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Abstract

�is doctoral thesis shows the results obtained by applying Convolutional Neural Networks
(CNNs) for the steganalysis of digital images in the spatial domain. Steganography consists of
hiding messages inside an object known as a carrier to establish a covert communication channel
so that the act of communication goes unnoticed by observers who have access to that channel.
Steganalysis is dedicated to detecting hidden messages using steganography; these messages can
be implicit in di�erent types of media, such as digital images, video �les, audio �les, or plain text
[1, 2]. Since 2014 researchers have taken a particular interest in applying Deep Learning (DL)
techniques to achieving results that surpass traditional Machine Learning (ML) methods.

Traditionally, steganalysis has been divided into two separate stages. �e �rst stage consists of
the manual extraction of sophisticated features. �e second stage is classi�cation using Ensem-
ble Classi�ers (EC) or Support Vector Machines (SVMs). In recent years, the development of DL
has made it possible to unify and automate the two traditional stages in an end-to-end approach
with promising results. �e results of these techniques have surpassed those obtained with con-
ventional methods - Rich Models with Ensemble Classi�ers - both in spatial and frequency (JPEG)
domains. Recently, researchers have used CNNs to solve this problem generating diverse archi-
tectures and strategies to improve the detection percentages of steganographic images on the last
generation algorithms (WOW, S-UNIWARD, HUGO, HILL, MiPOD, JMiPOD, JUNIWARD, UERD
among others)[1, 2].

�is thesis provides the following major contributions. First, it presents a strategy to improve
accuracy, convergence, and stability during training in steganalysis CNNs. �e strategy involves
a pre-processing stage with Spatial Rich Model (SRM) �lters, Spatial Dropouts, Absolute Value
layers, a speci�c ReLU activation function, and Batch Normalization. Using the strategy impro-
ves the performance of three steganalysis (Xu-Net, Ye-Net, Yedroudj-Net) CNNs and two image
classi�cation (VGG16, VGG19) CNNs, by enhancing the accuracy from 2% up to 10% while re-
ducing the training time to less than 6 hours and improving the networks’ stability [3].

Second, a novel CNN architecture (GBRAS-Net) was devised, which involves a pre-processing
stage using �lter banks to enhance steganographic noise, a feature extraction stage using depth-
wise and separable convolutional layers, and skip connections. Performance was evaluated using
the BOSSBase 1.01 and BOWS 2 datasets with di�erent experimental setups, including adaptive
steganographic algorithms, namely WOW, S-UNIWARD, MiPOD, HILL, and HUGO. Results out-
performed works published in the last few years in every experimental se�ing. �is architecture
improves classi�cation accuracies on all algorithms and bits per pixel (bpp), reaching 80.3% on
WOW with 0.2 bpp and 89.8% on WOW with 0.4 bpp, 73.6% and 87.1% on S-UNIWARD (0.2
and 0.4 bpp respectively), 68.3% and 81.4% on MiPOD (0.2 and 0.4 bpp), 68.5% and 81.9% on
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HILL (0.2 and 0.4 bpp), 74.6% and 84.5% on HUGO (0.2 and 0.4 bpp), using test data [4]. �e
proposed CNN detects steganographic images with remarkable accuracy. �e following impro-
vements are highlighted compared to the state of the art in terms of accuracy: 3.4% on WOW
with 0.2 bpp and 1.7% on WOW with 0.4 bpp, 2.2% and 2.6% on S-UNIWARD (0.2 and 0.4 bpp
respectively), 3.1% and 5.3% on MiPOD (0.2 and 0.4 bpp), 1.9% and 5.4% on HILL (0.2 and 0.4

bpp), 6.5% and 5.2% on HUGO (0.2 and 0.4 bpp).

Researchers in this area have been developing new architectures. Nevertheless, the pre-processing
and partition of the database in�uence the overall performance of the CNN.

�e third contribution is to present the results achieved by novel steganalysis networks (Xu-Net,
Ye-Net, Yedroudj-Net, SR-Net, Zhu-Net, and GBRAS-Net) using di�erent combinations of ima-
ge and �lter normalization ranges, various database splits, a diverse composition of the training
mini-batches, di�erent activation functions for the pre-processing stage, as well as an analysis on
the activation maps and how to report accuracy. �ese results demonstrate how sensitive stega-
nalysis systems are to changes in any stage of the process and how important it is for researchers
in this �eld to register and report their work thoroughly. �e thesis also proposes a set of recom-
mendations for the design of experiments in steganalysis with DL.

�e fourth contribution consists of a so�ware development that allows taking pre-trained CNN
models to perform steganalysis of digital images in the spatial domain.

With this thesis the following products were obtained: four scienti�c papers in international jour-
nals Q1 (one in process), one Elsevier book chapter, one so�ware registration, one undergraduate
work, two research seedbed meetings, one presentation and one undergraduate internship.

�e DL, being applied to steganalysis, is now in construction, and results to date are encouraging
for researchers interested in the topic.
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1 Introduction

Steganography consists of hiding messages inside digital multimedia �les (images, sound, and
video) imperceptible to any receiver. �e �rst documents describing the use of these techniques
date back to Herodotus’s times in ancient Greece. One story describes how a group of Greeks sent
a message to Sparta hidden from inspection so as to not arouse suspicion. �e message warned
that Xerxes intended to invade. It was wri�en on boards which were then covered with wax as
camou�age. �ey wrote directly on the wood, then covered it with wax and wrote again on the
wax. At �rst glance, one could only see the writing on the wax, but if the wax were removed, one
could read the message hidden underneath.

During the Second World War, the most commonly used system was to micro�lm a message and
reduce it to the extreme of a tiny dot to pass as a punctuation mark of a character within another
text. For example, the dot on the vowel (i) could be micro�lm with a message [5, 6]. �is techni-
que has become an exciting alternative to hide information because cryptography is not allowed
in all countries [7]. �e formulation of the steganography process is due to the famous Simmons
Prisoner Problem [8], which consists of two prisoners, Alice and Bob, who wish to exchange mes-
sages that are continuously intercepted by the prison director, Eve. If Eve considers the messages
exchanged by Alice and Bob to be suspicious, she will not allow them to be delivered.

Industrial steganography is used to control the copying of digital material illegally, so copyright
societies introduce information by modifying digital content in a way imperceptible to the human
eye, intending to provide evidence of who owns the image or to whom it has been sold or sent
[9, 5, 6]. �is technique has been used to transmit important messages at a military level without
being identi�ed by outside parties. It is also believed that steganography could even have been
used in the communications of illegal groups and terrorists [9, 5, 6, 10].

Steganography can be performed in two domains: spatial and frequency. In the spatial domain,
the algorithms are characterized by directly changing some of the image’s pixels, which will be
imperceptible to the human eye. One way to achieve this goal is to introduce the message by
changing the Least Signi�cant Bits (LSBs) of each pixel sequentially or randomly [1, 2, 11, 12].
Currently, steganography is done adaptively, which means it takes into account the content of
the image in which the message is introduced in regions where it is more di�cult to be detected
by steganographers. �e most employed algorithms in this domain are HUGO [13], HILL [14],
MiPOD [15], S-UNIWARD [16] and WOW [17]. Figure 1-1 explains a general steganography
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Figure 1-1: General steganography process. Example of embedding a message in the LSB’s.

process that begins with a clean digital media �le (cover)(e.g., image). �en, a message is intro-
duced to this �le by changing some bits using a steganographic algorithm. Following this process,
a new �le is obtained that contains the hidden message and does not show perceptible changes
(stego). Figure 1-2 shows a stego image compared to a cover image a�er the steganographic
process, using the S-UNIWARD algorithm with a payload (number of embedded changes) of 0.4
bits per pixel (bpp). On the right side of the �gure, the di�erence between images is shown to
illustrate the e�ect of the algorithm on the stego images.

�ere are transformations used signi�cantly in the frequency domain (JPEG - Joint Photographic
Experts Group) to make steganography, such as Discrete Cosine Transform (DCT), Discrete Wa-
velet Transform (DWT), and Singular Value Decomposition (SVD), all explained in [19]. JPEG
is the most common loss compression format for images produced by digital cameras, scanners,
and other photographic capture devices based on DCT. Some coe�cients of the transformations
used are changed to insert messages in the JPEG domain so that it is imperceptible to the human
eye. �e most employed algorithms in this domain are J-UNIWARD [16], F5 [20], UED [21] and
UERD [22]. �ese algorithms have a commonly used payload of 0.4 bpnzAC (bits per non-zero
cover AC DCT coe�cient).

Additionally, steganalysis consists of detecting whether or not an image has a hidden message. In
[1, 2, 19], there is a more in-depth explanation of steganography and steganalysis with their res-
pective classi�cations. Steganalysis is traditionally divided into two stages. Stage one consists of
manual extraction of features where the best results have been achieved using Rich Models (RM)
[23]. Stage two is based on a binary classi�er (an image is steganographic or not) where Ensem-
ble Classi�ers (EC) [24], Support Vector Machines (SVM) [25] or perceptrons [26] are typically
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Cover image Stego image Steganographic content
Cover image - Stego image = Steganographic content

Figure 1-2: Example of embedding a message with the WOW algorithm using a payload of 0.4 bpp.
Image taken from BOSSBase 1.01 [18].

used. �anks to advances in Deep Learning (DL) [27] and Graphic Processing Units (GPUs) [28],
researchers have begun to apply these techniques in steganography and steganalysis, obtaining
be�er detection percentages of steganographic images. When DL is employed in steganalysis,
the feature extraction stage and classi�cation are uni�ed under the same architecture, and the
parameters are optimized simultaneously, allowing the complexity and dimensionality introdu-
ced by manual feature extraction to be reduced[23]. Figure 1-3 shows the general structure of
steganalysis with manual feature extraction (top side) and steganalysis unifying extraction and
classi�cation under the same architecture (bo�om side).

1.1. Background

�e �rst application of DL to steganalysis was developed in 2014 by [29] whose approach used
unsupervised learning from a stack of Auto-Encoders, training a Convolutional Neural Network
(CNN). Supervised learning was then used by pre-processing the image using a High Pass Fil-
ter (HPF) to increase the steganographic noise power introduced by the embedding process. �e
detection percentages of steganographic images were approximately 17% lower than those ob-
tained by Spatial Rich Models (SRM) [23], and approximately 11% higher than those obtained by
Subtractive Pixel Adjacency Matrix (SPAM) [30].

In 2015 [31] designed the �rst CNN with a supervised learning approach, which consisted of 5
convolutional layers and a speci�c activation function known as Gaussian Activation. �e detec-
tion percentages of steganographic images were approximately 4% lower than those obtained by
SRM [23], and approximately 10% higher than those obtained by SPAM [30].

In 2016, [32] took over [31] work and proposed two new neural networks. �e �rst one was a



4 1 Introduction

Input 
Image (Pixels) 

256x256 

 
 

Image processing layer

Fixed filter 1x5x5
SRM Filters 30x5x5

 

Convolutional Layers
 
 
 
 
 
 

Convolution  1

Convolution  N

...

Clasification Module
 
 
 
 
 
 

Fully connected
layer

Softmax layer

Input 
Image (Pixels) 

256x256 
Computing residuals Ensemble classifiers

or SVM
Co-ocurrences or

histograms

Pre-processing Feature
representation Classification

Two  
Steps 

One  
Step 

Machine Learning 
Process 

Deep Learning 
Process 

First Step Second Step 

Only Step 

Figure 1-3: Steganalysis based on manual feature extraction (top side) and steganalysis based on
Deep Learning techniques (bo�om side).

2-layer CNN and the second a Fully Connected Neural Network (FNN) composed of two layers.
�eir experiments were characterized by using the same encryption key. [33] proposed a CNN
similar to [31] with �ve convolutional layers. Unlike that network, [33] used an absolute value
layer (ABS) and 1 × 1 convolutional kernels to strengthen the statistical modeling and obtain
be�er results. [33] took their proposed network and used it as a Base Learner [34] to train sets of
CNNs in order to obtain be�er training parameters and further improve their detection results.
�at same year, Qian et al, used Transfer Learning [35] exchanging the parameters of a CNN,
which was trained with steganographic images with a high payload, to another CNN that would
be trained to detect images with a low payload. �e results obtained improved compared to CNNs
that did not use Transfer Learning, but still would not surpass the traditional algorithms. All the
advances obtained previously were implemented in the spatial domain. A�er that, the researchers
have focused on performing steganalysis using DL techniques in the frequency domain (JPEG).

In 2017, [36, 37] proposed a CNN approach to perform steganalysis in JPEG format images using
an RM-inspired pre-processing applied to large sets of images o�ered by ImageNet [38]. �e re-
sults obtained were close to those recorded in the literature. �e same year Zeng et al, presents
a new network using Phase-Split inspired by the JPEG compression process [36]. A CNN as-
sembler was used to obtain results signi�cantly higher than those obtained by state of the art.
Subsequently Xu [39] proposed a new CNN inspired by ResNet [40] consisting of 20 convolu-
tional layers followed by a Batch Normalization (BN) process [41, 42]. In [43] was suggested to
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make steganography of images in the spatial domain taking as reference two networks that com-
pete with each other. �is methodology, known as Generative Adversarial Network (GAN), used
the rivalry between steganography and steganalysis (two competing networks) to automatically
learn which was the best position to embed a message. In [44] a new CNN was proposed in the
spatial domain with eight convolutional layers, a self-activation function known as Truncation
Linear Unit (TLU), and �lter banks for image pre-processing. �ese �lter banks initialize their
SRM-based weights to obtain residual characteristic maps and avoid using the static �lter used
by all previous CNNs. �e trend in 2017 was to train sets of CNNs and modify the network ar-
chitecture to mimic the SRM feature extraction process. Another signi�cant contribution was to
jump between di�erent convolutional layers (ResNet [45, 40]), thus enabling deeper CNNs to be
designed, ensuring network convergence and improving detection accuracy; until then, detection
results were improved by approximately 10% compared to those recorded in the literature.

In 2018 a new CNN was proposed in the spatial domain [46]. �is CNN brings together the
best features of its predecessors (a set of input �lters for pre-processing based on SRM feature
extraction, 5 convolutional layers, BN, TLU activation units and an increase in the size of the trai-
ning database) to get be�er results than those reported by the literature. [47] takes [44] network
and modi�es it to classify high-resolution steganographic images from CNNs training with low-
resolution image networks and modify it to be able to classify high-resolution steganographic
images from CNNs training with low resolution images. In [48] the e�ect of enriching the data-
base traditionally used in steganalysis known as BOSSBase [49] was studied. �e added images
belong to the BOWS 2 [50] database, as well as images captured with cameras with similar cha-
racteristics to those used to create the traditional database. Finally, the number of images in both
databases were increased using cropping, resizing, rotation and interpolation operations. �ey
concluded that to improve the performance of steganalysis, having a large database acquired with
similar cameras and dimensions is recommended. In [51] proposed to perform quantitative stega-
nalysis using DL techniques to predict the payload contained in a steganographic image in both
spatial and frequency domains. In [52] proposed combining 3 CNNs in parallel. Each network
uses a di�erent pre-processing layer for feature extraction (Gabo Filters [53], Linear-SRM[23],
nonlinear-SRM[23]) and simultaneously uses three activation functions (ReLU [54], Sigmoid [55]
and TanH [55]) in order to consider more pre-processed information. [56] conduct an experiment
similar to the previous on color images. [40] proposed a new CNN that avoids the use of tricks as
much as possible, such as using SRM �lters for pre-processing. �is network works in both the
spatial and frequency domains.

In 2019, [57] suggested a new CNN that optimizes the weights of the pre-processing layer �l-
ters to increase the power of steganographic noise and decrease image content. It uses separate
convolutions to obtain residue channel correlations and spatial correlations separately for be�er
feature representation, and �nally uses Spatial Pyramid Pooling (SPP)[58] to add local features,
to improve feature representation capability, and to allow arbitrary image sizes.



6 1 Introduction

In 2020, [59] sought to decrease the computational cost, storage overheads, and di�culties in
training and deployment. �e resulting model (i.e., CALPA-Net) improved adaptivity, transfera-
bility, and scalability. Furthermore, [60] proposed a CNN that uses detection mechanisms and
joint domains. �e authors applied SRM �lters and the discrete cosine transform residual (DCTR)
pa�erns for transformation steganographic impacts.

1.2. Research Context

Despite the advances obtained in Steganalysis to date using traditional methods (RM+EC) [23],
since 2014, researchers have focused their a�ention on generating CNN [38] for the Steganalysis
process and improving the detection rates of Steganographic images. According to the literature,
several CNNs have been created using di�erent learning strategies, the results obtained surpass
the traditional methods [4], but they are far from what was expected by researchers in the �eld
[61].

Currently, taking the national and regional problems as a reference, Information and Commu-
nication Technologies have allowed large-scale projects such as those executed by the Center
for Bioinformatics and Computational Biology (BIOS), or those executed by various universi-
ties of the Colombian department of Caldas (Nacional, Caldas, Autonoma, Manizales, Catolica,
among others), to produce results of signi�cant impact and continue the processes of consolida-
tion and self-sustainability. Currently, the products of these projects have intellectual property
requirements as can be seen in the PAED of the department of Caldas of July 2015, in the pro-
grammatic line: Generation and strengthening of instruments for the protection of intellectual
property, knowledge transfer, and commercialization of results in science, technology, and inno-
vation, this line aims to generate training strategies and channels for the commercialization of
intellectual property that allows for the appropriation of knowledge by the business network and
that promotes the creation of technology-based companies. �is motivates researchers to deve-
lop innovative strategies that guarantee the security of information. Developing methodologies
to supervise and identify when information is being accessed or transmi�ed inappropriately and
to guarantee the intellectual property of the products generated in the region is also necessary.

Researchers create their stego images with BOSSbase 1.01, which is not standard. �erefore, stan-
dard datasets must be established, prepared for use, and the results obtained from research must
be comparable. �is implies, for example, having a particular steganographic incrustation with
an established partition and distribution of images.
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1.3. Research�estion

Which computational elements and CNN architectures are most appropriate for steganographic
image detection?

1.4. Research Hypothesis

1. �e use of CNNs can improve certain aspects of steganographic image detection perfor-
mance.

2. Detection performance and/or computational e�ciency can be improved through CNN-
speci�c architectures and computational elements, possibly combining properties in the
spatial and the frequency domain of the images themselves.

3. Transfer Learning techniques (parameter transfers from one network to another) or En-
semble Classi�er (Training sets of CNNs) can be used to detect steganographic images.

1.5. Justification

Computational development in both hardware and so�ware has allowed for the implementa-
tion of algorithms with spatial and temporal complexities that were previously intractable, i.e.,
algorithms that would take years to train, now execute in days or hours. Additional access to
technology is becoming easier and cheaper. �erefore, many scientists from di�erent areas have
begun to adapt the solutions of their problems to the alternatives o�ered by computation, ge-
nerating new methods and strategies that have allowed them to obtain new results or improve
existing ones, all in marked in high percentages of precision and low execution times.

Given that we live in a digital and multi-connected world, computer security has become a fun-
damental topic as there are currently tools that allow access to privileged information or commu-
nicate con�dential information for improper purposes. A theory exists that during the September
11 a�acks, the terrorists communicated by hiding messages in images (Steganography)[9, 5, 6].

Alternatively, cryptography is being banned in some countries to increase security; the rationa-
lization is claimed that to decrease the possibility of terrorist acts and increase security, people
should communicate their information without any encryption to facilitate the monitoring of the
�ow of information by national security forces. Countries that have banned cryptography can be
found in [7]. Considering the above, Steganography can become a technique of interest to hide
information without the need to use cryptography; also, it is essential to study Stegoanalytical
techniques to detect and control the �ow of improper information.
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Digital Rights Managers are interested in the process of Steganography and Steganalysis [62].
With the Steganographic process, they are imperceptibly encrypting messages in text, images,
or sound �les in order to be able to track how these types of �les are being used. With Stegoa-
nalytical processes, they want to monitor whether digital content has been copied or reproduced
inappropriately. In summary, these techniques can be used for con�dential communication and
storage of con�dential data, protection of data tampering, and access control systems for the dis-
tribution of digital content, among others [63, 64].

Image processing has allowed for incursions into the �eld of computer security, as is the case
of Steganalysis. �e current problem is the low detection rate of steganographic images and the
high computational complexity involved in the training of these type of algorithms. �at is why
researchers on the subject have focused on design and implementation of CNNs [38], taking into
account that large companies such as Google with the creation of TensorFlow [65] and NVIDIA
with the constant development of its GPUs [28], have provided the tools for the detection results
of Steganographic images to increase compared to what is reported in the literature.
Steganography also allows generating a global problem with the emergence of DeepFake[66]
which generates images, videos or synthesized audios from real digital content. �is multimedia
content can be used as evidence in a crime or for other purposes. Its validity can no longer be
assumed due to the possibility that the content may have been generated by DeepFake. In this
case, Steganalysis can play a key role in detecting whether audio, video or sound �les have been
manipulated by this type of technique.

Finally, in the project ideas in the PAED of the department of Caldas, most of the CTeI products
generated require state-of-the-art techniques to ensure the security of information and commu-
nication, as is the case of the use of the Internet of �ings, which interconnect a wide variety
of electronic devices and require very robust security techniques to ensure the functionality and
con�dentiality of information.

1.6. Organization of this Document

A�er this chapter, the thesis document follows the following order:Chapter 2 contains the objec-
tives of the thesis. Chapter 3 contains the current state of the art, and the normative, conceptual
and theoretical framework. Chapter 4 contains the methodological aspects, such as the type and
approach of the research, universe and sample, techniques and instruments for data collection
and analysis, and the research activities performed to date. Chapter 5 shows a proposed stra-
tegy to improve the percentages of accuracy, stability, and convergence time of three CNNs for
steganalysis and two CNNs for image classi�cation. Chapter 6 proposes a new architecture by
GBRAS-Net. �is architecture performs image steganalysis in the spatial domain, and additionally
generates so�ware development.Chapter 7 shows a sensitivity analysis of the steganalysis expe-
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riments from di�erent points of view, and Chapter 8 shows the conclusions, recommendations,
future work, and contributions derived from this thesis work. At a general level, Chapters 1 to
4 describe the entire dissertation proposal, Chapters 5 to 7 show the development and results
of the dissertation and Chapter 8 closes the dissertation with conclusions, recommendations,
future work and contributions at a general level.



2 Thesis Objectives

2.1. General Objective

Design architectures and speci�c computational elements of CNNs for the detection of stegano-
graphic images.

2.2. Specific Objectives

1. Analyze the performance of the di�erent strategies that currently exist to conduct stega-
nalysis to have a clear basis of the results and conclusions of existing methods.

2. Establish a set of standard images with which a baseline can be formed to quantify the
impact of each of the methods developed along this thesis.

3. Design architectures based on CNNs from validated reference models.

4. Design computational elements based on CNNs from validated reference models.

5. Evaluate the performance of the di�erent architectures and computational elements of
CNNs obtained along with this thesis.



3 The State of the Art

�is chapter shows the developments and advances in steganalysis research by the scienti�c
community, composed of di�erent sections organized as follows: Section 3.1 contains the con-
ceptual and theoretical framework necessary for complete understanding of this thesis; Section
3.2 shows how is DL applies to images steganalysis; Section 3.3 contains the state of the art; and
�nally Section 3.5 shows the normative framework for the use of the di�erent databases.

3.1. Conceptual and Theoretical Framework

Steganalysis has been a topic of interest in recent years because it can detect hidden messages in
digital images from known sources, as mentioned previously. Detectors employing Steganalysis
are built in two stages. �e �rst is feature extraction, where a set of features is extracted from
each image to capture the impact of embedding operations. �e second stage is the classi�cation,
where classi�ers such as support vector machines or ensemble classi�ers learn based on the ex-
tracted features [30].

Considering that the two mentioned steps of feature extraction and classi�cation are separated
into traditional methods, simultaneously optimizing them is impossible, i.e., classi�cation cannot
obtain valuable information in the extraction step. Accordingly, the success of steganalysis ge-
nerally depends on the feature design, and therefore research in this �eld aims to discover more
complex feature representations for steganalysis.

DL models are a type of machine learning that can learn feature representations automatically.
�ese architectures are based on the structure of the human brain’s visual cortex that processes
information hierarchically with a deep architecture, which can be reproduced by training deep
multi-layer neural networks [67]. Several DL models have been proposed with deep architectu-
res consisting of multiple levels of nonlinear operations that can be trained using supervised and
unsupervised approaches to learn hierarchical representations by obtaining high-level features
from low-level ones [31].

�e interest in DL is given because, in general, deep architectures can represent some features
that are not e�ciently representable by shallow architectures, i.e., evidence shows that this kind
of architecture can be a more robust learning scheme for many arti�cial intelligence tasks such
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as object recognition and natural language processing [68].

3.1.1. Image Steganalysis

Research on image steganalysis began in the late 90s when Johnson and Jajodia [69] and Chan-
dramouli et al. [70] conducted the �rst studies. Steganalysis has gone through di�erent facets,
starting with visual detections up to the use of CNNs. From its beginnings, it was divided into
two domains: spatial and frequency. In the spatial domain, the random or adaptive LSB insertion
method is used [11, 12]. For the frequency domain, transformations, such as DCT, DWT, and
SVD, are required for steganography. �e following sections refer to traditional image steganaly-
sis techniques that involve visual analysis or hand-cra�ed features. Section 3.2 includes aspects
related to modern steganalysis, in which di�erent algorithms and computational models are used
to feature extraction and perform automatic classi�cation.

Signature Steganalysis

Signature identi�cation is one of the �rst methods used to detect images with hidden messages.
�e goal is to search for repetitive pa�erns to identify steganographic tool signatures. For exam-
ple, in [69], the authors discovered that the steganographic algorithm of Hide and Seek made all
pixels in the image divisible by four. When the steganographic algorithm is applied to RGB ima-
ges with values from 0 to 255, it generates an image with the same characteristics. However, the
color varies from 0 to 252. �is type of signature is visually identi�ed in the image histogram
because the whitest color will always be 252.

Statistical Steganalysis

Statistical steganalysis is more robust than signature steganalysis since mathematical analyses
are more accurate than visual analyses. �e images can be seen as matrices; therefore, it allows
us to obtain statistics from them. Accordingly, if there is a modi�cation in the matrix or image,
there will be a statistical change. Statistical steganalysis is subdivided into the following types:

LSB Embedding Steganalysis: LSB steganography [71] consists of embedding messages
in the LSB of digital images. One of the �rst articles on LSB embedding steganalysis was
[72], which proposed a detection method based on the loss of energy in the gradient. �e
relationship between the length of the embedded message and the energy of the gradient
allows classifying the images into cover and stego. First, the energy of the cover image gra-
dient is computed and then, the energy of the stego image gradient is calculated at di�erent
rates of incrustation. A�erward, the energy of the stego gradient is plo�ed, and the length
of the stego message is estimated. Another method was proposed by [73] which involves
selecting the pixels that display sudden color changes; for example, if there is a color re-
duction from bit 1 to bit 2, these values are grouped as (1,2). All the dimensions of color are
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ordered and concatenated, and the homogeneity between them is evaluated. [73] demons-
trated that homogeneity is a quadratic function of the length of the secret message, and the
best results are obtained in 8-bit GIF images. Avcibas et al. [74] created a speci�c algorithm
for detecting LSB, based on calculations of binary similarity and characteristics of binary
texture within bit planes. Guided by the above features, a similarity measurement classi�er
was created, which classi�es the image as cover or stego depending on the variance of si-
milarity between the two images. �is research showed that the steganographic algorithms
of the time altered the texture of the image. �erefore, Avcibas conducted new research,
which evaluated the image’s texture, starting from the co-occurrence matrix.

LSBMatching Steganalysis: Steganography based on LSB matching [75] is more di�cult
to detect than LSB embedding steganography [71]. One of the most relevant investigations
in LSB matching steganalysis is [76]. �e authors worked with grayscale images, applying
the Histogram Characteristic Function (HCF) and calibrating the Center of Mass (COM)
using an under-sampled image instead of the traditional histogram. �e fundamental pro-
blem of this research is the length of the introduced message because the algorithm only
works if the embedded message is smaller than the number of pixels in the image. Another
problem is being able to determine if there is a hidden message in the color scale. To address
this problem, [77] proposed a technique based on pixel correlation features and pa�ern
recognition. �e statistical pa�ern recognition algorithms are Fisher Linear Discriminate
(FLD), optimization of the Parzen Classi�er (ParzenC), Naive Bayes classi�er (NBC), SVM,
Linear Bayes Normal Classi�er, and �adratic Bayes Normal Classi�er. �ese algorithms
are trained and classify the image into cover and stego.

Spread-spectrum Steganalysis: Insertion spectrum steganography adds images combi-
ned with Gaussian noise [78]. �is type of steganography is more robust due to its features
and has a low probability of detection. Despite its di�culty, detection methods were pro-
posed in [79] by exploring the properties of the HCF center of mass, which behaves as the
main feature. With HCF, hidden noise analysis is possible, allowing for the analysis of the
e�ects of the embedded message based on the histogram. A simple Bayesian multivariate
classi�er [80] was used in this research. Another proposed method based on DCT is descri-
bed in [81]. �is method relies on detecting the dispersion di�erence per block. First, the
stego image is restored using spatial �lters. �en, the spread spectrum is simulated several
times, and the variance is estimated from the low-frequency coe�cient of the DCT and the
cover image. Accordingly, the di�erence between the two dispersions is used to determine
if the image has a hidden message. Another method used in spread-spectrum steganalysis
aims to �nd the correlation between pixels. �is method was proposed by Sullivan et al.
[82]. In this research, they used a random Markov string to compute the correlation bet-
ween pixels, as well as SVM (Joachim [83]) as a classi�er. �e classi�er is trained with stego
and cover images providing outstanding results.
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TransformDomain Steganalysis:Wavelet quantization modulation steganalysis [84] was
introduced by [85]. In the histogram analysis, the cover image histogram is smoother than
the stego image. �e authors demonstrated that the energy di�erence for stego images with
the quanti�cation method is much higher than for cover images. �erefore, it can be deter-
mined if the image is stego or cover. One of the most relevant advances made in steganalysis
occurred in [86], in which steganalysis was performed using a neural network. �e digital
images - both cover and stego - are analyzed in transformation domains DFT (Discrete Fou-
rier Transform), DCT, and DWT. �e neural network then calculates the statistical features
of the cover and stego images. �is method showed promising classi�cation percentages at
the time.

Additive Noise Steganalysis: Additive noise steganography [78] relies on noise gene-
rated to decrease the probability of detecting embedded messages. To counteract additive
noise steganography, [87] provide a steganalysis technique in binary images. �e success
of this method is based on the compression rate and the data insertion rate. It models ste-
ganographic insertion as an additive noise process; the compression index is the primary
statistic that helps discriminate between stego and cover images since the data compression
rate increases when a message is embedded.

Based on the above, we describe the most representative percentages of the classi�cation of stega-
nographic images. For LSB Embedding Steganalysis [74], embedding a message at 1 bpp with a
message of 5000 words was shown to produce an accuracy of 78.23%. For LSBMatching Stega-
nalysis [75], embedding a 64x64 bits message generates an accuracy of 43%. Spread-spectrum
Steganalysis [81] has an accuracy of 90% and Transform Domain Steganalysis [86] an ac-
curacy of 85%. It should be noted that, at the time, the steganographic algorithms were weaker
than those existing today. [88, 89] demonstrated that statistical algorithms of steganalysis with
ML techniques are not e�cient with recent steganographic techniques. �erefore, DL methods
are currently used.

3.2. Deep Learning in Images Steganalysis

�e design and implementation of di�erent CNNs is considered the main contribution of DL in
steganalysis (see Figure 3-1). �e CNN architectures have evolved based on previous works do-
ne in neural networks. �e CNNs proposed can be listed in chronological order as follow: Qian-
Net or GNCNN [31], Xu-Net [33], Ye-Net [44], Yedroudj-Net [46], SR-Net [40], and Zhu-Net
[90]. �e �rst studies in this �eld included an unsupervised learning implementation using Auto-
Encoders stacks. �en, several publications showed advances in supervised learning following
three fundamental principles for steganalysis: i) reinforcement of the steganographic noise using
a �xed high-pass �lter, ii) feature extraction, and iii) classi�cation. �e proposed architectures
uni�ed these principles under a single structure to optimize its parameters simultaneously. Al-
ternatively, developments were carried out �rst in the spatial domain and then in JPEG. In the
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JPEG domain, steganalysis is also performed in sizes 512 × 512 or 256 × 256 depending on the
available hardware. It can be done on grayscale or color images. Mainly with quality factors (QF)
of 100, 95, 90, 85, 80, 75.
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Figure 3-1: �is graph shows novel works for steganalysis on spatial and frequency domain, and
GANs.

Researchers have proposed several changes in the CNNs aiming to improve performance, such
as increasing the network’s depth or using fully connected networks [32]; using custom activa-
tion features to ensure network convergence and improve steganographic image detection rates
[31, 44, 46]; using CNNs with shortcuts between convolutional layers (Residual Networks or Den-
se Networks) to design very deep networks (20 or more layers), achieving network convergence
and improving detection percentages [39, 40, 91, 92, 93, 94, 95]; training sets of CNNs and trans-
ferring the learned parameters to CNNs with complex convergence or low detection percentage
[34, 96, 35]; training CNNs with a given database and testing the network with a completely
di�erent database to determine the reliability of the designed CNNs (Cover-Source Mismatch)
[32, 96]; strengthening statistical modeling by an ABS [33, 46, 90, 34]; improving steganographic
noise extraction using �lters designed in SRM and performing feature extraction and classi�ca-
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tion with CNNs [36, 44, 46, 90]; using real-world databases (e.g., ImageNet) to determine how
well a CNN can be adapted to any data set with diverse resolution and capture characteristics
[36, 31, 39, 40, 91, 92]; placing two CNNs to compete, in which the �rst network is used for ste-
ganography and the second for steganalysis to obtain an automatic steganographic process due
to feature learning of both processes [43, 97, 98, 99, 100, 101, 102, 42]; training a network to clas-
sify high-resolution images from low-resolution images [47]; predicting the payload (quantitative
steganalysis) of a steganographic image using DL in the spatial and JPEG domains [51, 103]; ge-
nerating an increase in the database taking into account trimming, rotation, and interpolation
operations, as well as the use of cameras with similar or di�erent features for image acquisition,
being cautious of resizing [36, 44, 48, 90]; placing three CNNs to work in parallel[52] such that
each network uses activation functions (ReLU, Sigmoid and TanH) and di�erent �lters in the pre-
processing layer inspired by Gabo Filters [53] and SRM (linear and non-linear) [23]; and, �nally,
performing similar parallel work with color images[56], among others.

�e high-pass �lter is shown in Equation (3-1) is widely used by several networks, although its
parameters are not optimized during the training process.[23] developed this �lter, and it was �rst
used in steganalysis by [31]. Since the high-pass �lter performs image pre-processing to enhance
the steganographic noise, it can decrease the impact of the image content. Also, the �lter helps
the CNN training process to be convergent. However, not all networks use this �lter; for example,
SR-Net learns all the parameters automatically without the need for heuristic approaches.

K =
1

12


−1 2 −2 2 −1
2 −6 8 −6 2

−2 8 −12 8 −2
2 −6 8 −6 2

−1 2 −2 2 −1

 (3-1)

With the Ye-Net architecture comes a set of 30 �lters SRM. �e �lter values are in the Figure 3-2.
�e general procedure of the CNN is shown in Equation (3-2), where M l is each of the feature
maps of the l-th layer, Mi

l−1 is the i-th previous layer feature map, Ki
l is the i-th kernel of the

l-th layer, bl is the bias parameter of the l layer, ∗ is the convolution operation, f() is the non-
linear operation known as the activation function, pool() is the pooling operation, and norm() is
the normalization operation. Operations in convolutional layers are performed in the following
order: convolution, normalization, activation function, and pooling. Feature maps obtained by
the last layer are used as input to the classi�cation module composed of one or several layers of
fully connected neurons and a So�max layer. �e last fully connected layer aims to normalize the
CNN values between [0, 1], which correspond to the probability that the image is cover or stego.

M l = pool

(
f

(
norm

(
n∑

i=1

(
M l−1

i ∗K l
i

)
+ bl

)))
(3-2)
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Figure 3-2: Set of 30 SRM Filters per category. �ese �lters are used in the �rst convolution, or
preprocessing stage.

�e most commonly used nonlinear activation functions in most CNNs are: i) Recti�ed Linear
Unit (ReLU ) [54], ii) Tangent Hyperbolic (TanH )[55], iii) Gaussian, and iv) TLU [104]. �e last
one is exclusive of DL applied to steganalysis and is limited to the range of values; therefore, the
network is not modeled to large values. Usually, TanH is used in the �rst layers and ReLU in the
last ones.

�e operation used for data normalization is BN, which is summarized in Equation (3-3) [41].
BN works by initially normalizing the distribution of each characteristic in the feature map to
have zero average and unitary variance, allowing re-scaling and re-translation of the distribution,
if needed. Given a random variable X whose realization is a value x ∈ R of a feature map, the
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BN:

BN(x, γ, β) = β + γ
x− E[X]√
V ar[X] + ε

(3-3)

With E[X] the expectation, V ar[X] the variance, and γ and β two scalars represent a re-scaling
and a re-translation. �e expectation E[X] and the variance V ar[X] are updated at each batch,
while γ and β are learned by back-propagation. In practice, BN makes learning less sensitive to
the initial parameters [41], allowing the use of a higher learning rate that speeds up the learning
process and improves classi�cation accuracy [96]. BN was not used in the �rst proposed CNNs.

Steganographic noise embedded in stego images is usually feeble; thus, average pooling [105] is
o�en used in CNN since this operation favors the propagation and preservation of this type of
noise, which is not recommendable using max-pooling [105]. �e most common pooling strategy
is a local operation that is computed with its neighbors. �e most common performance metric
reported by steganalysis researchers is classi�cation accuracy [106] or its complement, the error
percentage. Accuracy is calculated using the total amount of correct predictions from a given
data set. Classi�cation accuracy is provided by Equation (3-4).

Acc =
# Correct Predictions

# Total Predictions
∗ 100% (3-4)

Alternatively, the error percentage is computed using Er = 100%− Acc. �ese are simple me-
trics to determine the performance of a model, in this case, a steganalysis scheme. However, given
the binary classi�cation task, in which classes are always balanced (cover-stego pairs), these me-
trics are representative enough to allow making decisions for model improvement.
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Figure 3-3: Architectures of the most commonly used CNNs for steganalysis in the spatial domain.
�e numbers inside the boxes is structured as follows: number of kernels x (height x
width x number of feature maps as input). �e numbers outside the box is structured
as follows: number of feature maps x (height x width). If the Stride or Padding is not
speci�ed, Stride=1 and Padding=0 are assumed.



20 3 �e State of the Art

Figure 3-3 shows several CNN architectures applied to image steganalysis. Purple indicates pixels
that are input to the network, which, in most experiments, is of 256x256 pixels due to processing
limitations and computational memory. �e pre-processing layer is shown as the �rst convo-
lution, where the aim is to increase the noise power introduced by the steganography process
and decrease the image content. �e convolutional layers are displayed in green, which perform
the hierarchical feature extraction. In red, the activation functions, scaling, absolute value la-
yers, normalization, or combinations of these layers are indicated. Yellow indicates only a ReLU
or Gaussian activation function. White shows the pooling operation that reduces the dimensio-
nality of the feature map and the computational complexity. All the CNNs designed so far use
average pooling operation due to the low power of the steganographic noise; this requires using
all the pixels of the region where the pooling operation will take place to avoid losing informa-
tion. Gray and Blue show the classi�cation module consisting of fully connected neuron layers
and a so�max responsible for delivering a distribution of probabilities between 0 and 1 for each
class, de�ning whether the image is cover or stego.

SR-Net [40] showed the best performance in the JPEG domain since it reduces manual devices
and heuristics employed by other networks to capture steganographic noise; this network ope-
rates in the spatial and frequency domains. However, in the spatial domain, Zhu-Net [57] has
the best results. �is network characteristically uses an SRM-inspired �lter bank to initialize the
pre-processing layer weights, optimized during the training process to enhance the noise intro-
duced by the steganography process and decrease the image content. Zhu-Net uses separate
convolutions to improve the feature extraction process and average pooling multi-level known
as SPP[58] to allow the network to analyze arbitrarily sized images. Table 3-1 shows the accura-
cies of the CNNs described and SRM+EC to detect two steganographic algorithms in the spatial
domain (S-UNIWARD and WOW) with payloads of 0.4 bpp and 0.2 bpp.

Table 3-1: Accuracy percentage of the CNN and SRM for two steganographic algorithms with pay-
loads of 0.4 bpp and 0.2 bpp

(Year) Algorithm WOW
0.2 bpp

WOW
0.4 bpp

S-UNIWARD
0.2 bpp

S-UNIWARD
0.4 bpp

(2019) Zhu-Net 76.9 88.1 71.4 84.5
(2018) SR-Net 75.5 86.4 67.7 81.3
(2018) Yedroudj-Net 72.3 85.1 63.5 77.4
(2017) Ye-Net 66.9 76.7 60.1 68.7
(2016) Xu-Net 67.5 79.3 60.9 72.7
(2015) Qian-Net 61.4 70.7 53.7 69.1
(2012) SRM+EC 63.5 74.5 63.4 75.3

Most of the reported architectures in Figure 3-3 apply the Clairvoyant scenario [32], which is
described as follows:

�e steganalyst knows which algorithm was used to perform the incrustation of the mes-
sages.



3.3 �e State of the Art 21

�e steganalyst has a good statistical knowledge distribution of the image databases used
by the steganographer.

�e payload of messages for the incrustation process is known.

�e same image size is always used.

�e steganalyst has access to a set of cover-stego images used by steganographers.

BOSSBase database of 10, 000 images is used, with dimensions of 512x512 or 256x256,
depending on the hardware available.

In BOSSBase, another 10, 000 images are constructed with the incrustation of messages by
some of the existing steganographic algorithms (stego), in such a way that the complete set
has 10, 000 pairs of images (cover-stego). From this set, 5, 000 pairs of images (cover-stego)
are randomly selected, the CNN is trained with 4, 000 pairs and validation is done with
1, 000 pairs; the remaining 5, 000 pairs of images are used for CNN testing.

�e initialization of the �lter weights is done by Xavier’s method [107].

Experiments done under this scenario o�en use BOSSBase 1.01 database [49], which contains
10, 000 images in Portable Gray Map format (PGM) of eight bits and size 512× 512. �e second
most widely used database is BOWS 2 [108, 50], which consists of 10, 000 images in PGM format
of 8 bits and size 512×512. Additionally, the extensive ImageNet [38] is commonly used, which is
composed of more than 14million images of di�erent sizes. Moreover, Alaska #2 is another dataset
used in spatial and JPEG, and this has 80, 000 images [109]. ImageNet database was normally
employed for experiments conducted in JPEG. In some experiments, the previous databases were
resized or trimmed to 256 × 256 due to the research teams’ computational cost and memory
limitations.

3.3. The State of the Art

�e development of the topic was focused on 14 articles which have a common thread in the
advances that the DL applied to steganalysis has had. �e place of publication and main con-
tributions are shown in Table 3-2. It can be observed that the topic has become relevant due
to the frequency of publications in the last years. �e researchers who have contributed most
to this topic are as follows: Jessica Fridrich, Marc Chaumont, Yinlong Qian, Guanshuo Xu, Tieniu
Tan, Shunquan Tan, Yun-Qing Shi, Jishen Zeng, Mo Chen, Bin Li, Jiwu Huang, Jian Ye, Jiangqun
Ni. �e results are published in high-impact symposia, congresses, and journals. �e main contri-
butions are the generation of di�erent CNNs, which have evolved thanks to the contributions of
the predecessor networks. �e CNNs proposed to date in chronological order are Qian-Net [31]
or GNCNN[31], Xu-Net[33], Ye-Net[44], Yedroudj-Net[46], SR-Net [40], and Zhu-Net [90].
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Table 3-3 shows the architecture implemented by each author, the database used for training,
validation, and testing, the domain of the experiment (spatial or frequency), the steganographic
algorithms used for steganalysis, and the best results.

Tables 3-2 and 3-3 show that the �rst experiment was done using unsupervised learning im-
plementing an Auto-Encoders stack. Work continued on supervised learning following three
fundamental steganalysis principles: reinforcement of the steganographic noise through �xed
high-pass �lters, feature extraction, and classi�cation, all uni�ed under a single architecture that
optimizes its parameters simultaneously. �e �rst advances in the subject were made in the spa-
tial domain, and then the researchers entered the JPEG.

�e most important CNNs obtained from the studies are as follows:Qian-Net orGNCNN (2015)[31,
110], Xu-Net (2016)[33], Ye-Net (2017) [44], Yedroudj-Net (2018)[46] and Zhu-Net (2018)[90],
all were initially designed in the spatial domain and some were adapted to work in the JPEG.
Qian-Net is characterized by having �ve convolutional layers, a Gaussian activation function
and Average Pooling a�er each convolutional layer, two fully connected layers, and one So�max.
Xu-Net is characterized by having �ve convolutional layers, an ABS layer a�er the �rst convo-
lutional layer, using TanH activation functions for the �rst two layers and ReLU for the last three
layers, BN in each convolutional layer, two fully connected layers, and one So�max. Ye-Net uses
an SRM �lter bank to do the steganographic noise extraction instead of the traditional high-pass
�lter of Equation 3-1. �is CNN consists of eight convolutional layers; a�er the �rst convolutio-
nal layer, a TLU activation function is used, and for the others, TanH is employed, it has one fully
connected layer, and one So�max. Yedroudj-Net uses an SRM-inspired �lter bank for stegano-
graphic noise extraction, �ve convolutional layers, an ABS layer only a�er the �rst convolutional
layer, TLU activation function in the �rst two layers, ReLU in the last three layers, Average Poo-
ling of layers two to �ve, two completely connected layers, and one So�max. �is CNN takes
the best features of the Xu-Net and Ye-Net and uni�es them under the same architecture. Zhu-
Net is characterized by using an SRM-inspired �lter bank to initialize the pre-processing layer
weights, which will be optimized during the training process to strengthen the noise introduced
by the steganography process and decrease the image content. Zhu-Net uses separate convolu-
tions to improve the feature extraction process and �nally, Average Pooling multi-level known as
SPP[58], to allow the network to analyze arbitrary sized images, the results of this CNN outper-
form the results obtained by Xu-Net, Ye-Net, Yedroudj-Net and SRM+EC. Table 3-1 shows the
error percentages of the CNNs mentioned and SRM+EC to detect two algorithms in the spatial
domain (S-UNIWARD and WOW) with payloads of 0.4bpp and 0.2bpp. In [40], a new network
design known as SR-Net can be observed which reduces the use of manual devices and heuris-
tics employed by other networks to capture steganographic noise; this network operates in the
spatial and frequency domain.

Figures 3-4 and 3-5 show the accuracy rate of steganographic images detection using the S-
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UNIWARD (Figure 3-4) and WOW (Figure 3-5) algorithms depending on the payload, for a ran-
ge of 0bpp to 0.4bpp. It is important to note that as the payload increases, the steganographic noise
introduced in the image also increases, allowing CNNs to have more information to learn from
this type of noise and, consequently, improve the detection percentages. For the S-UNIWARD al-
gorithm (Figure 3-4) the highest percentage was obtained by Zhu-Net regardless of the payload
value, and observing speci�cally 0.4 bpp (most used payload by researchers), Zhu-Net mana-
ges to increased detection accuracy by 3.2% compared to SR-Net (predecessor network) and by
9.2% compared to SRM+EC (traditional method). Most importantly, SRM+EC, Qian-Net, Xu-
Net, Ye-Net and Yedroudj-Net have similar behaviors, which allow SR-Net and Zhu-Net to
have signi�cant improvements on percentages obtained by SRM+EC for the S-UNIWARD algo-
rithm. For the WOW algorithm (Figure 3-5) the highest accuracy percentage was obtained by
Zhu-Net regardless of the payload value, and speci�cally observing 0.4 bpp, Zhu-Net was able
to increase the accuracy percentage by 1.7% compared to SR-Net and by 13.6% compared to
SRM+EC. Qian-Net obtained the lowest accuracy rate during most payloads. It is important to
point out that for the WOW algorithm, the only CNN that did not exceed the SRM+EC results
was Qian-Net (the �rst CNN proposed); the other CNNs have exceeded the SRM+EC detection
percentages.

�e most used stenographic algorithms in the studied articles are S-UNIWARD, HUGO, HILL,
WOW in the spatial domain, and J-UNIWARD, UED, and UERD in the JPEG, all with di�erent
payloads. Usually, the most used payload for experiments is 0.4 bpp for the spatial domain or 0.4
bpnzAC for the JPEG domain.

�e comparison of the results of detection of steganographic images obtained by the proposed
CNNs is made concerning the traditional algorithms, which make a manual extraction of complex
features. �e most important algorithms are SRM[23], SPAM[30] and the variants for Selection-
Channel-Aware [58]-[60] for the spatial domain. Selection-Channel-Aware Gabor Filter Residuals
(SCA-GFR) [111, 53], DCTR [112], JPEG Rich Models (JRM)[113], and Phase Aware Projection
Model (PHARM)[114] for frequency domain. �e results obtained with the �rst CNNs were lower
than those obtained by traditional algorithms, but as researchers advanced in the design of new
networks or custom computational elements, the results of these CNNs outperformed the results
reported in the literature.
�e most used Frameworks for CNN implementation are Cuda-convnet [115], Ca�e [116] and
TensorFlow [65], these toolboxes allow for the creation of CNNs in a �exible and fast way. At
Binghamton University (USA)[117] there are a large number of tools, such as algorithms for
steganography and steganalysis (both in the spatial and frequency domains), traditional stega-
nalyzers and applying DL techniques, digital image databases for experiments, and some publi-
cations. Likewise, in the Laboratory of Informatics, Robotics and Microelectronics in the city of
Montpellier-France (LIRMM) [118] there are several DL projects applied to steganalysis, from
which the algorithms can be downloaded, as well as the CNN parameters trained by them and
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Figure 3-4: Accuracy percentage of di�erent CNNs and SRM using di�erent payload values for the
S-UNIWARD steganographic algorithm. [31, 33, 44, 46, 90].

some important publications [61].
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Figure 3-5: Accuracy percentage of di�erent CNNs and SRM using di�erent payload values for the
WOW steganographic algorithm. [31, 33, 44, 46, 90].

Table 3-2: Contributions of the main articles that apply DL to steganalysis.
No
Art

Journal or Conference Main Contributions

1

Signal and Information
Processing Association

Annual Summit
and Conference
(APSIPA 2014),

Asia-Paci�c [29].

�e �rst approach of a CNN applied to steganalysis using a stack of
convolutional Auto-Encoders for pre-training. In this paper, the tradi-
tional methods to do steganalysis such as SRM [23] as similar to the
structure of a CNN is explained. �e paper does not reach the results
o�ered by SRM [23], but it surpasses the results o�ered by SPAM[30],
the two best steganalyzers of the moment with manual extraction of
characteristics.
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Table 3-2 continued from previous page
No
Art

Journal or Conference Main Contributions

2

SPIE/IS&T Electronic
Imaging (EI 2105),

Media Watermarking,
Security, and Forensics [31].

�e �rst CNN with supervised learning is proposed. It uses a high-
pass �lter to reinforce steganographic noise and decrease image con-
tent. For the extraction of features, there are �ve convolutional layers, a
custom Gaussian activation function, and Average Pooling. For classi�-
cation, a module of neurons fully connected to a So�max layer was ad-
ded. �e results are competitive to the state of the art (SRM and SPAM).
�e name of this network is Qian-Net or GNCNN.

3

Media Watermarking,
Security, and Forensics,

IS&T Int. Symp.
on Electronic

Imaging (EI 2016) [32].

Returns the Qian-Net network [31] as a basis for experimentation
and, a�er testing 40 designs of di�erent Neural Networks, propo-
ses two new networks to do steganalysis, which, trained under the
Clairvoyant[32] scenario (for example, using the same incrustation
key to do the steganography process) or under the Cover-Source
Mismatch[32] scenario (training with a database and testing with a
completely di�erent one) achieved be�er results than those obtained
by SRM. �e proposed networks are characterized by their higher,
shallower depths, the Gaussian activation function is changed to the
classic ReLU[54], and the Pooling step[105] is suppressed. �e best-
proposed CNN consists of two convolutional layers, the �rst convolu-
tional layer applies 64 kernels 7x7 that work as a band-pass �lter, the
second convolutional layer applies 16 kernels 5x5 to obtain insensi-
tive features for the Cover-Source Mismatch e�ect, this task subdivi-
sion cannot be achieved with traditional methods generating an infe-
rior performance over other data sets. Finally, CNN can use transfer
learning to test other data sets, which is not possible with traditional
methods.
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Table 3-2 continued from previous page
No
Art

Journal or Conference Main Contributions

4
IEEE Signal
Processing

Le�ers (2016) [33].

A new CNN called Xu-Net[33] is proposed. �is network is characte-
rized by the fact that a�er the �rst convolutional layer, it uses an ABS
layer ABS to facilitate and improve the statistical modeling taking into
account the sign symmetry [23] existing in the noise residuals. Addi-
tionally, it uses BN to prevent CNN training from falling to poor local
minima and learning optimal scales and biases for feature maps [41]. A
TanH[55] activation function is also used on the �rst two layers, and a
ReLU [54] activation function on the rest of the layers in order to rein-
force statistical modeling and avoid over��ing. �ese activation fun-
ctions are also used to avoid low slope regions and the cancellation of
the gradient value when using back-propagation (gradient vanishing
phenomenon), which makes learning impossible. Finally, convolutions
1x1 are used in the last layers to limit statistical modeling.

5

IH&MMSec
Proceedings

of the 4th ACM
Workshop on Information

Hiding and
Multimedia Security

(2016) [34].

Training a set of CNNs that learn about common characteristics (cha-
racteristics vector), output probabilities, and information lost by the
pooling operation to obtain a more precise classi�cation is proposed.
�e results obtained when training a set of CNNs provide be�er results
than when training a single model. �e set of trained networks uses a
structure very similar to the one proposed in [33], with the di�erence
of adding a layer of convolutions and increasing the size of the pooling
of the last two layers.

6

IEEE International
Conference on

Image Processing
(ICIP 2016) [35].

�e parameters learned in the convolutional layers, and the fully con-
nected layers of a high payload, CNN for a given steganographic algo-
rithm is transferred to train a low payload CNN for the same algorithm,
thus improving the performance of this type of networks.
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7

IEEE Transactions on
Information

Forensics and
Security(2017) [36].

For the �rst time, performing steganalysis using DL in the JPEG is pro-
posed. A hybrid Framework is generated wherein the �rst stage, ma-
nual extraction of characteristics, is made from a bank of �lters sup-
plied by SRM. Precisely, it corresponds to the convolution, quantiza-
tion, and truncation phase proposed by DCTR in [112] for RM. For the
second stage, a classi�cation is made using three convolutional sub-
nets, followed by three completely connected network layers and a
So�max layer. �e experimentation is done on large-scale databases
(ImageNet) to obtain results closer to the real world, trained with up to
�ve million images. �e training was done with �ve versions of DL mo-
dels independently to combine the results and obtain be�er accuracy
(Ensemble of CNNs). Finally, the learned model can be easily trans-
ferred to a di�erent a�acking target and even to a di�erent data set,
obtaining satisfactory results.

8

IH&MMSec Proceedings
of the 5th ACM
Workshop on
Information
Hiding and

Multimedia Security
(2017) [96].

Knowledge of JPEG phases is incorporated into the architecture of a
CNN to increase accuracy. �e Xu-Net network is taken and adapted
to work in the JPEG domain; at the end, two CNNs (PNet, VNet) are
proposed. �e �rst allows each JPEG phase to pass through a CNN,
thus increasing computational complexity; the second allows the mix
of the JPEG phases and thus decreases the computational complexity.
Both networks will be trained individually using sets of CNNs to obtain
be�er results. Another innovative concept introduced is the Çatalyst
Kernel”which, together with the traditional high pass �lters used to
pre-process images, allows the network to learn the essential kernels
and detect the stego signal introduced by JPEG steganography. Expe-
riments with J-UNIWARD and UED-JC inlay algorithms are used, and
the results are compared with the traditional steganalysis method SCA-
GFR [111]. For network training, parameters were transferred (Trans-
fer Learning) from the network training with 0.4 bpnzac, and with
the already-trained parameters, initialize the other networks. Finally,
the research team would like to know what e�ect it has on CNN to
train with an image database and try a completely di�erent one (Co-
ver Source-Mismatch) [32],[26].
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9

IH&MMSec Proceedings of
the 5th ACM
Workshop on
Information
Hiding and

Multimedia Security
(2017) [39].

A CNN with 20 convolutional layers is proposed. It is demonstra-
ted that deep CNNs and Pooling operation can overcome traditional
methods based on manual feature extraction. �is network is tested
on J-UNIWARD. Res-Net is also proposed to avoid the disappearance
of the gradient due to the depth of the net. �e experiments are per-
formed on ImageNet’s CLS-LOC base with approximately one million
256× 256 cropped images compressed with a QF 75 quality factor.

10
IEEE Signal
Processing

Le�ers (LSP 2017) [43].

Performing automatic steganography is proposed, taking into account
the characteristics of adaptative steganography. Two CNNs are pro-
posed to compete with each other; the �rst is used for steganography
(Generator), and the second for steganalysis (Discriminator); through
this competition, the algorithm can automatically embed a message in
locations where it is more challenging to detect by a steganalyzer. �-
rough the other training of these two opposing subnets, the proposed
framework can automatically learn to embed change probabilities for
each pixel in a given cover image in the spatial domain. Automatic Ste-
ganographic Distortion Learning framework with GAN (ASDL-GAN)
simulates the rivalry between additive distorted steganography and DL
steganalysis.
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11

IEEE Transactions
on Information

Forensics
and Security

(TIFS 2017) [44].

A CNN is proposed that does not use the traditional high-pass �lter
to obtain the steganographic noise; on the contrary, it uses a set of
high-pass �lters used to calculate residual maps of SRM, whose va-
lues are used to initialize the trainable �lters instead of doing it ran-
domly. �e purpose of these �lters is to suppress image content and
amplify steganographic noise e�ectively. A new activation function ca-
lled TLU [44] is adopted in order to increase the signal-to-noise ratio
(SNR)[119] which is extremely low in the steganography incrustation
process. Finally, the performance of the CNN-based steganalyzer is in-
creased by incorporating knowledge of channel selection (knowledge
of the probability of change of each pixel) [96] and parameter trans-
fer for low payload networks. By adding the values of the probabilities
of change of each pixel and the characteristic maps generated by the
pre-processing �lters (�lters initialized with SRM values), delivering
more information about steganographic noise to the following convo-
lutional layers is possible, thus improving the CNN performance. �is
network is called Ye-Net.

12

International
Conference

on Acoustics,
Speech, and Signal

Processing
(ICASSP 2018) [46].

�is network unites the best features between theXu-Net and Ye-Net.
�e use of a �lter bank for pre-processing based on SRM, TLU, and BN
activation function is highlighted. It does not use the knowledge of
the channel selection (map of probabilities of change of a pixel). For
the training, investiogators use an extended database to improve the
results. �is network is called Yedroudj-Net.

13

Media Watermarking,
Security,

and
Forensics (2018) [47].

�e Ye-Net network is taken and adapted to train with sets of small
resolution images and generalize the model to be able to perform ste-
ganalysis in high-resolution images, that is to say, it addresses the pro-
blem that the images have di�erent sizes. �is due to the tremendous
computational cost involved in training a CNN with high-resolution
input images.
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14
Computing
Research

Repository (2018) [90].

For the �rst time, a new CNN is proposed to optimize the kernel
weights of the pre-processing layer to increase the steganographic noi-
se signal. Convolutional layer �lters are reduced in size to decrease the
number of parameters and model characteristics in a small local region.
Separable convolutions [120, 121] are used to reduce channel correla-
tion, spatial correlation, compress image content and increase signal-
to-noise ratio. SPP[58] is used to add local features, improve feature
rendering capability, and allow arbitrary image sizes. Finally, the data-
base is increased to improve detection accuracy. �is network is called
Zhu-Net. �e results obtained by this network exceed those obtained
by Xu-Net, Ye-Net, Yedroudj-Net and SRM+EC.

Table 3-3: Characteristics of CNNs, databases, steganographic algorithms and results of the main
DL articles applied to steganalysis.

No
Art

Network Architecture

Domain and
Databases and
Steganographic
Algorithms

Percentage of error
(Best obtained)

1

9 convolutional layers subdivi-
ded into 3 stages.

Max Pooling.

1 layer completely connected.

1 So�max.

Spatial

BOSSBase

HUGO

Using 0.4 bpp on BOSSBase
CNN=31
SPAM=42
SRM=14
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2

1 preprocessing layer (1 high-
pass �lter).

5 convolutional layers.

Gaussian activation function.

Average Pooling.

3 completely connected layers.

1 So�max.

Spatial

BOSSBase
ImageNet

HUGO
WOW

S-UNIWARD

Using 0.4 bpp on BOSSBase
CNN=HUGO (28.29),WOW (29.3),
S-UNIWARD (30.29)
SRM=HUGO (25.2), WOW (25.7),
S-UNIWARD (26.3)
SPAM=HUGO (39.1), WOW (38.2),
S-UNIWARD (35.1)

Using 0.4 bpp on ImageNet
CNN=HUGO (33.6),WOW (34.1),
S-UNIWARD (34.7)
SRM=HUGO (32.5), WOW (34.7),
S-UNIWARD (34.4)
SPAM=no results
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Databases and
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Percentage of Error
(Best Obtained)

3

CNN:

1 pre-processing layer (1 high-pass �l-
ter).

2 convolutional layers.

ReLU activation function

Without Pooling.

2 completely connected layers.

1 So�max.

FNN:

1 pre-processing layer (1
high-pass �lter).

2 completely connected
layers.

ReLU activation function.

1 So�max.

Spatial

BOSSBase
LIRMMBase

S-UNIWARD

Using 0.4 bpp on BOSSBase
Clairvoyant scenario
CNN=7.4
FNN=8.66
SRM=24.67

Using 0.4 bpp on
BOSSBase (Train)
and LIRMMBase (Test)
Cover-Source Mismatch scenario
CNN=5.16
FNN=5.89
SRM=48.29
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Algorithms

Percentage of Error
(Best Obtained)

4

1 pre-processing layer (1 high-
pass �lter).

5 convolutional layers.

ABS Absolute Value Layer
(Only a�er the �rst convolu-
tional layer).

Activation function TanH, Re-
LU.

BN.

Average Pooling.

2 completely connected layers.

1 So�max.

Spatial

BOSSBase

S-UNIWARD
HILL

Using 0.1 bpp on BOSSBase
CNN=S-UNIWARD (42,67),
HILL (41.56)
SRM=S-UNIWARD (40.75),
HILL (43.56)

Using 0.4 bpp on BOSSBase
CNN=S-UNIWARD (19,76),
HILL (20.76)
SRM= S-UNIWARD (20.47),
HILL (24.53)
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Network Architecture
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Percentage of Error
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5

1 pre-processing layer (1 high-
pass �lter).

6 convolutional layers.

ABS absolute value layer (Only
a�er the �rst convolutional la-
yer).

Activation function TanH, Re-
LU.

BN.

Average Pooling.

1 layer completely connected.

1 So�max

Spatial

BOSSBase

S-UNIWARD

Using 0.4 bpp on BOSSBase
CNN = 18.99
SRM=18.97

6

1 pre-processing layer (1 high-
pass �lter).

5 convolutional layers.

Gaussian activation function.

Average Pooling.

2 completely connected layers.

1 So�max

Spatial

BOSSBase

WOW
S-UNIWARD

Using 0.4 bpp on BOSSBase
CNN=WOW (21.95),
S-UNIWARD (22.05)
SRM=WOW (20.67),
S-UNIWARD (20.55)
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Percentage of Error
(Best Obtained)

7

�e proposed network consists of two
stages:

�e �rst stage is manual feature
extraction based on Rich Models
(convolution Phase and �antization
& Truncation).

�e second stage consists of 3
convolutional sub-networks of deep
learning for classi�cation each with:

3 convolutional layers.

ABS absolute value layer (only
for a�er the �rst convolutional
layer).

BN.

ReLU activation function.

Average Pooling

3 completely connected layers.

1 So�max.

JPEG

ImageNet

J-UNIWARD
UERD
UED

�e article presents the
results in graphical form
which does not allow to extract
the results in a precise way.
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8

Two networks are proposed:
First Network (PNet), No mixing
of channels

2 pre-processing �lters.

5 convolutional layers, the �rst
2 similar to the Xu-Net.

�e feature maps at the exit of
the 2 convolutional layer are di-
vided into 64 divisions of 16
maps each one which are analy-
zed by a set of CNNs (layers 3 to
5) in an independent way).

ABS absolute value layer (Only
a�er the �rst convolutional la-
yer).

Activation function TanH (la-
yers 1 to 2), ReLU (layers 3 to 5).

Average Pooling only for layers
3 to 5.

1 layer completely connected.

1 So�max

Second Network (VNet), With
Mixed Channels

2 pre-processing �lters

5 convolutional layers

ABS absolute value layer (Only
a�er the �rst convolutional la-
yer).

Activation function TanH (la-
yers 1 to 2), ReLU (layers 3 to 5).

Average Pooling only for layers
3 to 5.

1 layer completely connected.

1 So�max

JPEG

BOSSBase
BOWS 2

J-UNIWARD
UED-JC

Using 0.1 bpnzAC QF 75
BOSSBase(Train,Test)
BOWS 2(Test)
CNN-PNet=J-UNIWARD (35.75),
UED-JC (17.77)
CNN-VNet=J-UNIWARD (36.15),
UED-JC (18.97)
SCA GFR=J-UNIWARD (35.54),
UED-JC (22.54)

Using 0.3 bpnzAC QF 75
BOSSBase(Train,Test)
BOWS 2(Test)
CNN-PNet=J-UNIWARD (12.28),
UED-JC (3.90)
CNN-VNet=J-UNIWARD (13.32),
UED-JC (4.07)
SCA GFR=J-UNIWARD (13.44),
UED-JC (6.35)

Using 0.4 bpnzAC QF 75
BOSSBase(Train,Test)
BOWS 2(Test)
CNN-PNet=J-UNIWARD (6.56),
UED-JC (2.34)
CNN-VNet=J-UNIWARD (7.05),
UED-JC (2.32)
SCA GFR=J-UNIWARD (7.53),
UED-JC (3.46)

Using 0.5 bpnzAC QF 75
BOSSBase(Train,Test)
BOWS 2(Test)
CNN-PNet=J-UNIWARD (3.36),
UED-JC (1.33)
CNN-VNet=J-UNIWARD (3.74),
UED-JC (1.20)
SCA GFR=J-UNIWARD (4.15),
UED-JC (1.74)



38 3 �e State of the Art

Table 3-3 continued from previous page

No
Art

Network Architecture

Domain and
Databases and
Steganographic
Algorithms

Percentage of Error
(Best Obtained)

9

16 �xed DCT �lters.

ABS absolute value layer.

Activation function: TLU.

20 convolutional layers.

BN a�er each convolution.

ReLU activation function a�er
each convolution.

Global Average Pooling a�er last
convolution.

1 layer of fully connected neu-
rons

1 So�max

JPEG

BOSSBase
ImageNet

J-UNIWARD

Using 0.1 bpnzAC QF 75 on
BOSSBase
CNN=32.83
SCA GFR=35.98

Using 0.2 bpnzAC QF 75 on
BOSSBase
CNN=19.47
SCA GFR=23.16

Using 0.3 bpnzAC QF 75 on
BOSSBase
CNN=11.24
SCA GFR=14.09

Using 0.4 bpnzAC QF 75 on
BOSSBase
CNN=6.41
SCA GFR=8.07

Using 0.4 bpnzAC QF 75 on
ImageNet
CNN=16.8
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10

Structure of the steganalyzer or Discri-
minator

1 pre-processing layer (1 high-
pass �lter).

5 convolutional layers.

ABS absolute value layer (Only
a�er the �rst convolutional la-
yer).

Activation function TanH, ReLU.

BN.

Average Pooling.

2 completely connected layers.

1 So�max

Structure of the steganography or Ge-
nerator

1 pre-processing layer (1 high-
pass �lter).

25 convolutional layers.

BN.

Activation function ReLU, Sig-
moid.

No Pooling.

3 completely connected neuron
layers.

Spatial

BOSSBase

S-UNIWARD
ASDL-GAN

Using 0.1 bpp on BOSSBase
CNN=ASDL-GAN (40.04),
S-UNIWARD (42.53)
SRM=ASDL-GAN (33.02),
S-UNIWARD (40.02)

Using 0.4 bpp on BOSSBase
CNN=ASDL-GAN (16.20),
S-UNIWARD (20.01)
SRM=ASDL-GAN (17.40),
S-UNIWARD (20.22)
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11

In general it has 10 layers

�e �rst layer of 30 �lters whose
weights are not initialized ran-
domly, but with the values of the
high-pass �lters used in SRM.
�e �rst layer can be merged
with a probability map of all pi-
xels in the image to account for
channel selection.

8 convolutional layers.

Activation function ReLU (from
layers 2 to 9), TLU (only in the
�rst layer).

Average Pooling from 4 to 7 la-
yers.

1 layer completely connected.

1 So�max.

Spatial

BOSSBase
BOWS 2

WOW
S-UNIWARD

HILL

Using 0.1 bpp on
BOSSBase+BOWS 2(Train and Test)
CNN=WOW (24.42),
S-UNIWARD (32.20), HILL (33.80)
SRM=WOW (31.63),
S-UNIWARD (38.06), HILL (38.94)

Using 0.4 bpp on
BOSSBase+BOWS 2(Train and Test)
CNN=WOW (9.59),
S-UNIWARD (12.81), HILL (17.08)
SRM=WOW (15.36),
S-UNIWARD (21.36), HILL (24.10)

Using 0.5 bpp on
BOSSBase+BOWS 2(Train and Test)
CNN=WOW (9.06),
S-UNIWARD (10.00), HILL (13.05)
SRM=WOW (13.31),
S-UNIWARD (17.32), HILL (21.15)
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12

30 preprocessing �lters based on
SRM

5 convolutional layers

1 ABS only a�er �rst layer con-
volutional

BN a�er each layer convolutio-
nal

Activation function TLU (2 �rst
layers), ReLU (3 last layers)

Average Pooling of layers 2 to 5

3 fully connected layers

1 So�max

Spatial

BOSSBase

WOW
S-UNIWARD

Using 0.2 bpp on BOSSBase
CNN=WOW (27.80),
S-UNIWARD (36,70)
SRM=WOW (36.50),
S-UNIWARD (36.60)

Using 0.4 bpp on BOSSBase
CNN=WOW (14.10),
S-UNIWARD (22.80)
SRM=WOW (25.50),
S-UNIWARD (24.70)

13

1 layer of 30 �lters whose
weights are not initialized ran-
domly, but take into account the
high-pass �lters used in SRM.

8 convolutional layers.

Activation function ReLU (from
layers 2 to 9), TLU (only in the
�rst layer)

1 layer fully connected

1 So�max

Spatial

BOSSBase

LSBM
WOW

Using 256× 256 on BOSSBase
LSBM=11.77
WOW=11.68

Using 512× 512 on BOSSBase
LSBM=10.68
WOW=13.03

Using 1024x1024 on BOSSBase
LSBM=9.40
WOW=14.45
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14

1 layer of 30 �lters whose
weights are not initialized ran-
domly but takes into account the
high-pass �lters used in SRM,
these �lters will be optimized
during the training process and
decrease the size of the kernels
to train fewer parameters.

2 separate convolution layers to
obtain channel correlation and
spatial correlation residues, as
well as increase steganographic
noise power.

4 convolutional layers.

Batch Normalization of layers 2
to 7

ReLu activation function of la-
yers 2 to 7.

Average pooling of layers 4 to 6

1 SPP module that allows avera-
ge pooling multi level and work
with images of arbitrary size.

2 fully connected layers.

1 So�max

Spatial

BOSSBase
BOWS 2

WOW
S-UNIWARD

Using 0.2 bpp on BOSSBase
CNN=WOW (23.33),
S-UNIWARD (28.50)
SRM=WOW (36.50),
S-UNIWARD (36.60)

Using 0.4 bpp on BOSSBase
CNN=WOW (11.80),
S-UNIWARD (15.30)
SRM=WOW (25.50),
S-UNIWARD (24.70)

Using 0.2 bpp on
BOSSBase+BOWS 2(train)
BOSSBase(Test)
CNN=WOW (13.1),
S-UNIWARD (17.1)

Using 0.4 bpp on
BOSSBase+BOWS 2(train)
BOSSBase(Test)
CNN=WOW (6.5),
S-UNIWARD (8.1)
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3.4. Transfer Learning

Transfer learning techniques have been used in image steganalysis. �e main uses have been to
train CNN to detect low payloads (0.2bpp for example), for this the CNNs are initialized with
weights obtained from training with high payloads (0.4 bpp for example). �e CNNs can use
transfer learning to test other databases.
For example in [32], the researchers trained under the Cover-Source Mismatch[32] scenario (trai-
ning with a database and testing with a completely di�erent one). �e proposed networks are
characterized to obtain insensitive features for the Cover-Source Mismatch e�ect, this task sub-
division cannot be achieved with traditional methods generating an inferior performance over
other data sets. Qian et al., [35] present a methodology where the learned parameters in the con-
volutional layers and the fully connected layers of a high payload, and CNN for a given stegano-
graphic algorithm are transferred to train a low payload CNN for the same algorithm, improving
the performance. Zeng et al. proposed for the �rst time to perform steganalysis using DL in the
JPEG [36]. �e experimentation is done on large-scale databases like ImageNet. In this research
the learned models can be easily transferred to a di�erent a�acking target and even to a di�erent
data set, obtaining satisfactory results. Mo Chen et al., [96] present for network training. Para-
meters were transferred from the network training with 0.4 bpnzac, and with these parameters
already trained, initialize the other networks. Also train CNNs with an image database and try
a completely di�erent one (Cover Source-Mismatch) [32],[26]. For the Ye-Net architecture [44]
the performance is increased by incorporating knowledge of channel selection and parameter
transfer for low payload networks.
�ese are some works highlighted regarding the use of transfer learning, and its importance in
steganalysis. �e authors see that using these techniques also allow for working on the Cover
Source-Mismatch e�ect, and in general improving the detection capabilities, especially for low
payloads.

3.5. Normative Framework

Each of the digital image databases necessary for the experimentation (BOSSBase 1.01, BOWS 2,
ImageNet, Alaska #2) are copyrighted under GNU license, this means, if the use of the images
is for academic purposes (non-commercial), no permission is needed, only the respective ack-
nowledgments and citations are requested; these databases can be downloaded directly from the
internet freely by any researcher interested in the subject. �e implementations of the Stegano-
graphic algorithms and the architectures of the CNNs necessary to contrast the results obtained
are in free repositories such as GitHub under GNU license, which means that the implementations
can be fully used in the research for academic purposes (non-commercial), taking into account
making the respective acknowledgments and citations.



4 Materials, Methods and Methodology

�is chapter contains information about the databases used, as well as the methodology emplo-
yed for the development of this thesis, organized as follows: Section 4.1 shows the approach and
type of research of this thesis; Section 4.2 contains the universe and sample of data where stega-
nalysis can be applied; Section 4.3 explains the techniques and instruments for data collection
and analysis; and �nally, Section 4.4 shows the research activities conducted by each speci�c
objective exposed in Chapter 2.

4.1. Approach and Type of Research

�e type of research is experimental because methodologies will be designed to improve the de-
tection percentages of steganographic images to be tested using experiments taking case and
control reference groups. �e research approach is quantitative because, through experimen-
tation, statistics and percentages of steganographic image detection accuracy will be obtained.
Finally, the research is iterative. Depending on the results obtained in the experiments, making
adjustments to rerun the same experiment several times to obtain the best parameters to obtain
the best results of steganographic image detection will be necessary.

4.2. Universe and Sample

Steganalysis can currently be performed on two domains, spatial and frequency (JPEG). For the
spatial domain research projects use two databases BOSSBase [49] and BOWS 2 [108]. For the
frequency domain, real-world images or the well-known ImageNet database [38] can be used. �e
focus of the research is to work in the spatial domain, restricting the experiments to BOSSBase
and BOWS 2.

BOSSBase 1.01 (see Figure 4-1) and BOWS 2 (see Figure 4-2) each consist of 10000 cover images
(without applying any steganographic algorithm) in PGM format of eight bits and size 512× 512

pixels (one channel), both databases were built using similar cameras and capture conditions
to avoid the cover-source mismatch e�ect [32, 26, 122]. Initially, the experiments in the spatial
domain only used BOSSBase, and in order to have more data, BOWS 2 was added. To reproduce
the results reported in the literature and to compare the advances obtained in this thesis, two
methodologies are proposed to partition the data:
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4.2.1. Methodology only with BOSSBase (10,000 images)

10,000 images cover

Images are resized from 512 × 512 to 256 × 256 due to memory limitations; all research
has applied this same procedure reported to date.

�e steganographic algorithms HUGO, WOW, S-UNIWARD, HILL, and MiPOD are applied
with payloads of 0.2, 0.3, 0.4, and 0.5 bpp, generating 10,000 PAIRS of images (cover-stego)
for each payload and each steganographic algorithm.

Each set of images is randomly divided as follows: Train 4,000 image pairs, validation 1,000
image pairs, and test 5,000 image pairs.

�is distribution of data is the same as that used by Xu-Net [33], Ye-Net [44], and Zhu-Net [57]
in their experiments.

BO S S Ba s e  1 . 0 1

Figure 4-1: BOSSBase 1.01 cover images

4.2.2. Methodology with BOSSBase + BOWS 2

20,000 images cover (10,000 BOSS and 10,000 BOWS 2)

Images are resized from 512 × 512 to 256 × 256 due to memory limitations; all research
has applied this same procedure reported to date.

�e steganographic algorithms HUGO, WOW, S-UNIWARD, HILL, and MiPOD are applied
with payloads of 0.2, 0.3, 0.4, and 0.5 bpp, generating 10,000 PAIRS of images (cover-stego)
for each payload and each steganographic algorithm.

Each set of images is randomly divided as follows: Train 14,000 image pairs (4,000 BOSS+
10,000 BOWS 2), validation: 1,000 image pairs (BOSS), test: 5,000 image pairs (BOSS)
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BOWS  2

Figure 4-2: BOWS 2 cover images
�is distribution of data is the same as that used by Ye-Net [44], Yedroudj-Net [46], SR-Net [40]
and Zhu-Net [57] in their experiments.

Currently, in the existing repositories, only images can be downloaded without applying any
steganographic algorithm (cover images); as reported in the literature, researchers use the algo-
rithms published in [117] to introduce messages into the images. Since the images are randomly
subdivided in all investigations, we will repeat all experiments up to 10 times to guarantee statis-
tical robustness, reporting both the obtained precision and the standard deviation. �is will allow
us to compare the results obtained in this research with those reported in the literature. Finally,
the publications derived from this doctoral process will release the databases constructed and
the algorithms used to the scienti�c community, in order to generate a structured and reliable
knowledge base to continue advancing the subject.

4.3. Techniques and Instruments for Data Collection and

Analysis

�e digital image databases will be downloaded from the sources used by researchers in the �eld;
these sources are freely available. For the reproduction and contrast of results, the architectures
of existing CNNs and the most commonly used steganographic algorithms for steganalysis will
be downloaded from free GitHub repositories.

4.3.1. Frameworks Used to Perform Steganalysis Using CNNs

�e �rst Deep Learning experiments applied to steganalysis were performed using the Cuda-
Convnet [115] framework. �is tool is a fast C++ / CUDA implementation for convolutional
neural networks created by Google, but in 2014 it ceased to be supported, which is why resear-
chers stopped using this framework. �en some researchers used Ca�e [116], this is a high-level
framework that allows for fast neural network design. �e problem is that being a high-level
language in some experiments, implementing custom components is complex, additionally, in
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recent years many researchers have switched to other frameworks generating a decrease in tech-
nical support and updating their libraries. �e last framework is TensorFlow (TF) [65], this is
a free and open-source so�ware library for data �ow and di�erentiable programming in a wide
variety of tasks; it is also a symbolic mathematics library used for machine learning applications
such as neural networks. It is used for both research and production at Google. Most of the cu-
rrent experiments in steganalysis are implemented on this framework because it uses high and
low-level languages, allowing a fast and �exible implementation of any neural network. �is set
of libraries is developed on Python+CUDA; its �exible architecture allows for easy implementa-
tion of the computation on various platforms (CPU, GPU, TPU) and desktop computers to server
clusters and mobile devices, and peripherals. Behind this framework, there is a large scienti�c
community and excellent technical support provided by Google. Highlighting that a TPU is a
speci�c hardware created by Google to train neural networks using TF is essential. Finally, the
framework the Keras API inherited allows for increased �exibility. Considering the above, TF will
be used for this doctoral thesis due to the ease and �exibility it has when implementing neural
network architectures and arbitrary and de�nable components by the experimenter; additionally,
essential research in steganalysis is implemented in this framework, which ensures that the com-
munity interested in this research topic has all the facilities to reproduce the results reported in
the literature and thus contribute e�ciently to the scienti�c community.

4.3.2. Hardware and So�ware Used to Develop the Experiments of this

Thesis

For the implementation of the algorithms and data analysis, the team will use the Python pro-
gramming language with the following libraries: Tensor�ow, keras, numpy, pandas, scipy, mat-
plotlib, cv2, time, os, skimage, yellowbrick and sklearn, these libraries will allow for automatically
partitioning the data, processing the images, calculating metrics, plo�ing results and building
CNNs in a fast and �exible way. �e downloaded digital image databases will be coded with the
most commonly used steganographic algorithms and stored locally on a server where the experi-
ments will be executed. �e general hardware used for the experiments consists of a workstation
and the Google collaboratory. �e workstation has CPU+GPU architecture, and the collaboratory
has CPU+GPU+TPU architecture.

Deep learning models are enhanced by GPUs and TPUs. Accessing TPUs is done from Google
Colaboratory. Once there, the models are adjusted to work with the TPUs. For example, in the
GBRAS-Net model, on a 11GB Nvidia RTX 2080Ti GPU (UAM computer), at one epoch it takes
229 seconds; whereas with the TPU con�gured in Google Colaboratory, the epoch needs only 52
seconds. �at is, it performs it more than three times faster. For the Ye-Net model, on a 16GB
Tesla P100 GPU (Google colaboratory), at one epoch it took 44 seconds approximately; whereas
with the TPU it only takes 12 seconds. �is veri�es that the use of TPU helps the experiments
run more e�ciently. Now, it is important to note that in Google colaboratory we can open several
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notebooks, and use di�erent accounts. Which helps reduce experiment times to an unprecedented
level. To achieve a correct training of the models batch sizes must be chosen. �e batch size must
be chosen appropriately for each CNN model.
subsectionMetric to Measure the Performance of Using CNNs in Steganalysis �e most commonly
used metric for the steganalysis process is the accuracy for a binary classi�cation task (cover-
stego) in terms of the number of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) predictions. TP refers to positive instances correctly classi�ed as positive;
TN refers to negative instances correctly classi�ed as negative; FP refers to negative instances
incorrectly classi�ed as positive; FN refers to positive instances incorrectly classi�ed as negative.
�e formula used to calculate the accuracy is shown in Equation 4-1. �e accuracy corresponds
to the proportion of correct predictions, usually presented as a percentage or as a number from
0 to 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(4-1)

4.4. Research Activities Conducted

�e research activities conducted during this thesis are associated with a speci�c objective as
shown below:

Specific Objective 1

1. �e CNNs with the best steganographic image detection performance were identi�ed, and
their architecture was extracted.

2. �e best frameworks and hardware to implement CNNs applied to steganalysis were iden-
ti�ed.

3. �e algorithms of the CNNs architectures obtained in activity 1 were implemented, and
their results were reproduced.

Specific Objective 2

1. �e image databases most commonly used for DL applied to steganalysis were identi�ed
and downloaded.

2. �e databases obtained in activity 1 of this speci�c objective were divided and processed
as reported in the literature.

3. �e size of the database was increased using rotation, cropping, resizing and other opera-
tions.
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4. �e databases were embedded with the following steganographic algorithms: WOW, HU-
GO, HILL, S-UNIWARD, MiPOD. Using 0.2, 0.3, 0.4 and 0.5 bpp payloads.

Specific Objective 3

1. New CNN architectures were built from the architectures identi�ed in activity 1 of speci�c
objective 1 or the systematic literature review.

2. Implemented the algorithms of the CNN architectures obtained in activity 1 of speci�c
objective 3.

Specific Objective 4

1. �e best computational elements of CNNs identi�ed in activity 1 of speci�c objective 1
were taken to implement them on the architectures obtained in speci�c objective 3.

2. New computational elements of CNNs were generated to implement them on the architec-
tures obtained in speci�c objective 3.

Specific Objective 5

1. �e performance of the architectures and computational elements of CNNs generated in
speci�c objectives 3 and 4 were evaluated.

2. �e performance of the computational elements and CNN architectures obtained in speci�c
objectives 3 and 4 was evaluated using techniques such as transfer of learning, sets of CNNs
and dense networks.

3. �e performance results of activities 1, 2 and 3 of speci�c objective 5 were compared with
the results reported in the literature.

4. Results articles were published in specialized journals and the thesis document was gene-
rated.

A�er explaining this thesis’s general and methodological aspects, the following chapters present
developments obtained, with their respective methodology, results, discussion, and conclusions.



5 Strategy to Improve the Accuracy of

Convolutional Neural Network

Architectures Applied to Digital Image

Steganalysis in the Spatial Domain

�is chapter is based on the results obtained in the article [3] and presents a thorough experi-
mentation process where di�erent CNN architectures were tested under various combinations
of computational elements and hyper-parameters to determine which of them are relevant in
steganalysis and then design a strategy to improve steganographic image detection accuracy
for multiple architectures. Our strategy makes modi�cations in each stage of the network: pre-
processing, feature extraction, and classi�cation. �e strategy involves a pre-processing stage
with Spatial Rich Models �lters, Spatial Dropout, Absolute Value layer, and Batch Normaliza-
tion. �e proposed changes improved the accuracy of three steganalysis CNNs from 2% up to
10% while reducing the training time to less than six hours and enhancing the stability of the
networks. Additionally, this approach allows us to adapt image classi�cation architectures (e.g.,
VGG16 or VGG19) to the steganalysis application. All layers of our strategy are essential to assess
the relevance of di�erent aspects of DL algorithms applied to steganalysis, ultimately helping to
understand the limitations and approach them.

�e rest of the chapter has the following order: Section 5.1 describes the database, computatio-
nal elements involved in the strategy, and the CNN architectures engaged in the experiments.
Section 5.2 present the results found. Section 5.3 analyses and discusses the results. Finally,
Section 5.4 presents the conclusions of the chapter.

5.1. Materials and Methods

5.1.1. Databases

�e databases used for the experiments were Break Our Steganographic System (BOSSBase 1.01)
[123] and Break OurWatermarking System (BOWS 2) [50]. �ese databases are frequently applied
for steganalysis in the spatial domain. Each database has 10, 000 cover images in a PGM format,
512x512 pixels, and bits in grayscale. BOSSBase and BOWS 2 have similar features and capture
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devices to avoid the Cover-Source Mismatch e�ect [122, 32, 96]. For this research, a baseline for
all the experiments was established. �e following operations were performed on the images:

All images were resized to 256× 256 pixels.

Each corresponding steganographic image was created for each cover image using two
di�erent algorithms, two payloads of 0.2 bpp and 0.4 bpp.

�e images were divided into training, validation, and test sets, creating two databases: one
with images from BOSSBase 1.01 and the other combining BOSSBase 1.01 and BOWS 2.

Each set was saved in NumPy array (npy) format, which decreases reading time by factors
between 16 and 20.

Partition

We used two databases for the experiments, BOSSBase 1.01 and BOSSBase 1.01 + BOWS 2. �e
BOSSBase 1.01 database contains 10, 000 pairs of images (cover and stego) divided into 4, 000

pairs for training, 1, 000 pairs for validation, and 5, 000 for testing. �e partition of the BOSSBase
1.01 database was based on the works by [33], [44], and [57]. It is the same partition that appears
in Section 4.2.1.

�e BOSSBase 1.01 + BOWS 2 database contains 20, 000 pairs of images, divided into 14, 000 pairs
for training (10, 000 BOWS 2 + 4, 000 BOSSBase 1.01), 1, 000 pairs for validation (BOSSBase 1.01)
and 5, 000 for testing (BOSSBase 1.01). �e distribution and partition for this database was done
as proposed by [44], [46], and [57]. It is the same partition that appears in Section 4.2.2.

5.1.2. Steganographic Algorithms

Two steganographic algorithms were used to embed noise in the cover images from the databases;
these were: S-UNIWARD by [16] and WOW by [17] with two payloads (0.2 and 0.4 bpp). �e
steganographic algorithms based implementation was on the open-source tool named Aletheia
[124] and open-source implementation by Digital Data Embedding Laboratory at Binghamton
University [117].

5.1.3. Computational Elements

SRM filter banks

SRM �lters were designed by [23] to enhance and extract steganographic noise from images.
�ese �lters were designed and used in steganalysis before introducing CNNs to the �eld, but
as shown by [44] and [46], using these �lters to initialize the kernels of a convolutional layer
improves detection results. Inspired by these works, the preprocessing block uses 30 high-pass
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�lters from the SRM before the feature extraction stage. �e selected �lters are presented in
Figure 3-2. It is important to note that the convolution kernels’ size was set to 5 × 5 and to
achieve that, some of the �lters were padded with zero.

BN

BN consists of normalizing each feature distribution, making the average zero and the variance
unitary, which results in less sensitive training to the initialization of parameters. �is operation
allows scaling and translating the distribution, if necessary [41]. In practice, BN allows for a
higher learning rate and improves detection accuracy [96]. Equation 5-1 describes the BN used
in this study.
Given a random variable X whose realization is a value x ∈ R of the feature map, the BN of this
value x [1, 2] is:

BN(x, γ, β) = β + γ
x− E[X]√
V ar[X] + ε

(5-1)

with E[X] the expectation, V ar[X] the variance, and γ and β two scalars represent a re-scaling
and a re-translation. �e expectation and the variance are computed per batch, while γ and β are
optimized during training.

ABS Layer

An ABS layer computes the absolute value of the feature maps. When applied in steganalysis, it
forces the statistical modeling to take the symmetry of noise residuals into account [33].

Spatial Dropout

Spatial Dropout was introduced by [125] as a type of Dropout for CNN, which improves gene-
ralization and reduces over��ing. Compared to traditional Dropout, which “drops” the neuron’s
activation, Spatial Dropout “drops” the entire feature map.

Truncated Linear Unit (TLU) Activation Function

�e TLU activation function was �rst introduced by [44] as a steganalysis particular activation
function. �is function’s motivation is to capture the external signal to noise ratio characteris-
tic of the steganographic embedding procedure, which in general, embeds signals with a much
lower amplitude than image content. TLU is a modi�cation of the ReLU, which performs linear
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activation, but is truncated at threshold T. TLU is de�ned in Equation 5-2.

TLU(x) =


−T if x < −T
x if − T ≤ x ≤ T

T if x > T

(5-2)

Leaky Rectified Linear Unit Activation Function

Leaky ReLU is another modi�cation of the ReLU activation function. In this case, for negative
values, the function decreases linearly controlled by the negative slopem. �is slight modi�cation
is useful for speci�c applications, given that it avoids the potential problem of a neuron’s output
always being zero, the Leaky ReLU is less sensitive to weight initialization and data normalization.
Equation 5-3 de�nes this activation function.

LeakyReLU(x) =

{
mx if x < 0

x if x ≥ 0
(5-3)

Hyperbolic Tangent Activation Function

TanH activation function is commonly used in neural networks. It provides nonlinear activa-
tion while being a smooth di�erentiable function. TanH range is also constrained. Equation 5-4
de�nes TanH.

TanH(x) =
ex − e−x

ex + e−x
(5-4)

5.1.4. CNN Architectures

Our strategy was developed and tested on three CNN architectures designed for steganalysis
in the spatial domain and two image classi�cation CNN architectures. �e description of the
steganalysis CNNs is shown in Chapter 3.

Xu-Net

Xu-Net is the name for the CNN proposed by [33]. �is architecture has a feature extraction stage
composed of a HPF layer, �ve convolutional layers for feature extraction, an ABS layer a�er the
�rst convolutional layer, BN a�er each convolutional layer, a classi�cation stage that consists of
two fully connected layers, and one So�max. �e �rst two layers use the TanH activation fun-
ction and ReLU for the last three layers [1].
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�e mini-batch gradient descent optimizer was used for the training process, with momentum
�xed to 0.9, and the learning rate initialized to 0.001, scheduled to decrease 10% every 5, 000

iterations. Each mini-batch consisted of 64 images (32 cover/stego pairs). �e CNN was trained
for 120, 000 iterations.

Ye-Net

�is network proposed by [44] uses an SRM �lter bank for steganographic noise extraction. �e
feature extraction stage consists of eight convolutional layers, a TLU activation function a�er
the �rst layer, and TanH for the others. �e classi�cation stage has one fully connected layer and
So�max activation function.

In the original Ye-Net work, the AdaDelta optimizer was used, with momentum �xed to 0.95,
weight decay set to 5×10−4, the “delta” parameter was 1×10−8, and the learning rate initialized
to 0.4. Each mini-batch consisted of 32 images (16 cover/stego pairs). �e CNN was trained for
di�erent number of epochs based on the experiment and behavior of accuracy.

Yedroudj-Net

�is network proposed by [46] takes the best features of the Xu-Net and Ye-Net and uni�es them
under the same architecture. �is architecture uses an SRM-inspired �lter bank, �ve convolu-
tional layers for feature extraction, an ABS layer a�er the �rst one, Average Pooling a�er each
layer, starting from the second one. It uses the TLU activation function in the �rst two layers
and ReLU in the last three layers. �e classi�cation stage has two fully connected layers and a
So�max activation function.

A mini-batch stochastic gradient descent (SGD) optimizer was applied. �e momentum was �xed
to 0.95 and the weight decay to 0.0001. �e learning rate (initialized to 0.01) was decreased by
a factor of 0.1, each 10% of the total number of epochs. �e mini-batch size was set to 16 (8
cover/stego pairs), due to GPU memory limitation.

VGG16 and VGG19

VGG16 and VGG19 are CNNs proposed by [126]. �ese architectures were initially designed for
image classi�cation and presented for the Large Scale Visual Recognition Challenge 2014 [127],
achieving 93.2% top-5 test accuracy in ImageNet. �e number in the network name represents
the number of weight layers each architecture has; VGG16 has 16 weight layers (13 convolutio-
nal and three fully connected layers). VGG19 has 19 weight layers (16 convolutional and three
fully connected layers). Both architectures consist of �ve convolutional blocks (variable number
of convolutional layers), each followed by Max Pooling, three fully connected layers, and So�-
max activation function at the end for classi�cation purposes. All hidden layers use the ReLU
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activation function.

5.1.5. Strategy

With all the computational elements mentioned before, all architectures are transformed by the
following changes:

Input image resized to 256× 256

All SRM �lters were applied in the pre-processing block by a convolution, followed by a
3× TanH activation, which is a modi�ed TanH with range (−3, 3).

Spatial Dropout applied in Convolutional blocks beginning with the second one.

Activation use in Convolutional blocks were Leaky ReLU.

Add Absolute layer (ABS) a�er activation in Convolutional blocks.

BN layer a�er the absolute layer in Convolutional blocks.

Concatenation layer with triple input of the last layer, located a�er the �rst and last BN.

�e classi�cation stage, shown in Figure 5-1, consists of three fully connected layers (128,
64 and 32 units, respectively) with Leaky ReLU activation and So�max activation function.
�is stage is located a�er the global average pooling layer and is the same in all architec-
tures.

�e optimizer was stochastic gradient descent.
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Figure 5-1: Classi�cation stage implemented for our strategy

Figure 5-2 presents the changes in Ye-Net Architecture as an example of how the strategy is
applied, and Figure 5-3 shows the strategy applied over classi�cation models (Especi�cly VGG16)
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Figure 5-2: (A) Architecture of the original Ye-Net, (B) Ye-Net architecture with the strategy applied.

5.1.6. Hyper-parameters

Convolutional and fully connected layers weights have a glorot normal initializer and use L2
regularization for kernels and bias. �e spatial dropout rate has an 0.1 value. BN has a momen-
tum of 0.2, epsilon of 0.001, and renorm momentum of 0.4 value. �e stochastic gradient descent
optimizer momentum is 0.95, and a learning rate initialized to 0.005. Finally, activation in convo-
lutional layers was a modi�ed ReLU with a negative slope of 0.1, converting a ReLU into a Leaky
ReLU.

5.1.7. Training

�e batch size is set to 64 images for the steganalysis CNNs (Xu-Net, Ye-Net, and Yedroudj-Net)
and 32 images for the VGG16 and VGG19 due to their bigger network size. �e number of epochs
needed to train the architectures varies depending on the database, payload, and model. Ye-Net
and Yedroudj-Net are trained for 100 epochs in both databases with 0.4 bpp, while Xu-Net was
trained 150 epochs. VGG16 and VGG19 in BOSSBase 1.01 with 0.4 bpp are trained for 100 and 160

epochs, respectively; in BOSSBase 1.01 + BOWS 2 with 0.4 bpp, only 60 epochs are necessary for
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convergence in both networks. To train the networks with 0.2 bpp, their weights were initialized
with the weights obtained from the model trained with 0.4 bpp (transfer learning). For 0.2 bpp,
all CNNs were trained for 50 epochs.

5.1.8. So�ware and Hardware

Most of the architectures and experiments implementations used Python 3.8.1 and TensorFlow
[128] 2.2.0 in a workstation running Ubuntu 20.04 LTS as an operating system. �e computer
runs a GeForce RTX 2080 Ti (11 GB), CUDA Version 11.0, an AMD Ryzen 9 3950X 16-Core
Processor, and 128 GB of RAM. �e rest of the implementations used the Google Colaboratory
platform in an environment with a Tesla P100 PCIe (16 GB), CUDA Version 10.1, and 25.51 GB
of RAM.

5.2. Results

For comparison purposes, all CNNs were implemented as presented in the original papers. �is
allowed to establish a baseline along with results reported in literature. Figure 5-4 shows the
training curves for Xu-Net without the strategy.
�e strategy proposed for CNNs was trained and tested using the images (cover and stego) of
BOSSBase 1.01 and BOSSBase 1.01 + BOWS 2, with stenographic algorithms S-UNIWARD and
WOW at 0.2 and 0.4 bpp. �e highest accuracy in testing is used to evaluate performance. �e
arrangement with the BOSSBase 1.01 and BOSSBase 1.01 + BOWS 2 databases in S-UNIWARD
is recorded in Table 5-1 and with WOW in Table Table 5-2. �e obtained accuracy and loss
curves of CNN Xu-Net in WOW with 0.4bpp BOSSBase 1.01 are presented in Figure 5-5, Ye-Net
in WOW 0.4bpp with BOSSBase 1.01 + BOWS 2 in Figure 5-6, and Yedroudj-Net in S-UNIWARD
0.4bpp with BOSSBase 1.01 are presented in Figure 5-7, to corroborate the strategy’s operation.

Table 5-1: Accuracy in test S-UNIWARD stego-images with di�erent payloads using BOSSBase 1.01
and BOSSBase 1.01 + BOWS 2

Dataset BOSSBase 1.01 BOSSBase 1.01 + BOWS 2

Results Reported in Literature �e Strategy Reported in Literature �e Strategy
Payload 0.2 bpp 0.4 bpp 0.2 bpp 0.4bpp 0.2 bpp 0.4 bpp 0.2 bpp 0.4bpp
Xu-Net 0.6090 0.7280 0.6829 0.7819 – – 0.7121 0.8182
Ye-Net 0.6000 0.6880 0.7103 0.8101 – – 0.7269 0.8338
Yedroudj-Net 0.6330 0.7720 0.6773 0.7964 0.6560 – 0.7335 0.8415
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Table 5-2: Accuracy in test WOW stego-images with di�erent payloads using BOSSBase 1.01 and
BOSSBase 1.01 + BOWS 2

Dataset BOSSBase 1.01 BOSSBase 1.01 + BOWS 2

Results Reported in Literature Team Strategy Reported in Literature �e strategy
Payload 0.2 bpp 0.4 bpp 0.2 bpp 0.4bpp 0.2 bpp 0.4 bpp 0.2 bpp 0.4bpp
Xu-Net 0.6760 0.7930 0.7352 0.8221 – – 0.7483 0.8476
Ye-Net 0.6690 0.7680 0.7547 0.8451 0.7390 – 0.7713 0.8623
Yedroudj-Net 0.7220 0.8590 0.7623 0.8470 0.7630 – 0.7822 0.8691

According to the results listed in Tables 5-1 and 5-2, �e strategy for CNNs helps to overco-
me the reported accuracies in state-of-the-art [4, 1, 44, 46], in WOW and S-UNIWARD with 0.2

and 0.4bpp payloads. �rough the employed strategy, VGG16 and VGG19 classi�cation networks
were transformed into steganalysis networks (VGG16Stego and VGG19Stego see Figure 5-3),
demonstrating that by adding the strategy to classi�cation CNNs, they become optimal for ste-
ganalysis. Table 5-3 recorded the accuracy of VGG16Stego and VGG19Stego with the BOSSBase
1.01 and BOSSBase 1.01 + BOWS 2 databases in S-UNIWARD and Table 5-4 in WOW. In those
tables, Max Pooling and Average Pooling are variants of model results. Average Pooling is used
more in steganalysis models to obtain the stenographic noise of the images. Max Pooling is used
in the classi�cation CNNs (VGG16 and VGG19) to get the most relevant image characteristics.
�e CNN VGG19Stego accuracy and loss curves were obtained in WOW at 0.4bpp with BOSS-
Base 1.01, VGG16Stego with Average Pooling in S-UNIWARD 0.4bpp BOSSBase 1.01 + BOWS 2

are presented in Figure 5-8, to corroborate the strategy’s operation.

Figure 5-9 is presented the ROC curves of all Experiments in S-UNIWARD, while Figure 5-10
shows ROC curves in the WOW algorithm.

Table 5-3: Accuracy in test S-UNIWARD stego-images with VGG16Stego-VGG19Stego and di�erent
payloads using BOSSBase 1.01 and BOSSBase 1.01 + BOWS 2

Dataset BOSSBase 1.01 BOSSBase 1.01 + BOWS 2

Pooling Max Pooling Average Pooling Max Pooling Average Pooling
Payload 0.2 bpp 0.4 bpp 0.2 bpp 0.4bpp 0.2 bpp 0.4 bpp 0.2 bpp 0.4bpp
VGG16Stego 0.7370 0.8291 0.7356 0.8370 0.7513 0.8545 0.7473 0.8511
VGG19Stego 0.7420 0.8210 0.7417 0.8291 0.7409 0.8520 0.7550 0.8490
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Table 5-4: Accuracy in test WOW stego-images with VGG16Stego-VGG19Stego and di�erent pay-
loads using BOSSBase 1.01 and BOSSBase 1.01 + BOWS 2

Dataset BOSSBase 1.01 BOSSBase 1.01 + BOWS 2

Pooling Max Pooling Average Pooling Max Pooling Average Pooling
Payload 0.2 bpp 0.4 bpp 0.2 bpp 0.4bpp 0.2 bpp 0.4 bpp 0.2 bpp 0.4bpp
VGG16Stego 0.7760 0.8556 0.7857 0.8640 0.8059 0.8825 0.8017 0.8830
VGG19Stego 0.7820 0.8570 0.7930 0.8656 0.8060 0.8833 0.8055 0.8857

5.3. Discussion

�is section presents the results of testing di�erent combinations of computational elements
and hyper-parameters of CNN architectures applied to image steganalysis in the spatial domain,
which led to identifying relevant elements for this task and designing a general strategy to im-
prove CNNs. �ere were improvements in the convergence and stability of the training process
and steganographic images’ detection accuracy.

Regarding detection accuracy, the steganalysis CNNs (Xu-Net, Ye-Net, and Yedroudj-Net) percei-
ved an improvement from 2% up to 10% in both steganographic algorithms and payloads. �is
performance boost can be a�ributed to the pre-processing stage involving the SRM �lter bank
and the modi�ed 3× TanH activation function. �e SRM �lter bank objective is to enhance ste-
ganographic noise in images, and as proven before, it improves detection accuracy [44, 46]. TLU
function inspired the activation function. As shown by Ye et al. (2017), it is be�er at capturing
the steganographic noise than other activation functions, and the threshold value that yielded
the best results was T = 3. Both TLU and TanH have a similar shape, but the la�er is a smooth
di�erentiable function, and the ampli�cation by three mimics the desired behavior of the TLU
function. On the other hand, the VGG16 and VGG19 image classi�cation CNNs did not surpass
the 0.5 detection accuracy before applying the strategy. In contrast, with the employed strategy,
the results overcome those achieved by the steganalysis CNNs. From the results presented in
Table 5-3 and Table 5-4, it is important to note that, in most cases, the results with Average
Pooling are be�er than those achieved with Max Pooling. In general, Average Pooling is prefe-
rred in steganalysis applications because it preserves the steganographic noise be�er than Max
Pooling [31], given its low amplitude compared to image content. Additionally, the three-layer
classi�cation stage provides deeper processing of the features extracted in the convolutional la-
yers, improving detection accuracy.

�e mentioned improvements in convergence refer to the lower number of epochs and iterations
needed to train the CNNs, which means training in less time. In comparison, in the original Xu-
Net [33] paper, the improved network was trained for 120, 000 iterations with a mini-batch of size
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64; With the employed strategy, the Xu-Net architecture was trained for 18, 750 iterations with
the same mini-batch size, while improving the detection accuracy. �e training process duration
cannot be compared because it depends on other factors like hardware speci�cations. However,
it is worth mentioning that training image classi�cation CNNs did not take longer than 10 hours.
Training the steganalysis CNNs took less than six hours. Table 5-5 is the approximated time of
each CNN.

Table 5-5: Approximate time of training in all models.
Dataset BOSSBase 1.01 BOSSBase 1.01 + BOWS 2

Payload 0.2 bpp 0.4bpp 0.2bpp 0.4bpp
Xu-Net ∼20 min ∼60 min ∼70 min ∼210 min
Ye-Net ∼80 min ∼180 min∼140 min ∼280 min
Yedroudj-Net∼100 min∼220 min∼350 min ∼400 min
VGG16Stego ∼180 min∼240 min∼400 min ∼460 min
VGG19Stego ∼200 min∼310 min∼410 min ∼580 min

Similarly, comparing training stability improvement is challenging. �is refers to less variability
on the training curves, given the original papers’ lack of training curves. For this purpose, the
team was able to reproduce the original Xu-Net architecture to compare the training curves with
and without the employed strategy. By comparing Figure 5-5 to Figure 5-4, observing how
accuracy and loss curves vary less over time is possible. In practice, the computational element
found to improve the training stability was the Spatial Dropout. By adding this operation before
the convolutional layers, the training curves were smoother, although it also forces add epochs
to reach convergence.

5.4. Conclusions

�is work presents a strategy to improve CNNs applied to image steganalysis in the spatial do-
main. �e strategy’s key is combining the following computational elements: SRM �lter bank and
3 × TanH activation for the pre-processing stage, Spatial Dropout, Absolute Value layer, Batch
Normalization and fully connected. �e performance improvement can be seen in the convergen-
ce and stability of the training process and the detection accuracy. VGG16Stego and VGG19Stego
obtained the best performances. Future work should be aimed at optimizing the employed stra-
tegy and testing it on recent steganalysis CNNs, SR-Net by [40] and Zhu-Net by [57]. Additio-
nally, demonstrating experimentally the in�uence of each layer and hyperparameter added by
the strategy is recommended.
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5.5. Code and Data Availability

All resources, including source code and databases of this project, are available as open-source
so�ware in the following repository: h�ps://github.com/BioAITeam/Strategy-to-improve-CNN-
applied-to-digital-image-steganalysis-in-the-spatial-domain.

https://github.com/BioAITeam/Strategy-to-improve-CNN-applied-to-digital-image-steganalysis-in-the-spatial-domain
https://github.com/BioAITeam/Strategy-to-improve-CNN-applied-to-digital-image-steganalysis-in-the-spatial-domain
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Figure 5-3: (A) Architecture of the original VGG16, (B) VGG16 architecture with the strategy ap-
plied.
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Figure 5-4: Training curves of Xu-Net with BOSSBase 1.01 S-UNIWARD 0.4 bpp without the
strategy. (A) Accuracy, (B) Loss.
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Figure 5-5: Training curves of Xu-Net with BOSSBase 1.01 WOW 0.4 bpp with our strategy. (A)
Accuracy, (B) Loss.
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Figure 5-6: Training curves of Ye-Net with BOSSBase 1.01 + BOWS 2 WOW 0.4 bpp with the stra-
tegy. (A) Accuracy, (B) Loss.
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Figure 5-7: Training curves of Yedroudj-Net with BOSSBase 1.01 S-UNIWARD 0.4 bpp with the stra-
tegy. (A) Accuracy, (B) Loss.
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Figure 5-8: Training curves of VGG16Stego Average Pooling with BOSSBase 1.01 + BOWS 2 S-
UNIWARD 0.4 bpp with the strategy. (A) Accuracy, (B) Loss.
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Figure 5-9: ROC Test curves of all experiment in S-UNIWARD with the strategy. (A) payload of 0.2
bpp, (B) payload of 0.4 bpp.
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Figure 5-10: ROC Test curves of all experiments in WOW with the strategy. A. payload of 0.2 bpp,
B.payload of 0.4 bpp.



6 GBRAS-Net: A Convolutional Neural

Network Architecture for Spatial

Image Steganalysis

�is chapter is based on the results obtained in the paper [4], a novel architecture named GBRAS-
Net is presented. �e name of the architecture comes from a combination of the authors’ initials.
�is architecture improves the classi�cation accuracy for WOW, S-UNIWARD, MiPOD, HILL, and
HUGO. Compared with Zhu-Net architecture, the proposed CNN shows improved accuracy on
BOSSBase 1.01 dataset, by 3.4% on WOW with 0.2 bpp and 1.7% on WOW with 0.4 bpp, 2.2%
and 2.6% on S-UNIWARD (0.2 and 0.4 bpp respectively), 3.1% and 5.3% on MiPOD (0.2 and
0.4 bpp), 1.9% and 5.4% on HILL (0.2 and 0.4 bpp), 6.5% and 5.2% on HUGO (0.2 and 0.4 bpp),
(see Tables 6-1, 6-2). When using BOWS 2 on the training data, the improvements for 0.2 bpp
are of 0.7% and 2.2% for WOW and S-UNIWARD, respectively (see Tables 6-3, 6-4).

�e remaining sections of this chapter have the following order: Section 6.1, a new architecture
is proposed, called GBRAS-Net [4]. A description of each stage is provided: pre-processing, fea-
ture extraction, and classi�cation. �is section also describes the two central databases for the
experiments. Also, it says what the hyper-parameters are for this CNN. Moreover, the proposed
CNN is compared with Zhu-Net and SR-Net. Section 6.2 presents the experiments conducted
with the designed architecture and describes the so�ware and hardware necessary to implement
and develop the experiments. Also, it presents tables and �gures demonstrating the performance
of GBRAS-Net, together with experiments, from the ALASKA#2 dataset to the analysis in the
experiments’ development. Section 6.3 discusses the results achieved. Finally, Section 6.4 shows
the conclusions of this study and future work.

6.1. Materials and Methods

�is section shows the databases and describes the pre-processing, feature extraction, and classi-
�cation stages, including the di�erent concepts considered during each stage’s design. Di�erent
resources, such as �gures and equations, are provided to understand the construction of GBRAS-
Net be�er. Furthermore, the proposed architecture is compared with Zhu-Net and SR-Net.
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6.1.1. Architecture

�e proposed architecture is schematically shown in Figure 6-1. �e numbers above each layer
indicate the parameters. �e numbers under the layers represent the sizes or dimensions of how
the data is processed. �e network has 166, 598 total parameters, of which 780 correspond to the
�rst convolutional layer of pre-processing and are non-trainable.
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Figure 6-1: Design and computational elements of GBRAS-Net. �e numbers above each layer indi-
cate the parameters. �e numbers under the layers represent the sizes or dimensions of
how the data is processed.
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6.1.2. Databases

�e experiments were performed on BOSSBase 1.01 and BOWS 2 databases, which have 10, 000

grayscale images of size 512 × 512 × 1. �e images were changed to a size of 256 × 256 × 1

using Matlab for comparability with previous experiments and each database was duplicated
when generating the stego images. For comparison, BOSSBase 1.01 was divided into 4, 000 pairs
for training, 1, 000 pairs for validation, and 5, 000 pairs for testing. It is the same partition that
appears in Section 4.2.1.

�e BOWS 2 dataset was used to increase the BOSSBase 1.01 training set, resulting in 14, 000

pairs for training (BOSSBase 1.01 + BOWS 2), 1, 000 pairs for validation (BOSSBase 1.01), and
5, 000 pairs for testing (BOSSBase 1.01). It is the same partition that appears in Section 4.2.2.

It is essential to highlight that the steganography algorithms are applied with the open-source
image steganalysis tool named Aletheia, available from [124] and open-source implementation
by Digital Data Embedding Laboratory at Binghamton University [117].

6.1.3. Pre-processing Stage

Data normalization for GBRAS-Net proved that the original numbers of the images (values from
0 to 255) were optimal a�er testing di�erent normalization procedures. �is stage consists of a
convolution with 30 �lters [23, 44] of size (5, 5), which are not modi�ed in training phase (i.e.,
the layer is non-trainable). �e convolutional layers in this stage are con�gured as following: the
padding as same, strides of (1, 1), with 30 �lters, which are described below, and a 3 × TanH

activation function.

�e mathematical expression of the activation function is shown in Equation (6-1):

3× TanH(x) = 3
ex − e−x

ex + e−x
(6-1)

In the architecture, the 30 �lters introduced by Ye-Net were used to pre-process the images, which
have demonstrated a high pre-processing capacity for subsequent feature extraction. �e 30 �l-
ters are normalized by the maximum absolute value of each �lter. �is �lter set is composed of
eight class 1 �lters, four class 2 �lters, eight class 3 �lters, one 3×3 �lter square, four 3×3 �lters
edge, one 5× 5 �lter square, and four 5× 5 �lters edge.

Figure 3-2 shows the set of categorized �lters and has all the values for each �lter. �e goal is
to show these �lters by class. Zeros (0) are used to �ll in some of the �lters that are not 5× 5, as
shown in the �gure.
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Figure 6-2 shows the set of �lters selected to obtained be�er performance for the feature ex-
traction stage. Seven classes of �lters are shown according to their original use. �e maximum
absolute value of each �lter type was used to normalize each of its values. For example, in the
3 × 3 square �lter, as seen in Figure 3-2, each �lter value is divided by four. Meanwhile, in the
5× 5 square �lter, each value was divided by 12.

Figure 6-2: Set of 30 SRM Filters used in GBRAS-Net, each of them was normalized by its maximum
absolute value.

Some networks, such as Ye-Net and Yedroudj-Net, use the TLU activation function on the �rst
layer. However, it does not work well in all architecture con�gurations; therefore, Zhu-Net does
not use this activation function. �e team performed tests using this function, in addition to Re-
LU and TanH. �e best results were achieved using the TanH activation function multiplied by
three and se�ing the �rst layer as non-trainable. TLU and TanH have similar shapes, where TanH
shows a smoother curve. �e results using the ReLU function were not relevant. �erefore, in the
pre-processing stage, the activation function used is 3 × TanH with values between −3 and 3.
�is activation function obtains the best performance.

6.1.4. Feature Extraction Stage

�is stage uses several layers, which include convolutional layers, separable convolutions, and
depth-wise convolutions as shown in Figure 6-1. Each layer allows adjusting the parameters and
�lters to enhance performance. Feature extraction also uses shortcuts with addition; furthermo-
re, for these layers, the same padding was used and the same number of �lters within the layers
were contained between the start and end of the shortcut. Average Pooling layers a�er Batch
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Normalization were used to reduce dimensionality, with a con�guration of a pool size (2, 2) and
strides (2, 2). �ere are six convolutional layers with (3, 3) �lters, and at the end of the stage,
there are two convolutional layers with kernel size (1, 1). �e activation function used is Expo-
nential Linear Unit (ELU) [129, 130] for all convolutions and separable convolutions.

�e general form of this activation function is as shown in Equation (6-2):

ELU(x) =

{
x if x > 0

alpha(ex − 1) if x ≤ 0
(6-2)

�e ELU hyperparameter alpha controls the value to which an ELU saturates for negative net in-
puts. In this case, it was set to one. Some features of this activation function reduce the vanishing
gradient e�ect and negatively saturate when the argument becomes smaller.
�e strides are (1, 1) and the padding is the same in all convolutions. �e �rst two convolutional
layers of this stage have 30 �lters, while the next four have 60 �lters, the penultimate has 30,
and the last has two. �e network has separable convolutions inside shortcuts, with 30 and 60

�lters, a kernel size of shape (3, 3), strides (1, 1), same padding, and depth multiplier of 3. Before
each separable convolution layer is a depth-wise separable 2D convolution layer, with a kernel
size of (1, 1). Global average pooling is done in the end of the stage to prepare the features for
classi�cation.

6.1.5. Classification Stage

�e classi�cation stage is reduced to the output of the global average pooling layer; further-
more, to obtain the predictions, a so�max activation function is directly used, which has the
mathematical de�nition shown in Equation (6-3):

σ
(→
z
)
i
=

ezi∑k
j=1 e

zj
(6-3)

Description of the So�max equation:

k It refers to the number of classes, in this case, 2, given the cover or stego images that the
model must classify.

→
z Is the input data vector to the so�max, it consists of (z0, …, zk)

zi �ese are the input vector elements to the so�max function, and they can take any real
value, e.g., positive, zero, or negative. �ese values will not necessarily show a good pro-
babilistic distribution for the classi�cation problem.
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ezi �is exponential function is applied to each input element zi. When an input element
is a negative number, a small positive value is obtained; other positive values are obtained
for larger numbers. However, this still does not output the values in the 0 to 1 range, which
characterizes the so�max function.∑k

j=1 e
zj �is part ensures all output values of the function add up to 1, and each of them is

in the 0 to 1 range, generating a correct probabilistic distribution and allowing for obtaining
the classi�cation predictions of the cover or stego images.

Overall, this stage can be simpli�ed without dense layers, which helps to avoid over��ing. In the
last Batch Normalization of shape 16× 16× 2, with a global average pooling 2D generates two
values; then, the predictions are obtained with the so�max function. �is is done at the end of
the architecture in Figure 6-1.

6.1.6. Hyper-parameters

For GBRAS-Net architecture, a batch size of 32 is used. To train the network on a speci�c pay-
load, the network needs 100 epochs. �e training network uses Adam optimizer, which has the
following con�guration: the learning rate is 0.001, the beta 1 is 0.9, the beta 2 is 0.999, the decay
is 0.0, and the epsilon is 1e − 08. Convolutional layers, except the �rst layer of pre-processing,
use a kernel initializer called glorot uniform. CNN uses a categorical cross-entropy loss for the
two classes. �e metric used is accuracy. Batch Normalization has the following con�guration:
momentum is 0.2, epsilon is 0.001, the center is True, the scale is False, trainable is True, fused
is None, renorm is False, renorm clipping is None, renorm momentum is 0.4, and adjustment is
None. �e maximum absolute value normalizes the 30 high-pass SRM �lters for each �lter. �e
same padding is used on all layers. As shown in Figure 6-1, the predictions performed in the last
part of the architecture directly use a So�max activation function.

6.1.7. Comparing GBRAS-Net with Zhu-Net and SR-Net

�is subsection compares GBRAS-Net CNN with both Zhu-Net and SR-Net CNN. �ese two archi-
tectures were the ones previously highlighted for their performance in this classi�cation problem.
Below is a list showing di�erences and similarities between these CNN:

�e three CNNs receive 256× 256 -sized images.

�e pre-processing stage in SR-Net is dropped and becomes an all-in-one with convolu-
tional layers only, leaving the network to learn the �lters. Zhu-Net takes up the 30-SRM
�lter bank that had been presented by Ye-Net initially. GBRAS-Net includes this bank of 30
�lters in the pre-processing stage as non-trainable �lters.

SR-Net has 25 convolutional layers, Zhu-Net has �ve convolutional layers, and GBRAS-Net
has nine convolutional layers.
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SR-Net and Zhu-Net have ReLU activation functions in convolutional layers; however,
GBRAS-Net showed the best performance using the ELU activation function.

SR-Net uses nine skip connections. Zhu-Net uses one skip connection, GBRAS-Net uses
two skip connections.

All three CNN use Average Pooling layers and not Max Pooling. SR-Net has �ve layers of
Average Pooling (3x3, Stride 2), Zhu-Net has three layers of Average Pooling (5x5, Stride
2), and GBRAS-Net has four layers of Average Pooling (2x2, Stride 2).

GBRAS-Net has four separable convolutional layers, and Zhu-Net has two; however, SR-
Net does not use separable convolutions.

SR-Net and Zhu-Net do not have Depth-wise Convolutional Layers. GBRAS-Net has four
Depth-wise Convolutional Layers, which allow to improve performance by detecting ste-
ganographic noise.

SR-Net, Zhu-Net, and GBRAS-Net have 1,2,0 fully connected layers before so�max, res-
pectively. i.e., GBRAS-Net does not have fully connected layers because it uses a so�max
directly a�er global average pooling, improving over��ing behavior.

Zhu-Net uses an absolute value layer, SR-Net and GBRAS-Net do not use absolute value
layers.

SR-Net and GBRAS-Net use a Global Average Pooling layer before the classi�cation stage.
Zhu-Net uses the Multi-level Average Pooling layer.

6.2. Results

Python 3.8.1 was used for architecture construction and the model was designed mainly with
TensorFlow 2.2.0. �e machine used has Ubuntu 20.04 LTS as operating system and a GeForce
RTX 2080 Ti with 11 GB and 250W , CUDA Version 11.0, an AMD Ryzen 9 3950X 16-Core
Processor, and RAM with 128 GB (4 modules of 32GB with 2666Mhz). Google Colab was used for
some experiments; in this case, using NVIDIA GP100GL [Tesla P100 PCIe 16GB] with 250W,
CUDA Version 10.1, and RAM with 25.51 GB.

6.2.1. Model Contribution

�e results achieved by GBRAS-Net compared with previous architectures are shown in Table
6-1.

�e need to contribute an architecture for steganalysis became evident a�er a systematic review
of the literature was presented in [1] and a chapter published in ”Digital Media Steganography:
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Principles, Algorithms, and Advances”[2], namely chapter 12: ”Digital media steganalysis”[2].

Table 6-1 shows the accuracies obtained for S-UNIWARD and WOW steganography algorithms.
�e payloads used for comparison are 0.2 and 0.4 bpp.

Table 6-1: Accuracy percentage of the CNN and SRM for two steganographic algorithms with pay-
loads of 0.4 bpp and 0.2 bpp

(Year) Algorithm WOW
0.2 bpp

WOW
0.4 bpp

S-UNIWARD
0.2 bpp

S-UNIWARD
0.4 bpp

(2020) GBRAS-Net 80.3 89.8 73.6 87.1
(2019) Zhu-Net 76.9 88.1 71.4 84.5
(2018) SR-Net 75.5 86.4 67.7 81.3
(2018) Yedroudj-Net 72.3 85.1 63.5 77.4
(2017) Ye-Net 66.9 76.7 60.1 68.7
(2016) Xu-Net 67.5 79.3 60.9 72.7
(2015) Qian-Net 61.4 70.7 53.7 69.1
(2012) SRM+EC 63.5 74.5 63.4 75.3

Figure 6-3 shows the architecture’s behavior in the classi�cation of cover and stego images.
Speci�cally, it refers to the identi�cation of images with steganographic noise using WOW and
S-UNIWARD with payloads of 0.2 and 0.4 bpp.

�e history of the architecture shows that it is increasingly di�cult to obtain greater accuracy.
CNNs are essential to gradually improving the detection accuracy value. �is chapter presents
an architecture that reaches considerable accuracy levels, as shown in Figure 6-3.

Figure 6-4 shows the performance of the model trained using BOSSbase 1.01 with 0.4 bpp for
WOW steganography algorithm. �e image corresponds to the Classi�cation Report.

Figures 6-5 and 6-6 show the performance of the model trained using BOSSBase 1.01 with 0.4
bpp for WOW steganography algorithm. �e images correspond to the Confusion Matrix and the
Class Prediction Error.

Figure 6-7 shows the ROC curves with Con�dence Interval (CI) for WOW steganography al-
gorithm. BOSSBase 1.01 database was used to train the model. �ese curves correspond to the
model presented in Table 6-1 for GBRAS-Net. �e ROC curves show the relationship between
the false positive and true positive rates. �ese curves show the Area Under Curve (AUC) values;
higher values indicate that the images were be�er classi�ed by the computational model, which,
in turn, depends on the steganography algorithm and payload.
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Figure 6-3: Comparison of the accuracy percentage of steganalysis among eight steganalysis
methods against two algorithms: S-UNIWARD and WOW at 0.2 bpp and 0.4 bpp. All
networks were trained and tested on BOSSBase 1.01 dataset, in image pairs (cover and
stego) with 4, 000, 1, 000, 5, 000, respectively for the train, validation, and test data.
Graph for test dataset performance.

6.2.2. Performance on HILL, MiPOD, and HUGO Steganography

Algorithms.

�e performance of GBRAS-Net was evaluated against other steganography algorithms, namely
MiPOD, HILL, and HUGO. �e accuracy results with 0.2 bpp and 0.4 bpp are shown in Table 6-2.
Moreover, the table compares the proposed architecture to the two previous CNNs (Zhu-Net and
SR-Net). Experiments were performed using the BOSSBase 1.01 database. �e data distribution
was 4, 000, 1, 000, and 5, 000 pairs of images for Training, Validation, and Testing, respectively.
�e results presented are those of Testing.
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Table 6-2: Accuracy percentage of GBRAS-Net architecture for HILL, MiPOD and HUGO stegano-
graphic algorithms with 0.2 bpp and 0.4 bpp using BOSSBase 1.01

(Year) Algorithm Payload (bpp) MiPOD HILL HUGO

(2020) GBRAS-Net 0.2
0.4

68.3
81.4

68.5
81.9

74.6
84.5

(2019) Zhu-Net 0.2
0.4

65.2
76.1

66.6
76.5

68.1
79.3

(2018) SR-Net 0.2
0.4

64.3
75.1

65.2
75.8

67.1
78.7
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Figure 6-7: ROC curves with CI for GBRAS-Net against WOW steganographic algorithm with 0.4
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6.2.3. Performance with BOSSBase 1.01 and BOWS 2 Addition for

Training

For training with BOSSBase 1.01 database, data was separated 40% for training, 10% for valida-
tion, and the remaining 50% for testing. For augmented experiments, BOWS 2 increased 40% of
the data in BOSSBase 1.01; consequently, there were 14, 000 (pairs of images), 1, 000, and 5, 000
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for training, validation, and testing, respectively.

Table 6-3: Accuracy percentage of architectures usingWOW steganography algorithm with 0.2 bpp
and BOSSBase 1.01 and BOWS 2 data for training.

(Year) Algorithm BOSSbase 1.01 BOSSbase 1.01 + BOWS 2

(2020) GBRAS-Net 80.3 82.7
(2019) Zhu-Net 76.9 82.0
(2018) SR-Net 75.5 79.4
(2018) Yedroudj-Net 72.3 75.7
(2017) Ye-Net 66.9 73.6

Table 6-4: Accuracy percentage of architectures using S-UNIWARD steganography algorithm with
0.2 bpp and BOSSBase 1.01 and BOWS 2 data for training.

(Year) Algorithm BOSSbase 1.01 BOSSbase 1.01 + BOWS 2
(2020) GBRAS-Net 73.6 77.9
(2019) Zhu-Net 71.4 75.7
(2018) SR-Net 67.7 70.1
(2018) Yedroudj-Net 63.5 65.9
(2017) Ye-Net 60.1 65.1

Table 6-3 and Table 6-4 show the performance of the GBRAS-Net architecture with data aug-
mentation to increase the size of the training dataset for S-UNIWARD and WOW adaptive ste-
ganography algorithms. �e performance shown is with a 0.2 bpp payload. �e models were
trained with BOSSBase 1.01 data for 100 epochs from a model that has already converged for
a larger payload as initial weights, and the results are shown in the BOSSBase 1.01 column. �e
weights were preserved and used as transfer learning for another 100 epochs with BOSSBase 1.01
+ BOWS 2 database. �e results are shown in the BOSSBase 1.01 + BOWS 2 column. In this case,
with data augmentation, the architecture still shows that it achieves the highest accuracy in the
classi�cation of cover and stego images.

6.2.4. ALASKA #2 and BOSSBase 1.01 in GBRAS-Net

ALASKA#2 constitutes a challenge for steganalysis since it comprises a heterogeneous and large
dataset of photographic images to address the di�culties of transitioning ”from research labs”to
ı̈nto the wild”[109]. In our experimental setup, ALASKA#2 was used as a training database, whi-
le BOSSBase 1.01 was used as Validation (1, 000 image pairs) and Test (5, 000 image pairs) data.
For ALASKA#2, 80, 000 images were converted from TIF to PGM format, which kept the format
similar to BOSSBase 1.01 and BOWS 2. �e experiment was conducted against an S-UNIWARD
steganographic algorithm with 0.4 bpp. �e aim of this experiment was to study the performance
of ALASKA#2 as training data for GBRAS-Net to make predictions on BOSSbase 1.01 data. �e
architecture had the weights obtained from the training process with BOSSBase 1.01 (4, 000 ima-
ge pairs). �e CNN was trained with 80, 000 image pairs of ALASKA#2 images for 34 epochs.
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GBRAS-Net obtained an accuracy of 66.2% in training dataset (ALASKA#2), 72.6% on the vali-
dation data and 71.7% on test set (BOSSBase 1.01). Using the best model (epoch=4), we obtained
28, 000 images pairs correctly classi�ed as cover and stego from ALASKA#2, for the further ex-
periment. �en, we trained the CNN with a dataset composed by BOSSBase 1.01 (4, 000 image
pairs), BOWS 2 (10, 000 image pairs), and ALASKA#2 (28, 000 image pairs) databases (42, 000
total image pairs) for 30 epochs and re-initializing the CNN weights (to the obtained by training
the network with 4,000 image pairs from BOSSBase 1.01). �e validation and test sets remain
the same as the previous experiment (1, 000 validation - 5, 000 test from BOSSBase 1.01). �is
experiment yielded an accuracy of 87.5% in training and 88.8% in testing, which represents an
improvement of 1.7% compared to training with only BOSSbase 1.01 dataset.

6.3. Discussion

�is chapter presents a steganalysis model based on CNN, which achieves signi�cant results,
considering that the architectures provide advances with an excellent classi�cation capacity. �e
architecture is named GBRAS-Net, which outperforms previous networks for spatial image ste-
ganalysis. �e use of recent hardware and so�ware allows for be�er design and processing ca-
pabilities.

�e proposed architecture uses 30 SRM �lters in the pre-processing stage before a sequence of
layers that include shortcuts for feature extraction. �e CNN avoids using a fully connected net-
work through the direct use of a global average pooling followed by a so�max activation function
that delivers the probabilities for classi�cation.

�e proposed CNN detects steganographic images with remarkable accuracy. �e team high-
light the following improvements compared to the state-of-the-art in terms of accuracy: 3.4% on
WOW with 0.2 bpp and 1.7% on WOW with 0.4 bpp, 2.2% and 2.6% on S-UNIWARD (0.2 and
0.4 bpp respectively), 3.1% and 5.3% on MiPOD (0.2 and 0.4 bpp), 1.9% and 5.4% on HILL (0.2
and 0.4 bpp), 6.5% and 5.2% on HUGO (0.2 and 0.4 bpp).

Moreover, the addition of BOWS 2 to the training dataset led to improvements of 0.7% and 2.2%

for WOW and S-UNIWARD, respectively using 0.2 bpp, compared with Zhu-Net.

6.4. Conclusions

�e extensive experiments conducted here demonstrate that not all computational elements, such
as the absolute value layer, speci�c activation functions, and several layer con�gurations, con-
tribute to improving a CNN. Moreover, the proposed methodology allows incorporating a new
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database to the spatial domain. Overall, the results show that the novel architecture is more ac-
curate than the previous ones and uses the latest generation so�ware, thus, displaying a broad
capacity to detect adaptive steganography in the spatial domain.

6.5. Code and Data Availability

All resources, including source code and databases of this project, are available as open-source
so�ware in the following repository: h�ps://github.com/BioAITeam/Steganalysis

https://github.com/BioAITeam/Steganalysis


7 Sensitivity of Deep Learning Applied

to Spatial Image Steganalysis

�is chapter is based on the results obtained in the article [Paper in the process of publication].
Given the accelerated growth of DL techniques for steganalysis, measuring how factors such as
image and �lter normalization, database partition, the composition of training mini-batches, and
activation function can a�ect the development and performance of algorithms in the detection
of steganographic images is essential. �is chapter describes the results of a thorough experi-
mentation process by which di�erent CNN architectures were tested under di�erent scenarios
to determine how the training conditions a�ect the results. Similarly, this chapter presents an
analysis of how researchers can select the products to report to present reproducible and con-
sistent results. �ese issues are important to assess the sensitivity of DL algorithms to di�erent
training se�ings and will ultimately contribute to further understanding the problems applied to
steganalysis and how to approach them.

�e chapter has the following order: Section 7.1 describes the database, CNN architectures and
their complexity, experiments, training and hyper-parameters, hardware and resources. Section
7.2 presents the results found. Section 7.3 analyzes and discusses the results. Lastly, Section 7.4
presents the conclusions of the chapter.

7.1. Materials and Methods

7.1.1. Database

�e database used for the experiments was Break Our Steganographic System (BOSSBase 1.01)
[123]. �is database consists of 10, 000 cover images of 512× 512 pixels in a PGM format (8 bits
grayscale). For this research, the following operations were performed on the images:

All images were resized to 256× 256 pixels.

Each corresponding steganographic image was created for each cover image using S-UNIWARD
[16] and WOW [17] with a 0.4 bpp payload. �e implementation of these steganographic
algorithms was based on the open-source tool named Aletheia [124] and with the Digital
Data Embedding Laboratory at Binghamton University [117].
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�e images were divided into training, validation, and test sets. �e size of each set varied
according to the experiment.

Default Partition

A�er the corresponding steganographic images are generated, the BOSSBase 1.01 database con-
tains 10, 000 pairs of images (cover and stego) divided into 4, 000 pairs for training, 1, 000 pairs
for validation, and 5, 000 for testing. �is partition of the BOSSBase 1.01 database was based on
[33, 44, 46, 40, 57, 4] and it is the same as the one shown in Section 4.2.1.

7.1.2. CNN Architectures

�e CNN architectures used in this research, except for GBRAS-Net, were modi�ed according
to the strategy described in [3] to improve the performance of the networks regarding conver-
gence, stability of the training process, and the detection accuracy. �e modi�cations involved
the following: a pre-processing stage with 30 SRM �lters and a modi�ed TanH activation with
range [−3, 3], Spatial Dropout before the convolutional layers, Absolute Value followed by Batch
Normalization a�er the convolutional layers, Leaky ReLU activation in convolutional layers, and
a classi�cation stage with three fully connected [131] layers. Figure 7-1 shows two of the six
CNN architectures used for the experiments.

Complexity of CNNs

�ere are two dimensions to calculate the computational complexity of a CNN, spatial and tempo-
ral. �e spatial complexity calculates the disk size that the model will occupy a�er being trained
(parameters and feature maps). �e time complexity allows calculating �oating-point operations
per second (FLOPS) that the network can perform [132].
Equation 7-1 is used to calculate the temporal complexity of a CNN and Equation 7-2 is used
to calculate the spatial complexity.

Time ∼ O

(
D∑
l=1

M2
l .K

2
l .Cl−1.Cl

)
(7-1)

Space ∼ O

(
D∑
l=1

K2
l .Cl−1.Cl +

D∑
l=1

M2
l .Cl

)
(7-2)

Where:

D = number of convolutional network layers (depth)
l = convolutional layer where the convolution process is being performed
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Ml = is the size of one side of the feature map in the l − th convolutional layer
Kl = is the size of one side of the kernel applied on the l − th convolutional layer
Cl−1 = number of channels of each convolution kernel at the input of the l − th convolutional
layer
Cl = number of convolution kernels at the output of the l − th convolutional layer

It is important to clarify that for spatial complexity, the �rst summation calculates the total size of
the network parameters. �e second summation calculates the size of the feature maps. In Table
7-1, the spatial and temporal complexities of the CNNs worked in this sensitivity analysis can be
observed.

Table 7-1: Spatial and temporal complexity of the CNNs used to perform the steganalysis process.

CNN Total number of parameters
for training

Spatial complexity
In MegaBytes

Temporal Complexity
In GigaFLOPS

Xu-Net 87,830 0.45 2.14
Ye-Net 88,586 0.43 5.77

Yedroudj-Net 252,459 1.00 12.51
SR-Net 4,874,074 19.00 134.77

Zhu-Net 10,233,770 39.00 3.07
GBRAS-Net 166,598 0.80 5.92

7.1.3. Experiments

Image Normalization

Image normalization is a typical operation in digital image processing that changes the ranges of
the pixel values to match the operating region of the activation function. �e most used bounds
for CNN training are 0 to 255, when the values are integers, and 0 to 1 with �oating-point values.
�e selection of this range a�ects performance and, depending on the application, one or the
other is preferred. �e following ranges were tested to demonstrate these e�ects:

[0, 255]: 8 bit integer.

[−12, 8]: minimum and maximum values of the original SRM �lters.

[0, 1]: activation function operating region.

[−1, 1]: activation function operating region.

[−0.5, 0.5]: activation function operating region.
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Figure 7-1: Convolutional Neural Network Architectures. (A) Xu-Net. And (B) GBRAS-Net.
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SRM Filters Normalization

As for image normalization, the SRM �lter values shown in Figure 3-2 impact network perfor-
mance. To evaluate the e�ect of di�erent �lter values, experiments were performed with and
without normalization for each of the image normalizations shown before, the SRM �lter norma-
lization uses a factor of 1/12, which caused �lter values to be in the range [−1, 2/3].

CNN Input

To speed up the learning process and avoid issues with GPU memory limitation, CNN optimi-
zation is performed over batches of images rather than the complete training set. �is dataset
division means that the distribution of image classes within each batch of images a�ects the lear-
ning process. �ree di�erent image input approaches were tested to demonstrate the e�ect of
the amount of stego and cover images in a batch on the learning process and determine the best
way to input the images to the network. �e �rst one involved inpu�ing all of the cover images,
followed by all the stego images; the second one alternated cover and stego images, and the third
one involved a random approach.

Database Partition

Dividing the database into three sets is good practice for arti�cial intelligence applications: the
training set to adjust network parameters, the validation set to change network hyper-parameters,
and the test set to perform the �nal evaluation of the CNN performance. �ere is a default parti-
tion (see “Default Partition” ), which most researchers use in the �eld. As part of the experimen-
tation process developed in this research, the CNNs were tested using three additional database
partitions as follow (amounts in image pairs):

Train: 2, 500, Validation: 2, 500, and Test: 5, 000.

Train: 4, 000, Validation: 3, 000, and Test: 3, 000.

Train: 8, 000, Validation: 1, 000, and Test: 1, 000.

Activation Function of the Pre-processing Stage

�e pre-processing stage, which consisted of a convolutional layer with 30 SRM �lters, involves
an activation function that a�ects model performance on speci�c steganographic algorithms. As
part of the experimentation process, four di�erent activation functions were tested: 3 × TanH ,
3×HardSigmoid, 3× Sigmoid and 3× Softsign.

Activation Maps Analysis

�e output of a particular layer of a CNN is known as activation maps, indicating how well the
architecture performs feature extraction. �is chapter presents the comparative analysis of the
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activation maps generated by an cover, stego and çover-stegoı̈mage in a trained model. Further-
more, by comparing it is possible to see the di�erences between them.

Accuracy Reporting in Steganalysis

One of the characteristics of CNN training in steganalysis is the unstable accuracy and loss values
between epochs, leading to highly variable results and training curves. Consequently, an abnor-
mally high accuracy value can be achieved at a given time during the training process. Although
it is correct to select the best accuracy under comparison, having more data allows a be�er un-
derstanding of the CNN. For example, in this chapter, model accuracy was evaluated using the
mean and standard deviation of the top �ve results from training, validation, and testing.

7.1.4. Training and Hyper-parameters

�e training batch size was set to 64 images for Xu-Net, Ye-Net, Yedroudj-Net and 32 for SR-Net,
Zhu-Net and GBRAS-Net. �e number of training epochs needed to reach convergence is 100,
except for Xu-Net which uses 150 epochs. �e spatial dropout rate was 0.1 in all layers. Batch
normalization had a momentum of 0.2, an epsilon of 0.001, and a renorm momentum of 0.4. �e
stochastic gradient descent optimizer momentum was 0.95 and the learning rate was initialized
to 0.005. Except GBRAS-Net, all layers used a glorot normal initializer and L2 regularization for
weights and bias. For GBRAS-Net architecture, the training network uses Adam optimizer, which
has the following con�guration: the learning rate is 0.001, the beta 1 is 0.9, the beta 2 is 0.999,
the decay is 0.0, and the epsilon is 1e − 08. Convolutional layers, except the �rst layer of pre-
processing, use a kernel initializer called glorot uniform. CNN uses a categorical cross-entropy
loss for the two classes. �e metric used is accuracy. Batch Normalization is con�gured similar to
the other CNNs. In the original network the maximum absolute value normalizes the 30 high-
pass SRM �lters for each �lter. �e same padding is used on all layers. As shown in Figure 7-1,
the predictions performed in the last part of the architecture directly use a So�max activation
function.

7.1.5. Hardware and Resources

Most of the architectures and experiment implementations used Python 3.8.1 and TensorFlow
[65] 2.2.0 in a workstation running Ubuntu 20.04 LTS as an operating system. �e computer runs
a GeForce RTX 2080 Ti (11 GB), CUDA Version 11.0, an AMD Ryzen 9 3950X 16-Core Processor,
and 128 GB of RAM. �e remaining implementations used the Google Colaboratory platform in
an environment with a Tesla P100 PCIe (16 GB) or TPUs, CUDA Version 10.1, and 25.51 GB RAM.
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7.2. Results

7.2.1. Image Normalization

Image normalization is a typical operation in digital image processing that a�ects CNN perfor-
mance. Di�erent types of normalization processes were performed on the images (cover and ste-
go) of BOSSBase 1.01 with WOW 0.4 bpp. Training and validation were performed with Xu-Net,
Ye-Net, Yedroudj-Net, SR-Net, Zhu-Net and GBRAS-Net CNNs (see Figure 7-1 for Xu-Net and
GBRAS-Net), with default data partition (see “Default partition” ) and no SRM �lters normaliza-
tion. Furthermore, the distribution of image classes within each image batch was done based on
a random distribution of the training images (i.e., random positions of cover and stego images),
a usual distribution of the validation images (i.e, inpu�ing all the cover images �rst, then all the
stego images), and a usual distribution of the test images.

Table 7-2: Image normalization and best test accuracy for CNNswithWOW0.4 bpp using BOSSBase
1.01. �e bold entries indicate the best results.

Image
normalization

Test accuracy
Xu-Net [ %]

Test accuracy
Ye-Net [ %]

Test accuracy
Yedroudj-Net [ %]

Test accuracy
SR-Net [ %]

Test accuracy
Zhu-Net [ %]

Test accuracy
GBRAS-Net [ %]

[0, 255] 82.6 84.8 85.5 84.8 84.2 88.4
[−12, 8] 78.7 81.6 81.5 83.6 84.9 86.5

[0, 1] 65.9 72.7 51.0 50.5 78.0 84.4

[−1, 1] 51.4 76.3 52.1 75.9 79.7 84.4

[−0.5, 0.5] 64.2 76.2 50.6 50.2 77.7 85.1

Table 7-2 shows the best test accuracy results with di�erent image normalizations in the convo-
lutional neural networks with WOW 0.4 bpp. Figure 7-2 under the title “Image Normalization”
shows the accuracy curves of SR-Net, Zhu-Net and GBRAS-Net CNNs with WOW 0.4 bpp for
di�erent image normalizations.

7.2.2. SRM Filters Normalization

�e SRM �lters have an impact on the performance of CNNs for steganalysis. �erefore, �lter
normalization was performed by multiplying by 1/12. In Table 7-3, each image normalization,
distribution of classes within each batch of images, and data partition was equal to “Image nor-
malization” ; additionally, SRM �lter normalization was done by multiplying by 1/12.

Table 7-3 shows the best test accuracy result with di�erent image and �lter normalization in
the CNNs with WOW 0.4 bpp. Figure 7-3 under the title “SRM Filters Normalization” shows the
accuracy curves for SR-Net, Zhu-Net and GBRAS-Net CNNs with WOW 0.4 bpp and di�erent
image and �lter normalization.
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Image Normalization
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Figure 7-2: Accuracy curves for SR-Net, Zhu-Net and GBRAS-Net CNN withWOW 0.4 bpp for ima-
ge normalization. (A) 0 to 255. (B) -12 to 8. (C) 0 to 1. (D) -1 to 1. (E) -0.5 to 0.5
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Figure 7-3: Accuracy curves for SR-Net, Zhu-Net and GBRAS-Net CNN with WOW 0.4 bpp for SRM
�lter normalization. (A) 0 to 255. (B) -12 to 8. (C) 0 to 1. (D) -1 to 1. (E) -0.5 to 0.5

7.2.3. CNN Input

�ree CNN input distributions were applied and mentioned in “CNN Input” experiment, namely
usual (i.e., inpu�ing all the cover images �rst, followed by all the stego images), random (ran-
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Table 7-3: SRM �lters and image normalization and best test accuracy for CNNs with WOW 0.4
bpp using BOSSBase 1.01. �e bold entries indicate the best results.

Image
normalization

Test accuracy
Xu-Net [ %]

Test accuracy
Ye-Net [ %]

Test accuracy
Yedroudj-Net [ %]

Test accuracy
SR-Net [ %]

Test accuracy
Zhu-Net [ %]

Test accuracy
GBRAS-Net [ %]

[0, 255] 79.7 82.6 81.6 82.8 84.9 87.1
[−12, 8] 50.8 75.9 52.2 50.4 78.9 83.4

[0, 1] 50.4 69.6 50.2 81.4 50.0 83.6

[−1, 1] 50.1 66.8 50.2 81.2 50.8 84.6

[−0.5, 0.5] 50.2 63.1 50.0 81.5 50.0 85.5

dom positions of cover and stego images), and ordered (alternating cover and stego images). �e
three cases demonstrate that the distribution of classes within each batch of images a�ects the
learning process. �e following experiment (see Table 7-4), was performed using Ye-Net for S-
UNIWARD 0.4 bpp, image pixel values in range [0,255], (original pixel values), with no SRM �lter
normalization, and a default data partition (see “Default Partition” ).

Table 7-4: CNN input and best validation accuracy for Ye-Net with S-UNIWARD 0.4 bpp using
BOSSBase 1.01.

Training image
distribution

Validation image
distribution

Best validation
accuracy[ %]

Random Usual 83.4

Random Random 83.9

Order Order 84.1

Usual Usual 84.3

Order Usual 84.1

Order Random 83.2

Random Order 83.9

Usual Random 83.8

Usual Order 84.8

7.2.4. Database Partition

In arti�cial intelligence, the databases are divided into training, validation, and testing. For ste-
ganalysis, a default data partition is used (see “Default Partition” ). Table 7-5 and Table 7-6 show
the best accuracy results, mean accuracy and Standard Deviation (SD) of the best training model
with di�erent data partitions, image pixel values in range [0,255], no SRM �lter normalization,
and a distribution of classes within each batch of images based on a random distribution of the
training images and usual distributions of the validation and test images.

Table 7-5, and Fig. 7-4 shows the results of the di�erent data partitions with S-UNIWARD 0.4
bpp. Table 7-6, and Fig. 7-5 shows the results of the di�erent data partitions with WOW 0.4
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Table 7-5: Di�erent data partitions and best test accuracy for CNNs with S-UNIWARD 0.4 bpp using
BOSSBase 1.01. Corresponding to train, validation and test, respectively: (A) 4,000, 1,000,
5,000. (B) 2,500, 2,500, 5,000. (C) 4,000, 3,000, 3,000. And (D) 8,000, 1,000, 1,000.

CNN Distribution
Accuracy on test [ %]

CNN Distribution
Accuracy on test [ %]

Best Mean SD Best Mean SD

Xu-Net

A 79.7 79.0 0.51

SR-Net

A 77.0 76.5 0.32
B 78.4 77.3 1.01 B 73.3 73.1 0.23
C 79.6 79.4 0.17 C 77.7 77.5 0.20
D 85.0 84.4 0.33 D 87.5 87.4 0.14

Ye-Net

A 81.1 80.5 0.53

Zhu-Net

A 82.6 82.5 0.09
B 77.2 76.8 0.41 B 81.2 80.5 0.35
C 81.2 80.9 0.21 C 81.2 80.7 0.34
D 86.8 86.0 0.63 D 86.9 86.7 0.13

Yedroudj-Net

A 81.8 81.1 0.47

GBRAS-Net

A 82.8 82.1 0.59
B 78.5 77.5 0.91 B 80.8 79.5 1.19
C 80.7 80.1 0.51 C 81.7 81.5 0.15
D 86.3 85.5 0.63 D 89.1 88.3 0.45

bpp.

Table 7-6: Di�erent data partitions and test accuracy for CNNs with WOW 0.4 bpp using BOSSBase
1.01. Corresponding to train, validation and test, respectively: (A) 4,000, 1,000, 5,000. (B)
2,500, 2,500, 5,000. (C) 4,000, 3,000, 3,000. And (D) 8,000, 1,000, 1,000.

CNN Distribution
Accuracy on test [ %]

CNN Distribution
Accuracy on test [ %]

Best Mean SD Best Mean SD

Xu-Net

A 82.6 82.2 0.31

SR-Net

A 52.5 50.7 0.87
B 81.4 81.1 0.22 B 84.2 83.5 0.53
C 82.8 82.1 0.43 C 84.6 84.4 0.19
D 87.3 86.8 0.21 D 89.4 89.1 0.13

Ye-Net

A 84.8 84.5 0.25

Zhu-Net

A 86.9 86.2 0.32
B 82.7 82.2 0.37 B 83.8 83.6 0.16
C 83.9 83.3 0.63 C 85.1 84.7 0.24
D 88.1 87.7 0.27 D 88.4 88.2 0.14

Yedroudj-Net

A 85.5 85.1 0.33

GBRAS-Net

A 88.4 87.9 0.34
B 84.1 83.5 0.35 B 87.0 86.5 0.35
C 85.1 84.6 0.27 C 86.3 86.0 0.24
D 88.7 88.4 0.15 D 89.4 89.2 0.13

Figures 7-6, 7-7, and 7-8 show the accuracy curves of SR-Net, Zhu-Net and GBRAS-Net CNN
with S-UNIWARD and WOW 0.4 bpp, for di�erent data partitions.

7.2.5. Activation Function of the Pre-processing Stage

Due to the sensitivity of the model, di�erent modi�cations, such as changing the activation fun-
ction, can generate variations in performance. �e results achieved by Ye-Net with WOW and
S-UNIWARD 0.4 bpp are shown in Table 7-7. �e experiment was performed with a default data
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Figure 7-4: Boxplots for the S-UNIWARD experiments. �is �gure shows di�erent data par-
titions experiments for novel CNN architectures. Train, Validation, Test: (A) 4,000,
1,000, 5,000. (B) 2,500, 2,500, 5,000. (C) 4,000, 3,000, 3,000. (D) 8,000, 1,000, 1,000.

partition (see “Default Partition” ), image pixel values in range [0,255], with no SRM �lter norma-
lization, and a distribution of classes within each batch of images based on a random distribution
of the training images and usual distributions of the validation and test images.

Table 7-7: E�ect of the activation function on two steganographic algorithms (WOW and S-
UNIWARD) using Ye-Net architecture, trained on TPU with 200 epochs and batchsize
of 64.

Activation Function WOW
(Epoch) Accuracy

S-UNIWARD
(Epoch) Accuracy

3× TanH (119) 85.0 (196) 83.3
3×HardSigmoid (162) 86.0 (188) 81.8
3× Sigmoid (170) 85.5 (198) 81.8
3× Softsign (154) 85.5 (163) 81.2

Another important experiment that we can present is what happens when the value that multi-
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Figure 7-5: Boxplots for the WOW experiments. �is �gure shows di�erent data partitions
experiments for novel CNN architectures. Train, Validation, Test: (A) 4,000, 1,000,
5,000. (B) 2,500, 2,500, 5,000. (C) 4,000, 3,000, 3,000. (D) 8,000, 1,000, 1,000.

plies the preprocessing activation function is changed. For WOW multiplying by 5, 8, 13, 21 the
best results are: 82.9 %, 83.0 %, 82.3 %, and 83.6 % respectively. For S-UNIWARD multiplying by
with 5, 8, 13, 21 the best results are: 85.0 %, 84.3 %, 85.1 %, and 84.8 % respectively.

7.2.6. Activation Maps for Cover, Stego, and Steganographic Noise

Images

�e trained model has an accuracy of 89.8 %, with BOSSBase 1.01. �e model was implemented
with GBRAS-Net and WOW 0.4 bpp, a default data partition (see “Default Partition” ), image pixel
values in range [0,255], individual SRM �lter normalization, and a class distribution within each
batch of images based on a random distribution of the training images and usual distributions
of the validation and test images. �e activation maps of the �rst and the three last convolution
of the network are shown in Figure 7-9. �e activation maps correspond to a cover, stego and
steganographic noise images.
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Figure 7-6: Accuracy curves of SR-Net with S-UNIWARD and WOW 0.4 bpp. �is �gure shows dif-
ferent data partitions for each row. Train, Validation, Test: (A) 4,000, 1,000, 5,000. (B)
2,500, 2,500, 5,000. (C) 4,000, 3,000, 3,000. (D) 8,000, 1,000, 1,000.
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Figure 7-7: Accuracy curves of Zhu-Net with S-UNIWARD and WOW 0.4 bpp. �is �gure shows
di�erent data partitions for each row. Train, Validation, Test: (A) 4,000, 1,000, 5,000. (B)
2,500, 2,500, 5,000. (C) 4,000, 3,000, 3,000. (D) 8,000, 1,000, 1,000.
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Figure 7-8: Accuracy curves of GBRAS-Net with S-UNIWARD and WOW 0.4 bpp. �is �gure shows
di�erent data partitions for each row. Train, Validation, Test: (A) 4,000, 1,000, 5,000. (B)
2,500, 2,500, 5,000. (C) 4,000, 3,000, 3,000. (D) 8,000, 1,000, 1,000.

Figure 7-10 shows the ROC curves with Con�dence Interval (CI) for the WOW steganography
algorithm. BOSSBase 1.01 database was used to train the model. �ese curves correspond to the
original GBRAS-Net model. �e ROC curves show the relationship between the false positive and
true positive rates. �ese curves show the Area Under Curve (AUC) values; higher values indicate
that the images were be�er classi�ed by the computational model, which, in turn, depends on
the steganography algorithm and payload.

7.2.7. Accuracy Reporting in Steganalysis

�e results of the experiment are shown with a data distribution consisting of 8, 000, 1, 000,
and 1, 000 pairs of images, analyzed in GBRAS-Net and Xu-Net architecture using BOSSBase
1.01, image pixel values in range [0,255], with no SRM �lter normalization, and a distribution of
classes within each batch of images based on a random distribution of the training images and
usual distributions of the validation and test images. Table 7-8 shows the results of accuracy
reporting. �e model accuracy was evaluated using the mean and standard deviation of the top
�ve results achieved by the CNN during training, validation, and testing.
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Figure 7-9: Activation maps of convolutional layers in GBRAS-Net architecture trained with WOW
0.4 bpp.�is �gure shows the Input image, the �rst convolutional layer or pre-processing
layer with SRM Filters, and the last three convolutional layers.
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Figure 7-10: ROC curves with CI for GBRAS-Net against WOW steganographic algorithm with 0.4
bpp on BOSSBase 1.01.

7.3. Discussion

�is study presents results obtained from testing di�erent combinations of image and �lter nor-
malization ranges, various database partitions, a diverse composition of training mini-batches,
di�erent activation functions for the pre-processing stage, as well as an analysis on activation
maps of convolutions and how to report accuracy when training six CNN architectures applied
to image steganalysis in the spatial domain. �e experiments proposed here show highly variable
results, indicating the importance of detailed documentation and reports derived from the novel
work in this �eld.

Regarding image and SRM �lter normalization, as shown in Table 7-2, the e�ectiveness of a nor-
malization range depends on the selected CNN, such that SRM normalization (see Table 7-3) can
generate completely di�erent results.

�e image normalization experiment demonstrates essential aspects of this analysis. For example,
considering the Xu-Net architecture in Table 7-2, the best result is obtained using images with
the original values of the database (i.e., in the range 0 to 255). Given this, one might conclude
that there is no need for image normalization in any architecture; however, a di�erent result is
observed with the Zhu-Net architecture. Zhu-Net has the best result using the normalization of
the pixels from −12 to 8 (inspired by the minimum and maximum values of the original SRM
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Table 7-8: Accuracy report structure. Showing the results in this manner allows for understanding
how the model has the behavior for a speci�c experiment.

Xu-Net: Train=8,000, Valid=1,000, Test=1,000 GBRAS-Net: Train=8,000, Valid=1,000, Test=1,000
S-UNIWARD 0.4bpp Best 5 % Accuracies S-UNIWARD 0.4bpp, the best 5 % Accuracies

Train Epoch Valid Test Train Epoch Valid Test
83.4 149 77.6 83.3 88.4 99 82.6 87.3
83.1 144 77.0 85.0 88.1 90 81.2 86.5
82.9 145 77.4 83.5 87.9 96 81.6 86.8
82.7 147 76.7 83.4 87.9 86 80.8 85.8
82.7 148 77.3 83.1 87.8 87 83.0 88.1
82.9 mean 77.2 83.6 88.0 mean 81.8 86.9
0.32 standard deviation 0.35 0.77 0.25 standard deviation 0.94 0.85
Valid Epoch Test Train Valid Epoch Test Train
77.6 143 83.9 81.6 83.0 87 88.1 87.8
77.6 149 83.3 83.4 82.9 94 87.9 87.6
77.4 145 83.5 82.9 82.9 71 88.3 86.5
77.4 150 84.1 82.2 82.8 77 88.2 85.8
77.3 130 84.0 82.3 82.6 99 87.3 88.4
77.5 mean 83.7 82.5 82.8 mean 87.9 87.2
0.12 standard deviation 0.36 0.70 0.15 standard deviation 0.42 1.06
Test Epoch Train Valid Test Epoch Train Valid
85.0 144 83.1 77.0 89.1 84 87.2 82.5
84.4 141 82.7 76.7 88.3 71 86.5 82.9
84.4 131 82.2 77.3 88.2 77 85.8 82.8
84.3 133 81.0 76.3 88.1 87 87.8 83.0
84.2 140 82.2 77.1 87.9 76 82.7 82.2
84.4 mean 82.2 76.9 88.3 mean 86.0 82.7
0.33 standard deviation 0.79 0.39 0.45 standard deviation 1.98 0.34

�lters). the team recommends using the original pixel values as �rst option, because it is the best
option for most CNNs.

When considering the combination of image normalization and �lter normalization, the results
can be di�erent. For example, for the SR-Net architecture from Table 7-2, the normalization of
the pixels between−0.5 to 0.5 generates an accuracy of only 50.2% without �lter normalization.
Conversely, with normalized SRMs, as shown in Table 7-3, the SR-Net CNN reaches an accuracy
of up to 81.5%. However, as the normalization experiments show, GBRAS-Net is the architecture
that best behaves or adapts to changes in data normalization and distribution, for which the team
recommends making use of this new architecture.

Regarding the variability of accuracies, Table 7-4 shows the results for the CNN input experi-
ment and provides a great example of the sensitivity of CNN for steganalysis. Based on these
results, considering di�erent image distribution options to train the networks is important if the
objective is to present a network that achieves the highest possible accuracy.
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In the database partition experiment, the architectures’ detection accuracy improved as the trai-
ning set increased and the test set decreased. Furthermore, if the test dataset reduces considerably,
performance on future cases can be a�ected. In response, recent investigations use the BOWS 2

dataset since it contains more information and, consequently, with a bigger dataset, data partition
can contain more information on training and testing that can enhance performance. A small test
set may be an inadequate representation of the distribution of the images that the network must
classify in a production se�ing; thus, a higher detection accuracy with this partition may not lead
to a useful improvement.
Figures 7-6, 7-7, and 7-8 show that a smaller training set produces highly variable validation
and test curves, while a bigger training set generates smoother curves. Furthermore, these curves
show how the validation curve can sometimes be higher or lower than the training curve. For
this reason, choosing the models from the results obtained in test data is preferred. Likewise, a
good representation or quantity of data in test is also important.

Table 7-7 shows that using di�erent activation functions implies changes in performance. In
Ye-Net for WOW and S-UNIWARD with 3 × TanH an average accuracy of 84.2% is achieved,
and with 3 ×HardSigmoid an average accuracy of 83.9%. Although for WOW the best result
is given by the use of the 3×HardSigmoid activation function, overall for a model that serves
for detection in several steganographic algorithms it is be�er to use 3× TanH , as shown by the
average value of accuracy.

Figure 7-9 shows that the activation maps from the stego image has di�erences with cover image,
which indicates a higher activation of the convolutional layer in presence of the steganographic
noise. Moreover, by comparing the activation maps, it is clear that an adequate learning process
was achieved by extracting relevant features and focusing on borders and texture changes in the
images, where the steganographic algorithms are known to embed most of the information. �e
analysis of the activation maps is an e�ective tool for researchers to evaluate the learning process,
as well as to gain an understanding of the features that the CNN recognizes as relevant for the
steganalysis task. �is shows that GBRAS-Net has an excellent ability to discriminate between
images without hidden content and with hidden content.
�e design of CNN networks allows capturing steganographic content. �e �rst layer (prepro-
cessing), which contains the �lters, is responsible for enhancing this noise while decreasing the
content of the input image (See Fig 7-9. in the Cover and Stego columns for the SRM �lters row).
�e Cover-Stego column in Fig. 7-9 shows the noise. Adaptive steganography does its job well
in adapting to image content; as seen in the image, it does so at hard-to-detect edges and places.
�e main advantage of accuracy reporting, as proposed here (see Table 7-8), is to be able to de-
termine the consistency of the results based not only the �nal value or the best one. To obtain
these results, as the architectures are trained, a model is saved for each epoch. With these models,
the accuracies are then obtained in the datasets. With this one can know which are the best mo-
dels. And with this accuracy reporting mode, when a speci�c experiment is presented, whoever
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is going to reproduce it will know the range of results to expect. �is is because, as presented
here, the sensitivity of deep learning is great in this problem, which can lead to reproducing a
CNN not obtaining the same result from the reporter.

With all information showed in this work for spatial image steganalysis using deep learning, the
research team proposes a set of recommendations for the design of experiments, listed below:

Recomendation 1: measure CNN sensitivity to data and SRM �lter normalizations.

Recomendation 2: measure CNN sensitivity to data distributions.

Recomendation 3: measure CNN sensitivity to data splits.

Recomendation 4: measure CNN sensitivity to activation functions in pre-processing stage.

Recomendation 5: show activation maps of cover, stego and steganographic noise images.

Recomendation 6: report the top �ve best epochs with accuracies and their standard devia-
tions.

Finally, the contributions of this chapter will be listed at a general level:

Sensitivity in the percentages of accuracy in detecting steganographic images when applying
di�erent normalizations in the pixels of the images on six architectures of CNNs (See Table
7-2 and Figures 7-2).

Sensitivity in the percentage of accuracy detecting steganographic images when applying
di�erent normalizations in the SRM �lters in the preprocessing stage on six CNNs archi-
tectures (See Table 7-3 and Figures 7-3).

Sensitivity in the percentages of accuracy detecting steganographic images when feeding
the CNNs with di�erent distribution orders of the dataset in their training process (See
Table 7-4).

Sensitivity in the percentages of accuracy detecting steganographic images has the parti-
tion of the set of images in training, validation, and test (SeeTable 7-5 and 7-6 and Figures
7-6,7-7, and 7-8).

Sensitivity in the percentages of accuracy detecting steganographic images that have tested
di�erent activation functions in the preprocessing stage for the training process (See Table
7-7).

�e importance of analyzing the activation maps of the di�erent convolutional layers to
make new designs of CNNs architectures and understand their behavior (See Figure 7-9).
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�e importance of reporting the average and standard deviation in the percentages of accu-
racy detecting steganographic images to determine the results reported in the experiments
(See Table 7-8).

Some possible limitations of the current work, which was developed under the clairvoyant sce-
nario, come from the nature and characteristics of the database: the use of images with �xed
resolutions, the speci�c cameras used to take the pictures, the bit depth of the images, and that
all the experiments were performed in the spatial domain. As future work, it is proposed to study
each state-of-the-art CNNs weaknesses and problems to design new architectures and compu-
tational elements for steganalysis, taking papers [133] and [134] as a reference.

7.4. Conclusions

As shown by the results presented in this chapter, steganalysis detection systems are highly sen-
sible to changes in any stage of the process. Factors such as image and �lter normalization ranges,
database partition, the composition of training mini-batches, and activation function in the pre-
processing stage a�ect the CNN performance, to the point that they determine its success. With
this in mind, this research team presents the analysis of the activation maps of convolutions for
GBRAS-Net as a useful tool to assess the CNN training process, and its ability to extract distincti-
ve features between cover and stego images. Understanding the behavior of steganalysis systems
is key to design strategies and computational elements to overcome their limitations and impro-
ve their performance. For example, taking Ye-Net as a reference, using the WOW steganographic
algorithm with 0.4 bpp, on the BOSSBase 1.01 database and the values of each pixel without any
modi�cation (0 and 255), results in an accuracy of 84.8% in the detection of steganographic ima-
ges, while applying a normalization of the image pixels between 0 and 1 generates a result of
72.7% (See Table 7-2), taking into account the normal values of the SRM �lters (-12 and 8), now
if we normalize the values of the previous �lters between 0 and 1 with the same characteristics
mentioned above, we obtain results of 82.6% and 69.6% respectively (See Table 7-3). Now with
the same CNN and performing di�erent partitions of the data set (training, validation, and test),
we observe accuracy results on average between 76.8% and 86.0% for the S-UNIWARD stega-
nographic algorithm with 0.4 bpp (See Table 7-5). �e above and the other results mentioned in
this paper highlight the importance of clearly and precisely de�ning the experiments performed
in steganalysis to report the results reliably and facilitate the reproduction of the experiments by
the researchers.
Furthermore, the team recommends reporting accuracy values as the mean and standard devia-
tion of the top �ve results, as it helps account for model consistency and reliability. If possible,
the team encourages researchers to liberate a repository with code and data resources to aid the
reproduction of the results; as well as, reporting the implementation details thoroughly, taking
into account pre-processing and feature extraction techniques, classi�cation process, and hyper-
parameters.
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7.5. Code and Data Availability

All resources, including source code and databases of this project, are available as open-source
so�ware in the following repository: h�ps://github.com/BioAITeam/Sensitivity-of-deep-learning-
applied-to-Spatial-Image-Steganalysis

https://github.com/BioAITeam/Sensitivity-of-deep-learning-applied-to-Spatial-Image-Steganalysis
https://github.com/BioAITeam/Sensitivity-of-deep-learning-applied-to-Spatial-Image-Steganalysis


8 Conclusions, Recommendations,

Future Work and Contributions

8.1. Conclusions

Chapters 5, 6 and 7 describe in particular the conclusions. �is chapter describes the conclu-
sions that bring together the entire thesis.

A�er reviewing the literature on the application of CNNs to the steganalysis of digital images in
the spatial domain [1, 2] (See Tables 3-1,3-2 and 3-3), four important contributions were made
listed below:

1. A strategy was generated [3] that allows for improving all the percentages of accuracy in
the detection of steganographic images reported in the literature for three CNNs (Xu-Net,
Ye-Net, Yedroudj-Net), additionally the strategy was also applied to two CNNs for image
classi�cation (VGG16 and VGG19). To date, this is the �rst time that architectures for image
classi�cation have been adapted to steganalysis, obtaining satisfactory results (See Tables
5-1, 5-2, 5-3 and 5-4). �e strategy also allows stabilizing the behavior of the networks
and decreasing the time in the training process. (See Figures 5-5, 5-6, 5-7, 5-8 and 5-9 and
Table 5-5).

2. A new CNN architecture (GBRAS-Net) [4] was designed that allows for performing stega-
nalysis of images in the spatial domain surpassing the results reported in the literature to
date (See Tables 6-1,6-2, 6-3 and 6-4).

3. A sensitivity analysis of the experiments performed in steganalysis was made [Paper in
the process of publication], leaving as evidence the high variability in the percentages of
accuracy in the detection of steganographic images taking into account the normalization
of the images or the SRM �lters, also how the images are introduced at the time of training
the network, what the behavior is like when testing di�erent partitions of the databases
(training, validation and testing) using BOSSBase and BOWS 2, and how it a�ects the use
of di�erent activation functions in the pre-processing stage. Finally, a recommendation is
given on how the detection accuracy percentages of steganographic images should be re-
ported and how the activation maps generated by the di�erent convolutional layers should
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be analyzed to conduct a correct steganalysis process (See Tables 7-2,7-3, 7-4, 7-5, 7-6,
7-7, 7-8 and 7-1, Figures 7-2 and 7-3,7-6, 7-7, 7-8 and 7-9).

4. A so�ware registry was generated that allows loading pre-trained TensorFlow models to
perform steganalysis on digital images in the spatial domain.

�e previous contributions were published as papers in high-impact journals, and the so�ware
derived from this thesis is registered with the national copyright o�ce. All contributions have
their respective repositories with codes and databases to facilitate the reproduction of the results
and generate a stable knowledge base for future research. �e DL, applied to steganalysis, is now
under construction, and the results thus far are encouraging for researchers interested in the
subject.

8.2. Recomendations

In this thesis, the research team strives to reproduce existing results, improve existing results,
and discover the results’ enormous sensitivity to the parameters of the experimental setups. �e
team believes the following recommendations will greatly contribute to accelerating the advance
in this �eld:

1. To generate new architectures or computational elements of CNNs applied to steganalysis,
conducting a deep review of the literature to have a clear basis of the existing results is
very important and from those make proposals with the latest advances in DL to overcome
the detection percentages of steganographic images.

2. It is important to reproduce the results of all CNNs architectures applied to steganalysis to
be clear about the current results and the complexity of the problem.

3. Currently, steganalysis on images in the spatial domain works on two databases BOSSBa-
se 1.01 and BOWS2, in total 20,000 cover images, augmenting data on these databases is
recommended or adapting ALASKA #2 to maintian a greater amount of information and
thus allow for a be�er generalization when training CNN architectures. Keep in mind that
if images are taken from any source, the problem of the Cover-source-mismatch e�ect [122]
is a variable to take into account when designing experiments in this �eld.

4. It is essential that when reporting results in this topic, the methodology, architecture, and
hyper-parameters used in the experiments are speci�ed in-depth and code repositories and
databases generated to facilitate the reproduction of results.

5. When reporting new results in this research topic, considering that it is a problem that pre-
sents high sensitivity in the accuracy percentages and stability of the network is essential.
For this reason, making a thorough analysis of the results as proposed in Chapter 7 to give
reliability in the reported results is crucial.
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6. To ascertain if a CNN architecture applied to steganalysis is performing well, analyzing
the variation of the weights of the applied �lters and the behavior of the activation maps
during each convolutional layer in the training process is essential.

7. Having specialized hardware such as TPUs or GPUs to train the CNNs to accelerate the
processes and obtain results in short times is also essential. �is allows more experiments
and be�er results. If one works with few images (BOSSBase 1.01 and BOWS2), thee team
recommends the free hardware o�ered by Google Colaboratory.

8. Converting the databases to an NPY format once they are ready is advisable. �is allows
the reading level to be increased enormously, such that the reading time decreases by an
approximate factor of 16 to 20.

8.3. Future Work

According to the results obtained in this thesis and based on the literature review, the research
team proposes the following possible future work:

1. Generate new CNN architectures from validated reference models using CapsuleNet [135],
DenseNet [93], shallow and deeper architectures to improve detection rates in both spatial
and frequency domains.

2. Use segmentation techniques (e.g. U-Net) [136, 137, 138, 139, 140] to make CNNs in stega-
nographic analysis focus their classi�cation on the noisiest areas of the image, i.e. edges or
textures where steganographic noise is normally found.

3. Design custom loss functions [141] for the training process of CNNs to focus on giving
more importance to regions such as textures or edges in images to improve the accuracy
rates in detecting steganographic images.

4. Use di�erent digital image databases (ALASKA #2, Image-Net), taking into account, for
example, the use of di�erent cameras, to test more experiments and study the Cover-Source
Mismatch e�ect more deeply.

5. Normally Generative Adversarial Networks have set two CNNs in competition, one per-
forming the steganography function and the other the steganalysis to make an automa-
tic steganography process, to date encouraging results have been reported in this process
[43, 98, 97, 42, 102, 100, 99, 142]. �e research team proposes conducting the same stra-
tegy but performing automatic steganalysis instead. To date, no results have been reported
in this �eld. And also, applying GANs to the frequency domain where millions of images
are available, using the GBRAS-Net network as CNN steganalysis to improve its security
performance.
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6. According to experiments, the steganographic noise partitioned when there are high reso-
lution images [47] has been observed. Because the experiments reported to date only use
images of 256×256 pixels, as future work, studying the process of steganalysis on high re-
solution images by partitioning the image in such a way that they can be adapted to existing
networks is proposed. �is partitioning is necessary due to memory limitations in current
GPUs. �ese devices can perform deep learning training processes but on low-resolution
images and in small quantities. Considering the above for these experiments, contempla-
ting the use of GPU clusters to achieve steganalysis on large volumes of high-resolution
images is necessary.

7. Adapt the CNNs proposed in this thesis to operate in the frequency domain.

8. Adjust the CNNs that do quantitative steganalysis [51] to improve one’s payload prediction
results.

9. Apply DL to quantitative steganalysis to predict the steganographic image payload in JPEG.

10. Train CNNs with one steganographic algorithm (e.g., S-UNIWARD with 0.4 bpp) and ma-
ke predictions on another algorithm (e.g., HILL with 0.4 bpp) while retaining the same
payload. Train CNNs with a speci�c steganographic algorithm and a given payload (e.g.,
MiPOD with 0.4 bpp) and make predictions on the same steganographic algorithm, but with
a di�erent payload (e.g., MiPOD with 0.2 bpp). Finally, train CNNs with a speci�c stegano-
graphic algorithm and a high payload (e.g., S-UNIWARD with 0.4 bpp) and train another
CNN with the same steganographic algorithm, but with a low payload (e.g., S-UNIWARD
with 0.2 bpp) taking into account transfering the weights learned from the CNN with high
payload to the low payload. All the above can be performed to study the transfer learning
that may exist between di�erent steganographic algorithms and payloads.

11. Conduct a study of the computational e�ciency of existing CNNs compared to traditio-
nal methods. Also, observe the e�ect of using CPU, GPU, or TPU [143] in the di�erent
steganalysis processes.

12. �e research team will aim to study the ALASKA #2 dataset further. �e team will look
for a methodology to improve the pre-processing stage. Furthermore, the team will seek
to incorporate new techniques, such as those presented in [144, 145], for improving the
feature extraction stage. Possibly, this future work could strengthen the rating capabilities
of CNN architecture.

13. Optimize the strategy proposed in this thesis and test it on recent steganalysis CNNs, SR-
Net by [40] and Zhu-Net by [57]. Additionally, demonstrate experimentally the in�uence
of each layer and hyperparameter added by the strategy.
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14. Perform data augmentation on the BOSSBase and BOWS 2 databases using cropping, rota-
tion, and resizing operations, also generate synthetic data using the Keras image data gene-
rator library [146], autoencoders [147] and GANs [148]. Finally, the BOSSBase and BOWS
2 images are originally 512× 512 pixels, the experiments in steganalysis are performed in
256× 256 pixels coming from a resizing of the original images (this due to computational
limitations), spliting each 512× 512 image into four images of 256× 256 and thus perfor-
ming an increase of four times the original base without using any additional process is
proposed.

15. �e �rst deep learning approach applied to image steganalysis was performed in 2014 using
autoencoders [29]. Clarifying that an autoencoder has a great capacity for anomaly detec-
tion is important. �is is ideal for this problem because the steganography process intro-
duces noise inside the image. Taking into account the above, exploring new autoencoder
architectures is proposed because there are more images on which to perform steganaly-
sis (BOSSBase 1.01, BOWS 2 and ALASKA #2) and complemented with the generation of
synthetic data (Keras-Autoencoders) having a database large enough to perform this type
of experiments is possible.

16. Take the existing CNNs for steganalysis and feed them with three images (cover, stego, and
the di�erence between cover and stego); this will provide more information to the network
used for the experiment.

17. Take the existing CNNs for steganalysis and in the �rst convolutional layer place the S-
UNIWARD �lters statically to do feature extraction.

18. Train all CNNs with ALASKA #2+BOWS2 and predict on BOSSBase 1.01 and analyze ste-
ganographic image detection rates.

19. Study the application of DCTR �lters to the spatial domain as an alternative to the SRM
�lters set or possible combination.

Some of the future work proposed in this thesis is already in progress within the team. �ese
works are listed below: future work 1, 2, 4, 7, 10, 11, 12, 15, 16, 18, 19. Presenting these new re-
sults in congresses, journal articles, undergraduate and graduate theses is expected.

As shown above, there is an excellent variety of possibilities for future work that motivate resear-
chers to continue contributing to this topic and invites new researchers interested in DL applied
to steganalysis.

8.4. Contributions

�e contributions of the doctoral process are as follows:
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1. A state-of-the-art analysis of the application of CNNs for steganalysis was conducted, re-
sulting in a systematic review paper entitled: Deep learning applied to steganalysis of digital
images: a systematic review[1], and a book chapter entitled: Digital media steganalysis[2].

2. A strategy was generated that can be applied to all steganalysis CNNs to date and others
(VGG16-VGG19), allowing improvement of all steganographic image detection percentages
reported in the literature. �e results can be seen in the paper entitled: Strategy to improve
the accuracy of convolutional neural network architectures applied to digital image steganaly-
sis in the spatial domain [3].

3. Speci�c architectures and computational elements of CNNs were designed to improve the
accuracy of steganographic image detection. �e results can be seen in the paper entitled:
GBRAS-Net: A Convolutional Neural Network Architecture for Spatial Image Steganalysis [4].

4. A sensitivity analysis of all existing CNNs architectures was performed to make a correct
steganalysis process. �e results can be seen in the paper entitled: Sensitivity of Deep Lear-
ning Applied to Spatial Image Steganalysis [Paper in the process of publication].

5. A database (BOSSBase+BOWS 2) with all Cover and Stego images (HUGO, WOW, S-UNIWARD,
HILL, MiPOD) with payloads of 0.2, 0.3, 0.4 and 0.5 bpp was created to have a baseline for
future researchers to reproduce the team’s experiments and make new contributions in the
topic of steganalysis. In the following repository, one can �nd all the information of the
databases and all the results obtained during this thesis: BioAITeam repository

6. A so�ware development was generated using pre-trained CNNs models to perform ste-
ganalysis on digital images in the spatial domain. �is so�ware was registered with the
national copyright o�ce (registration number 13-84-291). �e source code can be found in
the following repository: So�ware repository

7. During the doctoral process, the bioinformatics and arti�cial intelligence team was crea-
ted and consolidated, belonging to the automatic and so�ware groups of the Universidad
Autónoma de Manizales. �e team has generated undergraduate theses and seedbed mee-
tings where the partial results of this doctoral process have been exposed.

8. In general, the following products have been generated during this doctoral process: four
scienti�c papers in international journals Q1 (1 in process), one Elsevier book chapter, one
so�ware registration, one undergraduate work, two meetings of research seedbeds, one
presentation and one undergraduate internship.

https://github.com/BioAITeam/
https://github.com/BioAITeam/GBRAS_SW
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Additionally, this doctoral process allowed to originate two other kinds of research that are in
process titled:

Toward the understanding of plant genomes of productive interest using bioinformatics, HPC,
and arti�cial intelligence techniques with code 589-089. �is research is funded by the Uni-
versidad Autónoma de Manizales (UAM) and the Institute of Research for Development
(IRD -France). �is project has produced 15 Q1 papers, two Q2 papers, two so�ware regis-
tration, and six undergraduate thesis among others.

COVID-19 detection in chest X-ray images using convolutional neural networks with code
699-106. �is research is funded by UAM, Alcaldia de Manizales, Hospital de Caldas and
Minciencias. In this project, three papers have been produced.

Table 8-1 shows all the information regarding the articles and book chapters published during
the doctoral thesis.

Product Journal �artile
Impact
Factor
(SJR)

Date Repository Link Paper

1. Deep learning applied to steganalysis of digital images
a systematic review

IEEE Access Q1 0.78 20/05/2019 N/A Link

2. Digital media steganalysis Elsevier Chapter N/A N/A 29/06/2020 N/A Link
3. Strategy to improve the accuracy of
convolutional neural network architectures
applied to digital image steganalysis in the spatial domain

PeerJ Computer
Science Q1 1.6 09/04/2021 Link Link

4. GBRAS-Net: A Convolutional Neural Network Architecture
for Spatial Image Steganalysis

IEEE Access Q1 0.78 18/01/2021 Link Link

5. Sensitivity of Deep Learning Applied
to Spatial Image Steganalysis

PeerJ Computer
Science Q1 1.6 In process Link Link

Table 8-1: Papers or book chapters generated during the doctoral thesis.

https://ieeexplore.ieee.org/document/8718661
https://doi.org/10.1016/B978-0-12-819438-6.00020-7
https://github.com/BioAITeam/Strategy-to-improve-CNN-applied-to-digital-image-steganalysis-in-the-spatial-domain
https://peerj.com/articles/cs-451/
https://github.com/BioAITeam/Steganalysis
https://ieeexplore.ieee.org/document/9328287
https://github.com/BioAITeam/Sensitivity-of-Deep-Learning-Applied-to-Spatial-Image-Steganalysis
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[113] J. Kodovský and J. Fridrich, “Steganalysis of JPEG images using rich models,” Proceedings
of SPIE - �e International Society for Optical Engineering, p. 83030A, 2012.

[114] V. Holub and J. Fridrich, “Phase-aware projection model for steganalysis of JPEG images,”
Proceedings of SPIE - �e International Society for Optical Engineering, p. 94090T, 2015.

[115] “Google Code Archive - Long-term storage for Google Code Project Hosting..”

[116] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Da-
rrell, “Ca�e: Convolutional Architecture for Fast Feature Embedding,” in Proceedings of the
22Nd ACM International Conference on Multimedia, MM ’14, (New York, NY, USA), pp. 675–
678, ACM, 2014.

[117] “Universidad de Binghamton.”

[118] “Marc Chaumont’s web page.”

[119] D. M. Chandler and S. S. Hemami, “VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio
for Natural Images,” IEEE Transactions on Image Processing, vol. 16, no. 9, pp. 2284–2298,
2007.

[120] C. Szegedy, L. Wei, J. Yangqing, S. Pierre, R. Sco�, A. Dragomir, E. Dumitru, V. Vincent, and
R. Andrew, “Going deeper with convolutions Christian,” Population Health Management,
vol. 18, no. 3, pp. 186–191, 2015.



120 Bibliography

[121] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proceedings
- 30th IEEE Conference on Computer Vision and Pa�ern Recognition, CVPR 2017, vol. 2017-
Janua, pp. 1800–1807, 2017.
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