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SUMMARY

This dissertation shows that nonnegative matrix factorization (NMF) can be

extended to a general and efficient clustering method. Clustering is one of the funda-

mental tasks in machine learning. It is useful for unsupervised knowledge discovery

in a variety of applications such as text mining and genomic analysis. NMF is a

dimension reduction method that approximates a nonnegative matrix by the product

of two lower rank nonnegative matrices, and has shown great promise as a cluster-

ing method when a data set is represented as a nonnegative data matrix. However,

challenges in the widespread use of NMF as a clustering method lie in its correctness

and efficiency: First, we need to know why and when NMF could detect the true

clusters and guarantee to deliver good clustering quality; second, existing algorithms

for computing NMF are expensive and often take longer time than other clustering

methods. We show that the original NMF can be improved from both aspects in the

context of clustering. Our new NMF-based clustering methods can achieve better

clustering quality and run orders of magnitude faster than the original NMF and

other clustering methods.

Like other clustering methods, NMF places an implicit assumption on the cluster

structure. Thus, the success of NMF as a clustering method depends on whether

the representation of data in a vector space satisfies that assumption. Our approach

to extending the original NMF to a general clustering method is to switch from the

vector space representation of data points to a graph representation. The new for-

mulation, called Symmetric NMF, takes a pairwise similarity matrix as an input and

can be viewed as a graph clustering method. We evaluate this method on document

xiii



clustering and image segmentation problems and find that it achieves better clus-

tering accuracy. In addition, for the original NMF, it is difficult but important to

choose the right number of clusters. We show that the widely-used consensus NMF

in genomic analysis for choosing the number of clusters have critical flaws and can

produce misleading results. We propose a variation of the prediction strength mea-

sure arising from statistical inference to evaluate the stability of clusters and select

the right number of clusters. Our measure shows promising performances in artificial

simulation experiments.

Large-scale applications bring substantial efficiency challenges to existing algo-

rithms for computing NMF. An important example is topic modeling where users

want to uncover the major themes in a large text collection. Our strategy of accel-

erating NMF-based clustering is to design algorithms that better suit the computer

architecture as well as exploit the computing power of parallel platforms such as the

graphic processing units (GPUs). A key observation is that applying rank-2 NMF

that partitions a data set into two clusters in a recursive manner is much faster than

applying the original NMF to obtain a flat clustering. We take advantage of a spe-

cial property of rank-2 NMF and design an algorithm that runs faster than existing

algorithms due to continuous memory access. Combined with a criterion to stop the

recursion, our hierarchical clustering algorithm runs significantly faster and achieves

even better clustering quality than existing methods. Another bottleneck of NMF

algorithms, which is also a common bottleneck in many other machine learning appli-

cations, is to multiply a large sparse data matrix with a tall-and-skinny dense matrix.

We use the GPUs to accelerate this routine for sparse matrices with an irregular

sparsity structure. Overall, our algorithm shows significant improvement over popu-

lar topic modeling methods such as latent Dirichlet allocation, and runs more than

100 times faster on data sets with millions of documents.

xiv



CHAPTER I

INTRODUCTION

This dissertation shows that nonnegative matrix factorization (NMF), a dimension

reduction method proposed two decades ago [87, 66], can be extended to a general

and efficient clustering method. Clustering is one of the fundamental tasks in ma-

chine learning [32]. It is useful for unsupervised knowledge discovery in a variety of

applications where human label information is scarce or unavailable. For example,

when people read articles, they can easily place the articles into several groups such

as science, art, and sports based on the text contents. Similarly, in text mining, we

are interested in automatically organizing a large text collection into several clusters

where each cluster forms a semantically coherent group. In genomic analysis and

cancer study, we are interested in finding common patterns in the patients’ gene ex-

pression profiles that correspond to cancer subtypes and offer personalized treatment.

However, clustering is a difficult, if not impossible, problem. Many clustering meth-

ods have been proposed but each of them has tradeoffs in terms of clustering quality

and efficiency. The new NMF-based clustering methods that will be discussed in this

dissertation can be applied to a wide range of data sets including text, image, and

genomic data, achieve better clustering quality, and run orders of magnitude faster

than other existing NMF algorithms and other clustering methods.

1.1 Nonnegative Matrix Factorization

In nonnegative matrix factorization, given a nonnegative matrix X ∈ Rm×n
+ and k ≤

min(m,n), X is approximated by a product of two nonnegative matrices W ∈ Rm×k
+

and H ∈ Rk×n
+ :

X ≈ WH (1)

1



where R+ denotes the set of nonnegative real numbers.

In the above formulation, the matrix X is a given data matrix, where rows cor-

respond to features and the columns of X = [x1, · · · ,xn] represent n nonnegative

data points in the m-dimensional space. Many types of data have such represen-

tation as high-dimensional vectors. For example, a document in the bag-of-words

model is represented as a distribution of all the words in the vocabulary; a raw image

(without feature extraction) is represented as a vectorized array of pixels. In high-

dimensional data analysis, rather than training or making prediction relying on these

high-dimensional data directly, it is often desirable to discover a small set of latent

factors using a dimension reduction method. In fact, high-dimensional data such as

documents and images are usually embedded in a space with much lower dimensions

[23].

Nonnegative data frequently occur in data analysis, such as texts [110, 88, 90],

images [66, 17], audio signal [21], and gene expression profiles [16, 35, 52]. These types

of data can all be represented as a nonnegative data matrix, and NMF has become an

important technique for reducing the dimensionality for such data sets. The columns

of W form a basis of a latent space and are called basis vectors. The matrix H

contains coefficients that reconstruct the input matrix by linear combinations of the

basis vectors. The i-th column of H contains k nonnegative linear coefficients that

represent xi in the latent subspace spanned by the columns of W . In other words, the

second low-rank matrix explains the original data points in the latent space. Typically

we have k << min(m,n), i.e. the original data points in the m-dimensional space are

approximated in a much lower-dimensional space of dimension k.

Nonnegativity on the matrices W and H is the key constraint that distinguishes

NMF from other low-rank matrix approximation methods. Because the latent fac-

tors found by NMF preserve the nonnegativity of the original data points, we can

interpret their meanings in order to facilitate human understanding of a data set.

2



NMF was first proposed by Paatero and Tapper [87], and became popular after Lee

and Seung [66] published their work in Nature in 1999. Lee and Seung applied this

technique to a collection of human face images, and discovered that NMF extracted

facial organs (eyes, noses, lips, etc.) as a set of basic building blocks for these images.

This result was in contrast to previous dimension reduction methods such as singular

value decomposition (SVD), which did not impose nonnegativity constraints and gen-

erated latent factors not easily interpretable by human beings. They called previous

methods “holistic” approaches for dimension reduction, and correspondingly referred

to NMF as a “parts-based” approach: Each original face image can be approximately

represented by additively combining several “parts”.

There has been a blossom of papers extending and improving the original NMF

in the past two decades, and NMF has been successfully applied to many areas such

as bioinformatics [16, 35, 52], blind source separation [21, 100], and recommender

systems [117]. In particular, NMF has shown excellent performances as a clustering

method. For the time being, let us assume that the given parameter k is the actual

number of clusters in a data set; we will consider the case where k is unknown a priori

in later chapters. Because of the nonnegativity constraints in NMF, one can use the

basis vectors directly as cluster representatives, and the coefficients as soft clustering

memberships. More precisely, the i-th column of H contains fractional assignment

values of xi corresponding to the k clusters. To obtain a hard clustering result for xi,

we may choose the index that corresponds to the largest element in the i-th column

of H. This clustering scheme has been shown to achieve promising clustering quality

in texts [110], images [17], and genomic data [16, 52]. For example, text data can

be represented as a term-document matrix where rows correspond to words, columns

correspond to documents, and each entry is the raw or weighted frequency of a word in

a document. In this case, we can interpret each basis vector as a topic, whose elements

are importance values for all the words in a vocabulary. Each document is modeled

3



as a k-vector of topic proportions over the k topics, and these topic proportions can

be used to derive clustering assignments.

1.2 The Correctness of NMF for Clustering

Although NMF has already had many success stories in clustering, one challenge in

the widespread use of NMF as a clustering method lie in its correctness. First, we

need to know why and when NMF could detect the true clusters and guarantee to

deliver good clustering quality. From both theoretical and practical standpoints, it

is important to know the advantages and limitation of NMF as a clustering method.

While dimension reduction and clustering are closely related, they have different goals

and different objective functions to optimize. The goal of NMF is to approximate the

original data points in a latent subspace, while the goal of clustering is to partition the

data points into several clusters so that within-cluster variation is small and between-

cluster variation is large. In order to use NMF as a clustering method in the right

circumstances, we need to know first when the latent subspace corresponds well to

the actual cluster structures.

The above issue, namely the limited understanding of NMF as a clustering method,

is partly attributed to the ill-defined nature of clustering. Clustering is often quoted

as a technique that discovers “natural grouping” of a set of data points. The word

“natural” implies that the true clusters are determined by the discretion of human

beings, sometimes visual inspection, and the evaluation of clustering results is subjec-

tive [31]. Kleinberg [58] defined three axioms as desired properties for any reasonable

clustering method, and showed that these axioms were in themselves contradictory,

i.e. no clustering method could satisfy all of them.

From a pessimistic view, Kleinberg’s result may suggest that it is worthless to

study a clustering method. Talking about the correctness of a clustering method is

tricky because there is no correct clustering method in its technical sense. However,
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clustering methods have proved to be very useful for exploratory data analysis in

practice. From an optimistic view, what we need to study is the conditions in which

a clustering method can perform well and discover the true clusters. Each clustering

method places an implicit assumption on the distribution of the data points and the

cluster structures. Thus, the success of a clustering method depends on whether

the representation of data satisfies that assumption. The same applies to NMF. We

investigate the assumption that NMF places on the vector space representation of

data points, and extend the original NMF to a general clustering method.

1.3 Efficiency of NMF Algorithms for Clustering

Another issue that may prevent NMF from widespread use in large-scale applications

is its computational burden. A popular way to define NMF is to use the Frobenius

norm to measure the difference between X and WH [53]:

min
W,H≥0

‖X −WH‖2
F (2)

where ‖·‖F denotes the Frobenius norm and “≥ 0” indicates entrywise nonnegativity.

Algorithms for NMF solve (2) as a constrained optimization problem.

A wide range of numerical optimization algorithms have been proposed for min-

imizing the formulation of NMF (2). Since (2) is nonconvex, in general we cannot

expect an algorithm to reach the global minimum; a reasonable convergence property

is to reach a stationary point solution [12], which is a necessary condition to be a local

or global minimum. Lee and Seung’s original algorithm, called multiplicative update

rules [66], has been a very popular choice (abbreviated as “update rule” in the follow-

ing text). This algorithm consists of basic matrix computations only, and thus is very

simple to implement. Though it was shown to always reduce the objective function

value as the iteration proceeds, its solution is not guaranteed to be a stationary point

[37], which is a drawback concerning the quality of the solution. More principled al-

gorithms can be explained using the block coordinate descent framework [71, 53], and
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optimization theory guarantees the stationarity of solutions. In this framework, NMF

is reduced to two or more convex optimization problems. Algorithms differ in the re-

spects of how to partition the unknowns into blocks, which correspond to solutions to

convex problems, and how to solve these convex problems. Existing methods include

projected gradient descent [71], projected quasi-Newton [51], active set [53], block

pivoting [56], hierarchical alternating least squares [21], etc. Numerical experiments

have shown that NMF algorithms following the block coordinate descent framework

are more efficient and produce better solutions than update rule algorithms in terms

of the objective function value [71, 53, 57]. For a comprehensive review, see [55].

Despite the effort in developing more efficient algorithms for computing NMF,

the computational complexity of these algorithms is still larger than that of classical

clustering methods (e.g. K-means, spectral clustering). Applying NMF to data sets

with very large m and/or n, such as clustering the RCV1 data set [68] with more than

800,000 documents, is still very expensive and costs several hours at the minimum.

Also, when m and n are fixed, the computational complexity of most algorithms

in the block coordinate descent framework increases superlinearly as k, the number

of clusters a user requests, increases. Thus, we can witness a demanding need for

faster algorithms for NMF in the specific context of clustering. We may increase

the efficiency by completely changing the existing framework for “flat” NMF-based

clustering.

1.4 Contributions, Scope, and Outline

In this dissertation, we propose several new approaches to improve the quality and

efficiency of NMF in the context of clustering. Our contributions include:

1. We show that the original NMF, when used as a clustering method, assumes

that different clusters can be represented by linearly independent vectors in a

vector space; therefore the original NMF is not a general clustering method
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that can be applied everywhere regardless of the distribution of data points

and the cluster structures. We extend the original NMF to a general clustering

method by switching from the vector space representation of data points to

a graph representation. The new formulation, called Symmetric NMF, takes

a pairwise similarity matrix as an input instead of the original data matrix.

Symmetric NMF can be viewed as a graph clustering method and is able to

capture nonlinear cluster strutures. Thus, Symmetric NMF can be applied

to a wider range of data sets compared to the original NMF, including those

that cannot be represented in a finite-dimensional vector space. We evaluate

Symmetric NMF on document clustering and image segmentation problems

and find that it achieves better clustering accuracy than the original NMF and

spectral clustering.

2. For the original NMF, it is difficult but important to choose the right number of

clusters. We investigate consensus NMF [16], a widely-used method in genomic

analysis that measures the stability of clusters generated under different k’s for

choosing the number of clusters. We discover that this method has critical flaws

and can produce misleading results that suggest cluster structures when they

do not exist. We argue that the geometric structure of the low-dimensional

representation in a single NMF run, rather than the consensus result of many

NMF runs, is important for determining the presence of well-separated clusters.

We propose a new framework for cancer subtype discovery and model selection.

The new framework is based on a variation of the prediction strength measure

arising from statistical inference to evaluate the stability of clusters and se-

lect the right number of clusters. Our measure shows promising performances

in artificial simulation experiments. The combined methodology has theoret-

ical implications in genomic studies, and will potentially drive more accurate

discovery of cancer subtypes.
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3. We accelerate NMF-based clustering by designing algorithms that better suit

the computer architecture. A key observation is that the efficiency of NMF-

based clustering can be tremendously improved by recursively partitioning a

data set into two clusters using rank-2 NMF, that is, NMF with k = 2. In

this case, the overall computational complexity is linear instead of superlinear

with respect to the number of clusters in the final clustering result. We focus

on a particular type of algorithms, namely active-set-type algorithms. We take

advantage of a special property of rank-2 NMF solved by active-set-type algo-

rithms and design an algorithm that runs faster than existing algorithms due

to continuous memory access. This approach, when used for hierarchical doc-

ument clustering, generates a tree structure which provides a topic hierarchy

in contrast to a flat partitioning. Combined with a criterion to stop the re-

cursion, our hierarchical clustering algorithm runs significantly faster than the

original NMF with comparable clustering quality. The leaf-level clusters can

be transformed back to a flat clustering result, which turns out to have even

better clustering quality. Thus, our algorithm shows significant improvement

over popular topic modeling methods such as latent Dirichlet allocation [15].

4. Another bottleneck of NMF algorithms, which is also a common bottleneck in

many other machine learning applications, is to multiply a large sparse data

matrix with a tall-and-skinny dense matrix (SpMM). Existing numerical li-

braries that implement SpMM are often tuned towards other applications such

as structural mechanics, and thus cannot exploit the full computing capability

for machine learning applications. We exploit the computing power of parallel

platforms such as the graphic processing units (GPUs) to acclerate this routine.

We discuss the performance of SpMM on GPUs and propose a cache block-

ing strategy that can take advantage of memory locality and increase memory

throughput. We develop an out-of-core SpMM routine on GPUs for sparse
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matrices with an arbitrary sparsity structure. We optimize its performance

specifically for multiplying a large sparse matrix with two dense columns, and

apply it to our hierarchical clustering algorithm for large-scale topic modeling.

Overall, our algorithm runs more than 100 times faster than the original NMF

and latent Dirichlet allocation on data sets with millions of documents.

The primary aim of this dissertation is to show that the original NMF is not suffi-

cient for clustering, and the extensions and new approaches that will be presented in

later chapters are necessary and important to establish NMF as a clustering method,

in terms of its correctness and efficiency. We focus ourselves on the context of large-

scale clustering. When developing the algorithms for the new formulations, we focus

on shared memory computing platforms, possibly with multiple cores and accelera-

tors such as the GPUs. We believe that algorithms on shared memory platforms are

a required component in any distributed algorithm and thus their efficiency is also

very important. Development of efficient distributed NMF algorithms for clustering

is one of our future plans and is not covered in this dissertation.

The rest of the dissertation is organized as follows. We first briefly review several

existing clustering algorithms in Chapter 2. In Chapter 3, we present Symmetric

NMF as a general graph clustering method. In Chapter 4, we introduce our method

for choosing the number of clusters and build a new NMF-based framework for cancer

subtype discovery. In Chapter 5, we design a hierarchical scheme for clustering that

completely changes the existing framework used by NMF-based clustering methods

and runs significantly faster. Topic modeling is an important use case of NMF where

the major themes in a large text collection need to be uncovered. In Chapter 6, we

further accelerate the techniques proposed in the previous chapter by developing a

GPU routine for sparse matrix multiplication and culminate with a highly efficient

topic modeling method.
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CHAPTER II

REVIEW OF CLUSTERING ALGORITHMS

2.1 K-means

K-means is perhaps the most widely-used clustering algorithm by far [89, 86]. Given n

data points x1, · · · ,xn, a distance function d(xi,xj) between all pairs of data points,

and a number of clusters k, the goal of K-means is to find a non-overlapping par-

titioning C1, · · · , Ck of all the data points that minimizes the sum of within-cluster

variation of all the partitionings:

J =
k∑
j=1

1

2|Cj|
∑
i,i′∈Cj

d(xi,xi′), (3)

where |Cj| is the cardinality of Cj. The squared Euclidean distance is the most

frequently used distance function, and K-means clustering that uses Euclidean dis-

tances is called Euclidean K-means. The sum of within-cluster variation in Euclidean

K-means can be written in terms of k “centroids”:

J =
k∑
j=1

1

2|Cj|
∑
i,i′∈Cj

‖xi − xi′‖2
2 =

k∑
j=1

1

2|Cj|
∑
i∈Cj

‖xi − cj‖2
2 (4)

where

cj =
1

|Cj|

|Cj |∑
i′=1

xi′ (5)

is the centroid of all the data points in Cj. (4) is referred to as the sum of squared

error.

Euclidean K-means is often solved by a heuristic EM-style algorithm, called the

Lloyd’s algorithm [73]. The algorithm can only reach a local minimum of J and

cannot be used to obtain the global minimum in general. In the basic version, it

starts with a random initialization of centroids, and then iterate the following two

steps until convergence:
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1. Form a new partitioning C1, · · · , Ck by assigning each data point xi to the

centroid closest to xi, that is, arg minj ‖xi − cj‖2
2;

2. Compute a new set of centroids c1, · · · , ck.

This procedure is guaranteed to converge because J is nonincreasing throught the

iterations and lower bounded by zero.

The most expensive step of the above algorithm comes from the computation

of the Euclidean distances of each pair (xi, cj) to determine the closest centroid for

each data point, which costs O(mnk) where m is the dimension of the data points.

In a näıve implementation such as a for-loop, this step can be prohibitively slow

and prevent the application of K-means to large data sets. However, the Euclidean

distance between two data points can be transformed into another form [83]:

‖xi − cj‖2
2 = ‖xi‖2

2 − 2xTi cj + ‖cj‖2
2 (6)

The cross-term xTi cj for all the (i, j) pairs can be written as a matrix form XTC and

computed as a matrix product. The terms ‖xi‖2
2 and ‖cj‖2

2 need to be computed only

once for each i and each j. This way of implementing K-means is much faster because

matrix-matrix multiplication is BLAS3 computation and has efficient of the CPU

cache. Note that though rewriting the Euclidean distance as (6) is mathematically

equivalent, we found that the numerical values may not remain the same, which may

lead to different clustering results.

The procedure described above is also called the batch-update phase of K-means,

in which the data points are re-assigned to their closest centroids all at once in each

iteration. Some implementations such as the Matlab kmeans employ an additional

online-update phase that is much more time-consuming [32]. In each iteration of the

online-update phase, a single data point is moved from one cluster to another if such

a move reduces the sum of squared error J , and this procedure is done for every data
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point in a cyclic manner until the objective function would be increased by moving

any single data point from one cluster to another.

2.2 Baseline Evaluation of NMF for Clustering

We have introduced the application of NMF to clustering and its interpretation in

Chapter 1. Now we present some baseline experimental results that support NMF

as a clustering method. We compare the clustering quality between K-means and

NMF; zooming into the details of NMF algorithms, we compare the multiplicative

updating (MU) algorithm [66] and an alternating nonnegative least squares (ANLS)

algorithm [56, 57] in terms of their clustering quality and convergence behavior as

well as sparseness in the solution.

2.2.1 Data Sets and Algorithms

We used text data sets in our experiments. All these corpora have ground-truth labels

for evaluating clustering quality.

1. TDT2 contains 10,212 news articles from various sources (e.g., NYT, CNN,

and VOA) in 1998.

2. Reuters1 contains 21,578 news articles from the Reuters newswire in 1987.

3. 20 Newsgroups2 (20News) contains 19,997 posts from 20 Usenet newsgroups.

Unlike previous indexing of these posts, we observed that many posts have

duplicated paragraphs due to cross-referencing. We discarded cited paragraphs

and signatures in a post by identifying lines starting with “>” or “--”. The

resulting data set is less tightly-clustered and much more difficult to apply

clustering or classification methods.

1http://www.daviddlewis.com/resources/testcollections/reuters21578/ (retrieved in
June 2014)

2http://qwone.com/~jason/20Newsgroups/ (retrieved in June 2014)
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Table 1: Data sets used in our experiments.

Data set # Terms # Documents # Ground-truth clusters
TDT2 26,618 8,741 20

Reuters 12,998 8,095 20
20 Newsgroups 36,568 18,221 20

RCV1 20,338 15,168 40
NIPS14-16 17,583 420 9

4. From the more recent Reuters news collection RCV13 [68] that contains over

800,000 articles in 1996-1997, we selected a subset of 23,149 articles. Labels are

assigned according to a topic hierarchy, and we only considered leaf topics as

valid labels.

5. The research paper collection NIPS14-164 contains NIPS papers published in

2001-2003 [36], which are associated with labels indicating the technical area

(algorithms, learning theory, vision science, etc).

For all these data sets, documents with multiple labels are discarded in our experi-

ments. In addition, the ground-truth clusters representing different topics are highly

unbalanced in their sizes for TDT2, Reuters, RCV1, and NIPS14-16. We selected

the largest 20, 20, 40, and 9 ground-truth clusters from these data sets, respectively.

We constructed term-document matrices using tf-idf features [77], where each row

corresponds to a term and each column to a document. We removed any term that

appears less than three times and any document that contains less than five words.

Table 1 summarizes the statistics of the five data sets after pre-processing. For each

data set, we set the number of clusters to be the same as the number of ground-truth

clusters.

We further process each term-document matrix X in two steps. First, we nor-

malize each column of X to have a unit L2-norm, i.e., ‖xi‖2 = 1. Conceptually, this

3http://jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm (retrieved in
June 2014)

4http://chechiklab.biu.ac.il/~gal/data.html (retrieved in June 2014)
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makes all the documents have equal lengths. Next, following [110], we compute the

normalized-cut weighted version of X:

D = diag(XTX1n), X ← XD−1/2, (7)

where 1n ∈ Rn×1 is the column vector whose elements are all 1’s, and D ∈ Rn×n
+

is a diagonal matrix. This column weighting scheme was reported to enhance the

clustering quality of both K-means and NMF [110].

For K-means clustering, we used the standard K-means with Euclidean distances.

We used both the batch-update and online-update phases and rewrote the Matlab

kmeans function using BLAS3 operations and boosted its efficiency substantially.5

For the ANLS algorithm for NMF, we used the block principal pivoting algorithm6

[56, 57].

2.2.2 Clustering Quality

We used two measures to evaluate the clustering quality against the ground-truth

clusters. Note that we use classes and clusters to denote the ground-truth knowledge

and the labels given by a clustering algorithm, respectively.

Clustering accuracy is the percentage of correctly clustered items given by the

maximum bipartite matching (see more details in [110]). This matching associates

each cluster with a ground-truth cluster in an optimal way and can be found by the

Kuhn-Munkres algorithm [60].

Normalized mutual information (NMI) is an information-theoretic measure of the

similarity between two flat partitionings [77], which, in our case, are the ground-truth

clusters and the generated clusters. It is particularly useful when the number of

generated clusters is different from that of ground-truth clusters or when the ground-

truth clusters have highly unbalanced sizes or a hierarchical labeling scheme. It is

5http://www.cc.gatech.edu/~dkuang3/software/kmeans3.html (retrieved in June 2014)
6https://github.com/kimjingu/nonnegfac-matlab (retrieved in June 2014)
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Table 2: The average clustering accuracy given by the four clustering algorithms on
the five text data sets.

K-means NMF/MU NMF/ANLS Sparse NMF/ANLS
TDT2 0.6711 0.8022 0.8505 0.8644

Reuters 0.4111 0.3686 0.3731 0.3917
20News 0.1719 0.3735 0.4150 0.3970
RCV1 0.3111 0.3756 0.3797 0.3847

NIPS14-16 0.4602 0.4923 0.4918 0.4923

calculated by:

NMI =
I(Cground-truth, Ccomputed)

[H(Cground-truth) +H(Ccomputed)] /2
=

∑
h,l nh,l log

n·nh,l

nhnl(∑
h nh log nh

n
+
∑

l nl log nl

n

)
/2
, (8)

where I(·, ·) denotes mutual information between two partitionings, H(·) denotes

the entropy of a partitioning, and Cground-truth and Ccomputed denote the partitioning

corresponding to the ground-truth clusters and the computed clusters, respectively.

nh is the number of documents in the h-th ground-truth cluster, nl is the number of

documents in the l-th computed cluster, and nh,l is the number of documents in both

the h-th ground-truth cluster and the l-th computed cluster.

Tables 2 and 3 show the clustering accuracy and NMI results, respectively, aver-

aged over 20 runs with random initializations. All the NMF algorithms have the same

initialization of W and H in each run. We can see that all the NMF algorithms con-

sistently outperform K-means except one case (clustering accuracy evaluated on the

Reuters data set). Considering the two algorithms for standard NMF, the clustering

quality of NMF/ANLS is either similar to or much better than that of NMF/MU. The

clustering quality of the sparse NMF is consistently better than that of NMF/ANLS

except on the 20 Newsgroups data set and always better than NMF/MU.

2.2.3 Convergence Behavior

Now we compare the convergence behaviors of NMF/MU and NMF/ANLS. We em-

ploy the projected gradient to check stationarity and determine whether to terminate
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Table 3: The average normalized mutual information given by the four clustering
algorithms on the five text data sets.

K-means NMF/MU NMF/ANLS Sparse NMF/ANLS
TDT2 0.7644 0.8486 0.8696 0.8786

Reuters 0.5103 0.5308 0.5320 0.5497
20News 0.2822 0.4069 0.4304 0.4283
RCV1 0.4092 0.4427 0.4435 0.4489

NIPS14-16 0.4476 0.4601 0.4652 0.4709
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Figure 1: The convergence behavior of NMF/MU and NMF/ANLS on the 20 News-
groups data set (k = 20) and RCV1 data set (k = 40).

the algorithms [71], which is defined as:

(∇PfW )ij =


∇(fW )ij, if (∇fW )ij < 0 or Wij > 0;

0, otherwise,

(9)

and the projected gradient norm is defined as:

∆ =
√
‖∇PfW‖2

F + ‖∇PfH‖2
F . (10)

We denote the projected gradient norm computed from the first iterate of (W,H)

as ∆(1). Fig. 1 shows the relative norm of projected gradient ∆/∆(1) as the algo-

rithms proceed on the 20 Newsgroups and RCV1 data sets. The quantity ∆/∆(1) is

not monotonic in general; however, on both data sets, it has a decreasing trend for
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NMF/ANLS and eventually reached the given tolerance ε, while NMF/MU did not

converge to stationary point solutions. This observation is consistent with the result

that NMF/ANLS achieved better clustering quality and sparser low-rank matrices.

2.2.4 Sparse Factors

With only nonnegativity constraints, the resulting factor matrix H of NMF contains

the fractional assignment values corresponding to the k clusters represented by the

columns of W . Sparsity constraints on H have been shown to facilitate the interpre-

tation of the result of NMF as a hard clustering result and improve the clustering

quality [43, 52, 54]. For example, consider two different scenarios of a column of

H ∈ R3×n
+ : (0.2, 0.3, 0.5)T and (0, 0.1, 0.9)T . Clearly, the latter is a stronger indicator

that the corresponding data point belongs to the third cluster.

To incorporate sparsity constraints into the NMF formulation (2), we can adopt

the L1-norm regularization on H [52, 54], resulting in Sparse NMF:

min
W,H≥0

‖X −WH‖2
F + α‖W‖2

F + β
n∑
i=1

‖H(:, i)‖2
1, (11)

where H(:, i) represents the i-th column of H. The Frobenius-norm regularization

term in (11) is used to suppress the entries of W from being too large. Scalar param-

eters α and β are used to control the strength of regularization. The choice of these

parameters can be determined by cross validation, for example, by tuning α, β until

the desired sparseness is reached. Following [52, 53], we set α to the square of the

maximum entry in X and β = 0.01 since these choices have been shown to work well

in practice.

We compare the sparseness in the W and H matrices among the solutions of

NMF/MU, NMF/ANLS, and the Sparse NMF/ANLS. Table 4 shows the percentage

of zero entries for the three NMF versions. Compared to NMF/MU, NMF/ANLS

does not only lead to better clustering quality and smaller objective values, but also

facilitates sparser solutions in terms of both W and H. Recall that each column of W
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Table 4: The average sparseness of W and H for the three NMF algorithms on the
five text data sets. %(·) indicates the percentage of the matrix entries that satisfy
the condition in the parentheses.

NMF/MU NMF/ANLS Sparse NMF/ANLS

%(wij = 0) %(hij = 0) %(wij = 0) %(hij = 0) %(wij = 0) %(hij = 0)

TDT2 21.05 6.08 55.14 50.53 52.81 65.55

Reuters 40.92 12.87 68.14 59.41 66.54 72.84

20News 46.38 15.73 71.87 56.16 71.01 75.22

RCV1 52.22 16.18 77.94 63.97 76.81 76.18

NIPS
32.68 0.05 50.49 48.53 49.90 54.49

14-16

is interpreted as the term distribution for a topic. With a sparser W , the keyword-wise

distributions for different topics are more orthogonal, and one can select important

terms for each topic more easily. A sparser H can be interpreted as clustering in-

dicators more easily. Table 4 also validates that the sparse NMF generates an even

sparser H in the solutions and often better clustering results.
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CHAPTER III

SYMMETRIC NMF FOR GRAPH CLUSTERING

3.1 Limitations of NMF as a Clustering Method

Although NMF has been widely used in clustering and often reported to have bet-

ter clustering quality than classical methods such as K-means, it is not a general

clustering method that performs well in every circumstance. The reason is that the

clustering capability of an algorithm and its limitation can be attributed to its as-

sumption on the cluster structure. For example, K-means assumes that data points

in each cluster follow a spherical Gaussian distribution [32]. In the case of NMF,

let us consider an exact low-rank factorization where X = WH. The columns of

W = [w1, · · · ,wk] form a simplicial cone [30]:

ΓW = {x|x =
k∑
j=1

αjwj, αj ≥ 0}, (12)

and NMF finds a simplicial cone ΓW such that xi ∈ ΓW ,∀1 ≤ i ≤ n, where each

column of H is composed of the nonnegative coefficients α1, · · · , αk. Because the

cluster label assigned to xi is the index of the largest element in the i-th column of

H, a necessary condition for NMF to produce good clustering results is:

There exists a simplicial cone Γ in the positive orthant, such that each

of the k vectors that span Γ represents a cluster.

If k ≤ rank(X), the columns of W returned by NMF are linearly independent due to

rank(X) ≤ nonnegative-rank(X) [9]. Thus another necessary condition for NMF to

produce good clustering results is:

The k clusters can be represented by linearly independent vectors.
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Figure 2: An example with two ground-truth clusters, with different clustering results.

In the case of a low-rank approximation instead of an exact factorization, it was shown

that the approximation error minW∈Rm×k
+ ,H∈Rk×n

+
‖X −WH‖2

F decreases with k [55],

and thus the columns of W are also linearly independent. In fact, if the columns of W

in the result of NMF with lower dimension k were linearly dependent, there always

exist matrices W̃ ∈ Rm×(k−1)
+ and H̃ ∈ R(k−1)×n

+ such that minW∈Rm×k
+ ,H∈Rk×n

+
‖X −

WH‖2
F =

∥∥∥X − [W̃0 0][H̃T
0 0]T

∥∥∥2

F
≥ min

W∈Rm×(k−1)
+ ,H∈R(k−1)×n

+
‖X −WH‖2

F , which

contradicts that minW∈Rm×k
+ ,H∈Rk×n

+
‖X − WH‖2

F < min
W∈Rm×(k−1)

+ ,H∈R(k−1)×n
+

‖X −

WH‖2
F [55]. Therefore, we can use NMF to generate good clustering results only

when the k clusters can be represented by linearly independent vectors.

Although K-means and NMF have the equivalent form of objective function, ‖X−

WH‖2
F , each has its best performance on different kinds of data sets. Consider the

example in Fig. 2, where the two cluster centers are along the same direction therefore

the two centroid vectors are linearly dependent. While NMF still approximates all

the data points well in this example, no two linearly independent vectors in a two-

dimensional space can represent the two clusters shown in Fig. 2. Since K-means and

NMF have different conditions under which each of them does clustering well, they

may generate very different clustering results in practice. We are motivated by Fig.

2 to mention that the assumption of spherical K-means is that data points in each

cluster follow a von Mises-Fisher distribution [5], which is similar to that of NMF.

NMF, originally a dimension reduction method, is not always a preferred clustering

method. The success of NMF as a clustering method depends on the underlying data
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set, and its most success has been around document clustering [110, 88, 90, 69, 54, 29].

In a document data set, data points are often represented as unit-length vectors [77]

and embedded in a linear subspace. For a term-document matrix X, a basis vector wj

is interpreted as the term distribution of a single topic. As long as the representatives

of k topics are linearly independent, which are usually the case, NMF can extract

the ground-truth clusters well. However, NMF has not been as successful in image

clustering. For image data, it was shown that a collection of images tends to form

multiple 1-dimensional nonlinear manifolds [99], one manifold for each cluster. This

does not satisfy NMF’s assumption on cluster structures, and therefore NMF may

not identify correct clusters.

In this chapter, we study a more general formulation for clustering based on NMF,

called Symmetric NMF (SymNMF), where an n× n nonnegative and symmetric ma-

trix A is given as an input instead of a nonnegative data matrix X. The matrix

A contains pairwise similarity values of a similarity graph, and is approximated by

a lower-rank matrix BBT instead of the product of two lower-rank matrices WH.

High-dimensional data such as documents and images are often embedded in a low-

dimensional space, and the embedding can be extracted from their graph represen-

tation. We will demonstrate that SymNMF can be used for graph embedding and

clustering and often performs better than spectral methods in terms of standard

evaluation measures for clustering.

The rest of this chapter is organized as follows. In Section 3.2, we review pre-

vious work on nonnegative factorization of a symmetric matrix and introduce the

novelty of the directions proposed in this chapter. In Section 3.3, we present our

new interpretation of SymNMF as a clustering method. In Section 3.4, we show the

difference between SymNMF and spectral clustering in terms of their dependence on

the spectrum. In Sections 3.5 & 3.6, we propose two algorithms for SymNMF: A
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Newton-like algorithm and an alternating nonnegative least squares (ANLS) algo-

rithm, and discuss their efficiency and convergence properties. In Section 3.7.4, we

report competitive experiment results on document and image clustering. In Section

3.8, we apply SymNMF to image segmentation and show the unique properties of the

obtained segments. In Section 3.9, we discuss future research directions.

3.2 Related Work

In Symmetric NMF (SymNMF), we look for the solution B ∈ Rn×k
+ ,

min
B≥0

f(B) = ‖A−BBT‖2
F , (13)

given A ∈ Rn×n
+ with AT = A and k. The integer k is typically much smaller than n.

In our graph clustering setting, A is called a similarity matrix: The (i, j)-th entry of

A is the similarity value between the i-th and j-th node in a similarity graph.

The above formulation has been studied in a number of previous papers. Ding

et al. [28] transformed the formulation of NMF (2) to a symmetric approximation

‖A− BBT‖2
F where A is a positive semi-definite matrix, and showed that it has the

same form as the objective function of spectral clustering. Li et al. [69] used this

formulation for semi-supervised clustering where the similarity matrix was modified

with prior information. Zass and Shashua [115] converted a completely positive matrix

[10] to a symmetric doubly stochastic matrix A and used the formulation (13) to

find a nonnegative B for probabilistic clustering. They also gave a reason why the

nonnegativity constraint on B was more important than the orthogonality constraint

in spectral clustering. He et al. [41] approximated a completely positive matrix

directly using the formulation (13) with parallel update algorithms. In all of the

above work, A was assumed to be a positive semi-definite matrix. For other related

work that imposed additional constraints on B, see [2, 112, 111].

The SymNMF formulation has also been applied to non-overlapping and over-

lapping community detection in real networks [105, 75, 84, 119, 118]. For example,
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Nepusz [84] proposed a formulation similar to (13) with sum-to-one constraints to de-

tect soft community memberships; Zhang [119] proposed a binary factorization model

for overlapping communities and discussed the pros and cons of hard/soft assignments

to communities. The adjacency matrix A involved in community detection is often

an indefinite matrix.

Additionally, Catral et al. [18] studied the symmetry of WH and the equal-

ity between W and HT , when W and H are the global optimum for the problem

minW,H≥0 ‖A −WH‖2
F where A is nonnegative and symmetric. Ho [42] in his thesis

related SymNMF to the exact symmetric NMF problem A = BBT . Both of their

theories were developed outside the context of graph clustering, and their topics are

beyond the scope of this thesis. Ho [42] also proposed a 2n-block coordinate descent

algorithm for (13). Compared to our two-block coordinate descent framework de-

scribed in Section 3.6, Ho’s approach introduced a dense n×n matrix which destroys

the sparsity pattern in A and is not scalable.

Almost all the work mentioned above employed multiplicative update algorithms

to optimize their objective functions with nonnegativity constraints. However, this

type of algorithms does not have the property that every limit point is a stationary

point [37, 70], and accordingly their solutions are not necessarily local minima. In fact,

though the papers using multiplicative update algorithms proved that the solutions

satisfied the KKT condition, their proof did not include all the components of the

KKT condition, for example, the sign of the gradient vector (we refer the readers

to [26] as an example). Of the three papers [84, 118, 42] that used gradient descent

methods for optimization and did reach stationary point solutions, they performed

the experiments only on graphs with up to thousands of nodes.

In this chapter, we study the formulation (13) from a different angle:

1. We focus on a more general case where A is a symmetric indefinite matrix

representing a general graph. Examples of such an indefinite matrix include a
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similarity matrix for high-dimensional data formed by the self-tuning method

[116] as well as the pixel similarity matrix in image segmentation [91]. Real

networks have additional structures such as the scale-free properties [95], and

we will not include them in this work.

2. We focus on hard clustering and will give an intuitive interpretation of SymNMF

as a graph clustering method. Hard clustering offers more explicit membership

and easier visualization than soft clustering [119]. Unlike [28], we emphasize

the difference between SymNMF and spectral clustering instead of their resem-

blance.

3. We will propose two optimization algorithms that converge to stationary point

solutions for SymNMF, namely Newton-like algorithm and ANLS algorithm.

We also show that the new ANLS algorithm scales to large data sets.

4. In addition to experiments on document and image clustering, we apply Sym-

NMF to image segmentation using 200 images in the Berkeley Segmentation

Data Set [1]. To the best of our knowledge, our work is the first attempt to

perform a comprehensive evaluation of nonnegativity-based methods for image

segmentation.

Overall, we conduct a comprehensive study of SymNMF in this chapter, covering

from foundational justification for SymNMF for clustering, convergent and scalable

algorithms, to real-life applications for text and image clustering as well as image

segmentation.

3.3 Interpretation of SymNMF as a Graph Clustering
Method

Just as the nonnegativity constraint in NMF makes it interpretable as a clustering

method, the nonnegativity constraint B ≥ 0 in (13) also gives a natural interpretation
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of SymNMF. Now we provide an intuitive explanation of why this formulation is

expected to extract cluster structures.

Fig. 3 shows an illustrative example of SymNMF, where we have reorganized the

rows and columns of A without loss of generality. If a similarity matrix has a clear

cluster structure embedded in it, several diagonal blocks (two diagonal blocks in Fig.

3) that contain large similarity values will appear after the rows and columns of A

are permuted so that graph nodes in the same cluster are contiguous to each other

in A. In order to approximate this similarity matrix with low-rank matrices and

simultaneously extract cluster structures, we can approximate each of these diagonal

blocks by a rank-one nonnegative and symmetric matrix because each diagonal block

indicates one cluster. As shown in Fig. 3, it is straightforward to use an outer product

bbT to approximate a diagonal block. Because b is a nonnegative vector, it serves as

a cluster membership indicator: Larger values in b indicate stronger memberships to

the cluster corresponding to the diagonal block. When multiple such outer products

are added up together, they approximate the original similarity matrix, and each

column of B represents one cluster.

Due to the nonnegativity constraints in SymNMF, only “additive”, or “non-

subtractive”, summation of rank-1 matrices is allowed to approximate both diagonal

and off-diagonal blocks. On the contrary, Fig. 4 illustrates the result of low-rank ap-

proximation of A without nonnegativity constraints. In this case, when using multiple

outer products bbT to approximate A, cancellations of positive and negative numbers

are allowed. The large diagonal blocks and small off-diagonal blocks could still be well

approximated. However, without nonnegativity enforced on b’s, the diagonal blocks

need not be approximated separately, and all the elements in a vector b could be

large, thus b cannot serve as a cluster membership indicator. In this case, the rows

of the low-rank matrix B contain both positive and negative numbers and can be

used for graph embedding. In order to obtain hard clusters, we need to post-process
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≈ + = ×

A B

BT

Figure 3: An illustration of SymNMF formulation minB≥0 ‖A−BBT‖2
F . Each cell is

a matrix entry. Colored region has larger values than white region. Here n = 7 and
k = 2.

≈ + = ×

A B

BT

Figure 4: An illustration of min ‖A − BBT‖2
F or minBBT =I ‖A − BBT‖2

F . Each cell
is a matrix entry. Colored region has larger magnitudes than white region. Magenta
cells indicate positive entries, green indicating negative. Here n = 7 and k = 2.

the embedded data points such as applying K-means clustering. This reasoning is

analogous to the contrast between NMF and SVD (singular value decomposition)

[66].

Compared to NMF, SymNMF is more flexible in terms of choosing similarities

between data points. We can choose any similarity measure that describes the cluster

structure well. In fact, the formulation of NMF (2) can be related to SymNMF when

A = XTX in (13) [28]. This means that NMF implicitly chooses inner products as

the similarity measure, which is not always suitable to distinguish different clusters.

3.4 SymNMF and Spectral Clustering

3.4.1 Objective Functions

Spectral clustering represents a large class of graph clustering methods that rely on

eigenvector computation [19, 91, 85]. Now we will show that spectral clustering and

SymNMF are closely related in terms of the graph clustering objective but funda-

mentally different in optimizing this objective.

Many graph clustering objectives can be reduced to a trace maximization form
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[24, 61]:

max trace(B̃TAB̃), (14)

where B̃ ∈ Rn×k (to be distinguished from B in the SymNMF formulation) satis-

fies B̃T B̃ = I, B̃ ≥ 0, and each row of B̃ contains one positive entry and at most

one positive entry due to B̃T B̃ = I. Clustering assignments can be drawn from B̃

accordingly.

Under the constraints on B̃, we have [28]:

max trace(B̃TAB̃)

⇔ min trace(ATA)− 2trace(B̃TAB̃) + trace(I)

⇔ min trace[(A− B̃B̃T )T (A− B̃B̃T )]

⇔ min ‖A− B̃B̃T‖2
F .

This objective function is the same as (13), except that the constraints on the low-

rank matrices B and B̃ are different. The constraint on B̃ makes the graph clustering

problem NP-hard [91], therefore a practical method relaxes the constraint to obtain a

tractable formulation. In this respect, spectral clustering and SymNMF can be seen

as two different ways of relaxation: While spectral clustering retains the constraint

B̃T B̃ = I, SymNMF retains B̃ ≥ 0 instead. These two choices lead to different

algorithms for optimizing the same graph clustering objective (14), which are shown

in Table 5.

3.4.2 Spectral Clustering and the Spectrum

Normalized cut is a widely-used objective for spectral clustering [91]. Now we describe

some scenarios where optimizing this objective may have difficulty in identifying cor-

rect clusters while SymNMF could be potentially better.

Although spectral clustering is a well-established framework for graph clustering,

its success relies on the properties of the leading eigenvalues and eigenvectors of the
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Table 5: Algorithmic steps of spectral clustering and SymNMF clustering.

Spectral clustering SymNMF

Objective minB̂T B̂=I ‖A− B̂B̂T‖2
F minB≥0 ‖A−BBT‖2

F

Step 1
Obtain the global optimal

Obtain a solution B
B̂n×k by computing k

using an optimization algorithm
leading eigenvectors of A

Step 2 Scale each row of B̂ (no need to scale rows of B)

Step 3
Apply a clustering algorithm The largest entry in each

to the rows of B̂, row of B indicates the
a k-dimensional embedding clustering assignments

similarity matrix A. It was pointed out in [94, 85] that the k-dimensional subspace

spanned by the leading k eigenvectors of A is stable only when |λk(A) − λk+1(A)|

is sufficiently large, where λi(A) is the i-th largest eigenvalue of A. Now we show

that spectral clustering could fail when this condition is not satisfied but the cluster

structure is perfectly represented in the block-diagonal structure of A. Suppose A is

composed of k = 3 diagonal blocks, corresponding to three clusters:

A =


A1 0 0

0 A2 0

0 0 A3

 . (15)

If we construct A as in the normalized cut, then each of the diagonal blocks A1, A2, A3

has a leading eigenvalue 1. We further assume that λ2(Ai) < 1 for all i = 1, 2, 3

in exact arithmetic. Thus, the three leading eigenvectors of A correspond to the

diagonal blocks A1, A2, A3 respectively. However, when λ2(A1) and λ3(A1) are so

close to 1 that it cannot be distinguished from λ1(A1) in finite precision arithmetic, it

is possible that the computed eigenvalues λ̃j(Ai) satisfy λ̃1(A1) > λ̃2(A1) > λ̃3(A1) >

max(λ̃1(A2), λ̃1(A3)). In this case, three subgroups are identified within the first

cluster; the second and the third clusters cannot be identified, as shown in Fig. 5

where all the data points in these two clusters are mapped to (0, 0, 0). Therefore,

eigenvectors computed in a finite precision cannot always capture the correct low-

dimensional graph embedding.
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Figure 5: Three leading eigenvectors of the similarity matrix in (15) when λ̃3(A1) >
max(λ̃1(A2), λ̃1(A3)). Here we assume that all the block diagonal matrices A1, A2, A3

have size 3× 3. Colored region has nonzero values.

Table 6: Leading eigenvalues of the similarity matrix based on Fig. 6 with σ = 0.05.

1st 1.000000000000001
2nd 1.000000000000000
3rd 1.000000000000000
4th 0.999999999998909

Now we demonstrate the above scenario using a concrete graph clustering example.

Fig. 6 shows (a) the original data points; (b) the embedding generated by spectral

clustering; and (c-d) plots of the similarity matrix A. Suppose the scattered points

form the first cluster, and the two tightly-clustered groups correspond to the second

and third clusters. We use the widely-used Gaussian kernel [102] and normalized

similarity values [91]:

eij = exp

(
−‖xi − xj‖2

2

σ2

)
,

Aij = eijd
−1/2
i d

−1/2
j ,

(16)

where xi’s are the two-dimensional data points, di =
∑n

s=1 eis (1 ≤ i ≤ n), and σ

is a parameter set to 0.05 based on the scale of data points. In spectral clustering,

the rows of the leading eigenvectors determine a mapping of the original data points,

shown in Fig. 6b. In this example, the original data points are mapped to three

unique points in a new space. However, the three points in the new space do not

correspond to the three clusters in Fig. 6a. In fact, out of the 303 data points in

total, 290 data points are mapped to a single point in the new space.

Let us examine the leading eigenvalues, shown in Table 6, where the fourth largest
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Figure 6: A graph clustering example with three clusters (original data from [116]).
(a) Data points in the original space. (b) 3-dimensional embedding of the data points
as rows of three leading eigenvectors. (c) Block-diagonal structure of A. (d) Block-
diagonal structure of the submatrix of A corresponding to the two tightly-clustered
groups in (a). Note that the data points in both (a) and (b) are marked with ground-
truth labels.
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Figure 7: Clustering results for the example in Fig. 6: (a) Spectral clustering. (b)
SymNMF.

eigenvalue of A is very close to the third largest eigenvalue. This means that the

second largest eigenvalue of a cluster, say λ2(A1), would be easily identified as one of

λ1(A1), λ1(A2), and λ1(A3). The mapping of the original data points shown in Fig.

6b implies that the computed three largest eigenvalues come from the first cluster.

This example is a noisier case of the scenario in Fig. 5.

On the contrary, we can see from Figs. 6c and 6d that the block-diagonal structure

of A is clear, though the within-cluster similarity values are not on the same scale.

Fig. 7 shows the comparison of clustering results of spectral clustering and SymNMF

in this case. SymNMF is able to separate the two tightly-clustered groups more

accurately.
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3.4.3 A Condition on SymNMF

We have seen that the solution of SymNMF relies on the block-diagonal structure of

A, thus it does not suffer from the situations in Section 3.4.2. We will also see in later

sections that algorithms for SymNMF do not depend on eigenvector computation.

However, we do emphasize a condition on the spectrum of A that SymNMF must

satisfy in order to make the formulation (13) valid. This condition is related to the

spectrum of A, specifically the number of nonnegative eigenvalues of A. Note that

A is assumed to be symmetric and nonnegative, and is not necessarily positive semi-

definite, therefore may have both positive and negative eigenvalues. On the other

hand, in the approximation ‖A − BBT‖F , BBT is always positive semi-definite and

has rank at most k, therefore BBT would not be a good approximation if A has

fewer than k nonnegative eigenvalues. We assume that A has at least k nonnegative

eigenvalues when the given size of B is n× k.

This condition on A could be expensive to check. Here, by a simple argument,

we claim that it is practically reasonable to assume that this condition is satisfied

given a similarity matrix and an integer k, the nubmer of clusters, which is typically

small. Again, we use the similarity matrix A in (15) as an example. Suppose we know

the actual number of clusters is three, and therefore B has size n × 3. Because A

is nonnegative, each of A1, A2, A3 has at least one nonnegative eigenvalue according

to Perron-Frobenius theorem [9], and A has at least three nonnegative eigenvalues.

In a real data set, A may become much noisier with small entries in the off-diagonal

blocks of A. The eigenvalues are not dramatically changed by a small perturbation

of A according to matrix perturbation theory [94], hence A is likely to have at least

k nonnegative eigenvalues if its noiseless version does. In practice, the number of

positive eigenvalues of A is usually much larger than that of negative eigenvalues,

which is verified in our experiments.
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Algorithm 1 Framework of the Newton-like algorithm for SymNMF: minB≥0 f(x) =
‖A−BBT‖2

F

1: Input: number of data points n, number of clusters k, n × n similarity matrix
A, reduction factor 0 < β < 1, acceptance parameter 0 < σ < 1, and tolerance
parameter 0 < µ << 1

2: Initialize x, x(0) ← x
3: repeat
4: Compute scaling matrix S
5: Step size α = 1
6: while true do
7: xnew = [x− αS∇f(x)]+

8: if f(xnew)− f(x) ≤ σ∇f(x)T (xnew − x) then
9: break

10: end if
11: α← βα
12: end while
13: x← xnew

14: until ‖∇Pf(x)‖ ≤ µ‖∇Pf(x(0))‖
15: Output: x

3.5 A Newton-like Algorithm for SymNMF

In this section, we will present an optimization algorithm to compute SymNMF

where A is nonnegative and symmetric. The objective function in (13) is a fourth-

order non-convex function with respect to the entries of B, and has multiple local

minima. For this type of problem, it is difficult to find a global minimum; thus a

good convergence property we can expect is that every limit point is a stationary

point [12]. We could directly apply standard gradient search algorithms, which lead

to stationary point solutions; however, they suffer from either slow convergence or

expensive computational cost.

3.5.1 Algorithm Framework

First, we introduce several notations for clarity. Let B = [b1, · · · ,bk] ∈ Rn×k
+ . A

vector x of length nk is used to represent the vectorization of B by column, i.e.

x = vec(B) = [bT1 , · · · ,bTk ]T ∈ Rnk×1
+ . For simplicity, functions applied on x have

the same notation as functions applied on B, i.e. f(x) ≡ f(B). [·]+ denotes the
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Table 7: Comparison of PGD and PNewton for solving minB≥0 ‖A − BBT‖2
F , B ∈

Rn×k
+ .

Projected gradient Projected Newton
descent (PGD) (PNewton)

Scaling matrix S(t) = Ink×nk S(t) =
(
∇2
Ef(x(t))

)−1

Convergence Linear (zigzagging) Quadratic
Complexity O(n2k) / iteration O(n3k3) / iteration

projection to the nonnegative orthant, i.e. replacing any negative element of a vector

to be 0. Superscripts denote iteration indices, e.g. x(t) = vec(B(t)) is the iterate of

x in the t-th iteration. For a vector v, vi denotes its i-th element. For a matrix M ,

Mij denotes its (i, j)-th entry; and M[i][j] denotes its (i, j)-th n × n block, assuming

that both the numbers of rows and columns of M are multiples of n. M � 0 refers

to positive definiteness of M . We define the projected gradient ∇Pf(x) at x as [71]:

(
∇Pf(x)

)
i

=


(∇f(x))i , if xi > 0;

[(∇f(x))i]
+, if xi = 0.

(17)

Algorithm 1 describes a framework of gradient search algorithms applied to Sym-

NMF, based on which we will develop our Newton-like algorithm. This description

does not specify iteration indices, but updates x in-place. The framework uses the

“scaled” negative gradient direction as search direction. Except the scalar parameters

β, σ, µ in Algorithm 1, the nk × nk scaling matrix S(t) is the only unspecified quan-

tity. Table 7 lists two choices of S(t) that lead to different gradient search algorithms:

projected gradient descent (PGD) [71] and projected Newton (PNewton) [12].

PGD sets S(t) = I throughout all the iterations. It is known as one of steepest

descent methods, and does not scale the gradient using any second-order information.

This strategy often suffers from the well-known zigzagging behavior, thus has slow

convergence rate [12]. On the other hand, PNewton exploits second-order information

provided by the Hessian ∇2f(x(t)) as much as possible. PNewton sets S(t) to be the

inverse of a reduced Hessian at x(t). The reduced Hessian with respect to index set
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R is defined as:

(∇2
Rf(x))ij =


δij, if i ∈ R or j ∈ R;

(∇2f(x))ij , otherwise,

(18)

where δij is the Kronecker delta. Both the gradient and the Hessian of f(x) can be

computed analytically:

∇f(x) = vec(4(BBT − A)B),

(∇2f(x))[i][j] = 4
(
δij(BB

T − A) + bjb
T
i + (bTi bj)In×n

)
.

We introduce the definition of an index set E that helps to prove the convergence of

Algorithm 1 [12]:

E = {i|0 ≤ xi ≤ ε, (∇f(x))i > 0}, (19)

where ε depends on x and is usually small (0 < ε < 0.01) [50]. In PNewton, S(t) is

formed based on the reduced Hessian ∇2
Ef(x(t)) with respect to E . However, because

the computation of the scaled gradient S(t)∇f(x(t)) involves the Cholesky factoriza-

tion of the reduced Hessian, PNewton has very large computational complexity of

O(n3k3), which is prohibitive. Therefore, we propose a Newton-like algorithm that

exploits second-order information in an inexpensive way.

3.5.2 Improving the Scaling Matrix

The choice of the scaling matrix S(t) is essential to an algorithm that can be derived

from the framework described in Algorithm 1. We propose two improvements on the

choice of S(t), yielding new algorithms for SymNMF. Our focus is to efficiently collect

partial second-order information but meanwhile still effectively guide the scaling of

the gradient direction. Thus, these improvements seek a tradeoff between convergence

rate and computational complexity, with the goal of accelerating SymNMF algorithms

as an overall outcome.

Our design of new algorithms must guarantee the convergence. Since the algorithm

framework still follows Algorithm 1, we would like to know what property of the
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scaling matrix S(t) is essential in the proof of the convergence result of PGD and

PNewton. This property is described by the following lemma:

Definition 1. A scaling matrix S is diagonal with respect to an index set R, if

Sij = 0,∀i ∈ R and j 6= i. [11]

Lemma 1. Let S be a positive definite matrix which is diagonal with respect to E. If

x ≥ 0 is not a stationary point, there exists ᾱ > 0 such that f ([x− αS∇f(x)]+) <

f(x),∀0 < α < ᾱ. (modified from [11])

Lemma 1 states the requirement on S(t), which is satisfied by the choices of S(t)

in both PGD and PNewton. It guides our development of new ways to choose S(t).

3.5.2.1 Improvement 1: Fewer Hessian Evaluations

A common method for reducing computational cost related to S(t) is to periodically

update S(t) or evaluate S(t) only at the 1st iteration (chord method) [50]. However,

this method cannot be directly used in the framework of Algorithm 1, because S(t)

is not necessarily diagonal with respect to E (t) if E (t) 6= E (1), and the requirement for

convergence is violated.

Our way to delay the update of S(t) is to evaluate S(t) only when E (t) changes.

More precisely,

S(t) =



S(t−1), if E (t) = E (t−1);(
∇2
Ef(x(t))

)−1
, if E (t) 6= E (t−1)

and ∇2
Ef(x(t)) � 0;

Ink×nk, otherwise.

(20)

Note that because f(x) is non-convex, we have to set S(t) = I when ∇2
Ef(x(t)) is not

positive definite, which can be checked during its Cholesky factorization. We expect

that this improvement can reduce the number of Hessian evaluations and Cholesky

factorizations.
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3.5.2.2 Improvement 2: Cheaper Hessian Evaluations

The second improvement in choosing S(t) is inspired by the recently proposed coor-

dinate gradient descent (CGD) method for solving covariance selection [114]. When

CGD is directly applied to SymNMF, it updates one column of B in each iteration

while the other columns are fixed, and the search direction is typically determined by

solving a quadratic programming problem. The CGD method introduces additional

overhead when determining the search direction; however, it implies a possibility of

using second-order information without evaluating the entire Hessian.

Inspired by the incremental update framework of CGD, we propose to choose

S(t) to be a block-diagonal matrix in our batch update framework in Algorithm 1.

Specifically,

S
(t)
[i][j] =



0, if i 6= j;(
∇2
Ef(x(t))[i][j]

)−1
, if i = j

and ∇2
Ef(x(t))[i][j] � 0;

In×n, otherwise.

(21)

Intuitively speaking, the i-th n × n diagonal block of S(t) corresponds to variables

in the i-th column of B, and S(t) only involves second-order information within each

column of B. This choice of S(t) has two advantages over the choice in PNewton

algorithm: 1. The computational complexity in each iteration is O(n3k), much lower

than the complexity of PNewton if k is not too small; 2. We can exploit partial

second-order information even though the n diagonal blocks of ∇2
Ef(x(t)) are not

all positive definite, whereas PNewton requires the positive definiteness of all the n

diagonal blocks.

Our final strategy for solving SymNMF (13) is to combine Improvement 1 and

Improvement 2. Note that the requirement on S(t) described in Lemma 1 is satisfied
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in both of the improvements, and also in their combination. Thus, convergence is

guaranteed in all of these variations.

3.6 An ANLS Algorithm for SymNMF

In this section, we propose another optimization algorithm for SymNMF that con-

verges to stationary points, a necessary condition for local minima. The algorithm

is based on an alternative formulation of SymNMF, where it is straightforward to

use the two-block coordinate descent framework that has been shown efficient for

standard NMF.

3.6.1 Two-block Coordinate Descent Framework

We first briefly review the two-block coordinate descent framework [71, 53, 55] for

standard NMF problems, which has our desired convergence property that every

limit point is a stationary point. Separating the (m + n)k unknowns in the NMF

formulation (2) into two blocks, we obtain the following subproblems:

1. Fix H and solve minW≥0 ‖HTW T −XT‖2
F .

2. Fix W and solve minH≥0 ‖WH −X‖2
F .

Each subproblem is a nonnegative least squares problem with multiple right-hand

sides (NNLS for short), and many efficient procedures have been developed to solve

NNLS, e.g. active-set method [65, 53], block pivoting [56], PGD [71], etc. The key

requirement in this framework is to obtain the optimal solution in each subproblem

(see more discussions in [53]). This way, the original NMF formulation (2) has been

reduced to an alternating NNLS problem (ANLS for short).

3.6.2 A Nonsymmetric Formulation for SymNMF

In SymNMF, it is difficult to separate the nk unknowns in a straightforward way as

in NMF, because the two factors B and BT contain the same set of unknowns. We
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propose to re-formulate SymNMF in the context of NMF [42]:

min
C,B≥0

g(C,B) = ‖A− CBT‖2
F + α‖C −B‖2

F , (22)

where A still represents the n× n similarity matrix, C,B are two low-rank factors of

size n×k, and α > 0 is a scalar parameter for the tradeoff between the approximation

error and the difference of C and B. Here we force the separation of unknowns by

associating the two factors with two different matrices. If α has a large enough value,

the solutions of C and B will be close enough so that the clustering results will not

be affected whether C or B are used as the clustering assignment matrix.

If C or B is expected to indicate more distinct cluster structures, sparsity con-

straints on rows of B can also be incorporated into the nonsymmetric formulation

easily, by adding L1 regularization terms [52, 53]:

min
C,B≥0

g̃(C,B) = ‖A− CBT‖2
F + α‖C −B‖2

F + β
n∑
i=1

‖ci‖2
1 + β

n∑
i=1

‖bi‖2
1, (23)

where α, β > 0 are regularization parameters, ci, bi are the i-th rows of C,B respec-

tively, and ‖ · ‖1 denotes vector 1-norm.

The nonsymmetric formulation can be easily cast into the two-block coordinate

descent framework after some restructuring. In particular, we have the following

subproblems for (23) (and (22) is a special case where β = 0):

min
C≥0

∥∥∥∥∥∥∥∥∥∥


B

√
αIk
√
β1Tk

CT −


A

√
αBT

0


∥∥∥∥∥∥∥∥∥∥

2

F

, (24)

min
B≥0

∥∥∥∥∥∥∥∥∥∥


C

√
αIk
√
β1Tk

BT −


A

√
αCT

0


∥∥∥∥∥∥∥∥∥∥

2

F

, (25)

where 1k ∈ Rk×1 is a column vector whose elements are all 1’s, and Ik is the k × k

identity matrix. Note that we have assumed A = AT . Solving subproblems (24) and

38



Algorithm 2 Framework of the ANLS algorithm for SymNMF: minC,B≥0 ‖A −
CBT‖2

F + α‖C −B‖2
F

1: Input: number of data points n, number of clusters k, n× n similarity matrix A,
regularization parameter α > 0, and tolerance parameter 0 < µ << 1

2: Initialize B, B(0) ← B, C(0) ← B
3: repeat
4: C ← B

5: Solve an NNLS problem: B ← arg minB≥0

∥∥∥∥[ C√
αIk

]
BT −

[
A√
αCT

]∥∥∥∥2

F

6: until ‖∇Pg(C,B)‖F ≤ µ‖∇Pg(C(0), B(0))‖F
7: Output: B

(25) in an alternate fashion will lead to a stationary point solution, as long as an

optimal solution is returned for every NNLS subproblem encountered. We simplify

and summarize this algorithm in Algorithm 2 for the formulation (22), i.e. without

sparsity constraints.

3.6.3 Implementation

Now we describe an efficient implementation of the ANLS algorithm for SymNMF.

Our algorithm reduces to solving the NNLS problem in line 5 of Algorithm 2. Consider

a form of NNLS with simplified notation: minG≥0 ‖FGT −X‖2
F . In many algorithms

for NNLS, the majority of time cost comes from the computation of F TF and XTF .

For example, in the active-set method [53] and block pivoting method [56], we need

to form the normal equation:

F TFGT = F TX.

In PGD [71], we need to compute the gradient:

∇G = 2G(F TF )− 2XTF.

For more details of these algorithms for NNLS, please refer to the papers [71, 53, 56,

57]. Our strategy to solve the NNLS problem in Algorithm 2 is to precompute F TF

and XTF :

F TF = CTC + αIk, XTF = ATC + αC
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without forming X =

 A

√
αCT

 directly. Though this change sounds trivial, forming

X directly is very expensive when A is a large and sparse matrix, especially when A is

stored in the “compressed sparse column” format such as in Matlab and the Python

scipy package. In our experiments, we observed that our strategy had considerable

time savings in the iterative Algorithm 2.

For choosing the parameter α, we can gradually increase α from 1 to a very

large number, for example, by setting α ← 1.01α. We can stop increasing α when

‖C −B‖F/‖B‖F is negligible (say, < 10−8).

Conceptually, both the Newton-like algorithm and the ANLS algorithm work for

any nonnegative and symmetric matrix A in SymNMF. In practice, however, a simi-

larity matrix A is often very sparse and the efficiencies of these two algorithms become

very different. The Newton-like algorithm does not take into account the structure

of SymNMF formulation (13), and a sparse input matrix A cannot contribute to

speeding up the algorithm because of the formation of the dense matrix BBT in in-

termediate steps. On the contrary, in the ANLS algorithm, many algorithms for the

NNLS subproblem [71, 53, 56] can often benefit from the sparsity of similarity matrix

A automatically. This benefit comes from sparse-dense matrix multiplication inside

these algorithms such as A ·B as well as the absence of large dense matrices such as

BBT . Therefore, we recommend using the ANLS algorithm for a sparse input matrix

A.

3.7 Experiments on Document and Image Clustering

In this section, we show the performances of SymNMF on a number of text and image

data sets, and compare SymNMF with the standard forms and variations of NMF,

spectral clustering, and K-means. Throughout the experiments, we use Matlab 7.9

(R2009b) with an Intel Xeon X5550 quad-core processor and 24GB memory.
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3.7.1 Data Preparation

We construct a sparse graph for each data set. Using sparse graphs makes large-scale

clustering possible in terms of efficiency. We take the following three steps to form

the similarity matrix:

1. Construct a complete graph. The edge weights between graph nodes are defined

according to the type of data set.

• For text data, all the document vectors are normalized to have unit 2-norm.

The edge weight is the cosine similarity between two document vectors:

eij = xTi xj, (i 6= j). (26)

• For image data, the self-tuning method [116] is used:

eij = exp

(
−‖xi − xj‖2

2

σiσj

)
, (i 6= j), (27)

where each data point has a local scale σi, as opposed to a global scale

σ in (16). σi is set to be the Euclidean distance between xi and its k̂-th

neighbor. We use k̂ = 7 as suggested in [116].

Note that we enforce self-edge weights eii = 0 (1 ≤ i ≤ n) in all cases [85].

2. Sparsify the graph. We only keep the edges that connect a node to its kn nearest

neighbors. More precisely, let

N(i) = {j|xj is one of the kn nearest neighbors of xi, j 6= i}. (28)

Edge weights in the sparse graph are defined as:

êij =


eij, if i ∈ N(j) or j ∈ N(i);

0, otherwise.

(29)

We choose kn = blog2 nc+ 1 as suggested in [102].
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3. Form the similarity matrix. We compute the normalized similarity values as in

the normalized cut [85]:

Aij = êijd
−1/2
i d

−1/2
j , (30)

where di =
∑n

s=1 êis (1 ≤ i ≤ n).

Note that the similarity matrix A constructed as above is symmetric, nonnegative,

and usually indefinite.

3.7.2 Data Sets

Document clustering was conducted on the following labeled corpuses: 1. TDT21

contains 10,212 news articles from various sources (e.g. NYT, CNN, VOA) in 1998.

2. Reuters-215782 contains 21,578 news articles from the Reuters newswire in

1987. 3. From the newly-released Reuters news collection RCV1-v23 [68] that

contains over 800,000 articles in 1996-1997, we selected the training set containing

23,149 articles. Labels are assigned according to a topic hierarchy, and we only

considered leaf topics as valid labels. 4. The research paper collection NIPS14-164

contains NIPS papers in 2001-2003 [36], which are associated with labels indicating

the technical area (algorithms, learning theory, vision science, etc). For all these data

sets, documents with multiple labels are discarded in our experiments. In addition,

clusters representing different topics are highly unbalanced in size. We selected the

largest 20, 20, 40, 9 clusters from each of these data sets respectively. While TDT2

and the two Reuters data sets were well maintained, the NIPS data set was extracted

from PS and PDF files, resulting in very noisy texts, which can be seen from the

list of terms available online4. For example, its vocabulary includes many symbols

1https://catalog.ldc.upenn.edu/LDC2001T57 (retrieved in June 2014)
2http://www.daviddlewis.com/resources/testcollections/reuters21578/ (retrieved in

June 2014)
3http://jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm (retrieved in

June 2014)
4http://chechiklab.biu.ac.il/~gal/data.html (retrieved in June 2014)
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frequently used in formulas which are not semantically meaningful.

Image clustering was conducted on object and face recognition data sets: 1.

COIL-205 contains gray-scale images of 20 objects, rescaled to 64 × 64 size. The

viewpoints are equally spaced in the entire 360o range, resulting in 72 images for each

object. 2. ORL6 contains 400 face images of 40 persons with different facial expres-

sions and slightly-varing pose. 3. From Extended YaleB7 face data set (with the

original YaleB data included) [67], we selected 2,414 frontal face images of 38 persons,

with different illumination conditions. 4. From PIE8 face data set [92], we selected

232 frontal face images of 68 persons, with different facial expressions. Compared to

other variations in PIE data set such as illumination and lighting conditions, different

facial expressions represent more variations in faces and the images are embedded on

multiple manifolds [99]; moreover, only 3 ∼ 4 images are available for each person,

which makes clustering more challenging. Though ORL and the selected subset of

PIE are not of large-scale, they share the same characteristics: High variations within

each class, with a handful of images per class. For all the image data sets, the identity

information of the objects or faces is used as ground-truth labels. The statistics of

the processed document and image data sets are summarized in Table 8.

3.7.3 Algorithms for Comparison

We experimented with a large variety of clustering algorithms for a comprehensive

comparison. The algorithms in our experiment can be divided into four categories:

1. K-means variants (All these K-means variants include a batch-update phase

and an additional online-update phase in each run [32]. We use both phases.)

5http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php (retrieved in June
2014)

6http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (retrieved in
June 2014)

7http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html (retrieved in June 2014)
8http://www.ri.cmu.edu/research_project_detail.html?project_id=418&menu_id=261

(retrieved in June 2014)
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Table 8: Data sets used in experiments.

Data set Dimension # Data points # Clusters
TDT2 26,618 8,741 20

Reuters-21578 12,998 8,095 20
RCV1-v2 20,338 15,168 40

NIPS14-16 17,583 420 9
COIL-20 64× 64 1,440 20

ORL 69× 84 400 40
Extended YaleB 56× 64 2,414 38
PIE-expression 64× 64 232 68

• Standard K-means (KM): The input matrix is constructed as follows. For

text data, each column of the tf-idf matrix X [77] is scaled to have unit

2-norm; in addition, X is transformed into its normalized-cut weighted

version XD−1/2 [110], where D is defined in Section 3.3 with eij = xTi xj.

For image data, each column of X is scaled to the [0, 1] interval.

• Spherical K-means (SKM): Unlike standard K-means that uses Euclidean

distance as the dissimilarity measure, spherical K-means uses 1−cos(xi,xj);

therefore any scaling of columns of X does not take effect. Spherical K-

means was proposed for document clustering, where cosine similarity is

often a better measure than Euclidean distance [25]. As mentioned in Sec-

tion 3.1, we believe that spherical K-means has a closer relationship to

NMF than standard K-means.

• Kernel K-means (KKM): Kernel K-means is a graph clustering method

based on K-means. We use the weighted kernel K-means algorithm de-

scribed in [61, 24] that minimizes the normalized cut objective. Because

A is generally indefinite, the condition for convergence is violated. We

terminate the algorithm as soon as the objective function value stops de-

creasing.

2. NMF variants
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• NMF: We use the ANLS algorithm with block pivoting method for NMF

[56]. The same input matrix as in standard K-means is used. The cluster-

ing result is indicated by the largest entry in each column of H.

• GNMF: Cai et al. [17] proposed Graph-regularized NMF (GNMF) by

adding a graph-theoretic penalty term to (2) that takes neighboring rela-

tionship into account, so that the resulting method is better at clustering

on manifolds. We use the algorithm and the suggested parameters in [17].

The input matrix is constructed in the same way as in standard K-means.

However, the neighboring relationship based on the sparse graph is gen-

erated using the original data matrix, i.e. without the scaling of each xi.

The clustering result is obtained by treating the columns of B as graph

embedding and applying spherical K-means to the embedded points.

3. Spectral clustering variants

• NJW algorithm (SpNJW): This refers to the algorithm proposed in Ng et

al. [85]. The rows of the k leading eigenvectors of A, where each row is

normalized to have unit 2-norm, are used as the graph embedding of data

points. Standard K-means is used in the final step to obtain clustering

results, which is initialized by randomly choosing k samples as centroids.

• YS algorithm (SpYS): This refers to the algorithm proposed in Yu and

Shi [113]. The clustering results are obtained by finding the optimal or-

thogonal transformation of B̃ = D−1/2B̂ into a partition matrix [113],

where columns of B̂ are the k leading eigenvectors of A. As a result, the

additional step of clustering is not needed.

4. SymNMF: We observed that the Newton-like algorithm for SymNMF gives

better clustering quality on image data (more details in Section 3.7.5). On text

data, however, the Newton-like algorithm is not efficient enough due to large
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problem sizes, and only the ANLS algorithm is applicable. When reporting

the results, we use the general name “SymNMF” to refer to the Newton-like

algorithm for image data and the ANLS algorithm for text data.

In the Newton-like algorithm, we set parameters β = 0.1, σ = 0.1 in the context

of Algorithm 1. We also empirically observe that choosing ε in (19) to be a fixed

value 10−16 makes the Newton-like algorithm faster while having little influence on

the clustering quality. For the ANLS algorithm, we solve the formulation (22), i.e.

without sparsity constraints on C,B. We empirically observe that it is sufficient to use

a fixed parameter α = 1 in (22) to obtain a negligible ‖C−B‖F/‖B‖F . Note that the

choice of a large enough value of α should be aligned with the scale of the similarity

values in A. In our experiments, the matrix A contains normalized similarity values

(30), thus the maximum possible value in A is 1, and most of the entries of A are

smaller than 1. Finally, in both of our algorithms, the tolerance parameter µ in the

stopping criteria is set to 10−4 and the maximum iteration count is set to 10,000.

For each data set, we run each algorithm 20 times with different random initializa-

tions and the known number of clusters k as input. Algorithms in the same category

have the same initializations. Although the data sets are labeled, the labels are used

only when evaluating the clustering quality, not by the clustering algorithms.

3.7.4 Clustering Quality

We use clustering accuracy, the percentage of correctly clustered items given by the

maximum bipartite matching, to evaluate the clustering quality (see more details in

[110]). The average and maximum clustering accuracy are shown in Tables 9 and 10,

respectively. We have the following observations:

1. Among all the methods in our experiments, SymNMF performs well in terms of

both average and maximum clustering accuracy, and achieves the best clustering

quality more frequently than other methods.
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2. SpYS and SymNMF show comparable performances in terms of average cluster-

ing accuracy. Note that SpYS was proposed as a more principled way to obtain

hard clustering from the k leading eigenvectors of A [113]; however, our result

shows that it is not always better than SpNJW that uses K-means to obtain

hard clustering.

3. GNMF and SymNMF show comparable performances in terms of maximum

clustering accuracy. GNMF in our experiments does not show as dramatic

improvement over SpNJW as the results reported in [17] where only maximum

clustering accuracy was reported. One possible reason is that in [17], full graphs

with cosine similarity are used, whereas we use sparse graphs and different

similarity measures for better scalability and clustering quality (Section 3.7.1).

4. The K-means variants give exceedingly high accuracy on the RCV1-v2 data

set. We need more study to have a good explanation of their performances,

for example, in what cases cosine dissimilarity is a better choice of distance

measure than Euclidean distance. Note that RCV1-v2 is the only data set

where spherical K-means has the highest accuracy, and also the only data set

where NMF performs better than almost all the other low-rank approximation

methods (GNMF, SpNJW, SpYS, SymNMF). This consistency corroborated

with our observation that spherical K-means has a closer relationship to NMF

than standard K-means, and seems to explain why spherical K-means is often

used as an initialization strategy for NMF [106].

3.7.5 Convergence and Efficiency of SymNMF Algorithms

We mentioned in Section 3.7.3 that the ANLS algorithm for SymNMF handles large

data sets more efficiently, and the Newton-like algorithm achieves higher clustering

accuracy. Here we discuss this tradeoff between efficiency and quality. The differ-

ent properties exhibited by the two algorithms can be attributed to their different
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Figure 8: Convergence behaviors of SymNMF algorithms, generated from a single
run on COIL-20 data set with the same initialization.

convergence behaviors, though both algorithms converge to stationary point solu-

tions. In Fig. 8, we use COIL-20 data set to study their convergence by plotting

the objective function f(B) and the projected gradient ‖∇Pf(B)‖F throughout the

iterations. As we could expect, f(B) is non-inreasing in both algorithms; on the con-

trary, ‖∇Pf(B)‖F is not guaranteed to drop in every iteration but is used to check

stationarity.

The Newton-like algorithm shows a divergent behavior in the initial stage of iter-

ations, because the formulation (13) is nonconvex and the search step degrades to a

steepest descent direction. However, when the intermediate iterate becomes close to

a local minimum, the Hessian matrix becomes positive definite and the second-order

information begins to help guide the search. Thus after this point, the algorithm

converges very quickly to an accurate stationary point. In contrast, the ANLS algo-

rithm shows a quick drop in both ‖∇Pf(B)‖F and f(B) when the algorithm starts.

However, near the final stage, it slowly converges to the appointed stationarity level.

Overall, the Newton-like algorithm produces more accurate solutions and better clus-

tering quality; however, it is overall less efficient than the ANLS algorithm due to

heavier computational cost per iteration. We compare their clustering quality and

timing performance in Table 11, with µ = 10−4 in the stopping criterion in both
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Table 11: Clustering accuracy and timing of the Newton-like and ANLS algorithms for
SymNMF. Experiments are conducted on image data sets with parameter µ = 10−4

and the best run among 20 initializations.

Newton-like algorithm ANLS algorithm
Accuracy Time (s) Accuracy Time (s)

COIL-20 0.8153 18.91 0.7833 5.63
ORL 0.8025 6.52 0.7975 2.45

Extended YaleB 0.2564 158.2 0.2535 18.97
PIE-expression 0.7802 16.49 0.7155 6.70

algorithms.

3.8 Image Segmentation Experiments

In this section, we explore the application of SymNMF to image segmentation. Image

segmentation methods have been heavily relying on spectral clustering [76, 79, 34,

22, 1]. We will demonstrate that SymNMF produces segmentation results that are

closer to human-marked boundaries compared to spectral clustering. To the best of

our knowledge, this is the first systematic evaluation of SymNMF applied to image

segmentation.

3.8.1 Overview

Image segmentation is an important task in computer vision that organizes an image

into a non-overlapping set of closed regions. It can be viewed as a graph clustering

problem: The input is a nonnegative and symmetric matrix that contains similarity

values between pairs of pixels; the output is a clustering of pixels where each cluster

corresponds to a region.

In the graph represented by a pixel similarity matrix A, a pixel is only connected to

the pixels within some neighborhood. Thus, the input matrix A is typically a sparse

matrix. The similarity value between two neighboring pixels can be computed based

on brightness, color, and texture cues [76, 79]. The similarity value characterizes the

discontinuity along the line connecting the two pixels and can be trained by a logistic
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(a) Original (b) Spectral-Embed (c) SymNMF-Embed (d) SymNMF-Clust

Figure 9: Examples of the original images and Pb images from BSDS500. Pixels with
brighter color in the Pb images have higher probability to be on the boundary.

model using human-marked boundaries as ground-truth [34].

Spectral clustering is one of the most common methods that solve the graph

clustering problem in image segmentation. As we explained in Sections 3.3 and 3.4,

because eigenvectors contain both positive and negative numbers in general, they

cannot be used as cluster indicators directly. A variety of methods have been proposed

to post-process the graph embedding – the continuous-valued eigenvectors – to obtain

closed regions. In contrast, the low-rank matrix B in the solution of SymNMF can

not only be used as graph embedding, but also derive graph clustering results directly.
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In the current chapter, our focus is the gain in segmentation quality by replacing

spectral clustering with SymNMF. We follow the steps in an early paper [34] to

construct the similarity matrix as well as post-process the graph embedding when

the produced low-rank matrix is viewed as graph embedding. The post-processing

steps are:

1. Run K-means on the embedded points to generate an oversegmentation of an

image. The oversegmentations are called superpixels and denoted as o1, · · · , oK ,

where K is an integer larger than the rank k of the low-rank matrix.

2. Build a contracted graph on the superpixels and represent it by a K ×K sim-

ilarity matrix W . The edge weight between the I-th and J-th superpixels

(1 ≤ I, J ≤ K) is defined as:

WIJ =
∑
i∈oI

∑
j∈oJ

Aij. (31)

3. Recursively split the contracted graph to produce a hierarchy of regions [76].

We note that the baseline segmentation algorithm [34] used in our comparison

between spectral clustering and SymNMF is not the best algorithm to date (for ex-

ample, see [1]). However, we chose this baseline algorithm in order to simplify the

experiment setting and make the comparison more visible. In our current workflow,

both spectral and SymNMF use the same similarity matrix as an input; the resulting

low-rank matrices are interpreted as either graph embedding to produce a hierarchy

of regions or graph clustering to produce a flat partitioning of an image into regions.

With more recent segmentation algorithms such as [1], the low-rank matrices would

be interpreted in a more sophisticated way so that we do not know which compo-

nent of the segmentation algorithm contributes to the gain in segmentation quality.

We expect that the comparison result shown in this section will carry on to other

segmentation algorithms.
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3.8.2 Data and Software

We use the Berkeley Segmentation Data Set 5009 (BSDS500) [1] and choose the 200

color images used in [34]. The size of the original images is 481× 321. We resized the

images to 240× 160 to be consistent with the experiments in [79, 34].

We compute the pixel similarity matrices and post-process the embedded points

using the Berkeley Segmentation Engine10. We use the default settings: The number

of eigenvectors in spectral clustering k (and also the lower rank in SymNMF) is set

to 16; the number of oversegmentations K is set to 51. The neighborhood of a

pixel is modified from default to a round disk centered at the pixel with radius of 20

pixels. The resulting similarity matrix has size n×n where n = 38400 and 44 million

nonzeros. The same similarity matrix is given as an input to both spectral clustering

and SymNMF.

3.8.3 Evaluation Methods

The evaluation of segmentation results is based on the evaluation of boundary detec-

tion. In the experiments on document and image clustering, solving SymNMF and

interpreting the low-rank result matrix as a cluster indicator yield a hard clustering

of items. In order to evaluate SymNMF in the context of image segmentation and

compare its performance with that of spectral clustering, we introduce our way to

transform the hard clustering results to soft boundaries. First, we generate a proba-

bility of boundary (Pb) image from multiple segmentations of an image. Second, we

evaluate the Pb image against human-marked boundaries.

• We consider the following three ways to obtain multiple segmentations:

1. Spectral-Embed: Compute the eigenvectors associated with the 16 largest

9http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.

html (retrieved in June 2014)
10http://www.cs.berkeley.edu/~fowlkes/BSE/ (retrieved in June 2014)
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eigenvalues and treat them as a graph embedding. Generate a hierarchy

of regions following the procedures in Section 3.8.1. Each level of the

hierarchy determines a segmentation of the image.

2. SymNMF-Embed: Solve SymNMF with k = 16 and treat the rows of B as a

graph embedding. Generate a hierarchy of regions following the procedures

in Section 3.8.1. Each level of the hierarchy determines a segmentation of

the image.

3. SymNMF-Clust: Solve SymNMF with k = 2, 3, · · · , 16 and treat each ma-

trix B as a cluster indicator. For each k, the clustering result corresponds

to a segmentation.

Spectral-Embed and SymNMF-Embed produce 50 segmentations for each im-

age. SymNMF-Clust produces 15 segmentations for each image. The Pb value

of a pixel is defined as the proportion of times the pixel lies on the bound-

ary determined by the regions in a segmentation. Note that SymNMF-Clust

does not enforce hierarchies in its segmentations. Among these three ways of

post-processing, only Spectral-Embed was used for evaluation against human-

marked boundaries in existing work.

• The data set includes human-marked boundaries by about 10 human subjects

for each image for evaluation. The Pb image has values in the [0, 1] interval. We

can produce a binary boundary image using a threshold value t (0 < t < 1).

Then the precision P is calculated as the fraction of true boundary pixels among

all the detected boundary pixels; the recall R is calculated as the fraction of

detected boundary pixels among all the true boundary pixels. The F-measure

is defined as 2PR/(P +R). We can draw a precision-recall curve using a series

of threshold values (see more details in [78]). The best F-measure on this curve

is regarded as a summary performance metric.
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[F=0.5772] Spectral−Embed @(0.52,0.64) t=0.55

[F=0.6000] SymNMF−Embed @(0.57,0.63) t=0.67
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Figure 10: Precision-recall curves for image segmentation.

3.8.4 Results

We show the precision-recall curves for Spectral-Embed, SymNMF-Embed, and SymNMF-

Clust in Fig. 10. Using the best F-measure as the summary metric, both SymNMF

versions have better segmentation quality than either of the spectral clustering meth-

ods.

SymNMF-Embed is much better than Spectral-Embed in the high-recall low-precision

area, with the highest recall approaching 0.8.

SymNMF-Clust is much better than Spectral-Embed in the high-precision low-

recall area, and consistently better than Spectral-Embed along the curve. When the

threshold value t is close to 1, we can be much more confident about the detected

regions using SymNMF-Clust than using Spectral-Embed.

Fig. 9 shows several exemplar images from the BSDS500 data set. The seg-

mentation results are consistent with our findings in the precision-recall curve. We
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Figure 11: Illustration of different graph embeddings produced by spectral clustering
and SymNMF for the third color image in Fig. 9. (a) The rows of the first three
eigenvectors B̂ ∈ Rn×3 are plotted. (b) The rows of B ∈ Rn×3

+ in the result of
SymNMF with k = 3 are plotted. Each dot corresponds to a pixel.

notice that Spectral-Embed often subdivides a large flat area with uniform colors

into multiple regions (grass, sky, etc.). This is a well-known problem of image seg-

mentation methods that rely on K-means to post-process the eigenvectors, and the

reason is that the embedded points for the pixels in those areas vary smoothly [1]. On

the contrary, SymNMF-Clust often leaves those areas intact, which implies that the

low-rank matrix generated by SymNMF is a better cluster indicator. Fig. 11 shows

the pixels plotted in the lower dimensional space produced by spectral clustering and

SymNMF for a single image, which seems to support our reasoning above. We also

notice that SymNMF-Clust tends to identify a few very small regions that correspond

to noise in an image. This means that setting k larger than needed will not degrade

its segmentation quality. If we remove the regions whose areas are smaller than some

threshold, we will see that many of the remaining regions correspond to meaningful

objects.

In summary, we can use SymNMF-Clust to detect salient objects and use SymNMF-

Embed to discover more detailed segments.
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3.9 Discussion

In this chapter, we studied Symmetric NMF (SymNMF): minB≥0 ‖A − BBT‖2
F as

a graph clustering method that is suitable for clustering data points embedded in

linear and nonlinear manifolds. Our method extends the applicability of NMF to more

general cases, where data relationship is not described by distances in vector space but

by similarity values in a latent space. Unlike previous work on SymNMF that imposed

various additional constraints on the matrix B, we showed that with nonnegativity

constraints only, B can be well interpreted as a cluster indicator matrix. We justified

SymNMF to be a valid graph clustering method by showing that it originates from

the same formulation as spectral clustering but relaxes the constraint on B differently.

While spectral clustering methods require post-processing the eigenvector-based data

representation to obtain hard clusters, SymNMF does not depend on the spectrum

and finds cluster memberships directly from B. Compared to previous work on the

extension of NMF to a positive semi-definite and nonnegative matrix, our approach

only assumes that A is symmetric and nonnegative.

We developed two algorithms for SymNMF, a Newton-like algorithm and an

ANLS-based algorithm, which have different properties but both are guaranteed to

converge to stationary point solutions. We discuss the tradeoff between clustering

quality and efficiency when choosing an algorithm for SymNMF. On one hand, the

Newton-like algorithm often produces more accurate solutions and higher-quality clus-

tering results, but is more appropriate when the problem size n is small, e.g. n < 3000.

On the other hand, the ANLS algorithm is especially efficient for a sparse input ma-

trix A and is scalable to very large data sets, e.g. n ≈ 106. For large-scale clustering,

we have to construct a sparse similarity matrix instead of a dense one. For example,

with n = 105 data points, it is difficult to store a dense similarity matrix (∼ 75 GB)

into the main memory of a contemporary machine.
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We have shown the promise of SymNMF in document clustering and image clus-

tering. We also conducted a comprehensive evaluation of SymNMF for image seg-

mentation on 200 natural images. Overall, we developed a general framework in this

chapter, one with minimal constraints and flexible enough for extension. One limi-

tation of our formulation is that an indefinite matrix A could be approximated by a

positive semi-definite matrix BBT . Its effect requires further study; however, we have

not seen evidences that the clustering performance degraded due to this limitation.

The proposed algorithms can be easily parallelized, for example, in the Newton-like

algorithm, the evaluation and Cholesky factorization of different diagonal blocks of

the Hessian can run in parallel; and in the ANLS algorithm, the nonnegative least

squares problem with different right-hand sides can run in parallel as well.

58



CHAPTER IV

CHOOSING THE NUMBER OF CLUSTERS AND THE

APPLICATION TO CANCER SUBTYPE DISCOVERY

In the previous chapter, we considered an extension of the formulation of the stan-

dard NMF that applies to a symmetric graph similarity matrix. Starting from this

chapter, we focus our discussion on the standard NMF again, where data points are

represented in a vector space, forming a generally nonsymmetric nonnegative matrix

X. As the analysis in Section 3.1 suggests, we keep our attention on the application

scenarios where each cluster can be represented as linearly independent vectors and

NMF performs well as a clustering method.

4.1 Motivation

As in any clustering method, it is critical and often difficult to choose the right

number of clusters when using NMF for clustering. This issue is referred to as cluster

validation in the literature [40]. For NMF in particular, the matrices W and H

in the solutions of NMF under different k’s have no direct relationships with each

other. If we chose a wrong value of k for some data set and compute NMF, the

clustering result would provide misleading information about the true clusters, and

it would be expensive to compute another NMF with a different k, unlike in other

dimension reduction methods that are based on the SVD or symmetric eigenvalue

decomposition. In the previous chapters, we have assumed in our discussion that k

is the actual number of clusters. It is interesting to study how an incorrect k will

influence the clustering result, which is the focus in this chapter.

59



A reliable method for cluster validation is especially useful for genomic data anal-

ysis such as cancer subtype discovery. Recall the formulation of the standard NMF:

X ≈ WH. (32)

Here each column of X is the expression profile of a patient, and each row of X corre-

spond to a gene. The expression profiles can be obtained by either DNA microarray

or RNA sequencing (RNASeq) technologies, measuring the abundances of the expres-

sion of all the genes. Our task is to find a handful of representative expression profiles

that correspond to different cancer subtypes, represented by the columns of W , and

to group the patients into those subtypes which can be determined by the columns of

H. Physicians can offer personalized treatments based on the specific cancer subtype

for a patient. Therefore, determining the right number of cancer subtypes is a key re-

quirement in delivering accountable healthcare. Genomic data gathered from cancer

patients have a much larger volume nowadays, such as in The Cancer Genome Atlas

(TCGA), thus providing a great opportunity for comprehensive analysis of cancer

subtypes.

Various existing methods for cluster validation are based on the notion of stability

of the clusters. The intuition is that if a data set has k well-separated clusters

generated by a clustering algorithm, applying the same algorithm to a sub-sample

of the data set will yield the same clustering assignment of the data points in that

sub-sample. Ben-Hur et al. [8] evaluated the agreement of the clustering results

generated on two random samples over multiple times of sub-sampling. Monti et al.

[82] aggregated the clustering results generated on many random samples and reached

a “consensus” of clustering results. They provided a visualization of the consensus

clustering in a symmetric consensus matrix. In particular, Brunet et al. [16] adapted

the consensus clustering method to the context of NMF for cluster validation, called

consensus NMF, which has been very popular in gemonic analysis and employed as

one of the default methodologies in the FIREHOSE data pipeline at TCGA Genome
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Data Analysis Centers1.

However, in this chapter, we will demonstrate by a surprisingly simple example

that consensus NMF for cluster validation as described in Brunet et al. [16] has a

critical flaw and may produce misleading results that suggest cluster structures when

they do not exist. We will introduce the details of consensus NMF in Section 4.2

and its flaws in Section 4.3. In Section 4.4, we will propose a variation of another

measure assessing the stability of clusters, called Gap of Prediction Strength (GPS),

for cluster validation for NMF-based clustering. In Section 4.5, we show the effec-

tiveness of our measure on artificially simulated data. Our discussion also suggests

that an extended formulation of NMF, called affine NMF [64], is more appropriate

for clustering genomic data, which will be presented in Section 4.6. In Section 4.7, we

conduct a case study on lung adenocarcinoma, a common type of lung cancer. Our

new methodology has theoretical implications in genomic studies, and will potentially

drive more accurate discovery of cancer subtypes.

4.2 Consensus NMF

We first review the consensus clustering for a generic clustering algorithm proposed

by Monti et al. [82]. This method relies on the stability of the clusters with respect

to random sampling of the data points. Let A1 and A2 be two subsets sampled

randomly from a data set of n data points. Suppose two data points xi,xj appear

in both subsets generated by random sampling, that is to say, xi,xj ∈ A1 ∩ A2. Let

us run a clustering algorithm on both A1 and A2, assuming the correct number of

clusters k is given. Conceptually, we expect that if xi,xj belong to the same cluster

derived from A1, they also belong to the same cluster derived from A2. Based on this

reasoning, we can aggregate the results of a clustering algorithm over many runs and

achieve a consensus partitioning of the data points.

1https://confluence.broadinstitute.org/display/GDAC/Home (retrieved in June 2014)
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Now we follow [82] and formalize the idea of a consensus matrix. For n data points,

the (i, j)-th entry of a consensus matrix C̃ ∈ Rn×n is the co-clustering frequency of

the i-th and j-th data points over multiple runs of a clustering algorithm. More

rigorously, let r be the sampling rate, the fraction of data points selected in each

random sample. We generate T subsets A1, · · · ,AT by random sampling, each with

sampling rate r, and cluster each sub-sample with the same number of clusters k.

Define the matrices C(t) and S(t) as the following (1 ≤ t ≤ T ):

c
(t)
ij =


1, if the i-th and j-th data points belong to the same cluster using At;

0, otherwise,

(33)

s
(t)
ij =


1, if both the i-th and j-th data points appear in At;

0, otherwise.

(34)

Clearly, c
(t)
ij = 1 implies s

(t)
ij = 1. Then we can define the consensus matrix C̃:

c̃ij =

∑T
t=1 c

(t)
ij∑T

t=1 s
(t)
ij

. (35)

The entries of C̃ are co-clustering frequencies – the level of agreement of the clustering

labels generated by multiple runs of a clustering algorithm – and have values in the

interval [0, 1]. In the perfect scenario where no ambiguity exists for the co-membership

of any two data points, the entries of C̃ could be 0 or 1 only. Thus, the histogram or

cumulative distribution of the entries of C̃ on the interval [0, 1] can be used to assess

the stability of the clusters [82, 52].

The consensus matrix can also serve as a visualizable evidence of stable or un-

stable clusters. C̃ can be viewed as a similarity matrix between all pairs of the data

points, and can be provided as an input to a hierarchical clustering algorithm such

as the average linkage, generating a binary tree called a dendrogram [33]. Given the

same parameter k, we can cut the tree and produce k non-overlapping partitions,
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i.e. clusters. Based on these cluster memberships, we can reorder the rows of C̃ so

that the data points in the same cluster correspond to contiguous rows, and the same

reordering is applied to the columns of C̃. If the cluster structures are stable with

respect to random sampling, the reordered consensus matrix will exhibit k diagonal

blocks.

Brunet et al. [16] exploited the idea of consensus clustering in the context of NMF.

They proposed to use another quantitative measure of clustering stability, called

the cophenetic correlation coefficient, which is the correlation coefficient between the

vectorized matrix I−C̃ and the distance metrics induced by the dendrogram tree [93].

The parameter k corresponding to the largest cophenetic correlation was chosen as

the right number of clusters. We refer to this consensus clustering method by Brunet

et al. [16] as consensus NMF. A key characteristic that distinguishes consensus NMF

from Monti et al.’s consensus clustering is that the random sampling procedure was

replaced by random initialization in NMF. Virtually all of the algorithms for solving

the optimization problem minW,H≥0 ‖X −WH‖2
F start from a random initialization

of W and H. Thus, consensus NMF chooses the number of clusters based on the

stability of clustering results with respect to random initialization.

4.3 A Flaw in Consensus NMF

Here we show that consensus NMF is an erroneous method for cluster validation.

The stability of clusters with respect to random initialization cannot suggest any-

thing about the cluster structures. Consider a simple data set generated by a single

Gaussian distribution in Fig. 12(a)(b), where no cluster structures are present; in

other words, the right number of clusters is one. However, when using k = 2, consen-

sus NMF generates a perfect consensus matrix with two diagonal blocks and clearly

indicates two clusters.

The reason for this misleading result given by consensus NMF is that a clustering
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Figure 12: Misleading results of consensus NMF on artificial and real RNASeq data.
In each row: The left figure describes a data set in a plot or in words; the middle
figure is a plot of the data set in the reduced dimensional space found by standard
NMF with k = 2, where each column of H is regarded as the 2-D representation
of a data point; the right figure is the consensus matrix computed from 50 runs of
standard NMF.

algorithm simply partitions a data set. Given a parameter k, most clustering algo-

rithms generate k partitions that minimize some underlying objective function. The

clustering quality depends on whether those k partitions happen to match the true

cluster structures. In the above counterexample, the mechanism of NMF as a clus-

tering method is to find two linearly independent vectors and treat them as cluster
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Figure 13: Reordered consensus matrices using Monti et al.’s method [82] and NMF
as the clustering algorithm. The consensus matrices are constructed by computing
50 runs of the standard NMF on two artificial data sets, each generated by a sin-
gle Guassian distribution. These results show that Monti et al.’s method based on
random sampling does not suffer from the flaw in consensus NMF that is based on
random initialization.

representatives to partition the data set into two groups. However, we have shown

in Section 3.1 that a necessary condition for NMF to produce good clustering results

is that the linearly independent basis vectors it finds correspond to the true clusters.

The cases in Fig. 12(a)(b) do not satisfy this condition. Although the partitions

given by NMF in this example are stable with respect to random initialization, they

are not stable with respect to random sampling, shown in Fig. 13. We will also show

more complicated simulation experiments in Section 4.5 that reaffirms our discovery.

Misleading conclusions can also be drawn from consensus NMF on real genomic

data, such as in Fig. 12(c). The logarithm of the raw abundances of gene expression

is often used for genomic analysis, for example, in the FIREHOSE pipeline2. Note

that the result of NMF (middle figure) and the reordered consensus matrix (right

figure) for the LUAD mRNASeq data closely resemble those for the artificial cases

composed of a single Gaussian. Thus, we cannot deduce any useful information about

the LUAD cancer subtypes from such analyses.

2http://gdac.broadinstitute.org/runs/analyses__2014_04_16/reports/cancer/LUAD/

mRNAseq_Clustering_CNMF/nozzle.html (retrieved in June 2014)
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Our discovery has several implications:

(1) The stability of clusters with respect to random initialization of a clustering

algorithm is not an indicator of well-separated cluster structures. The stability

result given by consensus NMF is determined not by the separability of the clus-

ters but by the number of local optima in the NMF formulation. Therefore, the

result of consensus NMF reflects the characteristic of the clustering algorithm,

rather than the characteristic of the clusters themselves.

(2) Consensus clustering that evaluates the stability with respect to random sam-

pling, as described by Monti et al. [82] is a reasonble cluster validation method.

We can also compute the cophenetic correlation based on the consensus matrix

and the dendrogram tree under different k’s, and choose the one with the largest

cophenetic correlation as the number of clusters. However, we have found em-

pirically that this measure often has similar values for a range of k’s and thus

is not very informative for cluster validation. We will develop a new measure

for cluster validation in the next section.

(3) The geometric structure of the low-dimensional representation of the patients

in a single NMF run is also important for cluster validation. Ideally, when NMF

discovers basis vectors that correspond well to well-separated clusters, the data

points represented in the k-dimensional space should be located on or close to

an axis in the k-dimensional coordinate system. In the middle figures in Fig.

12, the majority of data points in the low-dimensional space are located near

the separation boundary, and it is not justifiable to assign cluster labels to those

data points. We will propose to use affine NMF for genomic analysis to remedy

this issue in Section 4.6.

(4) Contrary to common practice in genomic analysis, we have seen that NMF

cannot reveal well-separated clusters from the logarithm of expression profiles.

66



We will use the raw expression profiles without taking the logarithm in our

following experiments.

4.4 A Variation of Prediction Strength

We first review two existing measures for cluster validation, namely the gap statistic

[97] and the prediction strength [96], and then propose our new cluster validation

method based on these two measures.

4.4.1 Gap Statistic

The gap statistic [97] is a quantity defined for any distance-based clustering algorithm,

i.e. an algorithm that relies on a distance function between pairs of data points. The

intuition is that if a data set has k well-separated clusters generated by a clustering

algorithm, the within-class variation for these clusters should be sufficiently small

compared to the within-class variation for the partitioning of the data points under

a null distribution. Let P = {C1, · · · , Ck} be a non-overlapping partitioning of n

data points, and nj = |Cj| (1 ≤ j ≤ k) be the cardinality of the j-th cluster. The

within-class variation is:

Jk =
k∑
j=1

1

2nr

∑
i,i′∈Cj

dii′ , (36)

‘where dii′ is the distance between the i-th and i′-th data points. Then the gap

statistic is defined as

Gap(k) = E[(Jk)null]− Jk, (37)

where (Jk)null is the within-class variation under a null distribution, and E[·] denotes

the expectation of a random variable. The number of clusters is chosen as the smallest

k such that Gap(k) ≥ Gap(k + 1) − σ[(Jk)null], where σ(·) denotes the standard

deviation and is included for a conservative estimate of the number of clusters.
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4.4.2 Prediction Strength

The prediction strength measure [96] takes a prediction-based approach to the esti-

mation of k. It evaluates the stability of cluster structures using repeated two-fold

cross validation. In each iteration of the cross validation procedure, we randomly split

the data set into a training set and a testing set, and apply a clustering algorithm

to both the subsets and obtain the partitionings Ptrain and Ptest. Then, the cluster

centers/representatives on the training set is used to predict the cluster labels of the

data points in the testing set, resulting in Ppredict. The prediction strength is a mea-

sure that evaluates the agreement between Ppredict and Ptest. We simply denote this

measure as PS and omit its exact definition here. PS is averaged over all the cross

validation iterations and takes a value in the interval [0, 1].

4.4.3 Gap of Prediction Strength

NMF used as a clustering method is not directly related to a distance function.

Thus, prediction strength is a well suited measure for cluster validation for NMF-

based clustering because it does not rely on a distance function. In each iteration of

cross validation, we apply NMF to both the training and testing sets:

min
Wtrain≥0,Htrain≥0

‖Xtrain −WtrainHtrain‖2
F ,

min
Wtest≥0,Htest≥0

‖Xtest −WtestHtest‖2
F .

(38)

We can obtain the partitioning Ppredict from Hpredict, the solution of a nonnegative

least squares problem:

Hpredict = arg min
H≥0
‖WtrainH −Xtest‖2

F . (39)

A simple strategy to choose the number of clusters is to pick k with the largest

PS value. However, we have found empirically that the prediction strength measure

favors a smaller k over a larger one. In [96], the authors suggested choosing the largest

k with a PS value larger than 0.8 ∼ 0.9, which was an ad hoc strategy and did not
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Algorithm 3 Generating a null distribution for a nonnegative data matrix X ∈ Rm×n
+

1: Input: X = [x1, · · · ,xn]
2: Compute the mean of the input data points: µ = (1/n)

∑n
i=1 xi

3: Translate the data points so that each feature has zero mean: xi ← xi − µ,∀i
4: Compute the singular value decomposition: X = UΣV T ≡ UY , where Y =

[y1, · · · ,yn] is the data points in the principal component space
5: Get the m-dimensional bounding box for [y1, · · · ,yn]: [ymin,ymax]
6: Generate n vectors uniformly in the bounding box: zi ∼ U(ymin,ymax), forming

a matrix Z = [z1, · · · , zn]
7: Project Z back to the original space: Z ← UZ
8: Translate Z by µ: zi ← zi + µ,∀i
9: Translate each row of Z by the minimal amount such that Z ∈ Rm×n

+

10: Output: Z

generalize to an arbitrary data set. Therefore, we need to devise a more principled

strategy for reliable cluster validation.

Inspired by the gap statistic, we propose to use the Gap of Prediction Strength

(GPS) defined as:

GPS(k) = PS(k)− E[PS(k)null], (40)

where PSnull is the PS value for the data points under a null distribution. A possible

null distribution can be obtained by generating each feature uniformly over the range

in the principal components of the data points [97]. The benefit of generating the fea-

tures in the transformed space instead of the original space is to capture the “shape”

of the data set. The algorithm for obtaining the null distribution is summarized in

Algorithm 3.

Our cluster validation method works as follows. For a range of k values 2, 3, · · · , kmax,

we pick kopt with the largest GPS value as a candidate number of clusters. We accept

the null hypothesis and decide the number of clusters is one if:

PS(kopt) ≤ E[PS(kopt)null] + σ[PS(kopt)null]; (41)

we reject the null hypothesis and decide the number of clusters is kopt if:

PS(kopt) > E[PS(kopt)null] + σ[PS(kopt)null]; (42)
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The standard deviation term is included here for reaching a conservative conclusion.

Note that the way we incorporate the standard deviation into our decision rule is

different from that for gap statistic.

4.5 Simulation Experiments

We perform empirical comparison on artificially simulated data sets where we have

ground-truth knowledge of the cluster memberships, in order to evaluate the effec-

tiveness of the cluster validation measures. The measures in our comparison include

cophenetic correlation coefficients based on random initialization [16] and random

sampling [82], the gap statistic [97], and the gap of prediction strength (GPS).

We construct artificial data sets that simulate the properties of gene expression

profiles. Given the number of genes M , the number of patients N , and the number

of clusters K, we construct a nonnegative data matrix X ∈ RM×N
+ with K clusters.

First, generate the cluster centers µ1, · · · ,µK . Each entry in these k vectors is chosen

uniformly from the [0, 1] interval. Then, we generate the columns of X as a mixture

of Gaussians; that is, for each 1 ≤ i ≤ N , we randomly pick a cluster center µj and

generate xi ∼ N(µj, σ
2). Two additional parameters control the simulation: The

number of nuisance features, denoted as Mnoise, simulating the non-informative genes

that contain basically Gaussian noise; and the fraction of outlier entries, denoted as

a scalar z, simulating inaccurate measurements and abnormal gene expression with

no observable patterns. Finally, we translate the coordinate system so that X is a

nonnegative matrix.

We use the following parameters in the simulation: M = 200, K = 1, 2, 3, 4, 5, 6,

σ = 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, Mnoise = 80, z = 0.15. We set N = 60K, that is,

each ground-truth cluster has 60 data points.

For cophenetic correlation based on random initialization, we run NMF starting
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Table 12: Accuracy of four cluster validation measures in the simulation experiments
using standard NMF.

(a) Cophenetic correlation based on random initialization

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
σ = 0.25 0 1.0 0.4 0.8 1.0 0.7
σ = 0.3 0 1.0 0.4 0.6 0.9 1.0
σ = 0.35 0 1.0 0.3 0.8 1.0 1.0
σ = 0.4 0 1.0 0.2 0.4 0.5 0.9
σ = 0.45 0 1.0 0.1 0.1 0.5 0.6
σ = 0.5 0 1.0 0 0 0.5 0.4

(b) Cophenetic correlation based on random sampling

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
σ = 0.25 0 1.0 0.7 1.0 1.0 0.9
σ = 0.3 0 1.0 0.9 0.9 1.0 1.0
σ = 0.35 0 1.0 0.8 1.0 0.9 1.0
σ = 0.4 0 1.0 0.5 0.8 0.9 1.0
σ = 0.45 0 1.0 0.4 0.6 1.0 0.9
σ = 0.5 0 1.0 0.2 0.5 0.9 0.4

(c) Gap statistic

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
σ = 0.25 0.3 0.3 0.3 0.4 0.4 0.8
σ = 0.3 0.5 0.1 0.4 0.5 0.7 0.8
σ = 0.35 0.2 0.5 0.4 0.6 0.8 0.8
σ = 0.4 0.4 0.2 0.3 0.3 0.6 0.8
σ = 0.45 0.3 0.2 0.2 0.4 0.8 0.7
σ = 0.5 0.3 0.2 0.3 0.1 0.7 0.6

(d) Gap of Prediction Strength (GPS)

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
σ = 0.25 0.2 1.0 1.0 1.0 1.0 1.0
σ = 0.3 0.1 1.0 1.0 1.0 1.0 1.0
σ = 0.35 0.1 1.0 1.0 1.0 1.0 1.0
σ = 0.4 0.3 1.0 0.9 1.0 1.0 1.0
σ = 0.45 0.2 1.0 0.9 1.0 1.0 0.7
σ = 0.5 0.3 1.0 0.9 0.9 0.7 0.4
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from 50 different initializations. For cophenetic correlation based on random sam-

pling, we build 50 random samples, and 80% of the data points are selected for each

sub-sample. There is no mechanism to determine whether any cluster structure exists,

i.e. K = 1, using these cophenetic correlation measures. For the gap statistic, we use

Euclidean distance as the distance function in within-class variation (36) because the

data points are generated by a mixture of Gaussians ignoring the nuisance features

and outliers. For the GPS measure we proposed in this chapter, we conduct 50 iter-

ations of two-fold cross validation. For the evaluation of all the four measures, NMF

is used as the clustering algorithm, and we consider k = 2, 3, 4, 5, 6, 7 as candidate

numbers of clusters.

For each set of parameters, we repeat the simulation for 10 times and report the

proportion of times that the true number of clusters is detected, which we call the

accuracy of a cluster validation measure. Table 12 show the accuracy results for

the four measures. We can see that consensus NMF as described in Brunet et al.

[16] performs much worse than re-sampling based consensus clustering [82], and GPS

clearly outperforms the other three.

4.6 Affine NMF

Inspired by the discussion in previous sections, we propose to remove the nuisance

features in gene expression measurements to achieve more well-separated cluster struc-

tures. It is impractical to identify beforehand which genes are informative for cancer

subtype discovery and which are not; in fact, this is one of the ultimate goals of ge-

nomic study. Instead, we assume that each gene expression measurement is composed

of a nuisance part and an informative part.

In the standard NMF, each data point xi is approximated in the latent subspace

spanned by k basis vectors, that is,

xi ≈ w1h1i + · · ·+ wkhki. (43)
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The basis vectors w1, · · · ,wk are also called metagenes in genomic analysis. Now we

explicitly model the nuisance part as a vector w0:

xi ≈ w0 + w1h1i + · · ·+ wkhki. (44)

w0 can be viewed as a baseline expression profile of all the genes, or baseline metagene.

Written in a matrix form, the new model is the standard NMF plus an offset:

X ≈
[
w0 W

]eT

H

 , (45)

where e ∈ Rn×1 is a vector of all 1’s. The formulation (45) was known as the affine

NMF in the signal processing community. When we assume that the nuisance part

contains Gaussian noise, the Frobenius norm can be used to define an optimization

problem:

min
w0≥0,W≥0,H≥0

∥∥∥∥∥∥∥X −
[
w0 W

]eT

H


∥∥∥∥∥∥∥

2

F

. (46)

The formulation (46) can be readily solved by an algorithm in the two-block coor-

dinate descent framework [71, 53, 56, 57, 55]. We expect that the matrix H found

by affine NMF are sparser than that found by standard NMF and the metagenes

w1, · · · ,wk are more orthogonal to each other.

The four measures for cluster validation in our simulation experiments, namely

cophenetic correlation based on random initialization and random sampling, the gap

statistic, and the gap of prediction strength (GPS), are shown in Table 13, where

affine NMF is used as the clustering algorithm. Comparing these results with those

in the previous section using standard NMF, we can see that affine NMF successfully

boosts the accuracy for all the four measures, especially when determining whether

to accept or reject the null hypothesis (K = 1) in GPS.
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Table 13: Accuracy of four cluster validation measures in the simulation experiments
using affine NMF.

(a) Cophenetic correlation based on random initialization

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
σ = 0.25 0 1.0 0.9 0.7 0.3 0.1
σ = 0.3 0 1.0 0.9 0.6 0.8 0.3
σ = 0.35 0 1.0 1.0 0.5 0.4 0.3
σ = 0.4 0 1.0 0.9 0.7 0.4 0.4
σ = 0.45 0 0.9 0.9 0.6 0.4 0.4
σ = 0.5 0 1.0 0.6 0.3 0.3 0.2

(b) Cophenetic correlation based on random sampling

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
σ = 0.25 0 1.0 1.0 0.8 1.0 1.0
σ = 0.3 0 1.0 1.0 0.9 0.9 1.0
σ = 0.35 0 1.0 1.0 1.0 1.0 1.0
σ = 0.4 0 1.0 1.0 1.0 0.9 0.9
σ = 0.45 0 1.0 1.0 1.0 1.0 0.9
σ = 0.5 0 1.0 0.9 1.0 0.9 0.7

(c) Gap statistic

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
σ = 0.25 0.2 0.5 0.8 0.8 0.8 0.9
σ = 0.3 0.3 0.6 0.7 1.0 0.6 0.8
σ = 0.35 0 0.3 0.7 0.2 0.9 0.8
σ = 0.4 0.4 0.1 0.5 0.5 0.5 0.8
σ = 0.45 0.5 0 0.3 0.2 0.5 0.7
σ = 0.5 0.3 0.1 0 0.2 0.9 0.7

(d) Gap of Prediction Strength (GPS)

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
σ = 0.25 1.0 0.9 1.0 1.0 1.0 1.0
σ = 0.3 0.9 1.0 1.0 1.0 1.0 1.0
σ = 0.35 1.0 1.0 1.0 1.0 1.0 1.0
σ = 0.4 0.9 1.0 1.0 1.0 1.0 1.0
σ = 0.45 1.0 1.0 1.0 1.0 1.0 0.7
σ = 0.5 0.9 1.0 1.0 1.0 0.8 0.3
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Table 14: Average entropy E(k) computed on the LUAD data set, for the evaluation
of the separability of data points in the reduced dimensional space.

k = 2 k = 3 k = 4 k = 5
Standard NMF 0.5778 0.8655 1.1378 1.3155

Affine NMF 0.2918 0.6892 0.9608 1.2322

4.7 Case Study: Lung Adenocarcinoma

In this chapter, we have shown that a popular framework for cancer subtype discovery,

namely the consensus NMF [16], is flawed. We have proposed a new framework

based on affine NMF for clustering and Gap of Prediction Strength (GPS) for cluster

validation. Now we conduct a case study on lung adenocarcinoma (LUAD), a specific

type of lung cancer. The data set we collected was a snapshot of LUAD RNASeq

data on the TCGA website. We selected 5,000 genes with the largest coefficients of

variation (σ/µ) [16] and formed a data matrix X ∈ R5000×263
+ .

First, we apply both standard NMF and affine NMF to the LUAD data matrix

and evaluate the separability of the cluster structures. Besides visual inspection,

we use the average entropy as a quantitative measure of separability. The average

entropy over all the columns of H is computed by treating each column of H after

normalization as a probability distribution in the low-dimensional space:

E(k) =
1

n

n∑
i=1

k∑
j=1

Pji logPji (47)

where P ∈ Rk×n and Pji = Hji/
∑k

j′=1 Hj′i. A smaller value of average entropy

correspond to better separability.

The low-dimensional representation of the data points, i.e. the columns of H, are

plotted for the k = 2 case in Fig. 14. The average entropy values for k = 2, 3, 4, 5 are

shown in Table 14. We can clearly see that affine NMF generates more well-separated

clusters. In the result of affine NMF, more data points are located on or close to an

axis, which means that the metagenes are better cluster representatives than those

generated by standard NMF, and we are more confident in assigning hard cluster
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Figure 14: Reduced dimensional plots generated by standard NMF and affine NMF.
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Figure 15: Reordered consensus matrix and cophenetic correlation based on random
sampling [82] when using standard NMF on the LUAD data set for k = 2, 3, 4, 5.
Results generated by affine NMF are similar. A block diagonal structure appears in
three out of the four cases with different k’s.

labels to the data points.

Next, we compare the cophenetic correlation based on random sampling and GPS

for cluster validation. The gap statistic is not included because no suitable distance

function can be found. The parameter configuration is the same as that in simulation

experiments (Section 4.5). When computing PS for each k, we use the median over all

the cross validation iterations instead of the mean in order to have a robust estimate

of PS.

The reordered consensus matrices for k = 2, 3, 4, 5 are shown in Fig. 15. We can

see block diagonal patterns in all four cases, and the cophenetic correlation values

are also very similar to each other, indicating that it is not a good metric for cluster
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Figure 16: Prediction strength measures for the LUAD data set (red curve, labeled
as ‘test’) as well as the data under a null distribution generated by Algorithm 3 (blue
curve, labeled as ‘null’). Results for both standard NMF and affine NMF are shown.
The blue dotted curves indicate the 1-standard-deviation of PS values under the null
distribution. The blue circles indicate the number K with the largest GPS. The
numbers displayed above the horizontal axis are empirical p-values for the observed
PS under the null distribution. These results show that GPS is an effective measure
for cluster validation.

validation.

For the GPS measure, we show the PS values for both the actual data matrix and

the data under a null distribution in Fig. 16. The curves corresponding to the null

distribution (blue) show the preference towards a smaller k by the prediction strength

measure, which verifies our motivation to propose the GPS measure. GPS with affine

NMF determines two LUAD subtypes while GPS with standard NMF determines

three LUAD subtypes. This means that removing the baseline expression profiles has

an impact on the number of subtypes that NMF-based clustering discovers. Looking

into more details at the clustering results, one of the three clusters found by standard

NMF is very small and contains about 10% of the patients. This finding makes us

believe that the three-cluster result is an artifact and the two clusters given by affine

NMF are a better clustering. Further analysis with additional molecular data and

clinical data is required to evaluate the biological significance of the clusters.
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CHAPTER V

FAST RANK-2 NMF FOR HIERARCHICAL DOCUMENT

CLUSTERING

5.1 Flat Clustering Versus Hierarchical Clustering

Most of the previous work on clustering with NMF has been focused on flat partition-

ing of a data set. However, hierarchical clustering often reveals additional structures

in the data. For example, a tree structure often provides a more detailed taxonomy

or a better description of natural phenomena than a flat partitioning. In the widely-

used text corpus RCV1 [68], a hierarchy of topics was defined, with 103 leaf nodes

under four super categories (Corporate/Industrial, Economics, Government/Social,

Markets). Online retailers such as Amazon and eBay also maintain their product

catalogues as a hierarchical tree structure. In this chapter, we will explore hierar-

chical clustering with NMF and present a highly efficient algorithm with competitive

clustering quality.

The lower rank k in standard NMF, which represents the number of clusters in a

clustering setting, is often assumed to be given or predetermined according to prior

knowledge about the data set or the embedding of the data points. Selecting the

number of clusters k is an important and difficult issue in practice. Though model

selection methods for selecting k have been proposed in the context of NMF [16, 47], it

is expensive to compute solutions of NMF for each k in general [55]. In the NMF-based

hierarchical approach we propose in this chapter, a data set is recursively divided into

small subsets and the number of clusters does not need to be predetermined by a user.

We will design a hierarchical clustering method based on rank-2 NMF, i.e. NMF

with k = 2. The hierarchical structure we will generate is a binary tree, and our
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method does not require any input on the level of the tree or the total number of

clusters. Our motivation for hierarchical clustering with binary tree structure is based

on our fast algorithm for rank-2 NMF proposed in this chapter. We will exploit the

special properties of NMF with k = 2, and propose a very fast algorithm. We will

study a particular type of existing algorithms for standard NMF, namely active-set-

type algorithms [53, 56], and propose a simple and efficient active-set-type algorithm

for rank-2 NMF, which has additional benefits when implemented on parallel plat-

forms due to “non-random” memory access.

When applying rank-2 NMF to the recursive splitting of a text corpus, our em-

pirical results reveal that if a balanced tree is constructed, its clustering quality is

often worse than that of a flat partitioning. Thus we need to adaptively determine

the next node to split. Our strategy is to compute a score for each leaf node to

evaluate whether it is composed of two well-separated clusters based on the two basis

vectors generated by rank-2 NMF before deciding which one to split. Compared to

existing strategies that rely on an n × n document-document similarity matrix [27],

our methodology never generates a large dense matrix thus is more time/space ef-

ficient. Although the proposed hierarchical clustering workflow contains redundant

computation, our methodology is still very efficient overall due to the high efficiency

of our rank-2 NMF algorithm.

Our contributions in this chapter include:

• We propose an active-set-type algorithm for rank-2 NMF, which is fast, guar-

anteed to converge, and easy to parallelize.

• By combining rank-2 NMF with a scoring function for every leaf node, we de-

velop an efficient workflow for hierarchical document clustering. Our method-

ology is able to determine both the tree structure and the depth of the tree

on-the-fly and detect outliers, in contrast to hierarchical probabilistic modeling

methods [13] that require the depth of the tree be specified by the user.
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• We present promising empirical results of our methodology in terms of efficiency,

clustering quality, as well as semantic quality in the topic modeling context. To

the best of our knowledge, our work is the first attempt to cluster the full RCV1

data set [68] which contains approximately 800,000 documents. Our method

finished in about 7 minutes on a shared-memory machine with two quad core

CPUs and achieved better quality than standard NMF which costs 4.5 hours.

The rest of the chapter is organized as follows. We conduct detailed analysis of

existing active-set-type algorithms for NMF in the special case of k = 2 in Section

5.2, and present our new algorithm for rank-2 NMF in Section 5.3. In Section 5.4, we

describe our measure for scoring tree nodes and the hierarchical document clustering

workflow. In Section 5.5, we show the difference between clustering approaches and

topic modeling approaches when applied to flat and hierarchical document cluster-

ing. In Section 5.6, we demonstrate the promising efficiency, clustering quality, and

semantic quality of our methodology empirically on large-scale data sets. In Section

5.7, we summarize the advantages and shortcomings of this work. Although we focus

on document clustering, the proposed hierarchical clustering method is not limited

to documents.

Throughout this chapter, ‖ · ‖ denotes the Euclidean norm, and ‖ · ‖F denotes the

Frobenius norm.

5.2 Alternating Nonnegative Least Squares for NMF

In this chapter, we consider the algorithms for NMF that fit into the two-block co-

ordinate descent framework [71, 53, 56, 55] due to better theoretical guarantee in

convergence properties. In this framework, starting from some initialization, the ma-

trices W and H are updated in an iterative manner, until some stopping criterion is
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satisfied. The overall nonconvex problem (2) is thus reduced to two convex subprob-

lems:

min
W≥0

‖HTW T −XT‖2
F , (48)

min
H≥0

‖WH −X‖2
F . (49)

When an optimal solution is obtained for each subproblem in each iteration, this

iterative procedure is guaranteed to converge to a stationary point [38], which is a

good convergence property for nonconvex problems such as (2). Each subproblem is a

nonnegative least squares problem (NNLS) with multiple right-hand sides. Consider

the following generic form for simplicity:

min
G≥0
‖BG− Y ‖2

F , (50)

where B ∈ Rm×k
+ , Y ∈ Rm×n

+ are given, and G ∈ Rk×n
+ is to be solved.

Various types of algorithms can be used to solve the NNLS problem and can be

categorized into standard optimization algorithms and active-set-type algorithms. A

classical active-set algorithm for NNLS with a single right-hand side was introduced

in [65]. In the context of NMF, Lin [71] claimed that it would be expensive to solve

NNLS with multiple right-hand sides using the active-set algorithm repeatedly, and

proposed a projected gradient descent (PGD) algorithm. However, Kim & Park [53]

proposed several improvements for the original active-set algorithm, and achieved an

NMF algorithm with overall efficiency comparable to PGD. Later, a block-pivoting

algorithm for NNLS [56] was proposed, which proved to be more efficient than the

active-set algorithm when k is large. We call both active-set based and block-pivoting

based algorithms for NMF as active-set-type algorithms.

In active-set-type algorithms for NNLS, we need to identify a partitioning of vari-

ables in G into an active set A and a passive set P . At each step of searching for the

optimal active set, we need to solve an unconstrained least squares problem. Because
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the number of possible active sets is exponential, a well-guided search of the opti-

mal active sets is important, such as presented by the active-set and block-pivoting

methods. To improve the efficiency of solving NNLS with multiple right-hand sides

(50), the columns of G with the same active set pattern are grouped together for

lower computational complexity and more cache-efficient computation [53, 98], and

the grouping of columns changes when the active set is re-identified in each iteration

of NNLS. Practically, the grouping step is implemented as a sorting of the columns of

G, with complexity O(n log n) which is expensive when n is large. Other steps, such

as checking the optimality of the active sets, also introduces additional overheads.

When the underlying application restricts the value of k to be 2, such as hierar-

chical clustering that generates a binary tree, the number of possible active sets is

reduced to 22 = 4 for each column of G, and it is practical to enumerate all of them.

Conceptually, active-set-type algorithms search for the optimal active set in a finite

set of possible active sets, and the size of the finite search space is 4 in the special case

of k = 2. On the contrary, standard optimization algorithms require an indefinite

number of iterations before convergence, and the actual number of iterations depends

on the required accuracy. Therefore, when k = 2, standard optimization algorithms

such as PGD are not able to exploit the special property of NNLS, and active-set-

type algorithms become the better choice. In the next section, we will propose a new

algorithm and its efficient implementation based on active-set-type algorithms, which

will avoid all the overheads of switching between active sets.

Both flat clustering based on standard NMF and hierarchical clustering based on

rank-2 NMF can produce k non-overlapping groups of a data set. In the following,

we argue that the hierarchical approach is the preferred choice in terms of efficiency

by conducting an analysis of computational complexity for different k values, using

the active-set based algorithm [53] as an exemplar algorithm. Given an m×n sparse

data matrix X and the number of clusters k, the complexity of one NNLS run for
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standard NMF is upper bounded by:

4kN + 2(m+ n)k2 + t[(1/3)k3 + 2(m+ n)k2] flops, (51)

where N is the number of nonzero entries in X, and t is the number of search steps

towards the optimal active set. In hierarchical clustering, we need to perform rank-2

NMF for k−1 times, and the complexity of one NNLS run summed over all the k−1

steps is at most:

(k − 1) · [8N + 8(m+ n) + t(8/3 + 8m+ 8n)] flops. (52)

The actual flops (floating point operations) in hierarchical clustering must be smaller

than (52), because any splitting other than the first step is executed on a subset of the

data set only. Thus, the expression (51) is superlinear with respect to k, while (52) is

linear with respect to k. Assuming the number of search steps t is the same in both

cases, the hierarchical approach is expected to be much less expensive. With our new

algorithm specifically for rank-2 NMF in this chapter, the efficiency of NMF-based

hierarchical clustering will be boosted even more.

5.3 A Fast Algorithm for Nonnegative Least Squares with
Two Columns

In ANLS, the problem of solving NMF is reduced to the problem of solving NNLS

with multiple right-hand sides: minG≥0 ‖BG− Y ‖2
F . In the context of NMF, Y is set

to be either the data matrix X, or XT . Let Y = [y1, · · · ,yn], G = [g1, · · · ,gn]. We

emphasize that yi ≥ 0 (1 ≤ i ≤ n) in the NNLS problem we are solving since the

data is nonnegative.

Since the formulation (50) for NNLS with multiple right-hand sides can be rewrit-

ten as

min
g1,··· ,gn≥0

‖Bg1 − y1‖2 + · · ·+ ‖Bgn − yn‖2, (53)
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Table 15: Four possible active sets when B ∈ Rm×2
+ .

A P J(g)
{1, 2} ∅ ‖y‖2

{1} {2} ‖b2g2 − y‖2

{2} {1} ‖b1g1 − y‖2

∅ {1, 2} ‖b1g1 + b2g2 − y‖2

the solution of each column of G is independent of each other, and we obtain n NNLS

problems each with a single right-hand side. We first study the solution of NNLS

with a single right-hand side, and then consider the issues when combining multiple

right-hand sides.

5.3.1 Solution of ming≥0 ‖Bg − y‖ with B ∈ Rm×2
+ ,y ≥ 0

In general, when B has more than two columns, an active-set-type algorithm has to

search for an optimal active set as discussed in Section 5.2. We denote the two parts

of g that correspond to the active set and the passive set as gA and gP , respectively.

At each iteration of the algorithm, gA is set to zero, and gP is solved by unconstrained

least squares using a subset of columns of B corresponding to P . The optimal active

set is the one where the solution of unconstrained least squares is feasible, i.e. gP ≥ 0,

and meanwhile ‖Bg − y‖2 is minimized.

When k = 2, we have

J(g) ≡ ‖Bg − y‖2 = ‖b1g1 + b2g2 − y‖2, (54)

where B = [b1,b2] ∈ Rm×2
+ , y ∈ Rm×1

+ , and g = [g1, g2]T ∈ R2×1.

Considering the limited number of possible active sets, our idea is to avoid the

search of the optimal active set at the cost of some redundant computation. The four

possibilities of the active set A is shown in Table 15. We simply enumerate all the

possibilities of (A,P), and for each P , minimize the corresponding objective function

J(g) in Table 15 by solving the unconstrained least squares problem. Then, of all the

feasible solutions of g (i.e. g ≥ 0), we pick the one with the smallest J(g). Now we
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y

b1b1g∗1

b2

b2g∗2

Figure 17: An illustration of one-dimensional least squares problems min ‖b1g
∗
1−y‖2

and min ‖b2g
∗
2 − y‖2.

study the properties of the solutions of these unconstrained least squares problems,

which will lead to an efficient algorithm to find the optimal active set.

First, we claim that the two unconstrained problems min ‖b1g1−y‖, min ‖b2g2−

y‖ always yield feasible solutions. Take min ‖b1g1 − y‖2 as an example. Its solution

is:

g∗1 =
yTb1

bT1 b1

. (55)

If b1 6= 0, we always have g∗1 ≥ 0 since y ≥ 0,b1 ≥ 0. In the context of rank-2

NMF, the columns of W and the rows of H are usually linearly independent when

nonnegative-rank(X) ≥ 2, thus b1 6= 0 holds in most cases. Geometrically (see Fig.

17), the best approximation of vector y in the one-dimensional space spanned by b1

is the orthogonal projection of y onto b1.

If g∅ ≡ arg min ‖b1g1 +b2g2−y‖2 is nonnegative, then A = ∅ is the optimal active

set because the unconstrained solution g∅ is feasible and neither min ‖b1g1 − y1‖2

nor min ‖b2g2 − y2‖2 can be smaller than J(g∅). Otherwise, we only need to find

the smallest objective J(g) among the other three cases since they all yield feasible

solutions. We claim that A = {1, 2}, i.e. P = ∅, can be excluded. Using g∗1, the

solution of min ‖b1g1 − y‖2, we have

‖b1g
∗
1 − y‖2 = ‖y‖2 − (yTb1)2/(bT1 b1) ≤ ‖y‖2. (56)

In fact, P = {1} includes P = ∅ as a special case when b1 ⊥ y.

To compare ‖b1g
∗
1 − y‖2 and ‖b2g

∗
2 − y‖2, we note that in the illustration in Fig.
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Algorithm 4 Algorithm for solving ming≥0 ‖Bg − y‖2, where B = [b1,b2] ∈
Rm×2

+ ,y ∈ Rm×1
+

1: Solve unconstrained least squares g∅ ← min ‖Bg − y‖2 by normal equation
BTBg = BTy

2: if g∅ ≥ 0 then
3: return g∅

4: else
5: g∗1 ← (yTb1)/(bT1 b1)
6: g∗2 ← (yTb2)/(bT2 b2)
7: if g∗1‖b1‖ ≥ g∗2‖b2‖ then
8: return [g∗1, 0]T

9: else
10: return [0, g∗2]T

11: end if
12: end if

17, b1g
∗
1 − y ⊥ b1g

∗
1 and b2g

∗
2 − y ⊥ b2g

∗
2, therefore we have

‖bjg∗j‖2 + ‖bjg∗j − y‖2 = ‖y‖2 (57)

for j = 1, 2. Thus choosing the smaller objective amounts to choosing the larger value

from g∗1‖b1‖ and g∗2‖b2‖.

Our algorithm for NNLS with a single right-hand side is summarized in Algorithm

4. Note that BTB and BTy need only to be computed once for lines 1,5,6.

5.3.2 Solution of minG≥0 ‖BG− Y ‖F with B ∈ Rm×2
+ , Y ≥ 0

When Algorithm 4 is applied to NNLS with multiple right-hand sides, computing

g∅, g∗1, g
∗
2 for different vectors y separately is not cache-efficient. In Algorithm 5, we

solve NNLS with n different vectors y simultaneously, and the analysis in Section

5.3.1 becomes important. Note that the entire for-loop (lines 5-15, Algorithm 2)

is embarrassingly parallel and can be vectorized. To achieve this, unconstrained

solutions for all the three possible active sets are computed before entering the for-

loop. Some computation is redundant, for example, the cost of solving ui and vi is

wasted when g∅i ≥ 0 (c.f. line 5-6, Algorithm 4). However, Algorithm 5 represents
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Algorithm 5 Algorithm for solving minG≥0 ‖BG − Y ‖2
F , where B = [b1,b2] ∈

Rm×2
+ , Y ∈ Rm×n

+

1: Solve unconstrained least squares G∅ = [g∅1, · · · ,g∅n]← min ‖BG−Y ‖2 by normal
equation BTBG = BTY

2: β1 ← ‖b1‖, β2 ← ‖b2‖
3: u← (Y Tb1)/β2

1

4: v← (Y Tb2)/β2
2

5: for i = 1 to n do
6: if g∅i ≥ 0 then
7: return g∅i
8: else
9: if uiβ1 ≥ viβ2 then

10: return [ui, 0]T

11: else
12: return [0, vi]

T

13: end if
14: end if
15: end for

a non-random pattern of memory access, and we expect that it is much faster for

rank-2 NMF than applying existing active-set-type algorithms directly.

Note that a näıve implementation of comparing ‖b1g
∗
1−y‖2 and ‖b2g

∗
2−y‖2 for n

different vectors y requires O(mn) complexity due to the creation of the m×n dense

matrix BG−Y . In contrast, our algorithm only requires O(m+n) complexity at this

step (line 9, Algorithm 5), because b1,b2 are the same across all the n right-hand

sides. Assuming Y is a sparse matrix with N nonzeros, the overall complexity of

Algorithm 5 is O(N), which is the same as the complexity of existing active-set-type

algorithms when k = 2 (see Eq. 51). The dominant part comes from computing the

matrix product Y TB in unconstrained least squares.

5.4 Hierarchical Document Clustering Based on
Rank-2 NMF

Rank-2 NMF can be recursively applied to a data set, generating a hierarchical tree

structure. In this section, we focus on text corpus and develop an overall efficient

approach to hierarchical document clustering. In particular, we propose a strategy of
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Leaf node N
f1 =‘shares’ f2 =‘stock’ f3 =‘company’ f4 =‘common’

Potential child R
fr1 =‘shares’ fr2 =‘stock’

fr3 =‘common’ fr4 =‘stake’

Potential child L
fl1 =‘acquisition’ fl2 =‘unit’

fl3 =‘terms’ fl4 =‘undisclosed’

Figure 18: An illustration of a leaf node N and its two potential children L and R.

choosing an existing leaf node at each splitting step. Extensive criteria for selecting

the next leaf node to split were discussed in previous literature for general clustering

methods [27], mainly relying on cluster labels induced by the current tree structure.

In the context of NMF, however, we have additional information about the clusters:

Each column of W is a cluster representative. In text data, a column of W is the

term distribution for a topic [110], and the largest elements in the column correspond

to the top words for this topic. We will exploit this information to determine the next

node to split.

In summary, our strategy is to compute a score for each leaf node by running

rank-2 NMF on this node and evaluating the two columns of W . Then we select the

current leaf node with the highest score as the next node to split. The score for each

node needs only to be computed once when the node first appears in the tree. For

an illustration of a leaf node and its two potential children, see Fig. 18. We split a

leaf node N if at least two well-separated topics can be discovered within the node.

Thus we expect that N receives a high score if the top words for N is a well-balanced

combination of the top words for its two potential children, L and R. We also expect

that N receives a low score if the top words for L and R are almost the same.

We utilize the concept of normalized discounted cumulative gain (NDCG) [46]

from the information retrieval community. Given a perfect ranked list, NDCG mea-

sures the quality of an actual ranked list which always has value between 0 and 1. A

leaf node N in our tree is associated with a term distribution wN , given by a column

of W from the rank-2 NMF run that generates the node N . We can obtain a ranked
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list of terms for N by sorting the elements in wN in descending order, denoted by

fN . Similarly, we can obtain ranked lists of terms for its two potential children, L

and R, denoted by fL and fR. Assuming fN is a perfect ranked list, we compute

a modified NDCG (mNDCG) score for each of fL and fR. We describe our way to

compute mNDCG in the following. Recall that m is the total number of terms in the

vocabulary. Suppose the perfectly ordered terms corresponding to fN is

f1, f2, · · · , fm,

and the shuffled orderings in fL and fR are respectively:

fl1 , fl2 , · · · , flm ;

fr1 , fr2 , · · · , frm .

We first define a position discount factor p(fi) and a gain g(fi) for each term fi:

p(fi) = log (m−max{i1, i2}+ 1) , (58)

g(fi) =
log(m− i+ 1)

p(fi)
, (59)

where li1 = ri2 = i. In other words, for each term fi, we find its positions i1, i2 in the

two shuffled orderings, and place a large discount in the gain of term fi if this term is

high-ranked in both shuffled orderings. The sequence of gain {g(fi)}mi=1 is sorted in

descending order, resulting in another sequence {ĝi}mi=1. Then, for a shuffled ordering

fS (fS = fL or fR), mNDCG is defined as:

mDCG(fS) = g(fs1) +
m∑
i=2

g(fsi)

log2(i)
, (60)

mIDCG = ĝ1 +
m∑
i=2

ĝi
log2(i)

, (61)

mNDCG(fS) =
mDCG(fS)

mIDCG
. (62)

89



As we can see, mNDCG is basically computed in the same way as the standard NDCG

measure, but with a modified gain function. Also note that ĝi instead of g(fi) is used

in computing the ideal mDCG (mIDCG) so that mNDCG always has a value in the

[0, 1] interval.

Finally, the score of the leaf node N is computed as:

score(N ) = mNDCG(fL)×mNDCG(fR). (63)

To illustrate the effectiveness of this scoring function, let us consider some typical

cases.

1. When the two potential children L,R describe well-separated topics, a top word

for N is high-ranked in one of the two shuffled orderings fL, fR, and low-ranked

in the other. Thus the top words will not suffer from a large discount, and both

mNDCG(fL) and mNDCG(fR) will be large.

2. When both L and R describe the same topic as that of N , a top word for N is

high-ranked in both the shuffled orderings. Thus the top words will get a large

discount, and both mNDCG(fL) and mNDCG(fR) will be small.

3. When L describes the same topic as that of N , and R describes a totally

unrelated topic (e.g. outliers inN ), then mNDCG(fL) is large and mNDCG(fR)

is small, and score(N ) is small.

The overall hierarchical document clustering workflow is summarized in Algorithm

6, where we refer to a node and the documents associated with the node exchangably.

The while-loop in this workflow (lines 8-15) defines an outlier detection procedure,

where T trials of rank-2 NMF are allowed in order to split a leaf node M into two

well-separated clusters. At each trial, two potential children nodesN1,N2 are created,

and if we believe that one of them (say, N2) is composed of outliers, we discard N2

from M at the next trial. If we still cannot split M into two well-separated clusters
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Algorithm 6 Hierarchical document clustering based on rank-2 NMF

1: Input: A term-document matrix X ∈ Rm×n
+ (often sparse), maximum number of

leaf nodes k, parameter β > 1 and T ∈ N for outlier detection
2: Create a root node R, containing all the n documents
3: score(R)←∞
4: repeat
5: M← a current leaf node with the highest score
6: Trial index i← 0
7: Outlier set Z ← ∅
8: while i < T do
9: Run rank-2 NMF on M and create two potential children N1,N2, where

|N1| ≥ |N2|
10: if |N1| ≥ β|N2| and score(N2) is smaller than every positive score of current

leaf nodes then
11: Z ← Z ∪N2, M←M− Z, i← i+ 1
12: else
13: break
14: end if
15: end while
16: if i < T then
17: Split M into N1 and N2 (hard clustering)
18: Compute score(N1) and score(N2)
19: else
20: M←M∪ Z (recycle the outliers and do not split M)
21: score(M)← −1 (set M as a permanent leaf node)
22: end if
23: until # leaf nodes = k
24: Output: A binary tree structure of documents, where each node has a ranked list

of terms

after T trials,M is marked as a permanent leaf node. Empirically, without the outlier

detection procedure, the constructed tree would end up with many tiny leaf nodes,

which do not correspond to salient topics and degrade the clustering quality. We have

not specified the best moment to exit and stop the recursive splitting process, but

simply set an upper limit of leaf nodes k. Other strategies can be used to determine

when to exit, such as specifying a score threshold σ and exiting the program when

none of the leaf nodes have scores above σ; σ = 0 means that the recursive splitting

process is not finished until all the leaf nodes become permanent leaf nodes.
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Compared to other criteria for choosing the next node to split, such as those

relying on the self-similarity of each cluster and incurring O(n2) overhead [27], our

method is more efficient. In practice, the binary tree structure that results from

Algorithm 6 often has meaningful hierarchies and leaf clusters. We will evaluate its

performance by clustering quality measures in the experiment section.

5.5 Related Work

NMF can be regarded as both a clustering method and, with certain additional con-

straints, a probabilistic topic modeling method [3]. Both document clustering and

topic modeling can be thought of as some sort of dimension reduction; however,

these two tasks have fundamental differences. This chapter is focused on the cluster-

ing aspect, and now we compare NMF-based clustering to a popular topic modeling

method, latent Dirichlet allocation (LDA) [15].

We start with comparing flat clustering and flat topic modeling. First, LDA

builds a probabilistic model that generates the text corpus, and intends to predict

the probability of new documents, while the goal of NMF-based clustering is to derive

a partitioning that well-organizes an existing text corpus. Second, LDA models each

word as a discrete random variable, thus is not compatible with tf-idf weighting when

forming the term-document matrix. On the contrary, NMF-based clustering finds an

algebraic latent subspace and is able to leverage the benefit of tf-idf weighting which

has proved to be useful in a wide range of tasks such as information retrieval [77].

Now we discuss the difference between hierarchical clustering based on rank-2

NMF and hierarchical LDA (hLDA) [13]. hLDA builds a hierarchy of topics and each

document is generated by sampling from the topics along a path with length L from

the root to a leaf node. On the contrary, hierarchical clustering builds a hierarchy

of documents, and the documents associated with each node are a mixture of two

topics extracted from this node. In practice, hLDA requires all the leaf nodes be on

92



the same level of the tree, and the depth L of the tree is chosen beforehand, while

hierarchical clustering adaptively chooses a node at each splitting step.

In general, both methods have pros and cons: Topic modeling has a probabilistic

interpretation, and clustering approaches are more flexible. In the next section, we

include LDA in our experiments and compare its performance with the performances

of clustering based on NMF and rank-2 NMF. hLDA or other hierarchical probabilistic

models are not considered in the experiments because they represent a quite different

scenario of text modeling.

5.6 Experiments

In this section, we describe our experimental settings and demonstrate both the ef-

ficiency and quality of our proposed algorithm. All the experiments except LDA are

run in Matlab 7.9 (R2009b) with two Intel Xeon X5550 quad-core processors and

24GB memory.

5.6.1 Data Sets

Four text data sets with ground-truth classes are used in our experiments: 1. Reuters-

215781 contains news articles from the Reuters newswire in 1987. We discarded

documents with multiple class labels, and then selected the 20 largest classes. 2. 20

Newsgroups2 contains articles from Usenet newsgroups and has a defined hierarchy

of 3 levels. Unlike previous indexing, we observed that many articles have duplicated

paragraphs due to cross-referencing. We discarded cited paragraphs and signatures.

3. Cora [80] is a collection of research papers in computer science, from which we

extracted the title, abstract, and reference-contexts. Although this data set defines

a topic hierarchy of 3 levels, we observed that some topics, such as “AI – NLP” and

1http://www.daviddlewis.com/resources/testcollections/reuters21578/ (retrieved in
June 2014)

2http://qwone.com/~jason/20Newsgroups/ (retrieved in June 2014)
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Table 16: Data sets used in our experiments.

Data sets
Has Has

Size # terms # docs
# nodes at

label hierarchy each level
Reuters-21578 Y N medium 12,411 7,984 20
20 Newsgroups Y Y medium 36,568 18,221 6/18/20

Cora Y N large 154,134 29,169 70
RCV1-labeled Y Y large 115,679 496,756 4/15/28/39/40

RCV1-full N - large 149,113 764,751 -

Table 17: Timing results of NMF-based clustering.

Data sets r2-nmf-hier nmf-hier nmf-flat

Reuters-21578 4.34 sec 12.8 sec 51.2 sec
20 Newsgroups 18.8 sec 58.4 sec 289 sec

Cora 144 sec 335 sec 0.92 hrs
RCV1-labeled 213 sec 384 sec 1.11 hrs

RCV1-full 419 sec 702 sec 4.48 hrs

“IR – Extraction”, are very related but reside in different subtrees. Thus we ignored

the hierarchy and obtained 70 ground-truth classes as a flat partitioning. 4. RCV1

[68] is a much larger collection of news articles from Reuters. It contains over 800,000

articles in the time period of 1996-1997 and defines a sophisticated topic hierarchy

with 103 labels. We discarded documents with multiple class labels, and then se-

lected the 40 largest classes, named as RCV1-labeled. The full data set, named as

RCV1-full, is also included in our experiments with no ground-truth classes.

We summarize these data sets in Table 16. All the data sets except 20 Newsgroups

have very unbalanced sizes of ground-truth classes. We constructed the normalized-

cut weighted version of term-document matrices as in [110].

5.6.2 Methods for Comparison

The clustering methods in our experiments are named as follows3:

3We also compared our method with the off-the-shelf clustering software CLUTO [49]. In most
cases, our method is faster than CLUTO configured by default, with comparable clustering quality.
When both methods are terminated after 10 iterations, our method costs 104 seconds on RCV1-full
data set while CLUTO costs 398 seconds.
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• r2-nmf-hier: Hierarchical clustering based on rank-2 NMF with the algorithm

proposed in this chapter.

• nmf-hier: Hierarchical clustering based on standard NMF with active-set based

algorithm [53]. In our experiments, multiplicative update rule algorithms [66]

for standard NMF are always slower and give similar quality compared to active-

set-type algorithms, thus are not included in our results.

• nmf-flat: Flat clustering based on standard NMF with block-pivoting based

algorithm [56].

• kmeans-hier: Hierarchical clustering based on standard K-means. We use the

hierarchical clustering workflow described in Algorithm 6; however, the term

distribution associated with each node is given by the centroid vector from the

K-means run that generates this node.

• kmeans-flat: Flat clustering based on standard K-means.

• lda: Flat clustering using the Gibbs sampling algorithm for LDA. We use a

highly-optimized implementation in the software MALLET4 written in Java.

1000 iterations are used by default. LDA is not run for RCV1-labeled and

RCV1-full due to efficiency reasons.

Hierarchical clustering and flat clustering cannot be compared against each other

directly. We evaluate the hierarchy by taking snapshots of the tree as leaf nodes are

generated, and because leaf nodes are non-overlapping, we treat all the leaf nodes in

each snapshot as a flat partitioning. Thus, if the maximum number of leaf nodes is

c, we produce c− 1 flat partitionings forming a hierarchy.

For each method, we perform 20 runs on medium-scale data sets and 5 runs on

large-scale data sets starting from random initializations. Average measurements are

4http://mallet.cs.umass.edu/ (retrieved in June 2014)
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reported. Note that for flat clustering methods, each run consists of c − 1 separate

executions with the number of clusters set to 2, 3, · · · , c.

The maximum number of leaf nodes c is set to be the number of ground-truth

classes at the deepest level for labeled data sets (see Table 16); and we set c = 60 for

RCV1-full. The hierarchical clustering workflow (Algorithm 6) runs with parameters

β = 9, T = 3 (for r2-nmf-hier and nmf-hier) or 5 (for kmeans-hier). The Matlab

kmeans function has a batch-update phase and a more time-consuming online-update

phase. We rewrote this function using BLAS3 operations and boosted its efficiency

substantially5. We use both phases for medium-scale data sets and only the batch-

update phase for large-scale data sets. For NMF, we use the projected gradient as

the stopping criterion and ε = 10−4 where a tolerance parameter ε is defined in [71].

All the methods are implemented with multi-threading.

5.6.3 Evaluation Measures

Each of the six methods described above can be regarded as both a clustering method

and a topic modeling method. We use the following two measures to evaluate their

quality:

1. Normalized mutual information (NMI): This is a measure of the similarity

between two flat partitionings. It is used to evaluate clustering quality and is only

applicable to data sets with ground-truth classes. It is particularly useful when the

number of generated clusters is different from that of ground-truth classes and can

be used to determine the optimal number of clusters. More details can be found in

[77]. For data sets with defined hierarchy, we compute NMI between a generated

partitioning and the ground-truth classes at each level of the tree; if the tree has

depth L, then we compute L measures corresponding to each level. For hierarchical

clustering following Algorithm 6, we treat all the outliers as one separate cluster for

5http://www.cc.gatech.edu/~dkuang3/software/kmeans3.html (retrieved in June 2014)
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fair evaluation.

2. Coherence: This is a measure of intra-topic similarity in topic models [81, 3].

Given the top words f1, · · · , fK for a topic, coherence is computed as

coherence =
K∑
i=1

K∑
j=i

(
log

D(fi, fj) + µ

D(fi)

)
, (64)

where D(fi) is the document frequency of fi. D(fi, fj) is the number of documents

that contain both f1 and f2, and µ is a smoothing parameter. We use µ = 1 and

K = 20 [81]. The coherence averaged over all the topics is reported.

5.6.4 Timing Results

Timing results of the six methods are shown in Fig. 19. Hierarchical clustering

based on rank-2 NMF is much faster than flat clustering using NMF or LDA. These

results have verified our complexity analysis in Section 5.2, that flat clustering based

on standard NMF exhibits a superlinear trend while hierarchical clustering based on

rank-2 NMF exhibits a linear trend of running time as k increases. The first two plots

correspond to medium-scale data sets, and r2-nmf-hier only requires about 1/3 the

time needed by nmf-hier. The other three plots correspond to large-scale data sets,

where we use logarithmic scale. K-means with only the batch-update phase also runs

fast; however, their clustering quality is not as good, which will be shown later.

The difference between our proposed algorithm and the original active-set based al-

gorithm for rank-2 NMF is less substantial as the data size increases. The performance

is mainly bounded by the computation of Y TB in Algorithm 5. Because B ∈ Rm×2
+ is

a very long-and-thin matrix, Y TB essentially behaves like a sparse matrix-vector mul-

tiplication, which is a memory-bound operation. However, r2-nmf-hier is still much

faster than all the other methods: On RCV1-full data set, r2-nmf-hier, nmf-hier,

and nmf-flat cost about 7 minutes, 12 minutes, and 4.5 hours, respectively.
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Figure 19: Timing results in seconds.
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Figure 20: NMI on labeled data sets. Scales of y-axis for the same data set are set
equal.
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Figure 21: Coherence using the top 20 words for each topic.
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5.6.5 Clustering Quality

Clustering quality is evaluated on labeled data sets, shown in Fig. 20. The plot for

the Cora data set is omitted for space reasons. For data sets with a defined hierarchy,

ground-truth classes on the first 3 levels are used for evaluation, and those on deeper

levels produce similar results. nmf-hier has identical results with r2-nmf-hier, thus

is not shown here.

r2-nmf-hier is a very competitive method in general. NMF-based methods give

stably good clustering quality using both the flat and hierarchical schemes. Compared

to nmf-flat, we can clearly see the improved NMI values of r2-nmf-hier. Although

kmeans-flat achieves comparable performances on RCV1-labeled, it performs poorly

on other data sets. A general trend is that the improvement in clustering quality by

r2-nmf-hier is more substantial when a deeper level of the defined hierarchy is used

for evaluation, which correspond to more elaborated ground-truth classes.

We note that if NMI values are used for selecting the best number of clusters for a

data set, r2-nmf-hier and nmf-flat frequently give different numbers (see the last

two plots in Fig. 20). Thus they tend to interpret a data set in different ways. We

also note that although kmeans-hier uses the same hierarchical clustering workflow

as r2-nmf-hier, it performs poorly in most cases.

5.6.6 Semantic Quality of Topics

The coherence results for all the data sets are shown in Fig. 21. None of these methods

have consistent performances when the number of clusters k is small; when k is large,

r2-nmf-hier gives the highest coherence value in 3 out of 5 cases. On RCV1 data set,

r2-nmf-hier is a stably good method in terms of topic coherence, while nmf-flat

and kmeans-hier have comparable performances sometimes but perform very poorly

otherwise. More study is needed to understand the benefits of each method in terms

of topic coherence.

101



5.7 Discussion

Hierarchical document clustering has a rich history in data analysis and management

[107]. In this chapter, we considered the divisive approach, which splits a data set in

the top-down fashion and offers a global view of the data set compared to agglom-

erative clustering methods. In divisive hierarchical clustering, a clustering method is

needed at each splitting step. However, it is not as easy as recursively applying any

flat clustering method available to generate a tree structure. As can be seen in our

experiments, the widely-used K-means clustering, when applied to hierarchical clus-

tering, frequently generates very unbalanced clusters that lead to a poor organization

of a corpus.

A good combination of a flat clustering method and a way to determine the

next node to split is important for efficient and practical hierarchical clustering. In

this chapter, we proposed such a combination and showed its promising performance

compared to other clustering methods such as NMF and LDA. For the efficiency of

each splitting step, we designed a fast active-set-type algorithm for rank-2 NMF. Our

algorithm has redundant computation but has continuous memory access, allowing

better use of the cache; thus, it is faster than existing active-set-type algorithms. We

also proposed a scoring method in the hierarchical clustering workflow, which provides

a way to evaluate the potential of each leaf node to be split into two well-separated

clusters and can be used to determine when to stop splitting. Outlier detection is

also included in the overall workflow. Our method generated a binary tree structure

of the full RCV1 data set in 7 minutes on a shared-memory machine with 2 quad-core

CPUs, compared to standard NMF which costs 4.5 hours.

We conclude by listing several shortcomings of the current method for further

research. First, after a node is split, each document has a hard assignment to one of

the two generated leaf nodes. It would be more flexible to enable soft assignments.

Second, the performance of our proposed algorithm for rank-2 NMF is bounded by
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that of sparse matrix-vector multiplication (SpMV) when the data size is very large.

The efficiency of our algorithm can be further boosted by using a more efficient SpMV

implementation or moving to a distributed platform. Currently, our method can be

used to build a hierarchical organization of documents efficiently on a single machine,

possibly as part of a large machine learning infrastructure with many machines.
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CHAPTER VI

NMF FOR LARGE-SCALE TOPIC MODELING

6.1 NMF-Based Clustering for Topic Modeling

Nowadays text data have overwhelming volumes and are ubiquitous thanks to the

explosion of the Internet. Long articles in user-contributed encyclopedia and short

text snippets such as tweets are two examples: The current English Wikipedia con-

tains about 4.5 million articles1; Twitter users worldwide generate over 400 million

tweets every single day. Useful information can be extracted from these online texts.

For example, decision makers and researchers interested in the area of sustainability

would learn how energy technology and policies receive public attention and affect

daily lives from tweets. Analyzing the huge and increasing volume of online text data

efficiently has become an important data analytics problem.

We focus on unsupervised methods for analyzing text data in this chapter. Many

online texts have no label information; other documents such as Wikipedia articles are

often tagged with multiple labels from a user-generated taxonomy thus do not fit into

traditional supervised learning framework well. Therefore, unsupervised clustering

and topic modeling methods have become important tools for browsing and organizing

a large text collection [14]. The goal of these unsupervised methods is to find a

number of document clusters, say k clusters, where each cluster contains semantically

connected documents and forms a coherent topic. Among those, latent Dirichlet

allocation (LDA) is a prominent and widely-used method so far [15]. The key idea

in LDA is that each document is modeled as a mixture of k topics and each topic

is represented by a distribution over words. An algorithm for LDA searches for the

1http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia (retrieved in March 2014)
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k topics and the topic mixtures that maximize the likelihood of a given document

collection. However, most algorithms for LDA are expensive and cannot scale to

millions of documents such as those on Wikipedia or Twitter [109].

Though topic modeling methods such as LDA are based on probabilistic models,

they can be explained in a matrix approximation framework. Let R+ denote the set of

nonnegative real numbers. In clustering and topic modeling, text data are commonly

represented as a term-document matrix X ∈ Rm×n
+ [77]. The m rows of X correspond

to a vocabulary of m terms, and the n columns correspond to n documents. Consider

a factorization of X:

X = WH, (65)

where W ∈ Rm×k
+ and H ∈ Rk×n

+ . Note that k is the number of topics we want to find,

and k << n. Eq. (65) means that each of the n documents, say the i-th document

ai, can be reconstructed by a linear combination of the k columns of W , where the k

linear coefficients are contained in the i-th column of H. Suppose the given matrix

X further satisfies ‖xi‖1 = 1 (1 ≤ i ≤ n), i.e. xi represents the distribution over

words in the i-th document. If we normalize W so that each column of W sums to

one, then clearly each column of H would sum to one. In this case, we can interpret

the columns of W as distributions over words for the k topics and the columns of

H as distributions over the k topics. To obtain a hard clustering result for the i-

th document, we can select the topic corresponding to the largest entry in the i-th

column of H. This way, clustering and topic modeling can be unified in the same

model where W shows the topics and H shows the clusters.

In reality, X = WH can only be approximately satisfied, that is,

X ≈ WH. (66)

Though (66) loses probabilistic interpretation of the generative process of topics and

documents, many studies have shown that it is also very useful for clustering and

105



topic modeling [4, 3, 62]. Note that X,W,H are all nonnegative matrices and (66) is

the formulation of NMF. We typically normalize both the columns of A and W and

scale the rows of H accordingly in the case of text data. When each column of W is

interpreted as a vector of “importance” values for the m terms and viewed as a topic,

each column of H can be interpreted as topic mixture coefficients that approximately

reconstruct the corresponding document though it does not sum to one. Therefore, in

the framework of NMF, clustering and topic modeling can be viewed as two different

names of the same analytics problem.

NMF as a topic modeling method has several advantages over LDA. First, without

the need for a probabilistic interpretation, we can provide a term-document matrix

with tf-idf weighting as an input to NMF instead of raw frequencies of word oc-

currences, just as in most text classification methods [77]. Tf-idf weighting has been

widely shown to improve classification or clustering accuracy. Second, numerous algo-

rithms have been proposed to efficiently compute the solutions of NMF [71, 53, 57, 21],

making it desirable to apply NMF for web-scale clustering and topic modeling. The

hierarchical clustering algorithm based on rank-2 NMF proposed in Chapter 5, which

we call HierNMF2, is much more efficient than previous NMF-based clustering meth-

ods, generating 60 leaf nodes on the 800K RCV1 data set [68] in minutes. More

importantly, HierNMF2 proceeds by carefully determining which node in the hier-

archy should be split further and which should not, and its clustering quality often

retains or even exceeds that of the standard NMF.

However, as we discussed in Section 5.7, one major bottleneck of HierNMF2,

which is also a common bottleneck in many other machine learning applications, is

the multiplication a large sparse matrix with a tall-and-skinny dense matrix (SpMM).

Fig. 22 shows the timing of various steps of the entire workflow of HierNMF2 on the

800K RCV1 and 4.5M Wikipedia articles data sets. SpMM costs 67% and 86% of the

total runtime for these two data sets respectively.
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Figure 22: Timing of the major algorithmic steps in NMF-based hierarchical clus-
tering shown in different colors. The legends are: SpMM – Sparse-dense matrix
multiplication, where the dense matrix has two columns; memcpy – Memory copy
for extracting a submatrix of the term-document matrix for each node in the hier-
archy; opt-act – Searching for the optimal active set in active-set-type algorithms
(refer to Section 5.2); misc – Other algorithmic steps altogether. “Previous NMF
algorithms” refer to active-set based algorithms [53, 56, 57]. The Rank-2 NMF algo-
rithm greatly reduced the cost of opt-act, leaving SpMM as the major bottleneck.

In data analytics where a sparse data matrix is involved as in term-document

matrices, user-by-item rating matrices, and graph adjacency matrices, it often has

an irregular sparsity structure and is most commonly stored in a generic format such

as the Compressed Sparse Row format. However, existing numerical libraries that
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implement SpMM are often tuned towards other applications such as structural me-

chanics, and thus cannot exploit the full computing capability for machine learning

applications. In this chapter, we accelerate SpMM on the graphics processing units

(GPU), especially for a dense matrix with two columns for further increasing the

efficiency of HierNMF2, and propose a cache blocking strategy that can take advan-

tage of memory locality and increase memory throughput. The sparse matrix such

as a term-document matrix representing large-scale text data is often larger than

the global memory of GPUs. Our routine is an out-of-core implementation and can

stream the sparse matrix onto the GPUs for computation. To the best of our knowl-

edge, this is the first out-of-core SpMM routine on the GPUs for sparse matrices with

an irregular sparsity structure. Therefore, we expect that our work has a broader

impact on the efficiency of many data analytics problems as the sizes of sparse data

matrices are steadily growing.

In addition, the hierarchy generated by HierNMF2 does not fit well into a flat

topic modeling [15] or hierarchical topic modeling [13] framework. We will introduce

our way to flatten a hierarchy of clusters in order to produce both hierarchical clusters

as well as flat clusters and topics. We will show that our overall framework for flat

clustering and topic modeling is orders of magnitude faster than existing methods

such as the standard NMF and LDA.

The rest of this chapter is organized as follows. In Section 6.2, we conduct an

overview of the SpMM routine in machine learning applications. We introduce the

challenges in achieving high throughput of the SpMM kernel on GPUs in Section 6.3.

We present a performance model to analyze the SpMM kernel in Section 6.4. We

describe our implementation of SpMM in Section 6.5. We show our benchmarking

results on a variety of sparse matrices originating from machine learning applications

in Section 6.6. Finally, we incorporate our SpMM routine into a C++ software for

HierNMF2 and run large-scale topic modeling experiments in Section 6.7.
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6.2 SpMM in Machine Learning Applications

Sparse matrix is a common form of data representation in machine learning. In text

analysis, a collection of documents can be represented as a term-document matrix

where rows correspond to words, columns correspond to documents, and each entry

is the raw or weighted frequency of a word in a document. In a movie recommenda-

tion problem, we often use a sparse matrix to represent the movie ratings where rows

correspond to users, columns correspond to movies, and each nonzero entry is one

observed rating. In graph analytics, the adjacency matrix that represent the graph

edges between nodes is often sparse in a real-world setting such as social networks.

These matrices are all inherently sparse, and a dedicated sparse format uses consid-

erably less space in storing them and is computationally more efficient than storing

them as an ordinary dense matrix.

In numerical computing and machine learning problems that involve a sparse data

matrix, a common operation is to multiply the sparse matrix A with a dense vector

x (SpMV), or with a tall-and-skinny dense matrix X (SpMM). For example, SpMV

is a building block and the most expensive step in iterative eigensolvers [6]; SpMM is

accountable for the majority of computation in alternating least squares algorithms

for collaborative filtering [44] and alternating nonnegative least squares algorithms for

nonnegative matrix factorization [55]. Computing the pairwise Euclidean distances

between a large set of sparse vectors and a small set of dense vectors, such as centroids

in K-means clustering, can also be reduced to an SpMM operation [83]. Recent graph

mining frameworks such as PEGASUS [48], GraphChi [63], and TurboGraph [39] rely

on the SpMV routine for many tasks such as finding connected components and mod-

ules. As the size of data sets becomes increasingly larger nowadays, SpMV/SpMM is

often a bottleneck in machine learning applications, and it is important to have an

efficient implementation of SpMV/SpMM for the overall efficiency of an algorithm.

Following the convention in the high-performance computing community, we will
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call SpMV/SpMM as kernels. There was plenty of research in accelerating these ker-

nels, especially for SpMV [103, 108, 104, 72]. However, most of previous research was

focused on their use in other science and engineering disciplines that require solving

large sparse linear systems, for example, in finite element methods in structural me-

chanics. The sparse matrices in those disciplines often have special sparsity structures

such as small dense blocks in finite element methods. However, the sparse matrices

that represent data in data-intensive applications often carry different characteristics:

Their sparsity structures are often irregular, and therefore the kernels presented in

previous research are difficult to achieve the highest possible throughput on such ma-

trices [20]. Existing off-the-shelf numerical libraries such as MATLAB and Intel Math

Kernel Library 2 (MKL) are not tuned towards data-intensive applications either.

In the sections to follow, we present our approach to building an efficient SpMM

kernel for sparse matrices with an irregular sparsity structure. We view SpMV as a

special case of SpMM. We accelerate SpMM on the graphic processing units (GPU)

because GPU is a suitable platform for operations requiring high memory bandwidth

including SpMM. The basic idea is to build a performance model for the memory

throughput of SpMM and determine when to use a cache blocking strategy. Dis-

tributed SpMM kernel is also very important for large sparse matrices such as the

adjacency matrix for extreme-scale graphs; however, our aim is to accelerate SpMM

on a single shared-memory machine which is a required component in any distributed

implementation.

6.3 The SpMM Kernel and Related Work

We follow previous work [7, 20] and define the SpMM kernel as Y ← A · X + Y ,

where A ∈ Rm×n is a large sparse matrix and X ∈ Rn×k is a tall-and-skinny dense

matrix in the row-major order to improve the locality of memory access. The number

2https://software.intel.com/en-us/intel-mkl (retrieved in June 2014)
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of floating point operations (flops) of SpMM is 2 · Z · k, where Z is the number of

nonzero entries in A. The flop:byte ratio in single precision is 2k flops per 4 bytes

if only the memory read for the sparse matrix entries is taken into account. Thus,

SpMV and SpMM with a few columns are considered as a memory bandwidth bound

operation. A tremendous number of techniques were proposed to accelerate SpMM

on various hardware platforms. Since the graphic processing unit (GPU) has a much

larger peak bandwidth than the host memory, SpMV/SpMM kernels on GPUs have

received great attention in recent years [7, 20].

6.3.1 Our Assumption

Most of existing work on the SpMV/SpMM kernel on GPUs made several implicit

assumptions: (1) The sparse matrix A is small enough to fit into the GPU on-chip

memory called the global memory; (2) A has certain substructures such as small

dense blocks that can be exploited for higher throughput. Therefore, it is considered

useful to reorder the rows and columns of A for better memory locality, and a variety

of storage formats for sparse matrices were proposed in previous work to adapt to

specific sparsity structures and increase thread and bandwidth utilization [7, 20]. In

addition, the size of A was not a factor in the optimization of these kernels; that is,

a large matrix A was not broken into smaller chunks for the purpose of SpMM.

However, we pose the following assumptions for data-intensive applications in

this paper, which has a clear distinction from the previous assumptions: (1) A is

arbitrarily large and can be larger than the size of GPU global memory; (2) A has

an irregular sparsity structure without row and column reordering. Therefore, we

consider it expensive to reorder the rows and columns of A. Most of the special

formats proposed earlier will not work well either since they would enforce far more

zero-paddings for a matrix with an irregular sparsity structure [20].

Therefore, in this chapter, we do not consider reordering the rows and columns of
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A, but instead analyze the performance of reading and writing the dense matrices X

and Y . Previous work has focused on improving the sparse storage format for A to

achieve higher memory throughput. On the contrary, we assume a fixed sparse format

for A and improve the memory throughput of accessingX and Y . Our implementation

is an optimized routine for SpMM for a given sparse format. We focus on analyzing

the in-core performance where A is assumed to reside on the global memory; however,

the implementation supports out-of-core computation that streams chunks of A onto

the GPU when A is larger than the size of global memory.

In our performance model, we consider a generic sparse format, where one floating

point number and at least one integer index are needed for storing each nonzero in A.

Thus, the memory space required to store A is 4 · 2Z bytes using single precision and

32-bit integer indices. Compressed Sparse Row (CSR) is a widely-used and generic

format for storing a sparse matrix and the default format in many software packages

such as MATLAB and GraphLab [74]. In the CSR format, the nonzeros in each

row are stored contiguously. Thus, it is a natural choice for many applications, for

example in graph analytics where the adjacency list of a node is contained in one row.

We use the CSR format as a running example; however, our performance model is

not restricted to any specific sparse format.

6.3.2 Cache Blocking for SpMM

We focus on cache reuse of the dense matrix X to improve the memory throughput.

Consider the operations associated with a nonzero A[i,j], the (i, j)-th entry of A,

on the GPU:

Y[i,:] += A[i,j] * X[j,:]. (67)

Generic storage formats such as CSR store at least one matrix index, which we assume

is the column index, along with each nonzero entry. The specific row X[j,:] in the

operation (67) is read from the global memory only when the program knows the
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column index j that is associated with A[i,j]. When an SpMM kernel goes through

all the nonzeros row by row and executes (67), it needs one memory read for each

nonzero entry in A along with its column index, one read and one write for each row

Y[i,:], and multiple reads for each row X[j,:] (once for each nonzero in the j-th

column of A). Thus, we often cache the row X[j,:] so that later accesses to this

row of X can reuse X[j,:] in the cache rather than loading it from global memory.

When X is large and cannot fit into the cache, we can divide the columns of A into

several blocks, called column blocking, such that each corresponding row block of X

can fit into the cache in order to have the fewest cache misses.

Cache blocking is a standard technique for implementing dense matrix computa-

tion [101]. The idea of applying cache blocking for SpMV kernels was also explored on

the CPU to reduce cache misses [45]; however, its effect on the actual timing results

was not as dramatic as the case for dense matrices. The same idea did not prove

effective on the GPU at all in previous work where the focus was placed on sparse

matrices with small dense blocks [20].

We will, on the contrary, show that cache blocking impacts the overall efficiency of

SpMM kernels on the GPU under our assumptions above, where reordering the rows

and columns is not considered for a sparse matrix arising from data-intensive applica-

tions. The essence of this chapter is to show that while the memory-bandwidth-bound

nature of SpMM usually refers to the memory reads for A, the memory reads for X

can impose additional bandwidth requirement and need to be accounted for in the

performance analysis. Moreover, contrary to previous SpMM kernels, the size of A

becomes a factor in the optimization of SpMM; that is, a large matrix A can be

broken into smaller chunks to facilitate cache reuse in SpMM.
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Table 18: Symbols and their units in the performance model for SpMM.

Symbol Description Unit

m Number of rows of A -
n Number of columns of A -
k Number of columns of X and Y -
Z Number of nonzeros of A -
ρA Density of nonzeros in A -
T Total time for SpMM seconds
Tpci Time for host/device PCI-e transfer seconds
Tcomp Time for computation on GPU cores seconds
Tmem Time for global memory operations seconds
Tglobal Time for global memory operations using no cache seconds
Ttex Time for global memory operations using texture cache seconds
Tshr1, Tshr2 Time for global memory operations using shared memory seconds
TL2 Time for global memory operations using L2 cache seconds
Tfinal Time for global memory operations in our SpMM routine seconds
βpci,h2d Host-to-device PCI-e bandwidth (pinned) seconds
βpci,d2h Device-to-host PCI-e bandwidth (pinned) seconds
βpci Average host/device PCI-e bandwidth (pinned) seconds
βmem Peak global memory bandwidth bytes/second
βcsr Achievable memory bandwidth for A bytes/second
rb Number of row blocks -
cb Number of column blocks -
NSM Number of multiprocessors (SMs) -
Ltex Texture cache size / SM bytes
Lshr Shared memory / threadblock bytes
LL2 L2 cache size bytes
Nthread Maximum number of active threads / SM -
Nkernel Actual number of threads / threadblock -
Nvector Number of threads assigned to each row of A -
O Maximum number of active threadblocks -

6.4 Performance Analysis for SpMM

In this section, we build a performance model to analyze the SpMM kernel and guide

our implementation. The goal of our model is to reveal when cache blocking should

be used, which type of cache on the GPU should be used for caching in SpMM, and

whether changing the sparse storage format helps with the performance. The symbols

that will be used in the performance model are listed in Table 18.

Without loss of generality, we focus our discussion on single-precision floating

point numbers and 32-bit integers as matrix indices. GPUs are connected to the
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CPU host through a Peripheral Component Interconnect Express (PCI-e) bus. A

typical GPU kernel works by first transferring the input data from the host to a

GPU, computing in the GPU cores, and tranferring the results back to the host. For

an out-of-core SpMM routine, the lower bound of the total time T can be written as:

T ≥ max{Tpci, Tcomp, Tmem}, (68)

Tpci is generally the dominant part because the peak PCI-e bandwidth βpci is much

less than the peak global memory bandwidth and the peak achievable computing

power. Hence, we can use Tpci as a tight bound for the total time of out-of-core

SpMM unless k is very large (we will quantify the upper bound of k such that Tpci

dominates the performance later in this section):

T ≥ Tpci = 4 ·
(

2Z + nk

βpci,h2d

+
mk

βpci,d2h

)
. (69)

However, we would like to optimize both the out-of-core and the in-core performances.

To simplify the setting, we will ignore the host/device transfer and focus on the in-

core section. It might be natural to believe that SpMM with a small k is mem-

ory bandwidth bound and SpMM with a large k above some threshold can become

compute-bound. However, as it turns out, SpMM with a large k is still memory

bandwidth bounded; and contrary to common understanding, we will show that in

the case with a small k, the memory bandwidth bound sometimes can be attributed

to reading the dense matrix rather than the sparse matrix. In the following text, we

focus on analyzing the memory throughput of in-core SpMM.

We formulate our problem as follows: Given an m × n sparse matrix A with Z

nonzeros, n× k dense matrix X, and assuming the storage format for A is fixed, we

would like to estimate the time for accessing global memory for SpMM. Some rele-

vant machine-specific parameters for the K20x GPU we used in experiments are listed

in Table 19. The peak global memory bandwidth was measured by bandwidthTest in

the CUDA SDK. We employ several additional kernel-specific symbols: rb, cb, βcsr, Nkernel, O
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Table 19: Specifications for NVIDIA K20x GPU.

Global memory 5760 MB
PCI-e bandwidth (pinned, H2D) 6.08 GB/s
PCI-e bandwidth (pinned, D2H) 6.53 GB/s
Peak global memory bandwidth 170 GB/s
Number of multiprocessors (SMs) 14
L2 cache 1.5 MB
Texture cache / SM ≤ 48 KB
Shared memory / threadblock 48 KB
Maximum number of threads / SM 2048

(refer to Table 18). The important parameters are rb and cb, the numbers of row blocks

and column blocks of A that characterize the cache blocking scheme. βcsr denotes the

achievable global memory bandwidth for the memory read of A, where A can be in

the CSR format or other formats. The occupancy O can be calculated as:

O =
Nthread

Nkernel

·NSM. (70)

The key assumption in our performance model is similar to that for dense matrix

multiplication: The large sparse matrix A is arranged as a rb × cb grid of small

matrices in order to fit the reusable dense matrices into the cache. In a SpMM kernel

on GPU, the memory reads of X can be serviced from the global memory directly;

alternatively, we can exploit one of the caches available on the GPU including the

texture cache, the shared memory, and L2 cache. We will introduce their functionality

for each of them in our discussion below. We consider three scenarios separately –

no cache reuse, using texture cache, and using shared memory – where L2 cache is

not considered because it cannot be controlled by the programmer and the NVIDIA

whitepaper3 did not provide sufficient information for L2 cache.

(1) Reading X directly from global memory. In this case, no caching is enabled,

and we need to load a row of X from global memory for each nonzero encountered in

3http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.

pdf (retrieved in June 2014)
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A. The time for global memory traffic is:

Tglobal = 4

(
2Z

βcsr

+
Z · k
βmem

+
mk

βmem

)
. (71)

In this expression, the three terms correspond to the time for memory read of A,

memory read of X, and memory write of Y , respectively. Changing the sparse storage

format would help with the performance only when the first term is the dominant

part of Tglobal, that is,

2Z

βcsr

>>
Z · k
βmem

+
mk

βmem

. (72)

Under a mild assumption that Z > m, (72) becomes

k << 2 · Z
m
· βmem

βcsr

(73)

Hence, changing the sparse format only impacts the in-core performance for SpMV

and SpMM with a small number of dense columns, and is especially beneficial when

the average number of nonzeros per row is small, i.e. when A is sparser. The achiev-

able bandwidth βcsr for reading A is larger for a more efficient sparse format and

is constrained by βcsr ≤ βmem. When A is fixed, it makes more sense to design a

“better” sparse format than designing the “best” sparse format.

Comparing Tglobal with Tpci and using the approximation that βpci,h2d ≈ βpci,d2h ≈

βpci << βmem, and due to βcsr ≤ βmem, we derive the condition under which Tpci

dominates the out-of-core performance:

k <<

2
βpci

1
βmem

− (m+n)/Z
βpci

(74)

(2) Reading X from texture cache. Texture memory on the GPU has much higher

bandwidth than the global memory and can be used for caching. Each multiprocessor

(SM) has its own working set of texture memory, and we treat it as a dedicated on-chip

cache for each SM. The time for global memory traffic when using texture memory

for caching X is:

Ttex = 4

(
2Z

βcsr

+
NSM · nk
βmem

+
cb ·mk
βmem

)
. (75)
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The second term in (75) accounts for memory read of X by all the SMs. Theoretically,

X needs to be read only once for each SM since the data in texture cache survive

between different threadblocks. The third term in (75) accounts for memory write

of Y . Because we can only read but not write the texture memory, all accesses of Y

must be serviced from global memory. Y need to be written for cb times, once for

each column block.

We need to minimize cb for an optimistic estimate of Ttex. The expression for Ttex

assumes no cache misses once a block of X is loaded into the texture cache, thus the

size of each block of X satisfies

4(n/cb)k ≤ Ltex. (76)

We argue that in order to have no cache misses, 4(n/cb)k cannot be larger than twice

the texture cache size 2Ltex. For a sparse matrix with an irregular sparsity structure,

we assume a uniform distribution of nonzeros. Hence, when the size of each block of

X is twice the texture cache size, we have 100% cache misses and the performance

can degrade to reading one row of X from global memory for each nonzero of A.

Therefore, we calculate cb as:

cb =

⌈
2kn

Ltex

⌉
. (77)

Comparing Ttex with Tglobal, in order to benefit from caching in texture memory,

we need to have

NSMn+ cbm ≤ Z +m. (78)

For a large sparse matrix A, we can take the dominant term for both sides of (78)

and drop the constant NSM and reach:

2kn ·m
Ltex

≤ Z. (79)

Thus we obtain a requirement for ρA, the density of A:

ρA =
Z

mn
≥ 2k

Ltex

. (80)
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This condition implies that we can benefit from texture caching for A sufficiently

dense above a threshold. For a fixed matrix A, this threshold goes up and texture

caching will become not favorable as k increases.

(3) Reading X from shared memory. Each SM on the GPU has a built-in fast

memory shared by all the threads in a threadblock, called shared memory, which is

frequently used for caching. Unlike texture cache which is user transparent, data in

shared memory needs to be loaded explicitly from global memory for each individual

threadblock.

We discuss two possible implementations using shared memory. The first one uses

shared memory only for caching X, and the time for global memory traffic is:

Tshr1 = 4

(
2Z

βcsr

+
O · nk
βmem

+
cb ·mk
βmem

)
. (81)

The second term in (81) accounts for memory read of X by all the threadblocks, and

the third term accounts for memory write of Y similar to (75). Unlike the texture

cache, “cache miss” is not automatically handled by the hardware of shared memory.

Thus, we only consider the case of no cache misses, and the size of each block of X

satisfies

4(n/cb)k ≤ Lshr. (82)

Alternatively, we can simultaneously cache X and Y in the shared memory to

reduce the global memory traffic for Y . Thus in a second possible implementation,

each threadblock proceeds through all the columns for each row block before getting

to the next row block. In this case, X needs to be read for rb times instead of O

times, and the performance gain due to column blocking is reduced. The time for

global memory traffic is:

Tshr2 = 4

(
2Z

βcsr

+
rb · nk
βmem

+
mk

βmem

)
, (83)

where rb is subject to

4(m/rb + n/cb)k ≤ Lshr. (84)
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Table 20: Text data matrices for benchmarking after preprocessing. ρ denotes the
density of each matrix.

m n Z ρ
RCV1 149,113 764,751 59,851,107 5.2× 10−4

Wikipedia 2,361,566 4,126,013 468,558,693 4.8× 10−5

We set cb =∞ and relax the constraint on rb to

4(m/rb)k ≤ Lshr. (85)

Comparing Tshr1, Tshr2 with Tglobal, in order to benefit from caching in shared

memory, we need to have

On+ cbm ≤ Z +m, (86)

rbn+m ≤ Z +m, (87)

for the two implementations we discussed respectively. For a large sparse matrix A,

we take the dominant terms and drop the constants and reach the same condition for

both the implementations:

4mnk

Lshr

≤ Z. (88)

The condition on the density of A in order to benefit from shared memory is:

ρA =
Z

mn
≥ 4k

Lshr

, (89)

which implies that for a fixed A, it is more difficult to have efficiency benefit from

shared memory than from texture memory for caching, given that the sizes of shared

memory per threadblock and texture cache per SM are similar. The reason is that

data need to be explicitly loaded into shared memory and the hardware is not designed

to handle “cache miss” in shared memory, and thus the lower bound of ρA for shared

memory is smaller than that for texture cache by a factor of two.

Using the machine characteristics in Table 19, our performance model concludes

that the smallest density of A such as to make caching worthwhile is ρA = 4×10−5 ·k
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Figure 23: Theoretical performance bounds associated with no caching, texture shar-
ing, and shared memory caching (with two possible implementations in Section 6.4).

for texture cache and ρA = 8 × 10−5 · k for using shared memory as cache. We test

our model on two real-world text data sets, whose statistics is listed in Table 20. The

occupancy of threadblocks O is 224, and we measure the empirical throughtput of

121



reading a CSR sparse matrix by replacing the memory read of X and Y with dummy

operations, which yields βcsr = 21.21GB/s. The achievable memory bandwidth using

the CSR format is much smaller than the peak global memory bandwidth (170 GB/s)

because the rows are stored contiguously in the CSR format and thus global memory

access is not fully coalesced.

We plot the performance bounds determined by global memory traffic as a function

of k in Fig. 23. The theoretical performances when using texture cache and shared

memory for caching could be slightly larger than that with no caching when k is small,

and degrade dramatically when k is large. The asymptotic condition on ρA suggests

that for the RCV1 data set, the upper limit of k is 13 in order to have efficient texture

caching and is 6 in order to have efficient shared memory caching; for the Wikipedia

data set, no caching is always more efficient. This result is consistent with visual

inspection on Fig. 23.

These results suggest that SpMM is generally a memory bandwidth bound oper-

ation on the GPU, and using texture memory or shared memory for caching will not

bring extra values for its overall performance. In fact, caching via texture memory

and shared memory incurs additional overhead. Typically, the sizes of each texture

cache and shared memory are small and therefore the number of column blocks cb

would be large when caching is enabled. For example, using texture cache, the aver-

age number of nonzeros per row in each column block is ρL/(2k), which equals to 13

for RCV1 data and 1 for Wikipedia data. These numbers are too small to effectively

utilize all the concurrent threads on the GPU. If multiple column blocks of A were

processed concurrently, much overhead would be incurred for atomic add operations

to accumulate the partial sums associated with each column block. We tested caching

via texture memory for SpMM, and its performance agreed with our reasoning above,

degrading quickly when cb increases.

For out-of-core performance, we determine the upper bound of k such that the
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time for host/device transfer dominates based on (74). For both the text data sets,

this upper bound is about 90.

Note that we did not consider caching the sparse matrix which would be a better

choice for a very large value of k. This is beyond the scope of this chapter since

we put our emphasis on SpMM with a tall-and-skinny dense matrix X. It will an

interesting question to find the upper limit of columns in X such that no caching of

A is perferable over explicit caching of A and/or replacing A with a dense matrix.

We can still exploit the much larger L2 cache for cache blocking. In the next

section, we implemented our SpMM routine, and estimate the performance bound

taking L2 cache into account as well as the upper limit of k where cache blocking is

preferable to no caching.

6.5 Implementation

We describe our implementation of an out-of-core routine for SpMM on the GPU.

We store the sparse matrix in the CSR format, and when column blocking is used for

better L2 cache performance, we store the entire matrix in consecutive submatrices

each representing a column block in the CSR format. We wrote our routine based

on the open-source package CUSP4 by adding the functionality of column blocking,

constructing dense matrices in the row-major order, and using CUDA streams. We

also performed basic code optimization such as loop unrolling.

To cover the latency of host/device transfer and make our routine applicable to

sparse matrices larger than the global memory size of the GPU, we break up the

sparse matrix into rb large chunks of rows, and use one CUDA stream to compute

the matrix product of one row chunk and the dense matrix X. The CUDA streams

run concurrently and are independent with each other. We pre-allocate M/rb bytes

of memory for each CUDA stream, where M is the size of available global memory in

4http://cusplibrary.github.io/ (retrieved in June 2014)
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bytes. One iteration in each CUDA stream consists of three steps: 1. streaming the

largest number of consecutive rows of A that the preallocated memory can hold to the

GPU; 2. invoking the SpMM kernel; 3. streaming the result matrix Y corresponding

to the rows of A in this iteration back to the host. It turns out that the value of rb

is not very influential for the wall-clock performance. If there are multiple column

blocks, each stream processes the column blocks sequentially to avoid atomic adds

for the partial sums.

We can perform column blocking on A to leverage the L2 cache for reusing the

memory of X. The L2 cache is built on top of the global memory and shared by all

the SMs. All the memory reads of A and X first check the L2 cache; however, we

expect that the memory for A is not persistent in the L2 cache because there is no

reuse of A and L2 cache employs the least-recently-used (LRU) replacement policy.

Similar to Section 6.4, we develop a performance model to predict the performance

bound of SpMM with L2 cache enabled. The model extends the previous one for

global memory traffic Tglobal (71) when reading X from the global memory directly.

The time for global memory traffic is:

TL2 = 4

(
2Z

βcsr

+
nk

βmem

+
cb ·mk
βmem

)
, (90)

where the size of each block of X satisfies

4(n/cb)k ≤ LL2. (91)

Note that (90) is an optimistic estimate because we assume the entire L2 cache is

dedicated to caching X. As a practical performance model, we further require that

the average number of nonzeros per row in each column block cannot be smaller than

the number of threads assigned to each sparse matrix row in the SpMM kernel, that

is,

bZ/(mcb)c ≥ Nvector. (92)
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In our implementation, Nvector = 32. Otherwise, it is difficult to achieve the maximum

occupancy of threads on the GPU (see Section 6.4), and we resort to the strategy of

no column blocking and reading X from global memory directly. Therefore, our final

model of a practical implementation depends on both Tglobal and TL2:

T =


TL2, if bZ/(mcb)c ≥ Nvector and TL2 < Tglobal;

Tglobal, otherwise.

(93)

Using similar estimation techniques presented in Section 6.4, we can express (93) in

terms of ρA, the density of A:

T =


TL2, if ρA ≥ 4kNvec/LL2;

Tglobal, otherwise.

(94)

6.6 Benchmarking Results

Now we present benchmarking results to evaluate the in-core performance of SpMM

on large sparse matrices arising from machine learning applications, especially text

data. We use a K20x GPU with CUDA 5.5 in the benchmarking.

First, we examine the validity of our practical performance model in Section 6.5.

In Fig. 24, we compare the actual Gflop/s achieved by NVIDIA CUSPARSE5 with

the performance predicted by our model in Gflop/s. Our model closely matches the

actual CUSPARSE performance, especially for a small k. It also leaves some room

for improvement when k is small.

For the RCV1 data, our model (94) suggests column blocking when k <= 6; for

the Wikipedia data, our model suggest no column blocking for any k. Thus, in Fig.

25, we compare the performance given by column blocking via L2 cache with the

CUSPARSE performance for the RCV1 data. We can see that our model correctly

5http://docs.nvidia.com/cuda/cusparse/index.html (retrieved in June 2014) We bench-
mark the csrmm2 routine.
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Figure 24: Performance comparisons between CUSPARSE and our model.

identifies the cases where column blocking would help, namely k = 1, 2, 4. Among

the three cases, k = 2 corresponds to the largest speedup factor (1.33x), which is

important for HierNMF2 based on rank-2 NMF. Note that the performances of our

routine when k = 1 is slightly worse than previously reported results [7]. We can

potentially obtain better performance specifically for SpMV using texture cache as

suggested by Fig. 23.

6.7 Large-Scale Topic Modeling Experiments

In this section, we introduce a new method for large-scale topic modeling, called

HierNMF2-flat, based on the techniques we have studied in previous sections. First,

we apply the accelerated SpMM routine on the GPU to HierNMF2 that generates a

hierarchy of clusters. Then we transform the hierarchical clustering result back to a

flat clustering and flat topic model. The outcome is a scalable topic modeling method

providing better-quality topics and significantly faster than previous methods.

We formulate the problem of flattening a hierarchy of clusters as a nonnegative

least squares (NNLS) problem. Assume that at the end of HierNMF2, we obtain

a hierarchy with k leaf nodes. As explained in Section 5.4, each node N in the

tree is associated with a multinomial term distribution represented as a vector w of

length m. This vector is one of the two columns of W given by the NMF result that
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Figure 25: Performance comparisons between CUSPARSE and our routine on the
RCV1 data set.

generates the node N along with its sibling. Now we treat each vector associated

with a leaf node as a topic and collect all these vectors, forming a term-topic matrix

W ∈ Rm×k. This matrix can be seen as a topic model after each column is normalized.

We compute an approximation of the term-document matrix X using W :

min
H≥0
‖WH −X‖2

F . (95)

This is an NNLS problem and can be solved by many existing algorithms [53, 56, 57,

55]. This NNLS problem needs to be computed only once. Just as in the original

NMF, the matrix H in the solution of (95) can be treated as soft clustering assign-

ments, and we can obtain a hard clustering assignment for the i-th document by

selecting the index associated with the largest element in the i-th column of H.

We evaluated the clustering quality of HierNMF2-flat on text data sets with

ground-truth labels. The basic information of the data sets can be found in Sec-

tion 5.6. Fig. 26 shows the normalized mutual information given by HierNMF2-flat,
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Figure 26: Evaluation of clustering quality of HierNMF2-flat on labeled text data
sets.

Table 21: Timing results of HierNMF2-flat (in seconds).

Matlab (double) C++ (double) C++ (single) GPU (single)
800K RCV1 317.7 117.3 97.4 78.2

4.5M Wikipedia 4704 1667.5 1374.8 763.8

HierNMF2, other widely-used methods. We can see that HierNMF2-flat gives con-

sistently better topic/cluster quality than other methods. One possible reason for its

better performance is that documents that appear to be outliers are removed when

building the hierarchy in HierNMF2, and thus the topics at the leaf nodes are more

meaningful and represent salient topics than those generated by a flat topic modeling

method that takes every document into account.
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We also evaluated the efficiency of HierNMF2-flat on large, unlabeled text data

sets listed in Table 20. Table 21 shows the timing results of an Matlab implementa-

tion, a highly-optimized C++ implementation [59], and a CPU/GPU hybrid imple-

mentation. The Matlab performance is based on double precision since Matlab does

not support single-precision sparse matrices. The C++ implementation includes an

SpMM routine faster than Intel MKL for the k = 2 case, and therefore we did not

show the timing result of HierNMF2-flat implemented with Intel MKL. The GPU

routine for SpMM is based on single precision only.

The HierNMF2-flat algorithm acclerated by our SpMM routine on the GPU

achieves about 5 times the efficiency of the Matlab version. On the RCV1 data

set, compared to standard NMF and latent Dirichlet allocation (LDA) in double pre-

cision, our CPU/GPU hybrid implementation runs more than 200x faster. Therefore,

we can conclude that it is at least 100x faster than standard NMF and LDA in single

precision.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Nonnegative matrix factorization (NMF) is a dimension reduction method with unique

characteristics: The factor matrices it finds are nonnegative. Dimension reduction

and clustering are closely related. In the following formulation of low-rank approxi-

mation

X ≈ WH, (96)

where X ∈ Rm×n
+ ,W ∈ Rm×k

+ , H ∈ Rk×n
+ , each column of H is the k-dimensional

representation of the corresponding column of X. If we can use H to derive an

assignment of the n data points represented as the n columns of X into k groups,

clustering can be viewed as a special type of dimension reduction. One example is

the classical K-means clustering:

min
n∑
i=1

‖xi −wgi‖2
2, (97)

where x1, · · · ,xn are the columns of X, w1, · · · ,wk are the k centroids, and gi = j

when the i-th data point is assigned to the j-th cluster (1 ≤ j ≤ k). Consider

K-means formulated as a dimension reduction problem [54]:

min
H∈{0,1}k×n,1T

kH=1T
n

‖X −WH‖2
F , (98)

where 1k ∈ Rk×1,1n ∈ Rn×1 are column vectors whose elements are all 1’s. In the

formulation (98), columns of W are the cluster centroids, and the single nonzero

element in each column of H indicates the clustering assignment. Following this line

of reasoning, NMF can be viewed as a clustering method that is formulated as a

dimension reduction problem subject to a different set of constraints on W and H:

min
W≥0,H≥0

‖X −WH‖2
F . (99)
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In the formulation (99), columns of W are the cluster representatives, and the largest

element in each column of H indicates the hard clustering assignment.

In this dissertation, we justified our solution to several issues of NMF related to

its correctness and efficiency, and extended NMF to a general and efficient clustering

method. First, we showed the limitation of the original NMF as a clustering method

and proposed Symmetric NMF as a general clustering method that applies to a sim-

ilarity graph. Second, we pointed out a critical flaw in the widely-used consensus

NMF, and proposed a novel measure for cluster validation called Gap of Prediction

Strength along with a new framework for cancer subtype discovery. Third, we devised

a hierarchical clustering strategy that greatly improved the efficiency of NMF-based

clustering. The performance boost came from our new algorithm for rank-2 NMF as

well as a new way to transform a hierarchy of clusters into a flat clusterng result.

Finally, we further accelerated rank-2 NMF by implementing sparse-dense matrix

multiplication on the GPUs, and our performance model showed that we achieved

the best optimal Gflop/s in the rank-2 case (that is, when the dense matrix in the

multiplication has two columns).

For future work, a promising direction will be combining the high clustering quality

of Symmetric NMF and the high efficiency of rank-2 NMF, and accelerating commu-

nity detection on large graphs that runs orders of magnitudes faster and achieving

comparable or even better quality of communities. Since the sizes of online social net-

works have become extremely large with billions of nodes, this direction is potentially

important for the scalability of community detection algorithms.

Another direction is to apply our framework for cancer subtype discovery, which

combines Gap of Prediction Strength and affine NMF, to more cancer studies and

investigate the discovered cancer subtypes. We have seen at the end of Section 4 that

the original NMF and affine NMF drew different conclusions on the number of lung

adenocarcinoma subtypes. New knowledge of cancer biology could be generated by
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analyzing the correlation of the patient groups found by the original NMF and affine

NMF with clinical data. As of this writing, there are 30 different cancers with genomic

data available in the TCGA project. Putting the new framework into practice for a

wider range of cancers would potentially bring better treatment for cancer patients

and have an impact on peoples’ lives.
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