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ABSTRACT 

DIGITAL IMAGE FORENSICS VIA  

META-LEARNING AND FEW-SHOT LEARNING 

 

by 

Yuxi Shi 

 

 

Digital images are a substantial portion of the information conveyed by social media, the 

Internet, and television in our daily life. In recent years, digital images have become not 

only one of the public information carriers, but also a crucial piece of evidence. The 

widespread availability of low-cost, user-friendly, and potent image editing software and 

mobile phone applications facilitates altering images without professional expertise. 

Consequently, safeguarding the originality and integrity of digital images has become a 

difficulty. Forgers commonly use digital image manipulation to transmit misleading 

information. Digital image forensics investigates the irregular patterns that might result 

from image alteration. It is crucial to information security. 

Over the past several years, machine learning techniques have been effectively used 

to identify image forgeries. Convolutional Neural Networks(CNN) are a frequent machine 

learning approach. A standard CNN model could distinguish between original and 

manipulated images. In this dissertation, two CNN models are introduced to recognize 

seam carving and Gaussian filtering. 

Training a conventional CNN model for a new similar image forgery detection task, 

one must start from scratch. Additionally, many types of tampered image data are 

challenging to acquire or simulate. 

Meta-learning is an alternative learning paradigm in which a machine learning 

model gets experience across numerous related tasks and uses this expertise to improve its 



 

 

future learning performance. Few-shot learning is a method for acquiring knowledge from 

few data. It can classify images with as few as one or two examples per class. Inspired by 

meta-learning and few-shot learning, this dissertation proposed a prototypical networks 

model capable of resolving a collection of related image forgery detection problems. 

Unlike traditional CNN models, the proposed prototypical networks model does not need 

to be trained from scratch for a new task. Additionally, it drastically decreases the quantity 

of training images. 
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1 

CHAPTER 1  

GIVING COMPUTERS THE ABILITY TO LEARN FROM DATA 

 

1.1 A Brief History of Neural Networks 

The use of artificial intelligence is nearly ubiquitous in our daily lives. Due to the 

advancement of modern technology, artificial intelligence is playing an ever-increasing 

role in business and industry. Artificial intelligence powers Google's sophisticated search 

engine, Amazon's recommendation system, and Tesla's self-driving technology. There is 

no doubt that artificial intelligence has made significant technological progress in recent 

years. 

It takes scientists a considerable amount of time to build artificial intelligence. In 

his book The Organization of Behavior, published in 1949, Donald Hebb developed a 

model of brain cell interaction. Based on their excitation, Hebb's model summarizes his 

beliefs on how neurons interact with one another. This is the most fundamental theory for 

artificial neural networks in existence today. 

Arthur Lee Samuel of IBM created a checkers-playing computer software in the 

1950s. Even on an IBM commercial computer, memory is quite restricted at the time. 

Samuel utilized the algorithm presently known as alpha-beta pruning. He created a scoring 

function. It recorded the locations of every piece on the board and computed the probability 

of victory for both sides. The computer's next move is determined using a minimax 

strategy, which subsequently developed into the minimax algorithm. The computer 

software optimizes the value of its scoring function, presuming that its opponent would 

attempt to do the same for its next step. 
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In his time, Samuel popularized the terminology "machine learning." His checkers-

playing program was the first self-learning program to be effective. His efforts indicate the 

potential for artificial intelligence to attain human levels. 

Frank Rosenblatt at the Cornell Aeronautical Laboratory developed the perceptron, 

a binary classification method, in 1957. It was initially implemented as software for the 

IBM 704. A five-ton IBM 704 computer could detect images based on its original idea. 

There was just one layer in Rosenblatt's perceptron, but current neural networks include 

millions. The perceptron principle laid the groundwork for contemporary deep learning and 

neural networks. 

 

Figure 1.1  Basic structure of a perceptron. 
 

Following are the major components of a  perceptron: 

1. Input: Here, x is the feature value and n is the total number of features. The input      

vector for a perceptron is [x1,x2,x3...xn]. 

 

2. Weights: Weight must be multiplied by the input feature's value. We assign starting 

values to the weights, which will be updated throughout the training process. The 
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weight vector is denoted as [w1,w2,w3…wn]. 

 

3. Weighted Sum: Multiply each feature's value xn by its corresponding weight wn . 

We denote the weighted sum as ∑ 𝑥𝑖𝑤𝑖 for every i in [1,2,3......n]. 

 

4. Activation Function: Typically, activation function is a nonlinear function used for 

nonlinear regression and nonlinearly separable classification problems. 

 

5. Output: The output of Perceptron is the predicted output depending on the input 

feature. It aids the perceptron in updating the values of the weights. 

 

Multilayer perceptron (MLP) was discovered in the 1960s. With three or more 

layers, major breakthrough is possible. It has a far greater capacity for learning than a single 

perceptron. Multiple perceptrons are arranged in a layer. A minimum of three layers 

comprise an MLP: an input layer, a hidden layer, and an output layer. MLP has complete 

connectivity. This indicates that one node in one layer is connected to all nodes in the 

following layer. 

 

 

Figure 1.2  A basic structure of multilayer perceptron contains three layers. 
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A perceptron could only tackle problems of binary classification. Depending on its 

activation function, an MLP is capable of doing both classification and regression. MLP 

was a prevalent machine learning approach for speech recognition, picture identification, 

and text translation in the 1980s. 

In the past two decades, neural networks have captured the attention of more 

scientists and researchers than ever before. Large-scale neural networks have evolved. 

Applications in the real world concentrate mostly on image recognition, picture 

segmentation, and speech recognition. 

In 2011, the team led by Dan Ciresan developed multi-column deep neural 

networks (MCDNN) [1] to win the final phase of the German traffic sign recognition 

benchmark at the International Joint Conference on Neural Networks (IJCNN). It is the 

only technique in this competition that exceeds human recognition by 99.46%. 

AlexNet [2], which reached a top-five error rate of 15.3% in 2012, was a significant 

development in the machine learning community. Network architecture depth is a 

prerequisite for success. AlexNet consists of convolutional neural networks (CNN). The 

first five convolutional layers of the architecture create feature maps. Some of them link to 

layers with maximum pooling. The final three levels are fully-connected layers. The 

complexity of CNN makes human-competitive performance achievable. 

More and more scientists and researchers develop their neural networks with deep 

architecture, inspired by AlexNet. AlexNet is regarded as one of the most significant 

achievements in the field of deep learning research. According to Google Scholar, the 

original publication has been referenced over 10,000 times as of 2022. 

Google researchers developed GooLeNet, a 22-layer deep convolutional neural 
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network. It was presented in the ImageNet Large-Scale Visual Recognition Challenge 

2014(ILSVRC14). It could accomplish computer vision tasks like image classification and 

facial recognition. Microsoft Research Asia developed a CNN model with over 100 layers 

in 2015. Its performance was superior to AlexNet and it won the 2015 ImageNet 

competition. In the present day, CNN model such as ResNet [3] and DenseNet [4] may be 

created with hundreds of layers. 

 

1.2 Hardware Development amid Machine Learning 

In the past, the computing capability of computers restricted the growth of machine 

learning. When perceptron was successfully implemented for the first time on the IBM 

704, the computer system consisted of vacuum tubes. In its day, the IBM 704 was regarded 

as a highly dependable machine. However, every eight hours on average [5, 6] the IBM 

704 failed. This was an essential program size restriction. Since the IBM 704 most likely 

failed before program translation or compilation. 

Today's computer machines are far more powerful than the IBM 704. Distributed 

computing, parallel computing, and graphics processing units (GPU) are crucial 

considerations. These cutting-edge technologies push the boundaries for machine learning. 

Distributed computing is a subfield of computer science that investigates 

distributed systems. The distributed system consists of groups of interconnected 

computers. All computers have a basic objective for their work, yet can do distinct jobs. 

Each computer has its own dedicated memory. They converse through the exchange of 

messages. Thus, even if one computer experiences a problem with its assigned task, other 

computers can continue to operate. A distributed computing system might tolerate 
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individual computer failure. This is a significant factor for the widespread use of distributed 

computing in the commercial and industrial sectors. 

Parallel computing refers to the processing of several calculations concurrently. 

Frequently, a big computing work may be subdivided into smaller tasks, which can then 

be solved concurrently. Conceptually, distributed computing and parallel computing have 

certain similarities. There is an overall concept for classifying them. Using shared memory, 

all processors in parallel computing might transfer information amongst themselves. Each 

CPU in distributed computing has its own memory. A message exchange system allows 

processors to send and receive messages. The structure of their network is typically 

represented as a graph with one finite-state machine per node. Figures 1.3 and 1.4 illustrate 

a typical distributed computing system and parallel computing system. 

 

 

Figure 1.3  A typical distributed computing system. 
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Figure 1.4  A basic parallel computing system. 

 

The most recent graphics processing units(GPU) are another crucial technology that 

has grown to provide specific advantages for machine learning. Amid the rise of machine 

learning, the GPU have become one of the most essential computer technologies. GPU are 

extensively utilized in distributed and parallel computing for both personal and business 

applications. 

GPU were initially meant to speed 3D computer graphics processing. Over time, 

GPU have gotten more programmable and are now able to produce more realistic 

environments in games and media using improved lighting and shadowing algorithms. 

Typically, machine learning demands a great deal of computer power. As the 

complexity of deep learning algorithms increases, it takes longer to execute programs. A 

model of neural networks may have more than 100 billion parameters. Training this type 

of model is a time-consuming task. 

Models of machine learning can be processed more quickly if all operations are 

executed simultaneously rather than sequentially. So why are GPU gaining popularity? 

Because GPU provide tremendous acceleration support for parallel processing of massive, 

continuous input data. A GPU contains a huge number of cores, which leads to improved 

parallel computation. In addition, GPU have a greater memory bandwidth, making them 

appropriate for processing massive volumes of data. The most advanced GPU have far 
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larger buses and faster memory clock rates than any CPU (central processing unit) available 

today. GPU are a specific type of hardware. The majority of image processing related 

machine learning tasks, including as face recognition, image classification, and image 

segmentation, are executed on GPU. 

The quantity of data has been a significant factor in the rapid development of 

machine learning in recent years. We live in an age where data is expanding at an 

astounding rate. In several industries, including social media, healthcare systems, 

businesses, etc., data collecting is commonplace. Regardless of the machine learning 

technology, data plays an essential role. Instead of manually identifying patterns from vast 

amounts of data, machine learning algorithms might discover insights and make 

predictions. They are facilitating the effective transformation of data into knowledge. 

 

1.3 Essential Development Tools for Machine Learning 

Over the years, machine learning has developed from a theoretical concept to business 

applications used in our daily life. Machine learning was considered by many as a complex 

idea only for computer scientists. However, in recent years, machine learning has attracted 

more attention from individuals outside the scientific research fields.  

How to build a machine learning development environment on my personal 

computer? What are the most popular development tools for machine learning? What 

programming language should I learn? Every new beginner has these kinds of questions at 

the first step. Because many development tools for machine learning are available today, 

the choice of development tools is sometimes based on personal preference and economic 

constraints. 
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Some essential development tools for machine learning will be introduced in this 

secession. Evey development tool has been proven useful not only for individuals but also 

for tech giants. We will begin with the programming language because this is the 

foundation of machine learning tools. Then we will introduce two machine learning 

frameworks used in this dissertation. 

 

1.3.1 Python: The Most Popular Programming Language 

Who uses Python today? Python was the top 1 in the IEEE Spectrum’s annual interactive 

rankings of the top programming languages. According to the IEEE Spectrum, these 

rankings are created by weighting and combining 11 metrics from eight sources: 

CareerBuilder, GitHub, Google, Hacker News, the IEEE, Reddit, Stack Overflow, and 

Twitter. Python is considered to be among the top 5 or 10 most widely used programming 

languages today. 
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Figure 1.5  IEEE Spectrum top programming languages 2021. 
 

Python has developed a large user base in the past ten years and gotten support from 

active developers’ communities. From the Google Trend index, we can find Python was 

becoming increasingly popular worldwide. 

 

 

Figure 1.6  Python Google Trend index from Jan. 2011 to Jun. 2022. 
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Python has demonstrated its value for companies across different fields. Not only 

individual users benefit from Python. It has been a solid foundation to support commercial 

applications. For instance, here are some well-known companies are applying Python to 

their products and service: 

1. Google uses Python in its web search system. 

2. YouTube sharing service is largely written in Python.  

3. Intel, Cisco, and IBM use Python for hardware testing.  

4. JPMorgan Chase, and UBS apply Python to financial market forecasting.  

5. NASA uses Python for scientific programming tasks. 

And so on, the above companies are some representatives. We know Python is 

popular for both individual users and commercial companies. Then the question is, how 

does Python support machine learning studying? What are the main reasons for people to 

use Python? Let’s focus on machine learning study and talk about more details behind 

Python’s popularity. 

Python is completely free and can compile and run on every major platform. 

Individual users and business companies both take a lot of benefit from Python’s program 

portability. A machine learning model is usually built on a personal computer or an online 

cloud computing platform for an individual user. Below are the primary machine learning 

development platforms: 

1. Linux and Unix systems 

2. Microsoft Windows 

3. Mac OS 

4. Amazon Web Service 
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5. Microsoft Azure 

6. Google Cloud 

Python could run unchanged and stable across the above major development 

platforms. When running a Python program between local Windows and online cloud 

computing platforms, a developer just needs to make a copy of code between machines. 

We know that machine learning usually consumes a lot of computational power. When the 

machine learning model becomes more complex, the individual user always has the famous 

ran-out-of-memory error on a personal computer. It is impossible for everyone to invest in 

expensive machines, specifically machine learning. At this moment, cloud computing 

service is an easy solution to increase computational power. Today there are various cloud 

computing service options for individuals and business companies. The price is also getting 

more affordable. 

Python comes with an extensive collection of prebuilt and third-party libraries. We 

have talked about how Python has a lot of communities. They give strong support for 

Python amid its development. One of Python fast grown use cases happens in scientific 

computing. Today, Python is heavily used in numeric programming. However, it is not a 

traditional domain for scripting languages. Compiled languages such as FORTRAN and 

C++ dominated this field for a long time. Also, some professional tools like MATLAB 

were widely used. Whatever may be a machine learning model, Python and numeric 

libraries are an inseparable combination to build it. Here are some main machine learning 

libraries used by Python developers: 

1. NumPy 

2. SciPy 
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3. Scikit-learn 

4. Theano 

5. TensorFlow 

6. Keras 

7. PyTorch 

8. Pandas 

9. Matplotlib 

Among them, Scikit-learn has become the most popular Python machine learning 

library. Scikit-learn supplies a wide range of support for supervised and unsupervised 

learning algorithms. It also can be used for data mining and data analysis. The main 

machine learning algorithms that the Scikit-learn library can process are classification, 

regression, clustering, and dimensionality reduction. 

TensorFlow or PyTorch is not just considered a Python machine learning library. 

Most Python machine learning developers consider them two significant machine learning 

frameworks. And Keras could run both as an API(application programming interface). 

TensorFlow and PyTorch have flexible and stable architectures which can run on different 

chips, including CPU, GPU, and TPU(tensor processing units) 

Thanks to Python’s easy-to-use advantage, productivity cross platforms, and 

efficient library support from communities, Python takes the leading role among machine 

learning development tools. Then we will introduce two machine learning frameworks, 

Caffe and Tensorflow.  
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1.3.2 Machine Learning Framework: Caffe 

Caffe is an open-source deep learning framework. It was developed by the University of 

California, Berkley AI Research [7]. There is a lot of open-source documentation available 

on GitHub. It is widely used in the academic research project. It is written in C++ and has 

better support from Python and MATLAB. Caffe 

Caffe is a flexible machine learning framework for many different machine learning 

models, especially supporting image classification and segmentation. Caffe could run on 

both CPU and GPU. It has taken advantage of other tech giants’ assistance. Intel creates 

CPU-based acceleration computational kernel library MKL. And NVIDIA builds GPU-

based cuDNN to improve the acceleration speed for GPU-based development environment. 

Caffe has been more and more easily used by developers. It supports convolutional 

neural networks(CNN), long short-term memory(LSTM), and fully connected neural 

networks. In April 2017, Facebook updated Caffe to Caffe2. At the end of March 2018, 

Caffe2 was merged into PyTorch.It is very convenient to build neural networks with Caffe. 

We will explain the main inner architecture of Caffe using a simple neural networks 

example. Figure 1.7 stands the neural networks built with Caffe. 
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Figure 1.7  An Example of Neural Networks Built with Caffe. 
 

Neural networks are built from bottom to top with Caffe. The architecture of the 

above neural networks is divided into four units. These terms are blob, layer, net, and loss. 

Caffe uses blob to store and transmit data. The data shape is an N-D array. Training and 

testing data, weights, and biases are all stored in blobs. The blob is also a bridge that links 

CPU and GPU. The data from the CPU is loaded into the blob, which is then passed to the 

GPU for computation. For large-scale data, LevelDB databases are used. 

The layer is where computation happens in it. A set of layers and blobs connected 

together would create a net. A blob passes a layer as input. Then the layer will generate the 

corresponding output blob. Figure1.8 shows the layer protocol. 
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Figure 1.8  Caffe layer protocol. 
 

A layer has the following operations, setup, forward pass, and backward pass. They 

are three basic concepts of a layer. We will introduce them step by step: 

1. Setup: It initializes the parameters in a layer for the first time training a machine 

learning model. Caffe offers various layer setups, such as Convolution, Pooling, 

and nonlinear activations.  

 

2. Forward pass: Inputs are passed and correspondingly outputs are generated. 

 

3. Backward pass: This step computes gradients of output.  

The loss could be thought of as a special kind of layer. Loss is at the end of the 

networks. Setting a suitable loss for a machine learning model is important because it 

defines the model type. If the model is used to make binary classification, the loss needs to 

be set to SoftMax with loss. For example, if the model is a regression model, we could use 

Euclidean Loss. Caffe supplies various losses to satisfy different machine learning models. 
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Also, developers could write their loss function for their models. 

 

1.3.3 Machine Learning Framework: TensorFlow 

TensorFlow is a powerful machine learning framework. It is a free and open-source 

software library. The Google Brain team developed TensorFlow. It was only used for 

Google internal researchers. Then Google released TensorFlow to the public in November 

2015. From Google Trend, we know that TensorFlow attracted incredible developers in the 

following years. 

 

 

Figure 1.9  TensorFlow Google Trend index from Nov. 2015 to Jun. 2022. 
 

TensorFlow is a breakthrough in the machine learning framework. Why? Because 

it develops amid the internet and mobile technology. TensorFlow works well with all 

popular programming languages such as Python, C++, Java, R, and Go. 

Previous machine learning frameworks, such as Caffe, provided inadequate support 

for mobile computing platforms. According to the official TensorFlow GitHub account, 
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TensorFlow might be constructed on a variety of platforms. Thus, developers may 

construct TensorFlow on nearly all common platforms. That was previously impossible. 

Frameworks for machine learning were restricted to personal computers and cloud 

computing. However, TensorFlow may now be utilized for IoT (Internet of Things). 

Consequently, machine learning has more extensive uses. New concepts emerge, such as 

intelligent lighting and an intelligent outside camera. 

 

 

Figure 1.10  Partial Community-Supported platforms for TensorFlow.  
 

To use TensorFlow, it is important to clearly understand three major definitions. 

They are tensor, graph, and session. All TensorFlow codes contain these three parts. 

What exactly is a tensor? Tensor is the data structure used by TensorFlow programs 

to represent all data types. Tensors could hold any type of information. A tensor is an array 
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with N dimensions. Different forms of scalar, vector, matrix, and high-dimensional array 

could be turned into tensors. Rank is the unit of dimension used to define tensors. Tensors 

may hold several forms of data, as described in Figure 1.10. The relationship between data 

type, tensor, and rank is described in Table 1.1. 

 

Figure 1.11  Different types of data stored in tensors. 
 

 

Table 1.1  Relationship between Data, Tensor and Rank 

Types of Data Tensor Rank 

Scalar 0-D Tensor 0 

Vector 1-D Tensor 1 

Matrix 2-D Tensor 2 

Tensors N-D Tensor N 
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The most unique aspect of TensorFlow is that its operations are represented by 

graphs. The graph consists of a collection of nodes linked by edges. Nodes serve two 

distinct purposes. A node is a location where one or more tensors are stored. A node could 

also perform tensor operations such as convolution computation. The edges indicate the 

movement of data. The best way to convey it is by a simple example. Suppose we want to 

calculate the result of the function listed below: 

𝑓(𝑎, 𝑏, 𝑐) =  𝑎𝑏 + 𝑐 + 1                                                   (1.1) 

Let's now construct a graph for this function. The graph shown in Figure 1.12 was 

generated with TensorFlow program codes. 

 

 

Figure 1.12  A simple graph built in TensorFlow program codes.  
 

Tensorflow executes the graph operations. After constructing the graph, we can 

initiate a session. A session places graph operations on hardware like CPU and GPU. The 

majority of a session's execution depends on TensorFlow program codes. We will not go 

into detail on how to write the codes here. 
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1.4 Summary 

This chapter begins with a brief overview of the evolution of neural networks. From the 

perceptron to the massive neural networks of today, the architecture of neural networks has 

become progressively complex. The development of hardware and software aids machine 

learning scientists in designing complicated machine learning models. Previously, 

hardware limitations were a significant drawback that reduced computing capability. 

Machine learning specialists may now deploy machine learning models using distributed 

and parallel computing. Additionally, software that can be programmed is becoming more 

user-friendly for both beginners and professional developers. 

 

1.5 Outline of Dissertation 

The remaining sections of this dissertation are formatted as follows: The second chapter 

demonstrates how to construct a convolutional network model. The third chapter describes 

the use of CNN models to detect seam carving operations on images. In Chapter 4, it is 

demonstrated that a CNN model can recognize various Gaussian filtering processes applied 

to images. In Chapter 5, a prototypical network model for detecting various Gaussian and 

average image filtering processes is shown. 
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CHAPTER 2 

 A ROADMAP FOR BUILDING CONVOLUTIONAL NEURAL NETWORKS 

 

In earlier chapters, we presented a brief history of artificial neural networks and the 

fundamental development tools for machine learning. Step-by-step instructions for 

constructing convolutional neural networks are provided in this chapter. 

In previous chapters, we have introduced the brief history of artificial neural networks and 

the essential development tools for machine learning. In this chapter, we will discuss how 

to build convolutional neural networks step by step. 

 

2.1 Foundational Math behind Artificial Neural Networks  

There are three different types of machine learning. They are supervised learning, 

unsupervised learning, and reinforcement learning. Figure 2.1 summaries the differences 

between them.  
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Figure 2.1  Three different types of machine learning. 
 

The primary objective of supervised learning is prediction. Using labeled data, the 

supervised machine learning model is trained. Then, upon training, the supervised machine 

learning model could predict the label for unseen new data given the data's label. Figure 

2.2 shows a typical procedure for supervised learning. The labeled training data is sent to 

a supervised machine learning algorithm with the purpose of fitting a predictive model 

capable of making predictions on new, unlabeled data. As the supervising machine learning 

algorithm, convolutional neural networks are used here. 
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Figure 2.2  A typical workflow of artificial neural networks. 
 

A classification task is a type of supervised learning problem that has discrete class 

labels. Recognizing cat and dog is an example of a traditional binary classification task. 

The number of classes does not have to be two. The number of classes is highly task 

dependent. Recognizing handwritten characters is an example of a common multiclass 

classification task. Regression is a subfield of supervised learning in which the output 

signal is a continuous value. The purpose of each convolutional neural network model 

utilized in this dissertation is classification. We will therefore concentrate on constructing 

convolutional neural networks for classification problems. 

In Chapter 1, the fundamental structures of a single perceptron and multilayer 

perceptron were discussed. This chapter will begin with an explanation of the formal 

definition of an artificial perceptron before introducing convolutional neural networks in 

depth. 

Let us construct a simple artificial neuron for binary classification. Our dataset 𝑿 
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comprises both positive and negative values. A sample in dataset 𝑿 is represented by 𝑥. 

Each input sample 𝑥 is converted into an n-dimensional vector 𝒙  Each input vector 𝒙 has 

a corresponding weight vector w. The net input is defined as z: 

𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ +  𝑤𝑛𝑥𝑛                                (2.1) 

w = [

𝑤1

𝑤2

⋮
𝑤𝑛

]                                  𝒙 = [

𝑥1
𝑥2

⋮
𝑥𝑛

]                                (2.2) 

We can then define a decision function to predict the class of the sample. If ∅(𝑧) is 

greater than a defined threshold 𝜃, we predict class 1; otherwise, we predict class -1. In the 

perceptron algorithm, the decision function ∅(𝑧) is a unit step function. 

∅(𝑧) = {
1, 𝑖𝑓 𝑧 ≥ 𝜃

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                             (2.3) 

For simplicity, we can bring the threshold, 𝜃 , to the left side of the equation and 

define a weight-zero as 𝑤0 = − 𝜃 and 𝑥0 = 1 so that we write z in a more compact form: 

𝑧 = 𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ +  𝑤𝑛𝑥𝑛 = 𝒘𝑇𝒙                    (2.4) 

∅(𝑧) = {
1, 𝑖𝑓 𝑧 ≥ 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                              (2.5) 

Now we can find z = 𝒘𝑇𝒙 is a linear function. It will always have the opportunity 

to cross origin. This could be undesirable. Figures 2.2, 2.3 and  2.4 give further details for 

visual depiction. 
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Figure 2.3  An ideal boundary line is made by z = 𝒘𝑻𝒙. 

 

 

Figure 2.4  An ideal boundary line can never be made by z = 𝒘𝑻𝒙. 

 

Figures 2.3 and 2.4 illustrate the various data distributions. Class 1 is denoted by 

blue points, while class -1 is shown by green points. In Figure 2.3, an ideal boundary is 

made by z = 𝒘𝑇𝒙. However, in Figure 2.4, no matter how we adjust, an ideal boundary 

cannot be created by z = 𝒘𝑇𝒙. Since z = 𝒘𝑇𝒙 will always passes through the origin, the 

range for adjusting the boundary line to distinguish two distinct data classes is constrained. 
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Now we add a constant value called bias to z = 𝒘𝑇𝒙. It is represented by the small 

letter b. Then the function will change to: 

𝑧 = 𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ +  𝑤𝑛𝑥𝑛 + 𝑏 = 𝒘𝑇𝒙 + 𝑏         (2.6) 

Following the new function 2.6, we can find the ideal boundary line under the data 

distribution in Figure 2.4, as shown in Figure 2.5. The range to adjust the boundary line 

extends. This will result in a more precise classification. 

 

Figure 2.5  An ideal boundary line is made by z = 𝒘𝑻𝒙 + 𝒃. 
 

Function 2.6 is the foundational math behind artificial perceptron. Connecting a lot 

of perceptron into a network shape we will build an artificial neural network. We shall 

construct an artificial neural network by connecting many perceptrons into a network 

structure. Matrix multiplication is the fundamental operation of artificial neural networks, 

as revealed by Function 2.6. The following section will demonstrate how to construct 

convolutional neural networks. 
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2.2 Building Convolutional Neural Networks 

Initial inspiration for convolutional neural networks (CNN) came from how the visual 

cortex of the human brain recognizes objects. In 1995, Yann LeCun proposed the LeNet 

[8] family of convnets trained to recognize MNIST handwriting characters. It has a 

significant impact on CNN's further development. Since 1989, Yann LeCun and his 

colleagues have made significant contributions to the development of artificial neural 

networks [9-12]. In 2019, Yann LeCun earned the most prestigious award in computer 

science, the Turing Award. CNN has outstanding performance for image classification 

tasks. Nowadays, CNN is widely implemented for image recognition, computer version, 

textual documents analysis and so on. In the following sections, we will discuss the 

advantages of CNN. Then we will delve into operations in a typical CNN architecture.  

 

2.2.1 Feature Hierarchies of CNN 

The key to the performance of any machine learning algorithm is to extract important 

features from datasets. Traditional machine learning methods rely on domain-expert-

provided input features. It takes a significant amount of time to manually identify important 

features. 

CNN can automatically learn features from raw data. Earlier layers extract low-

level features from raw data. CNN procedures will result in the formation of high-level 

features from low-level features. The subsequent layers, such as the fully connected layers, 

will then utilize these features for prediction. Combining low-level features to form higher-

level features is referred to as feature hierarchy. This dissertation mainly focuses on the 

implementation of CNN for image-related problems. We will use an example to 

demonstrate how CNN extracts visual features. 
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When using CNN to identify a cat in an image, edges and blobs are taken from prior 

layers. These features ate low-level feature. Then, by combining these low-level features, 

we will create much more complex shapes, such as the head and body of a cat. These 

complex shapes are known as high-level features.  

CNN extracts feature maps from an input image. As you can see in the following 

Figure 2.6. Each element in feature map comes from a local patch of pixels in the input 

image. 

 

 

Figure 2.6  A feature map extracted by convolutional layers. 
 

As explained in the previous sections, matrix multiplication is the fundamental 

operation of conventional neural networks. This operation is replaced with a convolution 

operation in a CNN, as illustrated below: 

Z= 𝑾 ∗ 𝑿 + 𝑏                                                            (2.7) 

W: It is the weighted matrix. It is also called kernel matrix. 

X: It is a matrix representing the pixels in a ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ region.  

b: It is the bias. 
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As shown in Figure 2.7, we have an input image I6×6, and a kernel matrix W3×3. 

The input matrix X3×3 has the same dimensions as the kernel matrix. It is really different 

from fully connected neural networks. In fully connected neural networks, the input matrix 

has the same dimensions as the entire image. Still using input image I6×6, the input matrix 

should be a 6 × 6 matrix rather than a 3 × 3 matrix. 

 

 

Figure 2.7  Input image, input matrix and kernel matrix. 
 

Now, let's connect one input layer to one convolutional layer to describe the 

aforementioned convolution operations. The input layer is where the image is input. It 

converts an image to a matrix. We represent each value in the input matrix with a single 

node. The convolutional layer then has many kernels. That each kernel will generate a 

feature map from the image input. We express each weight in a kernel using edges. After 

convolution operations, the output Z consists of the convolutional layer's values. Figure 2.8 

illustrates the transfer of an input image to an input layer. Figure 2.9 shows the relationship 

between the input layer and the convolutional layer. 



 

31 

 

 

Figure 2.8  Building input layer from an input image. 

 

 

Figure 2.9  An input layer connected to a convolutional layer.  
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Here are two fundamental concepts that help CNN perform better than ordinary 

neural networks. The first is referred to as sparse connection. In other words, a node in one 

layer is not connected to all of the nodes in the previous layer. As shown in Figure 2.9, a 

convolutional layer node is only connected to nine input layer nodes. If the layer is fully 

connected, a node should connect 36 input layer nodes. Another benefit is known as 

parameter-sharing. The same weights are applied to distinct regions of the input image. In 

Figure 2.9, input matrix X shares common kernel W. They are marked by colored 

background. 

As previously discussed, convolutional processes extract feature maps. Each node 

in the convolutional layer in Figure 2.9 corresponds to a value in the feature map. Now let's 

conclude our explanation of how accurate convolutional operations are for feature maps. 

 

 

Figure 2.10  Extracting feature map by convolutional layer. 
 

Given the input image I and the kernel W in the previous example, we have the 

convolved output. The 3×3 kernel W (also referred to as the filter) is multiplied 

elementwise with the input matrix X to produce one output matrix value. The remaining 

values are obtained by sliding the window across the image. There are three factors to 
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define a kernel: 

Kernel size: It is represented by ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ. It defines the covered region on 

image or feature map. 

Stride: It is the step size of the kernel when it slides through the image. 

Padding: Defines how the border of image or feature map is captured. 

 

2.2.2 Common Layers Used for Building CNN 

We've talked about convolutional layers and fully - connected layers. In this section, we 

will go through some of the most frequent layers utilized in CNN construction. There are 

three of them: the pooling layer, the activation layer, and the output layer. 

Pooling layer decreases the dimensions of feature maps, resulting in increased 

computing efficiency. Additionally, lower feature map size assist prevent overfitting. CNN 

has two primary types of pooling operations: maximum pooling and average pooling. 

Similar to the kernel, we must define the region and stride to determine where the 

maximum or average operation is executed. The region is known as the pooling size.  The 

pooling layer is usually defined as 𝑃𝑊×𝐻. Figures 2.11 and 2.12 illustrate the operation of 

maximum and average pooling, respectively. 

 

 



 

34 

 

Figure 2.11  An example of max-pooling. 

 

 

Figure 2.12  An example of average-pooling. 
 

CNN's activation layer is a crucial component of its design. Activation layers add 

extra nonlinear factors to CNN, allowing it to solve complicated problems more 

effectively. There are three typical activation functions used in CNN architecture for 

building activation layers. They are the Sigmoid, the TanH, and the ReLU. Their functions 

and figures are illustrated below. 
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Figure 2.13  Sigmoid activation function. 
 

𝜎(𝑥) =
1

1+𝑒−𝑥……………………………………(2.8) 

 

 

 

Figure 2.14  TanH activation function. 
 

𝑇𝑎𝑛𝐻(𝑥) =
𝑒𝑥−e−𝑥

𝑒𝑥+𝑒−𝑥……………………………….(2.9) 
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Figure 2.15  ReLU activation function. 
 

𝑓(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 ≥ 0

                                                   (2.10) 

In CNN, the final layer is the output layer. Output layer will compute the outcome 

of the prediction. The outcome of the prediction could be logits or probabilities. However, 

how can we define a "good" output? We must create a loss function that penalizes outputs 

that deviate significantly from the predicted value. In CNN, the computation of outputs 

from inputs is referred to as forward propagation. After calculating the outputs, the outputs 

and loss function are used to update the CNN weights in order to improve CNN's 

performance. Since this process starts at the output layer and propagates backward through 

the CNN, we refer to it as backward propagation. In terms of classification issues, forward 

propagation and backward propagation are summarized as follows: 

1. Initialize the weights to 0 or small random numbers.  

2. For each training example 𝒙(𝑖) with label  𝒚(𝑖) : 

3. Compute the predictive label, 𝒚̂(𝒊). 

4. Define the loss function J(𝑾) 
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 5. Update the weights by using loss function. 

We want to minimize the loss function. This indicates that the inaccuracy between 

the predictive output label  𝒚̂(𝒊) and the actual label  𝒚(𝑖) will be minimal. The loss function 

should be convex when defined. We can calculate the partial derivatives of the loss function 

for each weight 𝑊 j, then identify the least loss value at this point. This powerful 

optimization process is known as gradient descent, as depicted in Figure2.16.\ 

 

 

Figure 2.16  Gradient descent. 

 

Using gradient descent, now we can update the weights by taking a step in the 

opposite direction. Also, we set a learning rate 𝜂  to control how quickly the model is 

adapted. Usually, the learning rate is a constant between 0 to 1. 

𝑊: = 𝑊 + ∆𝑊                                                         (2.11) 

For each weight 𝑊𝑗 : 

𝑊𝑗: = 𝑊𝑗 + ∆𝑊𝑗                                                       (2.12) 

∆𝑊𝑗 = −𝜂∇𝐽(𝑊𝑗)                                                     (2.13) 
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∆𝑊𝑗 = −𝜂
𝜕𝐽(𝑊)

𝑊𝑗
                                                        (2.14) 

Due to the large number of parameters in CNN, updating all weights typically 

requires considerable time. CNN's performance cannot be significantly enhanced by 

updating all weights only once. The updating process may be repeated thousands of times 

in order to achieve a stable and satisfactory experimental result. 

 

2.3 Summary 

This chapter presents a roadmap to building a convolutional neural networks (CNN) model. 

At the beginning of this chapter, we illustrate the fundamental math behind CNN. Then we 

explain the basic functions of some typical layers in CNN. We could build a CNN model 

by organizing these typical layers into a  hierarchical structure. At the end of this chapter, 

we explain how to update the parameters in the CNN model. Up to here, we have 

introduced the prior knowledge for CNN. Then in the following chapters, we will design 

various CNN models for some digital image forensics tasks. 
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CHAPTER 3 

 

A CONVOLUTIONAL NEURAL NETWORK BASED SEAM CARVING 

DETECTION SCHEME FOR UNCOMPRESSED DIGITAL IMAGES 

 

3.1 Introduction 

Due to the rapid development of image-editing techniques in the past years, digital images 

can be easily edited or tampered with popular software such as Photoshop. To reveal 

malicious image editing, digital image forensics [13] have been extensively studied for the 

past decade. In this chapter, we present a novel forensic approach to detect the operation 

of seam carving [14] in digital images, specifically in uncompressed images. Seam carving, 

also known as content-aware scaling, is one popularly utilized image scaling algorithm and 

has been included in many predominant image editing software, such as Photoshop and 

GIMP. By recursively deleting a seam (a horizontal or vertical path of 8-connected pixels) 

with the lowest energy, the image size is altered, and the visually more important image 

contents can be well-preserved. 

A few forensic works have been reported in the past several years to reveal traces 

of seam carving in digital images. In the first piece of forensic work for seam carving 

detection [15], Sarkar et al. proposed to utilize Markov transition probability to reveal the 

trace of seam carving in digital images, specifically in JPEG compressed images. Later in 

[16], a hybrid statistical feature model was proposed by Fillion et al. to track the operation 

of seam carving in uncompressed images based on energy distribution, seam behavior and 

wavelet absolute moments. In [17], Lu et al. proposed an active forensic approach to 

determine whether a received uncompressed image has been attacked by seam carving or 

not by comparing the SIFT features pre-extracted by the sender with the SIFT features 
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extracted at the receiver end. Chang et al. [18] later presented a series of statistical features 

based on the blocking artefact characteristics matrix to differentiate non-seam carved JPEG 

images from seam carved JPEG images. This work was further extended in [19]. In [20], 

Liu et al. proposed to employ the calibrated neighboring joint density of DCT coefficients 

for the detection of seam carving in JPEG images, and the extended works were reported 

in [21, 22]. In Ryu et al.’s work [23], the authors designed a set of features based on energy 

bias and noise level to unveil the operation of seam carving in uncompressed images. In 

[24], Wei et al. presented an interesting approach to detect seam carving in uncompressed 

images. By dividing images into 2×2 mini-squares and categorizing each of the squares 

into nine types of predefined patches, each square was possibly recovered to its original 

form. Then, Markov transition probability was applied to discriminate seam carved images 

from non-seam carved images. Yin et al. [25] proposed a blind forensic technique to detect 

seam carving in uncompressed images based on the similar idea pro-posed in [23]. In [25], 

twenty-four features consisting of six newly designed features and eighteen features 

proposed in [23] were extracted from the local binary pattern pre-processed images for 

seam carving detection in uncompressed images. In [26], Ye and Shi proposed to employ 

a set of energy features which extracted from local derivative pattern encoded images to 

identify seam carved images. In [27], an advanced statistical model, consisting of local 

derivative pattern, Markov transition probabilities, and subtractive pixel adjacency model, 

are designed to determine if an image has been gone through seam carving or not. The 

extended work of [26, 27] was presented in [28]. In [29], Zhang et al. designed forty-two 

features to unveil the statistical properties of spatial and spectral entropies (SSE). They 

were combined with local binary pattern (LBP)-based energy features to detect seam 
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carving image with low scaling ratio. 

Most of the existing methods for seam carving detection as introduced, except [17], 

are focusing on feature engineering, a Support Vector Machines (SVM) based 

classification scheme is applied to ensure better performance. In this chapter, inspired by 

the substantial successes achieved by convolutional neural networks (CNN) in computer 

vision [30-32], and the success obtained by the CNN-based steganalysis work [33], we 

propose and report a CNN architecture that includes both the feature extraction and 

classification in a joint optimization framework to unveil the process of seam carving in 

uncompressed digital images. As far as we know, this is the first work that successfully 

applies deep learning for seam carving detection. Furthermore, as indicated by 

experimental results, the proposed approach achieves almost perfect results at higher 

scaling rates, and largely outperforms the state-of-the-art at lower scaling rates. The rest of 

the chapter is organized as follows: In Section 2, seam carving is briefly introduced. Then, 

the proposed CNN structures are described in Section 3. The experimental results are 

reported in Section 4. The conclusion is made in Section 5. 

 

3.2 Background of Seam Carving 

The image scaling is a process to resize a digital image so as to satisfy certain geometric 

requirement. However, the conventional image scaling schemes could not always provide 

a promising visual quality after resizing because the image content is not considered 

carefully by these algorithms. One example is shown in Figure 3.1. As a result, seam 

carving is designed to protect image content from being destroyed while scaling is 

conducted. 
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For a given energy function 𝑒( . ), e.g., gradient, the importance of a pixel in image 

I can be evaluated with its energy as shown below, 

𝑒(𝐼(𝑥, 𝑦)) =  |
𝜕

𝜕𝑥
𝐼(𝑥, 𝑦)| +  |

𝜕

𝜕𝑦
𝐼(𝑥, 𝑦)|                                  (3.1) 

where x and y are the corresponding row and column coordinates, respectively. By 

assuming the less important image content consists of lower energy pixels, seam carving 

is to delete a seam with the lowest cumulative energy recursively so as to alter the size of 

a given image. Note that a seam is a path of 8-connected pixels crossing the image either 

from top to bottom (vertical seam), or from left to right (horizontal seam). For instance, a 

horizontal seam sH in an n × m (height × width) image I can be defined as: 

 

Figure 3.1  (a) An original image from UCID with a size of 384×512. (b), (c) and (d) are 

the resized copies of (a) with the same size of 384×411 but processed by different scaling 

techniques respectively: (b) bilinear interpolation, (c) cropping, (d) seam carving. 
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𝑠𝐻 = {𝑠𝑖
𝐻}𝑖=1

𝑚 = {(𝑥(𝑖), 𝑖)}𝑖=1
𝑚 , 𝑠. 𝑡. ∀𝑖, |𝑥(𝑖) − 𝑥(𝑖 − 1)| ≤ 1               (3.2) 

where 𝑠𝑖
𝐻 represents the coordinates of each included pixel. Therefore, the optimal 

horizontal seam 𝑠∗ can be shown below, 

𝑠∗ = 𝑚𝑖𝑛
𝑠

𝐸(𝑠) = 𝑚𝑖𝑛
𝑠

∑ 𝑒 (𝐼(𝑠𝑖
𝐻)) 𝑚

𝑖=1                                          (3.3) 

where 𝐸(𝑠) is the cumulative energy of seam 𝑠. As the optimal seam always has 

the lowest cumulative energy, it is considered to be the least visually important and 

unnoticeable in the image. Therefore, by removing multiple such optimal seams, either 

horizontal seams or vertical seams, not only can the image size be altered, but also the 

important image content could be well-preserved consequently.  

 

3.3 Proposed CNN Architecture 

CNN has aroused tremendous interests since a remarkable success was achieved in the 

ILSVRC-2012 competition by utilizing this advanced artificial intelligence technology 

[30]. A typical CNN hierarchical architecture starts with multiple stages of convolutional 

modules and ends with a classification module. A common convolutional module includes 

a convolutional layer, an activation layer, and a pooling layer. The convolutional layer is a 

trainable filter bank which can be considered as a feature extractor. The activation layer 

brings non-linearity to the network and bounds the extracted features. The pooling layer 

reduces the quantity of features extracted from immediately prior convolutional layer to 

avoid overfitting. By stacking a series of convolutional modules, hierarchical feature maps 

are extracted and then fed into the classification module composed of one or more fully 

connected layers, and the SoftMax layer with cross-entropy loss. The classification module 

can transform feature vectors to output probabilities for each class. Through back-
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propagation, weights and biases in convolutional layers will be optimized so as to reduce 

the training loss, and the power of the network will then be enforced to predict the labels 

of unseen data. 

The overall architecture of the proposed CNN is illustrated in Figure 3.2. Instead 

of directly feeding the original images into the network, a high-pass filtering (HPF) layer 

with kernel size of 5×5×1 (height × width × number of input feature maps) [33] is employed 

to pre-process input images. In this way, we use the first convolutional layer of CNN model 

as a pre-processing module. The trace of seam carving, i.e., imperceptible discontinuity of 

image content, is a kind of weak high frequency signal, which is greatly impacted by image 

content. Therefore, high-pass filter is employed at the beginning so as to boost the signal-

to-noise ratio. This can provide a good initialization to drive the whole network, hence 

achieve good performance as compared to without doing it. 
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Figure 3.2  The proposed CNN architecture. Parametric setting of each layer is included 

in the corresponding box. 
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Following the HPF layer is the CNN hierarchical structure which consists of six 

convolutional modules and one fully- connected linear classification module. In the first 

convolutional layer (Conv1), the input, i.e., the pre-processed input image, is to be filtered 

by 8 kernels of size 5×5×1 each. In the following convolutional layers (Conv2 – Conv6), 

there are 16 kernels of size 5×5×8 in Conv2, 32 kernels of size 5×5×16 in Conv3, 64 kernels 

of size 5×5×32 in Conv4, 128 kernels of size 5×5×64 in Conv5 and 256 kernels of size 

5×5×128 in Conv6 respectively so as to generate hierarchical feature maps. 

Different from the conventional CNN module as introduced in [30], an additional 

layer, called batch normalization (BN) layer [35], is employed between each convolutional 

layer and the following activation layer. As the outputs generated by the convolutional 

layer are normalized by the corresponding BN layer, the so called ‘internal covariate shift’ 

[35] is reduced which helps to accelerate the training speed and to reduce the influence 

caused by poor initialization.  

To increase the non-linearity of the proposed deep architecture, rectified linear units 

(ReLU) are served as the non- linear activation functions in each of the convolutional 

modules, as shown in Figure 3.3. Comparing with other popular non-linear functions, such 

as hyperbolic tangent and Sigmoid, ReLU has relatively simple form, i.e., gradient is 1 for 

positive inputs and 0 for negative inputs. Such characteristics could accelerate the speed 

on training deep neural networks, and also avoid the vanishing of gradient happens during 

the training stage [36]. 

Since the process of seam carving will remove lower energy pixels, those higher 

energy pixels which normally have large intensity value are more likely remained in the 

image. Due to this characteristic, focusing on the maximum pixel value of a local region 
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which is normally considered in computer vision intuitively insufficient to discover the 

trace of seam carving. Therefore, average pooling is employed in the proposed CNN 

framework for spatial sub-sampling instead of max pooling popularly utilized in computer 

vision. In the last pooling layer, namely, Pool6, the kernel size for pooling is fixed to the 

spatial size of the input feature maps. Each input feature map will be aggregated to one 

single number, which serves as a feature for the classification. As there are 256 input 

feature maps to Pool6, 256 features are generated and fed into the fully-connected linear 

classification module for each image.  

 

 

𝑅𝑒𝐿𝑈(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 > 0

 

Figure 3.3  Rectified linear unit (ReLU). 
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3.4 Experimental Results 

Since there is not any image database which is publicly available and designed for the 

forensic research on detecting seam carving, we implemented the seam carving algorithm  

in MATLAB and established 12 seam carved image sets based on the BOSSbase 1.01 [37], 

which is a benchmark image database for the research of steganalysis. It contains 10,000 

never-compressed grayscale images with the size of 512×512. For each image from the 

BOSSbase, the pre-implemented seam carving algorithm was utilized to reduce the height 

by 5%, 10%, 20%, 30%, 40% and 50%, respectively. Therefore, 6 groups of seam carved 

copies were acquired. Similarly, by scaling the width of each original image with 

aforementioned various scaling rates, another 6 groups of seam carved copies were 

generated. Consequently, 12 seam carved copies were obtained for each image in the 

BOSSbase and thus 12 seam carved image sets were formed, i.e., ‘5%H’, ‘10%H’, ‘20%H’, 

‘30%H’, ‘40%H’, ‘50%H’, ‘5%V’, ‘10%V’, ‘20%V’, ‘30%V’, ‘40%V’ and ‘50%V’. 

Specifically, ‘5%H’ stands for the height of each original image was scaled by 5%, ‘5%V’ 

mean the width was decreased by 5%. As a result, each seam carved set contains 10,000 

seam carved images. 

To evaluate the performance of the proposed CNN architecture, the experiments 

were conducted to detect the 12 designed seam carving cases. In the experiments, the 

proposed CNN architecture was constructed with Caffe toolbox [38], and stochastic 

gradient descent was applied to train all the CNN with the batch size of 64 images. We 

fixed the momentum as 0.9 and the weight decay as 0.0005. The learning rate was 

initialized to 0.001 and forced to decrease 10% after each 5000 iterations. To fairly 

compare the performance with the state-of- the-art, we not only implemented and tested 
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methods proposed for seam carving detection [23, 25], but also examined the performance 

of rich model [24] which represents the state-of- the-art of steganalysis. Each method was 

tested on the 12 seam carving cases with linear SVM as the classifier [39]. Additionally, 

2-fold cross validation was applied throughout the experiments. 

As shown in Table 1, the proposed CNN architecture performs significantly better 

than the two state-of-the-art of seam carving detection [23, 25] when the scaling rate is 

below 30%. In particularly, our method achieves, respectively, 90% and 93% detection 

accuracies in the experiments of testing ‘5%H’ and ‘5%V’, the two toughest cases, which 

are 20% higher than performance achieved by both state-of-the-art. 

The receiver operating characteristic curves (ROC) together with the corresponding 

area under ROC curves (AUC) shown in Figure 3.4 indicate that the proposed method 

outperforms the two seam carving forensic methods dramatically on detecting both ‘5%’ 

and ‘10%’ cases. It is also observed that rich model outperforms the [23, 25] on those low 

carving rate cases although it still underperforms the proposed CNN. Notably, the detection 

accuracy increases monotonically with the increased carving rate for all tested methods, 

and the gap between the proposed method and the tested prior arts is getting smaller as 

well. The reason behind is that overfitting is more significant for the methods which are 

more complicated and more powerful on modelling, such as proposed CNN and rich model 

as well, on detecting easy cases, i.e., detecting images in which a large number of seams 

are carved out.  

In Figure 3.5, three samples are presented. The outputs of Conv5 for each sample 

and the corresponding seam carved copies are visualized as heat maps to illustrate what 

can be learnt by the proposed CNN. The region in the heat maps which has large value 
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indicates the ROI (region of interest) learnt by the deep neural network. It is observed that 

the trained deep neural network can effectively discover the region where the seams are 

deleted by learning from the seam carved copies, while irrelevant regions are learnt from 

the non-seam carved images. This also illustrated the effectiveness of the proposed CNN 

architecture on detecting seam carving. 

 

Table 3.1. The Performance of Proposed CNN Architecture and The State-of-the-Art [23, 

25, 34], on Detecting 12 Seam Carving Cases 
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Figure 3.4  The ROC curves and their corresponding AUC curves. 
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Figure 3.5  Heat maps. 

 

Images in the first column illustrate the ground truth of carved seams in the original 

images with the carving rate equal to 5%. Heat maps in the second column are learnt from 

the original non-seam carved images by the proposed CNN, while heat maps learnt from 

the seam carved copies are shown in the third column. 
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3.5 Summary 

In this chapter, a convolutional neural network architecture has been established and 

utilized for seam carving detection. It is the first deep learning framework on this research 

topic as far as we know. Indicated by experimental results, the proposed deep learning 

method can successfully detect seam carving in uncompressed digital images and 

outperform the state of-the-art in most of the experiments. In particular, the proposed deep 

convolutional neural network has achieved remarkable performance on detecting low 

carving rate cases, i.e., 5% and 10% carving rate cases. The performance of deep neural 

network on detecting seam carving in compressed images, i.e., JPEG images, needs to be 

further investigated. Therefore, the future work will be focusing on the remaining 

questions. Overall, through our work, it has been shown that deep learning could be a new 

direction for the forensic research on seam carving detection. 
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CHAPTER 4  

 

REAL‑TIME ESTIMATION FOR THE PARAMETERS OF GAUSSIAN 

FILTERING VIA DEEP LEARNING 

 

4.1 Introduction 

Intelligent devices and internet have made the digital images abundant and ubiquitous. It 

used to be difficult to edit or tamper with digital images by professional software, but in 

the last few years the cost and complexity of doing so have plummeted. Even the mobile 

devices now are equipped with powerful computational capability. Digital images can be 

easily edited or tampered just by using smart phone Apps instead of professional software. 

Usually, the forged images are difficult to be recognized by human eyes. Therefore, the 

authenticity of digital images may be suspicious. Digital image forensics [40–43] technique 

aims to verify the authenticity of digital images without the original source. Just like the 

other research area in information security such as privacy preserving [44, 45] and 

information hiding, they are all important to keep our community safe. 

Digital images can serve as medium to carry information by displaying contents to 

human eyes. On the other hand, it can be also employed to carry hidden information. Words 

or even another image can be implanted into an image secretly without making any 

alternation. This technique is called as steganography [46, 47]. It could be dangerous if it 

is used by criminals or terrorists. Therefore, steganalysis [48], as a technique to detect the 

hidden information in images is crucial. Other than revealing forgeries or hidden messages 

in digital images, in image forensics, it is also important to completely understand the 

editing history of images to protect the integrity of images. Under such requirements, all 

possible manipulations occurred during the image forming history need to be verified. It 
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could also serve as supplement to tampering detection in many cases. This is the reason 

many forensics researchers dedicate themselves into the works to detect certain 

manipulations. The digital forensics has been an active research field of information 

security techniques and still has a prospect future. 

So far, a lot of successful digital image forensics works have been reported in the 

past, such as tampering detection [49, 50], camera model identification [51, 52], 

enhancement detection [53–55], double JPEG compression [56–58] and so on. In image 

forensics, filtering operation plays an import role of image post-process. The verification 

of trace left by different filters [59–61] could provide sufficient evidence for further 

identifying the process of history. As a typical linear filter, Gaussian low-pass filter is 

widely utilized to eliminate noise and smooth images. These characters have been used for 

anti-forensics method [62, 63]. An image could be forged to hide the trace of copy and 

paste [64] by blurring the dis- continuities at the border of tampered objects. Median filter 

has the similar property to Gaussian low-pass filter; however, fewer works focus on 

Gaussian low-pass filter detection relative to median filter detection. 

Perfect binary classification accuracy has been achieved for detection of Gaussian 

low-pass filter. Xu et al. [65] used the frequency residual function to detect Gaussian low-

pass filtered images. In [66], the authors created feature vectors formed from both spectral 

and spatial domain to detect Gaussian low-pass filter. However, only a few research could 

detect the exact parameters of Gaussian low-pass filters. In [60], Boroumand and Fridrich 

detect the window size and standard deviation of different Gaussian filters from processing 

history of images. In their work, they detect four types of Gaussian low-pass filter, 

including window size 3 with standard deviation 0.5 and 1, window size 5 with standard 
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deviation 0.5 and 1. It is still a challenge to estimate the exact parameters of more different 

types of Gaussian low- pass filtering. 

Except to refine the performance of forensics method from the aspect of accuracy, 

the other point scientists always mentioned is the computation speed. In the modern world, 

the smart devices are the most convenient tool for people to acquire and process new 

information. It is undoubtedly crucial to develop algorithms as real-time application for 

mobile devices. For such category as real-time application, in image forensics, other than 

validation accuracy, the computation speed is also a key element. It requires the algorithms 

to process data and make precise decisions immediately to assist people in real-time [67]. 

Unfortunately, little work has been done for the research of image forensics in real- time. 

As far as we can tell, the scientists were focusing on the validation accuracy over 

computation speed. However, it is believed that enabling algorithms towards the 

application in real-time is a potential prospective direction in forensics research. More and 

more scientists on image forensics are now paying attention to the application of image 

forensics in real-time to serve our community in realistic world. 

Therefore, in  this work, we  focus on  estimating the parameters of different types 

of Gaussian low-pass filtering in real-time. We propose a convolutional neural network 

(CNN) that is able to detect different types of Gaussian low-pass filtering in an extreme 

short time to serve as a real-time forensics tool. The CNN has been proved to be   a useful 

tool for digital image forensics [68–71]. Conventional machine learning method such as 

support vector machine (SVM) [72] classify images based on handcraft features [73–75] 

extracted from images. However, there are limitations for handcraft features, as learning 

feature and classification are separate steps. Thus, these two steps cannot be optimized 
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simultaneously. Also, the manually extracted features may restrain the classification 

performance as it is fixed. Compared with these shallow machine learning methods, CNN 

is born with a superiority for classification. It is able to learn features and process 

classification automatically [76–78]. Besides, through back propagation, the classification 

results can be used to further optimize the procedure for feature extraction. 

On the other hand, estimating the parameters of various types of Gaussian low-pass 

filtering is more difficult than just distinguishing the Gaussian low-pass filtered images 

from raw images. The Gaussian blur can be generated after the image is processed by 

Gaussian filter. The Gaussian filtered images can be easily distinguished from the original 

images by detecting the effect of Gaussian blur even with the traditional shallow linear 

classifier. However, if both images are processed by Gaussian filter, the traditional method 

to differentiate them may fail because Gaussian blur can be found in both of them. The 

only method can solve this problem is to estimate the intensity of Gaussian filter, in other 

words, to estimate the parameters applied in Gaussian filtering. The CNN with more 

powerful classification ability seems to be an idea candidate. What’s more, a pre-trained 

CNN model is capable to analyze the given data quickly. The decision can be made 

immediately, that also makes it a perfect tool for real-time estimator. 

Thus, we design a specific CNN architecture for estimating the parameters of 

Gaussian low-pass filtering in real-time. The experimental results demonstrate our method 

could successfully evaluate the parameters of different Gaussian low-pass filters. Besides, 

the model is also efficient in computation speed which makes it suit- able to serve as a real-

time application. Some discussions are made as a guidance to build a proper CNN structure 

that can achieve a balance point in computation accuracy and computation speed to deal 
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with the given problem in real-time. 

The rest of this chapter is organized as follows. Section 2 introduces the theoretical 

concept of Gaussian low-pass filter. Our proposed method is explained in Section 3. The 

experimental results and analysis appear in the fourth section. Then the summary is 

concluded in the last section. 

 

4.2 Gaussian Filter 

In image processing, Gaussian low-pass filter is widely used as a smoothing tool to remove 

noise or to produce Gaussian blur. The high-frequency component of an image will be 

eliminated by Gaussian filter. Thus, the noise with high-frequency components can be 

removed. The Gaussian blur is also welcomed in certain images to produce a pleasant view. 

Such as human facial or portrait images, the Gaussian filter can be used to remove wrinkles 

and freckles that is popular in social network. Gaussian smoothing also plays an important 

role in computer vision. It is an effective pre-processing stage to enhance image structures 

at different scales. 

The Gaussian low-pass filtering uses a Gaussian function to calculate the 

transformation to apply to each pixel in the image. The Gaussian function in one dimension 

has the forms that displayed in the equation below. 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

(−
𝑥2

2𝜎2)
                                                  (4.1) 

where the 𝜎 represents standard deviation of the Gaussian distribution. Figure 4.1 

shows an example of one-dimensional Gaussian distribution curve with standard deviation 

of one. 

In two dimensions, the Gaussian function is expressed as: 
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𝑓(𝑥) =
1

𝜎22𝜋
𝑒

(−
𝑥2+𝑦2

2𝜎2 )
                                              (4.2) 

where x is the distance from the origin in the horizontal axis, y is the distance from 

the origin in the vertical axis. Figure 4.2 shows a two-dimensional Gaussian distribution 

curve. 

 

 

Figure 4.1  One-dimensional Gaussian distribution curve with standard deviation of 1. 
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Figure 4.2  Two-dimensional Gaussian distribution curve. 

 

The Gaussian low-pass filtering can be denoted by the expression below: 

𝐺(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) × 𝐻𝐺(𝑢, 𝑣)                                        (4.3) 

where G is the frequency response of the filtered images, F represents the original 

images, and HG stands for the transfer function of Gaussian low-pass filter. When applied 

in digital image processing, the Gaussian function will create a convolution kernel with 

values correspond to Gaussian distribution from the center point. Based on theory analysis, 

the Gaussian distribution is non-zero everywhere, meaning that the convolution kernel will 

be infinite large. Note that, in most cases, we apply single dimension Gaussian distribution 

to process images. The default window size is fixed to 3. That leaves the 𝜎 to be the only 

adjustable parameters for Gaussian filtering. Theoretically, 𝜎 can be any positive numbers. 

The larger of 𝜎, the intense Gaussian blur effect can be achieved. However, in practice, the 
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values at a distance of more than three standard deviation from center could be considered 

effectively zero because they only have a marginal effect. In other words, the Gaussian 

filters with larger standard deviation can be considered as homogeneous that is meaningless 

for analysis. The 𝜎 are recommended to be no larger than the window size. Therefore, we 

could ignore the values out of that range and focus on the effective standard deviation only. 

After a Gaussian filter kernel has been created, the Gaussian low-pass filtering can 

be implemented by using convolution method to the original image. Every pixel’s new 

value is calculated by weighted average of that pixel’s neighborhood. The original pixel 

has the heaviest weight. The further away from the original pixel, the smaller weights are 

set for the neighboring pixels. Consequently, the filtered image looks smoother but still 

preserves boundaries and edges. The degree of smoothing is determined by the standard 

deviation of Gaussian function. As we discuss the Gaussian distribution above, a larger 

standard deviation needs a larger convolution kernel in order to achieve a better filtering 

performance. Figure 4.3 displays an image that has been filtered by three different Gaussian 

low-pass filters. 
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Figure 4.3  The effect of Gaussian blur: an original image; b Gaussian filtered image with 

window size 3 and standard deviation 1; c Gaussian filtered image with window size 3 and 

standard deviation 3; d Gaussian filtered image with window size 5 and standard deviation 

1. 

 

As shown in Figure4.3, with increasing standard deviation, the filtered image will 

be more blurred compared to the original images. In another aspect, a large window size 

may also bring a more obvious Gaussian blur. However, it is difficult to distinguish 

between any two of Figure 3b–d visually. Therefore, we cannot infer the exact Gaussian 

low-pass filter for each filtered image. To deal with this problem, we propose a CNN 

structure to identify different Gaussian low-pass filters. Next section will introduce our 

proposed method. 
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4.3 Proposed Method 

Deep learning has a prosperous and successful development in recent years. Most deep 

learning methods are based on the neural networks which can be considered as a simulation 

to biological brain. Among all the neural networks, convolutional neural network (CNN) 

attracts most attention because of its amazing achievements. It is widely applied in variety 

fields to analyze data, such as object recognition, natural language processing, 

bioinformatics and so on. In our work, we employ it to solve the problem of approximately 

estimating the parameters of Gaussian filtered images. 

A typical convolutional neural network consists of different types of layers. These 

layers are essential part of CNN. How to organize a proper CNN structure is the key to 

solve problems. Here, we introduce the proposed architecture. Figure 4.4 illustrates the 

overall architecture of our CNN. 

The data layer, as the entrance of the network, controls the input data and makes 

necessary modification such as scaling or cropping to dataset. In our experiment, raw 

images are directly fed into the CNN without any modification in data layer. 

After the fundamental processing of data layer, the vision layers are applied to 

produce feature images from original images. The most representative vision layers are 

convolutional layer and pooling layer. In fact, convolution and pooling can be regarded as 

the most important function in a neural network to learn and process features from images. 

To be more specific, the convolutional layer could be considered as a set of feature 

extractors. It is composed of multiple filters. The filters are randomly created in the 

beginning and will be updated in CNN with the self-learning procedure. These filters are 

convoluted with the input data to the layer to generate the filtered output. Each filter can 
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generate a feature map, respectively. Therefore, the output of a convolutional layer are sets 

of arrays called feature maps. Each feature map represents a feature extracted from the 

input images. Generally, the filters in each convolutional layers increases with the network 

going deeper. In our structure, we set the numbers of filters doubles when moving to the 

next convolutional layer. In the shallow level of the network, the output of convolutional 

layer can be always found to be edges or texture of image contents which represent the 

intuitionistic features of objects. However, with the network going deeper, there are higher-

order features that makes no sense for human eyes. These deeper features as well as the 

shallow features serve as the key for classification. 

 

 

Figure 4.4  Proposed CNN architecture. 

 

With several convolutional layers set in a network, considering there are multiple 

filters in each layer, the data size of generated feature map could be substantial. It requires 
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a lot of extra time to process that is not necessary. That is why the pooling layer is applied 

in neural network after convolutional layer. That is, to subsample the feature maps to 

decrease the feature dimension. It is also efficient to prevent overfitting. The down-

sampling strategy can be chosen from ‘average’ and ‘maximum’ for pooling layer. The 

average pooling is widely used in computer vision for object or motion recognition. 

Generally speaking, the average pooling computes for the average value of all pixels in 

feature block to represents the given block while the maximum pooling employs the 

maximum intensity found in the block. The maximum pooling is more suitable for digital 

forensics with no details omitted. Hence, the maximum pooling is applied for all pooling 

layer in our network 

In most cases, the trunk of a convolutional neural network is composed with 

multiple pairs of convolutional and pooling layers. A network with more vision layers is 

considered to be deeper that has a relative strong learning ability. However, in CNN, strong 

learning ability does always lead to exceptional performance. The phenomenon of over-

fitting occurs when a strong network is adopted to solve a simple problem. When the 

network is overfitted, it cannot classify the images properly following the original purpose. 

For instance, when overfitting happens, a network designed for tampering detection may 

try to classify images by the objects in images that may suffer a failure for tampering 

detection. Hence, in order to avoid this phenomenon, the vision layers are selected with 

proper amounts to solve problems of different levels. Considering the classification for 

Gaussian filtered images is a challenging problem, we employ 6 pairs of convolution and 

pooling layers. 

Other than the vision layers referred above, there is also the activation layer which 
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is crucial for CNN. It is always placed behind the convolution layer but before pooling 

layer. The activation layer brings nonlinear property into feature extracted by convolution 

layer, that is a brilliant function for classification. Comparing with the traditional linear 

only classifier, the classifier with both linear and nonlinear property is more suitable for 

classification, especially for multiple labels classification. It has been proved by many 

machine learning scientists. Until now, many activation functions are proposed to solve 

different problems. However, among these options, there are three basic forms which can 

be considered as classic activation functions, the Sigmoid, the ReLU and TanH. They can 

be described with the functions below, respectively. They are also illustrated in Figure 4.5 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥                                                 (4.4) 

𝑓(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 ≥ 0

                                                    (4.5) 

𝑇𝑎𝑛𝐻(𝑥) =
𝑒𝑥−e−𝑥

𝑒𝑥+𝑒−𝑥                                                     (5.6) 

 

Figure 4.5  Sigmoid, ReLU and TanH functions. 
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Observed from Function 4.4, the output of sigmoid function is 1 when the input is 

close to positive infinite. And when the input is close to negative infinite, the output of 

sigmoid is 0. Consequently, the gradient of loss function tends to be 0 if default input is 

close to positive or negative infinite. This may bring in some issues to the CNN. In 

optimization stage, the strategy based on analyzing gradient of loss function, such as 

stochastic gradient descent, is preferred. Gradient of 0 may cause saturation which makes 

the network can hardly learn anything from the input data. Other than that, the output range 

of Sigmoid is between 0 and 1 which may also bring difficulty for optimization. It is nearly 

abandoned in recent years. 

Instead, the ReLU layer is more popular as the choice for activation. From 

Function4.5, ReLU is simpler, the output remains the same if the input is larger than 0. 

Otherwise, the output is fixed to 0. It is computational efficiency and friendly for 

optimization. However, the ReLU layer is also sensible to the learning rate. It is vulnerable 

if the learning rate is high. 

The TanH function is shown in Function4.6. It is a morph of Sigmoid function. 

However, the mean of TanH is 0 and the output range for TanH is between 1 and −1. This 

can be helpful for optimization. The ReLU activation has no upper threshold while the 

TanH activation has two thresholds. This property helps to cancel the propagation of 

dynamic range over layers. Thus, overflow could be prevented during the training phase 

and testing phase. Besides, it has been verified to be a hardware friendly method. 

Considering all the elements, TanH is chosen for the first two convolution stages in our 

proposed method, the ReLU is chosen for the rest to boost the computation speed. It is a 

tradeoff strategy between performance and computation burden. Another layer that needs 
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to be mentioned is batch normalization layer. Before this layer is introduced in CNN, it is 

highly possible that overfitting could occur because the self-learning ability of CNN is not 

controllable. 

 Although the overfitting can be prevented by applying drop-out layer to stop certain 

neurons, it also limited the self-learning ability of the CNN. Besides, the images fed into 

CNN are strictly controlled that all images must present the designated feature clearly. This 

high level of requirement is really difficult in data collecting procedure. With the batch 

normalization, the learning ability of CNN are controlled to concentrate on designated 

features. That makes collecting data more easily. Besides, it is no longer necessary to drop 

out neurons that the computation speed is also boosted. That is the reason we place batch 

normalization layer after each convolutional layer. 

There are also layers in different categories to serve different purposes in our 

networks. The inner product layer also known as fully connected layer, is responsible to 

connect all the feature extracted from previous layers for classification. It also serves as a 

consultant for the entire network to decide what and how to learn from the input data. It is 

located after the last pooling layer in network. The SoftMax with loss layer is utilized to 

evaluate the performance of the network. It is placed at the end of the entire network as 

exit. Considering our goal is to identify images filtered with different parameters regardless 

of the image content, a scale layer is built with batch normalization layer after the first 

convolution layer to normalize the shallow feature learned in first convolution layer. 

Besides, an absolute value layer is also applied here to boost the performance of 

normalization. The network can reach convergence sooner with the assistance of the 

absolute layer. In the next section, we evaluate the proposed CNN in variety circumstances 
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for analyzing Gaussian filtering. 

 

4.4 Experimental Results and Analysis 

Given the fact that it requires large amount of data to boost the performance of CNN in 

training procedure, the BOSS image dataset [79] is selected to conduct our experiment. It  

consists of 10,000 grayscale images in the format of pgm. Since we only care for the effect 

of Gaussian filtering, the grayscale images are acceptable for our experiment. The size of 

input images is fixed to 512 × 512 without scaling or cropping in data layer. 

The parameters that can control the smoothing effect through Gaussian filter are 

the window size h and the standard deviation 𝜎 . In certain cases, it is not difficult to 

distinguish the images with Gaussian blur from the other images even for human eyes. 

However, it is impossible for human eyes to distinguish the vision effect brought by 

different parameters. Hence, our experiment is designed to estimate the parameters applied 

in Gaussian filtered images based on h and 𝜎. 

First of all, before the network is used as a real-time estimator, we want to give an 

attempt for binary classifications to see if it can distinguish the images with different 𝜎 

when only two standard deviations are applied. The discrimination of Gaussian filtered 

images and original images is also simulated here. In this stage, 6 groups of images are 

prepared by passing through Gaussian filters with the window size fixed to 3, while the 

standard deviation varies from 0.5, 1, 1.5, 2, 2.5 and 3. 0.5 is always applied for denoising 

as pre-processing while the filtered images are nearly the same when 𝜎 is larger than 3. 

Another group is prepared as original image that is untouched from any manipulation. For 

each group, 9000 random images are picked as training set while the rest 1000 images serve 
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as validation set. For each step in current stage, two groups are chosen for classification by 

our proposed method. The results can be found in Table 4.1. Similarly, we can also test the 

classification ability of proposed method when windows size is fixed to 5. When the 

window size is extended to 5, the boundary of standard deviation is also increased to 5, as 

discussed in Section4.2. Hence, the standard deviation 𝜎 = 5 is also included. The related 

results are shown in Table 4.2. Afterwards, we conduct another experiment to check if our 

proposed method is capable to differentiate the images smoothed by Gaussian filter with 

different window size when standard deviation is fixed. The result is shown in Table 4.3 

From all the tables above, the proposed network is able to distinguish the Gaussian 

filtered images with different parameters. Besides, a larger 𝜎 is helpful to identify the 

window size. However, in order to be functional as an estimator rather than classifier, it 

requires our proposed network can distinguish more than two groups of images. The 

nonlinearity brought by activation functions in CNN makes it a perfect tool for multi-label 

classification. Therefore, in the second stage of our experiment, we employ all groups of 

images with window size either 3 or 5 to estimate the standard deviation that applied. The 

standard deviation is also picked from [0.5, 1, 1.5, 2, 2.5, 3]. The accuracy for estimation 

is shown in Table 4.4. 

 

Table 4.1  Binary Classification Accuracy for Different Standard Deviations when 

Window Size is 3 
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Table 4.2  Binary Classification Accuracy for Different Standard Deviations when 

Window Size is 5 

 

 

 

Table 4.3  Classification Accuracy for Window Size 3 and 5 when Standard Deviation is 

Fixed 

 

 
 

 

Table 4.4  Estimation for Standard Deviations under Different Window Sizes 

 

 
 

The estimation can reach accuracy over 97% for different window sizes that can be 

considered as a success. The performance of the proposed CNN is illustrated in Figures 4.6 

and 4.7. We can see our proposed CNN start to converge after about 30 epochs and reach 

the convergence after about 60 epochs. 

Furthermore, in order to serve as an estimator towards Gaussian filtering, our 

method should evaluate both window size and standard deviation simultaneously. Hence, 

images processed by all kinds of h and are fed into CNN together for this experiment. 
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Besides, we also want to test the performance of proposed CNN architecture with different 

pooling method as we discussed in Section 4.3. The comparison is made between two  

pooling strategies as displayed in Table 4.5. 

 

 

Figure 4.6  Performance of proposed CNN for window size 3 based on count of epoch. 

 

 

Figure 4.7  Performance of proposed CNN for window size 5 based on count of epoch. 

 

Table 4.5  Estimation Accuracy for Same Model with Different Pooling Methods 
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From the results, it is apparent that the maximum pooling outperforms the average 

pooling as we assumed. In order to accurately analyze the texture in images, the maximum 

pooling is recommended while the average pooling is more suitable to get a brief view of 

objects in images. Other than that, it is easier to reach convergence for maximum pooling 

during our experiments. Therefore, the maximum pooling is verified as the best pooling 

strategy in our proposed methods 

Besides the pooling, how to determine the depth of the CNN model can be also a 

critical problem in designing for CNN architecture. Generally speaking, the depth D of a 

CNN model is decided by the amount of convolutional layer applied. Here, in our 

experiment, we choose four models with depth equal to 5, 6, 7 and 8 for comparison. The 

results are reported in Table 4.6. 

 

Table 4.6  Estimation Accuracy for Models with Different Ds 

 

 
 

Based on the estimation accuracy, it is quite clear that when 7 convolutional layers 

are applied, the CNN model can reach the highest accuracy of 96.95% that outperforms all 

the other models. In most forensics research, D will be simply set to be 7 to acquire the 

most precise accuracy. 

However, as referred in prior, another important point we have to mention is the 

computation speed of the proposed method. Including the consideration for estimation 

accuracy, computation speed is also a decisive component to make the proposed method 

to be a real-time tool. Hence, at last, we evaluate the computational efficiency to verify if 
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the proposed method qualifies to be employed in real-time scene. It requires the proposed 

method to be able to process large amount of data as soon as possible. Here, the time 

consumed to estimate the Gaussian parameter for 1000 images can be used as a 

measurement towards such purpose. The time consumption for 4 models with different 

numbers of convolutional layers on same computer with Caffe [38] on GPU GTX 1080ti 

are displayed in Table 4.7. 

 

Table 4.7  Time Consumption for Models With Different Ds to Analyze 1000 Image 

 

 
 

From the above table, it is quite obvious that more convolutional layers bring in 

more computation burden. Although the model with D to be 7 has the best estimation 

accuracy, it also takes more time for computation than the models with less convolutional 

layers. It is quite difficult to judge the performance of models from the above two tables. 

Hence, if the estimation accuracy is the major concern, we recommend the model with 7 

convolutional layers. On the other hand, the model with 6 convolutional layers, or even the 

model with D = 5 are trade of models if it is required to complete the estimation sooner. 
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4.5 Summary 

In this chapter, we proposed a method for real-time estimation of the parameters applied 

for Gaussian filtered images. This method is designed based on multiple labels 

classification ability of convolutional neural networks. The overall performance of the 

proposed method was evaluated by our experiments. Based on the data acquired and 

discussion, the designed network is able to reach high estimation accuracy in a short time 

that qualifies to serve as a real-time estimator. Some discussions are also made to evaluate 

the model with different amount of convolutional layers to satisfy different needs. 

There are also some other thoughts summarized from this work. At first, the 

forensics research was concentrating on detecting the trace of designate manipulation. The 

detector was always designed to be a binary classifier. However, it is also important to 

distinguish the images even they are processed with same manipulation. With more 

information dug from images, it will help us to analyze the image more thoroughly. It is 

demanded if we want to completely understand the history of a given image. Gaussian filter 

is the one of the most common editing manipulations, we want to start with it as a break 

point to design estimator in image forensics for different purposes. 

CNN has already been proved by many scientists to be a powerful tool to identify 

images with differences. In our work, we have proved that CNN can even distinguish 

images with minor differences, considering the only difference in our images is the 

Gaussian parameter. It is believed that there is still much potential we can explore from 

CNN and deep learning. 

The training procedure for CNN models takes a lot of time and requires large 

amount of data. In order to makes it a real-time tool, the CNN models are always pre-
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trained with fixed dataset to skip the training procedure. However, if the test image can be 

also immediately employed by CNN as a training set after validation, it can surely deliver 

a positive impact to optimize the CNN model. Hence, it is supposed to develop the model 

if it is dynamic during the real-time procedure. 

Another point to enhance the CNN model as real-time tool is to boost the 

convergence speed. If a model can reach convergence with far less epochs, there is no need 

to employ pre-trained model against real-time issues. Besides, such model is capable to be 

trained in real-time towards different problems. It would be amazing if such technique can 

be developed. 

Although we can understand how CNN works, what happens within it still remains 

a mystery. Unlike the features extracted in shallow layers, the higher order features make 

no sense for human eyes. Based on the reports of CNN, these deeper features are the key 

element of the powerful classification ability of CNN. It could be more interesting if we 

can establish a connection between these deeper features and real images. 
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CHAPTER 5 

DIGITAL IMAGE FORENSICS BY USING PROTOTYPICAL NETWORKS 

 

Digital image forensics investigates the anomalous patterns that might result from image 

manipulation. Over the past several years, machine learning techniques are successfully 

applied to the detection of image forgeries as a result of the extraordinary growth of 

machine learning. Convolutional Neural Networks (CNN) are frequently used in digital 

image forensics. A CNN model could distinguish original images from a certain kind of 

tampering images. However, when presented with a new image forgery detection task, each 

CNN model must be trained from scratch. Additionally, certain types of tampered image 

data are challenging to acquire or simulate. 

Meta-learning is an alternative learning paradigm in which a machine learning 

model gains experience across numerous related tasks and uses this experience to improve 

its future learning performance. Few-shot learning is a method for acquiring knowledge 

from few data. Inspired by meta-learning and few-shot learning, we apply the proposed 

prototype networks to two image forgery detection tasks in this chapter. One is the 

detection of images with Gaussian filtering, while the other is the detection of images with 

average filtering. Our prototype networks do not need to be trained from scratch for a new 

task, unlike a traditional CNN model. Additionally, it drastically reduced the amount of 

images required for training. Our results reveal that the accuracy of the proposed method 

for two digital image forensics tasks is relatively high. 
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5.1 Introduction 

In numerous fields, artificial intelligence (AI) has achieved remarkable progress [80-83]. 

The use of artificial intelligence is nearly ubiquitous in our daily lives. Due to the 

advancement of modern technology, artificial intelligence is playing an ever-increasing 

role in business and industry. These accomplishments have relied primarily on the fact that 

the development of these complicated models of artificial intelligence necessitates massive 

amounts of data. However, we will not always be able to construct a dataset from such a 

vast quantity of data. There are two novel concepts to generate machine learning model to 

solve this problem. 

Few-shot learning [83, 84] or N-way learning is the process of learning from few 

data, where N represents the number of dataset classes and k denotes the quantity of data 

in each dataset class. For instance, we want to classify cats and dogs in our dataset. There 

are two data classes named cats and dogs. Two classes could be represented as 2-way. Each 

time we train the model with 5 images per class. Here, 5-shot refers to five images per class. 

Now, we can state that this is a 2-way 5-shot classification task. 

A typical example of few-show learning in the real world is drug discovery. For the 

purpose of determining which drug poses the least risk to patients, medical researchers 

attempt to identify the beneficial features of test pharmaceuticals. In [85], H Altae-Tran et 

al utilized one-shot learning to drug discovery under low data constraint. Also, Few-shot 

learning advantages machines. It makes machine learning similar to human learning. Some 

research focuses on the implementation of few-shot learning on robots, such as one-shot 

imitation [86], multi-armed bandits [87], visual navigation [88], and continuous control 

[89].  
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Another concept is called meta-learning. Generally speaking, meta-learning is 

described as “learning to learn”. It doesn’t learn how to complete a specific task. It 

successively learns to solve many tasks. It will utilize its prior learning experience to lean 

the new tasks. It gradually improves at learning new tasks one by one. Typically, experts 

in machine learning divide meta learning into three categories: learning the metric space 

[90, 91], learning the initializations [92, 93] and learning the optimizer [94, 95]. Combined 

these two ideas, a machine learning model is designed for learning to learn from few data.  

Another concept is called meta-learning. Generally speaking, meta-learning is 

described as “learning to learn”. It doesn’t learn how to solve a specific task. It successively 

learns to solve many tasks. It will use the previous learning experience to lean the new 

tasks. It becomes better at leaning new tasks one by one. Usually, machine learning 

scientists categorize meta-learning into the following three types: learning the metric space 

[90, 91], learning the initializations [92, 93] and learning the optimizer [94, 95]. Combined 

these two concepts, a machine learning model is design for learning to learn from few data.  

Meta-learning is comprised of two steps: meta-training and meta-testing. The 

standard training set and testing have different names in meta-learning. The training set is 

referred to as the meta-training query set or meta-testing query set depending on application 

stage. Similar to training set, testing set is also referred to as meta-training query-set or 

meta-testing query-set. Meta-learning has evolved into a framework for few-shot learning. 

Figure 5.1 depicts the configuration of the meta-learning for few-shot image classification 

[96]. Each meta-training or meta-testing task is a few-shot learning task. 
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Figure 5.1  Meta-learning set-up for few-shot image classification. 

 

In recent years, digital image forensics has drawn the interest of numerous scholars. 

It focuses on validating the authenticity of information associated with digital images. 

Nowadays, digital images could be easily edited or tempered just by using an application 

on a smart phone. To change digital images with high-performance image editing software 

such as Photoshop, no professional skills are required. Due to this, digital image forensics 

is now more crucial than ever before. 

In the last few years, machine learning approaches to digital image forensics have 

grown rapidly [97-99]. One of the major machine learning approaches is convolutional 

neural networks (CNN). Detection of various filtering operations is a subfield of digital 

image forensics, since filtering operations are widely used to edit images. Both the 

Gaussian filter and the average filter are frequently used to remove noise and smooth 

images. Thus, many researchers pay attention to detect Gaussian filtering and average 

filtering in images. Some publications to detect Gaussian filter[100] and average filter [101] 

have proved CNN could be a valuable tool for digital image forensics. 
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In prior studies on CNN-based Gaussian filtering and Average filtering detection, 

thousands of images are fed to train CNN. Also, every CNN-based model could only 

determine one certain filter. When a CNN model is applied to two or more similar tasks, it 

must be fine-tuned to adapt to each task. Thus, even though these two filters have the 

similar effects on images, a CNN model cannot work perform optimally for both tasks 

without fine-tuning.  

In this chapter, we propose a prototypical networks model to detect Gaussian 

filtering and average filtering. It is a few-shot learning model based on meta-learning 

framework. The novelty of our work is twofold. We detect Gaussian filtering and average 

filtering both in a same prototypical networks model. In this model design, fine-turning is 

no longer necessary Also, we use far less images to train our model. The experimental 

results denominate our model could obtain high accuracies on both tasks. 

The rest of this chapter is organized as follows. In Section 5.2, the theoretical idea 

of prototype networks is introduced. Section 5.3 explains how to prepare dataset. Section 

5.4 illustrates how to design CNN as an embedding function for prototypical networks. 

And our experimental results are presented in section 5.5. 

 

5.2 Prototypical Networks 

Prototypical networks [90] are simple but efficient few-shot learning algorithm. A 

prototypical network attempt to learn the metric space to make classification. The 

fundamental concept underlying prototypical networks is to compute a prototypical 

representation of each class based on an embedding function 𝑓∅( ) . The embedding 

function can be any function that has the ability to extract features, such as convolutional 
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neural networks(CNN) and long-short term memory networks(LSTM). Then prototypical 

networks could make classification based on the distance between every class prototype 

and the data’s embeddings.  

As the embedding function in our prototypical networks, convolution neural 

networks are designed. The training and testing process for prototypical networks differs 

from that of conventional CNN but is otherwise identical. Figure 5.2 depicts our 

prototypical networks architecture.  

 

 

Figure 5.2  Proposed Prototypical networks. 

 

The workflow of prototypical networks is shown below: 

1. We have a support-set which contains N classes labeled data, comprising  

𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛, 𝑦𝑛)} where 𝑥𝑖 ∈ ℝ𝐷  is D-dimensional 

feature vector of an example and 𝑦𝑖 ∈ {1,2, … , 𝑛} is the corresponding class 

label. There are k samples in each class.  

 

2. The query-set contains samples from the same N classes. Every class has Q 

samples in it.  

 

3. We use episodic training. In each episode, prototypical networks are trained 

on support set S and test on query set Q. prototypical networks aim to 

classify 𝑁 × 𝑄 query data into N classes. 
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4. CNN work as an embedding function 𝑓∅(𝑥𝑖): ℝ𝐷 →  ℝ𝑀 with learnable 

parameters ∅ , to compute each data’s embedding. By the end of CNN 

extract each data’s M-dimensional features, these features constitute each 

data’s embeddings. After we have the embeddings for each data in support 

set S, we can calculate the class prototype of each class. 𝑆𝑛 is a group of 

examples labeled with class 𝑛. For a certain class, the average value of all 

data’s embeddings under this class is its class prototype: 

𝒄𝑛 =  
1

|𝑆𝑛|
∑ 𝑓∅(𝒙𝑖)(𝑥𝑖,𝑦𝑖)∈𝑆𝑛

                                               (5.1) 

 

5. Similarly, we calculate the data’s embeddings in query set.  

 

6. We calculate the Euclidean distance, 𝑑: ℝ𝑀 × ℝ𝑀  → [0, +∞), between a 

query data’s embeddings and the class prototypes. Classification will be 

performed to a query data by finding its nearest class prototype. 

 

7. We predict a query data’s class by a probability function, 𝑝∅((y =  n|x) 

based on a SoftMax over distance to the prototypes in the embedding space: 

 

𝑝∅((y = n|x) =
exp (−𝑑(𝑓∅(𝑥),𝑐𝑛))

∑ exp (−𝑑(𝑓∅(𝑥),𝑐𝑛))𝑛
                                      (5.2) 

 

Since we have n classes, we will have n probabilities. The query data belong 

to the class which has the highest probability.  

 

8. We compute the loss function 𝑗(∅) = −log [𝑝∅((y = n|x)].Then we use 

the Adam optimizer to minimize the loss: 

 

 

5.3 Preparation for the Dataset 

5.3.1 Gaussian Filter and Average Filter 

In digital image processing, Gaussian filtering and average filtering are typically used to 

remove image noise and blur detail. They are straightforward, intuitive, and simple to 

implement methods to smooth images. To utilize these two filters on an image, we firstly 

define the size of window W, which determines determine the range of filtering operation. 

The dimensions are typically odd numbers, such as 3 × 3 or 5 × 5. The value of each pixel 

is replaced by all the values in the kernel. 
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For average filter, the size of filter is the only one parameter that must be specified. 

For Gaussian filter, the standard deviation 𝜎 is another important parameter. Consequently, 

the filtering result produced by a Gaussian filter will be affected from both the window size 

and standard deviation 𝜎. Functions of Gaussian filtering and average filtering are shown 

in Function 3 and Function 4 respectively. Where M is the total number of pixels in the 

kernel N. Figures 5.3 and 5.4  provide instances of Gaussian filtered and average filtered 

images. 

𝐺(𝑥, 𝑦) =
1

𝜎22𝜋
𝑒

(−
𝑥2+𝑦2

2𝜎2 )
 

………………….(3) 

 

ℎ[𝑖, 𝑗] =
1

𝑀
∑ 𝑓[𝑥, 𝑦]

(𝑥,𝑦)𝜖𝑁

 

                (4) 

 

 

 
Figure 5.3  Gaussian filtered images with different window sizes and standard deviation. 

 

 

 
Figure 5.4  Average filtered images with different window sizes. 
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5.3.2 Creating Support-set and Query-set 

The objective of meta-training is to train prototypical networks with good classification 

performance. All images in meta-training step are not applied any filtering operation. We 

use an miniImageNet [103] dataset for meta training classification. This dataset comprises 

100 classes images sampled from ILSVRC-20 [104]. It splits to 64, 16, 20 classes as 

training, validation, and testing set respectively. In each class, there are 600 images of size 

84 × 84.We construct our meta-training support-set from its 64 classes training set. In each 

meta-training episode, we randomly sample 5 classes from 64 classes. In these 5 classes 

images, we then sample 5 images per class to generate the meta-training support-set and 5 

different images per class to build the meta-training query-set. This randomly sampling 

process is repeated at the beginning of each meta-training episode. Therefore, in each meta-

training episode, the input support-set and query-set are 5 different images per class. Each 

meta-training task is a 5-way 5-shot classification task.  

After meta-training step, the prototypical networks could make classification with 

a good accuracy. But we do not focus on this accuracy. Because the prototypical networks 

will continuously update during the meta-testing step. The classification accuracy in meta-

testing step is what we must pay attention to. 

For the meta-testing step, we use two datasets: Boss1.01[105] and Oxford-IIIT Pet 

[106]. Boss 1.01contains 10000 images includes size of 512 × 512. And Oxford-IIIT Pet 

has 37 categories dogs and cats with roughly 200 images for each class. Images in Oxford-

IIIT Pet do not have a common image size. Since in the meta-training step, we utilize 

images with size of 84 × 84, here we need to resize all images in Boss 1.01 and Oxford-

IIIT Pet appropriately to the size of 84 × 84. Images used in meta-testing step must have 
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the same size of images as those used in meta-training step. Otherwise, they are 

incompatible with prototypical networks. 

The proposed prototypical networks are design to distinguish filtered images from 

original images. The idea of original images means these images have not been applied for 

any manipulation. We prepare two filtering operations. The first one is the Gaussian 

filtering and the second one is the average filtering. Our first experiment aims to recognize 

Gaussian filtered images from original images. Then, we try to classify average filtered 

images from original images. In meta-testing step, our proposed prototypical networks will 

perform binary classification instead of 5-class classification in meta-training step.  

In the first experiment, images are filtered by three different Gaussian filters. The 

parameters that control the Gaussian filtering result are the widow size W and the standard 

deviation 𝜎. There are three groups of images are prepared by passing through Gaussian 

filters with widow size of 3 and standard deviation of 0.5, widow size of 5 and standard 

deviation of 1, widow size of 7 and standard deviation of 1.5 respectively. Each group 

contains 200 Gaussian filtered images. At the end, we have three groups of various 

Gaussian filtered images in Boss 1.01 and Oxford-IIIT Pet dataset separately. Now we can 

create our meta-testing tasks. We totally have 6 meta-testing tasks. Three tasks created in 

Boss 1.01 and three tasks crated in Oxford-IIIT Pet. For each meta-testing task, we have 

two classes labeled images: Gaussian filtered images and original images. We randomly 

sample 5 images per class to build the meta-testing support-set and 5 different images per 

class to build the meta-testing query-set. Each meta-testing task is described as a 2-way 5-

shot classification task.   

In the second experiment, similarly, we create six average filtering datasets. The 
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only difference is the filtering operation. At this stage, images undergo an average filtering 

procedure. There is only one parameter influence the average filtering effect alone. That is 

the widow size of an average filter. We prepare three different average filters. Their 

window sizes vary from 3 × 3, 5 × 5 and 7 × 7. We develop six 2-way 5-shot meta-testing 

tasks to discern between the average filtered image and the original image. 

In some previous digital image forensic research[100, 102], only using Boss1.01 

dataset could prove their CNN models have good performance for their experimental 

purposes. In our experiment, we were also able to test our prototypical networks only on 

Boss 1.01. However, to strengthen the argument that our prototypical networks approach 

the idea of learning to learn from few examples, we test out model on additional dataset. 

Although the Oxford-IIIT Pet dataset is not commonly used for digital image forensics, it 

compensates for Boss 1.01's shortcomings. The majority of Boss 1.01’s images are 

landscapes. They lack a prominent item in the center of an image. Even some central 

objects such as people or car are obscure. These landscape image will be very blur after 

filtering operation. It is challenging to distinguish any distinct item in an image. In contrast, 

images of cats and dogs in Oxford-IIIT Pet always have a clear central object. After 

performing filtering operation, we could still recognize the profile of a cat or dog. Boss 

1.01 and Oxford-IIIT Pet contains two completely different styles of images. Our 

experiential results indicate that the proposed prototypical networks have good 

performance on both two datasets.  
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5.4 Designing the Convolutional Neural Networks as an Embedding Function 

Convolutional neural networks have a good performance in processing tasks related to 

images. Convolutional neural networks take advantage to extract complex statistics and 

learn high levels features from datasets. Convolutional neural networks have demonstrated 

its successful applications in many research and commercial fields, such as image and 

video recognition, image classification, and self-driving system. 

The key to the performance of any machine learning algorithm is to extract 

important features from datasets. Convolutional neural networks can automatically learn 

features from raw data. Earlier layers extract low-level features from input data. Low-level 

features will transform into high-level features throughout the operations of convolutional 

neural networks. The subsequent layers, such as the fully connected layers, will then utilize 

these features for prediction. Combining low-level features to form higher-level features is 

referred to as feature hierarchy. 

Designing an effective embedding function  𝑓∅(𝑥𝑖) is the most crucial stage in 

building prototypical networks. As the embedding function in our experiment, 

convolutional neural networks (CNN) are utilized. In prototypical networks, each class 

prototype generated from meta-data embeddings is an expression of the class at a high level 

rather than a collection of labelled data. 

The layers of a typical convolutional neural networks model comprise of many 

types. These layers are crucial components of convolutional neural networks. Figure 5.3 

depicts the general structure of our CNN. 
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Figure 5.5  Proposed CNN architecture. 

 

 

The input layer is the network's entrance. It evaluates whether the input image's 

dimensions match those we specify. Height, breadth, and channels denote the dimensions 

of an image's input. An RGB color image consists of three channels. A greyscale image 

has only one channel. In TensorFlow, the number of channels is one of the image 

dimensions. When inputted into CNN, all images must have identical dimensions. The 

TensorFlow program will generate errors if images with varying dimensions are input. 

Only the Boss 1.01 dataset contains grey images, while the other three datasets we utilized 

have color images, so we must convert color images to grey images before feeding them 

into CNN. Since we are mainly interested in how prototypical networks classify images 

rather than recognizing objects in an image, grey images are appropriate for our 

experiment. In addition, Boss 1.01 is widely utilized in digital image forensics; therefore, 

to validate our proposed prototypical networks, we must test our model on this dataset. 

In CNN, the convolutional layer has the most important function for extracting 

feature maps. It consists of numerous filters. These filters have their own learnable 

parameters. The initial values of filter parameters were generated at random, and they will 

be updated during the training procedure. Our CNN architecture is composed of two 

convolutional layers. The first comprises 64 filters, while the second includes 128 filters. 
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Each filter has a window size of 3 × 3. 

Typically, the number of convolutional layers determines the CNN's depth. 

However, the performance of a network with more convolutional layers may not be 

outstanding. When a complicated network is applied to solve a simple problem, overfitting 

will occur. In addition, the dimensions of feature maps are typically less than those of the 

input images. When an input image passes through multiple convolutional layers, feature 

maps with reduced dimensions are formed at the end of the final convolutional layer. How 

to determine the final dimensions of feature maps depends greatly on the specific problems. 

Training complex networks is always time-consuming. According to our experiments, 

increasing depth will not improve the precision of experimental results. In the proposed 

prototypical network, constructing two convolutional layers could achieve a balance 

between time and performance. 

Batch normalization is a standard procedure in CNN construction. Batch 

normalization could make CNN training more stable and efficient. In our CNNs, we add a 

batch normalization layer following the convolutional layer. 

CNNs require an activation layer as well. It is always following the convolutional 

layer but precedes the pooling layer. The activation layer imparts nonlinear properties to 

the extracted features via the convolution layer. A classifier with both linear and nonlinear 

properties will be more suitable for classification, particularly for classification of several 

classes. There are three classic activation functions, the Sigmoid, the ReLU and TanH 

which are commonly use in CNNs. Choosing an appropriate activation function for each 

activation will significantly impact the precision of an experiment. In our experiment, 

Leaky ReLU brings the best performance compared with other two classic activation 
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functions. Figure 5.4 illustrates the RuLu and Leaky ReLU functions. 

 

Figure 5.6  RuLu and Leaky ReLU functions. 

 

 

RuLU(x) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 ≥ 0

                                                  (5.3) 

 

Leaky RuLU(x) = {
𝛼𝑥, 𝑥 ≤ 0

𝑥, 𝑥 ≥ 0
                                            (5.4) 

 

 

Leaky Relu is a variant of ReLU. Instead of being 0 when x<0, a leaky ReLU allows 

a small, non-zero, constant gradient α. From Function 5.3 and Function 5.4, we can find 

that Leaky ReLU could keep more information from features, especially useful for features 

with a lot of negative values. The constant gradient α is set to 0.2 in our experiments. 

Pooling layers decreases the dimensionality of feature maps, which results in 

increased computational efficiency. Also, smaller dimensions of feature maps assist 

prevent overfitting. Average pooling and max pooling are the two basic down-sampling 

methods. In our experiments, we choose max pooling in every pooling layer. The window 

size of max pooling determines the scope of application of max pooling operation. It will 

calculate the maximum value within the range of the window size. We set 3 × 3 max 

pooling in both two pooling layers 
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After the last max pooling layer, CNN has finished extracting feature maps from 

the input images. These feature maps construct an image’s embeddings. We then calculate 

the average value of all embeddings in one class. That is the prototype to represent one 

class of images. 

 

5.5 Experimental Results 

Systematic experimentation is a crucial component of applied machine learning. The 

essential experimental environment settings are arranged as below: 

1. Jupyter Notebook 

2. TensorFlow 1.15 

3. Python 3.6.13 

4. NVIDIA GeForce RTX with Max-Q Design 

How to build support-sets and query-sets in meta-training and meta-testing steps 

are introduced separately before in section 5.3. In the meta-training step, all the meta-

training tasks are 5-way 5-shot tasks. We use miniImageNet dataset in this step. We set 10 

epochs and each epoch contains 100 episodes for training. After meta-training step, the 

proposed prototypical networks model could achieve an accuracy of approximately 60% 

for 5-class classification. The accuracy in this range is good enough for few-shot learning 

algorithms applied on miniImageNet dataset. That indicates that our proposed prototypical 

networks model is already capable of classification. A solid meta-training accuracy lays 

the groundwork for further meta-testing.  

In meta-testing step, the best advantage of prototypical networks is that when feed 

new class data which was unseen in previous meta-training step, the parameters 
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continuously update to accommodate the new data. In other words, when input new data 

to prototypical networks, it does not need to learn from sketch. Also, we do not need fine-

tuning operation when we input new data. That is the most difference from training a 

traditional convolutional neural network with new data. 

In the meta-testing step, we intend to train our proposed prototypical networks to 

distinguish filtered images from original images. All the meta-testing tasks are 2-way 5-

shot tasks. In this step, we set 500 episodes for training.  

The proposed prototypical networks are initially constructed to classify Gaussian 

filtered images from original images.  We train and test our model on Boss 1.01 and 

Oxford-IIIT Pet datasets respectively. The small letter w represents the window size of a 

Gaussian filter. And the character 𝜎  represents standard deviation. The experimental 

results are show in Tables 5.1 and 5.2. 

 

Table 5.1  Binary Classification Accuracy for Detection of Different Gaussian Filtered 

Images from Original Images in Boss 1.01 

 

 Dataset: Boss 1.01 

Gaussian Filter w:3 × 3 

𝜎: 0.5 

w:5×5 

𝜎:1 

w:7×7 

𝜎:1.5 

Accuracy 84.64% 85.98% 86.76 % 

 

Table 5.2  Binary Classification Accuracy for Detection of Different Gaussian Filtered 

Images from Original Images in Oxford-IIIT Pet 

 

 Dataset: Oxford-IIIT Pet 

Gaussian Filter w:3 × 3 

𝜎: 0.5 

w:5×5 

𝜎:1 

w:7×7 

𝜎:1.5 

Accuracy 85.00% 85.2% 86.75% 

 

It can be observed that the accuracy of binary classification could reach 

approximately 85%. Only using 5 images per class in a signal episode to train the 
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prototypical networks could reach fairly good experimental results. Training traditional 

CNN usually need prepare thousands of images. Our model totally only needs 400 images 

to train in meta-testing step. The proposed prototypical networks require significantly less 

images for training. Even our model are feed data from different sources, it could achieve 

relevant accuracy.   

Then we conduct another experiment to test if our proposed method is capable to 

differentiate the average filtered images from original images. We just repeat the meta-

training stage and then proceed to the meta-testing step. Similarly, we train our model on 

two datasets separately. Various window size of average filters could lead to different 

filtering effects. Tables 5.3 and 5.4 are our experimental results. 

 

Table 5.3  Binary Classification Accuracy for Detection of Different Average Filtered 

Images from Original Images in Boss 1.01 

 

 Dataset: Boss 1.01 

Average Filter w:3 × 3 w:5×5 w:7×7 

Accuracy 85.56 % 85.22 % 82.38% 

 

Table 5.4  Binary Classification Accuracy for Detection of Different Average Filtered 

Images from Original Images in Oxford-IIIT Pet 

 

 Oxford-IIIT Pet 

Average Filter w:3 × 3 w:5×5 w:7×7 

Accuracy 83.50 % 84.44% 84.64% 

 

We can find that the accuracy could still reach to approximately 85%. We simply 

replace the input images from Gaussian filtered images to average filtered images. We do 

not need fine-tuning also. The fact that our proposed prototypical networks can tackle a 

variety of digital image forensics tasks despite varying datasets demonstrates their 

adaptability. 
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5.6 Summary 

The meta-learning framework for few-shot learning is based on the principle of learning to 

learn with few data. Thanks to the development of meta-learning and few-shot learning, 

these novel machine learning models could be applied to a variety of tasks and achieve 

satisfactory accuracies. In addition, training these new types of machine learning models 

requires far less data.  

In this chapter, we present a prototypical networks model for different digital image 

forensics tasks. Without a complicated neural network design, our model could classify 

Gaussian filtered and average filtered images from original images with high accuracy. 

From the perspective of datasets, our experiments demonstrate that the proposed 

prototypical networks have the flexibility to classify filtered images with high accuracies 

on different datasets. When utilizing datasets from different sources, there may be some 

limitations. For example, images have various sizes or channels.  These constraints from 

datasets may require more consideration in future work. 
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CHAPTER 6 

CONTRIBUTION AND FUTURE WORK 

 

6.1 Major Contributions 

In this dissertation, methods based on machine learning are used to address digital picture 

forensics challenges. In the first chapter, the history of neural networks is briefly discussed. 

From perceptrons to today's complex neural networks, neural network development has 

been a tremendous success. The second chapter describes the fundamental mathematical 

processes of neural networks. The convolutional layer, pooling layer, and activation layer 

are thoroughly analyzed. 

In Chapter 3, a convolutional neural network architecture is developed and applied 

to the detection of seam carving. It is the first deep learning framework on this study issue. 

Experimental results demonstrate that the proposed deep learning method can successfully 

detect seam carving in uncompressed digital images and outperforms the state-of-the-art in 

the majority of research. In many instances, the experimental results indicate that the 

detection accuracy can approach 99%. In particular, the proposed deep convolutional 

neural network has demonstrated good performance in recognizing situations with low 

seam carving rates. 

In Chapter 4, we propose a method for real-time estimation of Gaussian filtered 

image parameters. This method is based on the capability of convolutional neural networks 

to classify multiple classes. Experiments were conducted to assess the overall effectiveness 

of the proposed method. Based on the data and discussion, the proposed network is capable 

of achieving high estimating accuracy quickly, allowing it to serve as an parameters 
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estimator in real time. 

In Chapter 5, we provide a prototypical networks model for various digital image 

forensics tasks. Our model could detect Gaussian filtered and average filtered images from 

original images without requiring a complex neural network architecture. In terms of 

datasets, our experiments show that the proposed prototypical networks can classify 

filtered images with good accuracies on a variety of datasets. 

 

6.2 Limitations 

Convolutional neural networks have seen tremendous success in recent years. The structure 

of neural networks is becoming increasingly complicated. Convolutional neural network 

models with more than 100 layers are available. Parallel architectures are also used in some 

convolutional neural network models. 

 Complex structures are not designed in neural network models in this dissertation. 

Even if simple neural network structures are sufficient for our studies. More complicated 

neural network structures, on the other hand, deserve consideration. 

 Also, the data source also has an impact on the experimental results. Only images 

from a signal dataset are used in some of the experiments in this dissertation. Testing 

images from various sources aids in the improvement of neural network model 

performance. 

 

6.3 Future Research 

Image manipulation is becoming more accessible. Ordinary individuals can now easily 

modify images without the need for professional skills. Image detection techniques that 
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work today may no longer be applicable in the future. As a result, image detection 

technology must be constantly updated. In the future research, More complicated neural 

network structures will be designed. In addition, more datasets will be tested in a neural 

network model. Thus, a neural network model could be effective for future digital image 

forensics tasks. 
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