293 research outputs found

    A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling

    Get PDF
    We propose an efficient evolutionary multi-objective optimization approach to the capacitated facility location–allocation problem (CFLP) for solving large instances that considers flexibility at the allocation level, where financial costs and CO2 emissions are considered simultaneously. Our approach utilizes suitably adapted Lagrangian Relaxation models for dealing with costs and CO2 emissions at the allocation level, within a multi-objective evolutionary framework at the location level. Thus our method assesses the robustness of each location solution with respect to our two objectives for customer allocation. We extend our exploration of selected solutions by considering a range of trade-offs for customer allocation

    An evaluation of three DoE-guided meta-heuristic-based solution methods for a three-echelon sustainable distribution network

    Get PDF
    This article evaluates the efficiency of three meta-heuristic optimiser (viz. MOGA-II, MOPSO and NSGA-II)-based solution methods for designing a sustainable three-echelon distribution network. The distribution network employs a bi-objective location-routing model. Due to the mathematically NP-hard nature of the model a multi-disciplinary optimisation commercial platform, modeFRONTIER®, is adopted to utilise the solution methods. The proposed Design of Experiment (DoE)-guided solution methods are of two phased that solve the NP-hard model to attain minimal total costs and total CO2 emission from transportation. Convergence of the optimisers are tested and compared. Ranking of the realistic results are examined using Pareto frontiers and the Technique for Order Preference by Similarity to Ideal Solution approach, followed by determination of the optimal transportation routes. A case of an Irish dairy processing industry’s three-echelon logistics network is considered to validate the solution methods. The results obtained through the proposed methods provide information on open/closed distribution centres (DCs), vehicle routing patterns connecting plants to DCs, open DCs to retailers and retailers to retailers, and number of trucks required in each route to transport the products. It is found that the DoE-guided NSGA-II optimiser based solution is more efficient when compared with the DoE-guided MOGA-II and MOPSO optimiser based solution methods in solving the bi-objective NP-hard three-echelon sustainable model. This efficient solution method enable managers to structure the physical distribution network on the demand side of a logistics network, minimising total cost and total CO2 emission from transportation while satisfying all operational constraints

    A simulation-based optimisation for the stochastic green capacitated p-median problem

    Get PDF
    Purpose: This paper aims to propose a new model called the stochastic green capacitated p-median problem with a simulation-based optimisation approach. An integer linear programming mathematical model is built considering the total emission produced by vehicles and the uncertain parameters including the travel cost for a vehicle to travel from a particular facility to a customer and the amount of CO2 emissions produced. We also develop a simulation-based optimisation algorithm for solving the problem. Design/methodology/approach: The authors proposed new algorithms to solve the problem. The proposed algorithm is a hybridisation of Monte Carlo simulation and a Variable Neighbourhood Search matheuristic. The proposed model and method are evaluated using instances that are available in the literature. Findings: Based on the results produced by the computational experiments, the developed approach can obtain interesting results. The obtained results display that the proposed method can solve the problems within a short computational time and the solutions produced have good quality (small deviations). Originality/value: To the best of our knowledge, there is no paper in the previous literature investigating the simulation-based optimisation for the stochastic green capacitated p-median problem. There are two main contributions in this paper. First, to build a new model for the capacitated p-median problem taking into account the environmental impact. Second, to design a simulation-based optimisation approach to solve the stochastic green capacitated p-median problem incorporating VNS-based matheuristic and Monte Carlo simulationPeer Reviewe

    Green Facility Location – A Case Study

    Get PDF
    “Green logistics” is a popular catchword, not only in public and among companies, but also in academia. In this paper we apply the concept of green logistics to the facility location problem: Optimizing the locations of facilities in the general p-median model. This is based on CO2 emissions generated through transportation rather than traditional cost measures, such as physical transportation cost. We examine the results of a real world case study and compare those with each other. Especially implications for real world application are critically discussed

    Integrating operations research into green logistics:A review

    Get PDF
    Logistical activities have a significant global environmental impact, necessitating the adoption of green logistics practices to mitigate environmental effects. The COVID-19 pandemic has further emphasized the urgency to address the environmental crisis. Operations research provides a means to balance environmental concerns and costs, thereby enhancing the management of logistical activities. This paper presents a comprehensive review of studies integrating operations research into green logistics. A systematic search was conducted in the Web of Science Core Collection database, covering papers published until June 3, 2023. Six keywords (green logistics OR sustainable logistics OR cleaner logistics OR green transportation OR sustainable transportation OR cleaner transportation) were used to identify relevant papers. The reviewed studies were categorized into five main research directions: Green waste logistics, the impact of costs on green logistics, the green routing problem, green transport network design, and emerging challenges in green logistics. The review concludes by outlining suggestions for further research that combines green logistics and operations research, with particular emphasis on investigating the long-term effects of the pandemic on this field.</p

    A solution method for a two-layer sustainable supply chain distribution model

    Get PDF
    This article presents an effective solution method for a two-layer, NP-hard sustainable supply chain distribution model. A DoE-guided MOGA-II optimiser based solution method is proposed for locating a set of non-dominated solutions distributed along the Pareto frontier. The solution method allows decision-makers to prioritise the realistic solutions, while focusing on alternate transportation scenarios. The solution method has been implemented for the case of an Irish dairy processing industry׳s two-layer supply chain network. The DoE generates 6100 real feasible solutions after 100 generations of the MOGA-II optimiser which are then refined using statistical experimentation. As the decision-maker is presented with a choice of several distribution routes on the demand side of the two-layer network, TOPSIS is applied to rank the set of non-dominated solutions thus facilitating the selection of the best sustainable distribution route. The solution method characterises the Pareto solutions from disparate scenarios through numerical and statistical experimentations. A set of realistic routes from plants to consumers is derived and mapped which minimises total CO2 emissions and costs where it can be seen that the solution method outperforms existing solution methods

    Meta-heuristic approach for high-demand facility locations considering traffic congestion and greenhouse gas emission

    Get PDF
    Large facilities in urban areas, such as storage facilities, distribution centers, schools, department stores, or public service centers, typically generate high volumes of accessing traffic, causing congestion and becoming major sources of greenhouse gas (GHG) emission. In conventional facility-location models, only facility construction costs and fixed transportation costs connecting customers and facilities are included, without consideration of traffic congestion and the subsequent GHG emission costs. This study proposes methods to find high-demand facility locations with incorporation of the traffic congestion and GHG emission costs incurred by both existing roadway traffic and facility users into the total cost. Tabu search and memetic algorithms were developed and tested with a conventional genetic algorithm in a variety of networks to solve the proposed mathematical model. A case study to determine the total number and locations of community service centers under multiple scenarios in Incheon City is then presented. The results demonstrate that the proposed approach can significantly reduce both the transportation and GHG emission costs compared to the conventional facility-location model. This effort will be useful for decision makers and transportation planners in the analysis of network-wise impacts of traffic congestion and vehicle emission when deciding the locations of high demand facilities in urban areas

    Facility Location Planning Under Disruption

    Get PDF
    Facility Location Problems (FLPs) such as the Uncapacitated Facility Location (UFL) and the Capacitated Facility Location (CFL) along with the k-Shortest Path Problem (k-SPP) are important research problems in managing supply chain networks (SCNs) and related operations. In UFL, there is no limit on the facility serving capacity while in CFL such limit is imposed. FLPs aim to find the best facility locations to meet the customer demands within the available capacity with minimized facility establishment and transportation costs. The objective of the (k-SPP) is to find the k minimal length and partial overlapping paths between two nodes in a transport network graph. In the literature, many approaches are proposed to solve these problems. However, most of these approaches assume totally reliable facilities and do not consider the failure probability of the facilities, which can lead to notably higher cost. In this thesis, we investigate the reliable uncapacitated facility location (RUFL)and the reliable capacitated facility location (RCFL) problems, and the k-SPP where potential facilities are exposed to disruption then propose corresponding solution approaches to efficiently handle these problems. An evolutionary learning technique is elaborated to solve RUFL. Then, a non-linear integer programming model is introduced for the RCFL along with a solution approach involving the linearization of the model and its use as part of an iterative procedure leveraging CPLEX for facility establishment and customer assignment along with a knapsack implementation aiming at deriving the best facility fortification. In RUFL and RCFL, we assume heterogeneous disruption with respect to the facilities, each customer is assigned to primary and backup facilities and a fixed fortification budget allows to make a subset of the facilities totally reliable. Finally, we propose a hybrid approach based on graph partitioning and modified Dijkstra algorithm to find k partial overlapping shortest paths between two nodes on a transport network that is exposed to heterogeneous connected node failures. The approaches are illustrated via individual case studies along with corresponding key insights. The performance of each approach is assessed using benchmark results. For the k-SPP, the effect of preferred establishment locations is analyzed with respect to disruption scenarios, failure probability, computation time, transport costs, network size and partitioning parameters

    Solving a green logistics bi-level bi-objective problem.

    Get PDF
    The situation here addressed is modelled as a bi-level programming problem with multiple objectives in the upper level and a single objective in the lower level. In this problem, a company (hereafter the leader) distribute a commodity over a selected subset of customers; while a manufacturer (hereafter the follower) will fabricate the commodities demanded by the selected customers. The leader has two objectives: the maximization of the profit gained by the distribution process and the minimization of CO2 emissions. The latter is important due to the regulations imposed by the government. It is clear that exists a compromise between both objectives, since the maximization of profit will attempt to include as much customers for being served as possible. Then, largest routes will be needed causing more CO2 emissions. For analyzing the problem, the single-commodity case is studied first. Under this assumption, the problem can be reduced into a single-level one. Hence, a tabu search algorithm for solving the aforementioned case is proposed. The tabu search is designed for solving two single-level simplifications of the problem: a monoobjective problem and the bi-objective one. After that, the multi-commodity bi-level case is studied and the respective adaptation of the tabu search is made. Then, a co-evolutionary algorithm is designed for obtaining good quality bi-level feasible solutions. The co-evolutionary approach is related with having two separated populations, one for each leader’s objective. Then, the solutions will evolve in each population and an interchange of information is made through the process. In other words, a swap between the best solutions from both populations in each generation is conducted. By doing this, the algorithm intends to find efficient solutions. The evolution performed in each population is done through a Biased Random Keys Genetic Algorithm( BRKGA). Furthermore, a path relinking algorithm is adapted in order to find the Pareto frontier for the bi-level bi-objective multi-commodity problem, in which the no dominated solutions of the tabu search and the co-evolutionary algorithms are used to initialize this procedure. Numerical experimentation showed the efficiency of the proposed methods for finding good quality solutions (for the mono-objective case) and for reaching a good approximation of the Pareto front (for the bi-objective cases) in reasonable computational time
    corecore