57 research outputs found

    Forensic research on detecting seam carving in digital images

    Get PDF
    Digital images have been playing an important role in our daily life for the last several decades. Naturally, image editing technologies have been tremendously developed due to the increasing demands. As a result, digital images can be easily manipulated on a personal computer or even a cellphone for many purposes nowadays, so that the authenticity of digital images becomes an important issue. In this dissertation research, four machine learning based forensic methods are presented to detect one of the popular image editing techniques, called ‘seam carving’. To reveal seam carving applied to uncompressed images from the perspective of energy distribution change, an energy based statistical model is proposed as the first work in this dissertation. Features measured global energy of images, remaining optimal seams, and noise level are extracted from four local derivative pattern (LDP) domains instead of from the original pixel domain to heighten the energy change caused by seam carving. A support vector machine (SVM) based classifier is employed to determine whether an image has been seam carved or not. In the second work, an advanced feature model is presented for seam carving detection by investigating the statistical variation among neighboring pixels. Comprised with three types of statistical features, i.e., LDP features, Markov features, and SPAM features, the powerful feature model significantly improved the state-of-the-art accuracy in detecting low carving rate seam carving. After the feature selection by utilizing SVM based recursive feature elimination (SVM-RFE), with a small amount of features selected from the proposed model the overall performance is further improved. Combining above mentioned two works, a hybrid feature model is then proposed as the third work to further boost the accuracy in detecting seam carving at low carving rate. The proposed model consists of two sets of features, which capture energy change and neighboring relationship variation respectively, achieves remarkable performance on revealing seam carving, especially low carving rate seam carving, in digital images. Besides these three hand crafted feature models, a deep convolutional neural network is designed for seam carving detection. It is the first work that successfully utilizes deep learning technology to solve this forensic problem. The experimental works demonstrate their much more improved performance in the cases where the amount of seam carving is not serious. Although these four pieces of work move the seam carving detection ahead substantially, future research works with more advanced statistical model or deep neural network along this line are expected

    Medical Image Segmentation: Thresholding and Minimum Spanning Trees

    Get PDF
    I bildesegmentering deles et bilde i separate objekter eller regioner. Det er et essensielt skritt i bildebehandling for å definere interesseområder for videre behandling eller analyse. Oppdelingsprosessen reduserer kompleksiteten til et bilde for å forenkle analysen av attributtene oppnådd etter segmentering. Det forandrer representasjonen av informasjonen i det opprinnelige bildet og presenterer pikslene på en måte som er mer meningsfull og lettere å forstå. Bildesegmentering har forskjellige anvendelser. For medisinske bilder tar segmenteringsprosessen sikte på å trekke ut bildedatasettet for å identifisere områder av anatomien som er relevante for en bestemt studie eller diagnose av pasienten. For eksempel kan man lokalisere berørte eller anormale deler av kroppen. Segmentering av oppfølgingsdata og baseline lesjonssegmentering er også svært viktig for å vurdere behandlingsresponsen. Det er forskjellige metoder som blir brukt for bildesegmentering. De kan klassifiseres basert på hvordan de er formulert og hvordan segmenteringsprosessen utføres. Metodene inkluderer de som er baserte på terskelverdier, graf-baserte, kant-baserte, klynge-baserte, modell-baserte og hybride metoder, og metoder basert på maskinlæring og dyp læring. Andre metoder er baserte på å utvide, splitte og legge sammen regioner, å finne diskontinuiteter i randen, vannskille segmentering, aktive kontuter og graf-baserte metoder. I denne avhandlingen har vi utviklet metoder for å segmentere forskjellige typer medisinske bilder. Vi testet metodene på datasett for hvite blodceller (WBCs) og magnetiske resonansbilder (MRI). De utviklede metodene og analysen som er utført på bildedatasettet er presentert i tre artikler. I artikkel A (Paper A) foreslo vi en metode for segmentering av nukleuser og cytoplasma fra hvite blodceller. Metodene estimerer terskelen for segmentering av nukleuser automatisk basert på lokale minima. Metoden segmenterer WBC-ene før segmentering av cytoplasma avhengig av kompleksiteten til objektene i bildet. For bilder der WBC-ene er godt skilt fra røde blodlegemer (RBC), er WBC-ene segmentert ved å ta gjennomsnittet av nn bilder som allerede var filtrert med en terskelverdi. For bilder der RBC-er overlapper WBC-ene, er hele WBC-ene segmentert ved hjelp av enkle lineære iterative klynger (SLIC) og vannskillemetoder. Cytoplasmaet oppnås ved å trekke den segmenterte nukleusen fra den segmenterte WBC-en. Metoden testes på to forskjellige offentlig tilgjengelige datasett, og resultatene sammenlignes med toppmoderne metoder. I artikkel B (Paper B) foreslo vi en metode for segmentering av hjernesvulster basert på minste dekkende tre-konsepter (minimum spanning tree, MST). Metoden utfører interaktiv segmentering basert på MST. I denne artikkelen er bildet lastet inn i et interaktivt vindu for segmentering av svulsten. Fokusregion og bakgrunn skilles ved å klikke for å dele MST i to trær. Ett av disse trærne representerer fokusregionen og det andre representerer bakgrunnen. Den foreslåtte metoden ble testet ved å segmentere to forskjellige 2D-hjerne T1 vektede magnetisk resonans bildedatasett. Metoden er enkel å implementere og resultatene indikerer at den er nøyaktig og effektiv. I artikkel C (Paper C) foreslår vi en metode som behandler et 3D MRI-volum og deler det i hjernen, ikke-hjernevev og bakgrunnsegmenter. Det er en grafbasert metode som bruker MST til å skille 3D MRI inn i de tre regiontypene. Grafen lages av et forhåndsbehandlet 3D MRI-volum etterfulgt av konstrueringen av MST-en. Segmenteringsprosessen gir tre merkede, sammenkoblende komponenter som omformes tilbake til 3D MRI-form. Etikettene brukes til å segmentere hjernen, ikke-hjernevev og bakgrunn. Metoden ble testet på tre forskjellige offentlig tilgjengelige datasett og resultatene ble sammenlignet med ulike toppmoderne metoder.In image segmentation, an image is divided into separate objects or regions. It is an essential step in image processing to define areas of interest for further processing or analysis. The segmentation process reduces the complexity of an image to simplify the analysis of the attributes obtained after segmentation. It changes the representation of the information in the original image and presents the pixels in a way that is more meaningful and easier to understand. Image segmentation has various applications. For medical images, the segmentation process aims to extract the image data set to identify areas of the anatomy relevant to a particular study or diagnosis of the patient. For example, one can locate affected or abnormal parts of the body. Segmentation of follow-up data and baseline lesion segmentation is also very important to assess the treatment response. There are different methods used for image segmentation. They can be classified based on how they are formulated and how the segmentation process is performed. The methods include those based on threshold values, edge-based, cluster-based, model-based and hybrid methods, and methods based on machine learning and deep learning. Other methods are based on growing, splitting and merging regions, finding discontinuities in the edge, watershed segmentation, active contours and graph-based methods. In this thesis, we have developed methods for segmenting different types of medical images. We tested the methods on datasets for white blood cells (WBCs) and magnetic resonance images (MRI). The developed methods and the analysis performed on the image data set are presented in three articles. In Paper A we proposed a method for segmenting nuclei and cytoplasm from white blood cells. The method estimates the threshold for segmentation of nuclei automatically based on local minima. The method segments the WBCs before segmenting the cytoplasm depending on the complexity of the objects in the image. For images where the WBCs are well separated from red blood cells (RBCs), the WBCs are segmented by taking the average of nn images that were already filtered with a threshold value. For images where RBCs overlap the WBCs, the entire WBCs are segmented using simple linear iterative clustering (SLIC) and watershed methods. The cytoplasm is obtained by subtracting the segmented nucleus from the segmented WBC. The method is tested on two different publicly available datasets, and the results are compared with state of the art methods. In Paper B, we proposed a method for segmenting brain tumors based on minimum spanning tree (MST) concepts. The method performs interactive segmentation based on the MST. In this paper, the image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the MST into two trees. One of these trees represents the region of interest and the other represents the background. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The method is simple to implement and the results indicate that it is accurate and efficient. In Paper C, we propose a method that processes a 3D MRI volume and partitions it into brain, non-brain tissues, and background segments. It is a graph-based method that uses MST to separate the 3D MRI into the brain, non-brain, and background regions. The graph is made from a preprocessed 3D MRI volume followed by constructing the MST. The segmentation process produces three labeled connected components which are reshaped back to the shape of the 3D MRI. The labels are used to segment the brain, non-brain tissues, and the background. The method was tested on three different publicly available data sets and the results were compared to different state of the art methods.Doktorgradsavhandlin

    Interactive, multi-purpose traffic prediction platform using connected vehicles dataset

    Get PDF
    Traffic congestion is a perennial issue because of the increasing traffic demand yet limited budget for maintaining current transportation infrastructure; let alone expanding them. Many congestion management techniques require timely and accurate traffic estimation and prediction. Examples of such techniques include incident management, real-time routing, and providing accurate trip information based on historical data. In this dissertation, a speech-powered traffic prediction platform is proposed, which deploys a new deep learning algorithm for traffic prediction using Connected Vehicles (CV) data. To speed-up traffic forecasting, a Graph Convolution -- Gated Recurrent Unit (GC-GRU) architecture is proposed and analysis of its performance on tabular data is compared to state-of-the-art models. GC-GRU's Mean Absolute Percentage Error (MAPE) was very close to Transformer (3.16 vs 3.12) while achieving the fastest inference time and a six-fold faster training time than Transformer, although Long-Short-Term Memory (LSTM) was the fastest in training. Such improved performance in traffic prediction with a shorter inference time and competitive training time allows the proposed architecture to better cater to real-time applications. This is the first study to demonstrate the advantage of using multiscale approach by combining CV data with conventional sources such as Waze and probe data. CV data was better at detecting short duration, Jam and stand-still incidents and detected them earlier as compared to probe. CV data excelled at detecting minor incidents with a 90 percent detection rate versus 20 percent for probes and detecting them 3 minutes faster. To process the big CV data faster, a new algorithm is proposed to extract the spatial and temporal features from the CSV files into a Multiscale Data Analysis (MDA). The algorithm also leverages Graphics Processing Unit (GPU) using the Nvidia Rapids framework and Dask parallel cluster in Python. The results show a seventy-fold speedup in the data Extract, Transform, Load (ETL) of the CV data for the State of Missouri of an entire day for all the unique CV journeys (reducing the processing time from about 48 hours to 25 minutes). The processed data is then fed into a customized UNet model that learns highlevel traffic features from network-level images to predict large-scale, multi-route, speed and volume of CVs. The accuracy and robustness of the proposed model are evaluated by taking different road types, times of day and image snippets of the developed model and comparable benchmarks. To visually analyze the historical traffic data and the results of the prediction model, an interactive web application powered by speech queries is built to offer accurate and fast insights of traffic performance, and thus, allow for better positioning of traffic control strategies. The product of this dissertation can be seamlessly deployed by transportation authorities to understand and manage congestions in a timely manner.Includes bibliographical references

    Evaluation of Generative Models for Predicting Microstructure Geometries in Laser Powder Bed Fusion Additive Manufacturing

    Get PDF
    In-situ process monitoring for metals additive manufacturing is paramount to the successful build of an object for application in extreme or high stress environments. In selective laser melting additive manufacturing, the process by which a laser melts metal powder during the build will dictate the internal microstructure of that object once the metal cools and solidifies. The difficulty lies in that obtaining enough variety of data to quantify the internal microstructures for the evaluation of its physical properties is problematic, as the laser passes at high speeds over powder grains at a micrometer scale. Imaging the process in-situ is complex and cost-prohibitive. However, generative modes can provide new artificially generated data. Generative adversarial networks synthesize new computationally derived data through a process that learns the underlying features corresponding to the different laser process parameters in a generator network, then improves upon those artificial renderings by evaluating through the discriminator network. While this technique was effective at delivering high-quality images, modifications to the network through conditions showed improved capabilities at creating these new images. Using multiple evaluation metrics, it has been shown that generative models can be used to create new data for various laser process parameter combinations, thereby allowing a more comprehensive evaluation of ideal laser conditions for any particular build

    Segmentation of motion picture images and image sequences

    Get PDF

    Digital image forensics via meta-learning and few-shot learning

    Get PDF
    Digital images are a substantial portion of the information conveyed by social media, the Internet, and television in our daily life. In recent years, digital images have become not only one of the public information carriers, but also a crucial piece of evidence. The widespread availability of low-cost, user-friendly, and potent image editing software and mobile phone applications facilitates altering images without professional expertise. Consequently, safeguarding the originality and integrity of digital images has become a difficulty. Forgers commonly use digital image manipulation to transmit misleading information. Digital image forensics investigates the irregular patterns that might result from image alteration. It is crucial to information security. Over the past several years, machine learning techniques have been effectively used to identify image forgeries. Convolutional Neural Networks(CNN) are a frequent machine learning approach. A standard CNN model could distinguish between original and manipulated images. In this dissertation, two CNN models are introduced to recognize seam carving and Gaussian filtering. Training a conventional CNN model for a new similar image forgery detection task, one must start from scratch. Additionally, many types of tampered image data are challenging to acquire or simulate. Meta-learning is an alternative learning paradigm in which a machine learning model gets experience across numerous related tasks and uses this expertise to improve its future learning performance. Few-shot learning is a method for acquiring knowledge from few data. It can classify images with as few as one or two examples per class. Inspired by meta-learning and few-shot learning, this dissertation proposed a prototypical networks model capable of resolving a collection of related image forgery detection problems. Unlike traditional CNN models, the proposed prototypical networks model does not need to be trained from scratch for a new task. Additionally, it drastically decreases the quantity of training images

    Convolutional Neural Networks for Image Steganalysis in the Spatial Domain

    Get PDF
    Esta tesis doctoral muestra los resultados obtenidos al aplicar Redes Neuronales Convolucionales (CNNs) para el estegoanálisis de imágenes digitales en el dominio espacial. La esteganografía consiste en ocultar mensajes dentro de un objeto conocido como portador para establecer un canal de comunicación encubierto para que el acto de comunicación pase desapercibido para los observadores que tienen acceso a ese canal. Steganalysis se dedica a detectar mensajes ocultos mediante esteganografía; estos mensajes pueden estar implícitos en diferentes tipos de medios, como imágenes digitales, archivos de video, archivos de audio o texto sin formato. Desde 2014, los investigadores se han interesado especialmente en aplicar técnicas de Deep Learning (DL) para lograr resultados que superen los métodos tradicionales de Machine Learning (ML).Is doctoral thesis shows the results obtained by applying Convolutional Neural Networks (CNNs) for the steganalysis of digital images in the spatial domain. Steganography consists of hiding messages inside an object known as a carrier to establish a covert communication channel so that the act of communication goes unnoticed by observers who have access to that channel. Steganalysis is dedicated to detecting hidden messages using steganography; these messages can be implicit in di.erent types of media, such as digital images, video €les, audio €les, or plain text. Since 2014 researchers have taken a particular interest in applying Deep Learning (DL) techniques to achieving results that surpass traditional Machine Learning (ML) methods

    Nonnegative matrix factorization for clustering

    Get PDF
    This dissertation shows that nonnegative matrix factorization (NMF) can be extended to a general and efficient clustering method. Clustering is one of the fundamental tasks in machine learning. It is useful for unsupervised knowledge discovery in a variety of applications such as text mining and genomic analysis. NMF is a dimension reduction method that approximates a nonnegative matrix by the product of two lower rank nonnegative matrices, and has shown great promise as a clustering method when a data set is represented as a nonnegative data matrix. However, challenges in the widespread use of NMF as a clustering method lie in its correctness and efficiency: First, we need to know why and when NMF could detect the true clusters and guarantee to deliver good clustering quality; second, existing algorithms for computing NMF are expensive and often take longer time than other clustering methods. We show that the original NMF can be improved from both aspects in the context of clustering. Our new NMF-based clustering methods can achieve better clustering quality and run orders of magnitude faster than the original NMF and other clustering methods. Like other clustering methods, NMF places an implicit assumption on the cluster structure. Thus, the success of NMF as a clustering method depends on whether the representation of data in a vector space satisfies that assumption. Our approach to extending the original NMF to a general clustering method is to switch from the vector space representation of data points to a graph representation. The new formulation, called Symmetric NMF, takes a pairwise similarity matrix as an input and can be viewed as a graph clustering method. We evaluate this method on document clustering and image segmentation problems and find that it achieves better clustering accuracy. In addition, for the original NMF, it is difficult but important to choose the right number of clusters. We show that the widely-used consensus NMF in genomic analysis for choosing the number of clusters have critical flaws and can produce misleading results. We propose a variation of the prediction strength measure arising from statistical inference to evaluate the stability of clusters and select the right number of clusters. Our measure shows promising performances in artificial simulation experiments. Large-scale applications bring substantial efficiency challenges to existing algorithms for computing NMF. An important example is topic modeling where users want to uncover the major themes in a large text collection. Our strategy of accelerating NMF-based clustering is to design algorithms that better suit the computer architecture as well as exploit the computing power of parallel platforms such as the graphic processing units (GPUs). A key observation is that applying rank-2 NMF that partitions a data set into two clusters in a recursive manner is much faster than applying the original NMF to obtain a flat clustering. We take advantage of a special property of rank-2 NMF and design an algorithm that runs faster than existing algorithms due to continuous memory access. Combined with a criterion to stop the recursion, our hierarchical clustering algorithm runs significantly faster and achieves even better clustering quality than existing methods. Another bottleneck of NMF algorithms, which is also a common bottleneck in many other machine learning applications, is to multiply a large sparse data matrix with a tall-and-skinny dense matrix. We use the GPUs to accelerate this routine for sparse matrices with an irregular sparsity structure. Overall, our algorithm shows significant improvement over popular topic modeling methods such as latent Dirichlet allocation, and runs more than 100 times faster on data sets with millions of documents.Ph.D

    Image Analysis and Machine Learning in Agricultural Research

    Get PDF
    Agricultural research has been a focus for academia and industry to improve human well-being. Given the challenges in water scarcity, global warming, and increased prices of fertilizer, and fossil fuel, improving the efficiency of agricultural research has become even more critical. Data collection by humans presents several challenges including: 1) the subjectiveness and reproducibility when doing the visual evaluation, 2) safety when dealing with high toxicity chemicals or severe weather events, 3) mistakes cannot be avoided, and 4) low efficiency and speed. Image analysis and machine learning are more versatile and advantageous in evaluating different plant characteristics, and this could help with agricultural data collection. In the first chapter, information related to different types of imaging (e.g., RGB, multi/hyperspectral, and thermal imaging) was explored in detail for its advantages in different agriculture applications. The process of image analysis demonstrated how target features were extracted for analysis including shape, edge, texture, and color. After acquiring features information, machine learning can be used to automatically detect or predict features of interest such as disease severity. In the second chapter, case studies of different agricultural applications were demonstrated including: 1) leaf damage symptoms, 2) stress evaluation, 3) plant growth evaluation, 4) stand/insect counting, and 5) evaluation for produce quality. Case studies showed that the use of image analysis is often more advantageous than visual rating. Advantages of image analysis include increased objectivity, speed, and more reproducibly reliable results. In the third chapter, machine learning was explored using romaine lettuce images from RD4AG to automatically grade for bolting and compactness (two of the important parameters for lettuce quality). Although the accuracy is at 68.4 and 66.6% respectively, a much larger data base and many improvements are needed to increase the model accuracy and reliability. With the advancement in cameras, computers with high computing power, and the development of different algorithms, image analysis and machine learning have the potential to replace part of the labor and improve the current data collection procedure in agricultural research. Advisor: Gary L. Hei
    corecore