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Abstract 
 
In this research work, we consider various classes of the Location Routing Problem namely: (1) 

Location Routing Problem with Single Depot (LRPSD), (2) Multi-Depot Vehicle Routing Problem 

(MDVRP), (3) Location Routing Problem with Multi-Depots (LRPMD), and (4) Green Location 

Routing Problem with Multi-Depot (G-LRPMD). These problems are NP-hard in terms of 

computational complexities. The interdependence between facility location and vehicle routing has 

been recognised by practitioners and academics. The LRP is to integrate these two decisions and solve 

them simultaneously. As both the facility location and the vehicle routing are NP-hard, LRP is also NP-

hard. Thus, exact methods are limited to solve the LRP of a practical size. Alternatively, heuristics and 

metaheuristics have been applied to solve more realistic problems. 

Biased Randomised technique has been combined with heuristics to successfully solve the Facility 

Location Problem (FLP) and the Vehicle Routing Problem (VRP) due to its simplicity, efficiency, and 

it is a parameter-free heuristic. However, to the best of our knowledge, it has not been combined with a 

heuristic to solve the LRP.  

In this thesis, we have proposed four Biased Randomised heuristics to solve LRPSD, MDVRP, 

LRPMD and G-LRPMD. Moreover, we have developed a Biased Randomised Variable 

Neighbourhood Search (BR-VNS) metaheuristic in collaboration with our collaborators at the Internet 

Interdisciplinary Institute (IN3) in the Universitat Oberta de Catalunya in Spain and Universidad de La 

Sabana in Colombia.  

The first solution method is to solve the LRPSD by a heuristic with four variations. Each variation of 

the heuristic solves the location by one of the following solution methods namely: clustering, p-median, 

clustering and p-median, and iterative method. However, in all variations of the heuristic, the routing 

decisions are made by combining Biased Randomised technique with Clark and Wright heuristic 

(CWH). 

The second solution method is developed to solve the MDVRP by combining Biased Randomised 

technique with Extended Clark and Wright heuristic (ECWH), which we called Biased Randomised 

Extended Clark and Wright heuristic (BR-ECWH). The LRPMD is solved by extending the BR-ECWH 

to consider location decision. Finally, the G-LRPMD is solved by adapting the LRPMD solution 

method to include constrained distance. 

http://www.uoc.edu/portal/en/in3/index.html
http://www.uoc.edu/portal/en/in3/index.html
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The effectiveness of the suggested solution methods are tested by conducting extensive computational 

experiments using data sets from the literature. These data sets have many different sizes (such as 

number of customers, and number of depots) and characteristics (such as distribution of customers, and 

capacity of depots and vehicles) and are then compared to the best-known solutions in the literature.  

The computational analysis indicates the efficiency of the proposed solution methods. The suggested 

solution methods are also shown to be flexible to solve other classes of the LRP.   
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 Introduction 
 

1.1 Background  

 

Supply chain constitutes one of the main activities that influence the growth of the national economy 

and society, as it is a vital link between suppliers and customers. Essentially, the supply chain is 

concerned with flow of materials, services, and information from sources to customers. According to 

Pishvaee, et al. (2009), in the USA and the UK, 10.5% and 10.6% of the Gross National Product was 

accounted for by distribution systems, respectively. In European economy, the total annual expenditure 

on logistics services was 930 billion EUR (Rantasila & Ojala, 2012). 

However, supply chain activities also generate huge economic costs and can have a negative impact 

with regard to the environment. For the economic costs, with the increase in numbers of products being 

manufactured by companies, supply chain costs will also rise. According to Falsini et al (2009), in 

average, transportation weights almost 50% of the total supply chain costs. Warehouse costs are about 

23.5% of supply chain costs. In terms of the environmental aspects, transportation in supply chain plays 

an important role in the generation of CO2 and greenhouse-gas emissions and related externalities, such 

as air pollution, noise, and traffic congestions (Juan et al, 2016) . Moreover, road transportation alone is 

responsible for about 18% of total GHG emissions in the EU (Hill et al., 2012).  
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In the practical world, decisions of location of depots and distribution of goods from these depots are 

challenging aspects of supply chain. That is because there are several situations which require the 

optimal location of several depots from which delivery routes originate, servicing a set of customers. 

This kind of problem is known as the Location Routing Problem (LRP).  

The LRP is a popular combinatorial optimisation problem. It is related to both the Facility Location 

Problem (FLP) and the Vehicle Routing Problem (VRP). Both problems can be viewed as special cases 

of the LRP. If we require all customers to be directly linked to a depot, the LRP becomes an FLP. If, on 

the other hand, we fix the depot locations, the LRP reduces to a VRP.  

 

Figure 1.1 LRP and its relation to FLP and VRP 

The LRP involves the simultaneous location of depots, assignment of customers to depots, and the 

determination of their related routes based upon a set of costs, distances, and capacity criteria. Depot 

location and vehicle routing decisions, if taken independently of one another, may lead to highly sub-

optimal planning results (Salhi and Rand, 1989).  

Figure 1.1 shows the LRP and its relation to FLP and VRP only. The decision of location is considered 

as strategic decision, whereas the decision of routing is considered as operational decision.   

In several supply chains, it is evident that the location of depots will influence the choice of customers 

to be included on specific routes, as well as the number and lengths of the routes. Therefore, ignoring 

routing in depot location decisions may lead to sub-optimal solutions (Salhi and Rand, 1989). Several 

authors, including Webb (1968), Sussams (1971), Wren and Holliday (1972) and Rand (1976) have 

noticed the interdependence between these two elements, the FLP and the VRP. 

The LRP has evolved over the years with different variations. These different variants arise as a result 

of using different optimisation criteria such as: type of input data (deterministic or stochastic), 



3 

 

objective function (single objective function or multi-objective function), number of depots (single 

depot or multi-depots), number of vehicles (limited or unlimited), types of vehicles (homogenous or 

heterogenous), and constraints such as depot capacity, vehicle capacity, and tour limit (Constrained 

Distance). We consider four variants of the LRP in this thesis. They are: LRP with Single Depot, the 

Multi-Depot Vehicle Routing Problem (MDVRP), the LRP with Multi-Depot, and the LRP with 

Constrained Distance. These four problems are considered because they are very important in real life. 

Since the late 60’s, there was the perception that the optimal solution of facility location in supply 

chain is sub-optimal because it does not take routing into account. Several authors including Webb 

(1968), Sussams (1971), Wren and Holliday (1972), and Rand (1976) had noticed that there was a 

drawback in using classical location models for distribution planning problems. For instance, Wren and 

Holliday (1972) noticed that many algorithms that were developed in order to minimise distance 

between customers and depots, were not appropriate to the case where many customers could be visited 

in a single journey by the same vehicle. While the close relationship between depot location and 

optimal routing was underlined by Sussams (1971) as he has mentioned that “Efficient routing is 

inextricably bound up with depot sitting”, and Rand (1976) agrees by the following statement that 

“Many practitioners are aware of the danger of sub-optimising by separating depot location from 

vehicle routing”. Rand (1976) appreciates the difficulty of solving location routing problems when he 

stated “Unfortunately, it will rarely be practicable to determine depot locations using vehicle 

scheduling packages because of the tremendous increase in computational time”.  

Since the late 70’s, facility location and routing have been jointly optimised. Some researchers have 

formulated and applied LRP models in real life problems. Or and Pierskalla (1979)  developed an LRP 

model for health care by considering location of blood banks with VRP. Jacobsen and Madsen (1980) 

formulated the newspaper distribution problem in Denmark as an LRP. Nambiar et al. (1981) improved 

the efficiency of the natural rubber industry in Malaysian by using the LRP. Since then, the LRP plays 

a major role in both the academic and application field.  

The benchmark data sets of the LRP did not appear until 2004 when Barreto (2004) generated the first 

data set of the LRP and its name is Barreto’s data set. Then, Prins et al. (2006a) presented the second 

data set and it is called Prodhon’s data set. While Akca et al. (2009) presented the third data set which 

is called Akca’s data set. Barreto’s data set contains a total of 17 instances with 2 to 15 possible depots 

and the number of customers ranging from 12 to 150, while Prodhon’s data set involves a total of 30 



4 

 

instances ranging from 5-10 potential depots and 20-200 customers. Akca’s data set includes 12 

instances with 5 potential depots and 30-40 customers.  

When the LRP emerged in the literature, the solution methods were most dominantly using heuristics. 

Later, researchers applied exact methods to solve small size problems that did not exceed 20 customers. 

Subsequently, metaheuristics have been used widely as they can solve more realistic problems in 

reasonable computational time. However, one of the disadvantages of metaheuristics is parameter fine-

tuning. 

 

1.2 Gaps in the literature 

 

As we formerly mentioned, the interdependence between location and routing has been recognised by 

many researchers and decision makers. Also, we mentioned that LRP consists of the well-known two 

problems, FLP and VRP. These two problems are shown to be NP-hard. Therefore, the LRP belongs to 

the class of NP-hard problems.  

In early LRP studies, a few heuristics have been developed to solve real life problems with realistic 

sizes (Jacobsen and Madsen (1980), and Perl (1983)). However, these heuristics do not investigate the 

solution space efficiently. This is due to the fact that heuristics, generally, get stuck in local optima. On 

the other hand, in general, heuristic methods have some advantages compared to the other solution 

methods, such as lower computational time and flexibility and simplicity to implement.  

Later, metaheuristics such as Tabu Search (TS), Simulated Annealing (SA), Genetic Algorithms (GA), 

and Ant Colony Optimisation (ACO) and others have been employed to solve the LRP with high 

quality solutions (Tuzun and Burke (1999), and Prins et al., (2006)). The main advantage of using these 

metaheuristics is to search the solution space more effectively. However, the process of searching the 

solution space may need higher computational time and more parameter fine-tuning.  

These methods focus practically, on solution quality and computational time. Although, these two 

measures are undoubtedly important, there is a lack in the literature of introducing mathematical 

models and solution methods that concentrate on other important qualities such as simplicity of 

implementation, flexibility, and handling numerous side constraints that arise in practice. Therefore, 

these methods do not satisfy requirements of decisions makers in private and public sectors. As such, 
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there is a need to provide a fast, flexible, efficient method to tackle the LRP. Therefore, the focus of 

this research is to propose an efficient and fast solution method for the LRP. 

Recently, the Biased Randomised technique has been used successfully to solve the VRP (Juan, et al. 

2010) and FLP (Cabrera, et al. 2014). However, to the best of our knowledge, previous studies have not 

implemented it to solve the LRP.  

Combining the Biased Randomised technique with classic heuristics improves the performance of 

heuristics by avoiding possible local optima. Moreover, it does not need any parameter fine-tuning. In 

addition, at the same time, it can produce alternative high-quality solutions with different properties in 

a reasonable computational time which gives a chance for the decision maker to choose the suitable 

solution among them. These methods are practical, efficient, and parameter-free.  

 

1.3 Motivation 

 

1.3.1 Motivation for Location Routing Problem 

Improving the supply chain system provides both significant cost savings as well as improved 

productivity. A company can improve its productivity from 15% to 20% by improving the supply chain 

(Srivastava and Benton, 1990). This percentage can vary significantly from company to company, and 

industry to industry. Thus, there is a need for identifying, among other aspects of logistics, ways to 

lower the supply chain cost.  

The two main elements in supply chain which cost more than 60% of total logistics costs, are location 

of depots (Facility Location Problem, FLP) and the distribution of goods (Vehicle Routing Problem, 

VRP) (Srivastava, 1993). This means better placed depot locations and better service routes are needed.  

The FLP has been identified by several researchers, and several analytical models have been developed 

to solve it. In addition, the VRP has also been well researched in the literature, and several algorithms 

have been developed to solve it. Relatively few studies have been made for LRP that brings together 

the Facility Location Problem and the Vehicle Routing Problem. 
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These observations have motivated us to study four variants of the LRP that have an important 

application in the real life. These four problems are: the LRP with Single Depot, the MDVRP, the LRP 

with Multi-Depots, and the LRP with Constrained Distance. Table 1.1 shows some of applications of 

the LRP. It contains three columns: paper, optimisation problem, and country. The paper column 

includes names of authors and year of publishing, while the optimisation problem column includes the 

application sector in real life, and finally where the model applied is highlighted in the country column.   

From a complexity point of view, these four problems are considered as NP-hard problems. 

Consequently, the size of the LRP restricts use of an exact method which means that heuristics are the 

best to solve them. On the other hand, heuristics can get stuck at local optima and we need to use a 

technique such as the Biased Randomised technique to improve their performance.  

Paper Optimisation Problem Country 

Watson-Gandy and Dohrn 

(1973) 

Food and drink distribution United Kingdom 

Bednar and Strohmeier (1979) Consumer goods distribution Austria 

Or and Pierskalla (1979) Blood bank location United States 

Jacobsen and Madsen (1980) Newspaper distribution Denmark 

Nambiar et al. (1981) Rubber plant location Malaysia 

Perl and Daskin (1984) Goods distribution United States 

Labbe and Laporte (1986) Post-box location Belgium 

Semet and Taillard (1993) Grocery distribution Switzerland 

Kulcar (1996) Waste collection Belgium 

Murty and Djang (1999) Military equipment location United States 

Bruns et al. (2000) Parcel delivery Switzerland 

Chan et al. (2001) Medical evacuation United States 

Lin et al. (2002) Bill delivery Hong Kong 

Lee et al. (2003) Optical network design Korea 

Billionnet et al. (2005) Telecom network design France 

Gunnarsson t al. (2006) Shipping industry Europe 

Ukkusuri and Yushimito (2008) Humanitarian pre-position of supplies for 

natural disasters 

United States 

Ambrosino et al. (2009) Location and delivery for wood 

distribution 

Italy 

Govindan et al. (2014) Distribution of perishable food  Denmark 

Park et al (2015) Location of emergency units on freeways United States 

Table 1.1 Some applications of LRP in real life 
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1.3.2 Motivation for Multi-Start Biased Randomised technique 

Biased Randomisation is a technique which can be integrated in a heuristic to provide an efficient 

mechanism to solve combinatorial optimisation problems. With this mechanism, a new feasible and 

potentially good solution is generated every time the procedure is executed.  

This framework (integrated Multi-Start Biased Randomised technique with classical heuristics) has 

demonstrated to be very efficient for solving complex computational optimisation problems. The 

algorithms produced usually have a single configuration parameter or are even without parameter. This 

makes the time to deploy the algorithm in a real environment faster, as it avoids the long and complex 

fine-tuning phase which is usually required by other metaheuristics. Moreover, the results obtained 

from using this integrated framework are promising.    

Recently, Multi-Start Biased Randomised technique has had several applications in combinatorial 

optimisation problems. Table 1.2 illustrates some of the applications of Multi-Start Biased Randomised 

technique in different combinatorial problems. It has two columns: paper, and optimization problem. 

Paper column includes names of authors and year of publishing, while optimisation problem column 

includes the optimisation problem’s name.   

Paper Optimisation Problem 
Belloso et al. (2017) Vehicle Routing Problem with Clustered and Mixed Backhauls 

De Armas et al. (2017) Uncapacitated Facility Location 

Belloso et al. (2017) Fleet Size and Mix Vehicle Routing Problem with Backhauls 

Mazza et al. (2016) Mobile Cloud Computing in Smart Cities 

De Armas et al. (2016) Crew rostering problems in airlines 

Dominguez et al. (2016) Two-Dimensional Vehicle Routing Problem with Backhauls 

Dominguez et al. (2016) Two-dimensional loading vehicle routing problem with heterogeneous fleet 

Ferrer et al. (2016) Non-smooth flow-shop problems 

Dominguez et al. (2015) Two-dimensional Loading HFVRP with Sequential Loading and Items 

Rotation 

Juan et al. (2015) Multi-Depot Vehicle Routing Problem 

Dominguez et al. (2014) Two-dimensional vehicle routing problem with and without items rotation 

Juan et al. (2014) Flow-Shop Problem 

Juan et al. (2013) Non-smooth routing problems 

Gonzalez et al. (2012) Arc Routing Problem 

Juan et al. (2010) Capacitated vehicle routing problem 

Agustin et al. (2016) Airline crew scheduling 

Herrero et al. (2014) Vehicle Routing Problems with Asymmetric Costs and Heterogeneous Fleets 

Carmona et al. (2014) Optimisation of Aircraft Boarding Processes  

Cabrera et al. (2014) Facility Location Problem in Distributed Computer Systems 

Gonzalez-Martin et al. (2014) Non-smooth Arc Routing Problems 

Table 1.2. Some applications of Multi-Start Biased Randomised Technique 

http://informs-sim.org/wsc14papers/includes/files/174.pdf
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This technique has been used with a Clark and Wright heuristic (CWH) which is one of the most 

known heuristics for the VRP. Also, it has been used with Iterated Local Search to solve FLP. 

However, to the best of our knowledge, there is no study in the literature which has applied Biased 

Randomised technique to a classical heuristic to solve the LRP. Therefore, to address the gap in the 

literature, this thesis will combine the Multi-Start Biased Randomised technique with Extended Clark 

and Wright Heuristic as a new method to solve the LRP. 

 

1.4 Aims and objectives 

 

This research is to study the LRP problem and how to offer a simultaneous solution method for the 

LRP using Biased Randomised technique in a nested framework. The main objective of the classic LRP 

is to minimise the sum of the opening cost of depots, the fixed cost of using vehicles, and the variables 

cost of vehicles' routing.  

The advantage of using the Biased Randomised technique is to improve the performance of a classic 

heuristic. The new heuristic developed in this study is used to obtain not only one solution, but also 

many solutions through several iterations. These solutions have the same quality but different 

characteristics, which helps decision makers to choose the appropriate one. These characteristics are 

different open depots, different assigning customers to depots, and different assigning customers to 

routes.  

To evaluate the performance of the new heuristic, the solution obtained is compared using the 

benchmarks in the literature.  

In summary, the objectives to be achieved in this research are:  

(1) Build on existing optimisation models of the Location Routing Problem with Single Depot 

(LRPSD), the Multi-Depot Vehicle Routing Problem (MDVRP), the LRP with Multi-Depot 

(LRPMD), and the Green LRP with Multi-Depot (G-LRPMD). 

(2) Develop novel methods by combining the Biased Randomised technique with a classic heuristic to 

handle location and routing decisions simultaneously in the LRP, instead of solving the location 

problem and routing problem as separate problems. These methods provide effective and promising 

solutions, and also have a reasonable computational time for larger real-world problems.   
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(3) Evaluate the performance of the developed Biased Randomised heuristics. The solutions obtained 

for the Biased Randomised heuristic are evaluated against the benchmarks of the LRP with Single 

Depot, the LRP with Multi-Depot, and the MDVRP in the literature. For the LRP with Constraint 

Distance, there are no benchmarks in the literature, therefore, new benchmarks have been generated 

by modifying the benchmarks of the LRP with Multi-Depot.  

  

1.5 Contribution 

 

To achieve the objectives described in the aims and objectives section, a series of original contributions 

to the existing research are made. The most relevant ones are summarised as below and are explained 

in detail in the study.  

 

1.5.1 The Location Routing Problem with Single Depot (LRPSD): 

The LRPSD is the simplest variant of the LRP and there are several real-life applications of it such as 

system computer servers, and collection of money. We propose four Biased Randomised heuristics, 

namely, Biased Randomised Two-Stage Clustering (BR-TSCH), Biased Randomised Two-Stage p-

median (BR-TSPH), Biased Randomised Two-Stage Clustering and p-median (BR-TSCPH), and 

Biased Randomised Iterated heuristic (BR-IH). The Biased Randomised technique was embedded in 

these four heuristics.  

The experimental results showed that the Biased Randomised heuristics obtained competitive solutions 

in terms of quality and computational time. 

  

1.5.2 The Multi-Depot Vehicle Routing Problem (MDVRP): 

The LRP is a general case of Multi-Depot Vehicle Routing Problem (MDVRP). When the location 

decision has been made in a problem, LRP reduces to MDVRP which is helpful when we solve the 

LRP. For this reason, we combined Biased Randomised technique with a classical heuristic, which was 

proposed by Tillman in 1969 for MDVRP, and we call it Biased Randomised Extended Clark and 

Wright Heuristics (BR-ECWH). Then, we used the BR-ECWH in a Two-Level heuristic, called Two-
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Level Biased Randomised heuristic (TLBRH) to solve the MDVRP. To the best of our knowledge, this 

combination has not been employed in the literature to solve MDVRP and this solution method for 

MDVRP is novel. TLBRH performance has been examined in comparison to the Best Known solution 

in the literature.  

To validate the proposed algorithm, computational experiments are conducted on a benchmark set from 

the literature. The new method has been shown to be very successful in terms of computational time 

and solution quality. From the perspective of practicality, this algorithm is easy to implement as it has 

only one parameter. 

 

1.5.3  The Location Routing Problem with Multi-Depot (LRPMD): 

In this problem, we move a step ahead to use the Biased Randomised technique to solve the LRPMD. 

In order to do this, the location decision has been added to the TLBRH which was used to solve the 

MDVRP. Applying the new algorithm provides good results with excellent computational time. The 

advantage of this method is that it can be used as an alternative method when decision makers prefer 

solutions with acceptable quality in a reasonable computational time.  

Moreover, we have developed a Biased Randomised Variable Neighbourhood Search (BR-VNS) 

metaheuristic in collaboration with our collaborators at the Internet Interdisciplinary Institute (IN3) in 

the Universitat Oberta de Catalunya in Spain and Universidad de La Sabana in Colombia. They are 

Prof. Angel A. Juan, and Dr. Javier Panadero from Universitat Oberta de Catalunya and Dr. Carlos 

Quintero-Araujo from Universidad de La Sabana in Colombia.  

The experimental results show that both the Biased Randomised heuristic and the Biased Randomised 

metaheuristic obtained competitive solutions in terms of quality and computational time. 

 

http://www.uoc.edu/portal/en/in3/index.html
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1.5.4 The Green Location Routing Problem with Multi-Depot  

(G-LRPMD): 

Nowadays, supply chain has shifted to use electric vehicles to have greener solutions. Therefore, we 

propose a new model for LRP where electric vehicles are used, and it can be counted as a Green 

Location Routing Problem with Multi-Depot (G-LRPMD). However, electric vehicles have a distance 

limitation and we focus on investigating the LRPMD with constrained distance. The aim of proposing 

this model is firstly to promote the knowledge transfer to a real-life problem, and secondly to show the 

efficiency of our proposed model, the Biased Randomised heuristic, and Biased Randomised 

metaheuristic for this problem. We executed our model and algorithms on modified benchmark data 

from the literature review, as to the best of our knowledge there are no data sets for G-LRPMD in the 

literature. In terms of computational experiments, the results reveal promising improvements in terms 

of computational time and solution quality. This chapter is developed through collaboration work with 

our collaborators at the Internet Interdisciplinary Institute (IN3) in the Universitat Oberta de Catalunya 

in Spain and Universidad de La Sabana.  

 

1.6 Thesis structure 

 

This thesis studies the LRP model and related problems such as the MDVRP and the G-LRPMD and 

develops algorithms to solve them based on Biased Randomised technique combined with classical 

heuristics. To this end, the thesis is structured including the following chapters: 

• Chapter 2 presents an overview of the LRP and MDVRP. This includes exact methods, 

heuristic approaches, and metaheuristics which have been used in the literature to solve 

different benchmark problems.  

• Chapter 3 introduces four proposed Biased Randomised heuristics to solve the LRPSD.  

• Chapter 4 proposes a novel Biased Randomised heuristic implemented on MDVRP. This 

heuristic is developed using Biased Randomised Extended Clark and Wright Heuristic to solve 

the MDVRP.   

• Chapter 5 proposes a novel Biased Randomised heuristic and Biased Randomised 

metaheuristic to solve the LRP with Multi-Depot (LRPMD). The heuristic consists of a Two-

http://www.uoc.edu/portal/en/in3/index.html
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Stage Biased Randomised heuristic for LRPMD. The metaheuristic consists of a Biased 

Randomised heuristic to generate the initial solution and VNS to improve the initial solution.  

• Chapter 6 presents a new variant of LRP with Constrained Distance, which is called Green 

Location Routing Problem with Multi-Depot (G-LRPMD). An attempt was made to examine 

the performance of our new algorithms on newly generated benchmark data sets.  

• Chapter 7 summarises the main achievements of the study. This chapter presents the summary 

of results, general conclusions and limitations of the study. We also propose possible areas for 

further research.  

In all chapters, the adaptation of some heuristics to solve the LRP and MDVRP and their constraints 

are considered. This study examines how the solutions to the LRP and MDVRP could be improved by 

integrating the Biased Randomised technique with a classical heuristic. These methodologies are tested 

with well-known benchmark problems available in the literature and the results are compared to those 

from other studies.  

 

1.7 Conclusion  

 

In this chapter, a comprehensive description of the problem addressed in this thesis has been provided. 

First of all, it presents an introduction, a general overview, and provides a background to the problem 

given. The gap in the literature has been presented after that to show the importance of this research to 

cover it. Then, the main two motivations of this study have been enumerated: motivation for the LRP, 

and motivation for Multi-Start Biased Randomised technique. Furthermore, three main objectives have 

been listed: building optimisation models of problems addressed in this thesis, proposing novel 

methods by combining the Biased Randomised technique with classic heuristics, and evaluating the 

performance of our proposed method by comparing our solutions against the benchmarks. Finally, our 

contributions, and a brief explanation of this thesis structure have been provided to give a clear picture 

about the whole thesis. 

To understand the academic context of the optimisation problem, which is presented in this thesis, we 

will present a literature review in the next chapter. The following chapters describe the various aspects 

of this study. They contain definitions, problem description and models, the description of competitive 

algorithms to solve the LRP with Single Depot, the MDVRP, the LRP with Multi-Depot, and the LRP 
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with Constrained Distance. They also provide computational results on well-known benchmarks and 

finally conclusions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

 

 

 

 

 Literature review 
 

Over the past few decades, the concept of integrated supply chain has emerged as a new management 

philosophy which aims to increase distribution efficiency. Such a concept recognises the 

interdependence among location of depots, allocation of customers to depots, and vehicle route 

structure. As such, it coordinates a broader spectrum of location and routing options available to 

logistics managers and consequently avoids the sub-optimisation of distribution solutions. Reflecting 

the increasing importance of integrated supply chain, an extensive body of combined location routing 

literature has developed.  

In chapter one, it has been illustrated that the LRP is related to the MDVRP because if we fix depot 

locations, the LRP reduces to the MDVRP. Consequently, the aim of this chapter is to help to 

summarise and map a comprehensive survey of LRP and of closely related problem, MDVRP 

literature. Thus, we provide an extensive literature review of LRP in section 2.1 and MDVRP in section 

2.2. But before present the survey, the problem description of the LRP and MDVRP is given firstly in 

section 2.1.1 and 2.2.1, respectively. Then, we give a brief description of the optimisation model for 

both of them in sections 2.1.2 and 2.2.2, respectively.   
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2.1 The Location Routing Problem 

 

We mentioned that at the emergence of LRP, the solution methods were heuristics which were applied 

in a sequential framework. Then, exact methods were applied in small problems. Subsequently, 

metaheuristics have been used widely as they can solve more realistic problems in reasonable 

computational time. In this section, we will survey the solution methods that used to solve the LRP.  

 

2.1.1 Problem description 

There are various LRP formulations in the literature that could lead to developing different solution 

methods. We look into an LRP formulation with capacitated depot and capacitated vehicle which is 

called a general location routing problem as classified by Prins et al. (2007). The problem is to 

determine the number and locations of depots, assignment of customers to depots, and the 

corresponding delivery routes, so that the total costs consisting of depot opening cost, transportation 

cost, and dispatching cost for vehicles are minimised. Each vehicle takes exactly one route starting 

from the depot, visiting a subset of the customers and returning to the same depot. In addition, 

customer’s demand cannot be split among different routes and the sum of demands in each route must 

not exceed the vehicle capacity. Furthermore, the total demand of customers assigned to one depot 

must not exceed its capacity. 

 

2.1.2 Solution methods  

There are many attempts to solve the LRP from exact methods to heuristics and metaheuristics. In this 

section, LRP literature is going to be reviewed, and the characteristics of the solution methodology 

which has been used is going to be explained.  

There are other methods which have been used to solve the stochastic variant of the LRP. For example, 

simulation methods, and sim-optimisation methods. These kinds of methods will ne be covered in this 

thesis because the stochastic LRP is not covered. However, it will be mentioned in the future work.  
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2.1.2.1 Exact methods 

Since the LRP combines two NP-hard problems (FLP and VRP), exact methods have been used in only 

a few studies. The first approach to solve the LRP optimally was by relaxing some constraints of the 

main problem to generate an initial solution, then improve it by using different methods.  Laporte and 

Nobert (1981) apply this approach to solve the LRP with only a single depot. The initial solution is 

generated by relaxing sub-tour constraints, then branch-and-bound is used to enforce integrality; 

finally, sub-tour constraints are added iteratively. The data sets with 20 to 50 customers were solved. 

Laporte et al. (1983) use the same method to solve a variant of LRP when only one vehicle was 

assigned to only one depot. Firstly, the problem is solved by relaxing some constraints. Then other 

constraints are gradually introduced into the problems as they are found to be violated. The algorithm is 

applied to problems ranging from 20 to 50 customers. This relaxing method is also used to solve the 

stochastic LRP by Laporte et al. (1986). The initial solution was obtained by using a heuristic 

approach, then relaxation is used to improve it. Sub-tours and chains between depots will be checked to 

avoid in third step. Finally, solutions will be checked if they are an integer or not, if not, a branch-and-

bound algorithm will be used to achieve an integer solution. Problems with a size of up to 20 customers 

were solved optimally.   

After the huge improvement of computers, branch-and-bound has been used to solve the LRP. Laporte 

et al. (1988) apply it to solve MDVRP and LRP after transforming the problem into equivalent 

constrained assignment problems. And instance involves up to 80 customers was solved optimally. 

Laporte and Dejax (1989) use it for the dynamic LRP and present two solution approaches. The first 

one is presenting the problem by a suitable network, then using the branch-and-bound algorithm to 

solve the integer linear program associated with the network. In the second approach, some of the 

system costs are approximated, and a global solution is then obtained by determining a shortest path on 

a directed graph.  

The branch-and-price algorithm is one of the exact methods that are used for the LRP. Berger et al. 

(2007) develop a branch-and-price algorithm to provide an optimal solution for the LRP after 

presenting a set-partitioning-based formulation. Moreover, a set of constraints is identified to reduce 

the number of constraints. The algorithm is able to provide optimal solutions for problems involving 10 

depots and 100 customers. Akca et al. (2009) describe a branch-and-price algorithm based on the set-

partitioning formulation to solve LRP with distance constraints. This algorithm is capable of solving an 
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instance with 40 customers and 5 depots optimally. Cappanera et al. (2003) address LRP to collect 

obnoxious materials. A Lagrangean relaxation is proposed to decompose the problem into a location 

sub-problem and a routing sub-problem. A branch-and-bound algorithm is then presented to solve the 

sub-problems. 

The third exact method is branch-and-cut, and branch-and-cut-and-price algorithms. It is applied by 

Karaoglan et al. (2011) to the LRP with simultaneous pick-up and delivery with the same vehicle. The 

algorithm implements a local search based on SA to obtain upper bounds. Instances with up to 88 

customers and 8 depots can be solved in a reasonable computational time. Instances with 5 depots and 

40 customers are solved via branch-and-cut by Belenguer et al. (2011), whereas Contardoet et al. 

(2013) solve instances up to 100 customers by branch-and-cut. Rodríguez-Martín et al. (2014) propose 

a branch-and-cut algorithm for a variant of LRP. They study the hub location routing problem with one 

vehicle for each hub. The algorithm succeeds in solving instances of up to 50 nodes. Contardo et al. 

(2011) employed a branch-and-cut-and-price algorithm to solve instances from 12 to 199 customers 

and for 2 to 14 depots.  

The fourth method is the column-and-cut generation which is presented by Contardo et al. (2014). This 

approach is capable of solving up to 199 customers and 14 depots. While Ceselli et al. (2014) introduce 

dynamic column-and-cut generation and branch-and-bound to solve LRP in emergency healthcare 

systems. This method can solve instances with 10-50 customers and 2-5 depots. 

Dynamic programming and radiality constraints are among other strategies that are used to solve the 

LRP optimally. Baldacci et al. (2011) describe dynamic programming and dual ascent methods for 

solving the LRP. The instances consist of 20-100 customers and 5-10 depots. In addition, Ocampo et al. 

(2017) replace sub-tours elimination constraints in VRP and LRP models by radiality constraints, 

which are used in formulations of electrical power distributions network. These radiality constraints are 

used to eliminate loops in electrical power network, and ensure every feasible solution consists only of 

Hamiltonian paths.  

The aforementioned exact methods are applied for the LRP with only One-Echelon which consists of 

some depots and customers; whereas, the Two-Echelon LRP consists of some distribution centers, 

depots, and customers and it is a variant of the LRP which is also solved optimally. Boccia et al. (2011) 

design a Two-Echelon freight distribution system for an urban area. They propose an intermediate level 

of facilities as transit points between platforms and customers. These facilities perform no storage 
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activities and are devoted to transferring freights coming from platforms on trucks, into smaller 

vehicles more suitable for distribution in city. Three mixed integer programming models are proposed, 

aimed at defining location and number of two kinds of capacitated facilities, size of two different 

vehicle fleets and related routes. XPRESS-MP solver is used to solve three data sets optimally. Crainic 

et al. (2011) proposed three models for Two-Echelon LRP. These models were solved optimally by 

XPRESS-MS program. Finally, Contardo et al. (2012) solve instances with 50 customers of Two-

Echelon LRP by using a branch-and-cut. 

 

2.1.2.2 Heuristic methods 

The LRP is a very difficult problem to solve by using exact algorithms, especially if the number of 

customers is very large. Therefore, many heuristics are proposed which could be classified into three 

kinds namely; decomposing procedure, sequential procedure, and nested procedure.  

The decomposing procedure consists of two phases and three phases. For the two-phases, the whole 

problem is divided into two sub-problems – FLP and VRP. The solution obtained in the first phase is 

used as an input to the second phase such as Aykin (1995), Guerra et al. (2007), Lashine et al. (2006), 

and Chan and Baker (2005). For the three-phases, the whole problem is divided into three sub-

problems; MDVRP, FLP, and MDVRP improvement, such as Perl and Daskin (1985), and Hansen et 

al. (1994). 

Aykin (1995) considers the hub location routing problem and decomposes it into the hub locations 

problem and the routes problem. The location is solved optimally first, then routing is solved optimally 

second. Guerra et al. (2007) use the same manner to divide the problem in two phases: location 

allocation phase and vehicle routing phase. In the first phase, the solution is a set of depots that are 

selected to be opened based on assigning customers to the nearest depot. Then, in the second phase, a 

Traveling Salesman Problem (TSP) is resolved with no capacity constraint for the vehicles, then the 

same TSP is modified to consider vehicle capacity. 

Lashine et al. (2006) relax the whole problem by Lagrange relaxation. Then they decompose the 

problem into two sub-problems: the location allocation problem which solves optimally by Lindo, and 

the routing problem which solves using a heuristic approach. Chan and Baker (2005) address a new 

version of LRP which consists of delivery and pick-up service. Moreover, they increase the complexity 
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of the problem by including limitation on tour length, and asymmetrical distance. The location problem 

is solved by minimum spanning forest in the first phase, whereas the routing problem is solved by 

using a modified Clarke and Wright heuristic.  

However, Perl and Daskin (1985) decompose the whole problem into three sup-problems and solve it 

in three phases. The first sub-problem is the MDVRP which is solved using a heuristic approach, while 

the FLP is considered at the second phase and solved optimally. Finally, the solution is improved at the 

third phase using a heuristic approach. The heuristic that is used in the first and third phase consists of 

an initial step and an improvement step. The initial solution is generated in the initial step by assigning 

customers to depots then using a modified CWH to solve routing. The improvement step involves 2-opt 

and exchange search. Hansen et al. (1994) improved Perl’s heuristic by implementing the heuristic 

on a PC.  

The sequential procedure to solve LRP, in general, consists of two steps. The first step is to generate an 

initial solution, and the second step is to improve the initial solution. Chien (1993), and Srivastava 

(1993) have applied this procedure. For Chien (1993), the initial solution is generated by two schemes: 

random generation, and modified closest-depot rule. The improvement step consists of four local 

search methods: change-of-vehicle, insertion, swapping, and change-of-facility. Srivastava (1993) 

develop three heuristics where each one involved the sequential procedure. The initial solution at the 

first heuristic is generated by opening all depots and using a modified CWH for MDVRP. In the second 

step, the initial solution is improved by closing depots ones each time before closing a depot, an 

approximate routing costs is used to determine which depot is going to be closed. The procedure of the 

second heuristic is similar to the first one except the initial solution is solved by only one depot, then 

improved at the second step, by opening one depot each time. In the third heuristic, the initial solution 

is generated by clustering customers in groups based on minimal spanning tree. Then, the nearest 

depots to the cluster centroid are opened. The routing problem is solved using a heuristic approach. 

Albareda-Sambola et al. (2007) proposed a stochastic model by using recourse for LRP under 

uncertainty in the number of customers with one vehicle at each depot. The first stage consists of three 

steps of determining the set of opened depots by using the knapsack problem in the first step, allocating 

customers to depots in the second step, and designing an initial route by using greedy heuristic in the 

third step. The second stage involves improvement of the initial route by local search.  

The third type of solution method that has been used to tackle the LRP is the nested heuristic. In this 

procedure, the FLP is considered as a master problem, while the VRP is considered as a secondary 
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problem. In simple words, nested heuristic generates many solutions based on different combination of 

depots in an iterative manner. It chooses a configuration of depots to be opened in the first phase, then 

it solves the routing problem in the second phase, this procedure is iterated, based on a fixed time or 

another criteria. Nagy and Salhi (1996a) and Nagy and Salhi (1996b) were the first researchers who 

proposed the nested heuristic. In the location phase, three structures of neighbourhood search are used 

such as add, drop, and shift structures. Routing cost is estimated on location phase before moving to 

routing phase which uses a multi-levels heuristic to compute the actual cost. 

The difference between these two articles is the approach used for estimation of the route length. Nagy 

and Salhi (1996a) proposed a formula to estimate the route length based on customer demands, 

capacity of vehicle, and maximum distance. While for Nagy and Salhi (1996b), the sum of direct 

distances between depots and customers is used to estimate the route length. Salhi and Fraser (1996) 

and Nagy and Salhi (1998) use the same method which was proposed on Nagy and Salhi (1996a) to 

tackle LRP with fleet mix and the many-to-many LRP, respectively. 

The clustering procedure was among the methods that were applied to deal with the LRP. Min (1996) 

developed a three-phase sequential heuristic for LRP. The initial phase aggregates customers into 

clusters based on the minimum variance method.  The second phase allocates clusters to depots by 

solving the allocation model optimally. The final phase constructs vehicle tours by branch-and-bound 

algorithm for each tour. Barreto et al. (2007) proposed a sequential heuristic that integrated with a 

clustering technique. The heuristic consists of four steps including clustering, routing, improvement, 

and location. In the first step, four clustering techniques are employed, each one involves one or more 

of the following measures of proximity among groups: single linkage (nearest neighbour), complete 

linkage (farthest neighbour), group average (average of distance), centroid (gravity centre), ward (the 

minimum variance method), and saving (modified saving criterion). In the second step, each route is 

determined optimally by exact method. Improvement to routes is carried out in the third step by 3-opt 

local search. Finally, each route collapses into one customer to assign routes to depots by solving the 

location problem optimally.  

Lam and Mittenthal (2013) develop a hierarchical clustering consisting of three stages. Firstly, 

customers are clustered based on geographic location. Secondly, FLP is solved optimally to determine 

the number, size, and location of depots. In the final stage, a descent heuristic is used to improve the 

customer-route allocations and the customer-depots allocations. However, stopping criteria for the 

clustering heuristic may affect the solution quality. Lam et al. (2009) propose two stopping criteria for 
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the clustering heuristic which are minimum number of clusters and change within cluster variation. The 

analyses indicate that significant savings can be achieved by considering multiple stopping rules. 

Some researchers have studied different versions of LRP such as Two-Echelon of LRP and LRP in a 

continuous search space. In the first problem, LRP consists of three layers of primary depots, secondary 

depots, and customers. While, in the second problem, “also known as the infinite set approaches, the 

depots can be established in a continuous space” Salhi and Nagy (2009). Jacobsen and Madsen (1980) 

and Nikbakhsh and Zegordi (2010) consider the Two-Echelon LRP. Jacobsen and Madsen (1980) 

compare three different heuristics. The first heuristics is a tour construction method where the problem 

is viewed as a spanning tree. The second heuristic is a two-stage heuristic composed of the Alternate 

Location-Allocation method and the CWH. In the third heuristic, tours are formed by CWH, then 

facilities are located, and tours are formed again using the new depot locations.  

Nikbakhsh and Zegordi (2010) present a two-phase heuristic for the Two-Echelon LRP with a time 

windows which is based on location-first, allocation routing second. For the initial solution at the first 

phase, depots to be opened are found sequentially based on the ratio of their fixed cost to their capacity. 

An unopened depot with the minimum ratio is selected. Then, customers are added to the last opened 

depot and inserted into routes based on the minimum weighted sum of the routing time, amount of time 

windows violation and customer priority. Finally, Or-opt heuristic improves the initial route. In the 

second phase, the initial solution is improved by six neighbourhood search schemes. For a continuous 

search space, Salhi and Nagy (2009) have presented an iterative heuristic. It considers the end-points of 

the routes to improve the current location for each depot by solving Weber problems for each depot on 

the set of the end-points of the routes. 

Before choosing and using the aforementioned heuristics, the external environmental characteristics 

should be considered. Srivastava and Benton (1990) examine the impact of some of these 

characteristics such as ratio of location to routing cost, number of potential depots, and customer 

distribution, on the performance of three location routing heuristics (Savings-drop heuristic, Savings-

add heuristic, and cluster-routing heuristic). The evaluation results indicate that performance of any 

heuristic can be affected by the mentioned characteristics. 
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2.1.2.3 Metaheuristic methods 

Several metaheuristic algorithms have been proposed to solve the LRP such as Tabu Search (TS), 

Simulated Annealing (SA), Greedy Randomised Adaptive Search Procedure (GRASP), Genetic 

Algorithm (GA), Variable Neighbourhood Search (VNS), Ant Colony Optimization (ACO), and 

Particle Swarm Optimisation (PSO). An analytical presentation of these algorithms is given next. 

 

a) Tabu Search  

Tabu Search is applied to deal with LRP. In the literature of TS approaches for LRP, we can find two 

main streams which are the two-phase approaches and the three-phase approaches. A two-phases 

heuristic is presented by Albareda-Sambola et al. (2005). In the first phase, the set of open depots is 

determined and a priori routes are considered, while in the second phase, the routes are optimised. TS is 

used at the first and second phase. Tuzun and Burke (1999) introduce a two-phase TS, one seeking a 

good facility configuration, the other finding a good routing that corresponds to depots configuration. 

Escobar et al. (2013) propose a two-phase hybrid heuristic for LRP. In the construction phase, clusters 

and splitting procedure are applied to build an initial solution. In the Improvement phase, a modified 

Granular Tabu Search (GTS) is applied with a random perturbation procedure to escape from local 

optimum. Prins et al. (2007) have presented a cooperative metaheuristic to alternate between location 

phase and routing phase. The location problem is solved by Lagrangean relaxation, while routing phase 

is handled by GTS with an exchange of information. Lin and Kwok (2006) address the multiple use of 

vehicles in LRP with two objectives consisting of total cost and workload balance. In this variant of 

LRP, it is allowed to assign several routes to a vehicle within the vehicle’s working time. They employ 

the TS and SA approaches both simultaneously and sequentially in order to assign routes to vehicles. 

The FLP is solved using a heuristic approach, while VRP is solved by TS and SA. 

Özyurt and Aksen (2007) propose a nested Lagrangean relaxation-based method for LRP. The problem 

is deconstructed into two sub-problems. The first sub-problem is the FLP which is solved to optimality 

with CPLEX. In the second one, a TS is developed to solve the MDVRP. Albareda-sambola et al. 

(2001) formulate the LRP in terms of a network. The linear program solution to the model is taken as a 

starting point to generate an initial solution. Then, at the first phase, a randomised rounding procedure 
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is used to obtain integer solutions followed by a local search. In the second phase, a TS algorithm is 

applied to improve the solution.  

A three-phase TS is presented by Huang (2015) to deal with multi-item LRP with random demand and 

pick-up and delivery. The three phases are location phase to determine the number of opened depots 

based on the nearest depot, allocation phase to assign customers to opened depots, and routing phase to 

determine vehicle routing. A modified TS is used in the second and third phase.  

The Two-Echelon LRP has also been solved by TS. Boccia et al. (2010) and Crainic et al. (2011) 

consider the Two-Echelon LRP. Boccia et al. (2010) divide the problem into two sub-problems: 

location problem and routing problem. The TS is applied in each sub-problem. However, Crainic et al. 

(2011) deconstruct the problem into two location routing sub-problems, one for each echelon. Then 

each sub-problem is deconstructed into FLP and MDVRP. An iterative-nested approach involving TS 

is proposed to combine the solutions of the four sub-problems.  

In some papers, the TS is hybridised with another metaheuristic. Hamidi et al. (2012) and Hamidi et al. 

(2014) present a hybrid GRASP with TS and GRASP with probabilistic TS, respectively for Four-

Layer LRP. The method deconstructs the problem into two sub-problems, a location-allocation problem 

and a routing problem.   

 

b) Simulated Annealing  

The Simulated Annealing has been employed to deal with LRP. It has been used, as well as TS, in two 

frameworks; two phases and three phases.  In the two-phase framework, the first phase is to generate an 

initial solution, and it is subsequently improved at the second phase. Yu et al. (2010), and Jokar and 

Sahraeian (2012) solve the LRP in two phases. The initial solution is constructed by a greedy heuristic. 

In phase two, Yu et al. (2010) improve the initial solution by SA with a random neighbourhood 

structure. Whereas, Jokar and Sahraeian (2012) improve the initial solution by SA using add-drop for 

locations, and 2-3 opt for routing. 

Hassan-Pour et al. (2009) consider stochastic LRP in which availability of depots and routes is limited. 

This case results from several conditions such as maintenance, capacity limit and breakdown. The 

problem is considered in two phases. Phase one is to determine the minimum number of depots which 
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solves optimally by LINGO. Phase two is to determine vehicle routes which solves by SA hybridised 

by two genetic operators: mutation and crossover. Chen and Imai (2005) study LRP with Two-Echelon. 

The initial solution is generated randomly, then SA, including swap and 2-opt process is employed to 

improve the initial solution. Bernal-Moyano et al. (2017) consider LRP with a heterogeneous fleet. 

They propose a comparison of three metaheuristics: SA, VNS, and probabilistic TS. The computational 

results show that SA is able to obtain high quality solutions within short computational times.  

However, in three-phase framework, location problem is solved in the first phase, routing problem is 

solved in the second phase, and the global solution is improved in the third phase. Chen and Ting 

(2007) developed a three-phase hybrid heuristic approach in a sequential manner, combining 

Lagrangeian heuristic and SA. The location problem and customers allocation are solved by 

Lagrangian heuristic in the first phase, whereas routing problem is solved by SA. In the third phase a 

global search is performed to improve the solution by SA. Lin and Kwok (2006) address the multiple 

use of vehicles in LRP with two objectives: total cost and workload balance. Multiple use of a vehicle 

means that it is allowed to assign several routes to a vehicle within the vehicle’s working time 

constraint. Both TS and SA algorithms are applied in a three-phase framework under two versions: 

simultaneous and sequential routes assignment to vehicles.  

Many variants of LRP have been solved by SA such as LRP with mix fleet, LRP with pick-up and 

delivery, LRP with auxiliary vehicle, and Open LRP. Wu et al. (2002) address an LRP with mix fleet 

types. The problem is divided into two sub-problems, location-allocation problem, and vehicle routing 

problem. Each sub-problem is solved in a sequential and iterative manner by SA embedded in the 

general framework of the heuristic. Yu and Lin (2015) introduce the open LRP which is motivated by 

the rise in contracting with third-party logistic companies. The open LRP is different from LRP in that 

vehicles do not return to the distribution centre after servicing all customers. They propose a SA which 

uses three local neighbourhood search mechanisms: swap move, insertion move, and 2-opt move.  

The LRP with simultaneous pick-up and delivery is addressed by Yu and Lin (2014) and Yu and Lin 

(2016). In the type of LRP the pick-up and delivery take place at the same time for each customer. Yu 

and Lin (2014) proposes a multi-start SA which incorporates multi-start hill climbing strategy. While, 

Yu and Lin (2016) propose a SA which employs three types of local search mechanisms: insertion 

move, swap move and reverse move. 
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Mousavi and Tavakkoli-Moghaddam (2013) investigate Two-Echelon LRP with pick-up and delivery. 

The problem is solved in two stages: location is solved in the first stage by SA and routing is solved in 

the second stage by hybrid SA and TS. The LRP with auxiliary vehicles is presented by Bashiri et al. 

(2014) where the length of a route is not restricted by vehicle capacity. The auxiliary vehicle is added 

to the transportation system as an alternative strategy to cover the limitation of capacity and they are 

used to deliver goods from depots to vehicles and cannot serve the customers. The problem is solved by 

SA with two types of local search mechanism: insertion move, and swap move. 

 

c) Greedy Randomised Adaptive Search Procedure 

The GRASP is an iterative two-phase search method that has gained considerable popularity in 

combinatorial optimisation. Each iteration consists of two phases, a construction phase and a local 

search procedure. In the construction phase, a randomised greedy function is used to build up an initial 

solution. This randomised technique provides a feasible solution within each iteration. This solution is 

then exposed for improvement attempts in the local search phase. The final result is simply the best 

solution found over all iterations. In general, GRASP has not been implemeneted as a stand-alone 

approach to solve the LRP. However, it is used with other metaheuristics such as Path Relinking (PA), 

Evolutionary Local Search (EVS), learning process, VNS, Evolutionary Algorithm (EA), and Honey 

Bees Mating Optimisation Algorithm (HBMOA). The PA method is combined with GRASP by Prins 

et al. (2006) and Nguyen et al. (2012). Prins et al. (2006) employ GRASP and PA in a two-phase 

framework. The first phase executes GRASP based on an extended and randomised version of CWH to 

generate initial solutions. In the second phase, PA is used to improve the solutions. While Nguyen et al. 

(2012) complete GRASP by PA for Two-Echelon LRP. The GRASP involves three greedy randomised 

heuristics to generate initial solutions and two Variable Neighbourhood Descent (VND) procedures to 

improve them. The optional PA adds a memory mechanism by combining intensification strategy and 

post-optimisation.  

 ELS with GRASP is proposed by Duhamel et al. (2010). The initial solutions in GRASP are generated 

by Randomised Extended CWH. Then, they are improved by local search before applying ELS. The 

best initial solution is chosen to generate solutions by mutation mechanism. Then, local search is 

applied to improve them. The local search consists of three neighbourhoods: move, swap, and 2-opt. 

Nguyen et al. (2010a) and Nguyen et al. (2010b) use GRASP with learning process and GRASP with  
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ELS and Itreated Local Search (ILS) to solve the Two-Echelon LRP, respectively. Finally, Stenger et 

al. (2011) combine the GRASP to determine the depot locations and a VNS to optimise the vehicle 

routes. Prodhon (2011) combine the GRASP with EA for Periodic LRP (PLRP). 

Marinakis et al. (2008) propose HBMOA and makes a combined use of a number of different 

techniques to increase its efficiency. GRASP is used for the initial population of bees and the initial 

queen in order to have a more competitive queen. Local search is used to decrease the computational 

time. Finally, adaptive memory procedure is applied in the crossover phase in order to have the fittest 

broods. Prodhon (2008) study the PLRP and propose an iterative metaheuristic based on Randomised 

Extended CWH. It consists of three phases: location, combination allocation, and routing. In the first 

phase, it chooses the depots that will be opened all over horizon using a heuristic approach. A feasible 

solution is constructed by assigning the customers to a visit combination at the second phase. In the last 

phase, GRASP is run to improve the result from the previous phase on each period.  

  

d) Variable Neighbourhood Search, Iterated Local Search, and Adaptive Large 

Neighbourhood Search 

Variable Neighbourhood Search (VNS), Iterated Local Search (ILS), and Adaptive Large 

Neighbourhood Search (ALNS) have been successfully applied to a wide range of practical and 

complex combinatorial optimisation problems. The general framework for applying these 

metaheurstics is similar. An initial solution is generated randomly or using a heuristic approach, then 

the metahueristic improves the initial solution. The VNS has been applied to solve the standard LRP, 

PLRP, LRP with probabilistic travel times, LRP where vehicles perform several routes, LRP with non-

linear cost functions for each depot, LRP with stochastic demand, and Two-Echelon LRP. 

Derbel et al. (2011) present the VNS for solving the LRP without description of the initial solution. 

Jarboui et al. (2013) integrate VND as the local search in the VNS to solve the LRP. The initial 

solution is generated by using CWH after opening all depots. Jabal-Ameli el at. (2011) use the VND to 

solve the LRP. The initial solution is generated by using CWH after opening all depots. 

PLRP is solved by Pirkwieser and Raidl (2010) via the VNS. The solution procedure consists of three 

steps: generate the initial solution, apply VNS, then apply the Very Large Neighbourhood Searches 
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(VLNS). The initial solution is generated by using CWH after opening the lower bound depots 

randomly.  

Ghaffari-Nasab et al. (2013) study the LRP with probabilistic travel times and present a bi-objective 

model using two approaches: expected value and chance-constrained programming. The first objective 

is to minimise the total cost, whereas the second objective is to minimise the maximum good delivery 

time to customers. The solution method consists of two phases. The VNS is applied to improve the 

initial solution which is constructed by using CWH after opening all depots. 

The LRP when vehicles perform several routes in the same planning period is considered by Macedo et 

al. (2013) and Macedo et al. (2015). Macedo et al. (2013) apply the VNS, while Macedo et al. (2015) 

apply the skewed general VNS. The initial solution is generated by a greedy heuristic in both 

researches. 

Melechovský et al. (2005) deal with the LRP with non-linear cost functions for each depot which 

grows with the total demand handled at this depot. Two methods to find an initial feasible solution, and 

a metaheuristic to improve the solution, are proposed. The former method for the initial solution opens 

depots, assigns customers, and builds routes randomly. The latter method is the p-median method. The 

suggested metaheuristic is a hybrid approach of the VNS and TS.  

Marinakis et al. (2016) presented a formulation of LRP with stochastic demands. They treated the 

problem as a two phase problem. In the first phase, they determined which depots will be opened and 

which customers will be assigned to them. In the second phase, the VRP with stochastic demands is 

solved for each of the open depots. A Hybrid Clonal Selection Algorithm (HCSA) with two phases is 

applied. In the first phase a VNS is used. While in the second phase an ILS algorithm is utilised. 

Schwengerer et al. (2012) consider Two-Echelon LRP and solve it by VNS. The initial soultion is 

generated by using CWH after opening the lower bound depots randomly. Escobar et al. (2014) 

propose a Granular Variable Tabu Neighbourhood Search (GVTNS) for the LRP. This heuristic 

includes a GTS within a VNS. 

Derbel et al. (2010) apply ILS to solve the LRP without any explanation about the initial solution. 

While Rahmani et al. (2015) use it to deal with the multi products Two-Echelon LRP with pick-up and 

delivery. Two types of local search are proposed: location local search and routing local search. There 

are no details about the initial solution. Nguyen et al. (2012b) propose multi-start ILS for Two-Echelon 
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LRP. Tabu list is used to prevent the algorithm from revisiting a known solution. Moreover, a PR 

procedure is applied to reinforce the ILS. 

Finally, ALNS is used by Hemmelmayr et al. (2012) and Hemmelmayr (2015). Hemmelmayr et al. 

(2012) apply the ALNS for Two-Echelon LRP. The initial solution is constructed by opening the depot 

that yields the lowest cost, assigning customers to depots randomly, and building routes by CWH. 

While Hemmelmayr (2015) proposes two sequential and two parallel variants of the VLNS to solve the 

PLRP. The initial solution is generated by assigning customers randomly to a random combination of 

opened depot and buliding routes by CWH. 

 

e) Genetic Algorithms, Memetic Algorithm, and Evolutionary Algorithm 

The Genetic Algorithm (GA), Memetic Algorithm (MA), and Evolutionary Algorithm (EA) are 

population-based metaheuristics which have been proved to solve many optimisation problems 

efficiently. These algorithms are based on the natural mechanism applied to a population of individuals. 

Those individuals are following some rules to produce new offspring. Those that cannot survive vanish 

and disappear.  

The first use of the GA to tackle the LRP has been proposed by Su (1998) where the initial solution is 

genereated randomly. Wan and Zhang (2008) consider the Three-Echelon LRP and present a heuristic 

approach on the basis of GA. Derbel et al. (2012) study a new variant of the LRP with capacitated 

depots and a single uncapacitated vehicle for each depot. A GA combined  with an ILS is applied. Liu 

et al. (2013) focus on the stochastic LRP with uncertainty in costs and travel time. The problem is 

formulated by using the chance-constrained goal programming framework. A Simulation-Based GA is 

developed to solve the problem. The GA handles the optimal solution, while the stochastic simulation 

addresses uncertain functions.  

Chang et al. (2017) consider the multi-objective nonlinear LRP with time windows. In this problem, the 

customer can be visited more than once. The GA is applied to solve the problem. Finally, Dalfard et al. 

(2013) present a hybrid GA and SA for Two-Echelon LRP with route length constraints. Martinez-

Salazar et al. (2014) consider Two-Echelon LRP with two objectives: reduction of distribution cost and 

balance of workloads for drivers in the routing stage. They proposed two metaheuristic algorithms 

based on Scatter Tabu Search Procedure (STSP) and GA.  
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The MA is used by Prins et al. (2006), Duhamel et al. (2008), Prodhon and Prins (2008) and Karaoglan 

and Altiparmak (2015). Prins et al. (2006) present the MA with population management to solve the 

LRP. This approach consists of the MA in which the diversity of a small population of solutions is 

controlled by accepting a new solution if its distance to the population exceeds a given threshold. 

Duhamel et al. (2008) design an MA with a modified CWH to generate the initial solutions. In 2008, 

Prodhon and Prins extend their MA with population management to deal with the PLRP. Finally, 

Karaoglan and Altiparmak (2015) consider LRP with pick-up and delivery. A MA is proposed to solve 

this problem.  

The last population-based metaheuristic is EA which is proposed by Prodhon (2009) and Koç et al. 

(2015). Prodhon (2009) hybridise the EA with PR, while Koç et al. (2015) hybridise the EA with 

VLNS to tackle the LRP with heterogeneous fleet and time windows.  

 

f) Ant colony optimisation and Particle Swarm Optimisation 

In this section, two metaheuristics, namely, ACO and PSO are proposed. The ACO is proposed by 

Dorigo et al. (1996). Since then, many variants of ACO have been developed and applied extensively 

in the fields of the combinatorial optimisation problems. While the PSO was originally proposed by 

Kennedy and Eberhart (1997). And since its introduction, PSO has gained rapid popularity and has 

proved to be a competitive and effective optimisation algorithm in comparison with other 

metaheuristics. LRP is one of the combinatorial optimisation problems that has been solved by ACO 

and PSO.  

The ACO is employed in three different approaches. The first approach is to apply ACO for VRP while 

FLP is solved using a heuristic approach or randomly. The second approach is to apply ACO to solve 

FLP and VRP. The third approach is to apply ACO with another metaheuristic for the other sub-

problem.  

The first way is used by Nadizadeh el at. (2011), Gao et al. (2016), and Herazo-Padilla et al. (2015). 

Whereas the second way is used by Ting and Chen (2013) and Bouhafs et al. (2006). Finally, the third 

way is used by Wang and Sun (2005), and . Bouhafs et al. (2006).   

Nadizadeh el at. (2011) cluster customers based on a greedy method. Then, the proper depots are 

chosen based on the minimum sum of distances with gravity centres to depots. After that, clusters of 
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customers are allocated to depots based on distance and capacity. Finally, the ACO is used for routing 

among depots and customers.  

Gao et al. (2016) and consider the dynamic LRP and the LRP with stochastic transportation cost and 

vehicle travel speeds, respectively. Gao et al. (2016) divide the LRP into location-allocation and VRP. 

To solve location-allocation problem, a k-means clustering algorithm is developed to choose depots to 

be opened and allocate customers to them. Then the ACO is utilised to handle the VRP in dynamic 

environments consisting of random and cyclic traffic factors. Herazo-Padilla et al. (2015) use an 

iterated random selection for depots configuration, then ACO is applied to solve the routing problem. 

Finally, a simulation model evaluates vehicle routes in terms of their impact on the expected total costs.  

The second way of using the ACO is proposed by Ting and Chen (2013) to solve the two sub-problem 

FLP and VRP. The first ACO is applied to determine the depot set to be opened, and to assign 

customers to each depot. A VRP for each opened depot is solved by the second ACO. These ACOs are 

applied iteratively until the stopping criterion is met. 

Wang and Sun (2005) deconstruct LRP into location-allocation and VRP. The TS is implemented in 

location phase to determine a good configuration of depots to be opened, while the ACO is run to solve 

the routing problem. Bouhafs et al. (2006) propose a metaheuristic approach to solve the LRP based on 

SA and ACO.  

For the PSO, Marinakis (2015) present a PSO for the deterministic and stochastic LRP. The proposed 

algorithm is a two-phase algorithm that solves the FLP in the first phase and VRP in the second phase. 

PR and VNS is used to enhance the PSO. The positions of the particles are calculated by the PR, while 

the VNS is applied in each particle to improve the solutions produced. Marinakis and Marinaki (2008) 

introduce a hybrid algorithm based on PSO with a Multiple-Phase Neighbourhood Search (MPNS) and 

a PR.  

 

2.1.3 Real application of Location Routing Problem 

The LRP model has been used in different variants of real-life problems. In this section, we show some 

applications of LRP in healthcare, natural disaster, military, food distribution, communication sector, 

fuel sector, waste collection and recycling, distribution sector, financial sector, and space science.  
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2.1.3.1 Healthcare 

Or and Pierskalla (1979) consider location of blood banks with VRP. A two-stage heuristic is proposed 

to solve the problem. In the first stage, a number of VRPs are solved. Based on these results, a saving is 

calculated and the assignment of hospitals to blood banks is changed. Then a new group of VRP is 

solved again. When all reasonable exchanges are completed without any improvement, the procedure is 

terminated. Hua-Li et al. (2012) and Park et al (2015) consider an urban emergency system and 

emergency response units on freeways.. Hua-Li et al. (2012) propose a bi-objective LRP to maximise 

the total time satisfaction served and to minimise the total cost. The GA is used to solve the problem. 

While Park et al (2015) apply the stochastic programming paradigm to solve LRP of Emergency 

Response Units (ERUs) on freeways. At the first stage, FLP has to be solved before the realisation of 

uncertainties. The recourse decisions, in the second stage, include assigning vehicles to incidents to 

minimise the overall expected delay. Ceselli et al. (2014) present a model for the optimisation of 

logistics operations in emergency healthcare systems. The problem is slightly different of classical 

LRP. It considers multiple distribution channels when a facility is established. In particular, there are 

two options for reaching citizens: either by delivering drugs to their homes with a heterogeneous fleet 

of vehicles, or by establishing distribution centres where the citizens go by their own means to receive 

treatment or drugs. An exact algorithm is presented, which is based on dynamic column-and-cut 

generation and branch-and-bound. 

 

2.1.3.2 Natural disasters 

Natural disaster has gained attention of researchers, therefore, there are a body of papers in this area. 

Ukkusuri and Yushimito (2008) develop the LRP model to formulate the humanitarian pre-positioning 

of supplies for natural disasters.  The approach uses a combination of the most reliable path and an 

integer programming model to find the optimal location of supplies and the most reliable route. 

Ahmadi-Javid and Seddighi (2013) consider an LRP with a single commodity under a variety of 

possible disruptions. A heuristic based on deconstructing the main problem into two stages, 

constructive stage and improvement stage, is proposed. In the constructive stage, an initial solution is 

randomly built. The improvement stage consists of two phases: location phase and routing phase. In 

each phase of the second stage, SA algorithm is used to improve the initial solution.  
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Hassan-Pour et al (2009) and Zhang et al. (2015) study a version of the LRP in which facilities and 

routes are subject to probabilistic disruption risks under crisis conditions such as maintenance, capacity 

limit, breakdown, or shut down for unknown causes. Facilities and routing may be partially or 

completely destroyed. In this condition, serviceability of facilities and routing are not possible. Hassan-

Pour et al (2009) apply a two-step approach. Step one is to determine the minimum number of facilities 

by using a stochastic set-covering problem approach, which is solved by LINGO after formulating it in 

an integer linear program. Step two is to determine vehicle routes which are solved by SA. The 

objective functions of step two is to minimise the cost and maximise the probability of delivery to 

customers by using a multi-objectives function. 

Zhang et al. (2015) propose a two-phase approach. In the first phase, an initial solution is generated by 

using a heuristic approach, while in the second phase, the initial solution is improved. The GTS is used 

in the second phase. Coutinho-Rodrigues et al. (2012) develop a multi-objective LRP model to design 

evacuation plans for Coimbra city in Portugal. Six objectives were identified including minimisation of 

travel distance to shelter, minimisation of risk faced by the population, minimisation of travel distance 

associated to backup paths, minimisation of risk at the shelters, minimisation of the time required to 

transfer people from shelter to a hospital when necessary, and minimisation of the number of shelters. 

The solution is determined by minimising each objective individually in an optimal solution.  

Wang et al. (2014) construct a nonlinear integer open location routing model for relief distribution 

problem considering travel time, the total cost, and reliability with split delivery. The Genetic 

Algorithm is applied to solve the proposed model. Rath and Gutjahr (2014) consider the LRP that faces 

international aid organisations after the occurrence of a natural disaster. A three-objective optimisation 

model is proposed considering – minimising the fixed costs for depots and vehicles, minimising the 

budget of the operative cost, and maximising the covered demand. An exact solution is used to solve 

the single-objective problem, whereas the multi-objective problem is solved by using VNS.  

Bozorgi-Amiri and Khorsi (2016) model the problem of the humanitarian relief logistics for pre-and 

post-disaster as LRP. They propose a multi-objective dynamic stochastic programming model. The aim 

of the model is to minimise the maximum amount of shortages among the affected areas in all periods, 

the total travel time, and the sum of pre-and post-disaster costs. The first objective pursues fairness, 

whereas the two other objectives pursue the efficiency goal. The proposed model is solved as a single-

objective mixed-integer programming model applying the ε-constraint method by using 

GAMS/CPLEX.  
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Caunhye et al. (2016) propose a two-stage location routing model, with recourse for integrated 

preparedness and response planning under uncertainty in risk management for disaster situations. In the 

first stage, the model sets up warehouses and determines their emergency supply inventory levels. In 

the second stage, the model plans transshipment and delivery quantities, and vehicle routes for every 

scenario. The objective of the first stage is to minimise the weighted sum of the total preparedness cost 

and the worst-case second-stage objective among all scenarios, whereas the second-stage objective is to 

minimise the total response time. The two-stage model is converted into a single-stage mixed integer 

model and then implemented in an illustrative example which is solved by using CPLEX. 

 

2.1.3.3 Military 

In the military, there are some articles that apply the LRP model to solve military problems. Murty and 

Djang (1999) address location routing of training National Guard units of the U.S. National Guard. 

They consider 21 combat vehicle training simulators called mobile trainers and each National Guard 

unit must train at a station that is not farther than a specified maximum travel distance from its 

armoury. This problem is studied to find the optimum locations for the home bases for the mobile 

trainers, the locations of secondary training sites to which the mobile trainers will travel to provide 

training, and the actual routes that the mobile trainers will take to cover all these secondary training 

sites. The aim is to allocate each National Guard unit to a training site within the maximum travel 

distance from its armoury, while simultaneously minimising the mobile trainer fleet mileage and the 

total distance traveled by all units. Heuristic hierarchical decomposition strategy is used to break the 

overall problem into three sub-problems. The p-median model is concerned with finding optimum 

locations for exactly p facilities, to provide a service to a set of customers that involves travel to a 

nearby facility so as to minimise the total travel. The set covering model is used to allocate an armoury 

to a training centre. Routing is solved for each facility individually by finding a cycle that covers all 

customers with minimum distance.  

Toyoglu et al. (2012) study replenishment system of ammunition from depots to combat units via 

transfer points (fixed and mobile). Ammunition is moved by trains from depots to fixed transfer points, 

then by commercial trucks from fixed transfer points to mobile transfer points. Finally, ammunition is 

issued from the mobile transfer point to combat units by special ammunition trucks. The flow from 

depots to fixed transfer points is not included in the model because it is assumed that in the case of war, 
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there will be enough ammunition at depots and the current rail network structure and equipment are 

sufficient to carry the demand on time. The locations of the main depots and combat units are known in 

advance, whereas the location decisions of fixed and mobile transfer points, and the route decisions of 

commercial and ammunition trucks must be made. The problem is designed as LRP since it contains 

both location and routing problems. A “route first-location second” heuristic consisting of three phases 

is proposed. At the first phase, combat units are partitioned into clusters. Each combat unit belonging to 

a distinct brigade forms a cluster. At the second phase, routes of ammunition trucks from mobile 

transfer sites to combat units in each cluster are found optimally by CPLEX. Finally, the LRP that 

decides which locations of transfer points are to be opened, and the routes of commercial trucks from 

fixed to mobile transfer points, is solved optimally by CPLEX. 

Finally, Saricicek and Akkus (2015) consider a hub-location and routing problem for border security in 

Turkey. The problem consists of selecting hubs among the airports, assigning demand points to hubs, 

and determining optimal routes for each hub. A p-median model is used to determine the locations of 

hubs, whereas optimal routes are determined for each hub by solving the mathematical model.  

2.1.3.4 Food distribution 

Food distribution has seen attention of researchers who use the LRP model. Watson-Gandy and Dohrn 

(1973) study a depot location with van salesmen problem for a company operating in the food and 

drink industries in a part of England and Wales. An algorithm is proposed to solve the problem in two 

phases. The location decisions is made in the first phase by using the Christofides–Eilon approximation 

algorithm. The routing decisions is solved in the second phase by using the CWH.  

Johnson et al. (2002) present a model for delivering hot meals to the homebound, infirm and elderly. 

They propose a GIS-based heuristic to solve location routing problem by location first-routing second. 

Ambrosino et al. (2009) study a real-life application related to an Italian company. The company holds 

200 food market stores along the national highway network in the north of Italy. A two-phase heuristic 

is proposed. The first phase determines an initial feasible solution, whereas the second phase improves 

it by using local search. Boudahri et al. (2013) apply a clustering-based location routing approach to 

redesign a real agri-food supply chain for poultry products in Algeria.  

Menezes et al. (2016) redesign two supply networks in France and Canada. The first one is a 

supermarket chain while the second one is a recycling network. The LRP model is used to model these 
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two problems. They divide the LRP into two sub-problems: location and routing. Location is solved 

optimally by using the p-median model, while routing is solved by the CWH. Bozkaya et al. (2010) 

investigate LRP when demographics and economic conditions are shifted. The solution approach is 

tested on an existing of a supermarket chain in Turkey under competition. The objective of the model is 

to maximise profit, defined as gross profit margin minus logistics costs. They propose a hybrid 

heuristic consisting of a GA for solving location and TS for solving routing.  

 Two-Echelon LRP with time windows is introduced by Govindan et al. (2014) for sustainable supply 

chain network design, and for optimising economic and environmental objectives in a perishable food 

supply chain network. A hybrid metaheuristic algorithm that combines multi-objective PSO and 

adapted multi-objective VNS was proposed. Jouzdani and Fathian (2014) study the dairy supply chain 

in Iran where transportation costs are uncertain. A multi-depot multi-travelling salesman problem 

formulation of robust location routing problem is proposed.   

 

2.1.3.5 Communication sector  

Lin et al. (2002), Lee et al. (2003), and Catanzaro et al. (2011) formulate problems of communication 

as LRP. Lin et al. (2002) improve the delivery of telecommunication bills to a company's customer in 

Hong Kong, by using the LRP model. The total cost of delivery bills was minimised significantly by 

relocating some existing office, setting up new depots, and changing vehicle routing and loading 

decisions. An approach combining a heuristic with SA is proposed to solve the problem. The method 

consists of two parts: the initial solution and improvement routing. The initial solution is constructed 

using a heuristic approach by choosing the minimum number of depots in order to satisfy total demand 

of customers, allocating each node to the nearest depot, and constructing the initial route by CWH. The 

SA is applied for improving the routing problem.  

Lee et al. (2003) has designed optical Internet access, with wavelength division multiplexing systems, 

to deliver a high-speed access service. To minimise the total cost of the network while carrying the 

offered traffic, it is required to find an optimal location of the gateway and an optimal routing of traffic 

demands in the optical access network. A TS procedure is developed to tackle this complex problem. 

Catanzaro et al. (2011) consider the Partitioning-Hub LRP (PHLRP) which is a hub location problem 

with graph partitioning and routing features. The problem arises from the deployment of an internet 



37 

 

routing protocol, and it also finds applications in the strategic planning of freight distribution systems. 

They introduce a mixed integer programming formulation and provide families of strengthening valid 

inequalities. The model can solve instances of PHLRP containing up to 20 vertices by using XPRESS 

solver.  

 

2.1.3.6 Fuel sector 

In the Fuel stations sector, Yang and Sun (2015) present an electric vehicles battery swap stations 

location routing problem, which aims to determine the location of battery swap stations and the routing 

of electric vehicles simultaneously under driving range limitation. A four-phased heuristic and a two-

phased TS based on a modified CWH are proposed to solve the problem. Yildiz et al. (2016) study the 

refueling station location problem with routing, to locate a given number of refueling stations for 

alternative fuel vehicles in a road network, to maximise the total flow covered. A branch-and-price 

algorithm is used to solve the problem.  

Xie et al. (2012), Alumur and Kara (2007), and Samanlioglu (2013) propose a model for hazardous 

waste in the USA and Turkey, respectively. The first two articles consider multi-objective location 

routing models with two objectives of minimising the total cost and the transportation risk. Whereas, 

the last one presents a mutli-objective location routing model with three objectives including 

minimising total cost, transportation risk, and total risk for the population around treatment centres. Xie 

et al. (2012), Alumur and Kara (2007), and Samanlioglu (2013) formulate the problem by a mixed 

integer linear program and solve it by CPLEX. 

Caballero et al. (2007) study the incineration plants for the disposal of solid animal waste in Andalusia 

(Spain). The problem is to locate two incineration plants and design the routes to serve different 

slaughterhouses in the same region. A multi-objective location routing problem is presented and solved 

by a metaheuristic algorithm based on TS. Asefi et al. (2017) propose an LRP model for a municipal 

solid waste network covering multiple types of wastes. The SA is proposed to deal with this problem.  

Rahim and Sepil (2014) and Tunalıoğlu et al. (2016) address glass recycling and treat the brown 

coloured olive oil mill wastewater in Turkey, respectively. Rahim and Sepil (2014) propose a two-

phase method. The first phase is to construct an initial solution randomly, while in the second phase, 

the VNS and exact method is used to improve location and routing, respectively. However, Tunalıoğlu 
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et al. (2016) introduce a multi-period LRP model to solve the problem of the brown coloured olive oil 

mill wastewater. In this problem, the wastewater is collected from oil mills and delivered to be treated 

at ultrafiltration facilities using a fleet of vehicles. An ALNS is proposed to solve the problem. 

 

2.1.3.7 Distribution sector 

In the distribution sector, there is a main body of research that applies LRP model. Jacobsen and 

Madsen (1980) consider a two-level location routing model for a distributing newspapers problem in 

Denmark. The problem is solved by using the spanning tree model and the CWH. Nambiar et al. (1981) 

improve the efficiency of the natural rubber industry in Malaysia by using location routing model and 

introducing two heuristics to solve it approximately. The first heuristic considers the location of a 

single central factory by presupposing that every potential central factory location can serve all 

collection stations in a region, both in terms of capacity and time constraints. Then, TSP are solved in 

order to determine the least cost tour from every potential central factory location, to every collection 

station. A potential central factory with minimum cost will be chosen, then vehicle routing is improved 

by applying the CWH. The second heuristic assumes that the minimum number of central factories to 

serve a given area has been determined on the basis of total supply and time constraints. Then, TSP are 

solved to determine the least cost tour from every potential factory location, to every group. Simple 

plant location is solved iteratively while the variable costs are the TSP to locate factories and assign 

collection stations to them. The vehicle routing decision for each factory and its corresponding 

collection stations is improved by applying the CWH.  

Gunnarsson et al. (2006) consider a combined terminal location and ship routing problem at Pulp 

Company in Scandinavia. Some customers are supplied from the terminals, others are supplied directly 

from the pulp mills. Two heuristics were proposed. One is developed by relaxation of some constraints, 

then adding constraints one by one. The second heuristic is also designed based on constraint 

relaxation, but it is followed by another step to reduce route costs. Marinakis and Marinaki (2008) 

propose a GA to find an approximate solution for location routing problem of one of the largest 

companies in Greece, which distributes wood products. Aksen and Altinkemer (2008) model 

conversion of traditional retailer to e-retailer based on optimisation of location routing problem. The 

location of depot and delivery vehicles serve two customer types, namely walk-in and online 

customers. A Lagrangian relaxation based solution method is described to deconstruct the overall 
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problem into two independent sub-problems namely: FLP and MDVRP. The former problem is solved 

by the optimisation package GAMS, and the latter one by an augmented LR method.  

Çetiner et al. (2010) consider the combined hubbing and routing problem in postal delivery systems. 

They develop an iterative two-stage solution procedure for the problem. In the first stage, hub locations 

are determined, and postal offices are multiply allocated to the hubs. The second stage gives the routes 

in hub, regions that alter the distances between points used in the hub-location problem. The procedure 

then iterates between two stages by updating the distances used in hubbing, in order to produce a route-

compatible hub configuration. De Camargo et al. (2013) study the parcel delivery network design, 

where several facilities are responsible for assembling flows from several origins, then rerouting them 

to other facilities where the flows are disassembled, and the packages are delivered to their final 

destinations. In order to provide this service, local tours are established for the vehicles assigned to 

each of the processing facilities, which are then responsible for the pick-up and delivery tasks. This 

application gives rise to the LRP. A formulation for this problem is proposed and solved by CPLEX.  

Wang and Mu (2015) study the parcel delivery service by collect-on-delivery problem in China. They 

model this distribution network as a Two-Echelon LRP and propose an optimisation algorithm by 

combining SA and PA. Labbé and Laporte (1986) deal with the optimal location of post boxes in an 

urban or in a rural environment. The problem consists of selecting sites for post boxes which will 

maximise an appropriate linear combination of user convenience and postal service efficiency. The 

location problem is solved by using p-median model whereas routing problem is solved by using the 

general TSP. 

Wasner and Zäpfel (2004) consider the transportation networks for parcel service in Austria. They 

develop a hub location routing model which encompasses the determination of the number, locations of 

hubs and depots (and their assigned service areas), as well as the routes between demand points and 

consolidation points. An iterative hierarchical heuristic embedded in a local search with a series of 

feedback is proposed. The heuristic divides the main problem into three sub-problems; location, 

allocation, and routing. The solution method is based on solving a sub-problem and using its results to 

serve as a constraint to solve the other sub-problem. The location problem is solved by local search 

starting by one depot and increasing the number of depots one by one, until the best number of depots 

is found. Then, the resulted problem is solved optimally by CPLEX. The postal zones are assigned to 

depots based on time and distance between a postal zone and the depot locations. The routing is done 
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by generating a giant tour as a TSP, then improving it by local search after dividing it to several routes 

based on the capacity of vehicles. 

Schittekat and Sörensen (2009) develop a software tool as a decision support tool for Toyota to select 

the third-party logistics partners in a spare parts network. A TS is used to solve a large LRP. It 

generates a set of solutions, rather than one solution. This is to increase the negotiating power and the 

ability to analyse the current network against possible alternatives. It also allows to quickly switch 

between different transport networks if unexpected events occur. 

Stenger et al. (2012) consider a problem that includes relocation as well as subcontracting aspects 

adapted from a large French small package shipper. They describe the characteristics of two different 

depot types: self-owned and subcontracted. They develop a location routing model that integrates the 

choice between the two depot types. The model is solved by means of a hybrid heuristic approach 

integrating SA and VNS. Lin and Lei (2009) design a distribution system for a Taiwan label-stock 

manufacturer. They have developed a mathematical model for Three-Echelon LRP. The solution 

procedure consists of two elements. The first element is a GA for locating DC’s and are the big clients 

included in the first level routing. The second element is a cluster-base heuristic that consists of 

saving/insertion algorithms and tour improvement/exchange algorithms for finding the first and second 

level routes. 

Singh and Shah (2004) model the collection of tendu patta leaf, which is used to produce tobacco, in 

India as a facility location problem and a VRP to raise leaf output substantially under existing budget 

limitations. The problem was solved in sequential and integrated manner. Muñoz Villamizar et al. 

(2014) consider an urban distribution system in Saint Étienne city, France. Two-Echelon LRP model is 

used to formulate this problem and to find an exact solution. GAMS is used to program the model and 

CPLEX solver to solve it.  

Ponboon et al. (2016) investigate the impact of three main parameters such as depot location, depot 

size, vehicle size, and time windows on a distribution network in Osaka, Japan. Nine scenarios from a 

logistics firm in Osaka were tested with different depot location, depot size, and vehicle size. The 

branch-and-price algorithm was implemented to ensure the quality of solution. It was found that having 

large-size depot, serving by large-size vehicle, results in the lowest overall cost.  
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Laporte et al. (1989) formulate a problem in financial sector as a stochastic LRP. The problem is a 

collection money from bank branches by armoured vehicles while the daily supply of each branch is a 

random variable. The problem is solved optimally by branch-and-bound algorithm.  

 

2.1.3.8 Space science 

Finally, in space science, Ahn et al. (2012) address LRP with profits which arises in exploration of 

planetary bodies with different technologies. The problem simultaneously determines base locations, 

strategies to use at the bases, sites to visit, and routes to carry out the visits, to maximise the sum of 

profits that can be obtained by visiting sites under resource consumption constraints. Two solution 

methodologies to solve the problem are proposed which are branch-and-price, and GRASP combined 

with column generation.  

 

 

2.2  The Multi-Depot Vehicle Routing Problem 

 

The Multi-Depot Vehicle Routing Problem (MDVRP) is a generalisation of the VRP by serving 

customers from more than one depot. The MDVRP is a key problem in logistics and supply chain 

management. Its importance comes from assigning customers to depots and producing detailed routes 

under a set of constraints simultaneously. The aim of this section is to help summarise and map a 

comprehensive survey of MDVRP. It is due to the fact that one of the main parts of our proposed 

methodology focuses on the MDVRP. This is clear as LRP reduces to MDVRP if the depot locations 

are fixed and the proposed solution method for LRP can benefit from one developed for MDVRP.  

In general, there are three main frameworks in the literature which are used to solve the LRP; 

sequential framework, iterative framework, and nested framework, which we will describe in more 

detail below. These three frameworks illustrate the role of the MDVRP inside each one of them. 

The first framework is called the sequential framework. In this method, a configuration of potential 

depots is selected initially. Then, the routing problem is solved through two main methods; by treating 

the whole problem as a MDVRP, or by dividing the whole problem into many VRPs based on the 
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number of depots. In this framework, there is no iteration for solving location and routing stages, and 

each stage is solved only once. 

The second framework is called the iterative framework. In this method, a configuration of potential 

depots is selected initially. Then the routing problem is solved by the same two methods. However, the 

procedure iterates between the location phase and the routing phase to improve both of them. Although 

the solution of this method is better than the solution of the sequential method, then it treats the 

location problem and routing problem as if they are on the same footing (Gabor Nagy and Salhi, 1996).     

The third framework is called the nested framework. This method embeds the routing stage into the 

location phase, because the LRP is essentially a location problem, with the routing factor taken into 

consideration (Nagy and Salhi, 1996). Therefore, the FLP is treated as the main problem, while routing 

problem is treated as the subordinate problem. In this way, the drawback of the iterated framework can 

be avoided. In this method, a configuration of potential depots is selected, then, the routing problem is 

solved by the two main methods which can be MDVRP or VRPs. This procedure is repeated many 

times by choosing different configurations of potential depots to find out the solution with the total 

minimum cost of depots and routing. These three frameworks are illustrated in Figure 4.1. 

 

Figure 2.1. Three frameworks to solve the LRP, from (Nagy and Salhi, 1996) 
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From this, we have seen that the MDVRP is an essential component of the LRP. Therefore, we can 

develop a new solution method by combining Biased Randomised technique with a classic heuristic in 

order to achieve a good solution for MDVRP.  

 

2.2.1 Problem description 

The MDVRP is a challenging problem because it integrates two combinatorial problems which are an 

assignment problem and a routing problem. In the assignment problem, each customer is assigned to 

only one depot, and in the routing problem, each customer must be served by only one vehicle. 

Therefore, these two combinatorial problems are often interrelated. In this problem, a homogeneous 

fleet of vehicles with fixed capacity serve a set of customers with known demand, from more than one 

depot. The capacity of the vehicles cannot be exceeded, and demand of customers must be satisfied; 

each customer must be served by exactly one vehicle, and each vehicle must depart from and return to 

the same depot. The aim of the MDVRP is to determine a sequence of customers in a route for each 

vehicle, where all of them are served so that the total distance traveled by all vehicles is minimised. 

 

2.2.2 Solution methods  

There are numerous attempts in the literature to solve the MDVRP with different solution methods 

from exact methods to heuristics and metaheuristics. In this section, MDVRP literature is reviewed, 

and the characteristics of various solution methods proposed to solve it are discussed. The proposed 

solution methods for MDVRP in the literature can be classified to exact methods, heuristics, and 

metaheuristics.   

 

2.2.2.1 Exact methods 

The first approach to solve the MDVRP optimally was by relaxing some constraints of the main 

problem to generate an initial solution, then improving it by using different methods. Laporte et al. 

(1981) formulate a linear integer model for the multi TSP and solve it by using a constraint relaxation 

algorithm. Then, a Gomory cut is introduced to obtain an integer solution. Finally, the algorithm 
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removes any illegal sub-tour. The algorithm iterates until the solution contains no fractional variable 

and no illegal sub-tour. Laporte et al. (1984) developed a branch-and-bound algorithm to solve the 

MDVRP exactly. Their procedure solves a sub-problem that relaxes some constraints of the original 

problem, adds upper bounds on variables, and branches on the non-integer variables. Laporte et al. 

(1988) present an exact solution by using the branch-and-bound algorithm for MDVRP and LRP. The 

optimal solutions are found after transforming the problem into equivalent constrained assignment 

problems. An instance with up to 80 customers was solved optimally.  

Mingozzi and Valletta (2003) describe an integer programming formulation and an exact method for 

solving both the Periodic Vehicle Routing Problem (PVRP) and the MDVRP. The exact method 

involves the computation of a valid lower bound by means of an additive procedure. This combines 

different relaxations of the integer formulation to derive an effective feasible solution for the dual 

problem of the LP relaxation of the integer program. The dual solution is used to generate a reduced 

integer program which can be solved to optimality by an integer programming solver. Mingozzi (2005) 

describes an exact method for solving the Periodic MDVRP (PMDVRP) using variable pricing in order 

to reduce the set of variables. The pricing method is based on a bounding procedure for finding near-

optimal solutions of the dual problem of the LP relaxation.  

Contardo and Martinelli (2014) propose an exact method for the MDVRP based on the solution of 

vehicle-flow and set partitioning formulations. The first model is solved by the cutting planes method 

and the second by column-and-cut generation after relaxation of the main model. Ramos et al. (2011) 

propose a two-step algorithm for MDVRP with multi products. The first step relaxes the original 

problem which results in a VRP model with a single product. The next step is to solve the routing 

problem optimally by considering each depot individually. Ramos et al. (2011) study a real case of a 

recyclable waste collection and model the problem as MDVRP with multi products. A three-step 

solution method is proposed to tackle the problem. The aim of the first step is to assign customers to 

depots by relaxation of the MDVRP model with multi products to an MDVRP model with single 

product. In the second step, assigning the remaining customers is implemented via a greedy heuristic 

based on the nearest depot.  Routing decision is made optimally by the VRP model at the third step.  

Montoya-Torres et al. (2016) investigate a collaborative scenario for three firms in Bogota, Colombia. 

The aim of this scenario is to reduce transport costs, congestion, and environmental impact. Both 

collaborative and non-collaborative scenarios are compared. The non-collaboration problem is 

modelled as VRP, whereas the collaboration problem is modelled as MDVRP. The VRP problem is 
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solved optimally. While the MDVRP is solved in two phases, allocation and routing sequentially. In the 

first phase, customers are allocated to depots by solving the model optimally, so that each depot has the 

same number of customers. Then, routing is solved optimally for each VRP resulted for each depot. 

The computational experiments show that collaborative logistics operations have more advantage in 

terms of both transportation costs and environmental impacts.  

The second approach is using a branch-and-bound algorithm. Carpaneto et al. (1989) use it without 

transformation to solve a problem with 70 customers. The third approach is the branch-and-cut-and-

price, which is applied by Bettinelli et al. (2011) to solve the MDVRP with time windows and a 

heterogeneous fleet. This method solves instances with 50 customers. Tummel et al. (2013) apply the 

MDVRP with a heterogeneous fleet and with time windows and assignment restrictions to assign a set 

of shipments to a set of freight routes so that unused cargo volume is minimised. In this problem, the 

assignment of each shipment is restricted to a subset of routes. They propose an integer linear program 

model and solve it by CPLEX and GUROBI. Ramos et al. (2014) address the waste collection systems 

while accounting for economic and environmental concerns. The problem is modelled as a MDVRP 

with multi product and two objective functions of distance and CO2 emission should be minimised. The 

mathematical problem is solved by the CPLEX. 

The branch-and-cut algorithm is used by Benavent and Martinez (2013) for the MDVRP. The proposed 

approach is capable of solving an instance with 255 customers and 25 potential depots. Bektas et al. 

(2017) propose a new constraint for MDVRP which eliminates paths between pairs of depots. These 

inequalities are used in a branch-and-cut algorithm to solve instances with up to 300 clients and 60 

depots. 

The final approach is to tighten the formulation by adding new constraints. Dondo et al. (2003) add 

some constraints based on the precedence notion. In the proposed approach, a node precedes another 

one in a route if it is visited earlier by the same vehicle, but not necessarily immediately before. This 

approach is implemented for the MDVRP with time windows. The optimal solution is found by 

choosing the best set of preceding nodes for each pick-up point. Lalla-Ruiz et al. (2016) propose a 

mixed integer programming formulation for the open MDVRP. New sub-tour elimination constraints 

are proposed based on ensuring route continuity in terms of demand and distance. The method is 

capable of solving a problem with 288 customers and 6 depots. Burger and De Schutter (2017) study 

the Multi-Depot TSP (MD-TSP) and introduce a two-index formulation based on node currents for the 
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fixed-destination. This formulation reduces the number of binary and continuous variables. The 

proposed formulation is able to solve problems of up to 170 nodes using general MILP solvers. 

 

2.2.2.2 Heuristic methods 

There are many heuristics that have been used to solve the MDVRP. The MDVRP consists of two 

problems namely, assigning customers to depots, and solving the routing problem. Therefore, heuristics 

that have been proposed to solve the MDVRP can be categorised into three groups based on the 

structure of MDVRP itself. These groups are heuristics with one phase, heuristic with two phases, and 

heuristics with three phases or more.  

The first group includes heuristics that solve the two mentioned sub-problems simultaneously. Tillman 

(1969) extends the CWH to tackle the MDVRP, by modifying the way of computing saving distance to 

reflect the true savings relative to each depot. The steps of Tillman’s heuristic look like the steps of the 

CWH. In the beginning, each customer is assigned to the nearest depot. Then, routes are constructed 

based on the modified saving list. When a customer is joined at a depot, it will not be considered at the 

other depots. To avoid this barrier, Tillman and Hering (1971) improve criteria of assigning customers 

to depots which is suggested by Tillman (1969). Hence, the best possible choice of saving list is made 

initially. Another improvement was made by Tillman and Cain (1972) as explained in the following. In 

their heuristic, distance savings are determined from joining customers on routes, then possible 

assignments are made as a function of the maximum savings for joining customers on routes. If all 

possibilities are investigated, this approach will lead to an optimal solution using savings as the 

criterion to be optimised. However, this is very time consuming. Golden et al. (1972) use an efficient 

data structures to reduce both the computational time and storage requirement of Tillman and Cain's 

approach, which permits problems involving hundreds of customers to be solved in a matter of 

seconds. 

For the two-phase framework, Wren and Holliday (1972) and Cassidy and Bennett (1972) develop a 

two-phase heuristic to generate an initial solution in the first phase and then refine it at the second 

phase. Wren and Holliday (1972) construct the initial solution by means of a greedy heuristic. This 

solution is refined in the second phase, by using seven procedures as a local search. While Cassidy and 

Bennett (1972) generate the initial solution randomly at the first phase, it is then improved by 
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exchanging nodes one at time between routes, until no further improvement is possible. Perl (1987) 

generates an initial solution in the first phase by assigning customers to the nearest depot, then solve 

routing by using a modified CWH. In the second phase, the initial solution is improved by three 

procedures: 2-opt move, inserting a customer in a route from another one, and exchanging two 

customers from different routes.  

Salhi and Nagy (1999) extend the insertion-based heuristic for the VRP with backhauling to the 

MDVRP with backhauling. It is based on the idea of inserting more than one backhaul at a time; the 

improvement solution was in the second phase. Yang and Chu (2000) address the PMDVRP and 

propose a two-phase heuristic. An initial solution is constructed based on the minimum cost in the first 

phase. Then, in the second phase, improvement procedures are applied on the initial solution by means 

of the saving concept. Carlsson et al. (2009) study the min-max MDVRP and present two heuristics 

which include a linear programming with global improvement and the region partition heuristic. Kazaz 

and Altinkemer (2003) formulate printed circuit board manufacturing as MDVRP. The printed circuit 

board consists of two sub-problems, assigning chips to feeder locations in a computerised numerically 

controlled machin, and sequencing the placement of these components. The assignment problem is 

solved optimally, while the sequencing is solved by a heuristic using saving method. 

 

The MDVRP with time windows is considered by Giosa et al. (2002) and Chiu et al. (2006). Giosa et 

al. (2002) present an approximation method consisting of two phases. In the first phase, customers are 

assigned to depots, while in the second phase, several VRPs are solved separately by CWH. Customers 

are assigned based on six procedures: parallel assignment, simplified assignment, sweep assignment, 

cyclic assignment, assignment by clusters, and coefficient propagation. However, Chiu et al. (2006) 

generate several initial solutions using three heuristics which include saving, insertion, and sweep. 

Then, the best solution is chosen. The second phase is to improve the best solution by applying two 

procedures: inter-route and intra-route.  

Ramos et al. (2009) treat the recyclable waste collection with three types of recyclable materials and 

more than one depot, as MDVRP with multi products. The collection sites are assigned to depots based 

on borderline concepts which divide customers into two groups based on their distance to depots. Then, 

routing is obtained by the CWH.  

Finally, heuristics that consist of three phases and more have been proposed by many researchers. Raft 

(1982) propose a heuristic to deal with the MDVRP which consists of four phases. In the beginning, the 
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number of routes and centres of all routes that are required to satisfy all customers are computed. In the 

first phase, customers are assigned to the nearest route-centre. In the second phase, route-centres and 

their associated customers are assigned to the nearest depots. In the third phase, several VRPs are 

solved separately using a heuristic approach. Finally, in the fourth phase, routes are improved by 3-opt. 

Chao et al. (1993) also propose a three-phase heuristic that assigns customers to depots, builds routes at 

each depot, and then relies heavily on an improvement procedure to clean up the routes.  

Salhi and Sari (1997) and Nagy and Salhi (2005) address the MDVRP and MDVRP with pick-up and 

delivery, respectively. A three-phase heuristic is proposed for the two problems. The initial solution is 

generated in the first phase. Then, the initial solution for each depot is improved separately. Finally, the 

whole solution for all depots is improved simultaneously. Hu et al. (2007) propose a three-phase 

heuristic for the MDVRP with pick-up and delivery. Firstly, customers are assigned to a depot by using 

borderline customers. Secondly, an initial solution is generated by clustering customers. In the third 

stage the solution is improved by an insertion algorithm.  

Rahimi-Vahed et al. (2015) propose an iterative modular heuristic for three problems: MDVRP, PVRP, 

and PMDVRP. The heuristic consists of three sequential phases. At the first phase, customers are 

clustered. These clusters are assigned to depots at the second phase. Finally, routes are designed for 

each depot by giant and spilt tour heuristic. Wang et al. (2015) consider the min-max MDVRP to 

minimise the length of the longest route. They develop a heuristic which consists of three stages – 

assignment of customer to depots and solve each of them as VRP, then improve the maximal route, and 

finally, improve all routes by exchanging customers between routes. Gulczynski et al. (2011) combine 

the MDVRP and split delivery VRP. Customers are classified into borderline and non-borderline. All 

non-borderline customers are assigned to the nearest depot. Borderline customers are assigned to 

depots based on a cheapest insertion criterion. Then, the routing problem is solved for each depot 

separately by using a three-stage heuristic. The initial solution is generated by using a modified CWH. 

In the second stage, an endpoint mixed integer program with minimum delivery amounts is formulated 

and solved. The improvement procedure is applied in the third stage by using the enhanced record-to-

record travel algorithm, to reduce the total distance travelled by the fleet. 

Min et al. (1992) solve the MDVRP with backhauling, by decomposing it into three phases, where the 

output of one phase becomes the input to the next phase. The first phase aggregates customers into a 

capacitated cluster. The second phase designs routes and assigns customers to depots. The final phase 

designs the individual routes. Alemany et al. (2016) study a real-life case of distribution of fuel in the 
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North of Spain. In this problem, each customer may order different types of fuel, and vehicles use 

compartments to avoid mixing products of different types. The fleet of vehicles is heterogeneous. 

Moreover, there are external facilities which might be used to replenish some vehicles. The problem is 

modelled as MDVRP with a heterogeneous fleet. They propose a three-stage approach to tackle this 

problem. In the first stage, an assignment map of customers to depots is generated based on their 

distance to the depots. Then, routing for each depot with its customers is determined independently as a 

VRP by applying CWH. Finally, a 2-opt local search is used to improve each route.  

Hadjiconstantinou and Baldacci (1998) consider a utility company which offers a preventive 

maintenance for a network of customers. There are a fleet of 17 depot-based mobile gangs dispatched 

from nine depots to call on 162 customers, with a frequency that can vary from once per day to once 

every four weeks. Each gang, consisting of two workers, visits in average four customers per day. The 

problem is addressed as a PMDVRP. The solution is composed the problem into four levels. Firstly, 

boundaries for each depot service area is defined. Secondly, a PVRP for each depot is solved. At the 

third level, a VRP for each depot and for each day of the given period is solved. Finally, each tour is 

solved as a travelling salesman problem.  

Afshar-Nadjafi B and Afshar-Nadjafi A (2017) consider the MDVRP with time windows and time-

dependent, which means the travel time between locations depends on the departure time. A 

constructive heuristic consisting of five steps is developed for the problem. In the first step, the 

sequence of customers is constructed by a greedy heuristic based on their time windows. In the second 

step, a dynamic probability is used to assign vehicles to customers at the second step. In the third step, 

routes are constructed in a greedy manner. In the fourth step, start and end depots are determined based 

on minimum routing cost. Finally, in the fifth step, a local search is applied to improve the solution. 

 

2.2.2.3 Metaheuristic methods 

Several metaheuristic algorithms have been proposed to solve the MDVRP: TS, SA, GA, VNS, ACO, 

and PSO. An analytical presentation of these algorithms which are applied on MDVRP is given next. 
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a) Tabu Search 

TS has been applied to solve the MDVRP in three different frameworks which can be categorized to 

one-phase, two-phase, and three-phase approaches. Jin et al. (2004) study the MDVRP and present two 

methods to solve it. They are one-stage and two-stage approaches. The one-stage approach integrates 

the assignment with the routing in the same level. Assignment customers cost to depots is estimated 

then each customer is assigned to the depot based on the minimum cost. Then a branch-and-bound 

algorithm and a TS heuristic is applied for routing. In contrast, the two-stage approach decomposes the 

problem into two independent sub-problems, assignment and routing, and solves them separately. In 

the first stage, three assignment methods namely, parallel, simplified and cyclic are used, then, in the 

second stage, the same branch-and-bound and TS heuristic is applied for routing. 

For the two-phases frame, Renaud et al. (1996) and Cordeau et al (1997) propose a TS for MDVRP. 

Renaud et al. (1996) generate the initial solution by using a heuristic approach, while Cordeau et al 

(1997) constructs the initial solution by an insertion algorithm. Then, the Tabu Search improves the 

initial solution. A GTS is proposed by Escobar et al. (2014). The initial solution is constructed by using 

a heuristic approach. Maischberger and Cordeau (2011) introduce a parallel iterated TS for solving 

eight different variants of the VRP. They are the VRP, the PVRP, the MDVRP, and the Site-Dependent 

VRP (S-DVRP), all with or without time windows constraints. In their study, the initial solution is 

generated by applying a heuristic approach without describing the details.  

Aras et al. (2011) study the MDVRP with pricing. In this problem, a firm aims to collect used products 

to save production cost by re-manufacturing of the parts and components obtained from the collected 

products. The vehicles are dispatched to a dealer if the acquisition price announced by the firm exceeds 

the dealer’s reservation price. The solution method consists of two stages. The first stage concerns 

producing an initial solution by sorting all dealers based on their indices and putting all of them on one 

route only. This route is an infeasible solution therefore there is a penalty cost for overcapacity. The 

second stage is for improving the solution by TS. Lim and Wang (2005) propose two-stage 

methodologies by decomposing the problem into two independent sub-problems, assigning and routing, 

and solves them separately. The assigning stage is performed by applying two criteria – urgency 

assignment, and group assignment. In the second stage, routes are obtained by TS. Soto et al. (2017) 

develop a hybrid method including a TS and a multiple neighbourhood search to address the open 

MDVRP. The initial solution is constructed by an insertion greedy algorithm. 
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Crevier et al. (2007) address the MDVRP with Inter-Depot Routes (MDVRP-IDR) where vehicles are 

replenished at intermediate depots along their routes. A three-phase algorithm is proposed. The first 

phase is an adaptive TS for generating initial routes. The second phase is to determine the feasible 

routes with the least cost by means of a set partitioning algorithm.  Finally, the TS is applied to 

improve the feasible routes. Zhen and Zhang (2009) consider the MDVRP with inter depot routes in 

which vehicles may be replenished at intermediate depots along their routes. A three-phase 

methodology is proposed based on adaptive memory and TS. The initial solution is formed in phase 

one by using a heuristic approach. Because the initial solution is infeasible for the MDVRP with 

intermediate depots, the set partitioning algorithm is used to fix the infeasibility at the second phase. 

Finally, in the third phase, the TS is applied to improve the solution. Shankar et al. (2014) address 

MDVRP with time windows and use TS within the Geographical Information System (GIS) to obtain 

an approximate solution. The initial solution is generated by using a heuristic approach. 

 

b) Simulated Annealing 

The SA is one of the metaheuristics that has been used widely in the combinatorial optimisation. When 

it is used to solve MDVRP, it has been applied in a two-phase framework, where another metaheuristic 

is also involved. Chen et al. (2005) introduce a two-phase heuristic to solve the MDVRP. In the first 

phase, a random initial solution is generated. The second phase consists of a heuristic and SA approach 

to improve the initial solution. The improvement heuristic exchanges customers between routes by 

using 2-opts. Lim and Zhu (2006) consider the MDVRP with fixed distribution. Based on the fact that 

all sub-routes of an optimal route must be optimal, a randomised best insertion algorithm is proposed to 

generate an initial solution. Then, an n-opt neighbourhood operator and a SA approach are applied to 

improve the initial solution.  

Ting and Chen (2008) propose a Multiple Ant Colony System (MACS) and SA approach to solve 

MDVRP with time windows. The algorithm is designed to assign customers to depots firstly by 

MACS, then solve the routing problem by MACS and finally improve it by SA. Mirabi et al. (2010) 

address MDVRP in order to minimise the delivery time of the vehicle objective. A two-phase heuristic 

is proposed to solve the problem. In the first phase, an initial solution is generated by assigning 

customers to the nearest depot, then routes are built by the means of CWH. In the second phase, local 
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search and SA are applied to improve the initial solution. Mirabi (2014) propose a Hybrid 

Electromagnetism Simulated Annealing (HESA) to solve the PMDVRP. 

 

c) Variable Neighbourhood Search, Iterated Local Search, and Adaptive Large 

Neighbourhood Search 

In this section, we will cover three metaheuristics namely; VNS, ILS, and ALNS. These metaheuristics 

are easy to implement, and flexible to adapt to different problems. Polacek et al. (2004) and Polacek et 

al. (2008) propose VNS methods to solve MDVRP with time windows. To construct an initial solution, 

each customer is assigned to the nearest depot. Then, all customers within a depot are ordered by the 

centre of their time windows. Routes are constructed by insertion based on their time windows. Polacek 

et al. (2004) improves the initial solution by a VNS, while Polacek et al. (2008) improves the initial 

solution by introducing two parallel VNS. Xu et al. (2012) study the MDVRP with heterogeneous 

vehicle and time windows. The problem is solved using a VNS. The initial solution is formed by 

inserting customers on routes based on their distance to the nearest depot. Kuo and Wang (2012) use 

the VNS to solve the MDVRP with loading cost. Firstly, the initial solution is generated by two 

methods. The first method is a random method, while the second method is developed based on the 

CWH. The VNS is applied afterwards to find the solution. Xu and Jiang (2014) improve VNS for 

MDVRP with heterogeneous fleet and time windows. The initial solution is obtained by using a 

clustering algorithm to allocate customers to depots. Then a hybrid operator of insert and exchange are 

used. After that, VNS is applied to obtain the solution. Imran (2013) and Salhi et al. (2014) apply the 

policy of borderline customers to assign them to depots for solving MDVRP and MDVRP with 

heterogeneous vehicles, respectively. The initial solution is obtained for each depot using a greedy 

heuristic and improved by 2-opt moves. Then, the VNS is applied for improvement. Schmid et al. 

(2010) model scheduling distribution of ready-mixed concrete that is produced at several plants to 

construction sites, using heterogeneous fleet as MDVRP. A hybrid procedure is proposed based on a 

combination of a VNS and an exact method. The VNS approach is used at first to generate feasible 

solutions and it tries to further improve them. Then, a VLNS determines which variables are supposed 

to be fixed. Finally, the MILP solver finds the exact solution for the problem.  

An ILS is proposed by Li et al. (2015) for MDVRP with simultaneous delivery and pick-up. The 

proposed algorithm integrates an adaptive neighbourhood selection mechanism into ILS, employs 
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different structural neighbourhoods in the improvement and perturbation steps, and uses a probability 

rule to accept a worse solution based on the number of its repetition. The initial solution is generated by 

assigning each customer to the nearest depot then routing is determined by CWH for each depot 

individually. Dondo and Cerdá (2009) present a local search algorithm theta that explores a large 

neighbourhood of the initial solution for the MDVRP with time windows. The initial solution is 

generated by a clustering heuristic. Pisinger and Ropke (2007) propose an ALNS to solve five different 

variants of VRP where one of them is the MDVRP. The initial solution used in their proposed local 

search is found using a heuristic approach. Mancini (2016) study the PMDVRP with heterogeneous 

fleet. An ALNS is proposed. A greedy heuristic is used to obtain the initial solution.  

Tlili et al. (2016) tackle the MDVRP by using an ILS. A constructive heuristic is developed to generate 

the initial solution by inserting customers one by one into a vehicle route, and when the vehicle 

capacity is reached, a new empty route is started. Juan et al. (2015) propose a hybrid approach for the 

MDVRP which combines Biased Randomisation with an ILS. Two Biased Randomised processes are 

employed to assign customers to depots and to improve routing solutions. Then, routing is constructed 

by BR-CWH. Calvet et al. (2015) and Calvet et al. (2016) use the approach of Juan et al. (2015) to 

tackle the MDVRP with Stochastic Demands, and the MDVRP that includes market segmentation 

issues, in order to maximise benefits, respectively.  

Calvet et al. (2015) employ the Monte Carlo Simulation (MCS) techniques to deal with stochastic 

demand. To reduce the route-failure risk, safety-stocks are included in the algorithm and risk analysis is 

used. Calvet et al. (2016) consider customers’ needs when they are assigned to depots to increase the 

expected expenditure. Tlili and Krichen (2015) consider a real case of MDVRP at Ezzahra city in 

Tunisia. An ILS is combined with GIS to design a decision support system to solve the problem and 

visualise the results. Vidal et al. (2014) introduce ILS and a hybrid GA to tackle the MDVRP with mix 

fleet. 

d) Genetic Algorithms, Memetic Algorithm, and Evolutionary Algorithm 

GA, MA, and EA will be covered in this section. These metaheuristics belong to population-based 

algorithm. In general, they are used to solve optimization problems with high quality solutions. 

A GA is proposed by Filipec et al. (1997) to solve non-fixed destination MDVRP. The non-fixed 

destination problem is an extension of MDVRP with routing, originating and terminating at different 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Search_algorithm
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depots. Customers are clustered by mean of Ford and Fulkerson Algorithm (FFA). Then, GA is used to 

generate radial routes and used again to connect them into complete links. Ho et al. (2008) develop GA 

to improve two initial solutions. The first one is generated randomly, while CWH and the nearest 

neighbour heuristic are incorporated to generate the second one. In this paper, the benchmark instances 

have not been used to compare its results with previous heuristics.  

Ombuki-Berman and Hanshar (2009) propose a GA algorithm for MDVRP with two objectives which 

are minimising the total distance and minimising the number of vehicles used. Lau et al. (2010) deal 

with MDVRP with multiple products. A GA is proposed using a stochastic search technique to solve 

the problem. The role of the stochastic search technique is to dynamically adjust the crossover rate and 

mutation rate after ten consecutive generations. Vidal et al. (2012) addresses three problems which 

include the MDVRP, the PVRP, and the PMDVRP. They propose a hybrid GA that includes a number 

of advanced featuresin terms of solution evaluation, offspring generation and improvement, and 

population management. Li and Liu (2011) develop a GA for the MDVRP with three objectives which 

are minimising the computational time, the total cost, and the number of used vehicles. The proposed 

algorithm is compared with an ILS.  

De Oliveira et al. (2016) decompose the MDVRP in sub-problems of VRP and each problem is solved 

by a cooperative co-EA separately. Bae and Moon (2016) use the MDVRP with time windows to 

model the delivery and installation of electronics. They develop a heuristic and a GA to identify a near-

optimal solution.  

Salhi et al (1998) and Thangiah and Salhi (2001) develop a three-stage framework to tackle the 

MDVRP. In the first stage, the GA algorithm is applied to cluster customers, while routes are obtained 

in the second stage by using an insertion heuristic. Finally, Salhi et al (1998) improve the solution by 

local search, while Thangiah and Salhi (2001) improve the solution by post-optimisation routine.  

The MDVRP with time windows is addressed and solved using the GA by Yang et al. (2006), Yuan-

feng (2008), Liu (2013), Lightner-Laws et al. (2016), Li et al. (2016), and Bi et al. (2017). Yang et al. 

(2006) propose a GA after obtaining the initial solution randomly. Yuan-feng (2008) uses the 

heterogeneous fleet and improves a GA after obtaining the initial solution randomly. Liu (2013) adapt a 

GA based on a HBMOA. Lightner-Laws et al. (2016) use the heterogeneous fleet for a pick-up and 

delivery service and apply a nested GA. Li et al. (2016) do not require that vehicles return to the same 

depot and propose a hybrid GA with adaptive local search. Bi et al. (2017) employ a bi-objective 
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function consisting of minimising traveling distance, and maximising delivery duration, and propose a 

hybrid multi-objective EA enhanced with a two-phase local search. 

A geometric shape based on Genetic Clustering Algorithm (GCA) is proposed by Yücenur and Demirel 

(2011) for the solution process of the MDVRP. While Bae et al. (2007) develop graphical user interface 

programming to solve MDVRP by assigning customers firstly to the nearest depot, then using GA to 

solve the routing problem. Finally, a Two-Echelon MDVRP is introduced by Zhou et al. (2017) which 

will rise at distribution of e-commerce. A hybrid multi-population GA is proposed. 

 

e) Ant colony optimisation and Particle Swarm Optimisation 

ACO and PSO are a probabilistic algorithms for solving optimisation problems. These metaheuristics 

try to improve candidate solutions iteratively.  

An ACO is employed by Yu et al. (2011), Yücenur and Demirel (2011), Wang (2013), and Stodola and 

Mazal (2016) to solve the generic MDVRP. Yu et al. (2011) add a virtual central depot firstly. Then, 

the ACO is applied. Stodola and Mazal (2016) adapt the ACO to solve the MDVRP. Yücenur and 

Demirel (2011) propose ACO and GA. The GA is used in the first phase to cluster customers, while in 

the second phase the ACO is applied for routing. Wang (2013) proposes a Cellular Ant Optimisation 

Algorithm (CAOA) which combines cellular automaton and ACO to present a high quality solution. 

Yao et al. (2017) model the fresh seafood delivery problem as MDVRP with an energy cost for keeping 

fresh seafood in cold conditions as a main feature. The problem is decomposed into VRP, then ACO is 

used to solve it. Belov and Slastnikov (2017) model the petroleum products delivery problem as 

MDVRP and apply the ACO with local search to solve it. Islam and Rahman (2012) consider a real-life 

case of waste collection and formulate it as MDVRP with time windows. The problem is solved by 

using ACO.  

The MDVRP with time windows is addressed by Liu and Yu (2013). An ACO with GA is proposed. 

The purpose of the GA is to optimise the parameters of the ACO, whereas the ACO is to solve the 

problem. Ma and Yuan (2010) aim to minimise the waiting time of customers instead of minimising the 

travelling distance. This aim, minimising the waiting time, is more important than minimising distaince 

in some cases such as emergency, and fast-food dilvery. An ACO is proposed to solve this problem. 

Yang et al. (2011) present multi objectives MDVRP with time windows, and heterogeneous fleet. The 

https://en.wikipedia.org/wiki/Probability
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objective function includes three parts: transport cost, deadheading cost, and time cost. A self-adaptive 

and polymorphic ACO has been introduced to solve this problem. Narasimha et al. (2013) study the 

min-max MDVRP and solve it by ACO. The main problem is decomposed into many min-max VRP, 

then each sub-problem is solved individually.  

The PSO has been applied by Sombuntham and Kachitvichyanukul (2010), Kachitvichyanukul et al. 

(2015), and Zhu et al. (2015) to solve the MDVRP with pick-up and delivery and time windows, the 

MDVRP with multiple pick-up and delivery, and the MDVRP where customer demand consists of two-

dimensional weighted items, respectively. To enhance the algorithim and produce high quality 

solutions, Sombuntham and Kachitvichyanukul (2010) employ multiple social learning structures; 

Kachitvichyanukul et al. (2015) employ multiple social learning terms, and Zhu et al. (2015) use the 

local search. Geetha et al. (2012) apply the MDVRP for two real-life problems: the home delivery 

pharmacy program and waste-collection. The problem is solved by a hybrid metaheuristic consisting of 

a heuristic, GA, and PSO. The heuristic is for generating the initial solution, while the GA, and PSO 

are for improving the solution. 

 

2.2.3 Real application of MDVRP 

The MDVRP has many applications in our real life. It is has been used to solve propblems in utlities 

sectros (Hadjiconstantinou & Baldacci, 1998), reverse logistics (Ramos et al., 2009), in emergency 

management (Ma & Yuan, 2010), ready-mixed concrete delivery (Schmid et al., 2010), petrol station 

replenishment (Cornillier et al., 2012), recycl sectore (Ramos et al., 2011, Islam & Rahman, 2012, and 

Ramos et al., 2014), printed circuit board (Kazaz & Altinkemer, 2003), distrbution of perishable food 

(Mancini, 2016), distributing goods (Alemany et al., 2016), ditrbution of petroleum products (Belov & 

Slastnikov, 2017), Fresh seafood delivery (Yao et al., 2017). These applications are only an example to 

show the importance the MDVRP in our real life.  
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2.3 Conclusion  

 

The literature review of the LRP and its variants (MDVRP) indicates that these problems are 

considered in supply chain management as one of the essentials. And these problems are widely studied 

due to the practical relevance of their applications. Therefore, studies and researches in this area is 

growing faster in the last decade.  

According to Grasas et al. (2017) combining the Biased Randomised technique with heuristics can 

improve its performance without losing its good properties which increases the chance of obtaining 

better and diversified solutions.  

Moreover, this strategy enables procedures of the deterministic heuristic to be transformed to 

procedures of the probabilistic algorithm. This means that the new solution method can be run several 

times to obtain different promising solutions. Combining the Biased Randomised technique with 

heuristics is relatively simple in terms of implementation, and fast in terms of computational time 

(Grasas et al., 2017).  

On the other hand, the supply chain management is keen to consider environmental issues such as 

generation of CO2, and greenhouse-gas emissions to comply with environmental regulations.  

From the findings in the literature review, we noticed that heuristics, exact methods, and metaheuristics 

have been applied to solve the LRP and its variants. Some researchers have attempted to improve the 

solution quality, while other have attempted to reduce the computational time.  

However, the simplicity and flexibility of the solution methods have not been taken into account. On 

the other hand, environmental issues such as generation of CO2, and greenhouse-gas emissions have 

not yet been considered when solving the LRP.  

Therefore, this indicates that we should first focus on improving solution methods based on combining 

Biased Randomised technique with classic heuristics.  In addition to this, environmental issues are also 

considered when solving the LRP to reduce generation of CO2, and greenhouse-gas emissions. 
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 Location Routing Problem with 

Single Depot (LRPSD) 
 

3.1 Introduction 
 

In this Chapter, we study the LRP with Single Depot (LRPSD), which is the simplest variant of the 

LRP. The LRPSD has many applications in real-life such as system of computer servers, and collection 

of money. Moreover, we adapted the mathematical model from Laporte and Nobert (1981) for the 

LRPSD to examine the performance of our four heuristic methods when Biased Randomised technique 

is applied.  

We propose and implement four solution methods based on the combination of a location heuristic and 

Biased Randomised Clarke and Wright Heuristic (BR-CWH) to obtain location and routing decisions, 

respectively. The BR-CWH basically integrates the Biased Randomisation technique (Juan et al., 2010) 

with the CWH (Clarke and Wright, 1964).  

We describe in detail the BR-CWH and our four proposed approaches namely: (i) Biased 

Randomisation Two-Stage Clustering heuristic (BR-TSCH); (ii) Biased Randomisation Two-Stage p-

median heuristic (BR-TSPH); (iii) Biased Randomisation Two-Stage Clustering and p-median heuristic 

(BR-TSCPH); and (iv) Biased Randomisation Iterated heuristic (BR-IH).   
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The remainder of this chapter is structured as follows: In Section 3.2 we highlight the key contributions 

of this chapter. In section 3.3 we give a detailed description of the problem and the optimisation model. 

Section 3.4 presents the details of the solution methods, and in section 3.5 we present the experimental 

settings and computational results. Section 3.6 provides a summary discussion of the chapter. 

 

3.2 Contribution 
 

The main contribution of this chapter is to propose a novel solution method to solve the LRPSD. The 

suggested heuristic framework consists of two stages of location and routing to solve the LRPSD by 

combining Biased Randomised technique with the CWH.  

The four mentioned variations are Biased Randomisation Two-Stage Clustering heuristic (BR-TSCH), 

Biased Randomisation Two-Stage p-median heuristic (BR-TSPH), Biased Randomisation Two-Stage 

Clustering and p-median heuristic (BR-TSCPH), and Biased Randomisation Iterated heuristic (BR-IH). 

The similarity between these four heuristics is in the second stage (routing stage) which is solved by 

the BR-CWH. Whereas, the difference between them is in the first stage (location stage) which is 

solved by four different methods namely: clustering, p-median, clustering and p-median, and Iterated 

heuristic.  

Another major contribution of the proposed approaches is the incorporation of the location problem 

into the BR-CWH. The BR-CWH is proposed mainly to deal with the VRP. And the LRP optimisation 

problem consists of two parts, location decision and routing decision. Therefore, the incorporation of 

the location problem into the BR-CWH can help to solve the LRP. 

The experimental results showed that combining the Biased Randomised technique with the classic 

heuristic (CWH) is able to obtain alternative and competitive solutions in terms of the quality and 

computational time.  
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3.3 Optimisation model 
 

The LRP has many variants of models in the literature based on its application or its characteristics. For 

example, in an open LRP, vehicles do not return to its depot after delivering goods. Also, there are 

uncapacitated LRP where depots have unlimited capacity and so on. In this chapter, we considered the 

LRP with only single depot which is considered as a special case of the general LRP.  

The problem is to determine the location of a single depot among potential depots, then determine the 

corresponding delivery routes to serve all customers from the open depot. The objective function is to 

minimise the total costs which consist of depot opening cost, variable and fixed costs for vehicles.  

Each vehicle takes exactly one route starting from the depot, visiting a subset of the customers and 

returning to the same depot. In addition, a customer’s demand cannot be split among different routes 

and the sum of demands in each route must not exceed the vehicle capacity.  

The LRP model in this research is defined on a complete, weighted, and undirected network G = (V, E, 

C), where 𝑉 = {1, … , 𝑛} is a set of nodes representing the depots and customers, and 𝐸 is a set of 

undirected edges (𝑖 , 𝑗), and 𝐶 = (𝑐𝑖𝑗) is the matrix of traveling cost associated with edge (𝑖 , 𝑗) in 𝐸. In 

this chapter, developed heuristics only consider a single depot while multi depots will be addressed in 

Chapter 5. It is assumed that 𝐼 ⊆ 𝑉 is a set of potential depots and 𝐽 ⊆ 𝑉 is a set of customers. An 

opening cost 𝑓𝑖 are associated with each depot site 𝑖 ∈ 𝐼. A set 𝐾 of identical vehicles of capacity 𝐷 is 

available. When used, each vehicle incurs a fixed cost 𝐹 and performs a single route. Each customer 

𝑗 ∈ 𝐽  has a demand 𝑑𝑗 where 𝑑𝑗 ≤ 𝐷. Since 𝑑𝑗 ≤ 𝐷, there will never be a need for a node (customer) to 

be visited by more than one vehicle to satisfy its demand. 

Figures 3.1 illustrates an example of LRP with single depot.  Firstly, in Figure 3.1 (a), there are three 

potential depots and 18 customers. In Figure 3.1 (b) a single depot is selected to be opened and two are 

closed. Finally, vehicle routes are computed in Figures 3.1 (c).  
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Figure 3.1. An illustrative example of LRPSD 

 

The optimisation model is formulated as a mixed integer linear programming problem. In order to 

formulate the model, the following notation is introduced.  

 

Sets are defined as follows: 

𝑉 : Set of nodes, 𝑉 = 𝐼 ∪ 𝐽 

𝐼 : Set of potential depot nodes 

𝐽 : Set of customers to be served 

𝐾 : Number of available vehicles (fleet size) 

 

Parameters are defined as follows: 

𝑓𝑖 : The fixed cost of opening a depot at 𝑖  

𝑑𝑗 : Demand of customer 𝑗 

𝐷 : Capacity of each vehicle 

𝐹 : Fixed cost per vehicle used 

𝑐𝑖𝑗 : Traveling cost for edge (𝑖, 𝑗) 
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Decision variables are defined as follows:  

𝑥𝑖𝑗𝑘 : {
1, if vehicle 𝑘 is used on route from node 𝑖 to node 𝑗
0, otherwise

 

𝑦𝑖    : {
1, if a depot is located at site 𝑖
0, otherwise

 

 

The formulation of the Location Routing with single depot which we adapted from Laporte and Nobert 

(1981) is as follows: 

𝑀𝑖𝑛 ∑ 𝑓𝑖𝑦𝑖𝑖∈𝐼 + ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝑉𝑖∈𝑉 + ∑ ∑ ∑ 𝐹𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼                                                         (3.1) 

Subject to 

∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾𝑖∈𝑉 = 1                                        ∀ 𝑗 ∈ 𝐽                                                                                (3.2) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝐼 ≤ 1                                          ∀ 𝑘 ∈ 𝐾                                                                              (3.3) 

∑ 𝑥𝑖𝑗𝑘𝑗∈𝑉 − ∑ 𝑥𝑗𝑖𝑘𝑗∈𝑉 = 0                            ∀ 𝑘 ∈ 𝐾,           ∀ 𝑖 ∈ 𝑉                                                        (3.4) 

∑ ∑ 𝑑𝑗𝑥𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝑉 ≤ 𝐷                                     ∀ 𝑘 ∈ 𝐾                                                                              (3.5) 

∑ 𝑦𝑖𝑖∈𝐼 = 1                                                                                                                                                  (3.6) 

𝑥𝑖𝑗𝑘 ∈ {0, 1}                                           ∀ 𝑖 ∈ 𝐼,       ∀ 𝑗 ∈ 𝐽,       ∀ 𝑘 ∈ 𝐾                                      (3.7) 

𝑦𝑖    ∈ {0, 1}                                            ∀ 𝑖 ∈ 𝐼                                                                            (3.8) 

𝑐𝑖𝑗 = ∞       𝑤ℎ𝑒𝑛 𝑖 = 𝑗   

The objective function (3.1) seeks to minimise the total cost, which includes the fixed cost of the 

selected facilities and the fixed and variable cost of the vehicles. Constraints (3.2) are the routing 

constraints that are imposed where each customer has to be visited exactly once by a single vehicle, 

whereas constraints (3.3) ensure that all routes have to start and end at a depot. Constraints (3.4) are the 

connectivity constraints to ensure that every vehicle leaves the customer after he has been served. 

Constraints (3.5) impose the capacity of vehicle, while the constraint (3.6) ensures that only one depot 

is going to be opened. Constraints (3.7) and (3.8) are integer variables.  
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3.4 Proposed Biased Randomised heuristics for solving 

LRPSD 
 

In this section, we propose four heuristics to solve the LRPSD. They are Two-Stage clustering, Two-

Stage p-median, Two-Stage clustering and p-median, and Iterated heuristic.  

These four heuristics are based on the combination of a location heuristic and the BR-CWH which is 

proposed by (Juan et al., 2010),  which will be explained later, to obtain location and routing decisions, 

respectively.  

The Biased Randomised Clarke and Wright Heuristic (BR-CWH) is explained in section 3.4.1. In 

section 3.4.1.1 and section 3.4.1.2, Biased Randomised technique and CWH will be explained, 

respectively. Finally, the explanation of the proposed Biased Randomised heuristics, are given in 

section 3.4.2. 

 

3.4.1 Biased Randomised Clarke and Wright Heuristic 

Recently, Juan et al. (2010) have proposed Biased Randomised technique to induce randomness (non-

symmetric) in classical heuristics in an iterative framework. In particular, this new method induces 

randomness (non-symmetric) to perturbate the greedy behavior slightly of the classical heuristic. 

Therefore, the deterministic heuristic is transformed into a probabilistic algorithm, and that will make 

the solution space exploration more efficient.  

The multi-start process works together with the Biased Randomised technique to avoid getting into a 

local minimum, and at the same time, the heuristic converges faster to the near optimal solutions.  

The BR-CWH is able to provide high quality solutions which can compete with those provided by 

much more complex, exact and heuristic approaches, which are usually difficult to implement in 

practice. Moreover, it can generate hundreds of alternative good solutions in a reasonable time period, 

offering the decision-maker the possibility of applying various non-aprioristic criteria when selecting 

the solution that best fits their utility function (Juan et al., 2010).  



65 

 

The solution of CWH is constructed by choosing the edge with the highest savings value. However, in 

the BR-CWH, a probability of selecting each edge is assigned in the savings list instead.  

This probability should be coherent with the savings value associated with each edge. That means 

edges with higher savings will be more likely to be selected from the list than those with lower savings. 

If we use the Uniform Randomisation, the logic behind the sorted list will be ineffective in the 

heuristic. Whereas, using a skewed probability distribution such as geometric distribution or triangular 

distribution will keep the common sense behind using the heuristic.   

Therefore, the geometric distribution with parameter α is employed during the solution structure in the 

CWH to assign a probability of selecting each edge from the saving list. This means, each time a new 

edge must be selected from the list of available edges, a geometric distribution is randomly selected to 

assign exponentially diminishing probabilities to each eligible edge, according to its position inside the 

savings list (which has been previously sorted by its corresponding savings value).  

That way, edges with higher savings values are always more likely to be selected from the list, but the 

exact probabilities assigned are variable and they depend upon the concrete distribution selected at each 

step. By iterating this methodology, a random but efficient search process is started. Moreover, this 

selection process is done without introducing many parameters in the methodology. 

The parameter α is selected randomly, from a uniform distribution in [a, b], where 0 < a ≤ b < 1, 

during the process of solution construction. The parameter α is the probability of choosing the edge 

with the highest values. Algorithm 3.1 illustrates the pseudo code of introducing the biased randomness 

into the process of selecting edges from the saving list in the CWH.   
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Algorithm 3.1. Random Edge-Selection (Juan et al., 2010) 

After choosing the edge based on the Biased Randomised technique, the following conditions must be 

satisfied before joining two customers in one route: 

i) The combined demand on the new route should not exceed the vehicle capacity.  

ii) Customers must not already be on the same route.  

iii) If a customer is connected to two other customers, it is never considered for linking.  

iv) The other restrictions on the systems must be satisfied.  

v) If one or more of the conditions are not satisfied this pair of customers is excluded from 

further consideration at this depot.  

If all the above conditions are satisfied, then these two customers are joined in one route. Figure 3.2 

illustrates the flowchart of the BR-CWH.    
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Figure 3.2. Flowchart of the BR-CWH 
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3.4.1.1 Biased Randomised Technique 

A heuristic is defined as a simple procedure which follows a set of common-sense steps in order to 

solve Combinatorial Optimization Problems (COPs). Therefore, it does not guarantee optimality. 

However, it is able to provide a good solution in a very short computational time. A heuristic that 

constructs a good solution by selecting, at each step, the best next option from a list (e.g., list of edges, 

or list of nodes) which is sorted based on some criteria (e.g., ranking, priority rule, heuristic value) is 

considered as a deterministic iterative greedy procedure. Therefore, if we run it over and over, we will 

always get the same result.  

If we randomise the order in which the elements (such as edges or nodes) of the list are selected, we 

will get a different output each time the procedure is executed. This means the randomisation principle 

will transform a deterministic heuristic into a probabilistic algorithm. Although the uniform 

randomisation will not be helpful with the logic behind the sorted list in the heuristic, using a skewed 

probability distribution, such as geometric distribution or triangular distribution, will give more chance 

for better candidates to be selected (Juan et al., 2010). Figure 3.3 shows the difference between 

applying the Uniform Randomisation and applying the Biased Randomisation to select an element from 

the sorted list.  

 

Figure 3.3. Uniform Randomisation vs. Biased Randomisation (Juan et al., 2010) 
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Recently, the Biased Randomisation technique is integrated in many classic heuristics to provide an 

efficient mechanism to solve COPs such as the VRP (Juan et al., 2010), and FLP (Cabrera et al., 2014). 

By applying this mechanism in an iterative framework, a new feasible and potentially good solution is 

generated every time the procedure is executed.  

The developed algorithm usually has a single configuration parameter or is even without any 

parameter. This makes the time to deploy the algorithm in a real environment faster as it avoids the 

long and complex fine-tuning phase which is usually required by other metaheuristics. Moreover, using 

this integrated framework has proven to obtain promising results in low computational times. 

 

3.4.1.2 Clarke and Wright Heuristic 

The CWH is proposed by Clarke and Wright (1964) to solve the VRP. It is one of the best-known 

classical heuristics for solving the VRP.  

In the VRP, there are n customers and only one depot in a given area. Additionally, there is a demand 

dj > 0 of some goods, which have to be delivered and has been assigned to each customer j and this 

quantity is known in advance. Also, there are a fleet of homogenous vehicles which are stationed at the 

depot, and each vehicle has a maximum capacity to carry. These vehicles must all start and finish their 

routes at the depot. The objective of the VRP is to obtain a set of delivery routes from the depot to the 

various customers to minimise the total distance covered by the entire fleet. It is assumed that the 

demand of a customer, di, is less than the maximum capacity of the vehicles, and the whole demand 

should be delivered by a single vehicle (i.e. there is no split delivery).  

The CWH starts by an initial solution which consists of using n vehicles and assigning one vehicle to 

each customer. This means, each customer is served by one vehicle in one route, and the total route 

length of the initial solution is 2 ∑ 𝑑0𝑖
𝑛
𝑖=1 , while 𝑑0𝑖 is the distance between depot and customer j. 

After that, the saving distance is computed for all customers by the equation of the saving distance as 

below: 

𝑆𝑖𝑗 = 𝑑𝑖0 + 𝑑𝑗0 − 𝑑𝑖𝑗                                                           (3.9) 

where: 

𝑆𝑖𝑗 : the saving distance between node i and j 
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𝑑𝑖0 : the distance between node i and the depot 

𝑑𝑗0 : the distance between node j and the depot 

𝑑𝑖𝑗 : distance between node i and node j 

The saving distance comes from joining two customers i and j in one route and serving them by one 

vehicle. The total distance traveled, after joining process, is reduced by the amount 𝑆𝑖𝑗. The larger 𝑆𝑖𝑗 

is the more desirable to combine i and j in one route. However, customer i and j cannot be combined if 

in doing so the resulting route violates one or more of the constraints of the VRP, such as the vehicle 

capacity constraint. 

The CWH can be described as follows:  

STEP 1: Calculate the savings distance 𝑆𝑖𝑗 for every two customers (i, j) by using  

equation (3.9) 

STEP 2: Sort the savings distance 𝑆𝑖𝑗 and list them in descending order to create the savings list.  

STEP 3: Process the savings list by beginning with the largest 𝑆𝑖𝑗 and check the following conditions 

which must be satisfied before joining two customers in one route: 

i) The combined demand on the new route should not exceed the vehicle capacities.  

ii) Customers i and j must not already be on the same route.  

iii) If a customer is connected to two other customers, it is never considered for joining.  

iv) The other restrictions on the system must be satisfied.  

v) If one or more of the conditions are not satisfied this pair of customers are excluded from 

further consideration at this depot.  

If all the above conditions are satisfied, then these customers are joined in one route. 

STEP 4: If the savings list has not been exhausted, return to STEP 3, processing the next entry in the 

list; otherwise, stop. The solution to the VRP consists of the routes created during STEP 3. Figure 3.4 

shows an instance of a VRP (a) and its solution (b). 
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Figure 3.4. An instance of a VRP (a) and its solution (b). 

 

3.4.2 Biased Randomised Two-Stage heuristics  

The general framework of heuristics consists of two stages of location and routing which are solved 

sequentially. Figure 3.5 shows the flowchart of the general framework of the Biased Randomised Two-

Stage heuristic which has four variants of the heuristic, called Biased Randomised Two-Stage 

Clustering heuristic (BR-TSCH), Biased Randomised Two-Stage p-median heuristic (BR-TSPH), 

Biased Randomised Two-Stage Clustering and p-median heuristics (BR-TSCPH), and Biased 

Randomised Iterated heuristic (BR-IH). 

In the first stage of the first three heuristics, namely BR-TSCH, BR-TSPH, and BR-TSCPH, only one 

depot is selected to be open among the list of potential candidates, by using clustering technique, p-

median model, and clustering and p-median model, respectively. Details of these methods will be 

explained later in section 3.4.2.1, 3.4.2.2, and 3.4.2.3, respectively. In the second stage of the three 

heuristics mentioned, routing of customers is determined by applying the BR-CWH.  

In the BR-IH, a depot is chosen randomly in the first stage, and routing is solved in the second stage by 

using the BR-CWH. The heuristic, then, iterates with another randomly chosen depot, and so on. The 

algorithm checks all the potential depots and keeps the best result in terms of both location and routing 

costs. In section 3.4.2.4, the BR-IH is explained in detail. 
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Figure 3.5. Flowchart of the general framework of the Biased Randomised Two-Stage heuristics  

 

3.4.2.1 Biased Randomised Two-Stage Clustering heuristic 

In this heuristic, the first stage solves the location problem using clustering and gravity centres, while 

the second stage solves routing problem using the BR-CWH. 

To solve the location problem, we have adapted and modified a heuristic proposed by Salhi and Gamal 

(2003) to solve the continuous location allocation problem. We have adapted the same method to cover 

the region of customers with k0×k0 rectangular cells and used the same equation (3.10) to compute the 

gravity centre of each cell. We have added computing the Euclidean distances between each depot and 

the gravity centres, and the depot with the minimum sum of distances from the gravity centres is 

chosen to be the depot of VRP problem. 
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The benefit of using this heuristic is to deal with the nature of location spread of customers. The 

locations spread of customers, in some cases, follow the uniform distribution, while in other cases, 

locations of customers are clustered. Therefore, choosing a depot to be opened without knowing the 

nature of locations spread of customers may lead to a poor solution (Salhi and Gamal, 2003). Figure 3.6 

illustrates two types of the locations spread of customers.  

 

Figure 3.6. Locations spread of customers 

 

The width of the cell in the x-axis is Wx = (amax – amin) / k0 and the length of it in the y-axis is Wy = 

(bmax – bmin) / k0. In this method, we consider that the number of cells is constant and equal to k0. A cell 

is defined by its bottom-left corner. The first cell has the bottom-left corner (A1, B1) = (amin, bmin), and 

subsequent cells, say cell l (Al, Bl) = (amin + kxWx, bmin + kyWy).  

Equation (3.10) is used for each cluster to choose the appropriate depot from the potential options.  

(𝐴𝑙, 𝐵𝑙) = [
∑ 𝑎𝑗𝑗∈𝐽

𝑛𝑙
,

∑ 𝑏𝑗𝑗∈𝐽

𝑛𝑙
]                                                             (3.10) 

where (𝐴𝑙 , 𝐵𝑙) is the gravity centre of lth cell. 

𝑗 is the customer 𝑗𝑡ℎ at cluster l 

𝑛𝑙  is the number of customers at cluster l 

(𝑎𝑗 , 𝑏𝑗) are the coordinates of the 𝑗𝑡ℎ customer at cluster l. 

 

By defining the gravity centre of each depot, we can start choosing the best depot among the various 

candidates. The depot with the minimum sum of distances from the gravity centres is chosen to be the 

depot of VRP problem. In the second stage, BR-CWH, which is explained in section 3.4.1, uses the 

potential depot from the first stage to solve the VRP and calculates the routing decision cost and hence 
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the total cost is determined by BR-TSCH. Algorithm 3.2 illustrates the pseudo code of solving the 

location problem. Figure 3.7 shows the flowchart of the BR-TSCH. 

 

 

Algorithm 3.2. Pseudocode of the heuristic to solve the location problem 
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Figure 3.7. Flowchart of the BR-TSPH 

 

3.4.2.2   Biased Randomised Two-Stage p-median heuristic 

This heuristic solves the location problem optimally by using the p-median model with p = 1, and the 

routing problem is solved by using the BR-CWH. In the first stage of this heuristic, the p-median 

model is used to determine the location of the depot which is implemented by CPLEX. The p-median 

problem is the most practically solved use in discrete location theory because it is very practical in 

location problems (Daskin and Maass, 2015). On the other hand, the other location problems, such as 

the p-center problem or covering problem, can be formulated as a p-median problem readily. The p-

median problem aims to locate p depots amongst a candidate list of sites and allocate a set of customers 

to these p depots to serve them (satisfy their demand) with the minimum average distance between 

customers and its servicing depot. Figure 3.8 illustrates an instance of a p-median (a) and its solution 

(b) with p = 2. In this model, we use only one depot, therefore, p = 1. 
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The problem can be represented by using an undirected network G = (I, J, E),  

where 𝐼 = {1, … , 𝑛} is a set of the possible locations of depots, 𝐽 = {1, … , 𝑚} is a set of customers, and 

𝐸 is a set of undirected edges (𝑖 , 𝑗) between each possible location in J and each customer in I only. 

Each customer 𝑗 ∈ 𝐽  has a demand 𝑑𝑗. Furthermore, there is a positive cost (𝑐𝑖𝑗 ≥ 0) associated with 

the edges in 𝐸 which represents the traveling cost between i and j.  

The model is formulated as a mixed integer linear programming problem. In order to formulate the 

model, the following notation is introduced.  

 

Figure 3.8. An instance of a p-median (a) and its solution with p = 2 (b) 

 

𝑝: Number of depots to locate 

𝐼: Set of potential depot nodes 

𝐽: Set of customers to be served 

𝑑𝑗: Demand of customer 𝑗 

𝑐𝑖𝑗: Traveling cost for edge (𝑖, 𝑗) 

 

Variables are defined as follows:  

𝑦𝑖    : {
1, if potential depot 𝑖 is opened
0, otherwise

 

𝑧𝑖𝑗   : {
1, if customer 𝑗 is served from depot 𝑖
0, otherwise

 

 

The p-median model which is adapted from Rolland et al, (1997) is described as follows: 

𝑀𝑖𝑛 ∑ ∑ 𝑑𝑗𝑐𝑖𝑗𝑧𝑖𝑗𝑗∈𝐽𝑖∈𝐼                                                                                                                         (3.11) 
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Subject to 

∑ 𝑧𝑖𝑗𝑖∈𝐼 = 1   ∀ 𝑗 ∈ 𝐽                                                     (3.12) 

∑ 𝑦𝑖𝑖∈𝐼 = 𝑝                                             (3.13) 

𝑧𝑖𝑗 ≤ 𝑦𝑖              ∀ 𝑖 ∈ 𝐼,  ∀ 𝑗 ∈ 𝐽                                                             (3.14) 

𝑦𝑖 ∈ {0, 1}                                   ∀ 𝑖 ∈ 𝐼                                                                                                 (3.15) 

𝑧𝑗𝑖 ∈ {0, 1}                                  ∀ 𝑖 ∈ 𝐼                         ∀ 𝑗 ∈ 𝐽                                                             (3.16) 

 

The objective function (3.11) is to minimise the demand-weighted distance of delivering to customers. 

Constraints (3.12) ensure that each customer is served by exactly one depot. Constraint (3.13) ensures 

that p depot is opened, which is equal to one in the developed heuristic. Finally, constraints (3.14) 

ensure that a customer is not assigned to an unopened depot, and constraints (3.15) and (3.16) indicate 

integer variables.  

In this heuristic p-median is solved optimally by CPLEX, then the potential depot is used in the second 

stage where VRP is solved by BR-CWH. Figure 3.9 shows the flowchart of the BR-TSPH.  

 

 

Figure 3.9. Flowchart of the BR-TSPH 
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3.4.2.3   Biased Randomised Two-Stage Clustering and p-median 

heuristic 

This heuristic combines BR-TSCH and BR-TSPH. Therefore, in the first stage, the location decision is 

solved by clustering technique and p-median models, and the routing decision is made based on BR-

CWH.  

The benefit of using this heuristic is its simplicity to deal with the nature of customers locations spread 

and its ability to find the optimal solution of the p-median model.  

In the first stage of this heuristic, the region of customers is covered by k0×k0 rectangular cells which is 

described in section 3.4.2.1. Then the gravity centre of each cell is computed based on (3.10). Then, the 

gravity centre is considered as customers in the p-median model, rather than customers themselves. 

Finally, the p-median is solved optimally by CPLEX. The pseudocode of finding the k0×k0 rectangular 

cells is similar to the pseudocode in Algorithm 3.2, while the mathematical model of p-median is 

similar to the mathematical model in section 3.4.2.2.  

In the second stage the VRP, which is solved by the BR-CWH algorithm, uses the potential depot from 

the first stage to calculate the routing decision cost and hence the total cost. Figure 3.10 illustrates the 

flowchart of the BR-TSCPH. 
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Figure 3.10. Flowchart of the BR-TSCPH 

 

3.4.2.4  Biased Randomised Iterated heuristic 

In this heuristic, a depot is randomly chosen in the first stage and the relevant location decision cost is 

calculated. In the second stage the VRP uses the first randomly chosen depot to calculate the routing 

decision cost and hence the total cost.  

The algorithm continues with the second randomly chosen depot until all potential depots are selected. 

Therefore, our procedure is considered as complete enumeration. The output is the candidate depot 

with the minimum cost among all depots.  

This heuristic is developed for comparison with the other heuristics so that we can identify if the other 

heuristics have chosen the optimal depot. Figure 3.11 illustrates the flowchart of the BR-IH. 



80 

 

 

Figure 3.11. Flowchart of the BR-IH 

 

3.5 Computational experiments 

 

The computational experiments are conducted to evaluate the performance of the proposed four 

heuristics. The four heuristics have been coded using Java applications. 

Computational experiments have been performed using a computer with a Core i5, 3.20 GHz processor 

and 8 GB of RAM. We compare the result of the developed heuristics, BR-TSCH, BR-TSPH, BR-

TSCPH, and BR-IH, with the best-known results in the literature. 
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3.5.1 Data and experimental setting 

Since there are no specific benchmarks for the LRPSD in the literature, to the best of our knowledge, 

we have adapted some instances from the LRP.  

There are three benchmark data sets in the literature for the LRP: Barreto’s set which is introduced by 

Barreto (2004), Prodhon’s set which is introduced by Prins, et al. (2006a), and Akca’s set which is 

introduced by Akca et al. (2009). The Prodhon’s set and Akca’s set were not used to test our proposed 

heuristics because the solution of these two data sets has to contain at least two depots; this means the 

capacity of only one depot cannot cover the total demand of all customers. Therefore, they are not 

suitable for the LRPSD. In Barreto’s set some instances are suitable for the LRPSD because the 

capacity of one depot can cover the total demand of all customers, while the other instances are not 

suitable. Hence, we adapted 10 out of 17 instances, which are suitable based on depot capacity. 

Barreto has adapted these 10 instances from the literature related to the LRP and from the literature 

related to the VRP. These 10 instances consist of 1 instance by Perl (1983), 1 instance by Min et al. 

(1992), 5 instances by Gaskell (1967), and 5 instances by Christofides and Eilon (1969). 

The number of customers vary between 12 and 100, while the number of potential depots, range from 2 

to 10 depots. The vehicles capacity varies between 140 and 8000, whereas the capacity of potential 

depots varies between 280 and 15000. Instance names consist of name of author, number of customers, 

and number of potential depots, respectively. 

Table 3.1 shows the characteristics of the 10 instances which were adapted from Barreto’s set. It 

contains the name of each instance, number of customers in column n, number of potential depots in 

column m, vehicle capacity in column V.Q, and depot capacity in column D.Q.  
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No. Name n m V.Q D.Q 

1 Perl-12x2 12 2 140 280 

2 Gas-22x5 21 5 6000 15000 

4 Min-27x5 27 5 2500 9000 

5 Gas-29x5 29 5 4500 15000 

6 Gas-32x5 32 5 8000 15000 

6 Gas-32x5-B 32 5 11000 15000 

7 Gas-36x5 36 5 250 15000 

8 Chr-50x5 50 5 160 10000 

9 Chr-75x10 75 10 140 10000 

10 Chr-100x10 100 10 200 10000 

Table 3.1. Characteristics of 10 instances from Barreto's set 

Figure 3.12 and Figure 3.13 illustrate the distribution of customers and potential depots for two of the 

instances: Chr-50x5 and Gaskell29x5, respectively. For the instances of Chr-50x5 in Figure 3.12, we 

can note that the distribution of customers follows a normal distribution.  

 

Figure 3.12. Distribution of Customers and depots in Chr-50x5 

 

While the instances of Gaskell29x5 in Figure 3.13, the customer distribution is clustered. However, the 

distribution of depots location in Chr-50x5 and Gaskell29x5 follows a normal distribution.  
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Figure 3.13. Distribution of Customers and depots in Gaskell29x5 

 

This data set is available at http://sweet.ua.pt/sbarreto/_private/SergioBarretoHomePage.htm. 

 

3.5.2  Performance evaluation of the proposed heuristics  

In this section, we discuss the results obtained by the proposed four heuristics in order to illustrate their 

performance. Firstly, we compare the results of BR-TSCH, BR-TSPH, and BR-TSCPH with the result 

of the BR-IH. Secondly, to evaluate the efficiency of the proposed heuristics, the results have been 

compared to the best-known solution (BKS) in the literature for the benchmark instances and four other 

methods namely: Barreto Heuristic which is proposed by Barreto (2004), GRASP which is proposed by 

Prins, et al. (2006a), Memetic Algorithm with Population Management (MAPM) which is proposed by 

Prins, et al. (2006b), and Lagrangean relaxation Granular Tabu Search (LRGTS) by Prins, et al. (2007).  

Table 3.2 compares the result of three proposed heuristics, BRTSCH, BR-TSPH, BR-TSCPH with the 

result of the BR-IH. Table 3.3, 3.4, 3.5, and 3.6 present the details of the performance of BR-TSCH, 

BR-TSPH, BR-TSCPH, and BR-IH, and compare these results with the BKS and the four other 

methods, Barreto Heuristic, GRASP, MAPM, and LRGTS, respectively.   

In Table 3.2, the first column shows the instance names. The second column (Cost) presents the total 

cost of the Iterated heuristic.  The 3rd (cost) and 4th (gap) columns show the total cost of the Two-Stage 

clustering and its Gap with regard to the Iterated heuristic. The 5th (cost) and 6th (gap) columns show 

the total cost of the Two-Stage p-median and its Gap with regard to the Iterated heuristic. The 7th (cost) 
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and 8th (gap) columns show the total cost of the Two-Stage clustering and p-median and its Gap with 

regard to the Iterated heuristic.  

The percentage gap (gap) with respect to the Iterated heuristic is calculated as 

[(
BR_TSCH−BR_IH

BR_IH
) × 100].  The same formula is used to calculate the percentage gap of the Two-Stage 

p-median and the Two-Stage clustering and p-median.  

The first and second columns in tables 3.3, 3.4, 3.5, and 3.6 show the instance names and BKS values. 

The 3rd (cost) and 4th (gap/BKS) columns show the total cost of Barreto Heuristic and its Gap with 

regard to the BKS. The 5th and 6th columns show the total cost of GRASP and its Gap with regard to 

the BKS. The 7th and 8th columns show the total cost of MAPM and its Gap with regard to the BKS. 

The 9th and 10th columns show the total cost of LRGTS and its Gap with regard to the BKS. The 11th 

(cost) column in each table shows the total cost of the Two-Stage clustering, the Two-Stage p-median, 

the Two-Stage clustering and p-median, and the Iterated heuristic, respectively. The 12th (gap (1)), 13th 

(gap (2)), 14th (gap (3)), 15th (gap (4)), and 16th (gap (5)) columns compare the total cost of our 

methods with the BKS, Barreto Heuristic, GRASP, MAPM, and LRGTS, respectively. The percentage 

gap (gap) with respect to the BKS is calculated as [(
our best solution − BKS

BKS
) × 100]; the same formula is 

used to calculate the percentage gap with respect to the Barreto Heuristic, GRASP, MAPM, and 

LRGTS. The lowest, best solutions which match BKS are indicated in bold. 

  BR-IH   BR-TSCH BR-TSPH BR-TSCPH 

Name BKS Cost Gap% Cost Gap% Cost Gap% Cost Gap% 

Christo69-50x5  565.6 605.56 3.3 606 0.1 609.8 0.7 609.8 0.7 

Christo69-75x10  844.4 895.57 3.7 895.57 0 895.6 0 895.6 0 

Christo69-100x10  833.4 894.84 6.2 894.84 0 894.8 0 894.8 0 

Gaskell67-22x5  585.1 585.1 -0.4 656.47 12.2 629.5 7.6 585.1 0 

Gaskell67-29x5  512.1 566.28 10.6 566.28 0 566.3 0 577.7 2 

Gaskell67-32x5  562.2 562.27 -3.8 562.27 0 562.3 0 562.3 0 

Gaskell67-32x5-B 504.3 504.3 -0.1 504.3 0 504.3 0 504.3 0 

Gaskell67-36x5  460.4 460.4 -3.4 460.4 0 460.4 0 460.4 0 

Min92-27x5  3062 3266.24 6.6 3296.5 0.9 3296.5 0.9 3296.5 0.9 

Perl83-12x2 204 204 -- 204 0 204 0 204 0 

Average 8133.5 854.46 2.5 864.6 1.3 862.3 0.9 859.1 0.4 

 Table 3.2. Comparison among the proposed four heuristics 

Table 3.2 shows the comparison between results of the four proposed heuristics themselves. The first 

three heuristics: BR-TSCH, BR-TSPH, and BR-TSCPH are compared with the BR-IH because it 
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covers all depots. Therefore, we can identify which depot is the optimal one. On the other hand, we 

have noticed that the Iterated heuristic has the minimum percentage gap with regard to the BKS. It can 

also be seen that the Iterated heuristic has the minimum cost for all instances.  

Figure 3.14 shows the boxplot of the average percentage Gaps with regard to the Iterated heuristic. We 

can note that the average gap with regard to the BR-IH becomes smaller when we combine clustering 

technique and p-median model in one method. Figure 3.15 illustrates a chart of the average cost for the 

four proposed Biased Randomised heuristics. We can notice that the average cost of the BR-IH is the 

minimum average among the others.  

 

 Figure 3.14. Boxplot of the average percentage Gaps with regard to the BR-IH  

 

 

Figure 3.15. Chart of the average cost for the four proposed Biased Randomised heuristics 
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    Barreto Heuristic GRASP MAPM LRGTS BR-TSCH 

Name BKS Cost (gap/BKS) % Cost (gap/BKS) % Cost (gap/BKS) % Cost (gap/BKS) % Cost gap (1) % gap (2) % gap (3) % gap (4) % gap (5) % 

Christo69-50x5  565.6 582.7 3.0 599.1 5.9 565.6 0.0 586.4 3.7 606.00 7.1 4.0 1.2 7.1 3.3 

Christo69-75x10  844.4 886.3 5.0 861.6 2.0 866.1 2.6 863.5 2.3 895.57 6.1 1.0 3.9 3.4 3.7 

Christo69-100x10  833.4 889.4 6.7 861.6 3.4 850.1 2.0 842.9 1.1 894.84 7.4 0.6 3.9 5.3 6.2 

Gaskell67-22x5  585.1 591.5 1.1 585.1 0.0 611.8 4.6 587.4 0.4 656.47 12.2 11.0 12.2 7.3 11.8 

Gaskell67-29x5  512.1 512.1 0.0 515.1 0.6 512.1 0.0 512.1 0.0 566.28 10.6 10.6 9.9 10.6 10.6 

Gaskell67-32x5  562.2 571.7 1.7 571.9 1.7 571.9 1.7 584.6 4.0 562.27 0.0 -1.6 -1.7 -1.7 -3.8 

Gaskell67-32x5-B 504.3 511.4 1.4 504.3 0.0 534.7 6.0 504.8 0.1 504.3 0.0 -1.4 0.0 -5.7 -0.1 

Gaskell67-36x5  460.4 470.7 2.2 460.4 0.0 485.4 5.4 476.5 3.5 460.4 0.0 -2.2 0.0 -5.2 -3.4 

Min92-27x5  3062 3062 0.0 3062 0.0 3062.0 0.0 3065.2 0.1 3296.5 7.7 7.7 7.7 7.7 7.5 

Perl83-12x2 204 -- -- -- -- -- -- -- -- 204 0.0 -- -- -- -- 

Average 8133.5 897.5 2.3 891.2 1.5 895.5 2.5 891.5 1.7 864.7 5.1 3.3 4.1 3.2 4.0 

Table 3.3. Results of BR-TSCH 

 
    Barreto Heuristic GRASP MAPM LRGTS Two-Stage p-median 

Name BKS Cost (gap/BKS) % Cost (gap/BKS) % Cost (gap/BKS) % Cost (gap/BKS) % Cost gap (1) % gap (2) % gap (3) % gap (4) % gap (5) % 

Christo69-50x5  565.6 582.7 3.0 599.1 5.9 565.6 0.0 586.4 3.7 609.8 7.8 4.7 1.8 7.8 4.0 

Christo69-75x10  844.4 886.3 5.0 861.6 2.0 866.1 2.6 863.5 2.3 895.6 6.1 1.0 3.9 3.4 3.7 

Christo69-100x10  833.4 889.4 6.7 861.6 3.4 850.1 2.0 842.9 1.1 894.8 7.4 0.6 3.9 5.3 6.2 

Gaskell67-22x5  585.1 591.5 1.1 585.1 0.0 611.8 4.6 587.4 0.4 629.5 7.6 6.4 7.6 2.9 7.2 

Gaskell67-29x5  512.1 512.1 0.0 515.1 0.6 512.1 0.0 512.1 0.0 566.3 10.6 10.6 9.9 10.6 10.6 

Gaskell67-32x5  562.2 571.7 1.7 571.9 1.7 571.9 1.7 584.6 4.0 562.3 0.0 -1.6 -1.7 -1.7 -3.8 

Gaskell67-32x5-B 504.3 511.4 1.4 504.3 0.0 534.7 6.0 504.8 0.1 504.3 0.0 -1.4 0.0 -5.7 -0.1 

Gaskell67-36x5  460.4 470.7 2.2 460.4 0.0 485.4 5.4 476.5 3.5 460.4 0.0 -2.2 0.0 -5.2 -3.4 

Min92-27x5  3062 3062 0.0 3062 0.0 3062.0 0.0 3065.2 0.1 3296.5 7.7 7.7 7.7 7.7 7.5 

Perl83-12x2 204 -- -- -- -- -- -- -- -- 204 0.0 -- -- -- -- 

Average 8133.5 897.5 2.3 891.2 1.5 895.5 2.5 891.5 1.7 862.3 4.7 2.9 3.7 2.8 3.5 

Table 3.4. Results of BR-TSPH 
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    Barreto Heuristic GRASP MAPM LRGTS BR-TSCPH 

Name BKS Cost (gap/BKS) % Cost (gap/BKS) % Cost (gap/BKS) % Cost (gap/BKS) % Cost gap (1) % gap (2) % gap (3) % gap (4) % gap (5) % 

Christo69-50x5  565.6 582.7 3.0 599.1 5.9 565.6 0.0 586.4 3.7 609.8 7.8 4.7% 1.8 7.8 4.0 

Christo69-75x10  844.4 886.3 5.0 861.6 2.0 866.1 2.6 863.5 2.3 895.6 6.1 1.0% 3.9 3.4 3.7 

Christo69-100x10  833.4 889.4 6.7 861.6 3.4 850.1 2.0 842.9 1.1 894.8 7.4 0.6% 3.9 5.3 6.2 

Gaskell67-22x5  585.1 591.5 1.1 585.1 0.0 611.8 4.6 587.4 0.4 585.1 0.0 -1.1% 0.0 -4.4 -0.4 

Gaskell67-29x5  512.1 512.1 0.0 515.1 0.6 512.1 0.0 512.1 0.0 577.7 12.8 12.8% 12.1 12.8 12.8 

Gaskell67-32x5  562.2 571.7 1.7 571.9 1.7 571.9 1.7 584.6 4.0 562.3 0.0 -1.6% -1.7 -1.7 -3.8 

Gaskell67-32x5-B 504.3 511.4 1.4 504.3 0.0 534.7 6.0 504.8 0.1 504.3 0.0 -1.4% 0.0 -5.7 -0.1 

Gaskell67-36x5  460.4 470.7 2.2 460.4 0.0 485.4 5.4 476.5 3.5 460.4 0.0 -2.2% 0.0 -5.2 -3.4 

Min92-27x5  3062 3062 0.0 3062 0.0 3062.0 0.0 3065.2 0.1 3296.5 7.7 7.7% 7.7 7.7 7.5 

Perl83-12x2 204 -- -- -- -- -- -- -- -- 204 0.0 -- -- -- -- 

Average 8133.5 897.5 2.3 891.2 1.5 895.5 2.5 891.5 1.7 859.1 4.2 2.3% 3.1 2.2 2.9 

Table 3.5. Results of BR-TSCPH 

 

 
    Barreto Heuristic GRASP MAPM LRGTS BR-IH 

Name BKS Cost (gap/BKS) % Cost (gap/BKS) % Cost (gap/BKS) % Cost (gap/BKS) % Cost gap (1) % gap (2) % gap (3) % gap (4) % gap (5) % 

Christo69-50x5  565.6 582.7 3.0 599.1 5.9 565.6 0.0 586.4 3.7 605.6 7.1 3.9% 1.1 7.1 3.3 

Christo69-75x10  844.4 886.3 5.0 861.6 2.0 866.1 2.6 863.5 2.3 895.6 6.1 1.0% 3.9 3.4 3.7 

Christo69-100x10  833.4 889.4 6.7 861.6 3.4 850.1 2.0 842.9 1.1 894.8 7.4 0.6% 3.9 5.3 6.2 

Gaskell67-22x5  585.1 591.5 1.1 585.1 0.0 611.8 4.6 587.4 0.4 585.1 0.0 -1.1% 0.0 -4.4 -0.4 

Gaskell67-29x5  512.1 512.1 0.0 515.1 0.6 512.1 0.0 512.1 0.0 566.3 10.6 10.6% 9.9 10.6 10.6 

Gaskell67-32x5  562.2 571.7 1.7 571.9 1.7 571.9 1.7 584.6 4.0 562.3 0.0 -1.6% -1.7 -1.7 -3.8 

Gaskell67-32x5-B 504.3 511.4 1.4 504.3 0.0 534.7 6.0 504.8 0.1 504.3 0.0 -1.4% 0.0 -5.7 -0.1 

Gaskell67-36x5  460.4 470.7 2.2 460.4 0.0 485.4 5.4 476.5 3.5 460.4 0.0 -2.2% 0.0 -5.2 -3.4 

Min92-27x5  3062 3062 0.0 3062 0.0 3062.0 0.0 3065.2 0.1 3266.2 6.7 6.7% 6.7 6.7 6.6 

Perl83-12x2 204 -- -- -- -- -- -- -- -- 204 0.0 -- -- -- -- 

Average 8133.5 897.5 2.3 891.2 1.5 895.5 2.5 891.5 1.7 854.5 3.8 1.8% 2.6 1.8 2.5 

Table 3.6. Results of BR-IH 
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Table 3.3 summarises the results of the computational experiments for the BR-TSCH. The proposed 

heuristic has obtained the same results as the BKS in four instances, while its results are worse in the 

remaining instances. The main reason for low performance of this heuristic is that the problem is set to 

have only one depot whereas in the other algorithms, there are more than one depot. 

Regarding the other four heuristics, we found that our proposed heuristic has improved three instances 

with regard to the Barreto heuristic, MAPM, and LRGTS. Whereas, it improved one instance with 

regard to the GRASP.  

The average percentage gaps when comparing the proposed heuristic with BKS, Barreto heuristic, 

GRASP, MAPM, and LRGTS are 5.1%, 3.3%, 4.1%, 3.2% and 4.0%, respectively. Figure 3.16 shows 

the boxplot of the average percentage Gaps. We can note from the boxplot that the range of our gap is 

larger than other methods, which means its performance is less than other methods in terms of solution 

quality. The average computational time of the BR-TSCH is 2 sec.  

 

 Figure 3.16. Boxplot of the average percentage Gaps for the BR-TSCH 

 

Table 3.4 summarises the results of the computational experiments for the BR-TSPH. The proposed 

heuristic has obtained the same results of BKS for four instances, while its results are worse in the 

remaining instances. The main reason for low performance of this heuristic is that the problem is set to 

have only one depot whereas in the other algorithms, there are more than one depot. 

With regard to the other four heuristics, we found that our proposed heuristic has improved three 

instances when compared to Barreto heuristic, MAPM, and LRGTS, whereas it improved one instance 

in comparison with the GRASP.  
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The average percentage gaps when comparing the proposed heuristic with BKS, Barreto heuristic, 

GRASP, MAPM, and LRGTS are 4.7%, 2.9%, 3.7%, 2.8% and 3.5%, respectively. These percentage 

gaps are better than the BR-TSCH. Figure 3.17 shows the boxplot of the average percentage Gaps. We 

can note from the boxplot that the range of our gap is larger than other methods, which means its 

performance is less than other methods in terms of solution quality. The average computational time of 

the BR-TSPH is 5.5 sec.  

 

Figure 3.17. Boxplot of the average percentage Gaps for the BR-TSPH 

 

Table 3.5 summarises the results of the computational experiments for the BR-TSCPH. The proposed 

heuristic has obtained the same results of BKS for five instances, while its results are worse in the 

remaining instances. This means that combining the BR-TSCH and the BR-TSPH gives a better 

performance together, than each one alone. 

With regard to the other four heuristics, we found that our proposed heuristic has improved four 

instances with regard to Barreto heuristic, MAPM, and LRGTS. Whereas, it improved one instance 

regarding to the GRASP.  

The average percentage gaps when comparing the proposed heuristic with BKS, Barreto heuristic, 

GRASP, MAPM, and LRGTS are 4.2%, 2.3%, 3.1%, 2.2% and 2.9%, respectively. These percentage 

gaps are better than the BR-TSCH and the BR-TSPH. Figure 3.18 shows the boxplot of the average 

percentage Gaps. We can note from the boxplot that the range of our gap is larger than other methods, 

which means its performance is less than other methods in term of solution quality. The average 

computational time of the BR-TSCPH is 3.6 sec. 
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Figure 3.18. Boxplot of the average percentage Gaps for the BR-TSCPH 

 

Table 3.6 summarises the results of the computational experiments for the BR-IH. The proposed 

heuristic has obtained the same results of BKS for five instances, while its results are worse in the 

remaining instances.  

With regard to the other four heuristics, we found that our proposed heuristic has improved four 

instances with regard to Barreto heuristic, MAPM, and LRGTS. Whereas, it improved one instance 

with regard to the GRASP.  

The average percentage gaps when comparing the proposed heuristic with BKS, Barreto heuristic, 

GRASP, MAPM, and LRGTS are 3.8%, 1.8%, 2.6%, 1.8% and 2.5%, respectively. These percentage 

gaps are better than all three heuristics. Figure 3.19 shows the boxplot of the average percentage Gaps.  

We can note from the boxplot that the range of our gap is larger than other methods, which means its 

performance is less than other methods in term of solution quality. The average computational time of 

the Two-Stage clustering is 5.7 sec. 
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Figure 3.19. Boxplot of the average percentage Gaps for the BR-IH  

From all four methods we can note that our methods perform better with small instances and when 

customer distribution follows a normal distribution. Moreover, total cost of some instances will be less 

when we open more than one depot.   

 

 

3.6 Conclusion 

In this chapter, a general framework of the heuristic which consists of location heuristic and routing 

heuristic to solve the LRP with single depot is given. Four variants of the heuristic are developed called 

Two-Stage clustering, Two-Stage p-median, Two-Stage clustering and p-median, and Iterated heuristic. 

The first stage is solved by clustering technique, p-median model, clustering technique and p-median 

model together, and iterated framework, while the second stage of the four heuristics was solved using 

BR-CHW. This technique has been used to help heuristics to escape from local minima and explore 

different regions of the search space. 

To evaluate the performance of algorithms, computational experiments are carried out for different 

problem sizes ranging from 12 to 100 customers. Results obtained so far indicate that these four 

proposed heuristics are suitable to solve the LRP with single depot. This variant of the LRP (LRP with 

single depot), has some important applications such as server systems, and money collection.  

Future study should address two directions for improvement. The first direction is to improve the 

quality of results by adding a local search to the routing stage. The second direction is to extend the 
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LRPSD and propose novel mathematical models for the LRP with multi depots, which is covered in 

chapter 5, and LRP with stochastic demand.  

Further research is also required to investigate other heuristics to other extensions of the problem such 

as an LRP with more than one depot, and Green LRP through the use of electric vehicles. Furthermore, 

proposing heuristic and metaheuristic approaches to make location and routing decisions in integrated 

or sequential order, can be very fruitful in terms of quality of the solution. 
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 Multi-Depot Vehicle Routing 

Problem (MDVRP) 
 

4.1 Introduction 

 

In this chapter, we address MDVRP in the light of its relation to LRP with Multi-Depot. As we 

mentioned before, when depot locations are fixed in LRP, the problem reduces to the MDVRP. For that 

reason, the MDVRP is considered as a special case of the LRP. Therefore, a solution method for the 

MDVRP can be used to solve the LRP by adding a location decision to it, although this may not 

necessarily result in a good solution all the time. 

The main contribution of this chapter is covered in section 4.2. The MDVRP definition and the 

optimisation model are presented in section 4.3. In section 4.4, a description of the Tillman’s heuristic 

is given. Section 4.5 outlines the basis of our solution approach. Section 4.6 presents the computational 

experiments carried out on our method and the analysis of the results. Finally, section 4.7 draws some 

conclusions and discusses opportunities for future research. 
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4.2 Contribution 
 

We propose a heuristic to solve the MDVRP which is inspired by a classic heuristic suggested by 

Tillman (1969). He modified CWH to solve MDVRP and called it the Extended Clarke and Wright 

Heuristic (ECWH). An advantage of the developed heuristic is that it assigns customers to depots and 

generates routes for the vehicles at each depot simultaneously. Moreover, it has the same properties of 

the CWH such as simplicity of implementation, and capability to consider more constraints such as a 

distance constraint. To the best of our knowledge, this is the first time that Biased Randomised 

technique has been combined with ECWH to solve MDVRP. We call this new method Biased 

Randomised Extended Clarke and Wright Heuristic (BR-ECWH). 

There are two procedures to solve the MDVRP: (i) decomposing the MDVRP into VRPs by assigning 

customers to depots, then solving the VRPs separately for each depot and its assigned customers, and 

(ii) solving the whole MDVRP by assigning customers to depots and building routes for the vehicles at 

each depot simultaneously. The proposed heuristic brings these two procedures to solve the MDVRP 

together in a sequential manner; solving the whole MDVRP as one problem by using the BR-ECWH, 

then improving the solution by using BR-CWH. To the best of our knowledge, this is the first time to 

bring these two procedures together to solve the MDVRP. Moreover, it is the first time to combine two 

randomised versions of classical heuristics (BR-ECWH and BR-CWH) to solve the MDVRP.  

Furthermore, the iterative framework of this method can present many solutions with the same quality 

but with different characteristics. For example, the order of customers inside the same route, or it can 

present different routes with the same cost. These features cannot be obtained from the classic one.  

 

4.3 Optimisation model 

 

In the classical MDVRP, a set of customers are served by a homogeneous fleet of vehicles from multi 

distribution depots. Each customer has a demand which is known in advance and must be fully 

satisfied. Each vehicle in the homogeneous fleet has a fixed capacity that must be respected. This 

means that the total demand of customers in one route will be less than or equal to the vehicle capacity. 
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Also, each depot has a fixed capacity which also must be respected. Therefore, the total demand of 

customers that are served from a depot, should not exceed the capacity of that depot. On the other hand, 

each customer must be served by exactly one vehicle and each vehicle should depart and return to the 

same depot. There may be a limit on the distance traveled by each vehicle.  

The aim of the MDVRP is to assign customers to depots and design a set of routes for the 

homogeneous fleet of vehicles to serve all customers. In this problem, each vehicle should depart and 

return to the same depot, and the total distance traveled by the fleet is minimised. 

The MDVRP could be defined on a complete, weighted, and undirected network  

G = (V, E, C), where 𝑉 = {1, … , 𝑛} is a set of nodes (representing the depots, customers), and 𝐸 is a set 

of undirected edges (𝑖 , 𝑗), and 𝐶 = (𝑐𝑖𝑗) is the matrix of the traveling cost associated with the edges 𝐸. 

It is assumed that 𝐼 ⊆ 𝑉 be a set of depots with a capacity 𝑄𝑖 and 𝐽 ⊆ 𝑉 be a set of customers. A set 𝐾 

of identical vehicles of capacity 𝐷 is available. When used, each vehicle incurs a fixed cost 𝐹 and 

performs a single route. Each customer 𝑗 ∈ 𝐽  has a demand 𝑑𝑗 where 𝑑𝑗 ≤ 𝐷. Since 𝑑𝑗 ≤ 𝐷, there will 

never be a need for a node (customer) to be visited by more than one vehicle to satisfy its demand.  

The following figures illustrate a small example of the MDVRP with 2 depots and 21 customers. 

Figure 4.1 shows how customers are assigned to depots. While Figure 4.2 shows 4 vehicle routes, 

covering the customer demands through two routes for each depot.  

 
Figure 4.1. Assignment of customers to depots 
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Figure 4.2. Design vehicle routes   

The optimisation model of the MDVRP is formulated as a mixed integer linear programming problem. 

The MDVRP formulation is adapted from (Lim and Wang, 2005). In order to formulate the model, the 

following notation is used.  

 

Sets are defined as follows: 

𝑉 : Set of nodes, 𝑉 = 𝐼 ∪ 𝐽 

𝐼 : Set of depot nodes 

𝐽 : Set of customers to be serviced 

𝐾 : Number of available vehicles (fleet size) 

 

Parameters are defined as follows: 

𝑄𝑖 : Capacity of depot 𝑖 

𝑑𝑗 : Demand of customer 𝑗 

𝐷 : Capacity of each vehicle 

𝐹 : Fixed cost per vehicle used 

𝑐𝑖𝑗 : Traveling cost for edge (𝑖, 𝑗) 

 

Decision variables are defined as follows:  

𝑥𝑖𝑗𝑘 : {
1, if vehicle 𝑘 is used on route from node 𝑖 to node 𝑗
0, otherwise

 

𝑧𝑖𝑗   : {
1, if customer 𝑗 is served from depot 𝑖
0, otherwise
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The MDVRP mathematical model is given as follows: 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝑉𝑖∈𝑉 + ∑ ∑ ∑ 𝐹𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼                                                                           (4.1) 

Subject to 

∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾𝑖∈𝑉 = 1                                 ∀ 𝑗 ∈ 𝐽                                                                                      (4.2) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝐼 ≤ 1                                   ∀ 𝑘 ∈ 𝐾                                                                                    (4.3) 

∑ 𝑥𝑖𝑗𝑘𝑗∈𝑉 − ∑ 𝑥𝑗𝑖𝑘𝑗∈𝑉 = 0                     ∀ 𝑘 ∈ 𝐾,           ∀ 𝑖 ∈ 𝑉                                                              (4.4) 

∑ ∑ 𝑑𝑗𝑥𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝑉 ≤ 𝐷                              ∀ 𝑘 ∈ 𝐾                                                                                    (4.5) 

∑ 𝑑𝑗𝑧𝑖𝑗𝑗∈𝐽 ≤ 𝑄𝑖                                         ∀ 𝑖 ∈ 𝐼                                                                                      (4.6) 

𝑥𝑖𝑗𝑘 ∈ {0, 1}                                 ∀ 𝑖 ∈ 𝐼,       ∀ 𝑗 ∈ 𝐽,       ∀ 𝑘 ∈ 𝐾                                               (4.7) 

𝑧𝑖𝑗 ∈ {0, 1}                                   ∀ 𝑖 ∈ 𝐼,       ∀ 𝑗 ∈ 𝑉,                                                                   (4.8) 

𝑐𝑖𝑗 = ∞       𝑤ℎ𝑒𝑛 𝑖 = 𝑗   

The objective function (4.1) seeks to minimise the total cost, which includes the fixed and variable cost 

of the vehicles. Constraints (4.2) are the routing constraints that are imposed whereby each customer 

has to be visited exactly once by a single vehicle, whereas constraints (4.3) ensure that all routes have 

to start and end at a depot. Constraints (4.4) are the connectivity constraints to ensure that every vehicle 

leaves the customer after he has been served. Constraints (4.5) and (4.6) impose the capacity of each 

vehicle and the capacity of each depot, respectively. Constraints (4.7) and (4.8) determine integer 

variables.  

 

4.4 Tillman Heuristic for solving MDVRP 

 

Before explaining the proposed approach, it is useful to explain the ECWH which was published by 

Tillman (1969). The steps of the ECWH are similar to the steps of CWH other than calculation of the 

saving distance. The algorithm begins with an initial solution in which each customer is assigned to 

the nearest depot and served by one vehicle. Then, the solution is improved by joining customers 

on a route that minimises the distance travelled. The customers that are joined on one route are 

assigned to the depot associated with this improvement.  

The savings distance of Clark and Wright is  

𝑆𝑖𝑗 = 𝑑𝑖𝑜 + 𝑑𝑗𝑜 − 𝑑𝑖𝑗                                                          (4.9) 

While: 
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𝑆𝑖𝑗 : savings distance between node i and j 

𝑑𝑖𝑜 : distance between node i and the depot 

𝑑𝑗𝑜 : distance between node j and the depot 

𝑑𝑖𝑗 : distance between node i and node j 

In the case of the MDVRP, the savings must be calculated to reflect the true savings relative to 

each depot. The problem occurs in calculating the savings for two customers that are close to one 

depot and a much greater distance from a second depot. If customers selected to be joined are 

assigned to a depot based on equation (4.9), customers would be joined and assigned to the more 

distant depot, which is incorrect. Therefore, to compensate for this, the distance from each depot 

to each customer is modified by the following equation: 

𝑑̃𝑖
𝑘 = min

𝑠
𝑑𝑖

𝑠 − (𝑑𝑖
𝑘 − min

𝑠
𝑑𝑖

𝑠)                (4.10) 

𝑑̃𝑖
𝑘 : modified distance between node i and depot k 

min
𝑠

𝑑𝑖
𝑠 : distance between node i and the nearest depot 

𝑑𝑖
𝑘 : distance between node i and depot k 

Thus, the savings from joining two customers are then calculated as follows: 

𝑆𝑖𝑗
𝑘 = 𝑑̃𝑖

𝑘 + 𝑑̃𝑗
𝑘 − 𝑑𝑖𝑗                                             (4.11) 

𝑆𝑖𝑗
𝑘  : modified savings distance between node i and j to depot k 

𝑑̃𝑖
𝑘 : modified distance between node i and depot k 

𝑑̃𝑗
𝑘 : modified distance between node j and depot k 

𝑑𝑖𝑗 : distance between node i and node j 

The customers selected to be joined are those with the maximum savings where the following 

conditions must be satisfied: 

i) The combined demand on the new route should not exceed the vehicle capacities.  

ii) Customers i and j must not be on the same route.  

iii) If a customer is connected to two other customers, it is never considered for linking.  

iv) If one or more of the conditions are not satisfied this pair of customers are excluded from 

further consideration at this depot.  

If all the above conditions are satisfied, then these customers are joined at this depot and are eliminated 

from consideration at the other depots. 
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Then, the value of  𝑑̃𝑖
𝑘 for the customer that is linked to another customer at depot k is set equal to 𝑑𝑖

𝑘 , 

that is 

𝑑̃𝑖
𝑘 = 𝑑𝑖

𝑘                                                               (4.12) 

Then, the savings matrix at this terminal is updated, as required by this change. This completes one 

iteration and the process is repeated until no more customers can be joined. 

 

4.5 Two-Level Biased Randomised heuristic for solving 

MDVRP 
 

In this section, a Two-Level Biased Randomised heuristic (TLBRH) is proposed to solve the MDVRP. 

The proposed approach consists of two levels which are solved sequentially; the Global Level 

generates a good solution for MDVRP, and the Local Level improves the generated solution by Global 

Level.  

In the Global Level, MDVRP is solved by assigning customers to depots and building routes 

simultaneously. In the Local Level, MDVRP is decomposed to m VRP and each VRP solution is 

improved. Figure 4.3 shows the flowchart of the TLBRH.  

In the Global Level, the BR-ECWH (explained in the following text), is applied to assign customers to 

depots and generate a routing solution simultaneously. While in the Local Level, the BR-CWH 

(explained in Chapter 1), is employed for each depot to improve the routing solution which is allocated 

to that depot, as proposed by Juan et al. (2010). The main idea behind Biased Randomisation is the 

introduction of randomness in the greedy constructive heuristic.  

The BR-ECWH is chosen to solve the Global Level because of its ability to solve the assigning 

problem and routing problem simultaneously. Therefore, routing cost of takes into account allocation 

cost when customers are assigned to the depots. At Local Level, the BR-CWH is applied because it is a 

fast method and it is able to provide high-quality solutions, which can compete with the ones provided 

by much more complex exact and metaheuristics approaches, which are usually difficult to implement 

in practice. Moreover, Biased Randomisation technique enhances our method’s performance by 

introducing randomness to the procedure.    
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Figure 4.3. TLBRH for the MDVRP 

The solution procedure starts by using BR-ECWH to assign customers to depots and find a good 

routing solution, simultaneously.  This procedure is executed in the Global Level of the proposed 

heuristic. After that, the generated solution by Global Level with the minimum cost is chosen to be 

improved by BR-CWH without any change in customers’ assignment to depots. This procedure is 

executed in the Local Level of the proposed heuristic.  

To the best of our knowledge, this is the first time these two heuristics are combined together in one 

solution method to solve the MDVRP; the randomised version of the ECWH (BR-ECWH) and 

randomised version of the CWH (BR-CWH).  

The proposed method does not need a lot of parameters therefore there is no need to tune its 

parameters. Moreover, our method can generate many solutions with the same quality but with 

different characteristics. Thus, the decision makers can choose amongst these solutions based on their 

needs.   
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• The Global Level: 

The Global Level, as shown in Figure 4.4, starts by generating the dummy solution. The dummy 

solution consists of assigning each customer to the nearest depot and constructing a route to serve only 

one customer from its nearest depot. In this solution, we assume that each depot has unlimited capacity 

and unlimited vehicles to serve all customers that are assigned to it.  

 

Figure 4.4. Flowchart of the Global Level 
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After that, the savings list for all customers with consideration of all depots, is generated based on 

equation (4.11). The savings list allows us to explore the potential savings from merging two customers 

from the dummy solution in one route. Then, the savings list is sorted in descending order, which 

means the edge with the highest saving will be at the beginning of the saving list. After that, the Biased 

Randomised technique is combined with the heuristic after computing the savings list. The way of 

randomising the saving list was explained in Chapter 3.  

The next step is to choose an edge from the saving list to join two customers in one route. In the 

ECWH, selecting edges is based on their order in the saving list. Therefore, the edge with the highest 

savings value is chosen first. While in the BR-ECWH, we assign a selection probability, from the 

geometric distributions, to each edge in the savings list. By doing so, edges at the top of the list with a 

higher savings value, have a greater chance to be chosen – more than edges with a lower savings value.  

After choosing the edge based on the Biased Randomised technique, we check the feasibility of merge. 

The following conditions must be satisfied before joining two customers in one route: 

i) The combined demand on the new route should not exceed the vehicle capacities.  

ii) Customers must not already be on the same route.  

iii) If a customer is connected to two other customers, it is never considered for linking.  

iv) If one or more of the conditions are not satisfied this pair of customers are excluded from 

further consideration at this depot.  

If all the above conditions are satisfied, then these customers are joined at one route and assigned at 

this depot simultaneously. And they are eliminated from consideration at the other depots. Then, the 

value of  𝑑̃𝑖
𝑘 for the customer that is linked to another customer at depot k is set equal to 𝑑𝑖

𝑘 .  

The savings list is then updated as required by this change, which means one iteration is completed. If 

the savings list is not empty, the process is repeated, otherwise, the best solution is updated and more 

customers can be joined. If the maximum time of executing the Global level is reached, the best 

solution is presented, otherwise the whole heuristic is repeated.  
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• Local Level: 

After finishing the Global level, we are going to deal with each depot and its customers as VRP. The 

aim of this level is to improve the order of customers inside each route. To do that, we adapted the BR-

CWH which was proposed by Juan et al. (2010). The complete details of the BR-CWH were given in 

Chapter 3. 

4.6 Computational Experiments  

 

In this section, experimental results are presented. These results include minimising the total cost of the 

optimisation model given in section 4.3. Preliminary experiments have been conducted to evaluate the 

performance of the MDVRP solution methods. The TLBRH was coded by using Java applications. 

Computational experiments have been performed using a computer with a Core i5, 3.20 GHz processor 

and 8 GB of RAM.  

 

4.6.1 Data sets and experimental setting 

There are two benchmark data sets which are available in the literature and they have been used to test 

the performance of the proposed method.  

The first data set consists of 20 MDVRP instances. Some of the instances in this set have been obtained 

from the literature (Gillett and Johnson, 1976;  Chao et al. 1993) while other instances have been 

adapted from literature related to the VRP (Christofides and Eilon, 1969).  

Instances (1 – 7) were generated, originally, for the VRP by Christofides and Eilon (1969). Then, they 

were modified and adapted by Gillett and Johnson (1976) for the MDVRP. Instances (8 – 11) and (12 – 

20) were generated for the MDVRP by Gillett and Johnson (1976) and Chao et al. (1993), respectively.   

The number of customers in the first data set varies between 50 and 240 while, the number of depots 

range from 2 to 6. The vehicle capacity varies between 60 and 500, whereas the number of vehicles 

available at each depot ranges between 2 and 14.  
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Table 4.1 shows characteristics of the first data set. It contains names of each instance, number of 

customers in column n, number of depots in column m, number of vehicles available at each depot k, 

vehicle capacity in column V.Q, and maximum route length allowed L.  

 

 

No. Name n m k V.Q L 

1 p01 50 4 4 80 n/a 

2 p02 50 4 2 160 n/a 

3 p03 75 5 3 140 n/a 

4 p04 100 2 8 100 n/a 

5 p05 100 2 5 200 n/a 

6 p06 100 3 6 100 n/a 

7 p07 100 4 4 100 n/a 

8 p08 249 2 14 500 310 

9 p09 249 3 12 500 310 

10 p10 249 4 8 500 310 

11 p11 249 5 6 500 310 

12 p12 80 2 5 60 n/a 

13 p13 80 2 5 60 200 

14 p14 80 2 5 60 180 

15 p15 160 4 5 60 n/a 

16 p16 160 4 5 60 200 

17 p17 160 4 5 60 180 

18 p18 240 6 5 60 n/a 

19 p19 240 6 5 60 200 

20 p20 240 6 5 60 180 

Table 4.1. Characteristics of the first data set 

 

Figure 4.5 and Figure 4.6 illustrate the distribution of customers and depots for two instances from the 

first data set, p01 and p12, respectively. In Figure 4.5, we can note that customer distribution follows a 

normal distribution, while in Figure 4.6 we can see customers are located on rectangular diameters, and 

depots are located on rectangular centres. This data set is available at http://neo.lcc.uma.es/vrp/vrp-

instances/multiple-depot-vrp-instances. 

http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances.
http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances.
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Figure 4.5. Distribution of customers and depots in p01 

 

 

Figure 4.6. Distribution of customers and depots in p12 

 

The second data set consisting of 10 MDVRP instances were introduced by Cordeau et al. (1997). The 

number of customers in the second data set vary between 48 and 288, while the number of depots range 

from 4 to 6. The vehicle capacity varies between 170 and 200, whereas the number of vehicles 

available at each depot ranges between 1 and 6.  

Table 4.2 shows characteristics of the second data set. It contains names of each instance, number of 

customers in column n, number of depots in column m, number of vehicles available at each depot k, 

vehicle capacity in column V.Q, and maximum route length allowed L.  
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No. Name n m k V.Q L 

1 pr01 48 4 1 200 500 

2 pr02 96 4 2 195 480 

3 pr03 144 4 3 190 460 

4 pr04 192 4 4 185 440 

5 pr05 240 4 5 180 420 

6 pr06 288 4 6 175 400 

7 pr07 72 6 1 200 500 

8 pr08 144 6 2 190 475 

9 pr09 216 6 3 180 450 

10 pr10 288 6 4 170 425 

Table 4.2. Characteristics of the second data set 

 

Figure 4.7 and Figure 4.8 illustrate the distribution of customers and depots for two instances from the 

first data set, pr01 and pr07, respectively. In Figure 4.7, we can note that customer distribution follows 

a normal distribution, while in Figure 4.8 we can see customers are clustered in groups. This data set is 

available at http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances. 

 

 

Figure 4.7. Distribution of Customers and depots in pr01 
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Figure 4.8. Distribution of Customers and depots in pr07 

 

4.6.2 Analysis of the results of the TLBRH  

In this section, we discuss the results obtained by the two-level heuristic in order to illustrate the 

potential of our solution methods. The results have been compared to the best-known solution (BKS) in 

the literature for the benchmark instances. Table 4.3 and 4.4 present the details of the performance of 

the proposed method in the first data set and the second data set, respectively.  

The first and second column in each table shows the instance name and BKS values. The following 

columns present the solution obtained by the proposed method, and the percentage gap with respect to 

the BKS, calculated as [(
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) × 100].  
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No. Name n BKS T (min) TLBRH Gap % 

1 p01 50 576.87 0.53 587.7 1.84 

2 p02 50 473.53 0.81 485.06 2.38 

3 p03 75 641.19 0.96 660.49 2.92 

4 p04 100 1001.59 2.57 1027.15 2.49 

5 p05 100 750.03 2.09 768.93 2.46 

6 p06 100 876.5 2.06 892.13 1.75 

7 p07 100 881.97 2.29 910.9 3.18 

8 p08 249 4372.78 19.65 4551.39 3.92 

9 p09 249 3858.66 19.3 4007.59 3.72 

10 p10 249 3631.11 19.92 3793.09 4.27 

11 p11 249 3546.06 19.52 3730.32 4.94 

12 p12 80 1318.95 1.09 1320.74 0.14 

13 p13 80 1318.95 0.98 1409.67 6.44 

14 p14 80 1360.12 0.98 1454.16 6.47 

15 p15 160 2505.42 4.18 2608.55 3.95 

16 p16 160 2572.23 3.32 2677.27 3.92 

17 p17 160 2709.09 3.43 2914.47 7.05 

18 p18 240 3702.85 13.98 3884.93 4.69 

19 p19 240 3827.06 7.95 4029.77 5.03 

20 p20 240 4058.07 9.26 4336.39 6.42 

Average 6.74   3.90 

Table 4.3. The first data set 

 

From Table 4.3, which summarises the results obtained for the first data set, we can observe that the 

gap percentage increases with the number of customers in each instance. Figure 4.9 shows the 

relationship between the gap percentage and the number of customers with correlation coefficient (R = 

0.44). While the average gap percentage is 3.9%. The average computational time is 8.5 seconds. 

However, the average computational times for the BKS is 155 seconds.  
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Figure 4.9. The gap based on the number of customers for the first data set  

 

No. Name BKS T (min) TLBRH Gap % 

21 pr01 861.32 1.02 893.06 3.55 

22 pr02 1307.34 3.96 1338.04 2.29 

23 pr03 1803.8 6.61 1847.2 2.35 

24 pr04 2058.31 11.41 2131.91 3.45 

25 pr05 2331.2 20 2411.41 3.33 

26 pr06 2676.3 20 2678.443 0.08 

27 pr07 1089.56 1.85 1104.44 1.35 

28 pr08 1664.85 6.44 1709.77 2.63 

29 pr09 2133.2 18.88 2190.62 2.62 

30 pr10 2868.26 20 3015.23 4.87 

Average 11.02   2.65 

Table 4.4. The second data set 

From Table 4.4, which summarises the results obtained for the second data set, we can observe the 

same trend of higher values between the gap percentage and the number of customers in each instance. 

The gap increases when the number of customers increase, except in instance p06. However, the 

average gap percentage in this data set is lower than the average gap percentage in the first data set. 

The reason behind this is believed to be related to the rate of customers for each vehicle. For the first 

data set, the average rate of customers for each vehicle is 7.3 customer/vehicle, while for the second 
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data set it is 12 customer/vehicle. The average gap is 2.65%, while the average computational time is 

6.3 seconds. However, the average computational times for the BKS is 110 seconds.  

When comparing the computational times of the first and second data we find that the computational 

times of the second data set is longer than the computational times of the first data set. This result is 

compatible with result of Gillett and Johnson (1976). The average number of depots in the first data set 

is 4, while the average number of depots in the second data set is 5.  

In general, the average gap of our method is 3.9 and 2.65 for the first and the second data set, 

respectively. These gaps are acceptable when we look at the average computational time, which is 

reasonably low when compared to other approaches that employ a Biased Randomised technique, such 

as Juan et al. (2016). They have combined Biased Randomised technique with ILS to solve the the 

same benchmark of the MDVRP. Their average computational time is 277 seconds.  

Moreover, we can observe in Table 4.3 and 4.4 that as the instances get larger, the performance of the 

two-level deteriorates.  

To sum up, the two-level has a considerably good performance with very low computational time, 

which is highly preferable when a quick solution is required. 

 

4.7 Conclusion 

 

A description of a Biased Randomised heuristic to solve the MDVRP is given. This approach is based 

on combining a classic constrictive heuristic with the Biased Randomised technique in an iterative 

framework. Our method consists of two levels; Global Level and Local Level. The Global Level solves 

the whole MDVRP by using BR-ECHW, while the Local Level improves the solution obtained from 

the Global Level by applying BR-CWH for each depot with its customers individually. The Biased 

Randomised technique has been used to help heuristics to escape from local minima and explore 

different regions of the search space. 

To evaluate the performance of algorithms, computational experiments are carried out for different 

problem sizes ranging from 48 to 288 customers, and number of depots ranging from 2 to 6. The results 
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obtained so far indicate that this proposed heuristic is suitable to solve the MDVRP as the 

computational time is short and the average gap is small. 

The MDVRP has many real important applications such as food distribution, service sector, drag 

distribution, and mail delivery.  

There are some limitations for the proposed method. Firstly, the two-level method is a heuristic and it 

seems that it gets stuck in local optima. Secondly, when the rate of customers per vehicles increase, the 

gap increases; this means its performance deteriorates when the rate increases.  

Future study should address two directions for improvement. The first direction is to improve the 

quality of results by adding a local search to the routing stage, or integrate our method with a 

metaheuristic such as Tabu Search or VNS. The second direction is to extend the MDVRP and propose 

novel mathematical models for the split MDVRP. 

Finally, the practicality and simplicity of our solution method, with much less parameters, is notable 

when compared to complex methods in the literature with exhaustive fine-tuning procedures. 

Therefore, our method can be easily integrated in transport systems for supply chain management.  

In a nutshell, the results are promising to extend the suggested solution methods to consider location 

decision towards the LRP. 
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 Location Routing Problem 

with Multi-Depot (LRPMD) 
 

5.1 Introduction 

 

The LRPMD incorporates the three main decisions in supply chain management: the strategic level, the 

tactical level, and the operational level. These three decisions simultaneously address facility location, 

customer assignment, and route design. Therefore, the LRPMD is considered as one of the most 

complex problems in logistics.  

It is not surprising that exact methods have been applied to solve only small size LRPMD problems, 

because the computational time increases exponentially with the problem size (Mousavi and Tavakkoli-

Moghaddam, 2013). Alternatively, metaheuristic methods have been used widely to solve the LRPMD, 

especially after the huge development in computers. While metaheuristics provide solutions with high 

quality, they consume more computational times compared to heuristics and need more parameters 

(Juan et al. 2010). Moreover, metaheuristics lack flexibility and need more effort in implementation.  

Heuristics have also been used to solve the LRPMD and they are faster than exact methods and 

metaheuristics (Juan et al., 2010). However, the quality of solutions obtained by heuristics are less than 
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the quality of solutions obtained by metaheuristics (Juan et al., 2011). In this case, if we can increase 

the efficiency and effectiveness of heuristics without increasing the computational time, we can, then, 

increase the quality of the solution.  

We have shown the effectiveness of the Biased Randomised technique to improve the performance of a 

classical heuristic when solving the LRPSD in Chapter 3, and MDVRP in Chapter 4. Therefore, in this 

chapter, we attempt to examine the ability of this technique on a more complex problem.  

Hence, we develop a new and fast heuristic and a metaheuristic to solve the LRPMD. The heuristic 

combines Biased Randomised technique with ECWH in a nested framework. As we mentioned in 

Chapter 4, in the nested framework, the routing stage is embedded into the location phase. We have 

adapted this framework because we consider the LRPMD as a location problem by taking the routing 

factor into consideration. In this framework, the FLP is the main problem, and the routing problem is 

the subordinate problem. Therefore, by using this framework, we have chosen not to treat the location 

and routing problems as if they are on the same footing (Nagy and Salhi, 1996b).The metaheuristic 

incorporates Biased Randomised technique into a Variable Neighbourhood Search (VNS) framework 

and therefore called Biased Randomised Variable Neighbourhood Search (BR-VNS). 

The general framework of Biased Randomised heuristics consists of two stages, namely the initial stage 

and the improvement stage. In the initial stage, which is considered as a selection of promising 

solutions, depots to be opened are determined, customers are allocated to opened depots, and routing to 

serve customers are designed. The initial solution steps are repeated with different configurations of 

opened depots, in order to find the most promising solution. In the improvement stage, which is 

considered as a solution refinement, the best solution obtained from the initial stage, with the minimum 

cost, is selected to be improved on two levels: Global Level and Local Level. In the global level, we 

combine the BR-ECWH to improve the customer allocation decision and routing decision. While in the 

local level we improve routing intensively by applying the BR-CWH for each depot, to improve the 

routing allocated to that depot, as proposed by Juan et al., (2010) . 

On the other hand, the general framework of the Biased Randomised metaheuristic consists of 

generating an initial solution and improving it by using the VNS. The initial solution is generated by 

allocating customers to opened depots through Biased Randomised technique. Then the BR-CWH, 

which is described in Chapter 3, is applied to solve the routing problem.  
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To show the validity of our proposed method, we carry out computational experiments by using well-

known benchmark data sets from the literature. We compare the results obtained by our solution 

method with the best-known solutions. The computational experiments show that the heuristic 

generates good quality solutions in a very reasonable computational time. 

This chapter consists of the main contributions in section 5.2. The optimisation model of the LRPMD 

is stated in section 5.3. Section 5.4 outlines the details of the proposed solution methods. Section 5.5 

presents the computational experiments carried out and the analysis of the results. Finally, section 5.6 

draws some conclusions and discusses opportunities for future research. 

 

5.2 Contribution 

 

We can indicate three main contributions in this chapter. The first two contributions are developing a 

novel Biased Randomised heuristic and a novel Biased Randomised metaheuristic to solve the 

LRPMD. The third contribution lies within the first and second contribution and it is about embedding 

and devising the Biased Randomised technique into both heuristic and metaheuristic, which has been 

used to solve different combinatorial problems, in a new way.  

As for the first contribution, we add a simple, but fast and efficient component, to Tillman’s heuristic, 

to deal with the location decision. As mentioned before, the heuristic by Tillman (1969) was proposed 

mainly to solve the MDVRP, and to the best of our knowledge it has not been used to solve any other 

problem. It can be observed clearly that it is has not been given the same amount of attention in the 

literature as the CWH. Therefore, our novel approach improves this classic heuristic to solve the 

MDVRP, which has resulted after the location decision is made in the LRPMD. As mentioned in 

Chapter 2, there are three frameworks to solve the LRPMD, the sequential framework, the iterative 

framework, and the nested framework. In our study, we have shown that the routing problem can be 

solved in two main steps. Firstly, by treating the whole problem as a MDVRP, and secondly, by 

dividing the whole problem into many VRPs based on the number of depots. In our solution method, 

we have used these two methods together. Therefore, we solve the routing stage in the LRPMD as a 

MDVRP first, then, we improve the solution by dividing MDVRP and re-routing several resulting 

VRPs. 
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The second contribution is to develop a Biased Randomised Variable Neighbourhood Search (BR-

VNS) metaheuristic to solve the LRPMD. This metaheuristic has been developed in collaboration with 

our collaborators at the Internet Interdisciplinary Institute (IN3) in the Universitat Oberta de Catalunya 

in Spain, and Universidad de La Sabana in Colombia.  

The last contribution is to combine the Biased Randomised technique with the Tillman’s heuristic, 

which comes after the location component of LRPMD, to improve its performance. The Biased 

Randomised technique has been applied successfully to improve the performance of classic heuristics, 

such as CWH (Juan et al., 2010), to solve some combinatorial problems in the literature. In this study, 

we also make use of its powerful characteristic to randomise search in a heuristic, in order to improve 

the results.  

 

5.3 Optimisation model  

 

We consider the LRPMD when depots and vehicles have a limited capacity. The problem is to 

determine the number and locations of depots, assignment of customers to opened depots, and the 

corresponding delivery routes, so that the total costs, consisting of depot opening costs, and variable 

and fixed costs for vehicles, are minimised.  

Each vehicle takes exactly one route starting from the depot, visits a subset of the customers and 

returns to the same depot. In addition, customer’s demand cannot be split among different routes and 

the sum of demands in each route must not exceed the vehicle capacity. Furthermore, the total demand 

of customers assigned to one open depot must not exceed its capacity. 

The LRPMD model in this research is defined on a complete, weighted, and undirected network G = 

(V, E, C), where 𝑉 = {1, … , 𝑛} is a set of nodes representing the depots and customers, and 𝐸 is a set of 

undirected edges (𝑖 , 𝑗), and 𝐶 = (𝑐𝑖𝑗) is the matrix of traveling cost associated with edge (𝑖 , 𝑗) in 𝐸. In 

this study, developed heuristics only consider single depot while multi depots will be addressed in the 

future. It is assumed that 𝐼 ⊆ 𝑉 is a set of potential depots and 𝐽 ⊆ 𝑉 is a set of customers. A capacity 

𝑄𝑖 and an opening cost 𝑓𝑖 are associated with each depot site 𝑖 ∈ 𝐼. A set 𝐾 of identical vehicles of 

capacity 𝐷 is available. When used, each vehicle incurs a fixed cost 𝐹 and performs a single route. 

http://www.uoc.edu/portal/en/in3/index.html
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Each customer 𝑗 ∈ 𝐽  has a demand 𝑑𝑗 where 𝑑𝑗 ≤ 𝐷. Since 𝑑𝑗 ≤ 𝐷, there will never be a need for a 

node (customer) to be visited by more than one vehicle to satisfy its demand. 

Figure 5.1 illustrates an example of LRPMD.  Firstly, in Figure 5.1 (a), there are six potential depots 

and 24 customers. In Figure 5.1 (b), three depots are selected to be opened and three are closed. Figure 

5.1 (c) shows how customers are assigned to opened depots. Finally, vehicle routes are calculated in 

figure 5.1 (d).  

 

 
Figure 5.1. An illustrative example of LRPMD 

 

The optimisation model is formulated as a mixed integer linear programming problem and is adapted 

from Prins et al., (2007). In order to formulate the model, the following notation is introduced.  

 

Sets are defined as follows: 

𝑉 : Set of nodes, 𝑉 = 𝐼 ∪ 𝐽 
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𝐼 : Set of potential depot nodes 

𝐽 : Set of customers to be serviced 

𝐾 : Number of available vehicles (fleet size) 

 

Parameters are defined as follows: 

𝑓𝑖 : The fixed cost of opening a depot at 𝑖  

𝑄𝑖 : Capacity of depot 𝑖 

𝑑𝑗 : Demand of customer 𝑗 

𝐷 : Capacity of each vehicle 

𝐹 : Fixed cost per vehicle used 

𝑐𝑖𝑗 : Travelling cost for edge (𝑖, 𝑗) 

 

Decision variables are defined as follows:  

𝑥𝑖𝑗𝑘 : {
1, if vehicle 𝑘 is used on route from node 𝑖 to node 𝑗
0, otherwise

 

𝑦𝑖 :    {
1, if a depot is located at site 𝑖 
0, otherwise

 

𝑧𝑖𝑗 :   {
1, if customer 𝑗 is served from depot 𝑖
0, otherwise

 

 

The LRPMD formulation is as follows: 

 

𝑀𝑖𝑛 ∑ 𝑓𝑖𝑦𝑖𝑖∈𝐼 + ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝑉𝑖∈𝑉 + ∑ ∑ ∑ 𝐹𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼                                                         (5.1) 

Subject to 

∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾𝑖∈𝑉 = 1                                        ∀ 𝑗 ∈ 𝐽                                                                                (5.2) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝐼 ≤ 1                                          ∀ 𝑘 ∈ 𝐾                                                                              (5.3) 

∑ 𝑥𝑖𝑗𝑘𝑗∈𝑉 − ∑ 𝑥𝑗𝑖𝑘𝑗∈𝑉 = 0                            ∀ 𝑘 ∈ 𝐾,           ∀ 𝑖 ∈ 𝑉                                                        (5.4) 

∑ 𝑥𝑖𝑢𝑘𝑢∈𝐽 + ∑ 𝑥𝑢𝑗𝑘𝑢∈𝑉\{𝐽} ≤ 1 + 𝑧𝑖𝑗          ∀ 𝑖 ∈ 𝐼,             ∀ 𝑗 ∈ 𝐽,         ∀ 𝑘 ∈ 𝐾                                  (5.5) 

∑ ∑ 𝑑𝑗𝑥𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝑉 ≤ 𝐷                                     ∀ 𝑘 ∈ 𝐾                                                                              (5.6) 

∑ 𝑑𝑗𝑧𝑖𝑗𝑗∈𝐽 ≤ 𝑄𝑖𝑦𝑖                                            ∀ 𝑖 ∈ 𝐼                                                                                (5.7) 

𝑥𝑖𝑗𝑘 ∈ {0, 1}                                           ∀ 𝑖 ∈ 𝐼,       ∀ 𝑗 ∈ 𝐽,       ∀ 𝑘 ∈ 𝐾                                      (5.8) 

𝑦𝑖 ∈ {0, 1}                                               ∀ 𝑖 ∈ 𝐼                                                                            (5.9) 
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𝑧𝑖𝑗 ∈ {0, 1}                                              ∀ 𝑖 ∈ 𝐼,       ∀ 𝑗 ∈ 𝑉,                                                       (5.10) 

𝑐𝑖𝑗 = ∞       𝑤ℎ𝑒𝑛 𝑖 = 𝑗   

 

The objective function (5.1) seeks to minimise the total cost, which includes the fixed cost of the 

selected facilities and the fixed and variable cost of the vehicles. Constraints (5.2) are the routing 

constraints that are imposed: each customer has to be visited exactly once by a single vehicle; whereas 

constraints (5.3) ensure that all routes have to start and end at a depot. Constraints (5.4) are the 

connectivity constraints to ensure that every vehicle leaves a customer after he has been served. 

Constraints (5.5) specify that a customer can be assigned to a depot only if a route linking them is 

opened. Constraints (5.6) and (5.7) impose both the capacity of vehicle and capacity of the depot. 

Constraints (5.8), (5.9), and (5.10) define integer variables.  

 

5.4 The proposed Biased Randomised methods 

 

In this section we will describe the proposed methods: the Two-Stage Biased Randomised heuristic 

(TSBRH), and the Biased-Randomized Variable Neighbourhood Search (BR-VNS).   

 

5.4.1 Two-Stage Biased Randomised heuristic 

In this section, a Two-Stage Biased Randomised Heuristic (TSBRH) is proposed in the nested 

framework to deal with the LRPMD.  

In the nested framework, the routing stage is embedded into the location phase. Therefore, the FLP is 

treated as the main problem, while routing problem is treated as the subordinate problem. This is 

because the LRP is essentially a location problem, with the routing factor taken into consideration 

(Nagy and Salhi, 1996). The advantage of this framework is to avoid the drawback of the iterated 

framework. In this framework, a configuration of potential depots is selected, then, the routing problem 

is solved. This procedure is repeated many times by choosing different configurations of potential 

depots to find out the solution with the total minimum cost of depots and routing.  

The proposed approach consists of two stages: initial stage, and improvement stage. In the first stage, 

some depots are selected to be opened among the list of potential candidates. Then, the ECWH 
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proposed by Tillman (1969), which is explained in Chapter 4, is applied to allocate customers to open 

depots, and find an initial solution. This stage is repeated for different combinations of depots to 

investigate the solution space. The best solutions, with best combinations of depots found during the 

first stage, are then improved throughout the second stage which includes two levels namely, the 

Global and Local Level. In the Global Level, the BR-ECWH, which is explained in Chapter 4, is 

applied for the best initial solution resulting from the first stage. In the Local Level, the BR-CWH, 

which is explained in Chapter 1, is employed for each depot, to improve the routing allocated to that 

depot, as proposed by Juan et al (2011a). The main idea behind Biased Randomisation is the 

introduction of randomness in the greedy constructive heuristic. Figure 5.2 shows the flowchart of the 

proposed method.  
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Figure 5.2. Two-Stage Biased Randomised Heuristic for the LRPMD 

 

5.4.1.1 First stage: Selection of promising solutions 

The first stage of the proposed approach consists of a fast generation of N feasible and promising 

solutions for the LRPMD. Each of these solutions is obtained by the following procedure:  

1) In the first step we determine a lower and an upper bound (LB and UB) for the number of 

depots to be opened.  
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2) The lower bound is calculated as the quotient between the total demand and the highest depot 

capacity.  

3) The upper bound is 60% if the potential depots are 5, 40% if the potential candidates are 8 or 

10, and 30% if the potential depots are 15, as suggested in Nagy and Salhi (1996).  

4) At this point, all combinations of m depots are tested, with LB ≤ m ≤ UB.  

5) For each of these combinations, the LRPMD is reduced to MDVRP and solved by the ECWH. 

The ECWH begins with an initial solution in which each customer is assigned to the nearest depot. 

Then, the solution is improved by joining customers together on a route, in order to minimise the total 

travel distance. The customer routes are then assigned to the depot associated with this improvement. 

The customers selected to be joined are those with the maximum savings where the following 

conditions must be satisfied. They are: 

1) The combined demand of the new route should not exceed the vehicle capacity.  

2) Customers i and j must not be on the same route.  

3) If a customer is already connected to two other customers, it is never considered for linking.  

If one or more of the conditions are not satisfied, this pair of customers is excluded from being served 

further by the current depot and they are considered in the other depots. If all the conditions are 

satisfied, then the customers are serviced by the current depot and are eliminated from consideration at 

the other depot. The whole description of the ECWH is given in Chapter 4.  

 

5.4.1.2 Second stage: Improvement of promising solutions 

After choosing depots that will serve customers, the LRPMD is reduced to the MDVRP because the 

other depots are eliminated from the solution.  

As we explained in Chapter 4, the TLBRH consists of two levels, Global Level and Local Level. The 

TLBRH is employed in the second stage of our current method to solve the LRPMD. It will improve 

the solution of the LRPMD by reallocating customers and by improving the routing for the best 

solution found in the first stage. In the following subsections, we will give a reminder about the Global 

Level and Local Level. 
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• Global level  

In this level the customer reallocation and routing are improved for the best solution found in the first 

stage, by means of the BR-ECWH which is described in Chapter 4.  

The BR-ECWH consists of combining Biased Randomisation with ECWH, by randomising the saving 

list and iterating the heuristic during a given time, which is defined based on the instance size, to get 

different solutions of similar quality. These are the solutions which are very close to the Best known 

Solution (BKS). 

 

• Local level 

In the local level, we apply the BR-CWH which is proposed by Juan et al., (2010) to improve the 

routing of each depot with its customers individually. The BR-CWH was explained in Chapter 3.  

 

5.4.2 A Biased Randomised Variable Neighbourhood Search (BR-VNS) 

In order to generate higher-quality solutions for the G-LRPMD, we developed in collaboration with a 

Biased-Randomised Variable Neighbourhood Search (BR-VNS) metaheuristic. 

Variable Neighbourhood Search (VNS) metaheuristic was firstly introduced in 1977 by P. Hansen and 

N. Mladenovic. The main reason that it is still widely used nowadays, is that it can escape from local 

optima exploring successively or at random using different neighbourhoods structures. Therefore, VNS 

is a very powerful and effective solution method. In addition, VNS is a single-solution metaheuristic 

and it is a memoryless solution method. This means that there is no information dynamically extracted 

to be used during the search, as it is the case in nature-inspired solution methods. Due to this fact, it 

very adaptable to real-life problems and easy to implement. Also, BR-VNS in this study has very few 

parameters, which introduces randomness with very few parameters to have more efficiency. 

The initial solution in this metaheuristic is generated by allocating customers to depots according to the 

savings value 𝜇𝑖𝑗 associated with serving customer j from depot i. The value 𝜇𝑖𝑗 is defined as the 

saving resulting from the cost difference between serving customer j from depot i and serving customer 

j from its best alternative depot i*, i.e.  
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𝜇𝑖𝑗 = 𝑐𝑖𝑗 − 𝑐𝑖∗𝑗                                                                 (5.11)  

Once the savings list has been created for each depot, customers are allocated to depots using a round-

robin process. During this process, Biased Randomisation techniques are employed so that different 

allocations are quickly generated each time the procedure is run. At each turn a depot chooses its next 

customer according to a geometric distribution with parameter 𝛽, as proposed by (Juan et al, 2015). 

After allocating customers to depots, the BR-CWH is used to solve the routing problem.  

During construction of the feasible solutions, the upper and lower bounds (UB/LB) concerning the 

number of depots to be opened, are computed under the consideration of overall customers' demand 

and depots' capacities. Subsequently, different random combinations of m depots (LB ≤ m ≤ UB) are 

generated. The customer allocations and delivery route planning are then optimised during nInitialIters 

iterations. From the initial solutions, the nPromising most promising ones are stored within a set of 

baseSols. Each potential solution is then further improved through a VNS metaheuristic framework. 

The BR-VNS framework is based on construction of different solution neighbourhoods, which are then 

passed through a given local search operator. For any solution baseSol ∈ baseSols, different shaking 

procedures are executed to alter the current solution and obtain different neighbourhood  

structures Nl (l = 1, 2, … , lmax). The shaking procedure consists of randomly exchanging the depot 

allocation of %p of all customers. Furthermore, the percentage values applied at this point are 

increasingly taken from the range p = 0.05, 0.10, … , 0095. 

After the structure of each baseSol has been changed to create a new solution newSol, a local search is 

applied to find the local minimum within the current neighbourhood solution. We have designed three 

different local search operators namely: customer swap inter-route, inter-depot node exchange, and 

cross-exchange. In each iteration one of these local search operators is randomly chosen. 

In customer swap inter-route, two customers are chosen randomly to swap between different routes of 

the same depot. In inter-depot node exchange, two customers are chosen randomly to swap between 

different depots. In cross-exchange three customers (non-consecutive) are chosen randomly to 

interchange from different depots. 

A newSol is accepted as the new baseSol if the associated cost of the former outperforms that of the 

latter. Moreover, we also apply a simulated annealing-like acceptance criterion for non-improving 

solutions, which uses an initial temperature T0 and a cooling constant coolingFactor as described by 
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Henderson et al (2003). Finally, the current bestSol is updated whenever it is outperformed by the 

newSol. This procedure is repeated until a predefined stopping criterion (maxIter) is reached. Then, the 

best found solution is returned to the decision maker. Algorithm 5.1 shows the pseudocode of  

the BR-VNS. 

 

 
Algorithm 5.1. Framework of the BR-VNS metaheuristic  
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5.5 Computational experiments 

 

Computational experiments have been conducted to evaluate the performance of the proposed solution 

method for the LRPMD. The TSBRH was coded by using Java applications. Computational 

experiments have been performed using a 2.3 Ghz Quad-Core AMD Opteron(tm) processor with 8 GB 

of RAM and running under CentOS release 6.6. The average value of results is calculated and it is 

called Average Total cost. 

 

5.5.1 Data and experimental setting 

There are three benchmark data sets which are available in the literature and have been used to test the 

performance of the proposed method.  

The first data set was introduced by Barreto (2004) and its name is Barreto’s set because it comes from 

Barreto’s Ph.D. thesis on clustering heuristics for the LRPMD. Some of the instances in this set have 

been obtained from the literature (Perl, 1983; Min et al., 1992; Daskin, 1995), while other instances 

have been adapted from literature related to the VRP (Gaskell, 1967; Christofides and Eilon, 1969). 

The total number of instances in this data set are 17 instances; 3 instances have been obtained from Perl 

(1983), 2 instances have been obtained from Min et al. (1992), 2 instances have been obtained from 

Daskin (1995), 6 instances have been adapted from Gaskell (1967), and 4 instances have been adapted 

from Christofides and Eilon (1969). The number of customers range between 12 and 150, while the 

number of potential depots, range from 2 to 15 depots. The vehicles capacity varies between 120 and 

25000, whereas the capacity of potential depots varies between 280 and 30000000. The instance names 

include: name of author, number of customers, and number of potential depots. 

Table 5.1 shows the characteristics of Barreto’s set. It contains names of each instance, number of 

customers in column n, number of potential depots in column m, vehicle capacity in column V.Q, and 

depot capacity in column D.Q. While figure 5.3 and figure 5.4 illustrate the distribution of customers 

and potential depots for two instances from Barreto’s set; Chr-50x5 and Das-150x10, respectively. This 

data set is available at http://sweet.ua.pt/sbarreto/_private/SergioBarretoHomePage.htm. 

http://sweet.ua.pt/sbarreto/_private/SergioBarretoHomePage.htm
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No. Name n m V.Q D.Q 

1 Perl-12x2 12 2 140 280 

2 Perl-55x15 55 15 120 550 

3 Perl-85x7 85 7 160 850 

4 Min-27x5 27 5 2500 9000 

5 Min-134x8 134 8 850 3000 

6 Das-88x8 88 8 9000000 25000000 

7 Das-150x10 150 10 8000000 30000000 

8 Gas-21x5 21 5 6000 15000 

9 Gas-22x5 22 5 4500 15000 

10 Gas-29x5 29 5 4500 15000 

11 Gas-32x5 32 5 8000 15000 

12 Gas-32x5b 32 5 11000 15000 

13 Gas-36x5 36 5 250 15000 

14 Chr-50x5ba 50 5 160 10000 

15 Chr-50x5be 50 5 160 10000 

16 Chr-75x10ba 75 10 140 10000 

17 Chr-100x10 100 10 200 10000 

Table 5.1. Barreto's set  

Figure 5.3 shows that customer and potential depots distribution follow a normal distribution, while in 

Figure 5.4, the customers and potential depots are clustered in groups. These two instances were chosen 

to show the characteristic of instances in Barreto’s data set.  
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Figure 5.4. Distribution of customers and depots in Das-150x10 

 

The second data set was introduced by Prins, et al. (2006a) and its name is Prodhon’s set. This set 
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follows:  
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2) Customers’ demand was generated by using the uniform distribution between 10 and 20.  

The main characteristics of Prodhon’s set are shown in Table 5.2. The instance name is in the name 

column, number of customers in column n, number of potential depots in column m, vehicle capacity in 

column V.Q, and depot capacity in column D.Q. The depot capacity in some instances is similar, while 

in the others it is different. In case they are different, we show the minimum and maximum capacity. 

The data set is available at http://prodhonc.free.fr/Instances/instances_us.htm.  
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No. Name n m V.Q D.Q 

1 coord20x5-1a 20 5 70 140 

2 coord20x5-1b 20 5 150 300 

3 coord20x5-2a 20 5 70 70 - 140 

4 coord20x5-2b 20 5 150 150 - 300 

5 coord50x5-1a 50 5 70 350 - 420 

6 coord50x5-1b 50 5 150 350 - 420 

7 coord50x5-2a 50 5 70 350 

8 coord50x5-2b 50 5 150 350 

9 coord50x5-2BIS 50 5 70 350 

10 coord50x5-2bBIS 50 5 150 300 

11 coord50x5-3a 50 5 70 350 - 420 

12 coord50x5-3b 50 5 150 350 - 420 

13 coord100x5-1a 100 5 70 700 - 770 

14 coord100x5-1b 100 5 150 700 - 770 

15 coord100x5-2a 100 5 70 700 - 840 

16 coord100x5-2b 100 5 150 700 - 840 

17 coord100x5-3a 100 5 70 770 - 840 

18 coord100x5-3b 100 5 150 770 - 840 

19 coord100x10-1a 100 10 70 420 - 560 

20 coord100x10-1b 100 10 150 420 - 560 

21 coord100x10-2a 100 10 70 420 - 560 

22 coord100x10-2b 100 10 150 420 - 560 

23 coord100x10-3a 100 10 70 420 - 560 

24 coord100x10-3b 100 10 150 420 - 560 

25 coord200x10-1a 200 10 70 910 - 1190 

26 coord200x10-1b 200 10 150 910 - 1190 

27 coord200x10-2a 200 10 70 910 - 1260 

28 coord200x10-2b 200 10 150 910 - 1260 

29 coord200x10-3a 200 10 70 910 - 1190 

30 coord200x10-3b 200 10 150 910 - 1190 

Table 5.2. Prodhon’s set 

Figure 5.5, figure 5.6 and figure 5.7 illustrate the distribution of customers and potential depots for 

three instances from Prodhon’s set: coord50x5-1a, coord50x5-2a, and coord50x5-2BIS, respectively.  
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Figure 5.5. Distribution of customers and depots in coord50x5-1a 

 

 

Figure 5.6. Distribution of customers and depots in coord50x5-2a 

 

 

Figure 5.7. Distribution of customers and depots in coord50x5-2BIS 
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Figure 5.5, shows that customer and potential depot distribution follows a normal distribution. In 

Figure 5.6, and Figure 5.7 we can see customers and potential depots are clustered by a different factor 

of clusters in groups. These three instances were picked to show the characteristic of instances in 

Prodhon’s data set.  

The third and last data set was introduced in Akca et al. (2009) and its name is Akca’s set. This set 

involves 12 instances: 6 instances of them contain 30 customers, while the other 6 instances contain 40 

customers. Each instance has 5 potential depots. Depots’ capacity was generated to ensure that at least 

two depots should be open. The vehicles capacity is from 275 to 390. The number of customer clusters 

varies from 1 to 3. 

The characteristics of each Akca’s set is listed in Table 5.3. Column name contains names of instances, 

n column contains number of customers, column m contains number of potential depots, column V.Q 

contains vehicle capacity, and column D.Q contains depot capacity. Figure 5.8 and 5.9 illustrate the 

distribution of customers and potential depots for two instances from Prodhon’s set: cr30x5a-1  

and cr30x5b-1. 

No. Name n m V.Q D.Q 

1 cr30x5a-1 30 5 350 1000 

2 cr30x5a-2 30 5 350 1000 

3 cr30x5a-3 30 5 350 1000 

4 cr30x5b-1 30 5 275 1000 

5 cr30x5b-2 30 5 275 1000 

6 cr30x5b-3 30 5 275 1000 

7 cr40x5a-1 40 5 340 1750 

8 cr40x5a-2 40 5 390 1750 

9 cr40x5a-3 40 5 370 1750 

10 cr40x5b-1 40 5 275 1750 

11 cr40x5b-2 40 5 275 1750 

12 cr40x5b-3 40 5 325 1750 

Table 5.3. Akca’s set 

In Figure 5.8 we can note that customer and potential depots distribution follow a normal distribution. 

In Figure 5.9 we can see customers and potential depots are clustered in groups. These two instances 

were chosen to show the characteristic of instances in Akca’s data set.  
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Figure 5.8. Distribution of customers and depots in cr30x5a-1 

 

 

Figure 5.9. Distribution of customers and depots in cr30x5b-1 
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ALNS which was proposed by Hemmelmayr et al., (2012), and the GRASP followed by an Integer 

Linear Program (GRASP + ILP) which was proposed by Contardo et al., (2014).  

To the best of our knowledge, the Akca’s set has been solved by an exact method. The most 

competitive results based on the computational time are due to Akca et al., (2009), Contardo et al., 

(2011), and Contardo et al., (2013).  

Tables 5.4, 5.5, and 5.6 present the details of the performance of the TSBRH in Barreto’s, Prodhon’s, 

and Akca’s set, respectively.  

The first and second column in Tables 5.4 and 5.5 show the instance name and BKS values for 

Barreto’s and Prodhon’s set, respectively. The 3rd, 4th, and 5th columns show, respectively the best 

solution (Z-Best), the computational times in seconds (CPU (sec)), and the percentage gap (GAP) for 

SALRPMD. The 6th, 7th, and 8th columns show, respectively the best solution (Z-Best), the 

computational times in seconds (CPU (sec)), and the percentage gap (GAP) for ALNS. The 9th, 10th, 

and 11th columns show, respectively the best solution (Z-Best), the computational times in seconds 

(CPU (sec)), and the percentage gap (GAP) for GRASP + ILP. The 12th, 13th, and 14th columns show, 

respectively the best solution (Z-Best), the computational times in seconds (CPU (sec)), and the 

percentage gap (GAP) for our approach (TSBRH).  

The first and second column in Table 5.6 shows the instance name and BKS values for the Akca’s set. 

The 3rd, 4th, and 5th columns show, respectively the best solution (Z-Best), the computational times in 

seconds (CPU (sec)), and the percentage gap (GAP) for the Akca et al., (2009). The 6th, 7th, and 8th 

columns show, respectively the best solution (Z-Best), the computational times in seconds (CPU (sec)), 

and the percentage gap (GAP) for the Contardo et al., (2011). The 9th, 10th, and 11th columns show, 

respectively the best solution (Z-Best), the computational times in seconds (CPU (sec)), and the 

percentage gap (GAP) for the Contardo et al., (2013). The 12th, 13th, and 14th columns show, 

respectively the best solution (Z-Best), the computational times in seconds (CPU (sec)), and the 

percentage gap (GAP) for our approach (TSBRH).  

The percentage gap (GAP) is calculated in all tables with respect to the BKS as [(
𝑍−𝐵𝑒𝑠𝑡−BKS

BKS
) × 100] 

and (BS CPU (sec)) for computational times in seconds. The lowest best solutions which match BKS 

are indicated in bold. At the bottom of Table 5.4 and 5.5 we added the average of the percentage gap, 

average of the computational times, number of BKS which are obtained by each solution method, and 
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number of parameters used by each solution method. At the bottom of Table 5.6 we added the average 

of the percentage gap, average of the computational times, and number of BKS which are obtained by 

each solution method. The BKS obtained by each method is shown in bold. 

As shown in Table 5.4 which summarises the results obtained for Barreto’s set, the TSBRH has been 

capable of matching 7 of the 17 BKSs, while its average gap is 1.59%. Moreover, the average 

computational time is 3.88 seconds, which is about 2.7% of the average time consumed by SALRPMD, 

2.3% of the average time consumed by the ALNS, and 1.8% of the average time consumed by the 

GRASP + ILP. It should be mentioned that only the TSBRH (our approach) and the GRASP + ILP 

have been tested with the whole set of instances. In term of solution quality, the best method is 

SALRPMD with an average gap 0.00%, then ALNS with an average gap 0.17%, and GRASP + ILP 

with an average gap 0.21%.    

There are two general trends for small and large instances that can be observed. In smaller instances 

with up to 36 customers, our algorithm can match BKS, which is reflected in the GAP column; the only 

exception is Gaskell-32x5 where the gap is 3.66%. The percentage gap increases when the number of 

customers and number of potential depots increase.  

In general, the average computational time of our algorithm is 3.88 seconds, which indicates the 

viability of the solution method considering its reasonable gap of 1.59%. 

Table 5.5 summarises the results obtained for Prodhon’s set. It can be observed that the TSBRH has 

only achieved 2 of 30 BKSs, with an average gap of 4.44% with respect to the BKS. However, the 

computational time is quite competitive to other methods. The average computational time is 4.5 

seconds, which is about 1.1% of the average time consumed by SALRPMD, 1.0% of the average time 

consumed by the ALNS, and 0.4% of the average time consumed by the GRASP + ILP. In terms of 

solution quality, the best method is GRASP + ILP with an average gap 0.12%, then SALRPMD with 

an average gap 0.42%, and ALNS with an average gap 0.44%. 
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  SALRPMD ALNS  GRASP + ILP TSBRH 

  (Yu et al., 2010) (Hemmelmayr et al., 2012) (Contardo et al., 2014b) Our approach 

 BKS Z-Best CPU (sec) 
Gap 

% Z-Best 
CPU 
(sec) Gap % Z-Best 

CPU 
(sec) Gap % Z-Best CPU (sec) 

Gap 
% 

Perl83-12x2 203.98 203.98 6.8 0.00 * * * 203.98 0.3 0.00 203.98 2.00 0.00 

Gaskell-21x5 424.9 424.9 18.3 0.00 424.9 25 0.00 424.9 1.7 0.00 424.90 2.00 0.00 

Gaskell-22x5 585.11 585.11 16.6 0.00 585.11 21 0.00 585.11 2.9 0.00 585.11 2.00 0.00 

Min-27x5 3062.02 3062.02 23.3 0.00 3062.02 38 0.00 3062.02 3.5 0.00 3062.02 2.00 0.00 

Gaskell-29x5 512.1 512.1 23.9 0.00 512.1 40 0.00 512.1 5.4 0.00 512.10 2.00 0.00 

Gaskell-32x5 562.22 562.22 27 0.00 562.22 58 0.00 562.22 6.2 0.00 582.78 2.00 3.66 

Gaskell-32x5-2 504.33 504.33 25.1 0.00 504.33 55 0.00 504.33 7.9 0.00 504.33 2.00 0.00 

Gaskell-36x5 460.37 460.37 31.7 0.00 460.37 61 0.00 460.37 8.6 0.00 460.37 2.00 0.00 

Christ-50x5 565.62 565.62 52.8 0.00 565.6 73 0.00 574.66 17.1 1.60 577.41 2.00 2.08 

Christ-50x5-B 565.6 * * * * * * 569.49 17.7 0.69 573.45 2.00 1.39 

Perl83-55x15 1112.06 1112.06 112.4 0.00 * * * 1112.06 47.4 0.00 1129.53 5.10 1.57 

Christ-75x10 844.4 844.4 126.8 0.00 853.47 207 1.07 844.58 87.9 0.02 860.98 4.10 1.96 

Perl83-85x7 1622.5 1622.5 213.1 0.00 * * * 1625.84 81.8 0.21 1634.58 6.20 0.74 

Daskin95-88x8 355.78 355.78 226.9 0.00 * * * 355.78 209.6 0.00 373.14 2.00 4.88 

Christ-100x10 833.43 833.43 330.8 0.00 833.43 403 0.00 840.67 492 0.87 860.98 7.70 3.31 

Min92-134x8 5709 5709 522.4 0.00 5712.99 460 0.07 5719.25 750.2 0.18 6012.08 10.00 5.31 

Daskin95-150x10 43,919.90 43,919.90 577 0.00 44,309.20 613 0.89 43,952.30 1842.1 0.07 44858.69 10.80 2.14 

average 3865.21 3829.86 145.93 0.0 4865.48 171.17 0.17 3641.74 210.72 0.21 3718.61 3.88 1.59 

No. of BKS 16     9     10     7   

No. of parameters 7     9     22     1   

Table 5.4. Results of TSBRH for Barreto's set 
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  SALRPMD (Yu et al., 2010) ALNS (Hemmelmayr et al., 2012) GRASP+ILP (Contardo et al., 2014b) TSBRH (Our approach) 

Instances BKS Z-Best CPU Gap Z-Best CPU Gap Z-Best CPU Gap Z-Best CPU Gap 

coord20x5-1 54,793 54,793 19.8 0.00 54,793 39 0.00 54,793 1.7 0.00 55,089 2.0 0.54% 

coord20x5-1b 39,104 39,104 15.0 0.00 39,104 54 0.00 39,104 2.6 0.00 39,104 2.0 0.00% 

coord20x5-2 48,908 48,908 19.3 0.00 48,908 38 0.00 48,908 1.5 0.00 50,177 2.0 2.59% 

coord20x5-2b 37,542 37,542 15.0 0.00 37,542 67 0.00 37,542 2.8 0.00 37,542 2.0 0.00% 

coord50x5-1 90,111 90,111 74.7 0.00 90,111 101 0.00 90,111 15.0 0.00 91,425 2.0 1.46% 

coord50x5-1b 63,242 63,242 57.7 0.00 63,242 65 0.00 63,242 18.4 0.00 64,974 2.0 2.74% 

coord50x5-2 88,298 88,298 95.0 0.00 88,443 99 0.16 88,298 17.5 0.00 90,007 2.0 1.94% 

coord50x5-2b 67,308 67,340 58.6 0.05 67,340 200 0.05 67,373 22.0 0.10 71,321 2.0 5.96% 

coord50x5-2BIS 84,055 84,055 74.7 0.00 84,055 107 0.00 84,055 27.3 0.00 85,343 2.0 1.53% 

coord50x5-2bBIS 51,822 51,822 66.1 0.00 51,822 98 0.00 51,883 21.0 0.12 55,414 2.0 6.93% 

coord50x5-3 86,203 86,456 74.0 0.29 86,203 101 0.00 86,203 16.6 0.00 90,602 2.0 5.10% 

coord50x5-3b 61,830 62,700 58.2 1.41 61,830 137 0.00 61,830 22.9 0.00 65,145 2.0 5.36% 

coord100x5-1 274,814 277,035 348.6 0.81 275,636 520 0.30 275,457 230.4 0.23 279,264 2.0 1.62% 

coord100x5-1b 213,615 216,002 268.9 1.12 214,735 1190 0.52 214,056 230.2 0.21 216,576 2.0 1.39% 

coord100x5-2 193,671 194,124 348.6 0.23 193,752 463 0.04 193,708 121.9 0.02 195,980 2.0 1.19% 

coord100x5-2b 157,095 157,150 211.5 0.04 157,095 859 0.00 157,178 100.0 0.05 158,862 2.0 1.12% 

coord100x5-3 200,079 200,242 250.3 0.08 200,305 454 0.11 200,339 97.3 0.13 202,223 2.0 1.07% 

coord100x5-3b 152,441 152,467 196.7 0.02 152,441 684 0.00 152,466 100.1 0.02 154,421 2.0 1.30% 

coord100x10-1 287,695 291,043 270.0 1.16 296,877 210 3.19 287,892 2621.8 0.07 329,928 2.0 14.68% 

coord100x10-1b 230,989 231,763 202.6 0.34 235,849 188 2.10 234,080 1067.2 1.34 279,514 2.0 21.01% 

coord100x10-2 243,590 245,813 260.6 0.91 244,740 136 0.47 243,695 236.1 0.04 261,783 3.2 7.47% 

coord100x10-2b 203,988 205,312 199.3 0.65 204,016 261 0.01 203,988 258.5 0.00 220,639 3.0 8.16% 

coord100x10-3 250,882 250,882 338.1 0.00 253,801 202 1.16 252,927 723.3 0.82 269,466 3.0 7.41% 

coord100x10-3b 204,317 205,009 240.3 0.34 205,609 224 0.63 204,664 584.4 0.17 220,269 3.0 7.81% 

coord200x10-1 475,294 481,002 1428.1 1.2 480,883 752 1.18 475,327 3960.4 0.01 501,614 15.0 5.54% 

coord200x10-1b 377,043 383,586 1335.8 1.74 378,961 1346 0.51 377,327 4006.0 0.08 394,147 13.9 4.54% 

coord200x10-2 449,006 450,848 1795.8 0.41 450,451 1201 0.32 449,291 4943.0 0.06 458,803 8.1 2.18% 

coord200x10-2b 374,280 376,674 1245.1 0.64 374,751 1349 0.13 374,575 3486.0 0.08 395,363 7.5 5.63% 

coord200x10-3 469,433 473,875 1776.0 0.95 475,373 1251 1.27 469,870 4075.1 0.09 484,669 18.9 3.25% 

coord200x10-3b 362,653 363,701 1326.4 0.29 366,902 1137 1.17 363,103 7887.6 0.12 375,890 19.3 3.65% 

Average 196470.03  197696.63  422.0 0.42  197852.33 451 0.44  196776.17 1129.0 0.12 206518.46 4.5 4.44% 

Number of BKS     10     12     11   2     

Number of parameters   7     9     22   1     

Table 5.5. Results of TSBRH for Prodhon’s set 

 

 

 



137 

 

  
Akca et al. (2009) Contardo et al. (2011) Contardo et al. (2013) Our Approach (TSBRH) 

 
BKS Z-Best CPU (sec) Gap Z-Best CPU (sec) Gap Z-Best CPU (sec) Gap Z-Best CPU (sec) Gap 

Cr30 × 5a-1 819.51 819.53 993.30 0.00% 819.51 2.45 0.00% 819.52 3.23 0.00% 837.86 2.00 2.24% 

Cr30 × 5a-2 821.50 821.50 10806.50 0.00% 821.50 3.72 0.00% 821.50 8.77 0.00% 881.65 2.00 7.33% 

Cr30 × 5a-3 702.30 702.29 917.90 0.00% 702.30 0.50 0.00% 702.30 0.91 0.00% 707.97 2.00 0.81% 

Cr30 × 5b-1 880.02 880.02 6420.60 0.00% 880.02 4.57 0.00% 880.02 9.05 0.00% 885.08 2.00 0.57% 

Cr30 × 5b-2 825.32 825.32 33.20 0.00% 825.32 1.24 0.00% 825.32 2.55 0.00% 825.32 2.00 0.00% 

Cr30 × 5b-3 884.60 884.62 41.70 0.00% 884.60 1.23 0.00% 884.60 3.25 0.00% 884.58 2.00 0.00% 

Cr40 × 5a-1 928.10 928.11 10882.80 0.00% 928.10 14.67 0.00% 928.10 140.31 0.00% 933.49 2.00 0.58% 

Cr40 × 5a-2 888.42 888.42 11052.90 0.00% 888.42 11.88 0.00% 888.42 86.31 0.00% 899.11 2.00 1.20% 

Cr40 × 5a-3 947.30 947.30 10862.00 0.00% 947.30 11.36 0.00% 947.30 76.63 0.00% 963.55 2.00 1.72% 

Cr40 × 5b-1 1052.04 1052.07 8084.60 0.00% 1052.04 10.49 0.00% 1052.04 3115.92 0.00% 1059.17 2.00 0.68% 

Cr40 × 5b-2 981.54 981.52 862.50 0.00% 981.54 3.77 0.00% 981.54 7.61 0.00% 981.54 2.00 0.00% 

Cr40 × 5b-3 964.33 964.32 963.00 0.00% 964.33 2.68 0.00% 964.33 12.33 0.00% 979.80 2.00 1.60% 

Average 891.25 891.25 5160.08 0.00% 891.25 5.71 0.00% 891.25 288.91 0.00% 903.26 2.00 1.39% 

Number of BKS   12     12     12     3   

Table 5.6. Results of TSBRH for Akca’s set 

 

 

 

 

 

 



138 

 

We believe that the size and complexity of Prodhon’s data set, is the reason for the performance 

deterioration of our solution method and not achieving the BKS. We can observe that as the 

instances get larger, the performance of the TSBRH deteriorates. This behavior can be explained in 

line with the nature of the solution method. The TSBRH is a heuristic and it seems that it gets stuck 

in local optima. That explains its high average gap of 4.44%. However, we need to interpret the 

overall result by also considering the computational time and this is where TSBRH with an average 

computational time of 4.5 seconds is highly preferable when a quick solution is required. 

Although the BKS cannot be reached in the majority of Prodhon's set, which are more challenging 

in terms of size and complexity, the practicality and simplicity of our solution method with much 

less parameters are notable compared to other complex methods in the literature with exhaustive 

fine-tuning procedures. 

Similarly, Table 5.6 presents the summary of results for Akca’s set. The TSBRH has matched 3 of 

12 BKSs with an average gap of 1.39% with respect to the BKS. Moreover, the average 

computational time is 2.00 seconds, which is about 0.04% of the average time consumed by Akca et 

al., (2009), 35% of the average time consumed by Contardo et al., (2011), and 0.7% of the average 

time consumed by Contardo et al., (2013).  

These results confirm our previous observation in Barreto's and Prodhon’s set about the direct 

effect of the instance size and customers distribution on the performance of our algorithm. 

Incidentally it should be noted, that in larger and more complex instances our solution methods 

struggle and match only a few instances.  

In general, TSBRH has a considerably good performance on Barreto's set compared to the other 

two benchmarks. Moreover, all results confirm our observation about the direct effect of the 

instance size on the performance of the solution methods. This behaviour can be explained in line 

with the nature of our solution method, which is a heuristic method that seems to get stuck in local 

optima.  

Also, TSBRH has an average computational time 3.88, 4.5, and 2 seconds, while its average gap is 

1.59%, 4.44%, and 1.39% for Barreto's, Prodhon’s, and Akca’s data set, respectively. Thereby, 

TSBRH is useful if decision makers prefer to get a solution with reasonable quality within short 

computational time. This balance between the quality of the solutions and computational time 

consumed by our approach, makes it an interesting tool to support the design of supply chain 

management. 
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Finally, the practicality and simplicity of TSBRH, with much less parameters, is notable when 

compared to complex methods in the literature with exhaustive fine-tuning procedures.  

To sum up, the results are promising to extend the suggested solution methods to consider 

constrained distance towards a green LRPMD. 

 

5.5.2.2 Performance evaluation of the BR-VNS 

In this section, we discuss the results obtained by BR-VNS. Similar to the TSBRH, we used 20 

random seeds for each instance. The results have been compared to the best-known solution (BKS) 

in the literature for the benchmark instances. Moreover, the results have been compared with the 

same three methods (metaheuristics) in section 5.5.2.1, in terms of percentage gap and 

computational time with respect to the BKS.  

Tables 5.7, 5.8, and 5.9 present the details of the performance of BR-VNS in Barreto’s, Prodhon’s, 

and Akca’s set, respectively. The table design is similar to tables in section 5.5.2.1 other than the 

12th, 13th, and 14th columns which show, respectively the best solution (Z-best), the computational 

times in seconds (CPU (sec)), and the percentage gap (GAP) for BR-VNS.  

As shown in Table 5.7 which summarises the results obtained for Barreto’s set, the BR-VNS has 

been able to match 5 of the 17 BKSs, while its average gap is 0.74%. However, the average 

computational time is 99.88 seconds, which is about 68.4% of the average time consumed by 

SALRPMD, 58.4% of the average time consumed by the ALNS, and 47.4% of the average time 

consumed by the GRASP + ILP.  

Table 5.8 summarises the results obtained for Prodhon’s set. It can be observed that the BR-VNS 

has achieved 6 of 30 BKSs, with an average gap of 0.62% with respect to the BKS. The average 

computational time is 231.8 seconds, which is about 54.9% of the average time consumed by 

SALRPMD, 51.4% of the average time consumed by the ALNS, and 20.5% of the average time 

consumed by the GRASP + ILP.  

Table 5.9 presents the summary of results for Akca’s set. The BR-VNS has matched 8 of 12 BKSs 

with an average gap of 0.04% with respect to the BKS. The average computational time is 1.00 

seconds, which is about 0.02% of the average time consumed by Akca et al., (2009), 17.5% of the 

average time consumed by Contardo et al., (2011), and 0.4% of the average time consumed by 

Contardo et al., (2013). In general, our algorithm has a considerably good performance on Akca's 
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set compared to the other two benchmarks. Finally, the results are promising to extend the 

suggested solution methods to consider constrained distance towards a green LRPMD.  
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  SALRPMD ALNS  GRASP + ILP BR-VNS 

  (Yu et al., 2010) (Hemmelmayr et al., 2012) (Contardo et al., 2014b) Our approach 

 BKS Z-Best CPU (sec) 
Gap 

% Z-Best 
CPU 
(sec) Gap % Z-Best 

CPU 
(sec) Gap % Z-Best CPU (sec) 

Gap 
% 

Perl83-12x2 203.98 203.98 6.8 0.00% * * * 203.98 0.3 0.00% 203.98 1.00 0.00% 

Gaskell-21x5 424.9 424.9 18.3 0.00% 424.9 25 0.00% 424.9 1.7 0.00% 424.90 2.10 0.00% 

Gaskell-22x5 585.11 585.11 16.6 0.00% 585.11 21 0.00% 585.11 2.9 0.00% 586.7 1.10 0.27% 

Min-27x5 3062.02 3062.02 23.3 0.00% 3062.02 38 0.00% 3062.02 3.5 0.00% 3062.02 1.10 0.00% 

Gaskell-29x5 512.1 512.1 23.9 0.00% 512.1 40 0.00% 512.1 5.4 0.00% 512.10 1.20 0.00% 

Gaskell-32x5 562.22 562.22 27 0.00% 562.22 58 0.00% 562.22 6.2 0.00% 562.28 4.30 0.01% 

Gaskell-32x5-2 504.33 504.33 25.1 0.00% 504.33 55 0.00% 504.33 7.9 0.00% 504.77 5.20 0.09% 

Gaskell-36x5 460.37 460.37 31.7 0.00% 460.37 61 0.00% 460.37 8.6 0.00% 473.66 2.60 2.89% 

Christ-50x5 565.62 565.62 52.8 0.00% 565.6 73 0.00% 574.66 17.1 1.60% 565.62 27.90 0.18% 

Christ-50x5-B 565.6 * * * * * * 569.49 17.7 0.69% 565.6 21.80 0.00% 

Perl83-55x15 1112.06 1112.06 112.4 0.00% * * * 1112.06 47.4 0.00% 1119.09 75.90 0.63% 

Christ-75x10 844.4 844.4 126.8 0.00% 853.47 207 1.07% 844.58 87.9 0.02% 871.13 88.90 3.17% 

Perl83-85x7 1622.5 1622.5 213.1 0.00% * * * 1625.84 81.8 0.21% 1634.78 40.10 0.76% 

Daskin95-88x8 355.78 355.78 226.9 0.00% * * * 355.78 209.6 0.00% 356.04 158.70 0.07% 

Christ-100x10 833.43 833.43 330.8 0.00% 833.43 403 0.00% 840.67 492 0.87% 849.74 355.30 1.96% 

Min92-134x8 5709 5709 522.4 0.00% 5712.99 460 0.07% 5719.25 750.2 0.18% 5839.4 269.40 2.28% 

Daskin95-150x10 43,919.90 43,919.90 577 0.00% 44,309.20 613 0.89% 43,952.30 1842.1 0.07% 44005.75 641.30 0.20% 

average 3865.21 3829.86 145.93 0.0% 4865.48 171.17 0.17% 3641.74 210.72 0.21% 3655.15 99.88 0.74% 

No. of BKS 16     9     10     5   

No. of parameters 7     9     22     8   

Table 5.7. Results of BR-VNS for Baretto’s set 
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  SALRPMD (Yu et al., 2010) ALNS (Hemmelmayr et al., 2012) GRASP+ILP (Contardo et al., 2014b) BR-VNS (Our approach) 

Instances BKS Z-Best CPU Gap Z-Best CPU Gap Z-Best CPU Gap Z-Best CPU Gap 

coord20x5-1 54,793 54,793 19.8 0 54,793 39 0 54,793 1.7 0 54,793 2.1 0.00% 

coord20x5-1b 39,104 39,104 15 0 39,104 54 0 39,104 2.6 0 39,104 4.4 0.00% 

coord20x5-2 48,908 48,908 19.3 0 48,908 38 0 48,908 1.5 0 48,908 1.0 0.00% 

coord20x5-2b 37,542 37,542 15 0 37,542 67 0 37,542 2.8 0 37,542 1.3 0.00% 

coord50x5-1 90,111 90,111 74.7 0 90,111 101 0 90,111 15 0 90,402 1.5 0.32% 

coord50x5-1b 63,242 63,242 57.7 0 63,242 65 0 63,242 18.4 0 63,242 3.1 0.00% 

coord50x5-2 88,298 88,298 95 0 88,443 99 0.16 88,298 17.5 0 88,298 11.6 0.00% 

coord50x5-2b 67,308 67,340 58.6 0.05 67,340 200 0.05 67,373 22 0.1 67,853 23.5 0.81% 

coord50x5-2BIS 84,055 84,055 74.7 0 84,055 107 0 84,055 27.3 0 84,401 24.6 0.41% 

coord50x5-2bBIS 51,822 51,822 66.1 0 51,822 98 0 51,883 21 0.12 51,883 32.7 0.12% 

coord50x5-3 86,203 86,456 74 0.29 86,203 101 0 86,203 16.6 0 86,223 10.7 0.02% 

coord50x5-3b 61,830 62,700 58.2 1.41 61,830 137 0 61,830 22.9 0 61,844 14.1 0.02% 

coord100x5-1 274,814 277,035 348.6 0.81 275,636 520 0.3 275,457 230.4 0.23 277,003 136.9 0.80% 

coord100x5-1b 213,615 216,002 268.9 1.12 214,735 1190 0.52 214,056 230.2 0.21 215,702 73.1 0.98% 

coord100x5-2 193,671 194,124 348.6 0.23 193,752 463 0.04 193,708 121.9 0.02 194,690 60.2 0.53% 

coord100x5-2b 157,095 157,150 211.5 0.04 157,095 859 0 157,178 100 0.05 157,275 71.2 0.11% 

coord100x5-3 200,079 200,242 250.3 0.08 200,305 454 0.11 200,339 97.3 0.13 201,299 139.1 0.61% 

coord100x5-3b 152,441 152,467 196.7 0.02 152,441 684 0 152,466 100.1 0.02 152,466 106.4 0.02% 

coord100x10-1 287,695 291,043 270 1.16 296,877 210 3.19 287,892 2621.8 0.07 294,625 80.2 2.41% 

coord100x10-1b 230,989 231,763 202.6 0.34 235,849 188 2.1 234,080 1067.2 1.34 241,396 94.4 4.51% 

coord100x10-2 243,590 245,813 260.6 0.91 244,740 136 0.47 243,695 236.1 0.04 244,614 288.0 0.42% 

coord100x10-2b 203,988 205,312 199.3 0.65 204,016 261 0.01 203,988 258.5 0 205,019 315.0 0.51% 

coord100x10-3 250,882 250,882 338.1 0 253,801 202 1.16 252,927 723.3 0.82 254,667 278.5 1.51% 

coord100x10-3b 204,317 205,009 240.3 0.34 205,609 224 0.63 204,664 584.4 0.17 205,746 201.3 0.70% 

coord200x10-1 475,294 481,002 1428.1 1.2 480,883 752 1.18 475,327 3960.4 0.01 480,267 999.6 1.05% 

coord200x10-1b 377,043 383,586 1335.8 1.74 378,961 1346 0.51 377,327 4006 0.08 379,725 613.4 0.71% 

coord200x10-2 449,006 450,848 1795.8 0.41 450,451 1201 0.32 449,291 4943 0.06 450,871 412.9 0.42% 

coord200x10-2b 374,280 376,674 1245.1 0.64 374,751 1349 0.13 374,575 3486 0.08 374,720 1094.0 0.12% 

coord200x10-3 469,433 473,875 1776 0.95 475,373 1251 1.27 469,870 4075.1 0.09 473,532 586.6 0.87% 

coord200x10-3b 362,653 363,701 1326.4 0.29 366,902 1137 1.17 363,103 7887.6 0.12 364,920 1271.1 0.63% 

Average 196,470 197,697 422 0.42 197,852 451 0.44 196,776 1129 0.12 198,101 231.8 0.62% 

Number of BKS     10     12     11   6     

Number of parameters   7     9     22   8     

Table 5.8. Results of BR-VNS for Prodhon’s set 
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Akca et al. (2009) Contardo et al. (2011) Contardo et al. (2013) Our Approach (BR-VNS) 

 
BKS Z-Best 

CPU 

(sec) Gap Z-Best 

CPU 

(sec) Gap Z-Best 

CPU 

(sec) Gap Z-Best 

CPU 

(sec) Gap 

Cr30 × 5a-1 819.51 819.53 993.30 0.00% 819.51 2.45 0.00% 819.52 3.23 0.00% 819.51 1.00 0.00% 

Cr30 × 5a-2 821.50 821.50 10806.50 0.00% 821.50 3.72 0.00% 821.50 8.77 0.00% 822.01 1.00 0.07% 

Cr30 × 5a-3 702.30 702.29 917.90 0.00% 702.30 0.50 0.00% 702.30 0.91 0.00% 702.29 1.00 0.00% 

Cr30 × 5b-1 880.02 880.02 6420.60 0.00% 880.02 4.57 0.00% 880.02 9.05 0.00% 880.03 1.00 0.00% 

Cr30 × 5b-2 825.32 825.32 33.20 0.00% 825.32 1.24 0.00% 825.32 2.55 0.00% 825.32 1.00 0.00% 

Cr30 × 5b-3 884.60 884.62 41.70 0.00% 884.60 1.23 0.00% 884.60 3.25 0.00% 884.58 1.00 0.00% 

Cr40 × 5a-1 928.10 928.11 10882.80 0.00% 928.10 14.67 0.00% 928.10 140.31 0.00% 929.58 1.00 0.16% 

Cr40 × 5a-2 888.42 888.42 11052.90 0.00% 888.42 11.88 0.00% 888.42 86.31 0.00% 888.78 1.00 0.04% 

Cr40 × 5a-3 947.30 947.30 10862.00 0.00% 947.30 11.36 0.00% 947.30 76.63 0.00% 949.47 1.00 0.23% 

Cr40 × 5b-1 1052.04 1052.07 8084.60 0.00% 1052.04 10.49 0.00% 1052.04 3115.92 0.00% 1052.04 1.00 0.00% 

Cr40 × 5b-2 981.54 981.52 862.50 0.00% 981.54 3.77 0.00% 981.54 7.61 0.00% 981.54 1.00 0.00% 

Cr40 × 5b-3 964.33 964.32 963.00 0.00% 964.33 2.68 0.00% 964.33 12.33 0.00% 964.33 1.00 0.00% 

Average 891.25 891.25 5160.08 0.00% 891.25 5.71 0.00% 891.25 288.91 0.00% 891.62 1.00 0.04% 

Number of BKS   12     12     12   8     

Table 5.9. Results of BR-VNS for Akca’s set 
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5.5.2.3 Performance of TSBRH vs performance of the BR-VNS 

In this section, we compare the performance of TSBRH and BR-VNS in terms of best solution, 

opening cost, distance cost, vehicle cost and average cost. Moreover, we compare their 

computational time and the percentage gap regarding to the BKS. 

Tables 5.10, 5.11, and 5.12, illustrate the comparison between the performance of TSBRH and the 

performance of BR-VNS for Barreto, Akca, and Prodhon's benchmarks, respectively. The first and 

second columns in each table show the instance names and the BKS values. The following columns 

show the average cost obtained using each solution method for different runs (Average Total Cost), 

the best solution found (BS Total Cost), its associated opening cost (BS Opening Cost), distance-

based cost (BS Distance), and (BS Vehicles). This last value corresponds to the number of vehicles 

in Barreto's and Akca's sets, while it represents the vehicle cost in Prodhon's set. The following 

columns are: (BS GAP) for the percentage gap of BS values with respect to the BKS, and (BS CPU 

(sec)) for computational times in seconds. Whenever our best-found solution matches the BKS in 

the literature, the corresponding value has been indicated in bold.  

Considering BS Total Cost columns in Table 5.10, two general trends for small and large instances 

can be observed. In smaller instances with up to 36 customers, TSBRH tend to perform as well as 

BR-VNS, and it can even match BKS with the only exception being Gaskell-32x5, where the gap is 

3.66%. In larger instances with more than 36 customers, BR-VNS is more effective. 

TSBRH has a considerably good performance on Barreto's set compared to the other two 

benchmarks and can match, employing just a few seconds, 7 out of 17 BKS results in the smallest 

instances. BR-VNS can also obtain the BKS result in 5 out of 17 instances. In larger instances with 

more than 36 customers BR-VNS obtains better results compared to TSBRH, although the former 

also requires larger computational times. However, there are two exceptions: in Christ-75x10 and 

PERL83-85x7 instances, TSBRH outperforms BRVNS. 

In general, the average computational time employed by TSBRH is just of 3.88 seconds, while its 

average gap is 1.59%. Meanwhile, BR-VNS shows an average computational time of 99.8 seconds, 

but in that time,  it is able to reduce the average gap with respect to the BKS down to 0.74%.  

BR-VNS outperforms TSBRH in most of Prodhon's set (Table 5.11). There are two exceptions: 

coord20x5-1b and coord20x5-2b, where both BR-VNS and TSBRH can match the BKS. In smaller 

instances with up to 50 customers and 5 depots (e.g., instance coord50x5-2), BR-VNS performs 

very well and can usually match the BKS result. In general, as expected, the more elaborate VNS 
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metaheuristic framework tends to outperform the simpler multi-start heuristic, although the latter is 

able to offer quite competitive solutions in a matter of seconds.  

The results in Table 5.12 confirm our previous observation in Barreto's and Prodhon’s set about the 

direct effect of the instance size on performance of both TSBRH and BR-VNS. As expected in 

larger instances, BR-VNS obtains better solutions in terms of best-found total cost and average total 

cost. BR-VNS can effectively solve Akca's set and match BKS in 8 out of 12 instances, whereas 

TSBRH can reach only 3 out of 12 BKS results. Therefore, BR-VNS performs better than TSBRH 

in terms of both solution quality and computational time.  

Figure 5.10 presents a multiple boxplot comparison of the proposed TSBRH and BR-VNS for the 

LRPMD, for three benchmark sets, in terms of percentage gap. In a nutshell, the results on the 

LRPMD are promising enough as to extend the suggested solution methods (TSBRH and BR-VNS) 

to the G-LRPMD.  

 

 

Figure 5.10. The average %gap of the BS Total Cost wrt BKS for LRPMD 
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  BS  BS Opening Cost BS Distance BS Vehicles Average Costs BS GAP BS CPU (sec) 

Instance Name BKS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS 

Perl83-12x2 203.98 203.98 203.98 100 100 103.98 103.98 2 2 203.98 203.98 0.00% 0.00% 2.00 1.00 

Gaskell-21x5 424.90 424.90 424.90 100 100 324.90 324.90 4 4 424.90 427.73 0.00% 0.00% 2.00 2.10 

Gaskell-22x5 585.11 585.11 586.70 50 50 535.11 536.70 3 3 585.11 589.85 0.00% 0.27% 2.00 1.10 

Min-27x5 3062.02 3062.02 3062.02 544 544 2518.02 2518.02 4 4 3064.00 3062.34 0.00% 0.00% 2.00 1.10 

Gaskell-29x5 512.10 512.10 512.10 100 100 412.10 412.10 4 4 512.10 512.10 0.00% 0.00% 2.00 1.20 

Gaskell-32x5 562.22 582.78 562.28 100 50 482.78 512.28 5 4 586.80 564.45 3.66% 0.01% 2.00 4.30 

Gaskell-32x5-2 504.33 504.33 504.77 50 50 454.62 454.77 3 3 504.40 508.37 0.00% 0.09% 2.00 5.20 

Gaskell-36x5 460.37 460.37 473.66 50 50 410.37 423.66 4 4 463.90 482.86 0.00% 2.89% 2.00 2.60 

Christ-50x5 565.62 577.41 565.62 80 80 497.41 485.62 5 5 584.80 577.32 2.08% 0.18% 2.00 27.90 

Christ-50x5-B 565.60 573.45 565.60 80 80 493.45 485.60 6 6 576.90 584.66 1.39% 0.00% 2.00 21.80 

Perl83-55x15 1112.06 1129.53 1119.09 720 720 409.53 399.09 11 10 1132.00 1125.41 1.57% 0.63% 5.10 75.90 

Christ-75x10 844.40 860.98 871.13 120 120 740.98 751.13 12 11 870.50 878.23 1.96% 3.17% 4.10 88.90 

Perl83-85x7 1622.50 1634.58 1634.78 1116 1116 518.58 518.78 12 11 1641.00 1643.64 0.74% 0.76% 6.20 40.10 

Daskin95-88x8 355.78 373.14 356.04 104 83 268.74 273.04 6 6 376.10 361.45 4.88% 0.07% 2.00 158.70 

Christ-100x10 833.43 860.98 849.74 80 80 780.98 769.74 8 8 877.50 857.15 3.31% 1.96% 7.70 355.30 

Min92-134x8 5709.00 6012.08 5839.40 1072 804 4940.08 5035.40 10 11 6099.00 5938.31 5.31% 2.28% 10.00 269.40 

Daskin95-150x10 43919.90 44858.69 44005.75 15000 15000.0 29858.69 29005.75 11 11 45483.00 44566.97 2.14% 0.20% 10.80 641.30 

Average 3637.84 3718.61 3655.15 1145.1 1125.1 2573.55 2530.03 6.47 6.29 3763.88 3699.11 1.59% 0.74% 3.88 99.88 

Table 5.10. Results of TSBRH vs BR-VNS for Baretto’s set 
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  OBS OBS Opening Cost OBS Distance OBS Vehicles Average Costs OBS GAP OBS CPU (sec) 

Instance Name BKS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS 

coord20x5-1 54793 55089 54793 25549 25549 24540 24244 5000 5000 55114.3 54853.5 0.54% 0.00% 2.0 2.1 

coord20x5-1b 39104 39104 39104 15497 15497 20607 20607 3000 3000 39180.1 39118.9 0.00% 0.00% 2.0 4.4 

coord20x5-2 48908 50177 48908 24196 24196 20981 19712 5000 5000 51126.5 48908.0 2.59% 0.00% 2.0 1.0 

coord20x5-2b 37542 37542 37542 13911 13911 20631 20631 3000 3000 37542.0 37542.0 0.00% 0.00% 2.0 1.3 

coord50x5-1 90111 91425 90402 25442 25442 52983 52960 13000 12000 91662.6 90825.2 1.46% 0.32% 2.0 1.5 

coord50x5-1b 63242 64974 63242 15385 15385 43589 41857 6000 6000 64996.9 63647.9 2.74% 0.00% 2.0 3.1 

coord50x5-2 88298 90007 88298 32714 29319 45293 46979 12000 12000 90148.8 89731.7 1.94% 0.00% 2.0 11.6 

coord50x5-2b 67308 71321 67853 29319 29319 35002 32534 7000 6000 71632.7 68336.3 5.96% 0.81% 2.0 23.5 

coord50x5-2BIS 84055 85343 84401 19785 19785 53558 52616 12000 12000 86132.9 85131.1 1.53% 0.41% 2.0 24.6 

coord50x5-2bBIS 51822 55414 51883 18763 18763 30651 27120 6000 6000 56059.0 52253.6 6.93% 0.12% 2.0 32.7 

coord50x5-3 86203 90602 86223 27295 18961 52307 55262 11000 12000 91734.7 86945.1 5.10% 0.02% 2.0 10.7 

coord50x5-3b 61830 65145 61844 18590 18961 40555 36883 6000 6000 65301.3 62069.6 5.36% 0.02% 2.0 14.1 

coord100x5-1 274814 279264 277003 132890 132890 122374 120113 24000 24000 280528.6 278220.0 1.62% 0.80% 2.0 136.9 

coord100x5-1b 213615 216576 215702 132890 132890 71686 71812 12000 11000 217223.2 216868.3 1.39% 0.98% 2.0 73.1 

coord100x5-2 193671 195980 194690 102246 102246 69734 68444 24000 24000 196291.6 196373.6 1.19% 0.53% 2.0 60.2 

coord100x5-2b 157095 158862 157275 102246 102246 44616 44029 12000 11000 159180.0 157779.1 1.12% 0.11% 2.0 71.2 

coord100x5-3 200079 202223 201299 88287 88287 89936 89012 24000 24000 202970.4 201889.1 1.07% 0.61% 2.0 139.1 

coord100x5-3b 152441 154421 152466 88287 88287 55134 53179 11000 11000 154988.0 153596.3 1.30% 0.02% 2.0 106.4 

coord100x10-1 287695 329928 294625 218910 165068 86018 103557 25000 26000 330413.0 299503.1 14.68% 2.41% 2.0 80.2 

coord100x10-1b 230989 279514 241396 208784 158385 58730 71011 12000 12000 280335.9 243836.7 21.01% 4.51% 2.0 94.4 

coord100x10-2 243590 261783 244614 150770 145956 86013 75658 25000 23000 263099.1 245505.2 7.47% 0.42% 3.2 288.0 

coord100x10-2b 203988 220639 205019 150770 145956 57869 48063 12000 11000 216890.5 205916.8 8.16% 0.51% 3.0 315.0 

coord100x10-3 250882 269466 254667 152779 139411 91687 91256 25000 24000 270843.1 256019.7 7.41% 1.51% 3.0 278.5 

coord100x10-3b 204317 220269 205746 152779 139411 56490 54335 11000 12000 221102.8 207264.0 7.81% 0.70% 3.0 201.3 

coord200x10-1 475294 501614 480267 266151 253840 188463 179427 47000 47000 502331.6 483794.4 5.54% 1.05% 15.0 999.6 

coord200x10-1b 377043 394147 379725 253840 253840 116307 103885 24000 22000 396606.8 381698.8 4.54% 0.71% 13.9 613.4 

coord200x10-2 449006 458803 450871 280370 280370 130433 123501 48000 47000 460404.5 453413.6 2.18% 0.42% 8.1 412.9 

coord200x10-2b 374280 395363 374720 286199 280370 87164 72350 22000 22000 395571.6 375750.5 5.63% 0.12% 7.5 1094.0 

coord200x10-3 469433 484669 473532 272528 272528 165141 155004 47000 46000 485020.5 476192.5 3.25% 0.87% 18.9 586.6 

coord200x10-3b 362653 375890 364920 234660 234660 119230 108260 22000 22000 376613.4 368464.1 3.65% 0.63% 19.3 1271.1 

AVERAGE 196470 206518.47 198101 118061.07 112390.97 71257.4 68810.033 17200 16900 207034.88 199381.623 4.44% 0.62% 4.5 231.8 

Table 5.11. Results of TSBRH vs BR-VNS for Prodhon’s set 
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  OBS  OBS Opening Cost OBS Distance OBS Vehicles Average Costs OBS GAP OBS CPU (sec) 

Instance Name BKS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS TSBRH BR-VNS 

cr30x5a-1 819.51 837.86 819.51 200 200 637.86 619.51 5 5 842.34 829.32 2.24% 0.00% 2 1 

cr30x5a-2 821.45 881.65 822.01 200 200 681.65 622.01 5 5 883.47 825.78 7.33% 0.07% 2 1 

cr30x5a-3 702.29 707.97 702.29 200 200 507.97 502.29 6 6 707.97 706.81 0.81% 0.00% 2 1 

cr30x5b-1 880.02 885.08 880.03 200 200 685.08 680.03 5 5 886.84 890.21 0.57% 0.00% 2 1 

cr30x5b-2 825.32 825.32 825.32 200 200 625.32 625.32 7 7 825.35 825.32 0.00% 0.00% 2 1 

cr30x5b-3 884.58 884.58 884.58 200 200 684.58 684.58 7 7 884.58 884.58 0.00% 0.00% 2 1 

cr40x5a-1 928.10 933.49 929.58 200 200 734.61 729.58 7 6 939.26 936.42 0.58% 0.16% 2 1 

cr40x5a-2 888.42 899.11 888.78 200 200 699.11 688.78 7 7 901.60 890.80 1.20% 0.04% 2 1 

cr40x5a-3 947.26 963.55 949.47 200 200 763.55 749.47 7 6 963.60 953.18 1.72% 0.23% 2 1 

cr40x5b-1 1052.04 1059.17 1052.04 200 200 859.39 852.04 9 8 1062.96 1057.87 0.68% 0.00% 2 1 

cr40x5b-2 981.54 981.54 981.54 200 200 781.54 781.54 8 8 993.03 989.52 0.00% 0.00% 2 1 

cr40x5b-3 964.33 979.80 964.33 200 200 779.04 764.33 8 8 982.47 978.21 1.60% 0.00% 2 1 

Average 891.24 903.26 891.62 200.00 200.00 703.31 691.62 6.75 6.50 906.12 897.33 1.39% 0.04% 2 1 

Table 5.12. Results of TSBRH vs BR-VNS for Akca’s set 

 

 

 

 

 

 

 

 

 



149 

 

5.6 Conclusion 

 

In this chapter we present two solution methods for the LRPMD. The LRPMD has many real-life 

important applications such as, newspaper distribution, military applications and bill delivery.  

A description of the Biased Randomised heuristic and the Biased Randomised metaheuristic was 

given. The Biased Randomised heuristic (TSBRH) consists of two stages to solve the LRPMD. The 

first stage is based on combining location decision with a classic constrictive heuristic (ECWH), to 

find an initial solution. The second stage is based on TLBRH which in Chapter 4, to improve the 

initial solution which is obtained from the first stage. As we described in Chapter 4, the second 

stage consists of two levels: Global Level and Local Level. The Global Level reallocates customers 

to depots by solving the whole MDVRP by using BR-ECHW, while the Local Level improves 

routing by applying the BR-CWH, which is described in Chapter 3, for each depot with its 

customers individually. The Biased Randomised technique has been used to help heuristics to 

escape from local minima and explore different regions of the search space. 

The Biased Randomised metaheuristic is developed based on the VNS. The initial solution is 

generated by employing the Biased Randomised technique to allocate customers to depots; after 

allocating customers to depots, the BR-CWH is used to solve the routing problem. Then VNS 

metaheuristic improves the best initial solution.  

To evaluate the performance of algorithms, computational experiments are carried out for three data 

sets with problem sizes ranging from 12 to 200 customers, and number of depots from 2 to 15. The 

results obtained so far indicate that this proposed heuristic is suitable to solve the LRPMD in terms 

of the solution quality and computational time.  

There are some limitations for the proposed method. Firstly, the TSBRH is a heuristic and it appears 

to get stuck in local optima. Secondly, when the number of customers increase, the gap become 

larger, which means its performance deteriorates.  

Future study should address two directions for improvement. The first direction is to improve the 

quality of solution by adding a local search. The second direction is to extend the LRPMD and 

propose novel mathematical models to consider more realistic problems such as the environmental 

issues with the Green LRPMD, described in Chapter 6. 
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Finally, the practicality and simplicity of our solution method, is notable when compared to 

complex methods in the literature with exhaustive fine-tuning procedures. Therefore, our method 

can be easily integrated into supply chain management.  
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 The Green Location Routing 

Problem with Multi-Depot 

(G-LRPMD) 
 

6.1 Introduction 

 

Transportation is one of the main activities in supply chain management. That is because it has a 

huge impact on customer satisfaction, and it also plays an important role in the generation of CO2 

and greenhouse-gas (GHG) emissions, and related externalities such as air pollution, noise, and 

traffic congestion (Juan et al, 2016). Road transportation alone is responsible for about 18% of total 

GHG emissions in the EU (Hill et al, 2011). Moreover, higher percentages of CO2 emissions have 

been reported in other parts of the world, such as Asia and the Pacific region (United Nations, 

2011), and the United States of America (United States Environmental Protection Agency, 2014). 

Therefore, it becomes necessary to consider more ecological power sources for fueling vehicles in 

transport.  

Internal-Combustion-Engine Vehicles (ICEVs) consume oil and produce a higher percentage of 

CO2, greenhouse emissions, and other pollutant effects. It is obvious that a shift from a fossil fuel 

fleet to an electric-powered fleet is necessary to reduce pollutant emissions in cities. Also, by 

introducing special taxes, governments are approving policies aimed at decreasing the pollution 

level generated by transportation. Therefore, from both an environmental and energy stand point, 
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the use of Electric Vehicles (EVs) should be one of the first priorities for the reduction of primary 

energy consumption. 

In fact, EVs are considered as the next big step in the automobile industry and there is an increasing 

interest in the use of them. The introduction of the EVs in modern fleets facilitates a shift towards 

greener road transportation. Furthermore, governments are making noticeable efforts to promote the 

use of green technologies, such as EVs (Mattila and Antikainen, 2011). However, there are some 

operational barriers of using the EVs in transportation. Ferreira et al (2011) state that the EVs 

continue to have a limited autonomy associated with the long charging times, limited charging 

stations and undeveloped smart grid infrastructures demands. Similar arguments can be found in 

Achtnicht et al (2012), Wirasingha et al (2008), and Chan et al (2009).  

But the main current challenge of using the EVs is the limited driving ranges because of the 

duration of their batteries. This issue is recognised by different authors as a major challenge (Juan et 

al, 2016). The ISOE institute, report that the reduced range will remain the main issue concerning 

electric mobility. According to experts this is not likely to change considerably in the medium term 

(Institute for Social-Ecological Research, 2017). Electric vehicles with different battery sizes give 

rise to problems whereby each vehicle will have its own driving range, which needs to be accounted 

for in route-planning. With EVs becoming more prevalent, an efficient routing of heterogeneous 

fleets with multiple driving-range vehicles is emerging as a new issue in the transportation industry. 

Therefore, we address the LRPMD with constrained distance, which is used to show the effects of 

the inclusion of EVs during integrated location and routing decisions. In this chapter, we will 

discuss the Green Location Routing Problem with Multi-Depot (G-LRPMD), which is a natural 

extension of the LRPMD when EVs are utilised. Also, we develop a Green Two-Stage Biased 

Randomised Heuristic (G-TSBRH) and Green Biased Randomised VNS, to solve the G-LRPMD. 

The computational experiments show that the heuristic generates good quality solutions in very 

reasonable computation time, and the G-BRVNS provides better solutions.  

This chapter is organized as follows. The main contribution of the chapter is covered in section 6.2. 

The G-LRPMD definition and the mathematical model is given in section 6.3. Section 6.4 and 6.5 

outline the basis of G-TSBRH and G-BRVNS, respectively. Section 6.6 presents the computational 

experiments and the analysis of results. In section 6.7, we investigate the effect the distance 

constraint has on solutions of LRPMD, by comparing results of LRPMD with the results of the G-

LRPMD. Finally, section 6.8 concludes the chapter and discusses future research. 
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6.2  Contribution 

 

Due to the increase in CO2 and GHG from using ICEVs, there is more interest in the use of green 

technologies, such as EVs. However, the driving ranges of EVs are limited by the duration of their 

batteries, which causes new operational challenges. We introduce an ecological fleet of EVs in the 

LRPMD instead of ICEVs, in order to comply with the shift towards greener road transportation 

and protecting the environment.  

In this chapter, we discuss the Green Location Routing Problem with Multi-Depot (G-LRPMD), 

which is a natural extension of the LRPMD when EVs are utilised. To tackle the limitation of the 

driving ranges of EVs, we introduce a new constraint to ensure that EVs will not exceed their 

driving range. To the best of our knowledge, there is no research reported in the literature that 

integrates the LRPMD with EVs other than the mentioned collaboration. Therefore, taking 

environmental issues into account when solving LRPMD, by formulating the mathematical model 

with a distance constraint, is one of main contributions of this chapter.  

The second contribution in this chapter is developing the G-TSBRH to solve this problem. Our 

proposed method is based on the BR-ECWH for the MDVRP, similar to the solution method in 

Chapter 5. Also, we proposed the G-BRVNS to solve the G-LRPMD based on the BR-VNS. 

However, a distance constraint has been added to the model to consider the usage of EVs.  

As this problem is quite new in the literature, in order to validate the performance of the proposed 

approach, three benchmark data sets were generated for G-LRPMD by adapting the classic 

benchmark instances of the LRPMD. This can be counted as the third contribution of this chapter.  

In summary, three main contributions in this chapter are in line with developing a modified 

mathematical model and novel solution methods, and adapting three classical benchmark data sets 

for G-LRPMD. 

 

6.3   Optimisation model 

 

G-LRPMD considers the LRPMD with distance constraint. The problem is to determine the number 

and locations of depots, assignment of customers to open depots, and the corresponding delivery 

routes, so that the total costs consisting of depot-establishing cost, transportation cost, and 
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dispatching cost for vehicles are minimised. Each vehicle takes exactly one route starting from the 

depot, visiting a subset of the customers and returning to the depot. In addition, customer demand 

cannot be split among different routes and the sum of demands in each route must not exceed the 

vehicle capacity D. For each vehicle, there is a limited driving range 𝑑̅ which must be respected. 

Furthermore, total demand of customers assigned to one depot must not exceed its capacity 𝑄𝑖.  

In general, the G-LRPMD can be defined on a complete, weighted, and undirected network G = (V, 

E, C), where 𝑉 = {1, … , 𝑛} is a set of nodes (representing the depots, customers), and 𝐸 is a set of 

undirected edges (𝑖 , 𝑗), and 𝐶 = (𝑐𝑖𝑗) is the matrix of traveling cost associated with the edges 𝐸. 

The cost is symmetric, i.e. 𝑐𝑖𝑗=𝑐𝑗𝑖, and it satisfies the triangular inequality 𝑐𝑖𝑗 ≤ 𝑐𝑖𝑢 + 𝑐𝑢𝑗.  

It is assumed that 𝐼 ⊆ 𝑉 be a set of potential depots and 𝐽 ⊆ 𝑉 be a set of customers. A capacity 𝑄𝑖 

and an opening cost 𝑓𝑖 are associated with each depot site 𝑖 ∈ 𝐼. A set 𝐾 of identical vehicles of 

capacity 𝐷 is available. When used, each vehicle incurs a fixed cost 𝐹 and performs a single route. 

Each customer 𝑗 ∈ 𝐽  has a demand 𝑑𝑗 whereby 𝑑𝑗 ≤ 𝐷. Since 𝑑𝑗 ≤ 𝐷, there will never be a need 

for a node (customer) to be visited by more than one vehicle to satisfy its demand. This means that 

split delivery is not allowed. Figures 6.1 illustrates an example of G-LRPMD compared to the 

LRPMD.  Firstly, in Figure 6.1 (a), there are three depots selected to be opened. Then, in Figure 6.1 

(b), customers are assigned to opened depots. Finally, vehicle routes are computed without distance 

constraints in figure 6.1 (c). Lastly, Figure 6.1 (d) illustrates how the routing plan might be 

significantly altered due to the introduction of driving range constraints. 



155 

 

 

Figure 6.1. An illustrative example of Green LRP 

 

The optimisation model is formulated as a mixed integer linear programming problem and it is 

inspired by Prins et al., (2007). We have modified the mathematical model in terms of adding the 

constrained distance to consider the environmental issues when solving the LRPMD. In order to 

formulate the model, the following notation is introduced.  

 

Sets are defined as follows: 

𝑉 : Set of nodes, 𝑉 = 𝐼 ∪ 𝐽 

𝐼 : Set of potential depot nodes  

𝐽 : Set of customers to be serviced  

𝐾 : Number of available vehicles (fleet size) 

 

Parameters are defined as follows: 

𝑓𝑖 : The fixed cost of opening a depot at 𝑖  

𝑄𝑖 : Capacity of depot 𝑖 

𝑑𝑗 : Demand of customer 𝑗 
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𝐷 : Capacity of each vehicle 

𝐹 : Fixed cost per vehicle used 

𝑐𝑖𝑗 : Traveling cost for edge (𝑖, 𝑗) 

𝑑̅ : The maximum distance allowed for each vehicle 

 

Decision variables are defined as follows:  

𝑥𝑖𝑗𝑘 : {
1, if vehicle 𝑘 is used on route from node 𝑖 to node 𝑗
0, otherwise

 

𝑦𝑖 :    {
1, if a depot is located at site 𝑖 
0, otherwise

 

𝑧𝑖𝑗 :   {
1, if customer 𝑗 is served from depot 𝑖
0, otherwise

 

 

The G-LRPMD formulation is as follows: 

 

𝑀𝑖𝑛 ∑ 𝑓𝑖𝑦𝑖𝑖∈𝐼 + ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝑉𝑖∈𝑉 + ∑ ∑ ∑ 𝐹𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼                                                   (6.1) 

Subject to 

∑ ∑ 𝑥𝑖𝑗𝑘𝑖∈𝑉𝑘∈𝐾 = 1                                        ∀ 𝑗 ∈ 𝐽                                                                           (6.2) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝐼 ≤ 1                                          ∀ 𝑘 ∈ 𝐾                                                                         (6.3) 

∑ 𝑥𝑖𝑗𝑘𝑗∈𝑉 − ∑ 𝑥𝑗𝑖𝑘𝑗∈𝑉 = 0                            ∀ 𝑘 ∈ 𝐾,           ∀ 𝑖 ∈ 𝑉                                                  (6.4) 

∑ 𝑥𝑖𝑢𝑘𝑢∈𝐽 + ∑ 𝑥𝑢𝑗𝑘𝑢∈𝑉\{𝐽} ≤ 1 + 𝑧𝑖𝑗          ∀ 𝑖 ∈ 𝐼,             ∀ 𝑗 ∈ 𝐽,         ∀ 𝑘 ∈ 𝐾                             (6.5) 

∑ ∑ 𝑑𝑗𝑥𝑖𝑗𝑘𝑗∈𝐽𝑖∈𝑉 ≤ 𝐷                                     ∀ 𝑘 ∈ 𝐾                                                                        (6.6) 

∑ 𝑑𝑗𝑧𝑖𝑗𝑗∈𝐽 ≤ 𝑄𝑖𝑦𝑖                                             ∀ 𝑖 ∈ 𝐼                                                                         (6.7) 

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑗∈𝑉𝑖∈𝑉 ≤ 𝑑̅                                     ∀ 𝑘 ∈ 𝐾                                                                       (6.8) 

𝑥𝑖𝑗𝑘 ∈ {0, 1}                                         ∀ 𝑖 ∈ 𝐼,       ∀ 𝑗 ∈ 𝐽,       ∀ 𝑘 ∈ 𝐾                                   (6.9) 

𝑦𝑖 ∈ {0, 1}                                             ∀ 𝑖 ∈ 𝐼                                                                       (6.10) 

𝑧𝑖𝑗 ∈ {0, 1}                                            ∀ 𝑖 ∈ 𝐼,       ∀ 𝑗 ∈ 𝑉,                                                   (6.11) 

𝑐𝑖𝑗 = ∞       𝑤ℎ𝑒𝑛 𝑖 = 𝑗   

The objective function (6.1) seeks to minimise the total cost, which includes the fixed cost of the 

selected facilities and the fixed and variable cost of the vehicles. Constraints (6.2) are the routing 

constraints that impose that each customer has to be visited exactly once by a single vehicle, 

whereas constraints (6.3) ensure that all routes have to start and end at a depot. Constraints (6.4) are 

the connectivity constraints to ensure that every vehicle leaves the customer after he has been 

served. Constraints (6.5) specify that a customer can be assigned to a depot only if a route linking 

them is opened. Constraints (6.6) and (6.7) impose both the capacity of vehicle and capacity of 
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depot. Constraints (6.8) guarantee that the route length of each vehicle does not exceed the 

maximum distance constraint. Constraints (6.9), (6.10), and (6.11) determine integer variables.  

 

6.4 Green Two-Stage Biased Randomised Heuristic for 

G-LRPMD 

 

Due to the efficiency of the TSBRH proposed and implemented in Chapter 5, we modify it to 

incorporate the new extension of the LRP with distance constraints – Green Two-Stage Biased 

Randomised Heuristic (G-TSBRH). Although the general framework of the G-TSBRH is similar to 

TSBRH, the algorithm needs to be modified to take into account the distance constraints of EVs. In 

the following, we show the details of modifications and how TSBRH is adapted to G-LRPMD. 

In the first stage, some depots are selected to be opened among the list of potential candidates. The 

main factor in determining the number of opened depots is the total demand of all customers. 

Therefore, there is no effect of distance constraints on the number of depots. However, the location 

of opened depots is affected by adding distance constraints, which means the cost of opened depots 

can increase.  

Once the location decision is made by selecting the depots to be opened, the LRPMD is reduced to 

MDVRP. This means we can apply the ECWH (explained in Chapter 4) proposed by Tillman 

(1969) to allocate customers to opened depots and find an initial solution. The distance constraints 

do affect the solution here by increasing the number of vehicles, and total distance. This is due to 

the fact that the EVs cannot go as far as traditional vehicles due to constrained distances. This stage 

is repeated for different combinations of depots, looking for the best configuration of depots with 

the minimum routing cost.  

Then, the best solutions found during the first stage are improved throughout the second stage 

which includes two levels namely, the Global Level and Local Level. In the Global Level, the BR-

ECWH, which is proposed and implemented in Chapter 5, is applied for the initial solution resulting 

from the first stage. Then, in the Local Level, the BR-CWH, which is proposed by Juan et al 

(2011a) and described in Chapter 3, is employed for each depot, to improve the routing allocated to 

that depot. In these two levels, again, there will be an effect of distance constraint on the solution by 

increasing the number of used vehicles, and total distance.  
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6.5 Green Biased Randomised Variable Neighbourhood 

Search (BR-VNS)  

 

The BR-VNS, which is proposed and implemented in Chapter 5, shows that it is able to solve the 

LRPMD efficiently. Therefore, we modify it to incorporate the G-LRPMD, and we called it Green 

Biased Randomised VNS (G-BRVNS). Although the general framework of the G-BRVNS is 

similar to BR-VNS, the algorithm needs to be modified to take into account the distance constraints 

of EVs. In the following, we show the effect of distance constraints on the solution obtained by G-

BRVNS.  

In the initial solution, some depots are selected to be opened among the list of potential candidates, 

and customers are allocated to these opened depots. The main factor in determining the number of 

opened depots is the total demand of all customers. Therefore, there is no effect of distance 

constraints on the number of depots. However, location of depots is changed after adding the 

distance constraint.  

Once the location decision is made by selecting the depots to be opened, the LRPMD is reduced to 

MDVRP. Therefore, routing is solved by applying BR-CWH to find the initial solution. The 

distance constraints do affect the solution by an increased number of vehicles, and total distance. 

This stage is repeated for different combinations of depots looking for the best configuration of 

depots with the minimum routing cost.  

Then, the best solutions found during the first stage are improved throughout the VNS. Here again, 

there will be an effect of distance constraints on the solution by an increased number of vehicles, 

and total distance.  

 

 

6.6 Computational experiments 

 

Computational experiments have been conducted to evaluate the performance of G-TSBRH and G-

BRVNS. The G-TSBRH and BR-VNS were coded by using Java applications. Computational 

experiments have been performed using a 2.3 Ghz Quad-Core AMD Opteron(tm) processor with 8 

GB of RAM and running under CentOS release 6.6.  
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6.6.1  Data sets and experimental setting 

Since there are no specific benchmarks for the G-LRPMD, to the best of our knowledge, we have 

generated new instances based on the LRPMD ones that have been used in chapter 5. In order to 

facilitate the comparison, we have adapted all instances from Barret’s, Prodhon’s, and Akca’s sets 

by means of the following procedure:  

(i) we select a random sample of 10 instances from each benchmark set 

(ii) each of these instances is solved with the BR-VNS metaheuristic as LRP 

(iii) route distances from each solution are sorted according to their distances 

(iv) we select for each set the route length corresponding to the 3rd quartile of them 

(v) this value is rounded to the nearest multiple of 10 

It is to note that, at this point we could have selected any other value (instead of the distance of the 

3rd quartile) to generate the G-LRPMD instances. As a result, distance is constrained with values of 

5500 and 130 for Prodhon's and Akca's sets, respectively. Regarding Barreto's set, we could not get 

a single value for the constrained distance. Therefore, distance constraint values are 700 for both 

Min-27x5 and Min92-134x8 instances, 3960 for Daskin95-150x10, and 130 for the remaining 

instances of this set. It should be mentioned that in the computational experiments, each instance 

has been run using 10 different random seeds, and the best result is considered as our best solution 

(BS). 

 

6.6.2  Performance analysis of G-TSBRH and G-BRVNS 

In this section, we discuss the results obtained by G-TSBRH and G-BRVNS in order to illustrate 

the potential of our solution methods. In the computational experiments, each instance has been run 

using 10 different random seeds. The best result is considered as Best Solution (BS), and the 

average value of results is considered as Average Total Cost.  

Tables 6.1, 6.2, and 6.3 present the results provided by G-TSBRH and G-BRVNS for the G-

LRPMD. The following information is gathered in these tables: instance name, BKS, (Average 

Total Cost) for different runs, best-found solution (BS Total Cost), opening cost (BS Opening 

Cost), distance-based cost (BS Distance Cost), and (BS Vehicles). This column corresponds to the 

number of vehicles in Barreto's and Akca's sets, while it reflects the vehicles cost in the Prodhon's 

set. The last columns correspond to the associated gaps, and computational times in seconds. The 
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percentage gap between the best solution of G-TSBRH and G-BRVNS is calculated as 

[(
𝐵𝑆𝐺−𝐵𝑅𝑉𝑁𝑆−𝐵𝑆𝐺−𝑇𝑆𝐵𝑅𝐻

𝐵𝑆𝐺−𝑇𝑆𝐵𝑅𝐻
) × 100].  

We need to emphasise here that our solution methods have considerable benefits and viability in the 

business context. The G-BRVNS is able to generate a competitive solution in terms of solution 

quality in a long computational time. 

The G-TSBRH is able to generate reasonably good solutions in a matter of seconds, which makes it 

favorable at operational level when a quick solution is required such as in a communication 

network. However, the G-BRVNS provides higher-quality solutions by employing more 

computational time. Moreover, as they can produce many solutions, they can offer the decision 

maker different scenarios to choose the best solution.    

In these tables we notice that computational time increases when the size of instances increases. 

Size of instances is controlled by two factors, number of potential depots and number of customers.  

Also we notice that, in general, the solution quality of the G-BRVNS is better than the solution 

quality of the G-TSBRH. The average percentage gaps are -4.1%, -5.1%, and -2.88% for Barreto’s, 

Prodhon’s and Akca’s sets, respectively.  

However, the average of the computational times for G-TSBRH is 3.98, 4.6, and 2 sec for the 

Barreto's set, Prodhon’s set, and Akca’s set, respectively. The average of the computational times 

for G-BRVNS is 101.5, 235, and 1 sec for the Barreto's set, Prodhon’s set, and Akca’s set, 

respectively. We can claim that G-TSBRH is competitive when a quick solution is required.  

Table 6.1 shows results of Barreto’ set. We can observe that there are two lines of performance. The 

first one, the G-BRVNS is faster in smaller instances with up to 29 customers other than one 

instance, Gaskell-21x5. The second one, the G-TSBRH has considerably lower computational time 

in larger instances with greater than 29 customers, and outperforms G-BRVNS in 13 out of 17 

instances. However, in terms of solution quality, G-BRVNS noticeably outperforms G-TSBRH in 

terms of solution quality in 14 out of 17 instances. Among the other 3 instances, G-TSBRH can 

match G-BRVNS in 2 instances, and it outperforms G-BRVNS in 1 instance. This is due to the 

effectiveness of G-BRVNS in routing decisions. Even when G-TSBRH outperforms G-BRVNS, 

either higher opening cost or higher vehicle cost make the G-TSBRH overall result worse. 

Considering the computational times and the average gap of -4.10%, we can claim that G-BRVNS 

is a viable alternative for strategic decisions, while G-TSBRH is still competitive when a quick 

solution is required. 
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For Prodhon’s set in table 6.2, the superiority of G-BRVNS in terms of solution quality is apparent 

and it outperforms G-TSBRH in 24 out of 30 instances. This confirms the type of trend that we 

have reported on large instances of Barreto's set. Other than 3 relatively smaller instances, G-

TSBRH outperforms the G-BRVNS and the computational time of G-BRVNS rapidly increases 

with the instance sizes and its average computational time goes up rapidly to 235.0, whereas 

average computational time of the G-TSBRH stays much lower at 4.6. As the average gap is -

5.21%, we come to the same decision that G-BRVNS is our choice when a higher quality decision 

is preferred to a fast but less accurate result provided by G-TSBRH.  

Finally, in table 6.3 of Akca's set, results illustrate that G-BRVNS performs considerably better than 

G-TSBRH in terms of both solution quality and computational time. G-BRVNS outperforms  

G-TSBRH in 9 out of 12 instances and it matches G-TSBRH result in the other 3 instances. In 

Akca's set, the number of customers is either 30 or 40 which indicates the instances are not very 

large. Thus, not surprisingly, similar to smaller instances of Barreto's set, G-BRVNS performs 

better than G-TSBRH both in terms of solution quality and computational time. G-BRVNS has an 

average computational time of 1 second and G-TSBRH has a value of 2 seconds. One may argue 

that the difference of 1 sec between their computational time is negligible. However, with the 

average gap of -2.88% and little difference in computational time, we can easily recommend G-

BRVNS to the decision makers. The Figure 6.2 illustrates the boxplot of comparison of the G-

TSBRH and G-BRVNS in term of the average of computational time.  

In general, the existing balance between the solution quality and the amount of computational time 

of the proposed methods, result in their viability in real-life problems. In addition, novelty of the 

underlying ideas and simplicity of their implementation with regard to re-tuning parameters, when 

compared to the other approaches in the literature, make the suggested methods even more 

desirable. 

 

Figure 6.2. The average of the CPU for G-TSBRH and BR-VNS 
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 BS BS Opening Cost BS Distance BS Vehicles Average Costs 
Gap 

BS CPU (sec) 

Instance Name G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS 

Perl-12x2 203.98 203.98 100.0 100.0 103.98 103.98 2 2 203.98 203.98 0.00% 2 1 

Gaskell-21x5 465.73 424.90 150.0 100.0 315.73 324.90 5 4 465.73 427.23 -8.77% 2 2.1 

Gaskell-22x5 789.74 775.12 150.0 150.0 639.74 625.12 7 7 789.74 789.40 -1.85% 2 1.1 

Min-27x5 3770.98 3770.98 816.0 816.0 2954.98 2954.98 6 6 3771.62 3852.04 0.00% 2 1.2 

Gaskell-29x5 587.28 529.07 150.0 150.0 437.28 379.07 5 4 587.28 529.23 -9.91% 2 1.3 

Gaskell-32x5 681.39 631.43 100.0 100.0 581.39 531.43 6 5 681.39 637.73 -7.33% 2 4.4 

Gaskell-32x5-2 680.89 610.74 100.0 100.0 580.89 510.74 6 5 681.29 627.53 -10.30% 2 5.3 

Gaskell-36x5 485.42 460.37 100.0 50.0 385.42 410.37 4 4 485.42 463.22 -5.16% 2.1 2.6 

Christ-50x5 577.92 565.62 80.0 80.0 497.92 485.62 6 5 581.12 573.36 -2.13% 2.2 33.2 

Christ-50x5-B 595.72 570.41 80.0 80.0 515.72 490.41 7 6 598.66 580.84 -4.25% 2.2 22 

Perl-55x15 1128.77 1114.32 720.0 720.0 408.77 394.32 11 10 1131.41 1118.73 -1.28% 5.3 76.6 

Christ-75x10 860.98 861.88 120.0 120.0 740.98 741.88 12 10 869.75 872.32 0.10% 4.4 89.7 

Perl-85x7 1633.93 1628.68 1116.0 1116.0 517.93 512.68 12 12 1643.20 1641.21 -0.32% 6.2 40.4 

Daskin-88x8 375.88 355.85 104.4 83.0 271.48 272.85 6 6 378.35 359.71 -5.33% 2 160.1 

Christ-100x10 874.35 847.61 80.0 80.0 794.35 767.61 9 8 885.74 856.00 -3.06% 8 360.3 

Min-134x8 6283.61 6057.13 1072.0 804.0 5211.61 5253.13 11 11 6307.90 6198.53 -3.60% 10.3 273.2 

Daskin-150x10 49506.01 46258.25 15000.0 15000.0 34506.01 31258.25 11 11 50369.91 46950.28 -6.56% 11 650.5 

Average 4088.39 3862.73 1178.73 1155.82 2909.66 2706.90 7.41 6.82 4143.09 3922.43 -4.10% 3.98 101.5 

Table 6.1. Results obtained using G-TSBRH and G-BRVNS for Baretto’s set 
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 BS BS Opening Cost BS Distance BS Vehicles Average Costs 
Gap 

BS CPU (sec) 

Instance Name G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS 

coord20-5-1 55806 55806 25549 25549 24257 24257 6000 6000 55806.0 55806.0 0.00% 2.0 2.2 

coord20-5-1b 85036 85036 15497 15497 58539 58539 11000 11000 85036.0 85036.0 0.00% 2.0 4.5 

coord20-5-2 51960 49931 24196 22769 21764 22162 6000 5000 51960.0 49931.0 -3.90% 2.0 1.0 

coord20-5-2b 54729 54742 21739 21739 26990 27003 6000 6000 54729.0 54742.0 0.02% 2.0 1.3 

coord50-5-1 126121 126121 25442 25442 83679 83679 17000 17000 126121.0 126121.0 0.00% 2.0 1.5 

coord50-5-1b 121063 120063 25442 25442 79621 79621 16000 15000 121245.0 120562.8 -0.83% 2.0 3.2 

coord50-5-2 90094 90132 32714 32714 45380 45418 12000 12000 90149.0 90709.8 0.04% 2.0 11.8 

coord50-5-2b 72293 71986 32714 32714 32579 32272 7000 7000 72602.9 72716.9 -0.42% 2.0 23.9 

coord50-5-2BIS 192421 191431 19785 19785 145636 144646 27000 27000 192922.7 192069.5 -0.51% 2.0 25.0 

coord50-5-2bBIS 113262 71569 19242 19242 80020 43327 14000 9000 113426.6 76185.3 -36.81% 2.0 33.3 

coord50-5-3 95981 92883 37954 24492 45027 55391 13000 13000 96231.9 93128.3 -3.23% 2.0 10.9 

coord50-5-3b 81009 80081 37954 24492 35055 45589 8000 10000 81812.0 80118.2 -1.15% 2.0 14.4 

coord100-5-1 413590 413644 144012 144012 228578 228632 41000 41000 413590.5 414278.5 0.01% 2.0 139.0 

coord100-5-1b 396471 394729 144012 144012 216459 215717 36000 35000 397300.4 397300.6 -0.44% 2.3 74.2 

coord100-5-2 195892 194604 102246 102246 69464 68358 24000 24000 196161.5 196283.4 -0.66% 2.0 61.1 

coord100-5-2b 159192 157847 102246 102246 44946 44601 12000 11000 159645.2 157945.8 -0.84% 2.0 72.3 

coord100-5-3 229351 226960 138923 130861 66428 72099 24000 24000 229505.1 228288.5 -1.04% 2.0 141.2 

coord100-5-3b 195776 190568 138923 130861 44853 47707 12000 12000 196112.2 191295.0 -2.66% 2.1 108.0 

coord100-10-1 334947 318797 226818 202285 82129 90512 26000 26000 335598.9 321346.8 -4.82% 9.9 81.4 

coord100-10-1b 295558 277843 226818 202285 55740 61558 13000 14000 296290.0 279505.2 -5.99% 9.0 95.8 

coord100-10-2 284612 245110 149586 145956 106026 76154 29000 23000 285053.8 246299.2 -13.88% 3.0 292.4 

coord100-10-2b 231583 205412 154095 145956 63488 48456 14000 11000 233555.6 206716.8 -11.30% 3.0 319.8 

coord100-10-3 264096 257490 159669 144699 79427 87791 25000 25000 264096.0 258950.4 -2.50% 3.0 282.7 

coord100-10-3b 224505 216189 159669 149491 52836 54698 12000 12000 224546.6 216840.1 -3.70% 3.0 204.4 

coord200-10-1 584228 544400 311992 266151 216236 222249 56000 56000 584658.2 547674.2 -6.82% 11.4 1012.8 

coord200-10-1b 504941 464043 311992 266151 160949 164892 32000 33000 505786.6 469821.1 -8.10% 10.2 621.5 

coord200-10-2 502149 450645 280370 280370 167779 123275 54000 47000 503461.8 452903.8 -10.26% 6.5 418.4 

coord200-10-2b 432691 374938 280370 280370 122321 72568 30000 22000 433127.9 375985.8 -13.35% 7.7 1108.4 

coord200-10-3 531794 472853 317158 272528 167636 154325 47000 46000 533042.4 480580.5 -11.08% 16.5 594.3 

coord200-10-3b 439069 385611 317158 272528 98911 91083 23000 22000 445778.8 391509.2 -12.18% 19.1 1287.8 

Average 245340.67 229382.13 132809.5 122429.5 90758.4 86219.3 21766.7 20733.3 245978.5 231021.7 -5.21% 4.6 235.0 

Table 6.2. Results obtained using G-TSBRH and G-BRVNS for Prodhon’s set 
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 BS BS Opening Cost BS Distance BS Vehicles Average Costs 
Gap 

BS CPU (sec) 

Instance Name G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS G-TSBRH G-BRVNS 

cr30x5a-1 892.40 892.40 200 200 692.40 692.40 7 7 1103.06 894.27 0.00% 2 1 

cr30x5a-2 1006.65 915.54 200 200 806.65 715.54 7 7 1006.67 916.02 -9.05% 2 1 

cr30x5a-3 707.97 702.29 200 200 507.97 502.29 6 6 707.97 702.51 -0.80% 2 1 

cr30x5b-1 1098.63 952.83 200 300 898.63 652.83 8 6 1098.63 952.83 -13.27% 2 1 

cr30x5b-2 971.19 922.65 200 300 771.19 622.65 8 7 971.19 928.53 -5.00% 2 1 

cr30x5b-3 984.50 984.50 200 200 784.50 784.50 8 8 985.16 984.79 0.00% 2 1 

cr40x5a-1 979.78 979.42 200 200 779.78 779.42 7 7 980.80 981.64 -0.04% 2 1 

cr40x5a-2 913.25 899.69 200 200 713.25 699.69 8 7 913.50 903.29 -1.48% 2 1 

cr40x5a-3 1009.94 985.36 200 200 809.94 785.36 8 7 1010.02 1000.12 -2.43% 2 1 

cr40x5b-1 1137.29 1137.29 200 200 937.29 937.29 10 10 1138.65 1137.29 0.00% 2 1 

cr40x5b-2 1163.75 1138.52 200 300 963.75 838.52 9 10 1167.78 1144.27 -2.17% 2 1 

cr40x5b-3 993.23 989.55 200 200 793.23 789.55 8 9 999.58 994.23 -0.37% 2 1 

Average 988.22 958.34 200.00 225.00 788.22 733.34 7.83 7.58 1006.92 961.65 -2.88% 2 1 

Table 6.3. Results obtained using G-TSBRH and G-BRVNS for Akca’s set 
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6.7  Comparison analysis of LRPMD and G-LRPMD 
 

In this section, we will investigate the effect of the distance constraints on solutions of LRPMD and 

G-LRPMD. For both G-TSBRH and G-BRVNS, we compute the average best solution (BS), the 

average best solution of opening cost (BS Opening Cost), the average best solution of distance (BS 

Distance), and the average of the best solution of the vehicle cost (BS Vehicle) for the LRPMD and 

the G-LRPMD.  

 

6.7.1 TSBRH and G-TSBRH 

Table 6.4 summarises the average results obtained from TSBRH for the LRPMD and from G-

TSBRH for the G-LRPMD. The bold indicates that the LRPMD is smaller than the G-LRPMD in 

terms of the BS, BS Opening Cost, BS Distance, and BS vehicles. There is only one exception in 

Akca’s set, the distance constraint does not effect the opening cost of depots.  

 BS  BS Opening Cost BS Distance BS Vehicles 

 LRPMD G-LRPMD LRPMD G-LRPMD LRPMD G-LRPMD LRPMD G-LRPMD 

Barreto 3718.61 4088.39 1145.1 1178.73 2573.55 2909.66 6.47 7.41 

Pordhon 2065.18 2453.41 1180.61 1328.10 7125.74 9075.84 17.20 21.77 

Akca 903.26 988.22 200.00 200.00 703.31 788.22 6.75 7.83 

 Table 6.4. Average solutions of TSBRH and G-TSBRH for LRPMD and G-LRPMD 

 

Figures 6.3, 6.4, 6.5, and 6.6 compare the average between BS, BS Opening Cost, BS Distance, and 

BS Vehicle obtained by TSBRH for the LRPMD and obtained by G-TSBRH for the G-LRPMD.  

  

Figure 6.3. Average BS of LRPMD vs G-LRPMD 
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In Figure 6.3, we can notice that the total cost for the BS of the LRPMD is smaller than the BS of 

the G-LRPMD, for the three data sets.  

 

  

Figure 6.4. Average BS opening cost of LRPMD vs G-LRPMD 

 

Also, in Figure 6.4, we can notice that the cost of opening depots in the LRPMD is smaller than the 

cost of opening depots in the G-LRPMD in Barreto’s and Prodhon’s sets. However, Akca’s set is 

not affected by adding the distance constraint.  

 

  

Figure 6.5. Average BS distance of LRPMD vs to G-LRPMD 

 

Finally, in Figure 6.5 and 6.6, it is clear that the BS Distance and the BS vehicles in the LRPMD is 

smaller than the BS Distance and the BS vehicles in the G-LRPMD for the three data sets. 
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Figure 6.6. Average BS Vehicles of LRPMD vs G-LRPMD 

 

Table 6.8 illustrates the percentage gap of the average of BS, BS Opening Cost, BS Distance Cost, 

and BS Vehicle between LRPMD and G-LRPMD solution methods for the three data sets. The 

percentage gap is calculated as %𝑔𝑎𝑝 = [(
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝐵𝑆𝐿𝑅𝑃𝑀𝐷− 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓BS𝐺−𝐿𝑅𝑃𝑀𝐷

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝐵𝑆𝐿𝑅𝑃𝑀𝐷
) × 100]. 

Similar formula is applied for the BS Opening Cost, BS Distance Cost, and BS Vehicle. The bold 

indicates that the Prodhon’s set has the most increase in the component of cost when compared to 

Barreto’s and Akca’s sets.  

 

 BS  BS Opening Cost BS Distance Cost BS Vehicles 

Barreto -9.9% -2.9% -118.3% -14.6% 

Pordhon -18.8% -12.5% -436.5% -26.6% 

Akca -9.4% 0.0% -251.7% -16.0% 

 Table 6.5. Percentage gap for LRPMD vs G-LRPMD 

 

As expected, the percentage gap for BS, Opening Cost, BS Distance Cost, and BS Vehicle have 

increased in all benchmark sets after applying the distance constraint, other than the BS Opening 

Cost for Akca’ set. This fact shows that the characteristics of the benchmark sets play an important 

role in the performance of the solution matter, in both absence and presence of the distance 

constraints. Also, the Prodhon’s set has the greatest increase in all cost components and thereby the 

total cost after applying the distance constraint, when compared to the other data set.  

We can conclude that the introduction of the distance constraints leads to a noticeable increase in all 

cost components and hence the total cost, which means employing EVs with limited batteries in 

order to have greener solutions can be considerably expensive. Therefore, the advancement of EVs 

technology, which is becoming more rapid recently, is necessary for an overall cheaper and greener 

solution. 
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6.7.2 BR-VNS and G-BRVNS 

Table 6.6 summarises the average results obtained from BR-VNS for the LRPMD and from  

G-BRVNS for the G-LRPMD. The bold indicates that the LRPMD is smaller than the G-LRPMD 

in terms of the BS, BS Opening Cost, BS Distance, and BS vehicles.  

 BS  BS Opening Cost BS Distance BS Vehicles 

 LRPMD G-LRPMD LRPMD G-LRPMD LRPMD G-LRPMD LRPMD G-LRPMD 

Barreto 3655.15 3862.73 1125.10 1155.82 2530.03 2706.90 6.29 6.82 

Pordhon 1981.01 2293.82 1123.91 1224.29 6881.00 8621.93 16.90 20.73 

Akca 891.62 958.34 200.00 225.00 691.62 733.34 6.5 7.58 

 Table 6.6. Average solutions of TSBRH and G-TSBRH for LRPMD and G-LRPMD 

 

Figures 6.7, 6.8, 6.9, and 6.10 compare the average between BS, BS Opening Cost, BS Distance, 

and BS Vehicle obtained by BR-VNS for the LRPMD and by G-BRVNS for the G-LRPMD.  

  

 Figure 6.7. BS average of LRPMD wrt to G-LRPMD 

 

In Figure 6.7, we can notice that the total cost for the BS of the LRPMD is smaller than the BS of 

the G-LRPMD for the three data sets.  
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Figure 6.8. BS opening cost average % gap of LRPMD wrt G-LRPMD 

 

In Figure 6.8, we notice that the cost of opening depots in the LRPMD is smaller than the cost of 

opening depots in the G-LRPMD in Prodhon’s sets. However, Barreto’s and Akca’s sets are 

affected slightly by adding the distance constraint.  

  

Figure 6.9. BS distance cost average % gap - of LRPMD wrt to G-LRPMD 

 

  

Figure 6.10. Average percentage gap - Vehicles of LRPMD vs Vehicles of G-LRPMD 
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In Figure 6.9 and 6.10, it clear that the BS Distance and the BS Vehicles in the LRPMD is smaller 

than the BS Distance and the BS Vehicles in the G-LRPMD, for the three data sets. 

Table 6.7 illustrates the percentage gap of the average of BS, BS Opening Cost, BS Distance Cost, 

and BS Vehicle between LRPMD and G-LRPMD solution methods for the three data sets.  

 

 BS  BS Opening Cost BS Distance BS Vehicles 

Barreto -5.7% -2.7% -118.9% -8.4% 

Pordhon -15.8% -8.9% -462.0% -22.7% 

Akca -7.5% -12.5% -207.4% -16.6% 

 Table 6.7. Percentage gap for LRPMD vs G-LRPMD 

 

As expected, the percentage gap for BS, Opening Cost, BS Distance Cost, and BS Vehicle have 

increased in all benchmark sets after applying the distance constraint.  

We can conclude that the introduction of the distance constraints leads to a noticeable increase in all 

cost components and hence the total cost, which means employing EVs with limited batteries in 

order to have greener solutions, can be considerably expensive. Therefore, the advancement of EV's 

technology, which is becoming more rapid recently, is necessary for an overall cheaper and greener 

solution. 

 

6.8  Conclusion  
 

In this chapter, we discussed the Green Location Routing Problem with Multi-Depot (G-LRPMD), 

which considers the use of electrical vehicles. The use of electric vehicles has gained more interest 

within the delivery fleets and the increasing need for implementation of green transport solutions. 

Electric vehicles may have different driving ranges and can be limited in the distance they can 

cover, due to the use of batteries. This imposes additional new operational challenges on the already 

existing complex issues of the location routing problem.  

To the best of our knowledge, this is the first time that green G-LRPMD has been studied. In order 

to solve the G-LRPMD problem, we present a modified optimisation model considers of EVs. In 

addition, we modified TSBRH and BR-VNS to consider distance constraint. New benchmark data 

sets were generated.  Computational experiments have been conducted to evaluate the performance 

of our methods in solving the newly generated instances for the G-LRPMD problem.  
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The experimental results have shown that G-TSBRH is a fast heuristic that generates good quality 

solutions in a very short computation time when compared with the G-BRVNS. As the average 

computational time of G-TSBRH is 3.98, 4.6, and 2 sec, we can claim that it is competitive when a 

quick solution is required. On the other hand, G-BRVNS is competitive when a high-quality 

solution is required. To sum up, the proposed methods are more desirable for its novelty of the 

underlying idea, and for its simplicity in its implementation.  

For the future work, we would like to consider different versions of the G-LRPMD by adding 

stochastic demand, or stochastic travel times, or by using heterogeneous fleets of electric vehicles in 

terms of its capacity. Also, it would be interesting to examine different configurations of fleets and 

analyse the trade-off between the associated distance-based cost and determine how "green" each 

configuration is. It should be noted that when we employ configurations "greener" vehicles, there is 

an increase in term of number of routes and, therefore, there is an increase in distances and the 

associated costs.  
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 Conclusion and Future 

Research 

 

7.1 Conclusion 

 

This thesis investigates four important topics related to the optimisation of supply chain 

management; LRPSD, MDVRP, LRPMD, and G-LRPMD. These four problems are very important 

and are nowadays among the core issues impacting costs and utility of logistics and distribution 

activities. 

Furthermore, these problems possess significant environmental implications and there exist 

concerns regarding their influence in terms pollution. Henceforth, efficient solution methods geared 

towards dealing with such complex problems and in support of adequate decision-making processes 

are developed.  

Throughout the course of this thesis both theoretical and experimental contributions are made to 

previous similar works in the research community. 

In the literature, the solution methodology for the LRP and its variants can be divided into three 

categories namely; heuristic methods, exact methods, and metaheuristics. Heuristics were the first 

methods used to solve the LRP which applied in a sequential framework. Then, an iterative 

framework and nested framework were utilised to improve the heuristics performance. Later on, 
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exact methods were applied to deal with the LRP, but they can only solve small problems that do 

not exceed 20 customers. Subsequently, metaheuristics have been used widely.  

The studied problems are known as NP-hard problems; therefore, approximate algorithms are more 

suitable to deal with them. Recently, a new technique, Biased Randomisation, was combined with 

heuristics to improve their performance. The idea of Biased Randomisation is to use a non-uniform 

random process to enhance the performance of the greedy heuristics. This new method has been 

applied successfully by Cabrera et al., (2014) and Juan et al., (2010) to solve both FLP and VRP. 

Although, the LRP is related to both FLP and VRP, because these problems can be viewed as 

special cases of the LRP, the combination of the Biased Randomisation technique with heuristics, to 

the best of our best knowledge, has not been used in the literature to solve it. Therefore, considering 

the main trends in designing the approximate algorithms, it is significant to propose an efficient 

solution method based on combining a Biased Randomisation technique with a classic heuristic 

This has resulted in a solution method which is able to solve such a complicated problem, even for 

large size instances.  

The main contributions of this thesis include developing several approaches to solve four variants of 

the LRP. These four problems are, namely, LRPSD, MDVRP, LRPMD, and G-LRPMD. 

Additionally, we offer two optimisation models, inspired by the literature, for the LRPSD and the 

G-LRPMD that consider single depot and environmental sustainability impacts due to usage of 

EVS, respectively.  

This thesis consists of six main chapters. Firstly, in Chapter 1, an introduction is provided to 

illustrate the whole picture of the problems and their importance, and applications in the real life. In 

Chapter 2, the main theoretical concepts, the development of the main contributions in previous 

studies, and different solution methods have been reviewed and examined. This effort is carried out 

in order to know what has been done in this field, to identify the gap in the literature, and to present 

an original contribution. 

Next in Chapter 3, the LRP problem has been analysed when a distribution system with only single 

depot (LRPSD) is used. A new model for the LRPSD is developed, and at the same time, four 

heuristics are proposed to solve this problem. The new four heuristics consist of two stages which 

include location stage and routing stage. In the first stage, clustering technique, p-median model, 

clustering and p-median, and iterative method, are employed to deal with location problem. In the 

second stage, all four heuristics have employed the BR-CWH algorithm to deal with the routing 

problem which is a classic Clark and wright enhanced by Biased Randomisation. To evaluate the 
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performance of the proposed solution method, we carried out computational experiments for 

different problem sizes ranging from 12 to 100 customers. Results obtained so far indicate that these 

four proposed heuristics are suitable to solve the LRPSD.  

Then in Chapter 4, the BR-ECWH combines Biased Randomised technique with ECWH, which is 

proposed by Tillman (1969) to tackle the MDVRP. The BR-ECWH algorithm is employed to 

develop a two-level heuristic for solving MDVRP and it consists of two levels; Global level and 

Local level. In the global level, the BR-ECWH has been applied to solve the assignment problem 

and routing problem simultaneously. In the local level, the BR-CWH is applied to improve the 

solution by tackling each depot with its customers individually. We conducted extensive 

experiments for the for different problem sizes ranging from 48 to 288 customers, and number of 

depots ranging from 2 to 6. Results of our experiments illustrated that the Two-Level heuristic is 

suitable to solve the MDVRP as the computational time is short and the average gap is small. 

The LRPMD has been studied in Chapter 5 where we present TSBRH and BR-VNS. TSBRH is a 

Two-Stage heuristic based on the Biased Randomisation technique in a nested framework. The 

location stage is the first stage in the proposed method which was added to the solution method 

proposed in Chapter 4. BR-VNS is based on the VNS metaheuristic. The initial solution is 

generated by using the Biased Randomisation technique, then it is improved by the VNS itself. The 

competitiveness of our methods has been tested using three well-known sets of the LRPMD 

benchmarks in the literature. Computational experiments with instances from Barreto’s, Prodhon’s, 

and Akca’s set reported that the TSBRH is competitive in term of the computational time. However, 

the BR-VNS is competitive in tern of the solution quality.  

The primary contribution of Chapter 6 is to suggest a modified optimisation model to consider an 

environmental aspect in the LRP, when an electric fleet is used in the distribution system, instead of 

the fleet with traditional fuel. As EVs have limited travel range, we have a new problem called the 

Green Location Routing Problem with Multi-Depot (G-LRPMD). Although the framework of the 

solution method for this new problem, namely G-TSBRH and G-BRVNS, are similar to TSBRH 

and BR-VNS in Chapter 5, they are different in routing stage due to distance constraints. To the 

best of our knowledge, this is the first time to study the G-LRPMD and we did not find benchmark 

instances to test the performance of our method. Therefore, the existing LRPMD benchmarks in the 

literature are adapted and modified by adding distance constraints. To identify the cost variations, 

we compare solutions of the G-LRPMD with the LRPMD to examine the effect of adding the 

distance constraints. We notice that the total cost and number of vehicles, opening cost, and 

distance cost have increased after adding distance constraint.  
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7.2 Extensions and future work 

This thesis presents very interesting ideas to solve four relevant problems to the LRP and shows 

promising results for the proposed solution methods. However, there is room for plenty of 

opportunities to extend the problem and implement alternative algorithms to further improve the 

solution in future studies. Future alternative extensions to the work can be summarised as follows:  

• The model and the solution methods in the current thesis have shown means of successfully 

applying the four variants of the LRP. One interesting future research is to test different models, 

including stochastic models, and considering different additional objectives such as: social 

objectives with regard to the customers and drivers, or quality of service in terms of service time 

and cost with these approaches.  

• Another line of research could be the expansion of the LRPSD and the G-LRPMD models to 

consider heterogeneous fleets. Furthermore, the use of different types of vehicles such as Hybrid 

electric vehicles could be considered. 

• Another potential study can be based on different variations in the implementation of the Biased 

Randomisation embedded in the proposed algorithms. For instance, a host of biased (non-

symmetric) probabilistic distributions to measure the performance of the developed solution 

methods and their impact on the results can be considered. 

• In order to improve the quality of the solutions achieved by the proposed methods in the current 

thesis, a potential future work might consist of applying more efficient approaches such as local 

search algorithms. The methods developed in the current thesis can then be utilised to generate a 

good quality initial solution, subsequently leading to a good starting point for further search and 

improving the overall results. 

•Another interesting future research is to propose sim-optimisation (sim-heuristic or sim-

metaheuristic) to consider the LRP with stochastic travel times, or stochastic demand 

 

7.3 Scientific publications and academic contributions 

 

One of the objectives of this thesis is related to the dissemination of the outcomes in academic 

conferences and journals. In the following, we include the list of publications, and conference 

papers.  
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• Journal publications: 

1) The Location Routing Problem using Electric Vehicles with a Constrained Distance 

Submitted (Under Review) to Computers and Operations Research (indexed in ISI SCI, 2017 IF = 

2.962, Q1; 2017 SJR = 1.916, Q1). ISSN: 0305-0548. 

 

• Conference abstracts 

1) Four heuristics for the Location Routing Problem with Single Depot 

OR58 Conference, University of Portsmouth. UK, September-2016 

2) Two-Stage Biased Randomised heuristic for the Location Routing Problem with Multi-

Depot 

OR59 Conference, University of Lancaster. UK, September-2018 

 

 

 

 

 

 

 

 



178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



179 

 

 

 

 

 

 

 References 

 

-, H. Y., -, Y. Z., -, Z. C., & -, M. H. (2011). Vehicle Routing Problem with Multi-Depot and Multi-

Task. INTERNATIONAL JOURNAL ON Advances in Information Sciences and Service 

Sciences, 3(6), 320–327. https://doi.org/10.4156/aiss.vol3.issue6.40 

Afshar-Nadjafi, B., & Afshar-Nadjafi, A. (2017). A constructive heuristic for time-dependent multi-

depot vehicle routing problem with time-windows and heterogeneous fleet. Journal of King 

Saud University - Engineering Sciences, 29(1), 29–34. 

https://doi.org/10.1016/j.jksues.2014.04.007 

Ahmadi-Javid, A., & Seddighi, A. H. (2013). A location-routing problem with disruption risk. 

Transportation Research Part E: Logistics and Transportation Review, 53(1), 63–82. 

https://doi.org/10.1016/j.tre.2013.02.002 

Ahn, J., De Weck, O., Geng, Y., & Klabjan, D. (2012). Column generation based heuristics for a 

generalized location routing problem with profits arising in space exploration. European 

Journal of Operational Research, 223(1), 47–59. https://doi.org/10.1016/j.ejor.2012.06.018 

Akca, Z., Berger, R. T., & Ralphs, T. K. (2009). A Branch-and-Price Algorithm for Combined 

Location and Routing Problems Under Capacity Restrictions. Operations Research, 47, 1–19. 

Aksen, D., & Altinkemer, K. (2008). A location-routing problem for the conversion to the “click-

and-mortar” retailing: The static case. European Journal of Operational Research, 186(2), 

554–575. https://doi.org/10.1016/j.ejor.2007.01.048 

Albareda-sambola, M., D, J. A., & Fern, E. (2001). Heuristic Approaches for Solving a Class of 

Combined Location-Routing Problems. Operations Research, 405–410. 

Albareda-Sambola, M., Dı́az, J. A., Fernández, E., Diaz, J. A., & Fernandez, E. (2005). A compact 

model and tight bounds for a combined location-routing problem. Computers & Operations 

Research, 32(3), 407–428. https://doi.org/10.1016/S0305-0548(03)00245-4 

Albareda-Sambola, M., Fernández, E., & Laporte, G. (2007). Heuristic and lower bound for a 

stochastic location-routing problem. European Journal of Operational Research, 179(3), 940–

955. https://doi.org/10.1016/j.ejor.2005.04.051 

Alemany, G., de Armas, J., Juan, A. A., Garc\’\ia-Sánchez, Á., Garc\’\ia-Meizoso, R., & Ortega-

Mier, M. (2016). Combining Monte Carlo simulation with heuristics to solve a rich and real-

life multi-depot vehicle routing problem. In Proceedings of the 2016 Winter Simulation 

Conference (pp. 2466–2474). 



180 

 

Alumur, S., & Kara, B. Y. (2007). A new model for the hazardous waste location-routing problem. 

Computers and Operations Research, 34(5), 1406–1423. 

https://doi.org/10.1016/j.cor.2005.06.012 

Ambrosino, D., Sciomachen, A., & Scutellà, M. G. (2009). A heuristic based on multi-exchange 

techniques for a regional fleet assignment location-routing problem. Computers and 

Operations Research, 36(2), 442–460. https://doi.org/10.1016/j.cor.2007.09.012 

Aras, N., Aksen, D., & Tuǧrul Tekin, M. (2011). Selective multi-depot vehicle routing problem 

with pricing. Transportation Research Part C: Emerging Technologies, 19(5), 866–884. 

https://doi.org/10.1016/j.trc.2010.08.003 

Asefi, H., Lim, S., & Maghrebi, M. (2017). Adaptation of simulated annealing to an integrated 

municipal solid waste location-routing problem. International Journal of Logistics Systems 

and Management, 28(2), 127–143. 

Aykin, T. (1995). The hub location and routing problem. European Journal of Operational 

Research. https://doi.org/10.1016/0377-2217(93)E0173-U 

Bae, H., & Moon, I. (2016). Multi-depot vehicle routing problem with time windows considering 

delivery and installation vehicles. Applied Mathematical Modelling, 40(13), 6536–6549. 

Bae, S. T., Hwang, H. S., Cho, G. S., & Goan, M. J. (2007). Integrated GA-VRP solver for multi-

depot system. Computers and Industrial Engineering, 53(2), 233–240. 

https://doi.org/10.1016/j.cie.2007.06.014 

Baldacci, R., Mingozzi, A., & Calvo, R. W. (2011). An exact method for the capacitated location-

routing problem. Operations Research, 59(5), 1284–1296. 

https://doi.org/10.1287/opre.1110.0989 

Barreto, S. dos S. (2004). Análise e Modelização de Problemas de localização-distribuição 

[Analysis and modelling of locationrouting problems]. 

Barreto, S., Ferreira, C., Paixão, J., & Santos, B. S. (2007). Using clustering analysis in a 

capacitated location-routing problem. European Journal of Operational Research, 179(3), 

968–977. https://doi.org/10.1016/j.ejor.2005.06.074 

Bashiri, M., Rasoulinejad, Z., & Fallahzade, E. (2014). A new approach on auxiliary vehicle 

assignment in capacitated location routing problem. International Journal of Systems Science, 

7721(February 2015), 1–17. https://doi.org/10.1080/00207721.2014.906770 

Bektas, T., Gouveia, L., & Santos, D. (2017). New path elimination constraints for multi-depot 

routing problems. Networks, 70(3), 246–261. 

Belenguer, J. M., Benavent, E., Prins, C., Prodhon, C., & Wolfler Calvo, R. (2011). A Branch-and-

Cut method for the Capacitated Location-Routing Problem. Computers and Operations 

Research, 38(6), 931–941. https://doi.org/10.1016/j.cor.2010.09.019 

Belov, A., & Slastnikov, S. (2017). Modeling of multi depot vehicle routing problem for petroleum 

products. Lobachevskii Journal of Mathematics, 38(5), 884–887. 

https://doi.org/10.1134/S1995080217050079 

Benavent, E., & Martinez, A. (2013). Multi-depot Multiple TSP: A polyhedral study and 

computational results. Annals of Operations Research, 207(1), 7–25. 

https://doi.org/10.1007/s10479-011-1024-y 

Berger, R. T., Coullard, C. R., & Daskin, M. S. (2007). Location-routing problems with distance 

constraints. Transportation Science, 41(1), 29–43. 

Bernal-Moyano, J. A., Escobar, J. W., Marin-Moreno, C., Linfati, R., & Gatica, G. (2017). A 

comparison of trajectory granular based algorithms for the location-routing problem with 

heterogeneous fleet (LRPH). Dyna, 84(200). 

Bettinelli, A., Ceselli, A., & Righini, G. (2011). A branch-and-cut-and-price algorithm for the 

multi-depot heterogeneous vehicle routing problem with time windows. Transportation 

Research Part C: Emerging Technologies, 19(5), 723–740. 

https://doi.org/10.1016/j.trc.2010.07.008 

Bi, X., Han, Z., & Tang, W. K. S. (2017). Evolutionary Multi-objective Optimization for Multi-

depot Vehicle Routing in Logistics. International Journal of Computational Intelligence 



181 

 

Systems, 10(1), 1337–1344. 

Boccia, M., Crainic, T. G., Sforza, A., & Sterle, C. (2010). A metaheuristic for a two echelon 

location-routing problem. In Lecture Notes in Computer Science (including subseries Lecture 

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6049 LNCS, pp. 

288–301). https://doi.org/10.1007/978-3-642-13193-6_25 

Boccia, M., Crainic, T. G., Sforza, A., & Sterle, C. (2011). Location-routing models for designing a 

two-echelon freight distribution system. Rapport Technique, CIRRELT, Universit{é} de 

Montr{é}al, 91. 

Boudahri, F., Aggoune-Mtalaa, W., Bennekrouf, M., & Sari, Z. (2013). Application of a clustering 

based location-routing model to a real agri-food supply chain redesign. In Advanced Methods 

for Computational Collective Intelligence (pp. 323–331). Springer. 

Bouhafs, L., Hajjam, A., & Koukam, A. (2006). A combination of simulated annealing and ant 

colony system for the capacitated location-routing problem. In Knowledge-Based Intelligent 

Information and Engineering Systems (Vol. 4251/2006, pp. 409–416). 

https://doi.org/10.1007/11892960_50 

Bozkaya, B., Yanik, S., & Balcisoy, S. (2010). A GIS-based optimization framework for 

competitive multi-facility location-routing problem. Networks and Spatial Economics, 10(3), 

297–320. https://doi.org/10.1007/s11067-009-9127-6 

Bozorgi-Amiri, A., & Khorsi, M. (2016). A dynamic multi-objective location–routing model for 

relief logistic planning under uncertainty on demand, travel time, and cost parameters. 

International Journal of Advanced Manufacturing Technology, 85(5–8), 1633–1648. 

https://doi.org/10.1007/s00170-015-7923-3 

Burger, M., Su, Z., & De Schutter, B. (2017). A node current-based 2-index formulation for the 

fixed-destination multi-depot travelling salesman problem. European Journal of Operational 

Research, 0, 1–15. https://doi.org/10.1016/j.ejor.2017.07.056 

Caballero, R., González, M., Guerrero, F. M., Molina, J., & Paralera, C. (2007). Solving a 

multiobjective location routing problem with a metaheuristic based on tabu search. Application 

to a real case in Andalusia. European Journal of Operational Research, 177(3), 1751–1763. 

https://doi.org/10.1016/j.ejor.2005.10.017 

Cabrera, G., Gonzalez-Martin, S., Juan, A. A., Marquès, J. M., & Grasman, S. E. (2014). 

Combining biased random sampling with metaheuristics for the facility location problem in 

distributed computer systems. In Proceedings of the 2014 Winter Simulation Conference (pp. 

3000–3011). 

Calvet, L, Juan, A., & Schefers, N. (2015). SOLVING THE MULTI-DEPOT VEHICLE 

ROUTING PROBLEM CONSIDERING UNCERTAINTY AND RISK FACTORS. In 

Current Topics on Risk Analysis: ICRA6 and RISK 2015 Conference (p. 187). 

Calvet, Laura, Ferrer, A., Gomes, M. I., Juan, A. A., & Masip, D. (2016). Combining statistical 

learning with metaheuristics for the Multi-Depot Vehicle Routing Problem with market 

segmentation. Computers and Industrial Engineering, 94, 93–104. 

https://doi.org/10.1016/j.cie.2016.01.016 

Cappanera, P., Gallo, G., & Maffioli, F. (2003). Discrete facility location and routing of obnoxious 

activities. In Discrete Applied Mathematics (Vol. 133, pp. 3–28). 

https://doi.org/10.1016/S0166-218X(03)00431-1 

Carlsson, J., Ge, D., & Wu, A. (2009). Solving Min-Max Multi-Depot Vehicle Routing Problem. 

Lectures on Global Optimization (Fields Institute Communications), 55, 31–46. 

Carpaneto, G., Dell’Amico, M., Fischetti, M., & Toth, P. (1989). A branch and bound algorithm for 

the multiple depot vehicle scheduling problem. Networks, 19(5), 531–548. 

Cassidy, P. J., & Bennett, H. S. (1972). TRAMP -- A Multi-Depot Vehicle Scheduling System. 

Operation Research Quarterly, 23(2), 151–163. 

Catanzaro, D., Gourdin, E., Labbé, M., & Özsoy, F. A. (2011). A branch-and-cut algorithm for the 

partitioning-hub location-routing problem. Computers and Operations Research, 38(2), 539–

549. https://doi.org/10.1016/j.cor.2010.07.014 



182 

 

Caunhye, A. M., Zhang, Y., Li, M., & Nie, X. (2016). A location-routing model for prepositioning 

and distributing emergency supplies. Transportation Research Part E: Logistics and 

Transportation Review, 90, 161–176. https://doi.org/10.1016/j.tre.2015.10.011 

Ceselli, A., Righini, G., & Tresoldi, E. (2014). Combined location and routing problems for drug 

distribution. Discrete Applied Mathematics, 165, 130–145. 

Çetiner, S., Sepil, C., & Süral, H. (2010). Hubbing and routing in postal delivery systems. Annals of 

Operations Research, 181(1), 109–124. https://doi.org/10.1007/s10479-010-0705-2 

Chan, Y., & Baker, S. F. (2005). The multiple depot, multiple traveling salesmen facility-location 

problem: Vehicle range, service frequency, and heuristic implementations. Mathematical and 

Computer Modelling, 41, 1035–1053. https://doi.org/10.1016/j.mcm.2003.08.011 

Chang, K., Zhou, H., Chen, G., & Chen, H. (2017). Multiobjective Location Routing Problem 

considering Uncertain Data after Disasters. Discrete Dynamics in Nature and Society, 2017. 

https://doi.org/10.1155/2017/1703608 

Chao, I.-M., Golden, B. L., & Wasil, E. (1993). A new heuristic for the multi-depot vehicle routing 

problem that improves upon best-known solutions. American Journal of Mathematical and 

Management Sciences, 13(3–4), 371–406. 

CHEN, C.-H., & TING, C.-J. (2007). A hybrid Lagrangian heuristic/simulated annealing algorithm 

for the multi-depot location routing problem. In Proceedings of the Eastern Asia Society for 

Transportation Studies The 7th International Conference of Eastern Asia Society for 

Transportation Studies, 2007 (p. 137). 

Chen, S, Imai, A., & Zhao, B. (2005). A SA-based heuristic for the multi-depot vehicle routing 

problem. Japan Institute of Navigation, 113(9), 209–216. 

Chen, Songyan, & Imai, A. (2005). The multi-supplier multi-depot vehicle routing problem. The 

Journal of Japan Institute of Navigation, 113, 201–208. 

Chien, T. W. (1993). Heuristic Procedures for Practical-Sized Uncapacitated Location-Capacitated 

Routing Problems. Decision Sciences, 24(5), 995–1021. https://doi.org/10.1111/j.1540-

5915.1993.tb00500.x 

Chiu, H. N., Lee, Y. S., & Chang, J. H. (2006). Two approaches to solving the multi-depot vehicle 

routing problem with time windows in a time-based logistics environment. Production 

Planning & Control. https://doi.org/10.1080/09537280600765292 

Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle-dispatching problem. Journal of 

the Operational Research Society, 20(3), 309–318. 

Clarke, G., & Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of 

Delivery Points. Operations Research, 12(4), 568–581. https://doi.org/10.1287/opre.12.4.568 

Contardo, C., Cordeau, J.-F., & Gendron, B. (2011). A Branch-And-Cut-And-Price Algorithm for 

the Capacitated Location-Routing Problem. Journal on Computing. CIRRELT. 

Contardo, C., Cordeau, J. F., & Gendron, B. (2013). A computational comparison of flow 

formulations for the capacitated location-routing problem. Discrete Optimization. 

https://doi.org/10.1016/j.disopt.2013.07.005 

Contardo, C., Cordeau, J. F., & Gendron, B. (2014a). A GRASP + ILP-based metaheuristic for the 

capacitated location-routing problem. Journal of Heuristics, 20(1), 1–38. 

https://doi.org/10.1007/s10732-013-9230-1 

Contardo, C., Cordeau, J. F., & Gendron, B. (2014b). An exact algorithm based on cut-and-column 

generation for the capacitated location-routing problem. INFORMS Journal on Computing, 

26(1), 88–102. https://doi.org/10.1287/ijoc.2013.0549 

Contardo, C., Hemmelmayr, V., & Crainic, T. G. (2012). Lower and upper bounds for the two-

echelon capacitated location-routing problem. Computers and Operations Research, 39(12), 

3185–3199. https://doi.org/10.1016/j.cor.2012.04.003 

Contardo, C., & Martinelli, R. (2014). A new exact algorithm for the multi-depot vehicle routing 

problem under capacity and route length constraints. Discrete Optimization, 12(1), 129–146. 

https://doi.org/10.1016/j.disopt.2014.03.001 

Cordeau, J.-F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi-



183 

 

depot vehicle routing problems. Networks, 30(2), 105–119. 

Cornillier, F., Boctor, F., & Renaud, J. (2012). Heuristics for the multi-depot petrol station 

replenishment problem with time windows. European Journal of Operational Research, 

220(2), 361–369. https://doi.org/10.1016/j.ejor.2012.02.007 

Coutinho-Rodrigues, J., Tralhão, L., & Alçada-Almeida, L. (2012). Solving a location-routing 

problem with a multiobjective approach: The design of urban evacuation plans. Journal of 

Transport Geography, 22, 206–218. https://doi.org/10.1016/j.jtrangeo.2012.01.006 

Crainic, T.G., Sforza,  a., & Sterle,  a. (2011). Tabu Search Heuristic for a Two- Echelon Location-

Routing Problem. CIRRELT Working Paper. 

Crainic, Teodor Gabriel, Sforza, A., & Sterle, C. (2011). Location-routing models for two-echelon 

freight distribution system design. CIRRELT. 

Crevier, B., Cordeau, J. F., & Laporte, G. (2007). The multi-depot vehicle routing problem with 

inter-depot routes. European Journal of Operational Research, 176(2), 756–773. 

https://doi.org/10.1016/j.ejor.2005.08.015 

Dalfard, V. M., Kaveh, M., & Nosratian, N. E. (2013). Two meta-heuristic algorithms for two-

echelon location-routing problem with vehicle fleet capacity and maximum route length 

constraints. Neural Computing and Applications, 23(7–8), 2341–2349. 

https://doi.org/10.1007/s00521-012-1190-0 

Daskin, M. S. (1995). Network and discrete location: models, algorithms, and applications. John 

Wiley & Sons. 

Daskin, M. S., & Maass, K. L. (2015). The p-median problem. In Location science (pp. 21–45). 

Springer. 

de Camargo, R. S., de Miranda, G., & Løkketangen, A. (2013). A new formulation and an exact 

approach for the many-to-many hub location-routing problem. Applied Mathematical 

Modelling. https://doi.org/10.1016/j.apm.2013.02.035 

De Oliveira, F. B., Enayatifar, R., Sadaei, H. J., Guimarães, F. G., & Potvin, J. Y. (2016). A 

cooperative coevolutionary algorithm for the Multi-Depot Vehicle Routing Problem. Expert 

Systems with Applications, 43, 117–130. https://doi.org/10.1016/j.eswa.2015.08.030 

Derbel, H., Jarboui, B., Hanafi, S., & Chabchoub, H. (2012). Genetic algorithm with iterated local 

search for solving a location-routing problem. Expert Systems with Applications, 39(3). 

https://doi.org/10.1016/j.eswa.2011.08.146 

Derbel, H, Jarboui, B., & Chabchoub, H. (2011). A variable neighborhood search for the 

capacitated location-routing problem. 2011 4th. Retrieved from 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5939452 

Derbel, Houda, Jarboui, B., Hanafi, S., & Chabchoub, H. (2010). An iterated local search for 

solving A location-routing problem. Electronic Notes in Discrete Mathematics, 36(C), 875–

882. https://doi.org/10.1016/j.endm.2010.05.111 

Dondo, R. G., & Cerdá, J. (2009). A hybrid local improvement algorithm for large-scale multi-

depot vehicle routing problems with time windows. Computers and Chemical Engineering. 

https://doi.org/10.1016/j.compchemeng.2008.10.003 

Dondo, R., Méndez, C. A., & Cerdá, J. (2003). An Optimal Approach To the Multiple-Depot 

Heterogeneous Vehicle Routing Problem With Time Window and Capacity Constraints. Latin 

American Applied Research. 

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant systems: optimization by a colony of 

cooperative agents. IEEE Transactions on SYSTEMS, Man and Cybernetics-Part B, 26(1), 1–

13. 

Duhamel, C., Lacomme, P., Prins, C., & Prodhon, C. (2008). A memetic approach for the 

capacitated location routing problem. In Proceedings of the 9th EU/Meeting on Metaheuristics 

for Logistics and Vehicle Routing, Troyes, France. 

Duhamel, C., Lacomme, P., Prins, C., & Prodhon, C. (2010). A GRASP x ELS approach for the 

capacitated location-routing problem. Computers and Operations Research, 37(11), 1912–

1923. https://doi.org/10.1016/j.cor.2009.07.004 



184 

 

Escobar, J. W., Linfati, R., Baldoquin, M. G., & Toth, P. (2014). A granular variable tabu 

neighborhood search for the capacitated location-routing problem. Transportation Research 

Part B: Methodological, 67, 344–356. 

Escobar, J. W., Linfati, R., & Toth, P. (2013). A two-phase hybrid heuristic algorithm for the 

capacitated location-routing problem. Computers and Operations Research. 

https://doi.org/10.1016/j.cor.2012.05.008 

Escobar, J. W., Linfati, R., Toth, P., & Baldoquin, M. G. (2014). A hybrid Granular Tabu Search 

algorithm for the Multi-Depot Vehicle Routing Problem. Journal of Heuristics, 20(5), 483–

509. https://doi.org/10.1007/s10732-014-9247-0 

Falsini, D., Fumarola, A., & Schiraldi, M. M. (2009). Sustainable trasportation systems: dynamic 

routing optimization for a last-mile distribution fleet. In Conference on sustainable 

development: the role of industrial engineering (pp. 40–47). 

Filipec, M., Skrlec, D., & Krajcar, S. (1997). Darwin meets computers: New approach to multiple 

depot capacitated vehicle routing problem. In Proceedings of the 1997 IEEE International 

Conference on Systems, Man, and Cybernetics. Part 1 (of 5), October 12, 1997 - October 15, 

1997 (Vol. 1, pp. 421–426). https://doi.org/10.1109/ICSMC.1997.625786 

G. Nilay YÜCENUR, N. Ç. D. (2011). a Hybrid Algoritm With Genetic Algorithm and Ant Colony 

Optimization for Solving Multi-Depot Vehicle Routing Problems. 

Gao, S., Wang, Y., Cheng, J., Inazumi, Y., & Tang, Z. (2016). Ant colony optimization with 

clustering for solving the dynamic location routing problem. Applied Mathematics And. 

Retrieved from http://www.sciencedirect.com/science/article/pii/S0096300316302363 

Gaskell, T. J. (1967). Bases for vehicle fleet scheduling. Journal of the Operational Research 

Society, 18(3), 281–295. 

Geetha, S., Vanathi, P. T., & Poonthalir, G. (2012). Metaheuristic approach for the multi-depot 

vehicle routing problem. Applied Artificial Intelligence, 26(9), 878–901. 

https://doi.org/10.1080/08839514.2012.727344 

Ghaffari-Nasab, N., Jabalameli, M. S., Aryanezhad, M. B., & Makui, A. (2013). Modeling and 

solving the bi-objective capacitated location-routing problem with probabilistic travel times. 

International Journal of Advanced Manufacturing Technology, 67(9–12), 2007–2019. 

https://doi.org/10.1007/s00170-012-4627-9 

Gillett, B. E., & Johnson, J. G. (1976). Multi-terminal vehicle-dispatch algorithm. Omega, 4(6), 

711–718. https://doi.org/10.1016/0305-0483(76)90097-9 

Giosa, I. D., Tansini, I. L., & Viera, I. O. (2002). New assignment algorithms for the multi-depot 

vehicle routing problem. Journal of the Operational Research Society, 53(9), 977–984. 

https://doi.org/10.1057/palgrave.jors.2601426 

Golden, B., Magnanti, T. L., & Nguyan, H. Q. (1972). Implementing vehicle routing algorithms. 

Networks, 7(2), 113–148. 

Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle 

location--routing problem with time windows for optimization of sustainable supply chain 

network of perishable food. International Journal of Production Economics, 152, 9–28. 

Grasas, A., Juan, A. A., Faulin, J., de Armas, J., & Ramalhinho, H. (2017). Biased randomization of 

heuristics using skewed probability distributions: a survey and some applications. Computers 

& Industrial Engineering, 110, 216–228. 

Guerra, L., Murino, T., & Romano, E. (2007). A heuristic algorithm for the constrained location - 

routing problem. International Journal, 1(4). 

Gulczynski, D., Golden, B., & Wasil, E. (2011). The multi-depot split delivery vehicle routing 

problem: An integer programming-based heuristic, new test problems, and computational 

results. Computers and Industrial Engineering. https://doi.org/10.1016/j.cie.2011.05.012 

Gunnarsson, H., Rönnqvist, M., & Carlsson, D. (2006). A combined terminal location and ship 

routing problem. Journal of the Operational Research Society, 57(8), 928–938. 

https://doi.org/10.1057/palgrave.jors.2602057 

Hadjiconstantinou, E., & Baldacci, R. (1998). A multi-depot period vehicle routing problem arising 



185 

 

in the utilities sector. The Journal of the Operational Research Society, 49(12), 1239–1248. 

https://doi.org/10.2307/3010148 

Hamidi, M., Farahmand, K., Reza Sajjadi, S., & Nygard, K. E. (2014). A heuristic algorithm for a 

multi-product four-layer capacitated location-routing problem. International Journal of 

Industrial Engineering Computations. https://doi.org/10.5267/j.ijiec.2013.09.008 

Hamidi, M., Farahmand, K., Sajjadi, S. R., & Nygard, K. E. (2012). A hybrid GRASP-tabu search 

metaheuristic for a Four-Layer Location-Routing Problem. International Journal of Logistics 

Systems and Management, 12(3), 267. https://doi.org/10.1504/IJLSM.2012.047602 

Hansen, P. H., Hegedahl, B., Hjortkjær, S., & Obel, B. (1994). A heuristic solution to the 

warehouse location-routing problem. European Journal of Operational Research, 76(1), 111–

127. https://doi.org/10.1016/0377-2217(94)90010-8 

Hassan-Pour, H. a, Mosadegh-Khah, M., & Tavakkoli-Moghaddam, R. (2009). Solving a multi-

objective multi-depot stochastic location-routing problem by a hybrid simulated annealing 

algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of 

Engineering Manufacture, 223(8), 1045–1054. https://doi.org/10.1243/09544054jem1349 

Hemmelmayr, V.C. (2015). Sequential and parallel large neighborhood search algorithms for the 

periodic location routing problem. European Journal of Operational Research, 243(1). 

https://doi.org/10.1016/j.ejor.2014.11.024 

Hemmelmayr, Vera C., Cordeau, J.-F., & Crainic, T. G. (2012). An adaptive large neighborhood 

search heuristic for Two-Echelon Vehicle Routing Problems arising in city logistics. 

Computers & Operations Research. https://doi.org/10.1016/j.cor.2012.04.007 

Herazo-Padilla, N., Montoya-Torres, J. R., Nieto Isaza, S., & Alvarado-Valencia, J. (2015). 

Simulation-optimization approach for the stochastic location-routing problem. Journal of 

Simulation, 9(4), 296–311. https://doi.org/10.1057/jos.2015.15 

Hill, N., Brannigan, C., Wynn, D., Milnes, R., van Essen, H., den Boer, E., & van Grinsven, A. 

(2012). The role of GHG emissions from infrastructure construction, vehicle manufacturing, 

and ELVs in overall transport sector emissions. 

Ho, W., Ho, G. T. S., Ji, P., & Lau, H. C. W. (2008). A hybrid genetic algorithm for the multi-depot 

vehicle routing problem, 21, 548–557. https://doi.org/10.1016/j.engappai.2007.06.001 

HU, D., CHEN, C., & GUO, X. (2007). Research on optimal algorithm for multi-depot vehicle 

routing problem with pickups and deliveries. Mathematics in Practice and Theory, 2, 16. 

Hua-Li, S., Xun-Qing, W., & Yao-Feng, X. (2012). A Bi-level programming model for a multi-

facility location-routing problem in Urban emergency system. Engineering Education and 

Management, Springer, Berlin, 75–80. 

Huang, S. H. (2015). Solving the multi-compartment capacitated location routing problem with 

pickup-delivery routes and stochastic demands. Computers and Industrial Engineering, 87, 

104–113. https://doi.org/10.1016/j.cie.2015.05.008 

Imran, A. (2013). A variable neighborhood search-based heuristic for the multi-depot vehicle 

routing problem. Jurnal Teknik Industri, 15(2), 95–102. 

Islam, R., & Rahman, M. S. (2012). An ant colony optimization algorithm for waste collection 

vehicle routing with time windows, driver rest period and multiple disposal facilities. 2012 

International Conference on Informatics, Electronics and Vision, ICIEV 2012, 774–779. 

https://doi.org/10.1109/ICIEV.2012.6317421 

Jabal-Ameli, M. S., Aryanezhad, M. B., & Ghaffari-Nasab, N. (2011). A variable neighborhood 

descent based heuristic to solve the capacitated location-routing problem. International 

Journal of Industrial Engineering Computations, 2(1), 141–154. 

Jacobsen, S. K., & Madsen, O. B. G. (1980). A comparative study of heuristics for a two-level 

routing-location problem. European Journal of Operational Research, 5(6), 378–387. 

https://doi.org/10.1016/0377-2217(80)90124-1 

Jarboui, B., Derbel, H., Hanafi, S., & Mladenović, N. (2013). Variable neighborhood search for 

location routing. Computers & Operations. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S0305054812001128 



186 

 

Jin, T., Guo, S., Wang, F., & Lim, A. (2004). One-stage search for multi-depot vehicle routing 

problem. In Proceedings of the Conference on Intelligent Systems and Control (pp. 129–446). 

Johnson, M. P., Gorr, W. L., & Roehrig, S. F. (2002). Location/allocation/routing for home-

delivered meals provision. International Journal of Industrial Engineering, 9, 45–56. 

Jokar, A., & Sahraeian, R. (2012). A Heuristic Based Approach to Solve a Capacitated Location-

routing Problem. Journal of Management and Sustainability, 2(2), 219–226. 

https://doi.org/10.5539/jms.v2n2p219 

Jouzdani, J., & Fathian, M. (2014). A linear MmTSP formulation of robust location-routing 

problem : a dairy products supply chain case study Javid Jouzdani * and Mohammad Fathian. 

International Journal of Applied Decision Sciences, 7(3), 327–342. 

https://doi.org/10.1504/IJADS.2014.063231 

Juan, Angel A., Faulin, J., Ruiz, R., Barrios, B., & Caballé, S. (2010). The SR-GCWS hybrid 

algorithm for solving the capacitated vehicle routing problem. Applied Soft Computing 

Journal, 10(1), 215–224. https://doi.org/10.1016/j.asoc.2009.07.003 

Juan, Angel A., Pascual, I., Guimarans, D., & Barrios, B. (2015). Combining biased randomization 

with iterated local search for solving the multidepot vehicle routing problem. International 

Transactions in Operational Research, 22(4), 647–667. https://doi.org/10.1111/itor.12101 

Juan, Angel A, Faulin, J., Jorba, J., Riera, D., Masip, D., & Barrios, B. (2011). On the use of Monte 

Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings 

heuristics. Journal of the Operational Research Society, 62(6), 1085–1097. 

Juan, Angel Alejandro, Mendez, C. A., Faulin, J., de Armas, J., & Grasman, S. E. (2016). Electric 

vehicles in logistics and transportation: a survey on emerging environmental, strategic, and 

operational challenges. Energies, 9(2), 86. 

Kachitvichyanukul, V., Sombuntham, P., & Kunnapapdeelert, S. (2015). Two solution 

representations for solving multi-depot vehicle routing problem with multiple pickup and 

delivery requests via PSO. Computers and Industrial Engineering, 89, 125–136. 

https://doi.org/10.1016/j.cie.2015.04.011 

Karaoglan, I., & Altiparmak, F. (2015). A memetic algorithm for the capacitated location-routing 

problem with mixed backhauls. Computers and Operations Research, 55, 200–216. 

https://doi.org/10.1016/j.cor.2014.06.009 

Karaoglan, I., Altiparmak, F., Kara, I., & Dengiz, B. (2011). A branch and cut algorithm for the 

location-routing problem with simultaneous pickup and delivery. European Journal of 

Operational Research, 211(2), 318–332. https://doi.org/10.1016/j.ejor.2011.01.003 

Kazaz, B., & Altinkemer, K. (2003). Optimization of multi-feeder (depot) printed circuit board 

manufacturing with error guarantees. European Journal of Operational Research, 150(2), 

370–394. 

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. 

1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational 

Cybernetics and Simulation, 5, 4104–4108. https://doi.org/10.1109/ICSMC.1997.637339 

Koç, Ç., Bekta, T., Jabali, O., & Laporte, G. (2015). The Fleet Size and Mix Location- Routing 

Problem with Time Windows : Formulations and a Heuristic Algorithm The Fleet Size and 

Mix Location-Routing Problem with Time Windows : Formulations and a Heuristic 

Algorithm. EuropeanJournalofOperationalResearch, 248(1), 33–51. 

Kuo, Y., & Wang, C. C. (2012). A variable neighborhood search for the multi-depot vehicle routing 

problem with loading cost. Expert Systems with Applications. 

https://doi.org/10.1016/j.eswa.2012.01.024 

Labbé, M., & Laporte, G. (1986). Maximizing user convenience and postal service efficiency in 

post box location. Belgian Journal of Operations Research, Statistics and Computer Science, 

26(2), 21–35. 

Lalla-Ruiz, E., Expósito-Izquierdo, C., Taheripour, S., & Voß, S. (2016). An improved formulation 

for the multi-depot open vehicle routing problem. OR Spectrum, 38(1), 175–187. 

https://doi.org/10.1007/s00291-015-0408-9 



187 

 

Lam, M., & Mittenthal, J. (2013). Capacitated hierarchical clustering heuristic for multi depot 

location-routing problems. International Journal of Logistics Research and Applications, 

16(5), 433–444. https://doi.org/10.1080/13675567.2013.820272 

Lam, M., Mittenthal, J., & Gray, B. (2009). The Impact of Stopping Rules on Hierarchical 

Capacitated Clustering in Location Routing Problems. Academy of Information and 

Management Sciences Journal. 

Laporte, G., Nobert, Y., & Taillefer, S. (1988). Solving a Family of Multi-Depot Vehicle Routing 

and Location-Routing Problems. Transportation Science, 22(3), 161–172. 

https://doi.org/10.1287/trsc.22.3.161 

Laporte, G, Nobert, Y., & Arpin, D. (1984). Optimal solutions to capacitated multidepot vehicle 

routing problems. Congressus Numerantium, 44, 283–292. 

Laporte, G, Nobert, Y., & Mercure, H. (1981). The multi-depot m-Salesman problem. Methods of 

Operations Res. Oelgeschlager, Gunn &Hain, Cambridge, MA, 367370. 

Laporte, Gilbert, & Dejax, P. J. (1989). Dynamic Location-routeing Problems. The Journal of the 

Operational Research Society, 40(5), 471–482. 

Laporte, Gilbert, Louveaux, F., & Mercure, H. (1989). Models and exact solutions for a class of 

stochastic location-routing problems. European Journal of Operational Research, 39(1), 71–

78. https://doi.org/10.1016/0377-2217(89)90354-8 

Laporte, Gilbert, & Nobert, Y. (1981). An exact algorithm for minimizing routing and operating 

costs in depot location. European Journal of Operational Research, 6(2), 224–226. 

https://doi.org/10.1016/0377-2217(81)90212-5 

Laporte, Gilbert, Nobert, Y., & Arpin, D. (1986). An exact algorithm for solving a capacitated 

location-routing problem. Annals of Operations Research, 6(9), 291–310. 

Laporte, Gilbert, Nobert, Y., & Pelletier, P. (1983). Hamiltonian location problems. European 

Journal of Operational Research, 12(1), 82–89. https://doi.org/10.1016/0377-2217(83)90182-

0 

Laporte, Gilbert, Nobert, Y., & Taillefer, S. (1988). Solving a family of multi-depot vehicle routing 

and location-routing problems. Transportation Science, 22(3), 161–172. 

Lashine, S. H., Fattouh, M., & Issa, A. (2006). Location/allocation and routing decisions in supply 

chain network design. Journal of Modelling in Management, 1(2), 173–183. 

https://doi.org/10.1108/17465660610703495 

Lau, H. C. W., Chan, T., Tsui, W. T., & Pang, W. K. (2010). Application of Genetic Algorithms to 

Solve the Multidepot Vehicle Routing Problem. Automation Science and Engineering, IEEE 

Transactions On. https://doi.org/10.1109/TASE.2009.2019265 

Lee, Y., Kim, S., Lee, S., & Kang, K. (2003). A Location-Routing Problem in Designing Optical 

Internet Access with WDM Systems. Photonic Network Communications, 6(2), 151–160. 

https://doi.org/10.1023/A:1024783130705 

Li, J., Li, Y., & Pardalos, P. M. (2016). Multi-depot vehicle routing problem with time windows 

under shared depot resources. Journal of Combinatorial Optimization, 31(2), 515–532. 

https://doi.org/10.1007/s10878-014-9767-4 

Li, J., Pardalos, P. M., Sun, H., Pei, J., & Zhang, Y. (2015). Iterated local search embedded adaptive 

neighborhood selection approach for the multi-depot vehicle routing problem with 

simultaneous deliveries and pickups. Expert Systems with Applications, 42(7), 3551–3561. 

https://doi.org/10.1016/j.eswa.2014.12.004 

Li, Y. Y., & Liu, C. S. (2011). An Effective Genetic Algorithm for the Vehicle Routing Problem 

with Multiple Depots. Advanced Materials Research, 204–210, 283–287. 

https://doi.org/10.4028/www.scientific.net/AMR.204-210.283 

Lightner-Laws, C., Agrawal, V., Lightner, C., & Wagner, N. (2016). An evolutionary algorithm 

approach for the constrained multi-depot vehicle routing problem. International Journal of 

Intelligent Computing and Cybernetics, 9(1), 2–22. https://doi.org/10.1108/IJICC-06-2015-

0018 

Lim, A., & Wang, F. (2005). Multi-depot vehicle routing problem: A one-stage approach. IEEE 



188 

 

Transactions on Automation Science and Engineering, 2(4), 397–402. 

https://doi.org/10.1109/TASE.2005.853472 

Lim, A., & Zhu, W. (2006). A Fast and Effective Insertion Algorithm for Multi-depot Vehicle 

Routing Problem with Fixed Distribution of Vehicles and a New. Lecture Notes in Computer 

Science. https://doi.org/10.1007/11779568_32 

Lin, C. K. Y., Chow, C. K., & Chen, A. (2002). A location-routing-loading problem for bill 

delivery services. Computers and Industrial Engineering, 43(1–2), 5–25. 

https://doi.org/10.1016/S0360-8352(02)00060-8 

Lin, C. K. Y., & Kwok, R. C. W. (2006). Multi-objective metaheuristics for a location-routing 

problem with multiple use of vehicles on real data and simulated data. European Journal of 

Operational Research, 175(3), 1833–1849. https://doi.org/10.1016/j.ejor.2004.10.032 

Lin, J. R., & Lei, H. C. (2009). Distribution systems design with two-level routing considerations. 

Annals of Operations Research, 172(1), 329–347. https://doi.org/10.1007/s10479-009-0628-y 

Liu, C.-Y. (2013). An Improved Adaptive Genetic Algorithm for the Multi-depot Vehicle Routing 

Problem with Time Window. Journal of Networks, 8(5), 1035–1042. 

https://doi.org/10.4304/jnw.8.5.1035-1042 

Liu, C. Y., & Yu, J. (2013). Multiple depots vehicle routing based on the ant colony with the 

genetic algorithm. Journal of Industrial Engineering and Management, 6(4). 

https://doi.org/10.3926/jiem.747 

Liu, Y., Yuan, Y., Chen, Y., Ruan, L., & Pang, H. (2013). A Chance Constrained Goal 

Programming Model for Location-Routing Problem Under Uncertainty. In LISS 2013 (pp. 

105–116). 

Ma, J., & Yuan, J. (2010). Ant colony algorithm for multiple-depot vehicle routing problem with 

shortest finish time. In E-business Technology and Strategy (pp. 114–123). Springer. 

Macedo, R., Alves, C., Hanafi, S., & Jarboui, B. (2015). Skewed general variable neighborhood 

search for the location routing scheduling problem. Computers & Operations. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S0305054815000696 

Macedo, R., Hanafi, S., Jarboui, B., Mladenović, N., Alves, C., & de Carvalho, J. M. V. (2013). 

Variable neighborhood search for the location routing problem with multiple routes. In 

Industrial Engineering and Systems Management (IESM), Proceedings of 2013 International 

Conference on (pp. 1–6). 

Maischberger, M., & Cordeau, J. F. (2011). Solving variants of the vehicle routing problem with a 

simple parallel iterated tabu search. In Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6701 

LNCS, pp. 395–400). https://doi.org/10.1007/978-3-642-21527-8_44 

Mancini, S. (2016). A real-life Multi Depot Multi Period Vehicle Routing Problem with a 

Heterogeneous Fleet: Formulation and Adaptive Large Neighborhood Search based 

Matheuristic. Transportation Research Part C: Emerging Technologies, 70, 100–112. 

https://doi.org/10.1016/j.trc.2015.06.016 

Marinakis, Y. (2015). An improved particle swarm optimization algorithm for the capacitated 

location routing problem and for the location routing problem with stochastic demands. 

Applied Soft Computing Journal. https://doi.org/10.1016/j.asoc.2015.09.005 

Marinakis, Yannis, & Marinaki, M. (2008a). A Bilevel Genetic Algorithm for a real life location 

routing problem. International Journal of Logistics Research and Applications, 11(1), 49–65. 

https://doi.org/10.1080/13675560701410144 

Marinakis, Yannis, & Marinaki, M. (2008b). A Particle Swarm Optimization Algorithm with Path 

Relinking for the Location Routing Problem. Journal of Mathematical Modelling and 

Algorithms, 7(1), 59–78. https://doi.org/10.1007/s10852-007-9073-6 

Marinakis, Yannis, Marinaki, M., & Matsatsinis, N. (2008). Honey Bees Mating Optimization for 

the Location Routing Problem. In IEMC-Europe 2008 - 2008 IEEE International Engineering 

Management Conference, Europe: Managing Engineering, Technology and Innovation for 

Growth. https://doi.org/10.1109/IEMCE.2008.4618013 



189 

 

Marinakis, Yannis, Marinaki, M., & Migdalas, A. (2016). A hybrid clonal selection algorithm for 

the location routing problem with stochastic demands. Annals of Mathematics and Artificial 

Intelligence, 76(1–2), 121–142. https://doi.org/10.1007/s10472-014-9441-7 

Martinez-Salazar, I. A., Molina, J., Ángel-Bello, F., Gómez, T., & Caballero, R. (2014). Solving a 

bi-objective transportation location routing problem by metaheuristic algorithms. European 

Journal of Operational Research, 234(1), 25–36. 

Melechovský, J., Prins, C., & Calvo, R. W. (2005). A metaheuristic to solve a location-routing 

problem with non-linear costs. Journal of Heuristics, 11(5-6 SPEC. ISS.), 375–391. 

https://doi.org/10.1007/s10732-005-3601-1 

Menezes, M. B. C., Ruiz-Hernández, D., & Verter, V. (2016). A rough-cut approach for evaluating 

location-routing decisions via approximation algorithms. Transportation Research Part B: 

Methodological, 87, 89–106. https://doi.org/10.1016/j.trb.2016.03.003 

Min, H. (1996). Consolidation Terminal Location-Allocation and Consolidated Routing Problems. 

Journal of Business Logistics, 17(2), 235–264. 

Min, H., Current, J., & Schilling, D. (1992). The multiple depot vehicle routing problem with 

backhauling. Journal of Business Logistics, 13(1), 259. 

Mingozzi, A. (2005). The multi-depot periodic vehicle routing problem. Abstraction, Reformulation 

and Approximation. Retrieved from 

http://www.springerlink.com/index/9e7v9ghw5r9r5590.pdf 

Mingozzi, A., & Valletta, A. (2003). An exact algorithm for period and multi-depot vehicle routing 

problems. Department of Mathematics, University of Bologna, Bologna, Italy, (1984), 1982–

1984. Retrieved from 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.9938&amp;rep=rep1&amp;type=

pdf 

Mirabi, M., Fatemi Ghomi, S. M. T., & Jolai, F. (2010). Efficient stochastic hybrid heuristics for the 

multi-depot vehicle routing problem. In Robotics and Computer-Integrated Manufacturing 

(Vol. 26, pp. 564–569). https://doi.org/10.1016/j.rcim.2010.06.023 

Mirabi, Mohammad. (2014). A hybrid electromagnetism algorithm for multi-depot periodic vehicle 

routing problem. International Journal of Advanced Manufacturing Technology, 71(1–4), 

509–518. https://doi.org/10.1007/s00170-013-5501-0 

Montoya-Torres, J. R., Muñoz-Villamizar, A., & Vega-Mej\’\ia, C. A. (2016). On the impact of 

collaborative strategies for goods delivery in city logistics. Production Planning & Control, 

27(6), 443–455. 

Mousavi, S. M., & Tavakkoli-Moghaddam, R. (2013). A hybrid simulated annealing algorithm for 

location and routing scheduling problems with cross-docking in the supply chain. Journal of 

Manufacturing Systems, 32(2), 335–347. https://doi.org/10.1016/j.jmsy.2012.12.002 

Muñoz Villamizar, A. F., Montoya Torres, J. R., & Herazo Padilla, N. (2014). Mathematical 

Programming Modeling and Resolution of the Location-Routing Problem in Urban Logistics. 

Ingeniería y Universidad, 18(2), 271–289. https://doi.org/10.11144/Javeriana.IYU18-2.mpmr 

Murty, K., & Djang, P. (1999). The U.S. Army National Guard’s Mobile Training Simulators 

Location and Routing Problem. Operations Research, 47(2), 175–182. 

https://doi.org/10.1287/opre.47.2.175 

Nadizadeh, A., Sahraeian, R., Zadeh, A. S., & Homayouni, S. M. (2011). Using greedy clustering 

method to solve capacitated location-routing problem. African Journal of Business 

Management, 5(17), 7499. 

Nagy, G., & Salhi, S. (1998). The many-to-many location-routing problem. Top, 6(2), 261–275. 

https://doi.org/10.1007/BF02564791 

Nagy, Gabor, & Salhi, S. (1996). Nested Heuristic Methods for the Location-Routeing Problem. 

Journal of the Operational Research Society, 47(9), 1166–1174. 

https://doi.org/10.1057/jors.1996.144 

Nagy, Gabor, & Salhi, S. (2005). Heuristic algorithms for single and multiple depot vehicle routing 

problems with pickups and deliveries. European Journal of Operational Research, 162(1), 



190 

 

126–141. 

Nagy, Gábor, & Salhi, S. (1996a). A nested location-routing heuristic using route length estimation. 

Studies in Locational Analysis, 10, 109–127. Retrieved from 

http://www.vub.ac.be/EWGLA/STUDIES/main.html 

Nagy, Gábor, & Salhi, S. (1996b). A nested location-routing heuristic using route length estimation. 

Studies in Locational Analysis, 10, 109–127. 

Nambiar, J. M., Gelders, L. F., & Van Wassenhove, L. N. (1981). A large scale location-allocation 

problem in the natural rubber industry. European Journal of Operational Research, 6(2), 183–

189. https://doi.org/10.1016/0377-2217(81)90205-8 

Nguyen, V. P., Prins, C., & Prodhon, C. (2010). A multi-start evolutionary local search for the two-

echelon location routing problem. In Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6373 

LNCS, pp. 88–102). https://doi.org/10.1007/978-3-642-16054-7_7 

Nguyen, V. P., Prins, C., & Prodhon, C. (2012a). A multi-start iterated local search with tabu list 

and path relinking for the two-echelon location-routing problem. Engineering Applications of 

Artificial Intelligence, 25(1), 56–71. https://doi.org/10.1016/j.engappai.2011.09.012 

Nguyen, V. P., Prins, C., & Prodhon, C. (2012b). Solving the two-echelon location routing problem 

by a GRASP reinforced by a learning process and path relinking. European Journal of 

Operational Research, 216(1), 113–126. https://doi.org/10.1016/j.ejor.2011.07.030 

Nguyen, V., Prins, C., & Prodhon, C. (2010). Grasp With Learning Process for a Two-Echelon 

Location Routing Problem. 8th International Conference of Modeling and Simulation - 

MOSIM’10 - May 10-12, 2010, (2008). 

Nikbakhsh, E., & Zegordi, S. (2010). A heuristic algorithm and a lower bound for the two-echelon 

location-routing problem with soft time window constraints. Transaction E: Industrial 

Engineering, 17(1), 36–47. Retrieved from 

http://archive.scientiairanica.com/PDF/Articles/00001369/zegordi.pdf 

Ombuki-Berman, B. M., & Hanshar, F. T. (2009). Using Genetic Algorithms for Multi-depot 

Vehicle Routing. In Bio-inspired Algorithms for the Vehicle Routing Problem (pp. 77–99). 

https://doi.org/10.1007/978-3-540-85152-3_4 

Or, I., & Pierskalla, W. . (1979). A transportation location-allocation model for regional blood 

banking. AIIE Transactions. 

Özyurt, Z., & Aksen, D. (2007). Solving the multi-depot location-routing problem with lagrangian 

relaxation. Extending the Horizons: Advances in Computing, Optimization, and Decision 

Technologies, 37, 125–144. https://doi.org/10.1007/978-0-387-48793-9_9 

Park, H., Shafahi, A., & Haghani, A. (2015). Stochastic Emergency Response Units (ERUs) 

Allocation Considering Secondary Incident Occurrences. ArXiv Preprint ArXiv:1501.02224. 

Perl, J. (1983). A unified warehouse location-routing analysis. Northwestern University, Evanston, 

Illinois, USA. 

Perl, J. (1987). The multi-depot routing allocation problem. American Journal of Mathematical and 

Management Sciences, 7(1–2), 7–34. https://doi.org/10.1080/01966324.1987.10737206 

Perl, J., & Daskin, M. S. (1985). A warehouse location-routing problem. Transportation Research 

Part B: Methodological, 19(5), 381–396. 

Pirkwieser, S., & Raidl, G. R. (2010). Variable neighborhood search coupled with ILP-based very 

large neighborhood searches for the (Periodic) location-routing problem. In Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 

Notes in Bioinformatics) (Vol. 6373 LNCS, pp. 174–189). https://doi.org/10.1007/978-3-642-

16054-7_13 

Pishvaee, M. S., Basiri, H., & sheikh Sajadieh, M. (2009). National logistics costs. In Supply Chain 

and Logistics in National, International and Governmental Environment (pp. 57–83). 

Springer. 

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers and 

Operations Research. https://doi.org/10.1016/j.cor.2005.09.012 



191 

 

Polacek, M., Benkner, S., Doerner, K. F., & Hartl, R. F. (2008). A cooperative and adaptive 

variable neighborhood search for the multi depot vehicle routing problem with time windows. 

Business Research, 1(2), 207–218. 

Polacek, M., Hartl, R. F., Doerner, K., & Reimann, M. (2004). A variable neighborhood search for 

the multi depot vehicle routing problem with time windows. Journal of Heuristics, 10(6), 613–

627. 

Ponboon, S., Qureshi, A. G., & Taniguchi, E. (2016). Evaluation of Cost Structure and Impact of 

Parameters in Location-routing Problem with Time Windows. Transportation Research 

Procedia, 12(June 2015), 213–226. https://doi.org/10.1016/j.trpro.2016.02.060 

Prins, C., Prodhon, C., Ruiz, A., Soriano, P., & Wolfler Calvo, R. (2007). Solving the Capacitated 

Location-Routing Problem by a Cooperative Lagrangean Relaxation-Granular Tabu Search 

Heuristic. Transportation Science, 41(4), 470–483. https://doi.org/10.1287/trsc.1060.0187 

Prins, Christian, Prodhon, C., & Calvo, R. W. (2006a). A Memetic Algorithm with Population 

Management ( MA | PM ) for the Capacitated Location-Routing Problem. EvoCOP, 183–194. 

https://doi.org/10.1007/978-3-540-88439-2_4 

Prins, Christian, Prodhon, C., & Calvo, R. W. (2006b). Solving the capacitated location-routing 

problem by a GRASP complemented by a learning process and a path relinking. 4or, 4(3), 47–

64. https://doi.org/10.1007/s10288-006-0001-9 

Prodhon, C. (2008). A metaheuristic for the periodic location-routing problem. Operations 

Research Proceedings 2007, 159–164. 

Prodhon, C. (2009). An ELSxPath relinking hybrid for the periodic location-routing problem. In 

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics) (Vol. 5818 LNCS, pp. 15–29). 

https://doi.org/10.1007/978-3-642-04918-7_2 

Prodhon, C. (2011). A hybrid evolutionary algorithm for the periodic location-routing problem. 

European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2010.09.021 

Prodhon, C., & Prins, C. (2008). A memetic algorithm with population management (MA| PM) for 

the periodic location-routing problem. In International Workshop on Hybrid Metaheuristics 

(pp. 43–57). 

Raft, O. M. (1982). A modular algorithm for an extended vehicle scheduling problem. European 

Journal of Operational Research, 11(1), 67–76. https://doi.org/10.1016/S0377-

2217(82)80011-8 

Rahim, F., & Sepil, C. (2014). A location-routing problem in glass recycling. Annals of Operations 

Research, 223(1), 329–353. https://doi.org/10.1007/s10479-014-1621-7 

Rahimi-Vahed, A., Gabriel Crainic, T., Gendreau, M., & Rei, W. (2015). Fleet-sizing for multi-

depot and periodic vehicle routing problems using a modular heuristic algorithm. Computers & 

Operations Research, 53, 9–23. https://doi.org/10.1016/j.cor.2014.07.004 

Rahmani, Y., Cherif-Khettaf, W. R., & Oulamara, A. (2015). A local search approach for the two-

echelon multi-products location-routing problem with pickup and delivery. IFAC-

PapersOnLine, 28(3), 193–199. https://doi.org/10.1016/j.ifacol.2015.06.080 

Ramos, Tania Rodrigues Pereira, Gomes-Salema, M. I., & Barbosa-Povoa, A. P. (2009). A multi-

product, multi-depot vehicle routing problem in a reverse logistics system: comparative study 

of an exact formulation and a heuristic algorithm. Livro de Actas Da 14o Congresso Da 

APDIO, IO2009. 

Ramos, Tania Rodrigues Pereira, Gomes, M. I., & Barbosa-Povoa, A. P. (2011). A hybrid method 

to solve a multi-product, multi-depot vehicle routing problem arising in a recyclable waste 

collection system. In Agra, Agostinho and Doostmohammadi, Mahdi (2011) A Polyhedral 

Study of Mixed 0-1 Set. In: Proceedings of the 7th ALIO/EURO Workshop. ALIO-EURO 2011, 

Porto, pp. 57-59. (p. 206). 

Ramos, Tania Rodrigues Pereira, Gomes, M. I., & Barbosa-Póvoa, A. P. (2011). Solving a multi-

product, multi-depot vehicle routing problem by a hybrid method. Livro de Actas Do 15o 

Congresso Da APDIO IO2011, 1–13. 



192 

 

Ramos, Tânia Rodrigues Pereira, Gomes, M. I., & Barbosa-Póvoa, A. P. (2014). Economic and 

environmental concerns in planning recyclable waste collection systems. Transportation 

Research Part E: Logistics and Transportation Review. 

https://doi.org/10.1016/j.tre.2013.12.002 

Rand, G. K. (1976). Methodological Choices in Depot Location Studies. Journal of the Operational 

Research Society, 27(1), 241–249. https://doi.org/10.1057/jors.1976.39 

Rantasila, K., & Ojala, L. (2012). Measurement of national-level logistics costs and performance. 

Rath, S., & Gutjahr, W. J. (2014). A math-heuristic for the warehouse location – routing problem in 

disaster relief. Computers and Operation Research, 42, 25–39. 

https://doi.org/10.1016/j.cor.2011.07.016 

Renaud, J., Laporte, G., & Boctor, F. F. (1996). A tabu search heuristic for the multi-depot vehicle 

routing problem. Computers Ops. Res., 23(3). 

Rodríguez-Martín, I., Salazar-González, J.-J., & Yaman, H. (2014). A branch-and-cut algorithm for 

the hub location and routing problem. Computers & Operations Research, 50, 161–174. 

Rolland, E., Schilling, D. A., Current, J. R., & others. (1997). An efficient tabu search procedure for 

the p-median problem. European Journal of Operational Research, 96(2), 329–342. 

Salhi, S, Thangiah, S. R., & Rahman, F. (1998). A genetic clustering method for the multi-depot 

vehicle routing problem. ICANNGA ’97 Vienna, 234–237. 

Salhi, Sa\"\id, & Nagy, G. (1999). A cluster insertion heuristic for single and multiple depot vehicle 

routing problems with backhauling. Journal of the Operational Research Society, 1034–1042. 

Salhi, Saïd, & Fraser, M. (1996). An integrated heuristic approach for the combined location 

vehicle fleet mix problem. Studies in Locational Analysis, 8, 3–21. Retrieved from 

http://www.vub.ac.be/EWGLA/STUDIES/main.html 

Salhi, Said, & Gamal, M. D. H. (2003). A genetic algorithm based approach for the uncapacitated 

continuous location--allocation problem. Annals of Operations Research, 123(1–4), 203–222. 

Salhi, Said, Imran, A., & Wassan, N. A. (2014). The multi-depot vehicle routing problem with 

heterogeneous vehicle fleet: Formulation and a variable neighborhood search implementation. 

Computers and Operations Research, 52, 315–325. https://doi.org/10.1016/j.cor.2013.05.011 

Salhi, Saïd, & Nagy, G. (2009). Local improvement in planar facility location using vehicle routing. 

Annals of Operations Research, 167(1), 287–296. https://doi.org/10.1007/s10479-007-0223-z 

Salhi, Said, & Rand, G. K. (1989). The effect of ignoring routes when locating depots. European 

Journal of Operational Research, 39(April 1988), 150–156. https://doi.org/10.1016/0377-

2217(89)90188-4 

Salhi, Said, & Sari, M. (1997). A multi-level composite heuristic for the multi-depot vehicle fleet 

mix problem. European Journal of Operational Research, 103(1), 95–112. 

https://doi.org/10.1016/s0377-2217(96)00253-6 

Samanlioglu, F. (2013). A multi-objective mathematical model for the industrial hazardous waste 

location-routing problem. European Journal of Operational Research, 226(2), 332–340. 

https://doi.org/10.1016/j.ejor.2012.11.019 

Saricicek, I., & Akkus, Y. (2015). Unmanned Aerial Vehicle hub-location and routing for 

monitoring geographic borders. Applied Mathematical Modelling, 39, 3939–3953. 

https://doi.org/10.1016/j.apm.2014.12.010 

Schittekat, P., & Sörensen, K. (2009). OR Practice—Supporting 3PL Decisions in the Automotive 

Industry by Generating Diverse Solutions to a Large-Scale Location-Routing Problem. 

Operations Research, 57(5), 1058–1067. https://doi.org/10.1287/opre.1080.0633 

Schmid, V., Doerner, K. F., Hartl, R. F., & Salazar-González, J. J. (2010). Hybridization of very 

large neighborhood search for ready-mixed concrete delivery problems. Computers and 

Operations Research, 37(3), 559–574. https://doi.org/10.1016/j.cor.2008.07.010 

Schwengerer, M., Pirkwieser, S., & Raidl, G. R. (2012). A variable neighborhood search approach 

for the two-echelon location-routing problem. Evolutionary Computation in Combinatorial 

Optimization. 

Shankar, H., Mani, G., & Pandey, K. (2014). GIS Based Solution of Multi-Depot Capacitated 



193 

 

Vehicle Routing Problem with Time Window Using Tabu Search Algorithm. International 

Journal of Traffic and Transportation Engineering, 3(2), 83–100. 

https://doi.org/10.5923/j.ijtte.20140302.05 

Singh, N., & Shah, J. (2004). Managing tendupatta leaf logistics: an integrated approach. 

International Transactions in Operational Research, 11(6), 683–699. 

https://doi.org/10.1111/j.1475-3995.2004.00484.x 

Sombuntham, P., & Kachitvichyanukul, V. (2010). Multi-depot vehicle routing problem with 

pickup and delivery requests. In AIP Conference Proceedings (Vol. 1285, pp. 71–85). 

https://doi.org/10.1063/1.3510581 

Soto, M., Sevaux, M., Rossi, A., & Reinholz, A. (2017). Multiple neighborhood search, tabu search 

and ejection chains for the multi-depot open vehicle routing problem. Computers and 

Industrial Engineering, 107, 211–222. https://doi.org/10.1016/j.cie.2017.03.022 

Srivastava, R. (1993). Alternate solution procedures for the location-routing problem. Omega, 

21(4), 497–506. https://doi.org/10.1016/0305-0483(93)90082-V 

Srivastava, Rajesh, & Benton, W. C. (1990). LOCATION-ROUTING PROBLEM : 

CONSIDERATIONS IN PHYSICAL DISTRIBUTION. Computers & Operations Research, 

17(5), 427–435. 

Stenger, A., Schneider, M., & Enz, S. (2011). A Hybrid GRASPxVNS Algorithm with Effective 

Depot Reduction Mechanism for the Capacitated Location Routing Problem. 

Stenger, A., Schneider, M., Schwind, M., & Vigo, D. (2012). Location routing for small package 

shippers with subcontracting options. In International Journal of Production Economics (Vol. 

140, pp. 702–712). https://doi.org/10.1016/j.ijpe.2011.11.014 

Stodola, P., & Mazal, J. (2016). Applying the ant colony optimisation algorithm to the capacitated 

multi-depot vehicle routing problem. International Journal of Bio-Inspired Computation, 8(4), 

228–233. 

Su, C.-T. (1998). Locations and vehicle routing designs of physical distribution systems. 

Production Planning & Control, 9(7), 650–659. 

Sussams, J. E. (1971). Efficient Road Transport Scheduling: A Practical Approach to Vehicle 

Routing and Scheduling and to Depot Siting, Incorporating Computer Systems, New Manual 

Techniques and Cost Models for Transport and Distribution. Gower Press. Retrieved from 

https://books.google.co.uk/books?id=W85aAAAAYAAJ 

Thangiah, S. R., & Salhi, S. (2001). Genetic clustering: An adaptive heuristic for the multidepot 

vehicle routing problem. Applied Artificial Intelligence, 15(4), 361–383. 

https://doi.org/10.1080/08839510151087293 

Tillman, F. A. (1969). The multiple terminal delivery problem with probabilistic demands. 

Transportation Science, 3(3), 192–204. 

Tillman, F. A., & Cain, T. M. (1972). An Upperbound Algorithm for the Single and Multiple 

Terminal Delivery Problem. Management Science, 18(11), 664–682. 

https://doi.org/10.1287/mnsc.18.11.664 

Tillman, F. A., & Hering, R. W. (1971). A study of a look-ahead procedure for solving the 

multiterminal delivery problem. Transportation Research, 5(3), 225–229. 

https://doi.org/10.1016/0041-1647(71)90023-2 

Ting, C.-J., & Chen, C.-H. (2008). Combination of multiple ant colony system and simulated 

annealing for the multidepot vehicle-routing problem with time windows. Transportation 

Research Record: Journal of the Transportation Research Board, (2089), 85–92. 

Ting, C., & Chen, C. (2013). A multiple ant colony optimization algorithm for the capacitated 

location routing problem. International Journal of Production Economics, 141(1), 34–44. 

https://doi.org/10.1016/j.ijpe.2012.06.011 

Tlili, T., & Krichen, S. (2015). Decision Support System for the Multi-depot Vehicle Routing 

Problem. In Modelling, Computation and Optimization in Information Systems and 

Management Sciences (pp. 47–55). Springer. 

Tlili, T., Krichen, S., Drira, G., & Faiz, S. (2016). On Solving the Multi-depot Vehicle Routing 



194 

 

Problem. In Proceedings of 3rd International Conference on Advanced Computing, 

Networking and Informatics (pp. 103–108). 

Toro Ocampo, E. M., Guimarães, F. G., & Rendón, R. A. G. (2017). Introducing radiality 

constraints in capacitated location-routing problems. International Journal of Industrial 

Engineering Computations, 8(4), 441–452. https://doi.org/10.5267/j.ijiec.2017.3.004 

Toyoglu, H., Karasan, O. E., & Kara, B. Y. (2012). A New Formulation Approach for Location-

Routing Problems. Networks and Spatial Economics, 12(4), 635–659. 

https://doi.org/10.1007/s11067-011-9170-y 

Tummel, C., Franzen, C., Hauck, E., & Jeschke, S. (2013). The Multi-depot heterogeneous fleet 

vehicle routing problem with time windows and assignment restrictions (m-vrptwar). In 

Automation, Communication and Cybernetics in Science and Engineering 2011/2012 (pp. 

767–779). Springer. 

Tunalıoğlu, R., Koç, Ç., & Bektaş, T. (2016). A multiperiod location-routing problem arising in the 

collection of Olive Oil Mill Wastewater. Journal of the Operational Research Society, 67(7), 

1–13. https://doi.org/10.1057/jors.2015.121 

Tuzun, D., & Burke, L. I. (1999a). A two-phase tabu search approach to the location routing 

problem. European Journal of Operational Research, 116(1), 87–99. 

https://doi.org/10.1016/S0377-2217(98)00107-6 

Tuzun, D., & Burke, L. I. (1999b). A two-phase tabu search approach to the location routing 

problem, 116, 87–99. 

Ukkusuri, S., & Yushimito, W. (2008). Location routing approach for the humanitarian 

prepositioning problem. Transportation Research Record: Journal of the Transportation 

Research Board, (2089), 18–25. 

Venkata Narasimha, K., Kivelevitch, E., Sharma, B., & Kumar, M. (2013). An ant colony 

optimization technique for solving min-max Multi-Depot Vehicle Routing Problem. Swarm 

and Evolutionary Computation, 13, 63–73. https://doi.org/10.1016/j.swevo.2013.05.005 

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A Hybrid Genetic 

Algorithm for Multidepot and Periodic Vehicle Routing Problems. Operations Research. 

https://doi.org/10.1287/opre.1120.1048 

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2014). Implicit depot assignments and 

rotations in vehicle routing heuristics. European Journal of Operational Research, 237(1), 15–

28. https://doi.org/10.1016/j.ejor.2013.12.044 

Wan, F., & Zhang, Q. (2008). Study on the location routing problem of the multistage logistics 

network. In 2008 International Conference on Wireless Communications, Networking and 

Mobile Computing, WiCOM 2008. https://doi.org/10.1109/WiCom.2008.1541 

Wang, C., & Mu, D. (2015). Design of the Distribution Network for a “ Collect-on- Delivery ” 

Company in a Metropolitan Context using Simulated Annealing with Path Relinking. Applied 

Mathematics & Information Sciences, 1539(3), 1529–1539. Retrieved from 

http://nsp.naturalspublishing.com/files/published/884t3cg9il168j.pdf 

Wang, H., Du, L., & Ma, S. (2014). Multi-objective open location-routing model with split delivery 

for optimized relief distribution in post-earthquake. Transportation Research Part E: Logistics 

and Transportation Review, 69, 160–179. https://doi.org/10.1016/j.tre.2014.06.006 

Wang, X, Golden, B., & Wasil, E. (2015). The min-max multi-depot vehicle routing problem: 

Heuristics and computational results. Journal of the Operational Research Society, 66(9), 

1430–1441. https://doi.org/10.1057/jors.2014.108 

Wang, Xuefeng, & Sun, X. (2005). A two-phase hybrid heuristic search approach to the location-

routing problem. 2005 IEEE International Conference on Systems, Man and Cybernetics, 4, 

3338–3343. https://doi.org/10.1109/ICSMC.2005.1571661 

Wang, Y. (2013). Research of Multi-Depot Vehicle Routing Problem by Cellular Ant Algorithm. 

JCP, 8(7), 1722–1727. 

Wasner, M., & Zäpfel, G. (2004). An integrated multi-depot hub-location vehicle routing model for 

network planning of parcel service. International Journal of Production Economics, 90(3), 



195 

 

403–419. https://doi.org/10.1016/j.ijpe.2003.12.002 

Watson-Gandy, C. D. T., & Dohrn, P. J. (1973). Depot location with van salesmen — A practical 

approach. Omega, 1(3), 321–329. https://doi.org/10.1016/0305-0483(73)90108-4 

Webb, M. H. J. (1968). Cost Functions in the Location of Depots for Multiple-Delivery Journeys. 

Journal of the Operational Research Society, 19(3), 311–320. 

https://doi.org/10.1057/jors.1968.74 

Wren, A., & Holliday, A. (1972a). Computer Scheduling of Vehicles from One or More Depots to a 

Number of Delivery Points. Journal of the Operational Research Society, 23(3), 333–344. 

https://doi.org/10.1057/jors.1972.53 

Wren, A., & Holliday, A. (1972b). Computer Scheduling of Vehicles from One or More Depots to a 

Number of Delivery Points. Journal of the Operational Research Society, 23(3), 333–344. 

https://doi.org/10.1057/jors.1972.53 

Wu, T. H., Low, C., & Bai, J. W. (2002). Heuristic solutions to multi-depot location-routing 

problems. Computers and Operations Research, 29(10), 1393–1415. 

https://doi.org/10.1016/S0305-0548(01)00038-7 

Xie, Y., Lu, W., Wang, W., & Quadrifoglio, L. (2012). A multimodal location and routing model 

for hazardous materials transportation. Journal of Hazardous Materials, 227–228, 135–141. 

https://doi.org/10.1016/j.jhazmat.2012.05.028 

Xu, Y, Wang, L., & Yang, Y. (2012). A new variable neighborhood search algorithm for the multi 

depot heterogeneous vehicle routing problem with time windows. Electronic Notes in Discrete 

Mathematics. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S157106531200039X 

Xu, Yingcheng, & Jiang, W. (2014). An improved variable neighborhood search algorithm for multi 

depot heterogeneous vehicle routing problem based on hybrid operators. International Journal 

of Control and Automation, 7(3), 299–316. https://doi.org/10.14257/ijca.2014.7.3.29 

Yang, J., & Sun, H. (2015). Battery swap station location-routing problem with capacitated electric 

vehicles. Computers and Operations Research, 1–16. https://doi.org/10.1016/j.cor.2014.07.003 

Yang, W.-T., & Chu, L.-C. (2000). A heuristic algorithm for the multi-depot periodic vehicle 

routing problem. Journal of Information and Optimization Sciences, 21(3), 359–367. 

https://doi.org/10.1080/02522667.2000.10699457 

Yang, Y. F., Cui, Z. M., & Cheng, J. M. (2006). An Improved Genetic Algorithm for Multiple-

Depot Vehicle Routing Problem with Time Window. Journal of Soochow University 

(Engineering Science Edition), 26(2), 20–23. 

Yao, B., Chen, C., Song, X., & Yang, X. (2017). Fresh seafood delivery routing problem using an 

improved ant colony optimization. Annals of Operations Research. 

https://doi.org/10.1007/s10479-017-2531-2 

Yildiz, B., Arslan, O., & Karaşan, O. E. (2016). A branch and price approach for routing and 

refueling station location model. European Journal of Operational Research, 248(3), 815–826. 

https://doi.org/10.1016/j.ejor.2015.05.021 

Yu, B., Yang, Z. Z., & Xie, J. X. (2011). A parallel improved ant colony optimization for multi-

depot vehicle routing problem. Journal of Operational Research Society. 

https://doi.org/10.1057/jors.2009.161 

Yu, V. F., & Lin, S.-Y. (2015). A simulated annealing heuristic for the open location-routing 

problem. Computers & Operations Research, 62, 184–196. 

https://doi.org/10.1016/j.cor.2014.10.009 

Yu, V. F., & Lin, S.-Y. (2016). Solving the location-routing problem with simultaneous pickup and 

delivery by simulated annealing. International Journal of Production Research, 54(2), 526–

549. https://doi.org/10.1080/00207543.2015.1085655 

Yu, V. F., & Lin, S. W. (2014). Multi-start simulated annealing heuristic for the location routing 

problem with simultaneous pickup and delivery. Applied Soft Computing Journal, 24, 284–

290. https://doi.org/10.1016/j.asoc.2014.06.024 

Yu, V. F., Lin, S. W., Lee, W., & Ting, C. J. (2010). A simulated annealing heuristic for the 



196 

 

capacitated location routing problem. Computers and Industrial Engineering, 58(2), 288–299. 

https://doi.org/10.1016/j.cie.2009.10.007 

Yuan-feng, Y. (2008). An improved genetic algorithm for multiple-depot and heterogeneous-

vehicle vehicle routing problem. Computer and Modernization, 9, 2. 

Yücenur, G. N., & Demirel, N. C. (2011). A new geometric shape-based genetic clustering 

algorithm for the multi-depot vehicle routing problem. Expert Systems with Applications, 

38(9), 11859–11865. https://doi.org/10.1016/j.eswa.2011.03.077 

Zhang, Y., Qi, M., Lin, W. H., & Miao, L. (2015). A metaheuristic approach to the reliable location 

routing problem under disruptions. Transportation Research Part E: Logistics and 

Transportation Review, 83, 90–110. https://doi.org/10.1016/j.tre.2015.09.001 

Zhen, T., & Zhang, Q. (2009). A Combining heuristic algorithm for the multi-depot vehicle routing 

problem with inter-depot routes. In IJCAI International Joint Conference on Artificial 

Intelligence (pp. 436–439). https://doi.org/10.1109/JCAI.2009.161 

Zhou, L., Baldacci, R., Vigo, D., & Wang, X. (2017). A Multi-Depot Two-Echelon Vehicle 

Routing Problem with Delivery Options Arising in the Last Mile Distribution. European 

Journal of Operational Research. https://doi.org/10.1016/j.ejor.2017.08.011 

Zhu, X. N., Yan, R., & Zhang, Q. (2015). A promoted hybrid heuristic algorithm for two-

dimensional multi-depots vehicle routing problem. International Journal of Simulation 

Modelling, 14(3), 499–510. https://doi.org/10.2507/IJSIMM14(3)CO11 

 

 

 

 

 

 



UPR16 – April 2018                                                                      

 

FORM UPR16 
Research Ethics Review Checklist 
 

Please include this completed form as an appendix to your thesis (see the 
Research Degrees Operational Handbook for more information 
 

 

 

Postgraduate Research Student (PGRS) Information 
 

 

Student ID: 
 

UP757166 
 

PGRS Name: 
 

 

Abdullah Almouhanna 
 

Department: 
 

 

Mathematics  
 

First Supervisor: 
 

Banafsheh Khosravi 
 

Start Date:  
(or progression date for Prof Doc students) 
 

 

01/02/2015 

 

Study Mode and Route: 
 

Part-time 
 

Full-time 
  

 

 
 

 

 

MPhil  
 

PhD 
 

 

 
 

 
 

 

MD 
 

Professional Doctorate 

 

 
 

 
 

 
 

Title of Thesis: 
 

 

Biased Randomised Heuristics for Location Routing Problem 
 
 

 

Thesis Word Count:  
(excluding ancillary data) 
 

 

62691 
 

 
 

If you are unsure about any of the following, please contact the local representative on your Faculty Ethics Committee 
for advice.  Please note that it is your responsibility to follow the University’s Ethics Policy and any relevant University, 
academic or professional guidelines in the conduct of your study 

Although the Ethics Committee may have given your study a favourable opinion, the final responsibility for the ethical 
conduct of this work lies with the researcher(s). 
 

 
 

UKRIO Finished Research Checklist: 
(If you would like to know more about the checklist, please see your Faculty or Departmental Ethics Committee rep or see the online 
version of the full checklist at: http://www.ukrio.org/what-we-do/code-of-practice-for-research/) 
 

 

a) Have all of your research and findings been reported accurately, honestly and 
within a reasonable time frame? 

 

 

YES 
NO    

 

 
 

 

 

b) Have all contributions to knowledge been acknowledged? 
 

 

YES 
NO    

 

 
 

 

 

c) Have you complied with all agreements relating to intellectual property, publication 
and authorship? 

 

YES 
NO    

 

 
 

 

 

d) Has your research data been retained in a secure and accessible form and will it 
remain so for the required duration?  

 

YES 
NO    

 

 
 

 

 

e) Does your research comply with all legal, ethical, and contractual requirements? 

 

 

YES 
NO    

 

 
 

 

      
 

Candidate Statement: 
 

 

I have considered the ethical dimensions of the above named research project, and have successfully 
obtained the necessary ethical approval(s) 
 

 

Ethical review number(s) from Faculty Ethics Committee (or from 
NRES/SCREC): 
 

 

N/A 

 

If you have not submitted your work for ethical review, and/or you have answered ‘No’ to one or more of 
questions a) to e), please explain below why this is so: 
 

 

We did not collect data, we solved mathematical models 
 
 

Signed (PGRS): 
 

 

 
 

 

Date: 23/09/2019 

 

http://www.ukrio.org/what-we-do/code-of-practice-for-research/

