-prediction
accuracy. The flip-flops having low variance across several workload segments cannot be a
good representative of the overall workload pattern. For example, several flip-flops possess
an Lp of 0 or 1 irrespective of the workload phase. Since we target the detection of Trojan
payload signature in workload phases rather than Trojan trigger, these low variant flip-flops
are insignificant. In addition, flip-flops with Lp nearly 0 or 1 are candidates in the suspect list
of test-time Trojan detection methods [12]. In these methods, such flip-flops are considered
significant as they are suitable targets to insert Trojan trigger due to their input nodes with low
controllability. Note that non-switching flip-flops (Lp = 0 or 1) are considered as observables
of low importance by our feature selection algorithm since their information content would be
zero. In this regard, flip-flop Lp with high variance are monitored in our runtime technique.

To remove redundant features, we evaluated the correlation of features by calculating Pear-
son correlation coefficient [106] between Lp of all pairs of flip-flops. In each iteration, a flip-flop
is selected and all other flip-flops having high correlation with the selected flip-flop are elim-
inated from further processing. This procedure is continued with the remaining flip-flops to
select the final set of representative flip-flops.

Construction of Anomaly Detection Model using iForest

A small set of representative flip-flops are selected in the previous step and their Lp under
different workload segments are analyzed as training samples. A decision-tree-based machine
learning algorithm called iForest is employed to construct an anomaly detection model [213]. A
comparison of the performance of iForest with other anomaly detection techniques is presented
in Section 6.5.3. iForest is preferred in high dimensional problems and also with training set
having no anomalies [215]. In our case, the training set cannot necessarily include Trojan
activated samples. In addition, iForest has a linear runtime complexity and low memory
requirements making it an appropriate choice for this problem. Most existing model-based
approaches for anomaly detection (based on classification or clustering) construct a profile
of normal instances and then, identify instances that do not conform to the normal profile
as anomalies. Hence, these methods are optimized to profile normal instances but not to
detect anomalies, eventually leading to low prediction accuracy [213]. Isolation forest explicitly
isolates anomalies instead of profiling normal instances.

The basic working principle of the iForest algorithm is illustrated in Fig. 6.4. Let us consider
an anomalous sample shown as Ai and a normal sample shown as Ni in a two-dimensional
feature space XY with x and y as feature variables. We split the XY feature space into
two partitions by selecting a random feature (x or y) and a random value for that feature.
The random split value in x (y) is represented by a vertical (horizontal) line as illustrated in
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Ai

Nj

(a) Partititioning and isolation
     of an anomalous sample Ai

(b) Partititioning and isolation 
     of a normal sample Nj

Figure 6.4: Isolation properties of samples by random partitioning.

Fig. 6.4. It can be observed that the anomalous sample Ai is isolated in a very few number of
splits and the normal sample Ni is isolated by a significantly large number of splits. Hence,
the easy-to-isolate property of anomalous samples is exploited in iForest algorithm with the
random partitioning of feature space expressed in the form of binary decision trees as shown
in Fig. 6.5. In our case, a workload or a workload segment is considered as a sample and the
average logic value (Lp) of a net during a workload segment is considered as a feature.

The iForest algorithm constructs isolation trees by recursive partitioning based on a random
selection of a flip-flop and a split value for its Lp as illustrated in Fig. 6.5. Several such isolation
trees are constructed to form an isolation forest. The number of splittings required to isolate
a training sample is equivalent to the path length from the root node to the terminating node.
The average path length of a sample over an isolation forest is a measure of normality and
hence, forms the decision function. The samples having short path lengths over large number
of isolation trees are considered to be anomalies. In this way, the anomaly detection model is
constructed offline based on the Lp of a few selected representative flip-flops.

The low runtime complexity of iForest is due to its model construction based on partial
usage of training samples. For a sub-sample size ψ, the time complexity of iForest is estimated
as O(tψ logψ) in the training stage and O(nt logψ) in the evaluation stage, where n is the
number of instances for evaluation at a time, and t is the number of iTrees in the model [213].

6.4.2 Online Monitoring and Incremental Prediction

The iForest based anomaly detection model constructed offline is implemented online on a
trusted core to ensure safe operation. The representative flip-flops selected offline are connected
to a monitoring hardware as shown in Fig. 6.6. The required circuit connections can be made
since the design integration team has access to the synthesized gate-level netlist. The flip-
flop Lp samples corresponding to different workload phases are generated by connecting each
representative flip-flop outputs to an N -bit counter. The counter values are sampled by the
software thread on a trusted core in regular intervals which analyzes the anomaly score to detect
any Trojan activation. When a Trojan is activated during workload execution, a sudden shift
is observed in the anomaly score as shown in Fig. 6.7.
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Figure 6.5: Illustration of a random decision tree for isolating samples.

The anomaly detection model can incrementally learn from newer non-anomalous samples
obtained online by updating the existing isolation trees or by adding new isolation trees. The
anomaly score of an online workload sample is tested by the offline-trained model and if found
non-anomalous (true negative), this sample is added to the existing model. The addition of
a true negative sample to the model updates the number of samples belonging to a leaf node
of each iTree in the model. If an anomalous behavior is detected and is confirmed as a non-
Trojan event (false positive), an extra iTree can be added to the iForest model which classifies
similar events as negative and the newly added iTree can be given a higher weight in threshold
score estimation. The addition of simple decision tree estimators (iTrees) to improve on wrong
prediction events is inherent to ensemble classifiers such as random forest classifier or iForest
classifier. In this way, the online model can better adapt to different workload patterns that
are not encountered in the offline training phase.

The communication between the trusted core and an untrusted core can be established
similar to that of an on-chip logic analyzer core communicating with a Leon3 processor core
through an advanced high-performance bus (AHB) in ARM Advanced Microcontroller Bus
Architecture (AMBA) protocol [30]. The flip-flop outputs are equivalent to trace signals that
usually gets captured in a logic analyzer. Once a Trojan payload is detected, a debug trace
can be written to accessible memory in a trusted core and a reset signal can be asserted.

6.5 Experimental Results

The effectiveness of the proposed approach was evaluated by building different Trojan bench-
marks on the open-source Leon3 processor. Leon3 is selected over other processor imple-
mentations such as Oregano 8051 or PIC used in TrustHub [61] due to its multi-core support,
extensive customization capabilities, toolchain support, regular updates and support for newer
FPGA boards. To ensure reproducibility of this work, we have provided access to the Trojan-
inserted Leon3 source code along with Xilinx project files [216]. We built the anomaly detection
model based on iForest and analyzed the prediction accuracy while running different realistic
workloads on the processor. We also carried out experiments to observe the change in accuracy
with the number of flip-flops selected for monitoring.
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Figure 6.6: Illustration of runtime monitoring hardware and anomaly detection

6.5.1 Experimental Setup

The execution of workloads by post-synthesis simulation and the flip-flop Lp extraction con-
sumes huge runtime and hence, we utilized a Leon3 implementation on FPGA, as an emulation
platform. We carried out the workload characterization by executing six MiBench workloads
on a Leon3 processor implemented on a Xilinx Kintex 7 FPGA (KC705). Leon3 is a seven-stage
pipelined processor based on SPARC-V8 RISC instruction set architecture (ISA). The flip-flop
outputs were sampled using an integrated logic analyzer to a host machine. The MiBench
workloads were loaded and executed on Leon3 using grmon debug monitor [30]. The iForest
algorithm for anomaly detection was implemented using scikit-learn library [34].

6.5.2 Implementation of Different Trojans

Different Trojans were implemented by modifying RTL of Leon3 followed by synthesis, place
& route and bitstream generation.

Trojan Trigger is implemented as the 26th bit of a 32−bit counter that increments its
count on every match with a specific instruction (e.g. XOR) in the instruction register and
stops counting once the Trojan is triggered. We can increase the complexity of the trigger by
altering the trigger condition. However, it is not necessary for this work since the proposed
method detects Trojan activation after it occurs by analyzing Trojan payload instead of trigger.
The trigger signature can provide additional information for anomaly detection. However, it is
intentionally not used in our technique to show that the prediction performance is independent
of the type of Trojan trigger.

We implemented four different Trojans that activates different payloads.
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Figure 6.7: Illustration of the shift in anomaly score when the NOP-insertion Trojan is activated during
the execution of a susan smooth application in Leon3.

Trojan 1: NOP-insertion Trojan

This Trojan inserts No-Operation (NOP) instruction in the instruction register replacing any
existing instruction such that the processor executes only NOPs when the Trojan is activated.
This results in a Denial-of-Service and is based on the PIC16F84-T200 Trojan benchmark in
Trust-Hub [217, 218].

Trojan 2: Cache Disabling Trojan

This Trojan tampers with the read enable of the instruction and data caches of the processor
similar to Trojan 3 of [195] resulting in performance degradation.

Trojan 3: Address-bus Corrupting Trojan

This Trojan corrupts the address bus of the processor leading to change in its functionality or
Denial-of-Service. This Trojan is similar to the PIC16F84-T100 in Trust-Hub.

Trojan 4: Jump Disabling Trojan

This Trojan disables the jump instruction in the pipeline leading to change in the functionality.
This Trojan is similar to MC8051-T600 in Trust-Hub.

In Trojan taxonomy, based on the effect of a Trojan, they are classified into four categories.

� Denial of Service
� Degrade Performance
� Change Functionality
� Leak Information

We selected four Trojans from the first three categories for our experiments. These four
Trojans corresponds to ten similar Trojans in Trust-Hub as shown in Table 6.1. The Trojans
causing leakage-of-information were not considered in our threat model.
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6.5 Experimental Results

6.5.3 Trojan Detection Accuracy

The Trojan activation is detected as positive when the average anomaly score of a series of
online samples estimated by the iForest algorithm exceeds a pre-defined threshold score. In a
qualitative sense, the threshold score can be understood as how much deviation from a legal
workload pattern would be flagged as a Trojan payload. The decision-time threshold cannot
be known in advance as it can change during the incremental online learning of the classifier.
The threshold score can be initialized offline and updated online based on online data collected
from the monitoring hardware. A predictive action of the predictor software is labeled as a
true (false) positive if the Trojan is (not) activated and is detected as a Trojan activation.
A predictive action of the predictor software is labeled as a true (false) negative if a normal
execution of the workload is detected as normal (anomalous).

To ensure the generalization capability of our prediction model, we test our model with
workloads that are not encountered in the training process. It is also possible that the predic-
tion model encounters false positives on the events of exceptions or error conditions. However,
we can avoid these by considering the fact that exceptions or error conditions are limited to a
short time duration before retaining the normal execution. The identification flag for Trojan
can be raised if the Trojan continues execution beyond such timescales. To differentiate Trojan
payload from short error conditions or exceptions of maximum duration (te) in a workload,
a decision time (td) can be defined such that, te < td, for each Trojan detection event. An
anomalous activity is only recognized as a Trojan payload if the anomalous flag is raised for a
duration of more than td.

In a two-class classification problem, precision is defined as the proportion of positives
(anomalous activity) that are correctly identified as such and recall is defined as the proportion
of negatives (normal activity) that are correctly identified as such. The prediction performance
of Trojan detection is estimated based on F1 score which is calculated as the harmonic average
of precision and recall. For the two-class classification problem (Trojan activation detected
(positive) or not detected (negative)), if the number of true positives is expressed as TP , true
negatives as TN , false positives as FP and false negatives as FN , then precision is expressed
as (6.1):

precision =
TP

TP + FP
, (6.1)

recall as (6.2):

recall =
TP

TP + FN
, (6.2)

and F 1 score as (6.3):

F1 =
2 · precision · recall
precision+ recall

. (6.3)

For training the anomaly detection model, we used 2500 flip-flop Lp samples from five
different MiBench workloads with no Trojan activated. Since we assume that the Trojans
escape the chip test and verification phases, the Trojan trigger condition should be complex
enough to not get triggered by normal workload execution. The anomaly detection model is
then tested on samples from the execution of another workload (not included in the training set)
running under four different Trojan-included designs of Leon3. The test set includes workload
samples before and after Trojan activation to estimate false positives and false negatives.

The prediction results are as shown in the confusion matrix in Fig. 6.8. The confusion
matrix shows the prediction results for 160 test samples to two classes, positive and negative.
The eighty negative class samples are predicted accurately with no false positives. For eighty
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Figure 6.8: The confusion matrix showing the number of true and false predictions corresponding to
two classes, (1) positive (Trojan activated) and negative (no Trojan activated).

positive class samples, five samples are predicted incorrectly (5 false negatives). These false
negatives originate due to the limitation of workload characterization. The number of false
negatives can be reduced by including more workloads in training the classifier such that it
can encounter a larger spectrum of sub-workload samples or workload phases.

The prediction accuracy of the proposed method was also evaluated using accuracy score
(SA), defined as follows:

SA(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

1(ŷi = yi), (6.4)

where ŷi is the predicted class label of the i-th sample, yi is the corresponding true class label,
and 1(ŷi = yi) is the indicator function, i.e., 1(ŷi = yi) = 1 if ŷi = yi and 1(ŷi = yi) = 0 if
ŷi 6= yi. In other words, SA is the fraction of correct predictions over nsamples. A value of ‘1’
for SA shows a perfect match between the actual class labels and the predicted class labels.
Therefore, the closer the value of SA is to ‘1’, the higher is the prediction accuracy.

The obtained prediction metrics are shown in Table 6.2. The values of accuracy score and
F1 score show that the Trojan activation can be predicted with high accuracy by monitoring
only 12 representative flip-flops. The threshold score can be adjusted to trade-off between
precision and recall. In our method, the threshold score is tuned to maximize precision and
eliminate false Trojan alarms by tolerating a few false negatives.

The accuracy score quantifies the prediction performance of the trained model as a ratio of
true predictions to the total number of prediction events. An accuracy score of 0.909 means
that out of 1000 test workload samples, around 909 samples are expected to be correctly
classified as Trojan-infected/Trojan non-infected. With only normal samples in training data,
the anomaly detection model could achieve an overall accuracy score (SA) of 0.969 as shown
in Table 6.2. For 160 test samples, overall accuracy score (SA) for unsupervised learning with
both Trojan-infected and Trojan non-infected samples in the training data is obtained as 0.920.
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Figure 6.9: Comparison of performances of different anomaly detection algorithms on Trojan detection.

We conducted cross-validation across workloads by calculating the average accuracy score
for six sets of train-test pairs by changing the workload in the test set. The average accuracy
score is estimated as 0.909. Hence, we obtained significant accuracy in our prediction even
when the workload encountered during runtime is significantly different from the workloads
involved in training.

We also compared the performance of iForest algorithm with other commonly used anomaly
detection algorithms such as one-class SVM (OCSVM) [219] and elliptical envelope [220] as
shown in Fig. 6.9. Although recall for OCSVM is slightly better than iForest, precision of
iForest is significantly better than both the other anomaly detection methods.

6.5.4 Representative Flip-flop Selection

The number of representative flip-flops can be reduced with a compromise in the accuracy of
Trojan detection. The reduction in accuracy with the variation in number of flip-flops is shown
in Fig. 6.10. The results show that the accuracy is not significantly dropped when the number
of representative flip-flops is reduced from 4% to 0.5% of the total number of flip-flops.

The representative flip-flops selected for monitoring are analyzed to find their significance
in anomaly detection. Some of these flip-flops are related to integer condition code (icc) bits
of program status register (PSR), shift count (shcnt) bit, restart register bit, pipeline register
bit in the decode stage, middle bit of program counter etc. These flip-flops could implicitly
represent the workload pattern even if their forward logic cone is manipulated by the adversary.

6.5.5 Overheads

The Leon3 processor design with the monitoring hardware attached is synthesized using Syn-
opsys Design Compiler with Nangate 45nm library to analyze the power and area overhead.
The monitoring hardware consists of N -bit counters attached to each flip-flop in the design.
The size of the counter depends on the size of workload segment that needs to be analyzed
at any point of time during workload execution. For example, to monitor at the granularity
of 1000 clock cycles of a real MiBench workload, one 10-bit counter will be used for each
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Figure 6.10: The variation in prediction accuracy of Trojan activation in Leon3 with the number of
flip-flops selected for monitoring.

representative flip-flop. For 12 representative flip-flops with a prediction accuracy of 0.909,
the area overhead due to the extra monitoring hardware is estimated as 0.42% and the power
overhead is estimated as 0.40%. The power overhead can be further reduced by implementing
time-sampling in calculation of Lp of flip-flops [24].

The execution of anomaly detection software causes a performance overhead on the trusted
core and this can be evaluated based on how often the software needs to be executed. The
iForest classifier involves only decision tree traversals with simple comparison operations and
has linear runtime complexity. The frequency of activation of anomaly detection software
will be decided based on the usage scenario (criticality) of the IP. In the case of noncritical
systems, this software can also be infrequently executed to reduce performance overhead. If the
trusted core on which the software is executed is assumed to be working at 1GHz with similar
specifications of an embedded processor like Leon3, the runtime of the anomaly detection
algorithm with the number of iTrees as 10 and a maximum depth of the iForest as 10 is
estimated as around 80 µs.

6.5.6 Limitations of the proposed approach

The proposed Trojan detection framework exploits dispersed information at logic-level to tackle
tailored attacks by adversaries on semantically significant observables. However, our method
is not aimed at detecting Trojans that cause minimal workload footprint in logic level (e.g.
Trojans causing leakage of information). To detect such Trojans, side-channel measurement
based runtime Trojan detection techniques [203, 221] can be employed along with our tech-
nique. Moreover, we assume that the 3PIP is provided either in the form of RTL or gate-level
netlist. Our technique cannot be applied on encrypted or black-box IPs. For such Trojans,
detection techniques based on hardware property checkers [190] can be used.

The Trojans causing leakage-of-information were not considered in our threat model. How-
ever, many Trojans belonging to this category can still be potentially captured by our tech-
nique. If a Trojan causes a change in a control bit in the processor, our method can potentially
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detect it. For example, the Trojan PIC16F84-T300 [61] manipulates data lines to the external
EEPROM. To achieve this, a select signal of a multiplexer needs to be switched, and this
can be identified as an anomaly by our prediction model. In s35932-T100 Trojan, value of an
internal signal is leaked through a test output pin. In this case, scan enable of part of a scan
chain should be enabled, and this can be detected as an anomaly. In short, our method can
also potentially detect leakage-of-information Trojans if the prediction model is trained with
appropriate workloads expected in the field-of-operation. In short, several Trojan detection
techniques should be employed in parallel to ensure safe in-field operation of a chip.

6.6 Summary

We have proposed a runtime Trojan identification method based on an anomaly detection
technique by analyzing the workload profile of a small set of representative flip-flops in the
untrusted design. The flip-flops are selected offline and the workload profile of flip-flops are
analyzed online on a trusted core to make predictions on Trojan activation. The experiments
conducted on four Trojan-inserted designs of Leon3 processor shows an accuracy of above 0.9
with no false positives by monitoring less than 0.5% of the flip-flops.
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7 Conclusion

7.1 Summary and conclusion

With continuous technology scaling advancement and globalization of semiconductor design
and fabrication stages, a series of vulnerabilities aggravate in reliability and security aspects
that affect dependable operation of integrated circuits. The reliability mechanisms include
dynamic aging of transistors, accelerated aging scenarios, radiation-induced soft errors and
the security vulnerabilities include the possible inclusion of malicious hardware in the form of
hardware Trojans from third-party vendors. Since these dependability attributes are dependent
on workload and various runtime parameters, design-time solutions are inadequate. Because
of the increasing design and runtime complexity, deterministic models are insufficient to guide
runtime adaptation actions. In this scenario, runtime monitoring schemes are required to
enable protection mechanisms against these dependability issues. The runtime monitoring
for dependability is usually achieved in the state-of-the-art techniques with existing micro-
architectural level monitors and performance counters. These monitors can only be accessed
in a coarse-grained manner and the information available at the micro-architectural level is
limited. Hence, new techniques are required to improve accuracy of prediction and also to
enable fine-grained mitigation schemes.

This thesis tackles the challenges in ensuring dependability by identifying logic-level work-
load observables that can enable fine-grained runtime monitoring and higher prediction accu-
racy of dependability metrics. The modeling complexity of dependability mechanisms is dealt
with appropriate machine learning methods that build prediction models based on different
workload scenarios. We also propose several approaches to reduce the cost of implementa-
tion of these logic-level runtime monitors. The specific implementations of this approach for
different reliability and security mechanisms are as follows.

� A machine-learning based runtime model was developed to predict aging-induced delay
degradation of a circuit. The predicted value serves as a comparison metric to compare
the aging rate of different workloads executed on a processor and can guide mitigation
actions such as task mapping to mitigate aging effect. Our experiments on two em-
bedded processors (Leon3 and OpenRISC 1200) show that the accuracy of prediction
is high, even in the case when the prediction is based only on monitoring of a small
number of flip-flops in the design.

� An accelerated aging scenario due to static aging effect occurring in specific workload
phases in a design was identified. A low cost monitoring circuit to capture such corner
cases was designed by identifying flip-flops that undergo correlated static aging phases.
A mitigation technique based on a software subroutine was also developed with no
additional circuit added. We report significant lifetime improvement by applying our
proposed technique to two processor designs.

� We propose a technique to estimate the online soft-error vulnerability of memory arrays
and logic cores based on the monitoring of a small set of flip-flops in the design. We
exploit learning techniques to develop a predictive model for estimating vulnerability
factor. This model is subsequently utilized at runtime as a software thread to evaluate
online vulnerability factor. We also showed that the proposed prediction method is
significantly more accurate when compared to prediction based on performance counters.

107



7 Conclusion

� An anomaly detection technique was proposed to detect the payload activation of a
hardware Trojan by identifying anomalous workload signatures. The experiments con-
ducted on Trojan-inserted designs of a processor show high Trojan detection accuracy
with no false positives by monitoring a small percentage of the flip-flops in the design.

The results of this work show that the logic-level analysis of runtime data provides a new
dimension for online monitoring and mitigation of dependability effects. We demonstrate the
potential of machine learning techniques in workload compaction and representation to predict
the rate of degradation mechanisms such as static and dynamic aging, transient soft error
vulnerability, and also the anomalous behavior due to hardware Trojan activation. Our analysis
demonstrates the possibility to extract relevant observables from lower levels of abstraction
for low cost and fine-grained monitoring. This methodology can be reused to solve other
workload-dependent reliability mechanisms such as voltage droop, and also other runtime
security vulnerabilities.
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