9 research outputs found

    Analysis and design of quadratic parameter varying (QPV) control systems with polytopic attractive region

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper proposes a gain-scheduling approach for systems with a quadratic structure. Both the stability analysis and the state-feedback controller design problems are considered for quadratic parameter varying (QPV) systems. The developed approach assesses/enforces the belonging of a polytopic region of the state space to the region of attraction of the origin, and relies on a linear matrix inequality (LMI) feasibility problem. The main characteristics of the proposed approach are illustrated by means of examples, which confirm the validity of the theoretical results.Peer ReviewedPostprint (author's final draft

    Analysis and design of quadratically bounded QPV control systems

    Get PDF
    © 2019. ElsevierA nonlinear system is said to be quadratically bounded (QB) if all its solutions are bounded and this is guaranteed using a quadratic Lyapunov function. This paper considers the QB analysis and state-feedback controller design problems for quadratic parameter varying (QPV) systems. The developed approach, which relies on a linear matrix inequality (LMIs) feasibility problem, ensures that the QB property holds for an invariant ellipsoid which contains a predefined polytopic region of the state space. An example is used to illustrate the main characteristics of the proposed approach and to confirm the validity of the theoretical results.Peer ReviewedPostprint (author's final draft

    D-stable controller design for Lipschitz NLPV system

    Get PDF
    This paper addresses the design of a state-feedback controller for a class of nonlinear parameter varying (NLPV) systems in which the nonlinearity can be expressed as a parameter-varying Lipschitz term. The controller is designed to satisfy a D-stability specification, which is akin to imposing constraints on the closed-loop pole location in the case of LTI and LPV systems. The design conditions, obtained using a quadratic Lyapunov function, are eventually expressed in terms of linear matrix inequalities (LMIs), which can be solved efficiently using available solvers. The effectiveness of the proposed method is demonstrated by means of a numerical example.Postprint (author's final draft

    Towards a Taylor-Carleman bilinearization approach for the design of nonlinear state-feedback controllers

    Get PDF
    The Carleman bilinearization is an approach that performs an exact conversion of a finite-dimensional nonlinear system into an infinite-dimensional bilinear system. A finite-dimensional system is later obtained through a truncation for analysis and control purposes. This paper investigates the linear matrix inequality (LMI)-based design of a switched state-feedback control law for the model obtained via Carleman bilinearization of a first-order nonlinear system. It is shown that in order to obtain feasible design conditions, the performance requirements must be relaxed in a neighborhood of the zero equilibrium point, so that problems arising from the uncontrollability of the linear part of the model can be avoided. The effectiveness of the proposed approach is shown using a numerical example and experimental results using a multi-input tank system.publishedVersio

    LMI-based design of state-feedback controllers for pole clustering of LPV systems in a union of -regions

    Get PDF
    This paper introduces an approach for the design of a state-feedback controller that achieves pole clustering in a union of DR-regions for linear parameter varying systems. The design conditions, obtained using a partial pole placement theorem, are eventually expressed in terms of linear matrix inequalities. In addition, it is shown that the approach can be modified in a shifting sense. Hence, the controller gain is computed such that different values of the varying parameters imply different regions of the complex plane where the closed-loop poles are situated. This approach enables the online modification of the closed-loop performance. The effectiveness of the proposed method is demonstrated by means of simulations.Peer ReviewedPostprint (author's final draft

    LMI-based design of state-feedback controllers for pole clustering of LPV systems in a union of DR-regions

    Get PDF
    This paper introduces an approach for the design of a state-feedback controller that achieves pole clustering in a union of DR-regions for linear parameter varying systems. The design conditions, obtained using a partial pole placement theorem, are eventually expressed in terms of linear matrix inequalities. In addition, it is shown that the approach can be modified in a shifting sense. Hence, the controller gain is computed such that different values of the varying parameters imply different regions of the complex plane where the closed-loop poles are situated. This approach enables the online modification of the closed-loop performance. The effectiveness of the proposed method is demonstrated by means of simulations.acceptedVersio

    Analysis and design of quadratic parameter varying (QPV) control systems with polytopic attractive region

    No full text
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper proposes a gain-scheduling approach for systems with a quadratic structure. Both the stability analysis and the state-feedback controller design problems are considered for quadratic parameter varying (QPV) systems. The developed approach assesses/enforces the belonging of a polytopic region of the state space to the region of attraction of the origin, and relies on a linear matrix inequality (LMI) feasibility problem. The main characteristics of the proposed approach are illustrated by means of examples, which confirm the validity of the theoretical results.Peer Reviewe

    Articles indexats publicats per investigadors del Campus de Terrassa: 2018

    Get PDF
    Aquest informe recull els 290 treballs publicats per 267 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2018Postprint (published version
    corecore