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Abstract. Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause

serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using

laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and

phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes

in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant

decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day

tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most

profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue

fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses

suggested the survival and elevation of the introduced bacterial strains throughout the experiment.
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Introduction

The nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT),

has been extensively used for over 100 years, and this

persistent toxic organic compound has resulted in soil

contamination and environmental problems at many

former explosives and ammunition plants, as well as

military areas (Stenuit, Agathos 2010). TNT has been

reported to have mutagenic and carcinogenic potential

in studies with several organisms, including bacteria

(Lachance et al. 1999), which has led environmental

agencies to declare a high priority for its removal from

soils (van Dillewijn et al. 2007).

Both bacteria and fungi have been shown to

possess the capacity to degrade TNT (Kalderis et al.

2011). Bacteria may degrade TNT under aerobic or

anaerobic conditions directly (TNT is source of carbon

and/or nitrogen) or via co-metabolism where addi-

tional substrates are needed (Rylott et al. 2011). Fungi

degrade TNT via the actions of nonspecific extracel-

lular enzymes and for production of these enzymes

growth substrates (cellulose, lignin) are needed. Con-

trary to bioremediation technologies using bacteria or

bioaugmentation, fungal bioremediation requires

an ex situ approach instead of in situ treatment (i.e.

soil is excavated, homogenised and supplemented

with nutrients) (Baldrian 2008). This limits applicabil-

ity of bioremediation of TNT by fungi in situ at a field

scale.
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For example, the Air Resource Board of the California 
Environmental Protection Agency (2014) has been con-
ducting programs to reduce emissions in the state from 
mobile sources, including passenger cars and heavy-duty 
trucks. In similar jurisdictions, the environmental impacts 
of transportation systems have become significant prob-
lems, especially in congested urban roadway networks. 
Improvements are also needed for reduction of the vehicle 
emissions in supply-chain systems.

Many studies of supply-chain systems have explored 
the environmental impacts of vehicle emissions. Figliozzi 
(2011b) studied the vehicle routing problem (VRP), in 
which minimization of emissions is incorporated into the 
objective. That study demonstrated why vehicle emissions 
should be considered in the supply-chain network of pri-
vate companies. Wang et al. (2011) studied a supply-chain 
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abstract. Large facilities in urban areas, such as storage facilities, distribution centers, schools, department stores, or 
public service centers, typically generate high volumes of accessing traffic, causing congestion and becoming major 
sources of greenhouse gas (GHG) emission. In conventional facility-location models, only facility construction costs 
and fixed transportation costs connecting customers and facilities are included, without consideration of traffic con-
gestion and the subsequent GHG emission costs. This study proposes methods to find high-demand facility locations 
with incorporation of the traffic congestion and GHG emission costs incurred by both existing roadway traffic and 
facility users into the total cost. Tabu search and memetic algorithms were developed and tested with a conventional 
genetic algorithm in a variety of networks to solve the proposed mathematical model. A case study to determine the 
total number and locations of community service centers under multiple scenarios in Incheon City is then presented. 
The results demonstrate that the proposed approach can significantly reduce both the transportation and GHG emis-
sion costs compared to the conventional facility-location model. This effort will be useful for decision makers and 
transportation planners in the analysis of network-wise impacts of traffic congestion and vehicle emission when de-
ciding the locations of high demand facilities in urban areas.
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Introduction

Rapid growth in passenger and freight transportation had 
significantly affected environmental systems. According to 
the U.S. EPA (2013), total greenhouse gas (GHG) emis-
sions in the U.S. from the transportation sector increased 
by about 18% from 1990 to 2011. During this period, road 
transport was responsible for more than 70% of the total 
emissions. In South Korea, the environmental cost of ve-
hicle emissions in 2010 was estimated to be around 7% of 
the total social cost, including congestion, accidents, air 
pollution, and noise, which is greater than the total cost 
of traffic accidents (Statistics Korea 2014). Environmen-
tal and political efforts have been made by many govern-
ments and authorities in an attempt to improve air quality 
and social welfare (Jang et al. 2010; Lee, J. K., Lee, S. 2010). 
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network design problem wherein environmental impacts 
were considered in a multi-objective optimization model. 
Srivastava (2007) conducted an extensive review of green 
supply-chain problems. The impacts of vehicle emissions 
also have been incorporated into some conventional facil-
ity-location problems. For example, Diabat and Simchi-
Levi (2010) studied a multi-commodity facility-location 
problem with a carbon-emission constraint. Harris et al. 
(2009) proposed an uncapacitated facility-location prob-
lem in the form of multi-objective models, through the 
examination of two objectives, including economic cost 
versus environmental impact, and three objectives, includ-
ing economic cost, environmental impact, and uncovered 
demand. Harris et al. (2011) investigated the capacitated 
facility-location problem in which the financial cost and 
the CO2 emission cost were considered as a multi-objec-
tive function. Such studies provide insight into how en-
vironmental considerations can be incorporated into the 
classical fixed charge location problem (FCLP). However, 
they do not carefully address the congestion effects caused 
by facility users, especially in urban environments with 
high traffic volumes. In addition, the environmental im-
pacts of re-routing background traffic, which represents 
general roadway users unrelated to the facilities, have sel-
dom been considered.

Conventional facility-location problems applied to 
supply-chain design often consider facility investment and 
operation costs, as well as the fixed transportation costs 
of connecting customers with the facilities. FCLP, an im-
portant facility-location model, has been used extensively, 
both in practice and in academic studies (Nozick 2001). 
It has also been extended into capacitated and uncapaci-
tated versions (Erlenkotter 1978; Aikens 1985). Pirkul and 
Jayaraman (1998) investigated a multi-commodity multi-
plant capacitated FCLP. Aksen and Aras (2012) investigat-
ed a bi-level FCLP in which vulnerability of the system to 
potential terrorist attacks was considered. Heuristic algo-
rithms have been proposed to solve these NP-hard prob-
lems. Sridharan (1995) reviewed the capacitated FCLP and 
a set of solution algorithms, including heuristics and exact 
methods. Cornuejols et al. (1991) compared several heu-
ristics to solve capacitated FCLP. Lagrangean Relaxation-
based heuristics were investigated by Beasley (1993) and 
Tragantalerngsak et al. (1997), and were further extended 
to the FCLP under random disruptions (Lim et al. 2010). 
Meta-heuristic approaches also have been developed, such 
as tabu search (Al-Sultan, Al-Fawzan 1999; Prins 2007), 
ant colony optimization (Venables, Moscardini 2006), 
and combinations of construction heuristics and a local 
search algorithm (Sörensen et al. 2012) for a capacitated 
FCLP. Jaramillo et al. (2002) reviewed the use of genetic 
algorithms in general facility-location problems includ-
ing FCLP, which was followed by the studies of Raj and 
Rajendran (2012) and Xie and Jia (2012). Arostegui et al. 

(2006) compared tabu search, simulated annealing, and 
genetic algorithms for a capacitated, multi-period, multi-
commodity version of FCLP. As outlined above, extensive 
studies have been conducted and various solutions have 
been proposed for FCLP and its variations. However, in 
most urban environments where the existing traffic is at or 
near capacity, new facilities can generate additional traffic 
which may result in huge impacts on the area-wide con-
gestion, and consequently, on the total vehicle emissions 
(Shukla, Alam 2010). Once new facilities start operating 
and the traffic increases, conventional facility-location 
models with fixed transportation costs may not be able to 
properly address the problem.

This paper aimed to fill these gaps by presenting a 
comprehensive mathematical model which considers 
(i)  network-wise congestion caused by both re-routing 
of existing traffic and assignment of facility users on the 
given networks, and (ii) the environmental impact of ve-
hicle movements (i.e., both existing traffic and facility us-
ers) associated with facility locations. When high-demand 
facilities are built in urban areas, the facility users generate 
additional trips which may increase traffic congestion not 
only around the facilities, but also in the whole transpor-
tation network of the larger area. This congestion can also 
alter the routes of other general drivers, finally causing the 
traffic pattern to converge to another equilibrium state. 
The amount of CO2 emissions resulting from this updated 
traffic should be explicitly considered. A study by Bai et al. 
(2011) explored the interactions between a facility-loca-
tion problem and a transportation-planning problem, in 
which the facility locations were iteratively updated con-
sidering the roadway congestion patterns associated with 
shipment origins and destinations. However, the existing 
background traffic on the transportation network was as-
sumed to be fixed and not affected by facility-location de-
cisions or the resulting traffic congestion pattern. A few 
studies considered the re-routing of background traffic in 
supply-chain design problems, but such re-routing has not 
been applied in a real-world case study (Hajibabai, Ouy-
ang 2013), or was only tested on a small-sized network 
(Hajibabai et  al. 2014). Moreover, none of the models 
consider vehicle emission cost, which becomes more sig-
nificant during heavy network congestion. In this study, 
we explicitly incorporate (i) background traffic movement 
to minimize congestion, and (ii) emission costs caused 
by general roadway users as well as facility users, into the 
objective function. The proposed model and solution al-
gorithm are applied to a large-scale network to find the 
near-optimal number and locations of community service 
centers in the city of Incheon, South Korea.

The exposition of this paper is as follows. Section 1 
presents the notations used in the model and the math-
ematical formulation. The proposed solution algorithms, 
including tabu search and a memetic algorithm, are 
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introduced in Section 2. Section 3 focuses on a set of case 
studies, and provides a discussion of the scenario analyses. 
The last section concludes the study and suggests points 
for future research.

1. Model formulation

In this section, a bi-level mixed-integer program which 
combines the fixed-charge facility-location model and the 
route-choice model is presented for consideration of all 
travelers on the network, including background traffic and 
facility users. The method synchronously addresses facility 
location, traffic congestion induced by high-demand fa-
cilities, and the consequent vehicle emissions. An upper-
level model was formulated to find the optimal number 
and locations of facilities which allow minimization of 
the sum of facility construction cost, transportation cost, 
and emission cost. A lower-level model then addresses the 
traffic assignment problem of both facility demand and 
background traffic, in which the user equilibrium prin-
ciple (Wardrop 1952) was adopted as the rule for route 
choice. Therefore, it was assumed that each traveler would 
select the path with the shortest travel time between his/
her origin and destination. This leads to the equilibri-
um state, in which no traveler can reduce travel time by 
changing paths.

The roadway network is represented by a directed 
graph ( , )D V A , where: V  is the set of nodes; A  is the 
set of directed links. Let J V⊆  be a set of candidate facil-
ity locations, and je  be a fixed investment for the con-
struction and operation of the facility, j J∈ . Any facil-
ity j J∈  is associated with its maximum capacity, jC , 
an upper-bound to the total customer demand that can 
be assigned to the facility. The binary decision variable 

jY , j J∀ ∈  denotes whether or not the candidate location 
j J∈  is selected for facility construction; 1jY =  if a fa-

cility is built at candidate location j , or 0 otherwise. Let 
bI V⊆  and K V⊆  respectively denote the set of origins 

and destinations of the background traffic, representing 
general roadway users. Let dI V⊆  be the set of origins 
of facility demand and ih  be the facility demand at origin 

di I∈ . The total facility demand in the network can be de-
scribed as 

d
i

i I
h

∈
∑ .

Assuming that the number of facilities and their lo-
cations are provided, facility demand at each origin node 

di I∈  should be properly assigned to the facilities acces-
sible through a given roadway network. A virtual sink 
node S  was proposed to represent an imaginary single 
destination, and a set of dummy links was defined as Z  
to connect the candidate location j J∈  and S  using the 
dummy link jz Z∈  if a facility is constructed at node 
j. Figure 1 shows a detailed illustration of the proposed 
method. Facility demand ih  in each origin node di I∈  

is assigned to the imaginary single destination S  through 
the intermediate destinations (i.e., constructed facilities). 
The throughput of each constructed facility is allowed to 
be up to jC , j J∀ ∈ . With this imaginary single destina-
tion, a new origin-destination table does not need to be 
built for the facility users. The users are assigned to the 
nearest facility allowed by the capacity, with updated travel 
time.

Let ax  be the total vehicle traffic on the network 
link, a A∈ , which includes background traffic flow and 
facility demand flow on the given link. Let ,i kq  be the 
total background traffic flow from origin bi I∈  to desti-
nation k K∈ , and let ,i k

mb  be a part of ,i kq  on any path 
,i km M∈ , where: ,i kM  is the set of possible paths con-

necting the given origin-destination pair. The facility 
demand flow from origin di I∈  to the virtual sink node 
S  on any path il L∈  is represented by i

lf , where: iL  is 
the set of possible paths connecting the given facility de-
mand node and the imaginary sink node S . Then, the to-
tal vehicle flow on the link a A∈  can be formulated as 

,

, ,
,,

d i b i k

i i i k i k
a m a ml a l

k Ki I l L i I m M
x f b

∈∈ ∈ ∈ ∈

= δ + ρ∑ ∑ ∑ ∑ ∑ , where: , 1i
a lδ =  

if link a  is included as part of path l , or 0 otherwise. In 
addition, ,

, 1i k
a mρ =  if link a  is included in path m , or 0 

otherwise. Link travel time (i.e., link cost) can generally 
be represented as a function of the total vehicle volume 
on the link, e.g., through the BPR (US Bureau of Public 
Roads) link cost function (Sheffi 1985). Although vehicle 
CO2 emissions are affected by a number of factors (e.g., 
ambient temperature, engine temperature at start up, etc.), 
vehicle speed, which is uniquely determined by the total 
vehicle volume on the link from a proper link cost func-
tion (Sheffi 1985), is known to be the dominant factor 
(Figliozzi 2011a). Therefore, in this study, both link travel 
time and link specific CO2 emission factors were treated as 
functions of the total vehicle volume on the link, and can 

Fig. 1. Transportation network with imaginary sink node and 
dummy links (revised from Bai et al. 2011)
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be respectively described as ( )a at x  and ( )a aE x , a A∀ ∈ . 
Let jv  denote the total assigned demand flow for the con-
structed facility at node j J∈ , which can be represented 

as ,
d i

i i
j l j l

i I l L
v f

∈ ∈

= θ∑ ∑  where: ,
i
j lθ = 1 if the demand flow i

lf  

passes through the constructed facility at node j  to reach 
the sink node S, or 0 otherwise. Note that the assigned 
demand flow for each constructed facility also describes 
the throughput of each constructed facility, whose upper-
bound is set as jC , j J∀ ∈ .

Using the inputs and decision variables described 
above, our model can be formulated into the following bi-
level mixed-integer program:

Minimize

 ( ) ( ){ }j j a a a a a a
j J a A

e Y x t x x E x
∈ ∈

+ α +b∑ ∑ , (1)

subject to
 

i

i
i l

l L
h f

∈

= ∑ , di I∀ ∈ ; (2)

 
d

i j j
j Ji I

h C Y
∈∈

≤∑ ∑ ; (3)

 { }0,1jY = , j J∀ ∈ , (4)

where: ax  is a solution to the following traffic assignment 
problem under a user equilibrium objective:

Minimize
 

0
( )ax

a
a A

t d
∈

ω ω∑ ∫ , (5)

subject to

   
,

, ,
,,

d i b i k

i i i k i k
a m a ml a l

k Ki I l L i I m M
x f b

∈∈ ∈ ∈ ∈

= δ + ρ∑ ∑ ∑ ∑ ∑ , a A∀ ∈ ; (6)

 
,

, ,

i k

i k i k
m

m M
q b

∈

= ∑ , ,bi I k K∀ ∈ ∈ ; (7)

 ,
d i

i i
j l j l

i I l L
v f

∈ ∈

= θ∑ ∑ , j J∀ ∈ ; (8)

 j j jv C Y≤ , j J∀ ∈ ; (9)

 0i
lf ≥ , ,d ii I l L∀ ∈ ∈ ; (10)

 , 0i k
mb ≥ , ,, ,b i ki I k K m M∀ ∈ ∈ ∈ . (11)

The objective function (1) of the upper-level prob-
lem minimizes the sum of the facility building cost, total 
travel time and the related emission costs of both back-
ground traffic and facility users. Parameters α  and b  
respectively convert travel time in hours and amount of 
CO2 emission in grams into monetary values. Constraint 
(2) ensures that the total facility demand at any origin 
node is the same as the sum of the traffic flow out of that 
demand node. Constraint (3) ensures that the total facil-
ity demand in the network is less than or equal to the 
sum of the constructed facility capacity. Constraint (4) 
defines the binary variables.

In the case of the second-level problem, objective 
function (5) minimizes the sum of the link cost func-
tions across all network links, integrated with respect to 
the link flow. Constraint (6) defines the total traffic flow 
on link a A∈  as the sum of the facility demand flow and 
the background traffic flow. Constraint (7) ensures that 
the total background traffic volume for each origin-des-
tination pair is equal to the sum of the background traffic 
volume on any possible routes connecting that origin-
destination pair. Constraint (8) specifies that the assigned 
demand flow for each constructed facility is the same as 
the sum of the demand flow passing through the facility 
to reach the sink node. Constraint (9) ensures that the 
total assigned demand flow for any constructed facility 
is less than or equal to the capacity of that facility, and 
that no facility demand is assigned at candidate nodes 
where facilities are not constructed. Constraints (10) and 
(11) specify the non-negative variables. Note that facility 
demand and background traffic are interdependent, and 
are thus assigned together by user equilibrium formulas.

The suggested modeling framework proposes a bidi-
rectional relationship between the facility location model 
(i.e., the upper-level problem) and the traffic assignment 
model of both background traffic and facility users (i.e., 
the lower-level problem), considering vehicle emission. 
Given a feasible solution (i.e., number and location of 
facilities to be built) from the upper-level problem, gen-
eral roadway users as well as facility users need to decide 
routes to their destinations which can avoid congestion. 
On the other hand, the updated congestion patterns in 
the network from the lower-level problem in turn influ-
ences the decision on facility location in the upper-level 
problem. As such, the solution from one side alters the 
solution from the other side iteratively until convergence 
of the upper-level total cost. In this process, the model 
explicitly considers the re-routing of general roadway us-
ers, along with the vehicle emissions from all traffic in 
the network.

2. solution algorithm

The proposed mathematical model (1)–(11) is a mixed-
integer-program problem with nonlinear functions, which 
makes it difficult to solve with exact optimality. Conse-
quently, we suggest the use of meta-heuristic algorithms 
to allow near-optimal solutions to be obtained efficiently 
in a reasonable amount of time. These include tabu search 
and a memetic algorithm.

2.1. Tabu search

Tabu search uses a local search heuristic from an initial 
solution, or the current best solution, to iteratively search 
for the best available neighborhood solution until the stop 
criterion is satisfied. Compared to genetic algorithms, this 
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approach has been shown to provide better solutions with 
shorter computation times in a number of optimization 
problems (Arostegui et al. 2006). The detailed procedures 
are described below (Brownlee 2013):

Step 0: Initialization. A solution vector y  represents 
a set of binary integer variables { }0,1jY = , j J∀ ∈  with 
the length J , which indicate the locations of facilities. A 
drop heuristic (Daskin 1995) has been applied to gener-
ate an initial solution. The initial objective function value 
µ  is obtained based on y . Let 0r =  count the number 
of failures in updating the solution vector, and define N, 
a significantly large number, to represent the maximum 
value that r  can take. Define a Tabu list R = φ  whose 
maximum size, R , is the same as the total number of 
candidate locations, J , to enhance the performance of 
the algorithm by forbidding moves to solutions that have 
been visited previously.

Step 1: Define H  as a set of neighboring solutions 
from the current best solution, which is initially φ . To 
generate the neighboring solutions, we adopted a neigh-
borhood search heuristic in which the binary values in 
each candidate location in a vector y  are changed one-
by-one. Among the neighboring solutions in the set H, 
select the one that leads to the highest improvement in 
the value of the objective function. The objective func-
tion value is calculated by the user equilibrium assign-
ment result with the convex combinations algorithm 
(Sheffi 1985). The travel time and emission cost come 
from each link volume and link speed. Facility costs are 
obtained from y. If the selected solution contains ele-
ments in the Tabu list, select the next best neighboring 
solution and repeat the checking procedure with the 
Tabu list; otherwise, let ′y  be the selected solution rep-
resenting the best available neighboring solution from 
the set H, and let the new objective function value based 
on ′y  be ′µ .

Step 2: If ′µ  is better (i.e., lower) than µ , the solu-
tion ′y  is set as y  (i.e., the current best solution) and 
the features of ′y  are included into the Tabu list as the 
last element (at this point, if R > J , eliminate the first 
element in the Tabu list); otherwise, update 1r r← + .

Step 3: If any termination criterion is met (e.g., r  is 
greater than N, solution time becomes greater than the 
time limit, or the objective value converges), terminate 
the algorithm with the solution y; otherwise, go back 
to Step 1.

2.2. Memetic algorithm
Memetic algorithms were developed to improve the per-
formance of traditional genetic algorithms. The basic pro-
cedures are very similar to those of the genetic algorithm, 
but a neighborhood search method is incorporated into 
the survival-of-the-fittest rule. The following steps de-
scribe the memetic algorithm in detail (Brownlee 2013):

Step 0: Initialization. Parameters including the popu-
lation size and stop criteria are defined. A chromosome is 
represented by a solution vector y, which includes a set 
of binary integer variables { }0,1jY = , j J∀ ∈  in each cell. 
Chromosomes are randomly generated to form the first 
population, in which elitism is applied to achieve faster 
convergence of the objective value and to carry over supe-
rior genes from the current generation to the next genera-
tion. An initial solution is created by applying the drop 
heuristic (Daskin 1995).

Step 1: Evaluate the fitness value of each chromo-
some – the percentage ratio of the inverse of the objective 
value associated with the chromosome to the total sum 
of the inverses of the objective values associated with all 
chromosomes. Given a chromosome, the calculation of 
the objective value is equivalent to that of the tabu search 
algorithm. Next, randomly select two chromosomes from 
the parent chromosome pool and compare their fitness 
values. The one with the higher fitness value is selected 
via the tournament selection (Goldberg 1989) technique, 
and its genes are then carried over to the next generation.

Step 2: A one point crossover is conducted, in which 
two identical points are arbitrarily selected from two dif-
ferent chromosomes (i.e., both cross points represent deci-
sion variables for the same candidate location) randomly 
chosen from the population. The values in the selected 
genes are exchanged to create a new pair of chromosomes. 
Mutation is then applied, in which different mutation 
probabilities are assigned to different cells in the chromo-
some and a random number between 0 and 1 is generated. 
If the probability associated with each cell is larger than 
the random number, the binary variable assigned to the 
cell is flipped; otherwise, the binary variable is unchanged.

Step 3: The neighborhood search is applied for each 
chromosome. As in the tabu search algorithm, the binary 
value of each cell is changed one-by-one and the origi-
nal chromosome is replaced with the best neighboring 
solution. For greater improvement, this process can be 
repeated.

Step 4: If any termination criteria are satisfied (e.g., 
solution time reaches the limit or the objective value con-
verges), terminate the algorithm with the solution y; oth-
erwise, go back to Step 1.

3. case study

The proposed methods were coded in VC++ and tested 
on a personal computer with a 2.93 GHZ CPU and 8 GB 
memory to find the total number and locations of commu-
nity service centers in various transportation networks. This 
test was conducted to compare the performances of differ-
ent algorithms in solving the same problems. Note that a 
conventional genetic algorithm was also applied. Commu-
nity service centers are large buildings which offer various 
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public services, such as local administrative services, postal 
services, healthcare services, auditoriums, libraries, recre-
ational services, etc. The modeling framework presented in 
this paper is a general framework which can be applied to a 
wide range of entities in supply chain systems, for example, 
to warehouses, distribution centers, and factories.

Here, we considered small, medium, and large-scale 
test networks: the 24-node and 76-link Sioux Falls net-
work (Bar-Gera 2009) with 24 candidate locations, shown 
in Figure 2(a); the 416-node and 914-link Anaheim net-
work (Bar-Gera 2009) with 38 candidate locations, shown 
in Figure 2(b); and the 408-node and 1,282-link Incheon 
network (KTDB 2014) with 72 candidate locations, shown 
in Figure 2(c). The capacity of each facility was assumed 
to be 5,000 vehicles/day. Facility building costs were con-
verted into daily values with a 20-year planning horizon. 
Note that the facility building costs in the Incheon net-
work were categorized into three levels depending on the 
land values of the candidate locations, including areas 
with high, medium, and low land value.

All algorithms were terminated when the solution 
time reached 200 sec for the Sioux-Falls network, 400 sec 
for the Anaheim network, and 15,000 sec for the Incheon 
network. The facility demands for all origin nodes (i.e., 

ih , di I∀ ∈ ) were assumed to be given. The BPR link cost 
function (Sheffi 1985) was used to measure the travel time 
in hours on each link a A∈ , as follows:

 ( )
4

1 0.15 , ,f a
a a a

a

x
t x t a A

Q

   = + ∀ ∈     
 (12)

where: f
at  is the link travel time in hours without con-

gestion (i.e., free flow travel time); ax  is the total traffic 
volume of the facility demand and background traffic in 
number of vehicles/hour; aQ  is the link capacity in num-
ber of vehicles/hour. Note that a modified Davidson’s 
function (Davidson 1966; Kim 2012) was applied to the 
dummy link jz Z∈  to ensure the capacity constraints of 
the constructed facilities, i.e., equation (9), as follows:
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 − − γ  =
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where: the parameter γ  was set to 0.0001 to make the 
dummy link travel time significantly small when j jv C≤ . 
Once jv  becomes larger than the given capacity, jC , the 
dummy link travel time increases greatly, using equation 
(14), which forces the assigned traffic demand on the con-
structed facility j  to be less than or equal to the capacity. 
All kinds of vehicle volumes including trucks, buses, and 
RVs are converted into passenger car volume in equa-
tions (12)–(14). Note that the simple approach of using 

Fig. 2. Test networks, 24-node and 76-link Sioux Falls Network 
(Bar-Gera 2009) (a), 416-node and 914-link Anaheim Network 
(Bar-Gera 2009) (b), and 408-node and 1,282-link Incheon 
Network (KTDB 2014) (c)

a)

b)

c)
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passenger car volume might affect the results in real-world 
case study. This issue could be resolved by applying proper 
values of passenger car equivalents (PCE) to other type 
of vehicle (TRB 2000). The CO2 emission factor associ-
ated with each link a , a A∀ ∈  was calculated using the 
method from Hickman (1999), as follows:
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where: link distance is represented by ad  (in km) and the 
coefficients are given as 0u = 429.51, 1u = –7.8227, 2u = 
0.0617, and 3 4 5 6 0u u u u= = = =  (Hickman 1999). In 
Equation (1), the parameter α  was assumed to be 7.5 ($/
vehicle-hour) (MLTM 2011) to convert time in hours into 
the monetary values (i.e., dollars). The cost of a ton of CO2 
emission, b , was set to 150 ($/tCO2), as suggested by lit-
erature in various fields (API 1998; Parry, Toman 2001; 
Jaccard 2005; RSCEP 2010; MLTM 2011; NRT 2012). Note 
that MLTM (2011) provides legal guidelines of basic pa-
rameters used for evaluating government-funded trans-
portation facility projects in Republic of Korea.

Table 1 provides a summary of the computation re-
sults of the three test networks. Columns (a)–(c) respec-
tively show the objective values and solution time of each 
network when the algorithm reached the lowest objec-
tive value. For the Sioux-Falls network, the three meth-
ods yielded the same total cost due to the small size of 
the network. However, the time to achieve this value was 
the lowest using the tabu search. For the Anaheim and 
Incheon networks, the tabu search generated the best so-
lution, followed by the memetic algorithm. The genetic 
algorithm yielded the worst solution among all methods.

To investigate how the consideration of traffic con-
gestion affects total system-wide cost, two designs were 
proposed for comparison. The first is the conventional 
fixed-charge facility-location problem in which every 
traffic demand is assigned to the shortest-distance path 
while ignoring congestion effects, and thus, vehicle emis-
sion is not included in the objective function. The second 
is our proposed model in which network congestion was 
considered in assigning the traffic demand resulting from 
both facility users and general roadway users, for which 
the GHG emission cost is included in the objective func-
tion. The conventional problem of the first design was 
solved by the Lagrangian relaxation algorithm (Daskin 
1995) with less than a 0.1% gap. Tabu search was applied 
in the second design since it demonstrated the best per-
formance, as shown in Table 1. The results obtained from 
each test network in Figure 2 are summarized in Table 2.

Table 1. Computation results for numerical experiments

(a) Tabu search (b) Memetic algorithm (c) Genetic algorithm

Sioux-Falls 
network

Objective value ($) 2.533.E+05 2.533.E+05 2.533.E+05
Solution time (sec) 16.7 109 157

Anaheim network
Objective value ($) 2.126.E+05 2.266.E+05 2.276.E+05
Solution time (sec) 257 359.5 74

Incheon network
Objective value ($) 2.611.E+05 2.644.E+05 2.647.E+05
Solution time (sec) 11,613 7,416 563

Table 2. Consideration of traffic congestion and its impact on the total cost

Network Design (a)
Total cost ($)

(b)
Facility cost ($)

(c) Transportation 
cost ($)

(d) CO2 emission 
cost ($)

Sioux-Falls
Ignoring congestion 254,555 2,560 187,133 64,862
Congestion and emission included 253,315 3,200 187,059 63,056
% difference 0.31 –20.00 0.04 2.86

Anaheim
Ignoring congestion 212,840 2,560 157,941 52,339

Congestion and emission included 212,630 3,840 156,990 51,800
% difference 0.10 –33.33 0.61 1.04

Incheon
Ignoring congestion 286,500 4,460 263,365 18,675
Congestion and emission included 261,140 6,650 237,561 16,929
% difference 9.71 –32.93 10.86 10.31
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Column (a) of the table shows the total cost obtained 
by the two designs for each test network. Columns (b)–
(d) give the itemized cost components, including facility 
building cost, transportation cost, and CO2 emission cost 
generated from the transportation activities in column 
(c). Note that the congestion effect is included in the first 
design when the transportation costs in column (c) and 
the emission cost in column (d) are calculated. The per-
centage differences of the total cost and the itemized cost 
components between the two designs are shown in every 
third row of each test network. Column (b) shows that the 
proposed approach always builds more facilities than the 
first design, thus inducing higher facility building costs. 
This is intuitive, since the developed approach decides to 
construct an additional facility once the reduction in the 
sum of transportation and emission costs – due to re-as-
signing facility users to the new facility – becomes larger 
than the building cost of the given facility. Columns (c) 

and (d) demonstrate that the second design generated less 
transportation and emission costs compared to the first, 
across all examples. Overall, the total cost in column (a) 
shows that the proposed approach has the ability to find 
better solutions than the first design, with significant ben-
efits in the large-scale network. It should be noted that the 
heuristic solution of the developed model is better than 
the optimal or near-optimal solutions of the conventional 
problem.

Figure 3 and Table 3 show a detailed comparison of 
Incheon network case study with and without considering 
traffic congestion. Here, case (b) represents a congestion 
pattern of network when the plan of facility ignores the 
traffic congestion and the conventional fixed transpor-
tation cost method is applied. The result indicates that 
case (b) causes additional congestion on overall network, 
which leads to more than 10% increase of transportation 
and emission cost, and noticeably, 7 number of links and 
3.27 km length of roadway have reached volume/capacity 
(V/C) ratio greater than 1, mostly west and south part of 
the city. 

Table 3. Comparison of cases of ignoring traffic congestion and 
considering traffic congestion and emission cost in Incheon 
network

Network Design
Number of 
link with 
 V/C > 1

Total length 
of link with 

V/C > 1

Incheon
Ignoring congestion 125 53.28

Congestion and 
emission included 118 50.01

To explore how consideration of the CO2 emission 
affects the number and locations of facilities as well as the 
traffic demand routing, three scenarios with different CO2 
emission factors were tested in the Incheon network: (i) a 
benchmark model with no consideration of the CO2 emis-
sion cost (i.e., b = 0 $/tCO2), (ii) the proposed model in 
which CO2 emission cost was incorporated into the objec-
tive function (i.e., b = 150 $/tCO2), and (iii) a high emis-
sion cost model for the case that a dramatic increase in 
the CO2 emission factor occurs (i.e., b = 900 $/tCO2); the 
CO2 emission factor applied in this scenario has been esti-
mated by many studies (Ackerman, Stanton 2012; Babon-
neau et al. 2014; Anandarajah et al. 2013) reflecting future 
uncertainty, for example, severe environmental problems 
(e.g., global warming) and the implementation of strict 
environmental policies (e.g., increased carbon tax).The 
results are summarized in Table 4.

The operational cost is given in column (a) of Table 4, 
representing the sum of the facility building cost in col-
umn (b) and the transportation cost in column (c). Note 
that the operational cost gradually increases as the CO2 
emission factor increases, and that column (b) includes 

Fig. 3. Facility-location plans for Incheon network (a) ignoring 
traffic congestion and (b) with considering traffic congestion 
and emission cost in Incheon network (KTDB 2014)

a)

             
b)
 

http://infoscience.epfl.ch/search?f=author&p=Babonneau%2C Fr%C3%A9d%C3%A9ric Louis Fran%C3%A7ois&ln=en
http://infoscience.epfl.ch/search?f=author&p=Babonneau%2C Fr%C3%A9d%C3%A9ric Louis Fran%C3%A7ois&ln=en
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information on the number of facilities constructed in 
each scenario. In general, the number of facilities as well 
as their building cost increase as the emission factor grows 
since reduction in the sum of transportation and emission 
costs dominates the cost of building additional facilities. 
While the number of facilities in the proposed model and 
the high emission cost model are the same, the total build-
ing costs are different since the high emission cost model 
chooses more expensive candidate locations (e.g., central 
business districts) in order to reduce the emission cost. 
Column (d) describes the CO2 emission cost associated 
with each scenario. Note that the total emission costs in 
the benchmark model and the high emission cost model 
were recalculated based on the decisions made in each 
scenario, but b = 150 $/tCO2 was applied for normaliza-
tion, which was included in the parentheses in column 
(d). It can be seen that the normalized emission cost de-
creases as the CO2 emission factor increases. Although the 
difference in emission cost is small compared to the total 
cost, this causes an alteration in the number and locations 
of facilities.

Figures 4(a)–(c) illustrate where the facilities would 
be built in the Incheon network based on the results 
shown in Table 4. Note that the study area was categorized 
into three groups (i.e., high, medium, and low land value 
areas), as shown in the legend. Thick green lines repre-
sent heavily congested network links where the ratio of 
assigned traffic volume to the roadway capacity is greater 
than one. One can observe that facilities are densely locat-
ed near the heavily congested regions in all figures. Figure 
4(a) illustrates the nine community centers constructed 
with the benchmark model, while Figures 4(b) and (c) 
show a total of 11 community centers which are construct-
ed in both the proposed model and the high emission 
cost model, with obvious differences in location. As the 
number of facilities increases in a congested area, we can 
expect to benefit from a decrease in the sum of transporta-
tion costs and emission costs. Thus, Figures 4(b) and (c) 
show less congested patterns in the network compared to 
those in Figure 4(a). Note that the proposed model chose 
to construct eight facilities in the medium land price area 
and three facilities in low-priced area, while the high 
emission cost model resulted in one facility in the high 
land price area, seven in the medium-priced area, and 
three in the low-priced area. This trend explicitly indicates 

Table 4. Impact of CO2 emission consideration on the solution for the Incheon network

Scenario
(a) Operational 

cost in $:
(b) + (c)

(b) Facility cost in 
$ (# of facilities)

(c) Transportation  
cost in $

(d) CO2 emission cost in $ 
(b = 150 $/tCO2)

Benchmark model b = 0 244,124 5,370 (9) 238,754 0 (17,021)
Proposed model b = 150 244,211 6,650 (11) 237,561 16,929 (16,929)
High emission cost model b = 900 244,465 6,770 (11) 237,695 101,275 (16,879)

Fig. 4. Facility-location plans for three emission factor 
scenarios, benchmark model (a), proposed model (b), and high 
emission cost model (c) in Incheon network (KTDB 2014)

a)

                 
b)

c)
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that as the CO2 emission factor becomes significant, the 
suggested model tries to reduce the emission costs despite 
an increase in the facility building costs.

In summary, it was shown through various network 
examples that a tabu search generates the best solution, fol-
lowed by a memetic algorithm, and a conventional genetic 
algorithm performs worse than other algorithms developed 
in this study. Also, a series of case studies show that the pro-
posed modeling framework builds more facilities, and thus 
induces more facility building cost than the conventional 
fixed-charge facility location model. However, as the num-
ber of constructed facility increases in congested areas, we 
can eventually expect benefit from decrease in the sum of 
transportation cost and CO2 emission cost; this trend was 
explicitly shown when the CO2 emission factor becomes 
significantly large. Thus, the proposed methodology will be 
able to contribute to achieve environmental-friendly trans-
portation systems by considering traffic congestion and the 
subsequent vehicle emission.

conclusions and future study

The construction of new facilities increases the traffic de-
mand around them, which may adversely affect the road-
way traffic conditions or level of service. In most urban 
areas where the existing traffic is at or near capacity, the 
effects of constructing new facilities on network conges-
tion are more significant. Consequently, the congestion 
effects should be considered when deciding the locations 
of facilities. In this study, the transportation costs caused 
by both facility users and existing general roadway users 
were incorporated into the conventional facility-location 
problem. Furthermore, the CO2 emission costs caused by 
all types of traffic (i.e., re-routing of general roadway users 
as well as assignment of facility users) were taken into ac-
count. The proposed comprehensive modeling framework 
provides insight on the bidirectional relationship between 
the classical facility location model and the traffic assign-
ment model, with consideration of the environmental 
impacts of vehicle movements. Facility location decisions 
and network congestion patterns are iteratively updated in 
the model until the system-wide total cost converges to a 
near-optimum value. Since both link travel cost and link 
specific CO2 emission factor are formulated as nonlinear 
functions with respect to the link traffic volume (rather 
than a fixed value), heuristic approaches including tabu 
search and memetic algorithms were proposed to solve the 
problem. The proposed methods and a conventional ge-
netic algorithm were applied to three test examples rang-
ing from small to large-scale transportation networks to 
compare the performances of different algorithms. The re-
sults indicated that tabu search provides the best solution 
among the algorithms considered. The selected algorithm 
was then applied to locate community service centers in 

Incheon City under multiple scenarios. The proposed 
model was compared with both the conventional facility 
location model and the high emission cost model to inves-
tigate the impacts of traffic congestion and the subsequent 
CO2 emissions on the real-world large size network. The 
proposed approach demonstrated significant reduction of 
both the transportation and GHG emission costs com-
pared to the conventional facility-location model, thus 
generating the lowest system-wide cost. The results in this 
study will be useful for enhancing public benefit and so-
cial welfare by reducing the adverse impacts from traffic 
congestion and the related vehicle emissions in congested 
urban areas.

Future research is suggested as follows. First, the traf-
fic demand considered in this study, which included back-
ground traffic and facility demand traffic, were converted 
into passenger car volume, which is a conventional traffic 
demand assignment procedure. However, this may cause 
a bias in calculating the total CO2 emission cost from vari-
ous vehicle types. This limitation can be resolved if the 
background traffic and facility demand traffic data include 
information on the shares of different vehicle types, such 
as passenger cars, SUVs, buses, and trucks. Second, this 
study assumed that all cost components are associated 
with fixed unit cost. This simplification could be relaxed 
by considering changes in the unit price of each compo-
nent over time, resulting in more accurate facility-location 
decisions. Our model could be further developed into a 
multi-period facility-location problem by considering 
time-frames.
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