
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

8-31-2022

Digital image forensics via meta-learning and few-shot learning Digital image forensics via meta-learning and few-shot learning

Yuxi Shi
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Shi, Yuxi, "Digital image forensics via meta-learning and few-shot learning" (2022). Dissertations. 1628.
https://digitalcommons.njit.edu/dissertations/1628

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1628?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1628&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DIGITAL IMAGE FORENSICS VIA

META-LEARNING AND FEW-SHOT LEARNING

by

Yuxi Shi

Digital images are a substantial portion of the information conveyed by social media, the

Internet, and television in our daily life. In recent years, digital images have become not

only one of the public information carriers, but also a crucial piece of evidence. The

widespread availability of low-cost, user-friendly, and potent image editing software and

mobile phone applications facilitates altering images without professional expertise.

Consequently, safeguarding the originality and integrity of digital images has become a

difficulty. Forgers commonly use digital image manipulation to transmit misleading

information. Digital image forensics investigates the irregular patterns that might result

from image alteration. It is crucial to information security.

Over the past several years, machine learning techniques have been effectively used

to identify image forgeries. Convolutional Neural Networks(CNN) are a frequent machine

learning approach. A standard CNN model could distinguish between original and

manipulated images. In this dissertation, two CNN models are introduced to recognize

seam carving and Gaussian filtering.

Training a conventional CNN model for a new similar image forgery detection task,

one must start from scratch. Additionally, many types of tampered image data are

challenging to acquire or simulate.

Meta-learning is an alternative learning paradigm in which a machine learning

model gets experience across numerous related tasks and uses this expertise to improve its

future learning performance. Few-shot learning is a method for acquiring knowledge from

few data. It can classify images with as few as one or two examples per class. Inspired by

meta-learning and few-shot learning, this dissertation proposed a prototypical networks

model capable of resolving a collection of related image forgery detection problems.

Unlike traditional CNN models, the proposed prototypical networks model does not need

to be trained from scratch for a new task. Additionally, it drastically decreases the quantity

of training images.

DIGITAL IMAGE FORENSICS VIA

META-LEARNING AND FEW-SHOT LEARNING

by

Yuxi Shi

A Dissertation

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Helen and John C. Hartmann

Department of Electrical and Computer Engineering

August 2022

Copyright © 2022 by Yuxi Shi

ALL RIGHTS RESERVED

APPROVAL PAGE

DIGITAL IMAGE FORENSICS VIA

META-LEARNING AND FEW-SHOT LEARNING

Yuxi Shi

Dr. Mengchu Zhou, Dissertation Advisor Date

Distinguished Professor of Electrical and Computer Engineering

New Jersey Institute of Technology

Dr. Yun-Qing Shi, Dissertation Co-Advisor Date

Professor Emeritus of Electrical and Computer Engineering

New Jersey Institute of Technology

Dr. John Carpinelli, Committee Member Date

Professor of Electrical and Computer Engineering

New Jersey Institute of Technology

Dr. Edwin Hou, Committee Member Date

Professor of Electrical and Computer Engineering

and Associate Dean of Academic Affairs

New Jersey Institute of Technology

Dr. Xuan Liu, Committee Member Date

Associate Professor of Electrical and Computer Engineering

New Jersey Institute of Technology

Dr. Frank Shih, Committee Member Date

Professor of Computer Science

New Jersey Institute of Technology

vi

BIOGRAPHICAL SKETCH

Author: Yuxi Shi

Degree: Doctor of Philosophy

Date: August 2022

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,

 New Jersey Institute of Technology, Newark, NJ, 2022

• Master of Science in Electrical Engineering,

 New Jersey Institute of Technology, Newark, NJ,2017

• Bachelor of Science in Electrical Engineering,

 Guangdong University of Technology, Guangzhou, P. R. China, 2013

Major: Electrical Engineering

Presentations and Publications:

Ding, F., Shi, Y., Zhu, G., & Shi, Y. Q. (2020). Real-time estimation for the parameters of

Gaussian filtering via deep learning. Journal of real-time image processing, 17(1), 17-27.

Ding, F., Shi, Y., Zhu, G., & Shi, Y. Q. (2019). Smoothing identification for digital image

forensics. Multimedia tools and applications, 78(7), 8225-8245.

Ye, J., Shi, Y., Xu, G., & Shi, Y. Q. (2018, October). A convolutional neural network based

seam carving detection scheme for uncompressed digital images. In International

workshop on digital watermarking (pp. 3-13). Springer, Cham.

Song, W., Wang, H., Zhang, X., Xia, J., Liu, T., & Shi, Y. (2022). Deep-sea Nodule

Mineral Image Segmentation Algorithm Based on Pix2PixHD. Computers, materials &

continua, 73(1), 1449–1462.

Song, W., Dong, L., Zhao, X., Xia, J., Liu, T., & Shi, Y. (2022). Review of Nodule Mineral

Image Segmentation Algorithms for Deep-Sea Mineral Resource Assessment. Computers,

materials & continua, 73(1), 1649–1669.

vii

To my mother Lin Bai and my father, Hongyan Shi

viii

ACKNOWLEDGMENT

Looking back the last five years, it is a meaningful journey in my life. First of all, I want

to appreciate Prof. Yun Q. Shi. Prof. Shi took a lot of time to guide me through my Ph.D.

program. I am grateful for all his assistance at this time. Also, I would like to express my

gratitude to Prof. Mengchu Zhou. I am really pleased to have his help to overcome

difficulties in my study. Without their guidance and encouragement, I could not have

completed my Ph.D. dissertation.

In addition, I am so very thankful to my committee members: Prof. Xuan Liu, Prof.

Prof. John Carpinelli, Prof. Edwin Hou and Prof. Frank Shih. Their insightful and

instructive suggestions made my dissertation better.

Thank you also to the Department of Electrical and Computer Engineering for their

teaching assistantship support.

Then I would like to thank all faculty members in Department of Electrical and

Computer Engineering. They are always willing to provide help for students with patience.

Chatting with Prof. Cong Wang is a delightful experience.

Thanks should also go to my best friend Dr. Zhangyi Shen. It was an unforgettable

and enjoyable time we spent together in the past years.

I would be remiss in not mentioning my parents. I could not have undertaken this

journey without their understanding and support. Their belief in me has kept my spirits and

motivation high during this process.

ix

TABLE OF CONTENTS

Chapter

Page

1 GIVING COMPUTERS THE ABILITY TO LEARN FROM DATA....................

1

 1.1 A Brief History of Neural Networks..

1

 1.2 Hardware Development amid Machine Learning...

5

 1.3 Essential Development Tools for Machine Learning...

8

 1.3.1 Python: The Most Popular Programming Language................................

9

 1.3.2 Machine Learning Framework: Caffe..

14

 1.3.3 Machine Learning Framework: TensorFlow..

17

 1.4 Summary..

21

 1.5 Outline of Dissertation...

21

2 A ROADMAP FOR BUILDING CONVOLUTIONAL NEURAL

NETWORKS..

22

 2.1 Foundational Math behind Artificial Neural Networks.....................................

22

 2.2 Building Convolutional Neural Networks...

28

 2.2.1 Feature Hierarchies of CNN..

28

 2.2.2 Common Layers Used for Building CNN...

33

 2.3 Summary..

38

3 A CONVOLUTIONAL NEURAL NETWORK BASED SEAM CARVING

DETECTION SCHEME FOR UNCOMPRESSED DIGITAL IMAGES...............

39

 3.1 Introduction..

39

 3.2 Background of Seam Carving..

41

x

TABLE OF CONTENTS

(Continued)

Chapter

Page

 3.3 Proposed CNN Architecture.. 43

 3.4 Experimental Results...

48

 3.5 Summary..

53

4 REAL‑TIME ESTIMATION FOR THE PARAMETERS OF GAUSSIAN

FILTERING VIA DEEP LEARNING...

54

 4.1 Introduction..

54

 4.2 Gaussian Filter...

58

 4.3 Proposed Method...

63

 4.4 Experimental Results and Analysis..

69

 4.5 Summary..

75

5 DIGITAL IMAGE FORENSICS BY USING PROTOTYPICAL NETWORKS...

77

 5.1 Introduction..

78

 5.2 Prototypical Networks..

81

 5.3 Preparation for the Dataset...

83

 5.3.1 Gaussian Filter and Average Filter...

83

 5.3.2 Creating Support-set and Query-set..

85

 5.4 Designing the Convolutional Neural Networks as an Embedding Function.....

88

 5.5 Experimental Results...

92

 5.6 Summary.. 95

6 CONTRIBUTION AND FUTURE WORK...

96

 6.1 Major Contributions..

96

xi

TABLE OF CONTENTS

(Continued)

Chapter

Page

 6.2 Limitations..

97

 6.3 Future Research...

97

REFERENCES...

.

99

xii

LIST OF TABLES

Table Page

1.1 Relationship between Data, Tensor and Rank...

19

3.1 The Performance of Proposed CNN Architecture and the State-of-the-At [23,

25,34], on Detecting 12 Seam Carving Cases...

50

4.1 Binary Classification Accuracy for Different Standard Deviations when

Window Size is 3..

70

4.2 Binary Classification Accuracy for Different Standard Deviations when

Window Size is 5..

71

4.3 Classification Accuracy for Window Size 3 and 5 when Standard Deviation is

Fixed..

71

4.4 Estimation for Standard Deviations under Different Window

Sizes...

71

4.5 Estimation Accuracy for Same Model with Different Pooling

Methods...

.

72

4.6 Estimation Accuracy for Models with Different Ds..

73

4.7 Time Consumption for Models with Different Ds to Analyze 1000 Image........

74

5.1 Binary Classification Accuracy for Detection of Different Gaussian Filtered

Images from Original Images in Boss 1.01...

93

5.2 Binary Classification Accuracy for Detection of Different Gaussian Filtered

Images from Original Images in Oxford-IIIT Pet..

93

5.3 Binary Classification Accuracy for Detection of Different Average Filtered

Images from Original Images in Boss 1.01...

94

5.4 Binary Classification Accuracy for Detection of Different Average Filtered

Images from Original Images in Oxford-IIIT Pet..

94

xiii

LIST OF FIGURES

Figure

Page

1.1 Basic structure...

2

1.2 A basic structure of multilayer perceptron contains three layers........................

3

1.3 A typical distributed computing system..

6

1.4 A basic parallel computing system...

7

1.5 IEEE Spectrum top programming languages 2021...

10

1.6 Python Google Trend index from Jan. 2011 to Jun. 2022..................................

10

1.7 An Example of Neural Networks Built with Caffe...

15

1.8 Caffe layer protocol...

16

1.9 TensorFlow Google Trend index from Nov. 2015 to Jun. 2022.........................

17

1.10 Partial Community-Supported platforms for TensorFlow..................................

18

1.11 Different types of data stored in tensors...

19

1.12 A simple graph built in TensorFlow program codes...

20

2.1 Three different types of machine learning..

23

2.2 A typical workflow of artificial neural networks.. 24

2.3 An ideal boundary line is made by z = 𝒘𝑻𝒙... 26

2.4 An ideal boundary line can never be made by z = 𝒘𝑻𝒙...................................... 26

2.5 An ideal boundary line is made by z = 𝒘𝑻𝒙 + 𝒃.. 27

2.6 A feature map extracted by convolutional layers.. 29

2.7 Input image, input matrix and kernel matrix... 30

2.8 Building input layer from an input image... 31

xiv

LIST OF FIGURES

(Continued)

Figure Page

2.9 An input layer connected to a convolutional layer.. 31

2.10 Extracting feature map by convolutional layer... 32

2.11 An example of max-pooling.. 34

2.12 An example of average-pooling.. 34

2.13 Sigmoid activation function.. 35

2.14 TanH activation function... 35

2.15 ReLU activation function.. 36

2.16 Gradient descent.. 37

3.1 (a) An original image from UCID with a size of 384×512. (b), (c) and (d) are

the resized copies of (a) with the same size of 384×411 but processed by

different scaling techniques respectively: (b) bilinear interpolation, (c)

cropping, (d) seam carving..

42

3.2 The proposed CNN architecture. Parametric setting of each layer is included in

the corresponding box...

45

3.3 Rectified linear unit (ReLU)... 47

3.4 The ROC curves and their corresponding AUC curves...................................... 51

3.5 Heat maps.. 52

4.1 One-dimensional Gaussian distribution curve with standard deviation of 1...... 59

4.2 Two-dimensional Gaussian distribution curve.. 60

4.3 The effect of Gaussian blur: an original image; b Gaussian filtered image with

window size 3 and standard deviation 1; c Gaussian filtered image with window

size 3 and standard deviation 3; d Gaussian filtered image with window size 5

and standard deviation 1..

62

4.4 Proposed CNN architecture..

.

64

xv

LIST OF FIGURES

(Continued)

Figure Page

4.5 Sigmoid, ReLU and TanH functions... 66

4.6 Performance of proposed CNN for window size 3 based on count of epoch..... 72

4.7 Performance of proposed CNN for window size 5 based on count of epoch..... 72

5.1 Meta-learning set-up for few-shot image classification...................................... 80

5.2 Proposed Prototypical networks.. 82

5.3 Gaussian filtered images with different window sizes and standard

deviation..

84

5.4 Average filtered images with different window sizes... 84

5.5 Proposed CNN architecture... 89

5.6 RuLu and Leaky ReLU functions... 91

1

CHAPTER 1

GIVING COMPUTERS THE ABILITY TO LEARN FROM DATA

1.1 A Brief History of Neural Networks

The use of artificial intelligence is nearly ubiquitous in our daily lives. Due to the

advancement of modern technology, artificial intelligence is playing an ever-increasing

role in business and industry. Artificial intelligence powers Google's sophisticated search

engine, Amazon's recommendation system, and Tesla's self-driving technology. There is

no doubt that artificial intelligence has made significant technological progress in recent

years.

It takes scientists a considerable amount of time to build artificial intelligence. In

his book The Organization of Behavior, published in 1949, Donald Hebb developed a

model of brain cell interaction. Based on their excitation, Hebb's model summarizes his

beliefs on how neurons interact with one another. This is the most fundamental theory for

artificial neural networks in existence today.

Arthur Lee Samuel of IBM created a checkers-playing computer software in the

1950s. Even on an IBM commercial computer, memory is quite restricted at the time.

Samuel utilized the algorithm presently known as alpha-beta pruning. He created a scoring

function. It recorded the locations of every piece on the board and computed the probability

of victory for both sides. The computer's next move is determined using a minimax

strategy, which subsequently developed into the minimax algorithm. The computer

software optimizes the value of its scoring function, presuming that its opponent would

attempt to do the same for its next step.

2

In his time, Samuel popularized the terminology "machine learning." His checkers-

playing program was the first self-learning program to be effective. His efforts indicate the

potential for artificial intelligence to attain human levels.

Frank Rosenblatt at the Cornell Aeronautical Laboratory developed the perceptron,

a binary classification method, in 1957. It was initially implemented as software for the

IBM 704. A five-ton IBM 704 computer could detect images based on its original idea.

There was just one layer in Rosenblatt's perceptron, but current neural networks include

millions. The perceptron principle laid the groundwork for contemporary deep learning and

neural networks.

Figure 1.1 Basic structure of a perceptron.

Following are the major components of a perceptron:

1. Input: Here, x is the feature value and n is the total number of features. The input

vector for a perceptron is [x1,x2,x3...xn].

2. Weights: Weight must be multiplied by the input feature's value. We assign starting

values to the weights, which will be updated throughout the training process. The

3

weight vector is denoted as [w1,w2,w3…wn].

3. Weighted Sum: Multiply each feature's value xn by its corresponding weight wn .

We denote the weighted sum as ∑ 𝑥𝑖𝑤𝑖 for every i in [1,2,3......n].

4. Activation Function: Typically, activation function is a nonlinear function used for

nonlinear regression and nonlinearly separable classification problems.

5. Output: The output of Perceptron is the predicted output depending on the input

feature. It aids the perceptron in updating the values of the weights.

Multilayer perceptron (MLP) was discovered in the 1960s. With three or more

layers, major breakthrough is possible. It has a far greater capacity for learning than a single

perceptron. Multiple perceptrons are arranged in a layer. A minimum of three layers

comprise an MLP: an input layer, a hidden layer, and an output layer. MLP has complete

connectivity. This indicates that one node in one layer is connected to all nodes in the

following layer.

Figure 1.2 A basic structure of multilayer perceptron contains three layers.

4

A perceptron could only tackle problems of binary classification. Depending on its

activation function, an MLP is capable of doing both classification and regression. MLP

was a prevalent machine learning approach for speech recognition, picture identification,

and text translation in the 1980s.

In the past two decades, neural networks have captured the attention of more

scientists and researchers than ever before. Large-scale neural networks have evolved.

Applications in the real world concentrate mostly on image recognition, picture

segmentation, and speech recognition.

In 2011, the team led by Dan Ciresan developed multi-column deep neural

networks (MCDNN) [1] to win the final phase of the German traffic sign recognition

benchmark at the International Joint Conference on Neural Networks (IJCNN). It is the

only technique in this competition that exceeds human recognition by 99.46%.

AlexNet [2], which reached a top-five error rate of 15.3% in 2012, was a significant

development in the machine learning community. Network architecture depth is a

prerequisite for success. AlexNet consists of convolutional neural networks (CNN). The

first five convolutional layers of the architecture create feature maps. Some of them link to

layers with maximum pooling. The final three levels are fully-connected layers. The

complexity of CNN makes human-competitive performance achievable.

More and more scientists and researchers develop their neural networks with deep

architecture, inspired by AlexNet. AlexNet is regarded as one of the most significant

achievements in the field of deep learning research. According to Google Scholar, the

original publication has been referenced over 10,000 times as of 2022.

Google researchers developed GooLeNet, a 22-layer deep convolutional neural

5

network. It was presented in the ImageNet Large-Scale Visual Recognition Challenge

2014(ILSVRC14). It could accomplish computer vision tasks like image classification and

facial recognition. Microsoft Research Asia developed a CNN model with over 100 layers

in 2015. Its performance was superior to AlexNet and it won the 2015 ImageNet

competition. In the present day, CNN model such as ResNet [3] and DenseNet [4] may be

created with hundreds of layers.

1.2 Hardware Development amid Machine Learning

In the past, the computing capability of computers restricted the growth of machine

learning. When perceptron was successfully implemented for the first time on the IBM

704, the computer system consisted of vacuum tubes. In its day, the IBM 704 was regarded

as a highly dependable machine. However, every eight hours on average [5, 6] the IBM

704 failed. This was an essential program size restriction. Since the IBM 704 most likely

failed before program translation or compilation.

Today's computer machines are far more powerful than the IBM 704. Distributed

computing, parallel computing, and graphics processing units (GPU) are crucial

considerations. These cutting-edge technologies push the boundaries for machine learning.

Distributed computing is a subfield of computer science that investigates

distributed systems. The distributed system consists of groups of interconnected

computers. All computers have a basic objective for their work, yet can do distinct jobs.

Each computer has its own dedicated memory. They converse through the exchange of

messages. Thus, even if one computer experiences a problem with its assigned task, other

computers can continue to operate. A distributed computing system might tolerate

6

individual computer failure. This is a significant factor for the widespread use of distributed

computing in the commercial and industrial sectors.

Parallel computing refers to the processing of several calculations concurrently.

Frequently, a big computing work may be subdivided into smaller tasks, which can then

be solved concurrently. Conceptually, distributed computing and parallel computing have

certain similarities. There is an overall concept for classifying them. Using shared memory,

all processors in parallel computing might transfer information amongst themselves. Each

CPU in distributed computing has its own memory. A message exchange system allows

processors to send and receive messages. The structure of their network is typically

represented as a graph with one finite-state machine per node. Figures 1.3 and 1.4 illustrate

a typical distributed computing system and parallel computing system.

Figure 1.3 A typical distributed computing system.

7

Figure 1.4 A basic parallel computing system.

The most recent graphics processing units(GPU) are another crucial technology that

has grown to provide specific advantages for machine learning. Amid the rise of machine

learning, the GPU have become one of the most essential computer technologies. GPU are

extensively utilized in distributed and parallel computing for both personal and business

applications.

GPU were initially meant to speed 3D computer graphics processing. Over time,

GPU have gotten more programmable and are now able to produce more realistic

environments in games and media using improved lighting and shadowing algorithms.

Typically, machine learning demands a great deal of computer power. As the

complexity of deep learning algorithms increases, it takes longer to execute programs. A

model of neural networks may have more than 100 billion parameters. Training this type

of model is a time-consuming task.

Models of machine learning can be processed more quickly if all operations are

executed simultaneously rather than sequentially. So why are GPU gaining popularity?

Because GPU provide tremendous acceleration support for parallel processing of massive,

continuous input data. A GPU contains a huge number of cores, which leads to improved

parallel computation. In addition, GPU have a greater memory bandwidth, making them

appropriate for processing massive volumes of data. The most advanced GPU have far

8

larger buses and faster memory clock rates than any CPU (central processing unit) available

today. GPU are a specific type of hardware. The majority of image processing related

machine learning tasks, including as face recognition, image classification, and image

segmentation, are executed on GPU.

The quantity of data has been a significant factor in the rapid development of

machine learning in recent years. We live in an age where data is expanding at an

astounding rate. In several industries, including social media, healthcare systems,

businesses, etc., data collecting is commonplace. Regardless of the machine learning

technology, data plays an essential role. Instead of manually identifying patterns from vast

amounts of data, machine learning algorithms might discover insights and make

predictions. They are facilitating the effective transformation of data into knowledge.

1.3 Essential Development Tools for Machine Learning

Over the years, machine learning has developed from a theoretical concept to business

applications used in our daily life. Machine learning was considered by many as a complex

idea only for computer scientists. However, in recent years, machine learning has attracted

more attention from individuals outside the scientific research fields.

How to build a machine learning development environment on my personal

computer? What are the most popular development tools for machine learning? What

programming language should I learn? Every new beginner has these kinds of questions at

the first step. Because many development tools for machine learning are available today,

the choice of development tools is sometimes based on personal preference and economic

constraints.

9

Some essential development tools for machine learning will be introduced in this

secession. Evey development tool has been proven useful not only for individuals but also

for tech giants. We will begin with the programming language because this is the

foundation of machine learning tools. Then we will introduce two machine learning

frameworks used in this dissertation.

1.3.1 Python: The Most Popular Programming Language

Who uses Python today? Python was the top 1 in the IEEE Spectrum’s annual interactive

rankings of the top programming languages. According to the IEEE Spectrum, these

rankings are created by weighting and combining 11 metrics from eight sources:

CareerBuilder, GitHub, Google, Hacker News, the IEEE, Reddit, Stack Overflow, and

Twitter. Python is considered to be among the top 5 or 10 most widely used programming

languages today.

10

Figure 1.5 IEEE Spectrum top programming languages 2021.

Python has developed a large user base in the past ten years and gotten support from

active developers’ communities. From the Google Trend index, we can find Python was

becoming increasingly popular worldwide.

Figure 1.6 Python Google Trend index from Jan. 2011 to Jun. 2022.

0

20

40

60

80

100

120

Ja
n
-1
1

Ju
l-
1
1

Ja
n
-1
2

Ju
l-
1
2

Ja
n
-1
3

Ju
l-
1
3

Ja
n
-1
4

Ju
l-
1
4

Ja
n
-1
5

Ju
l-
1
5

Ja
n
-1
6

Ju
l-
1
6

Ja
n
-1
7

Ju
l-
1
7

Ja
n
-1
8

Ju
l-
1
8

Ja
n
-1
9

Ju
l-
1
9

Ja
n
-2
0

Ju
l-
2
0

Ja
n
-2
1

Ju
l-
2
1

Ja
n
-2
2

G
o

o
g

le
 T

re
n

d

Python: Worldwide

11

Python has demonstrated its value for companies across different fields. Not only

individual users benefit from Python. It has been a solid foundation to support commercial

applications. For instance, here are some well-known companies are applying Python to

their products and service:

1. Google uses Python in its web search system.

2. YouTube sharing service is largely written in Python.

3. Intel, Cisco, and IBM use Python for hardware testing.

4. JPMorgan Chase, and UBS apply Python to financial market forecasting.

5. NASA uses Python for scientific programming tasks.

And so on, the above companies are some representatives. We know Python is

popular for both individual users and commercial companies. Then the question is, how

does Python support machine learning studying? What are the main reasons for people to

use Python? Let’s focus on machine learning study and talk about more details behind

Python’s popularity.

Python is completely free and can compile and run on every major platform.

Individual users and business companies both take a lot of benefit from Python’s program

portability. A machine learning model is usually built on a personal computer or an online

cloud computing platform for an individual user. Below are the primary machine learning

development platforms:

1. Linux and Unix systems

2. Microsoft Windows

3. Mac OS

4. Amazon Web Service

12

5. Microsoft Azure

6. Google Cloud

Python could run unchanged and stable across the above major development

platforms. When running a Python program between local Windows and online cloud

computing platforms, a developer just needs to make a copy of code between machines.

We know that machine learning usually consumes a lot of computational power. When the

machine learning model becomes more complex, the individual user always has the famous

ran-out-of-memory error on a personal computer. It is impossible for everyone to invest in

expensive machines, specifically machine learning. At this moment, cloud computing

service is an easy solution to increase computational power. Today there are various cloud

computing service options for individuals and business companies. The price is also getting

more affordable.

Python comes with an extensive collection of prebuilt and third-party libraries. We

have talked about how Python has a lot of communities. They give strong support for

Python amid its development. One of Python fast grown use cases happens in scientific

computing. Today, Python is heavily used in numeric programming. However, it is not a

traditional domain for scripting languages. Compiled languages such as FORTRAN and

C++ dominated this field for a long time. Also, some professional tools like MATLAB

were widely used. Whatever may be a machine learning model, Python and numeric

libraries are an inseparable combination to build it. Here are some main machine learning

libraries used by Python developers:

1. NumPy

2. SciPy

13

3. Scikit-learn

4. Theano

5. TensorFlow

6. Keras

7. PyTorch

8. Pandas

9. Matplotlib

Among them, Scikit-learn has become the most popular Python machine learning

library. Scikit-learn supplies a wide range of support for supervised and unsupervised

learning algorithms. It also can be used for data mining and data analysis. The main

machine learning algorithms that the Scikit-learn library can process are classification,

regression, clustering, and dimensionality reduction.

TensorFlow or PyTorch is not just considered a Python machine learning library.

Most Python machine learning developers consider them two significant machine learning

frameworks. And Keras could run both as an API(application programming interface).

TensorFlow and PyTorch have flexible and stable architectures which can run on different

chips, including CPU, GPU, and TPU(tensor processing units)

Thanks to Python’s easy-to-use advantage, productivity cross platforms, and

efficient library support from communities, Python takes the leading role among machine

learning development tools. Then we will introduce two machine learning frameworks,

Caffe and Tensorflow.

14

1.3.2 Machine Learning Framework: Caffe

Caffe is an open-source deep learning framework. It was developed by the University of

California, Berkley AI Research [7]. There is a lot of open-source documentation available

on GitHub. It is widely used in the academic research project. It is written in C++ and has

better support from Python and MATLAB. Caffe

Caffe is a flexible machine learning framework for many different machine learning

models, especially supporting image classification and segmentation. Caffe could run on

both CPU and GPU. It has taken advantage of other tech giants’ assistance. Intel creates

CPU-based acceleration computational kernel library MKL. And NVIDIA builds GPU-

based cuDNN to improve the acceleration speed for GPU-based development environment.

Caffe has been more and more easily used by developers. It supports convolutional

neural networks(CNN), long short-term memory(LSTM), and fully connected neural

networks. In April 2017, Facebook updated Caffe to Caffe2. At the end of March 2018,

Caffe2 was merged into PyTorch.It is very convenient to build neural networks with Caffe.

We will explain the main inner architecture of Caffe using a simple neural networks

example. Figure 1.7 stands the neural networks built with Caffe.

15

Figure 1.7 An Example of Neural Networks Built with Caffe.

Neural networks are built from bottom to top with Caffe. The architecture of the

above neural networks is divided into four units. These terms are blob, layer, net, and loss.

Caffe uses blob to store and transmit data. The data shape is an N-D array. Training and

testing data, weights, and biases are all stored in blobs. The blob is also a bridge that links

CPU and GPU. The data from the CPU is loaded into the blob, which is then passed to the

GPU for computation. For large-scale data, LevelDB databases are used.

The layer is where computation happens in it. A set of layers and blobs connected

together would create a net. A blob passes a layer as input. Then the layer will generate the

corresponding output blob. Figure1.8 shows the layer protocol.

16

Figure 1.8 Caffe layer protocol.

A layer has the following operations, setup, forward pass, and backward pass. They

are three basic concepts of a layer. We will introduce them step by step:

1. Setup: It initializes the parameters in a layer for the first time training a machine

learning model. Caffe offers various layer setups, such as Convolution, Pooling,

and nonlinear activations.

2. Forward pass: Inputs are passed and correspondingly outputs are generated.

3. Backward pass: This step computes gradients of output.

The loss could be thought of as a special kind of layer. Loss is at the end of the

networks. Setting a suitable loss for a machine learning model is important because it

defines the model type. If the model is used to make binary classification, the loss needs to

be set to SoftMax with loss. For example, if the model is a regression model, we could use

Euclidean Loss. Caffe supplies various losses to satisfy different machine learning models.

17

Also, developers could write their loss function for their models.

1.3.3 Machine Learning Framework: TensorFlow

TensorFlow is a powerful machine learning framework. It is a free and open-source

software library. The Google Brain team developed TensorFlow. It was only used for

Google internal researchers. Then Google released TensorFlow to the public in November

2015. From Google Trend, we know that TensorFlow attracted incredible developers in the

following years.

Figure 1.9 TensorFlow Google Trend index from Nov. 2015 to Jun. 2022.

TensorFlow is a breakthrough in the machine learning framework. Why? Because

it develops amid the internet and mobile technology. TensorFlow works well with all

popular programming languages such as Python, C++, Java, R, and Go.

Previous machine learning frameworks, such as Caffe, provided inadequate support

for mobile computing platforms. According to the official TensorFlow GitHub account,

0

20

40

60

80

100

120

N
o
v-
1
5

M
ar
-1
6

Ju
l-
1
6

N
o
v-
1
6

M
ar
-1
7

Ju
l-
1
7

N
o
v-
1
7

M
ar
-1
8

Ju
l-
1
8

N
o
v-
1
8

M
ar
-1
9

Ju
l-
1
9

N
o
v-
1
9

M
ar
-2
0

Ju
l-
2
0

N
o
v-
2
0

M
ar
-2
1

Ju
l-
2
1

N
o
v-
2
1

M
ar
-2
2

G
o

o
g

le
 T

re
n

d

TensorFlow

18

TensorFlow might be constructed on a variety of platforms. Thus, developers may

construct TensorFlow on nearly all common platforms. That was previously impossible.

Frameworks for machine learning were restricted to personal computers and cloud

computing. However, TensorFlow may now be utilized for IoT (Internet of Things).

Consequently, machine learning has more extensive uses. New concepts emerge, such as

intelligent lighting and an intelligent outside camera.

Figure 1.10 Partial Community-Supported platforms for TensorFlow.

To use TensorFlow, it is important to clearly understand three major definitions.

They are tensor, graph, and session. All TensorFlow codes contain these three parts.

What exactly is a tensor? Tensor is the data structure used by TensorFlow programs

to represent all data types. Tensors could hold any type of information. A tensor is an array

19

with N dimensions. Different forms of scalar, vector, matrix, and high-dimensional array

could be turned into tensors. Rank is the unit of dimension used to define tensors. Tensors

may hold several forms of data, as described in Figure 1.10. The relationship between data

type, tensor, and rank is described in Table 1.1.

Figure 1.11 Different types of data stored in tensors.

Table 1.1 Relationship between Data, Tensor and Rank

Types of Data Tensor Rank

Scalar 0-D Tensor 0

Vector 1-D Tensor 1

Matrix 2-D Tensor 2

Tensors N-D Tensor N

20

The most unique aspect of TensorFlow is that its operations are represented by

graphs. The graph consists of a collection of nodes linked by edges. Nodes serve two

distinct purposes. A node is a location where one or more tensors are stored. A node could

also perform tensor operations such as convolution computation. The edges indicate the

movement of data. The best way to convey it is by a simple example. Suppose we want to

calculate the result of the function listed below:

𝑓(𝑎, 𝑏, 𝑐) = 𝑎𝑏 + 𝑐 + 1 (1.1)

Let's now construct a graph for this function. The graph shown in Figure 1.12 was

generated with TensorFlow program codes.

Figure 1.12 A simple graph built in TensorFlow program codes.

Tensorflow executes the graph operations. After constructing the graph, we can

initiate a session. A session places graph operations on hardware like CPU and GPU. The

majority of a session's execution depends on TensorFlow program codes. We will not go

into detail on how to write the codes here.

21

1.4 Summary

This chapter begins with a brief overview of the evolution of neural networks. From the

perceptron to the massive neural networks of today, the architecture of neural networks has

become progressively complex. The development of hardware and software aids machine

learning scientists in designing complicated machine learning models. Previously,

hardware limitations were a significant drawback that reduced computing capability.

Machine learning specialists may now deploy machine learning models using distributed

and parallel computing. Additionally, software that can be programmed is becoming more

user-friendly for both beginners and professional developers.

1.5 Outline of Dissertation

The remaining sections of this dissertation are formatted as follows: The second chapter

demonstrates how to construct a convolutional network model. The third chapter describes

the use of CNN models to detect seam carving operations on images. In Chapter 4, it is

demonstrated that a CNN model can recognize various Gaussian filtering processes applied

to images. In Chapter 5, a prototypical network model for detecting various Gaussian and

average image filtering processes is shown.

22

CHAPTER 2

 A ROADMAP FOR BUILDING CONVOLUTIONAL NEURAL NETWORKS

In earlier chapters, we presented a brief history of artificial neural networks and the

fundamental development tools for machine learning. Step-by-step instructions for

constructing convolutional neural networks are provided in this chapter.

In previous chapters, we have introduced the brief history of artificial neural networks and

the essential development tools for machine learning. In this chapter, we will discuss how

to build convolutional neural networks step by step.

2.1 Foundational Math behind Artificial Neural Networks

There are three different types of machine learning. They are supervised learning,

unsupervised learning, and reinforcement learning. Figure 2.1 summaries the differences

between them.

23

Figure 2.1 Three different types of machine learning.

The primary objective of supervised learning is prediction. Using labeled data, the

supervised machine learning model is trained. Then, upon training, the supervised machine

learning model could predict the label for unseen new data given the data's label. Figure

2.2 shows a typical procedure for supervised learning. The labeled training data is sent to

a supervised machine learning algorithm with the purpose of fitting a predictive model

capable of making predictions on new, unlabeled data. As the supervising machine learning

algorithm, convolutional neural networks are used here.

24

Figure 2.2 A typical workflow of artificial neural networks.

A classification task is a type of supervised learning problem that has discrete class

labels. Recognizing cat and dog is an example of a traditional binary classification task.

The number of classes does not have to be two. The number of classes is highly task

dependent. Recognizing handwritten characters is an example of a common multiclass

classification task. Regression is a subfield of supervised learning in which the output

signal is a continuous value. The purpose of each convolutional neural network model

utilized in this dissertation is classification. We will therefore concentrate on constructing

convolutional neural networks for classification problems.

In Chapter 1, the fundamental structures of a single perceptron and multilayer

perceptron were discussed. This chapter will begin with an explanation of the formal

definition of an artificial perceptron before introducing convolutional neural networks in

depth.

Let us construct a simple artificial neuron for binary classification. Our dataset 𝑿

25

comprises both positive and negative values. A sample in dataset 𝑿 is represented by 𝑥.

Each input sample 𝑥 is converted into an n-dimensional vector 𝒙 Each input vector 𝒙 has

a corresponding weight vector w. The net input is defined as z:

𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ + 𝑤𝑛𝑥𝑛 (2.1)

w = [

𝑤1

𝑤2

⋮
𝑤𝑛

] 𝒙 = [

𝑥1
𝑥2

⋮
𝑥𝑛

] (2.2)

We can then define a decision function to predict the class of the sample. If ∅(𝑧) is

greater than a defined threshold 𝜃, we predict class 1; otherwise, we predict class -1. In the

perceptron algorithm, the decision function ∅(𝑧) is a unit step function.

∅(𝑧) = {
1, 𝑖𝑓 𝑧 ≥ 𝜃

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.3)

For simplicity, we can bring the threshold, 𝜃 , to the left side of the equation and

define a weight-zero as 𝑤0 = − 𝜃 and 𝑥0 = 1 so that we write z in a more compact form:

𝑧 = 𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ + 𝑤𝑛𝑥𝑛 = 𝒘𝑇𝒙 (2.4)

∅(𝑧) = {
1, 𝑖𝑓 𝑧 ≥ 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.5)

Now we can find z = 𝒘𝑇𝒙 is a linear function. It will always have the opportunity

to cross origin. This could be undesirable. Figures 2.2, 2.3 and 2.4 give further details for

visual depiction.

26

Figure 2.3 An ideal boundary line is made by z = 𝒘𝑻𝒙.

Figure 2.4 An ideal boundary line can never be made by z = 𝒘𝑻𝒙.

Figures 2.3 and 2.4 illustrate the various data distributions. Class 1 is denoted by

blue points, while class -1 is shown by green points. In Figure 2.3, an ideal boundary is

made by z = 𝒘𝑇𝒙. However, in Figure 2.4, no matter how we adjust, an ideal boundary

cannot be created by z = 𝒘𝑇𝒙. Since z = 𝒘𝑇𝒙 will always passes through the origin, the

range for adjusting the boundary line to distinguish two distinct data classes is constrained.

27

Now we add a constant value called bias to z = 𝒘𝑇𝒙. It is represented by the small

letter b. Then the function will change to:

𝑧 = 𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏 = 𝒘𝑇𝒙 + 𝑏 (2.6)

Following the new function 2.6, we can find the ideal boundary line under the data

distribution in Figure 2.4, as shown in Figure 2.5. The range to adjust the boundary line

extends. This will result in a more precise classification.

Figure 2.5 An ideal boundary line is made by z = 𝒘𝑻𝒙 + 𝒃.

Function 2.6 is the foundational math behind artificial perceptron. Connecting a lot

of perceptron into a network shape we will build an artificial neural network. We shall

construct an artificial neural network by connecting many perceptrons into a network

structure. Matrix multiplication is the fundamental operation of artificial neural networks,

as revealed by Function 2.6. The following section will demonstrate how to construct

convolutional neural networks.

28

2.2 Building Convolutional Neural Networks

Initial inspiration for convolutional neural networks (CNN) came from how the visual

cortex of the human brain recognizes objects. In 1995, Yann LeCun proposed the LeNet

[8] family of convnets trained to recognize MNIST handwriting characters. It has a

significant impact on CNN's further development. Since 1989, Yann LeCun and his

colleagues have made significant contributions to the development of artificial neural

networks [9-12]. In 2019, Yann LeCun earned the most prestigious award in computer

science, the Turing Award. CNN has outstanding performance for image classification

tasks. Nowadays, CNN is widely implemented for image recognition, computer version,

textual documents analysis and so on. In the following sections, we will discuss the

advantages of CNN. Then we will delve into operations in a typical CNN architecture.

2.2.1 Feature Hierarchies of CNN

The key to the performance of any machine learning algorithm is to extract important

features from datasets. Traditional machine learning methods rely on domain-expert-

provided input features. It takes a significant amount of time to manually identify important

features.

CNN can automatically learn features from raw data. Earlier layers extract low-

level features from raw data. CNN procedures will result in the formation of high-level

features from low-level features. The subsequent layers, such as the fully connected layers,

will then utilize these features for prediction. Combining low-level features to form higher-

level features is referred to as feature hierarchy. This dissertation mainly focuses on the

implementation of CNN for image-related problems. We will use an example to

demonstrate how CNN extracts visual features.

29

When using CNN to identify a cat in an image, edges and blobs are taken from prior

layers. These features ate low-level feature. Then, by combining these low-level features,

we will create much more complex shapes, such as the head and body of a cat. These

complex shapes are known as high-level features.

CNN extracts feature maps from an input image. As you can see in the following

Figure 2.6. Each element in feature map comes from a local patch of pixels in the input

image.

Figure 2.6 A feature map extracted by convolutional layers.

As explained in the previous sections, matrix multiplication is the fundamental

operation of conventional neural networks. This operation is replaced with a convolution

operation in a CNN, as illustrated below:

Z= 𝑾 ∗ 𝑿 + 𝑏 (2.7)

W: It is the weighted matrix. It is also called kernel matrix.

X: It is a matrix representing the pixels in a ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ region.

b: It is the bias.

30

As shown in Figure 2.7, we have an input image I6×6, and a kernel matrix W3×3.

The input matrix X3×3 has the same dimensions as the kernel matrix. It is really different

from fully connected neural networks. In fully connected neural networks, the input matrix

has the same dimensions as the entire image. Still using input image I6×6, the input matrix

should be a 6 × 6 matrix rather than a 3 × 3 matrix.

Figure 2.7 Input image, input matrix and kernel matrix.

Now, let's connect one input layer to one convolutional layer to describe the

aforementioned convolution operations. The input layer is where the image is input. It

converts an image to a matrix. We represent each value in the input matrix with a single

node. The convolutional layer then has many kernels. That each kernel will generate a

feature map from the image input. We express each weight in a kernel using edges. After

convolution operations, the output Z consists of the convolutional layer's values. Figure 2.8

illustrates the transfer of an input image to an input layer. Figure 2.9 shows the relationship

between the input layer and the convolutional layer.

31

Figure 2.8 Building input layer from an input image.

Figure 2.9 An input layer connected to a convolutional layer.

32

Here are two fundamental concepts that help CNN perform better than ordinary

neural networks. The first is referred to as sparse connection. In other words, a node in one

layer is not connected to all of the nodes in the previous layer. As shown in Figure 2.9, a

convolutional layer node is only connected to nine input layer nodes. If the layer is fully

connected, a node should connect 36 input layer nodes. Another benefit is known as

parameter-sharing. The same weights are applied to distinct regions of the input image. In

Figure 2.9, input matrix X shares common kernel W. They are marked by colored

background.

As previously discussed, convolutional processes extract feature maps. Each node

in the convolutional layer in Figure 2.9 corresponds to a value in the feature map. Now let's

conclude our explanation of how accurate convolutional operations are for feature maps.

Figure 2.10 Extracting feature map by convolutional layer.

Given the input image I and the kernel W in the previous example, we have the

convolved output. The 3×3 kernel W (also referred to as the filter) is multiplied

elementwise with the input matrix X to produce one output matrix value. The remaining

values are obtained by sliding the window across the image. There are three factors to

33

define a kernel:

Kernel size: It is represented by ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ. It defines the covered region on

image or feature map.

Stride: It is the step size of the kernel when it slides through the image.

Padding: Defines how the border of image or feature map is captured.

2.2.2 Common Layers Used for Building CNN

We've talked about convolutional layers and fully - connected layers. In this section, we

will go through some of the most frequent layers utilized in CNN construction. There are

three of them: the pooling layer, the activation layer, and the output layer.

Pooling layer decreases the dimensions of feature maps, resulting in increased

computing efficiency. Additionally, lower feature map size assist prevent overfitting. CNN

has two primary types of pooling operations: maximum pooling and average pooling.

Similar to the kernel, we must define the region and stride to determine where the

maximum or average operation is executed. The region is known as the pooling size. The

pooling layer is usually defined as 𝑃𝑊×𝐻. Figures 2.11 and 2.12 illustrate the operation of

maximum and average pooling, respectively.

34

Figure 2.11 An example of max-pooling.

Figure 2.12 An example of average-pooling.

CNN's activation layer is a crucial component of its design. Activation layers add

extra nonlinear factors to CNN, allowing it to solve complicated problems more

effectively. There are three typical activation functions used in CNN architecture for

building activation layers. They are the Sigmoid, the TanH, and the ReLU. Their functions

and figures are illustrated below.

35

Figure 2.13 Sigmoid activation function.

𝜎(𝑥) =
1

1+𝑒−𝑥……………………………………(2.8)

Figure 2.14 TanH activation function.

𝑇𝑎𝑛𝐻(𝑥) =
𝑒𝑥−e−𝑥

𝑒𝑥+𝑒−𝑥……………………………….(2.9)

36

Figure 2.15 ReLU activation function.

𝑓(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 ≥ 0

 (2.10)

In CNN, the final layer is the output layer. Output layer will compute the outcome

of the prediction. The outcome of the prediction could be logits or probabilities. However,

how can we define a "good" output? We must create a loss function that penalizes outputs

that deviate significantly from the predicted value. In CNN, the computation of outputs

from inputs is referred to as forward propagation. After calculating the outputs, the outputs

and loss function are used to update the CNN weights in order to improve CNN's

performance. Since this process starts at the output layer and propagates backward through

the CNN, we refer to it as backward propagation. In terms of classification issues, forward

propagation and backward propagation are summarized as follows:

1. Initialize the weights to 0 or small random numbers.

2. For each training example 𝒙(𝑖) with label 𝒚(𝑖) :

3. Compute the predictive label, 𝒚̂(𝒊).

4. Define the loss function J(𝑾)

37

 5. Update the weights by using loss function.

We want to minimize the loss function. This indicates that the inaccuracy between

the predictive output label 𝒚̂(𝒊) and the actual label 𝒚(𝑖) will be minimal. The loss function

should be convex when defined. We can calculate the partial derivatives of the loss function

for each weight 𝑊 j, then identify the least loss value at this point. This powerful

optimization process is known as gradient descent, as depicted in Figure2.16.\

Figure 2.16 Gradient descent.

Using gradient descent, now we can update the weights by taking a step in the

opposite direction. Also, we set a learning rate 𝜂 to control how quickly the model is

adapted. Usually, the learning rate is a constant between 0 to 1.

𝑊: = 𝑊 + ∆𝑊 (2.11)

For each weight 𝑊𝑗 :

𝑊𝑗: = 𝑊𝑗 + ∆𝑊𝑗 (2.12)

∆𝑊𝑗 = −𝜂∇𝐽(𝑊𝑗) (2.13)

38

∆𝑊𝑗 = −𝜂
𝜕𝐽(𝑊)

𝑊𝑗
 (2.14)

Due to the large number of parameters in CNN, updating all weights typically

requires considerable time. CNN's performance cannot be significantly enhanced by

updating all weights only once. The updating process may be repeated thousands of times

in order to achieve a stable and satisfactory experimental result.

2.3 Summary

This chapter presents a roadmap to building a convolutional neural networks (CNN) model.

At the beginning of this chapter, we illustrate the fundamental math behind CNN. Then we

explain the basic functions of some typical layers in CNN. We could build a CNN model

by organizing these typical layers into a hierarchical structure. At the end of this chapter,

we explain how to update the parameters in the CNN model. Up to here, we have

introduced the prior knowledge for CNN. Then in the following chapters, we will design

various CNN models for some digital image forensics tasks.

39

CHAPTER 3

A CONVOLUTIONAL NEURAL NETWORK BASED SEAM CARVING

DETECTION SCHEME FOR UNCOMPRESSED DIGITAL IMAGES

3.1 Introduction

Due to the rapid development of image-editing techniques in the past years, digital images

can be easily edited or tampered with popular software such as Photoshop. To reveal

malicious image editing, digital image forensics [13] have been extensively studied for the

past decade. In this chapter, we present a novel forensic approach to detect the operation

of seam carving [14] in digital images, specifically in uncompressed images. Seam carving,

also known as content-aware scaling, is one popularly utilized image scaling algorithm and

has been included in many predominant image editing software, such as Photoshop and

GIMP. By recursively deleting a seam (a horizontal or vertical path of 8-connected pixels)

with the lowest energy, the image size is altered, and the visually more important image

contents can be well-preserved.

A few forensic works have been reported in the past several years to reveal traces

of seam carving in digital images. In the first piece of forensic work for seam carving

detection [15], Sarkar et al. proposed to utilize Markov transition probability to reveal the

trace of seam carving in digital images, specifically in JPEG compressed images. Later in

[16], a hybrid statistical feature model was proposed by Fillion et al. to track the operation

of seam carving in uncompressed images based on energy distribution, seam behavior and

wavelet absolute moments. In [17], Lu et al. proposed an active forensic approach to

determine whether a received uncompressed image has been attacked by seam carving or

not by comparing the SIFT features pre-extracted by the sender with the SIFT features

40

extracted at the receiver end. Chang et al. [18] later presented a series of statistical features

based on the blocking artefact characteristics matrix to differentiate non-seam carved JPEG

images from seam carved JPEG images. This work was further extended in [19]. In [20],

Liu et al. proposed to employ the calibrated neighboring joint density of DCT coefficients

for the detection of seam carving in JPEG images, and the extended works were reported

in [21, 22]. In Ryu et al.’s work [23], the authors designed a set of features based on energy

bias and noise level to unveil the operation of seam carving in uncompressed images. In

[24], Wei et al. presented an interesting approach to detect seam carving in uncompressed

images. By dividing images into 2×2 mini-squares and categorizing each of the squares

into nine types of predefined patches, each square was possibly recovered to its original

form. Then, Markov transition probability was applied to discriminate seam carved images

from non-seam carved images. Yin et al. [25] proposed a blind forensic technique to detect

seam carving in uncompressed images based on the similar idea pro-posed in [23]. In [25],

twenty-four features consisting of six newly designed features and eighteen features

proposed in [23] were extracted from the local binary pattern pre-processed images for

seam carving detection in uncompressed images. In [26], Ye and Shi proposed to employ

a set of energy features which extracted from local derivative pattern encoded images to

identify seam carved images. In [27], an advanced statistical model, consisting of local

derivative pattern, Markov transition probabilities, and subtractive pixel adjacency model,

are designed to determine if an image has been gone through seam carving or not. The

extended work of [26, 27] was presented in [28]. In [29], Zhang et al. designed forty-two

features to unveil the statistical properties of spatial and spectral entropies (SSE). They

were combined with local binary pattern (LBP)-based energy features to detect seam

41

carving image with low scaling ratio.

Most of the existing methods for seam carving detection as introduced, except [17],

are focusing on feature engineering, a Support Vector Machines (SVM) based

classification scheme is applied to ensure better performance. In this chapter, inspired by

the substantial successes achieved by convolutional neural networks (CNN) in computer

vision [30-32], and the success obtained by the CNN-based steganalysis work [33], we

propose and report a CNN architecture that includes both the feature extraction and

classification in a joint optimization framework to unveil the process of seam carving in

uncompressed digital images. As far as we know, this is the first work that successfully

applies deep learning for seam carving detection. Furthermore, as indicated by

experimental results, the proposed approach achieves almost perfect results at higher

scaling rates, and largely outperforms the state-of-the-art at lower scaling rates. The rest of

the chapter is organized as follows: In Section 2, seam carving is briefly introduced. Then,

the proposed CNN structures are described in Section 3. The experimental results are

reported in Section 4. The conclusion is made in Section 5.

3.2 Background of Seam Carving

The image scaling is a process to resize a digital image so as to satisfy certain geometric

requirement. However, the conventional image scaling schemes could not always provide

a promising visual quality after resizing because the image content is not considered

carefully by these algorithms. One example is shown in Figure 3.1. As a result, seam

carving is designed to protect image content from being destroyed while scaling is

conducted.

42

For a given energy function 𝑒(.), e.g., gradient, the importance of a pixel in image

I can be evaluated with its energy as shown below,

𝑒(𝐼(𝑥, 𝑦)) = |
𝜕

𝜕𝑥
𝐼(𝑥, 𝑦)| + |

𝜕

𝜕𝑦
𝐼(𝑥, 𝑦)| (3.1)

where x and y are the corresponding row and column coordinates, respectively. By

assuming the less important image content consists of lower energy pixels, seam carving

is to delete a seam with the lowest cumulative energy recursively so as to alter the size of

a given image. Note that a seam is a path of 8-connected pixels crossing the image either

from top to bottom (vertical seam), or from left to right (horizontal seam). For instance, a

horizontal seam sH in an n × m (height × width) image I can be defined as:

Figure 3.1 (a) An original image from UCID with a size of 384×512. (b), (c) and (d) are

the resized copies of (a) with the same size of 384×411 but processed by different scaling

techniques respectively: (b) bilinear interpolation, (c) cropping, (d) seam carving.

43

𝑠𝐻 = {𝑠𝑖
𝐻}𝑖=1

𝑚 = {(𝑥(𝑖), 𝑖)}𝑖=1
𝑚 , 𝑠. 𝑡. ∀𝑖, |𝑥(𝑖) − 𝑥(𝑖 − 1)| ≤ 1 (3.2)

where 𝑠𝑖
𝐻 represents the coordinates of each included pixel. Therefore, the optimal

horizontal seam 𝑠∗ can be shown below,

𝑠∗ = 𝑚𝑖𝑛
𝑠

𝐸(𝑠) = 𝑚𝑖𝑛
𝑠

∑ 𝑒 (𝐼(𝑠𝑖
𝐻)) 𝑚

𝑖=1 (3.3)

where 𝐸(𝑠) is the cumulative energy of seam 𝑠. As the optimal seam always has

the lowest cumulative energy, it is considered to be the least visually important and

unnoticeable in the image. Therefore, by removing multiple such optimal seams, either

horizontal seams or vertical seams, not only can the image size be altered, but also the

important image content could be well-preserved consequently.

3.3 Proposed CNN Architecture

CNN has aroused tremendous interests since a remarkable success was achieved in the

ILSVRC-2012 competition by utilizing this advanced artificial intelligence technology

[30]. A typical CNN hierarchical architecture starts with multiple stages of convolutional

modules and ends with a classification module. A common convolutional module includes

a convolutional layer, an activation layer, and a pooling layer. The convolutional layer is a

trainable filter bank which can be considered as a feature extractor. The activation layer

brings non-linearity to the network and bounds the extracted features. The pooling layer

reduces the quantity of features extracted from immediately prior convolutional layer to

avoid overfitting. By stacking a series of convolutional modules, hierarchical feature maps

are extracted and then fed into the classification module composed of one or more fully

connected layers, and the SoftMax layer with cross-entropy loss. The classification module

can transform feature vectors to output probabilities for each class. Through back-

44

propagation, weights and biases in convolutional layers will be optimized so as to reduce

the training loss, and the power of the network will then be enforced to predict the labels

of unseen data.

The overall architecture of the proposed CNN is illustrated in Figure 3.2. Instead

of directly feeding the original images into the network, a high-pass filtering (HPF) layer

with kernel size of 5×5×1 (height × width × number of input feature maps) [33] is employed

to pre-process input images. In this way, we use the first convolutional layer of CNN model

as a pre-processing module. The trace of seam carving, i.e., imperceptible discontinuity of

image content, is a kind of weak high frequency signal, which is greatly impacted by image

content. Therefore, high-pass filter is employed at the beginning so as to boost the signal-

to-noise ratio. This can provide a good initialization to drive the whole network, hence

achieve good performance as compared to without doing it.

45

Figure 3.2 The proposed CNN architecture. Parametric setting of each layer is included

in the corresponding box.

46

Following the HPF layer is the CNN hierarchical structure which consists of six

convolutional modules and one fully- connected linear classification module. In the first

convolutional layer (Conv1), the input, i.e., the pre-processed input image, is to be filtered

by 8 kernels of size 5×5×1 each. In the following convolutional layers (Conv2 – Conv6),

there are 16 kernels of size 5×5×8 in Conv2, 32 kernels of size 5×5×16 in Conv3, 64 kernels

of size 5×5×32 in Conv4, 128 kernels of size 5×5×64 in Conv5 and 256 kernels of size

5×5×128 in Conv6 respectively so as to generate hierarchical feature maps.

Different from the conventional CNN module as introduced in [30], an additional

layer, called batch normalization (BN) layer [35], is employed between each convolutional

layer and the following activation layer. As the outputs generated by the convolutional

layer are normalized by the corresponding BN layer, the so called ‘internal covariate shift’

[35] is reduced which helps to accelerate the training speed and to reduce the influence

caused by poor initialization.

To increase the non-linearity of the proposed deep architecture, rectified linear units

(ReLU) are served as the non- linear activation functions in each of the convolutional

modules, as shown in Figure 3.3. Comparing with other popular non-linear functions, such

as hyperbolic tangent and Sigmoid, ReLU has relatively simple form, i.e., gradient is 1 for

positive inputs and 0 for negative inputs. Such characteristics could accelerate the speed

on training deep neural networks, and also avoid the vanishing of gradient happens during

the training stage [36].

Since the process of seam carving will remove lower energy pixels, those higher

energy pixels which normally have large intensity value are more likely remained in the

image. Due to this characteristic, focusing on the maximum pixel value of a local region

47

which is normally considered in computer vision intuitively insufficient to discover the

trace of seam carving. Therefore, average pooling is employed in the proposed CNN

framework for spatial sub-sampling instead of max pooling popularly utilized in computer

vision. In the last pooling layer, namely, Pool6, the kernel size for pooling is fixed to the

spatial size of the input feature maps. Each input feature map will be aggregated to one

single number, which serves as a feature for the classification. As there are 256 input

feature maps to Pool6, 256 features are generated and fed into the fully-connected linear

classification module for each image.

𝑅𝑒𝐿𝑈(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 > 0

Figure 3.3 Rectified linear unit (ReLU).

48

3.4 Experimental Results

Since there is not any image database which is publicly available and designed for the

forensic research on detecting seam carving, we implemented the seam carving algorithm

in MATLAB and established 12 seam carved image sets based on the BOSSbase 1.01 [37],

which is a benchmark image database for the research of steganalysis. It contains 10,000

never-compressed grayscale images with the size of 512×512. For each image from the

BOSSbase, the pre-implemented seam carving algorithm was utilized to reduce the height

by 5%, 10%, 20%, 30%, 40% and 50%, respectively. Therefore, 6 groups of seam carved

copies were acquired. Similarly, by scaling the width of each original image with

aforementioned various scaling rates, another 6 groups of seam carved copies were

generated. Consequently, 12 seam carved copies were obtained for each image in the

BOSSbase and thus 12 seam carved image sets were formed, i.e., ‘5%H’, ‘10%H’, ‘20%H’,

‘30%H’, ‘40%H’, ‘50%H’, ‘5%V’, ‘10%V’, ‘20%V’, ‘30%V’, ‘40%V’ and ‘50%V’.

Specifically, ‘5%H’ stands for the height of each original image was scaled by 5%, ‘5%V’

mean the width was decreased by 5%. As a result, each seam carved set contains 10,000

seam carved images.

To evaluate the performance of the proposed CNN architecture, the experiments

were conducted to detect the 12 designed seam carving cases. In the experiments, the

proposed CNN architecture was constructed with Caffe toolbox [38], and stochastic

gradient descent was applied to train all the CNN with the batch size of 64 images. We

fixed the momentum as 0.9 and the weight decay as 0.0005. The learning rate was

initialized to 0.001 and forced to decrease 10% after each 5000 iterations. To fairly

compare the performance with the state-of- the-art, we not only implemented and tested

49

methods proposed for seam carving detection [23, 25], but also examined the performance

of rich model [24] which represents the state-of- the-art of steganalysis. Each method was

tested on the 12 seam carving cases with linear SVM as the classifier [39]. Additionally,

2-fold cross validation was applied throughout the experiments.

As shown in Table 1, the proposed CNN architecture performs significantly better

than the two state-of-the-art of seam carving detection [23, 25] when the scaling rate is

below 30%. In particularly, our method achieves, respectively, 90% and 93% detection

accuracies in the experiments of testing ‘5%H’ and ‘5%V’, the two toughest cases, which

are 20% higher than performance achieved by both state-of-the-art.

The receiver operating characteristic curves (ROC) together with the corresponding

area under ROC curves (AUC) shown in Figure 3.4 indicate that the proposed method

outperforms the two seam carving forensic methods dramatically on detecting both ‘5%’

and ‘10%’ cases. It is also observed that rich model outperforms the [23, 25] on those low

carving rate cases although it still underperforms the proposed CNN. Notably, the detection

accuracy increases monotonically with the increased carving rate for all tested methods,

and the gap between the proposed method and the tested prior arts is getting smaller as

well. The reason behind is that overfitting is more significant for the methods which are

more complicated and more powerful on modelling, such as proposed CNN and rich model

as well, on detecting easy cases, i.e., detecting images in which a large number of seams

are carved out.

In Figure 3.5, three samples are presented. The outputs of Conv5 for each sample

and the corresponding seam carved copies are visualized as heat maps to illustrate what

can be learnt by the proposed CNN. The region in the heat maps which has large value

50

indicates the ROI (region of interest) learnt by the deep neural network. It is observed that

the trained deep neural network can effectively discover the region where the seams are

deleted by learning from the seam carved copies, while irrelevant regions are learnt from

the non-seam carved images. This also illustrated the effectiveness of the proposed CNN

architecture on detecting seam carving.

Table 3.1. The Performance of Proposed CNN Architecture and The State-of-the-Art [23,

25, 34], on Detecting 12 Seam Carving Cases

51

Figure 3.4 The ROC curves and their corresponding AUC curves.

52

Figure 3.5 Heat maps.

Images in the first column illustrate the ground truth of carved seams in the original

images with the carving rate equal to 5%. Heat maps in the second column are learnt from

the original non-seam carved images by the proposed CNN, while heat maps learnt from

the seam carved copies are shown in the third column.

53

3.5 Summary

In this chapter, a convolutional neural network architecture has been established and

utilized for seam carving detection. It is the first deep learning framework on this research

topic as far as we know. Indicated by experimental results, the proposed deep learning

method can successfully detect seam carving in uncompressed digital images and

outperform the state of-the-art in most of the experiments. In particular, the proposed deep

convolutional neural network has achieved remarkable performance on detecting low

carving rate cases, i.e., 5% and 10% carving rate cases. The performance of deep neural

network on detecting seam carving in compressed images, i.e., JPEG images, needs to be

further investigated. Therefore, the future work will be focusing on the remaining

questions. Overall, through our work, it has been shown that deep learning could be a new

direction for the forensic research on seam carving detection.

54

CHAPTER 4

REAL‑TIME ESTIMATION FOR THE PARAMETERS OF GAUSSIAN

FILTERING VIA DEEP LEARNING

4.1 Introduction

Intelligent devices and internet have made the digital images abundant and ubiquitous. It

used to be difficult to edit or tamper with digital images by professional software, but in

the last few years the cost and complexity of doing so have plummeted. Even the mobile

devices now are equipped with powerful computational capability. Digital images can be

easily edited or tampered just by using smart phone Apps instead of professional software.

Usually, the forged images are difficult to be recognized by human eyes. Therefore, the

authenticity of digital images may be suspicious. Digital image forensics [40–43] technique

aims to verify the authenticity of digital images without the original source. Just like the

other research area in information security such as privacy preserving [44, 45] and

information hiding, they are all important to keep our community safe.

Digital images can serve as medium to carry information by displaying contents to

human eyes. On the other hand, it can be also employed to carry hidden information. Words

or even another image can be implanted into an image secretly without making any

alternation. This technique is called as steganography [46, 47]. It could be dangerous if it

is used by criminals or terrorists. Therefore, steganalysis [48], as a technique to detect the

hidden information in images is crucial. Other than revealing forgeries or hidden messages

in digital images, in image forensics, it is also important to completely understand the

editing history of images to protect the integrity of images. Under such requirements, all

possible manipulations occurred during the image forming history need to be verified. It

55

could also serve as supplement to tampering detection in many cases. This is the reason

many forensics researchers dedicate themselves into the works to detect certain

manipulations. The digital forensics has been an active research field of information

security techniques and still has a prospect future.

So far, a lot of successful digital image forensics works have been reported in the

past, such as tampering detection [49, 50], camera model identification [51, 52],

enhancement detection [53–55], double JPEG compression [56–58] and so on. In image

forensics, filtering operation plays an import role of image post-process. The verification

of trace left by different filters [59–61] could provide sufficient evidence for further

identifying the process of history. As a typical linear filter, Gaussian low-pass filter is

widely utilized to eliminate noise and smooth images. These characters have been used for

anti-forensics method [62, 63]. An image could be forged to hide the trace of copy and

paste [64] by blurring the dis- continuities at the border of tampered objects. Median filter

has the similar property to Gaussian low-pass filter; however, fewer works focus on

Gaussian low-pass filter detection relative to median filter detection.

Perfect binary classification accuracy has been achieved for detection of Gaussian

low-pass filter. Xu et al. [65] used the frequency residual function to detect Gaussian low-

pass filtered images. In [66], the authors created feature vectors formed from both spectral

and spatial domain to detect Gaussian low-pass filter. However, only a few research could

detect the exact parameters of Gaussian low-pass filters. In [60], Boroumand and Fridrich

detect the window size and standard deviation of different Gaussian filters from processing

history of images. In their work, they detect four types of Gaussian low-pass filter,

including window size 3 with standard deviation 0.5 and 1, window size 5 with standard

56

deviation 0.5 and 1. It is still a challenge to estimate the exact parameters of more different

types of Gaussian low- pass filtering.

Except to refine the performance of forensics method from the aspect of accuracy,

the other point scientists always mentioned is the computation speed. In the modern world,

the smart devices are the most convenient tool for people to acquire and process new

information. It is undoubtedly crucial to develop algorithms as real-time application for

mobile devices. For such category as real-time application, in image forensics, other than

validation accuracy, the computation speed is also a key element. It requires the algorithms

to process data and make precise decisions immediately to assist people in real-time [67].

Unfortunately, little work has been done for the research of image forensics in real- time.

As far as we can tell, the scientists were focusing on the validation accuracy over

computation speed. However, it is believed that enabling algorithms towards the

application in real-time is a potential prospective direction in forensics research. More and

more scientists on image forensics are now paying attention to the application of image

forensics in real-time to serve our community in realistic world.

Therefore, in this work, we focus on estimating the parameters of different types

of Gaussian low-pass filtering in real-time. We propose a convolutional neural network

(CNN) that is able to detect different types of Gaussian low-pass filtering in an extreme

short time to serve as a real-time forensics tool. The CNN has been proved to be a useful

tool for digital image forensics [68–71]. Conventional machine learning method such as

support vector machine (SVM) [72] classify images based on handcraft features [73–75]

extracted from images. However, there are limitations for handcraft features, as learning

feature and classification are separate steps. Thus, these two steps cannot be optimized

57

simultaneously. Also, the manually extracted features may restrain the classification

performance as it is fixed. Compared with these shallow machine learning methods, CNN

is born with a superiority for classification. It is able to learn features and process

classification automatically [76–78]. Besides, through back propagation, the classification

results can be used to further optimize the procedure for feature extraction.

On the other hand, estimating the parameters of various types of Gaussian low-pass

filtering is more difficult than just distinguishing the Gaussian low-pass filtered images

from raw images. The Gaussian blur can be generated after the image is processed by

Gaussian filter. The Gaussian filtered images can be easily distinguished from the original

images by detecting the effect of Gaussian blur even with the traditional shallow linear

classifier. However, if both images are processed by Gaussian filter, the traditional method

to differentiate them may fail because Gaussian blur can be found in both of them. The

only method can solve this problem is to estimate the intensity of Gaussian filter, in other

words, to estimate the parameters applied in Gaussian filtering. The CNN with more

powerful classification ability seems to be an idea candidate. What’s more, a pre-trained

CNN model is capable to analyze the given data quickly. The decision can be made

immediately, that also makes it a perfect tool for real-time estimator.

Thus, we design a specific CNN architecture for estimating the parameters of

Gaussian low-pass filtering in real-time. The experimental results demonstrate our method

could successfully evaluate the parameters of different Gaussian low-pass filters. Besides,

the model is also efficient in computation speed which makes it suit- able to serve as a real-

time application. Some discussions are made as a guidance to build a proper CNN structure

that can achieve a balance point in computation accuracy and computation speed to deal

58

with the given problem in real-time.

The rest of this chapter is organized as follows. Section 2 introduces the theoretical

concept of Gaussian low-pass filter. Our proposed method is explained in Section 3. The

experimental results and analysis appear in the fourth section. Then the summary is

concluded in the last section.

4.2 Gaussian Filter

In image processing, Gaussian low-pass filter is widely used as a smoothing tool to remove

noise or to produce Gaussian blur. The high-frequency component of an image will be

eliminated by Gaussian filter. Thus, the noise with high-frequency components can be

removed. The Gaussian blur is also welcomed in certain images to produce a pleasant view.

Such as human facial or portrait images, the Gaussian filter can be used to remove wrinkles

and freckles that is popular in social network. Gaussian smoothing also plays an important

role in computer vision. It is an effective pre-processing stage to enhance image structures

at different scales.

The Gaussian low-pass filtering uses a Gaussian function to calculate the

transformation to apply to each pixel in the image. The Gaussian function in one dimension

has the forms that displayed in the equation below.

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

(−
𝑥2

2𝜎2)
 (4.1)

where the 𝜎 represents standard deviation of the Gaussian distribution. Figure 4.1

shows an example of one-dimensional Gaussian distribution curve with standard deviation

of one.

In two dimensions, the Gaussian function is expressed as:

59

𝑓(𝑥) =
1

𝜎22𝜋
𝑒

(−
𝑥2+𝑦2

2𝜎2)
 (4.2)

where x is the distance from the origin in the horizontal axis, y is the distance from

the origin in the vertical axis. Figure 4.2 shows a two-dimensional Gaussian distribution

curve.

Figure 4.1 One-dimensional Gaussian distribution curve with standard deviation of 1.

60

Figure 4.2 Two-dimensional Gaussian distribution curve.

The Gaussian low-pass filtering can be denoted by the expression below:

𝐺(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) × 𝐻𝐺(𝑢, 𝑣) (4.3)

where G is the frequency response of the filtered images, F represents the original

images, and HG stands for the transfer function of Gaussian low-pass filter. When applied

in digital image processing, the Gaussian function will create a convolution kernel with

values correspond to Gaussian distribution from the center point. Based on theory analysis,

the Gaussian distribution is non-zero everywhere, meaning that the convolution kernel will

be infinite large. Note that, in most cases, we apply single dimension Gaussian distribution

to process images. The default window size is fixed to 3. That leaves the 𝜎 to be the only

adjustable parameters for Gaussian filtering. Theoretically, 𝜎 can be any positive numbers.

The larger of 𝜎, the intense Gaussian blur effect can be achieved. However, in practice, the

61

values at a distance of more than three standard deviation from center could be considered

effectively zero because they only have a marginal effect. In other words, the Gaussian

filters with larger standard deviation can be considered as homogeneous that is meaningless

for analysis. The 𝜎 are recommended to be no larger than the window size. Therefore, we

could ignore the values out of that range and focus on the effective standard deviation only.

After a Gaussian filter kernel has been created, the Gaussian low-pass filtering can

be implemented by using convolution method to the original image. Every pixel’s new

value is calculated by weighted average of that pixel’s neighborhood. The original pixel

has the heaviest weight. The further away from the original pixel, the smaller weights are

set for the neighboring pixels. Consequently, the filtered image looks smoother but still

preserves boundaries and edges. The degree of smoothing is determined by the standard

deviation of Gaussian function. As we discuss the Gaussian distribution above, a larger

standard deviation needs a larger convolution kernel in order to achieve a better filtering

performance. Figure 4.3 displays an image that has been filtered by three different Gaussian

low-pass filters.

62

Figure 4.3 The effect of Gaussian blur: an original image; b Gaussian filtered image with

window size 3 and standard deviation 1; c Gaussian filtered image with window size 3 and

standard deviation 3; d Gaussian filtered image with window size 5 and standard deviation

1.

As shown in Figure4.3, with increasing standard deviation, the filtered image will

be more blurred compared to the original images. In another aspect, a large window size

may also bring a more obvious Gaussian blur. However, it is difficult to distinguish

between any two of Figure 3b–d visually. Therefore, we cannot infer the exact Gaussian

low-pass filter for each filtered image. To deal with this problem, we propose a CNN

structure to identify different Gaussian low-pass filters. Next section will introduce our

proposed method.

63

4.3 Proposed Method

Deep learning has a prosperous and successful development in recent years. Most deep

learning methods are based on the neural networks which can be considered as a simulation

to biological brain. Among all the neural networks, convolutional neural network (CNN)

attracts most attention because of its amazing achievements. It is widely applied in variety

fields to analyze data, such as object recognition, natural language processing,

bioinformatics and so on. In our work, we employ it to solve the problem of approximately

estimating the parameters of Gaussian filtered images.

A typical convolutional neural network consists of different types of layers. These

layers are essential part of CNN. How to organize a proper CNN structure is the key to

solve problems. Here, we introduce the proposed architecture. Figure 4.4 illustrates the

overall architecture of our CNN.

The data layer, as the entrance of the network, controls the input data and makes

necessary modification such as scaling or cropping to dataset. In our experiment, raw

images are directly fed into the CNN without any modification in data layer.

After the fundamental processing of data layer, the vision layers are applied to

produce feature images from original images. The most representative vision layers are

convolutional layer and pooling layer. In fact, convolution and pooling can be regarded as

the most important function in a neural network to learn and process features from images.

To be more specific, the convolutional layer could be considered as a set of feature

extractors. It is composed of multiple filters. The filters are randomly created in the

beginning and will be updated in CNN with the self-learning procedure. These filters are

convoluted with the input data to the layer to generate the filtered output. Each filter can

64

generate a feature map, respectively. Therefore, the output of a convolutional layer are sets

of arrays called feature maps. Each feature map represents a feature extracted from the

input images. Generally, the filters in each convolutional layers increases with the network

going deeper. In our structure, we set the numbers of filters doubles when moving to the

next convolutional layer. In the shallow level of the network, the output of convolutional

layer can be always found to be edges or texture of image contents which represent the

intuitionistic features of objects. However, with the network going deeper, there are higher-

order features that makes no sense for human eyes. These deeper features as well as the

shallow features serve as the key for classification.

Figure 4.4 Proposed CNN architecture.

With several convolutional layers set in a network, considering there are multiple

filters in each layer, the data size of generated feature map could be substantial. It requires

65

a lot of extra time to process that is not necessary. That is why the pooling layer is applied

in neural network after convolutional layer. That is, to subsample the feature maps to

decrease the feature dimension. It is also efficient to prevent overfitting. The down-

sampling strategy can be chosen from ‘average’ and ‘maximum’ for pooling layer. The

average pooling is widely used in computer vision for object or motion recognition.

Generally speaking, the average pooling computes for the average value of all pixels in

feature block to represents the given block while the maximum pooling employs the

maximum intensity found in the block. The maximum pooling is more suitable for digital

forensics with no details omitted. Hence, the maximum pooling is applied for all pooling

layer in our network

In most cases, the trunk of a convolutional neural network is composed with

multiple pairs of convolutional and pooling layers. A network with more vision layers is

considered to be deeper that has a relative strong learning ability. However, in CNN, strong

learning ability does always lead to exceptional performance. The phenomenon of over-

fitting occurs when a strong network is adopted to solve a simple problem. When the

network is overfitted, it cannot classify the images properly following the original purpose.

For instance, when overfitting happens, a network designed for tampering detection may

try to classify images by the objects in images that may suffer a failure for tampering

detection. Hence, in order to avoid this phenomenon, the vision layers are selected with

proper amounts to solve problems of different levels. Considering the classification for

Gaussian filtered images is a challenging problem, we employ 6 pairs of convolution and

pooling layers.

Other than the vision layers referred above, there is also the activation layer which

66

is crucial for CNN. It is always placed behind the convolution layer but before pooling

layer. The activation layer brings nonlinear property into feature extracted by convolution

layer, that is a brilliant function for classification. Comparing with the traditional linear

only classifier, the classifier with both linear and nonlinear property is more suitable for

classification, especially for multiple labels classification. It has been proved by many

machine learning scientists. Until now, many activation functions are proposed to solve

different problems. However, among these options, there are three basic forms which can

be considered as classic activation functions, the Sigmoid, the ReLU and TanH. They can

be described with the functions below, respectively. They are also illustrated in Figure 4.5

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥 (4.4)

𝑓(𝑥) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 ≥ 0

 (4.5)

𝑇𝑎𝑛𝐻(𝑥) =
𝑒𝑥−e−𝑥

𝑒𝑥+𝑒−𝑥 (5.6)

Figure 4.5 Sigmoid, ReLU and TanH functions.

67

Observed from Function 4.4, the output of sigmoid function is 1 when the input is

close to positive infinite. And when the input is close to negative infinite, the output of

sigmoid is 0. Consequently, the gradient of loss function tends to be 0 if default input is

close to positive or negative infinite. This may bring in some issues to the CNN. In

optimization stage, the strategy based on analyzing gradient of loss function, such as

stochastic gradient descent, is preferred. Gradient of 0 may cause saturation which makes

the network can hardly learn anything from the input data. Other than that, the output range

of Sigmoid is between 0 and 1 which may also bring difficulty for optimization. It is nearly

abandoned in recent years.

Instead, the ReLU layer is more popular as the choice for activation. From

Function4.5, ReLU is simpler, the output remains the same if the input is larger than 0.

Otherwise, the output is fixed to 0. It is computational efficiency and friendly for

optimization. However, the ReLU layer is also sensible to the learning rate. It is vulnerable

if the learning rate is high.

The TanH function is shown in Function4.6. It is a morph of Sigmoid function.

However, the mean of TanH is 0 and the output range for TanH is between 1 and −1. This

can be helpful for optimization. The ReLU activation has no upper threshold while the

TanH activation has two thresholds. This property helps to cancel the propagation of

dynamic range over layers. Thus, overflow could be prevented during the training phase

and testing phase. Besides, it has been verified to be a hardware friendly method.

Considering all the elements, TanH is chosen for the first two convolution stages in our

proposed method, the ReLU is chosen for the rest to boost the computation speed. It is a

tradeoff strategy between performance and computation burden. Another layer that needs

68

to be mentioned is batch normalization layer. Before this layer is introduced in CNN, it is

highly possible that overfitting could occur because the self-learning ability of CNN is not

controllable.

 Although the overfitting can be prevented by applying drop-out layer to stop certain

neurons, it also limited the self-learning ability of the CNN. Besides, the images fed into

CNN are strictly controlled that all images must present the designated feature clearly. This

high level of requirement is really difficult in data collecting procedure. With the batch

normalization, the learning ability of CNN are controlled to concentrate on designated

features. That makes collecting data more easily. Besides, it is no longer necessary to drop

out neurons that the computation speed is also boosted. That is the reason we place batch

normalization layer after each convolutional layer.

There are also layers in different categories to serve different purposes in our

networks. The inner product layer also known as fully connected layer, is responsible to

connect all the feature extracted from previous layers for classification. It also serves as a

consultant for the entire network to decide what and how to learn from the input data. It is

located after the last pooling layer in network. The SoftMax with loss layer is utilized to

evaluate the performance of the network. It is placed at the end of the entire network as

exit. Considering our goal is to identify images filtered with different parameters regardless

of the image content, a scale layer is built with batch normalization layer after the first

convolution layer to normalize the shallow feature learned in first convolution layer.

Besides, an absolute value layer is also applied here to boost the performance of

normalization. The network can reach convergence sooner with the assistance of the

absolute layer. In the next section, we evaluate the proposed CNN in variety circumstances

69

for analyzing Gaussian filtering.

4.4 Experimental Results and Analysis

Given the fact that it requires large amount of data to boost the performance of CNN in

training procedure, the BOSS image dataset [79] is selected to conduct our experiment. It

consists of 10,000 grayscale images in the format of pgm. Since we only care for the effect

of Gaussian filtering, the grayscale images are acceptable for our experiment. The size of

input images is fixed to 512 × 512 without scaling or cropping in data layer.

The parameters that can control the smoothing effect through Gaussian filter are

the window size h and the standard deviation 𝜎 . In certain cases, it is not difficult to

distinguish the images with Gaussian blur from the other images even for human eyes.

However, it is impossible for human eyes to distinguish the vision effect brought by

different parameters. Hence, our experiment is designed to estimate the parameters applied

in Gaussian filtered images based on h and 𝜎.

First of all, before the network is used as a real-time estimator, we want to give an

attempt for binary classifications to see if it can distinguish the images with different 𝜎

when only two standard deviations are applied. The discrimination of Gaussian filtered

images and original images is also simulated here. In this stage, 6 groups of images are

prepared by passing through Gaussian filters with the window size fixed to 3, while the

standard deviation varies from 0.5, 1, 1.5, 2, 2.5 and 3. 0.5 is always applied for denoising

as pre-processing while the filtered images are nearly the same when 𝜎 is larger than 3.

Another group is prepared as original image that is untouched from any manipulation. For

each group, 9000 random images are picked as training set while the rest 1000 images serve

70

as validation set. For each step in current stage, two groups are chosen for classification by

our proposed method. The results can be found in Table 4.1. Similarly, we can also test the

classification ability of proposed method when windows size is fixed to 5. When the

window size is extended to 5, the boundary of standard deviation is also increased to 5, as

discussed in Section4.2. Hence, the standard deviation 𝜎 = 5 is also included. The related

results are shown in Table 4.2. Afterwards, we conduct another experiment to check if our

proposed method is capable to differentiate the images smoothed by Gaussian filter with

different window size when standard deviation is fixed. The result is shown in Table 4.3

From all the tables above, the proposed network is able to distinguish the Gaussian

filtered images with different parameters. Besides, a larger 𝜎 is helpful to identify the

window size. However, in order to be functional as an estimator rather than classifier, it

requires our proposed network can distinguish more than two groups of images. The

nonlinearity brought by activation functions in CNN makes it a perfect tool for multi-label

classification. Therefore, in the second stage of our experiment, we employ all groups of

images with window size either 3 or 5 to estimate the standard deviation that applied. The

standard deviation is also picked from [0.5, 1, 1.5, 2, 2.5, 3]. The accuracy for estimation

is shown in Table 4.4.

Table 4.1 Binary Classification Accuracy for Different Standard Deviations when

Window Size is 3

71

Table 4.2 Binary Classification Accuracy for Different Standard Deviations when

Window Size is 5

Table 4.3 Classification Accuracy for Window Size 3 and 5 when Standard Deviation is

Fixed

Table 4.4 Estimation for Standard Deviations under Different Window Sizes

The estimation can reach accuracy over 97% for different window sizes that can be

considered as a success. The performance of the proposed CNN is illustrated in Figures 4.6

and 4.7. We can see our proposed CNN start to converge after about 30 epochs and reach

the convergence after about 60 epochs.

Furthermore, in order to serve as an estimator towards Gaussian filtering, our

method should evaluate both window size and standard deviation simultaneously. Hence,

images processed by all kinds of h and are fed into CNN together for this experiment.

72

Besides, we also want to test the performance of proposed CNN architecture with different

pooling method as we discussed in Section 4.3. The comparison is made between two

pooling strategies as displayed in Table 4.5.

Figure 4.6 Performance of proposed CNN for window size 3 based on count of epoch.

Figure 4.7 Performance of proposed CNN for window size 5 based on count of epoch.

Table 4.5 Estimation Accuracy for Same Model with Different Pooling Methods

73

From the results, it is apparent that the maximum pooling outperforms the average

pooling as we assumed. In order to accurately analyze the texture in images, the maximum

pooling is recommended while the average pooling is more suitable to get a brief view of

objects in images. Other than that, it is easier to reach convergence for maximum pooling

during our experiments. Therefore, the maximum pooling is verified as the best pooling

strategy in our proposed methods

Besides the pooling, how to determine the depth of the CNN model can be also a

critical problem in designing for CNN architecture. Generally speaking, the depth D of a

CNN model is decided by the amount of convolutional layer applied. Here, in our

experiment, we choose four models with depth equal to 5, 6, 7 and 8 for comparison. The

results are reported in Table 4.6.

Table 4.6 Estimation Accuracy for Models with Different Ds

Based on the estimation accuracy, it is quite clear that when 7 convolutional layers

are applied, the CNN model can reach the highest accuracy of 96.95% that outperforms all

the other models. In most forensics research, D will be simply set to be 7 to acquire the

most precise accuracy.

However, as referred in prior, another important point we have to mention is the

computation speed of the proposed method. Including the consideration for estimation

accuracy, computation speed is also a decisive component to make the proposed method

to be a real-time tool. Hence, at last, we evaluate the computational efficiency to verify if

74

the proposed method qualifies to be employed in real-time scene. It requires the proposed

method to be able to process large amount of data as soon as possible. Here, the time

consumed to estimate the Gaussian parameter for 1000 images can be used as a

measurement towards such purpose. The time consumption for 4 models with different

numbers of convolutional layers on same computer with Caffe [38] on GPU GTX 1080ti

are displayed in Table 4.7.

Table 4.7 Time Consumption for Models With Different Ds to Analyze 1000 Image

From the above table, it is quite obvious that more convolutional layers bring in

more computation burden. Although the model with D to be 7 has the best estimation

accuracy, it also takes more time for computation than the models with less convolutional

layers. It is quite difficult to judge the performance of models from the above two tables.

Hence, if the estimation accuracy is the major concern, we recommend the model with 7

convolutional layers. On the other hand, the model with 6 convolutional layers, or even the

model with D = 5 are trade of models if it is required to complete the estimation sooner.

75

4.5 Summary

In this chapter, we proposed a method for real-time estimation of the parameters applied

for Gaussian filtered images. This method is designed based on multiple labels

classification ability of convolutional neural networks. The overall performance of the

proposed method was evaluated by our experiments. Based on the data acquired and

discussion, the designed network is able to reach high estimation accuracy in a short time

that qualifies to serve as a real-time estimator. Some discussions are also made to evaluate

the model with different amount of convolutional layers to satisfy different needs.

There are also some other thoughts summarized from this work. At first, the

forensics research was concentrating on detecting the trace of designate manipulation. The

detector was always designed to be a binary classifier. However, it is also important to

distinguish the images even they are processed with same manipulation. With more

information dug from images, it will help us to analyze the image more thoroughly. It is

demanded if we want to completely understand the history of a given image. Gaussian filter

is the one of the most common editing manipulations, we want to start with it as a break

point to design estimator in image forensics for different purposes.

CNN has already been proved by many scientists to be a powerful tool to identify

images with differences. In our work, we have proved that CNN can even distinguish

images with minor differences, considering the only difference in our images is the

Gaussian parameter. It is believed that there is still much potential we can explore from

CNN and deep learning.

The training procedure for CNN models takes a lot of time and requires large

amount of data. In order to makes it a real-time tool, the CNN models are always pre-

76

trained with fixed dataset to skip the training procedure. However, if the test image can be

also immediately employed by CNN as a training set after validation, it can surely deliver

a positive impact to optimize the CNN model. Hence, it is supposed to develop the model

if it is dynamic during the real-time procedure.

Another point to enhance the CNN model as real-time tool is to boost the

convergence speed. If a model can reach convergence with far less epochs, there is no need

to employ pre-trained model against real-time issues. Besides, such model is capable to be

trained in real-time towards different problems. It would be amazing if such technique can

be developed.

Although we can understand how CNN works, what happens within it still remains

a mystery. Unlike the features extracted in shallow layers, the higher order features make

no sense for human eyes. Based on the reports of CNN, these deeper features are the key

element of the powerful classification ability of CNN. It could be more interesting if we

can establish a connection between these deeper features and real images.

77

CHAPTER 5

DIGITAL IMAGE FORENSICS BY USING PROTOTYPICAL NETWORKS

Digital image forensics investigates the anomalous patterns that might result from image

manipulation. Over the past several years, machine learning techniques are successfully

applied to the detection of image forgeries as a result of the extraordinary growth of

machine learning. Convolutional Neural Networks (CNN) are frequently used in digital

image forensics. A CNN model could distinguish original images from a certain kind of

tampering images. However, when presented with a new image forgery detection task, each

CNN model must be trained from scratch. Additionally, certain types of tampered image

data are challenging to acquire or simulate.

Meta-learning is an alternative learning paradigm in which a machine learning

model gains experience across numerous related tasks and uses this experience to improve

its future learning performance. Few-shot learning is a method for acquiring knowledge

from few data. Inspired by meta-learning and few-shot learning, we apply the proposed

prototype networks to two image forgery detection tasks in this chapter. One is the

detection of images with Gaussian filtering, while the other is the detection of images with

average filtering. Our prototype networks do not need to be trained from scratch for a new

task, unlike a traditional CNN model. Additionally, it drastically reduced the amount of

images required for training. Our results reveal that the accuracy of the proposed method

for two digital image forensics tasks is relatively high.

78

5.1 Introduction

In numerous fields, artificial intelligence (AI) has achieved remarkable progress [80-83].

The use of artificial intelligence is nearly ubiquitous in our daily lives. Due to the

advancement of modern technology, artificial intelligence is playing an ever-increasing

role in business and industry. These accomplishments have relied primarily on the fact that

the development of these complicated models of artificial intelligence necessitates massive

amounts of data. However, we will not always be able to construct a dataset from such a

vast quantity of data. There are two novel concepts to generate machine learning model to

solve this problem.

Few-shot learning [83, 84] or N-way learning is the process of learning from few

data, where N represents the number of dataset classes and k denotes the quantity of data

in each dataset class. For instance, we want to classify cats and dogs in our dataset. There

are two data classes named cats and dogs. Two classes could be represented as 2-way. Each

time we train the model with 5 images per class. Here, 5-shot refers to five images per class.

Now, we can state that this is a 2-way 5-shot classification task.

A typical example of few-show learning in the real world is drug discovery. For the

purpose of determining which drug poses the least risk to patients, medical researchers

attempt to identify the beneficial features of test pharmaceuticals. In [85], H Altae-Tran et

al utilized one-shot learning to drug discovery under low data constraint. Also, Few-shot

learning advantages machines. It makes machine learning similar to human learning. Some

research focuses on the implementation of few-shot learning on robots, such as one-shot

imitation [86], multi-armed bandits [87], visual navigation [88], and continuous control

[89].

79

Another concept is called meta-learning. Generally speaking, meta-learning is

described as “learning to learn”. It doesn’t learn how to complete a specific task. It

successively learns to solve many tasks. It will utilize its prior learning experience to lean

the new tasks. It gradually improves at learning new tasks one by one. Typically, experts

in machine learning divide meta learning into three categories: learning the metric space

[90, 91], learning the initializations [92, 93] and learning the optimizer [94, 95]. Combined

these two ideas, a machine learning model is designed for learning to learn from few data.

Another concept is called meta-learning. Generally speaking, meta-learning is

described as “learning to learn”. It doesn’t learn how to solve a specific task. It successively

learns to solve many tasks. It will use the previous learning experience to lean the new

tasks. It becomes better at leaning new tasks one by one. Usually, machine learning

scientists categorize meta-learning into the following three types: learning the metric space

[90, 91], learning the initializations [92, 93] and learning the optimizer [94, 95]. Combined

these two concepts, a machine learning model is design for learning to learn from few data.

Meta-learning is comprised of two steps: meta-training and meta-testing. The

standard training set and testing have different names in meta-learning. The training set is

referred to as the meta-training query set or meta-testing query set depending on application

stage. Similar to training set, testing set is also referred to as meta-training query-set or

meta-testing query-set. Meta-learning has evolved into a framework for few-shot learning.

Figure 5.1 depicts the configuration of the meta-learning for few-shot image classification

[96]. Each meta-training or meta-testing task is a few-shot learning task.

80

Figure 5.1 Meta-learning set-up for few-shot image classification.

In recent years, digital image forensics has drawn the interest of numerous scholars.

It focuses on validating the authenticity of information associated with digital images.

Nowadays, digital images could be easily edited or tempered just by using an application

on a smart phone. To change digital images with high-performance image editing software

such as Photoshop, no professional skills are required. Due to this, digital image forensics

is now more crucial than ever before.

In the last few years, machine learning approaches to digital image forensics have

grown rapidly [97-99]. One of the major machine learning approaches is convolutional

neural networks (CNN). Detection of various filtering operations is a subfield of digital

image forensics, since filtering operations are widely used to edit images. Both the

Gaussian filter and the average filter are frequently used to remove noise and smooth

images. Thus, many researchers pay attention to detect Gaussian filtering and average

filtering in images. Some publications to detect Gaussian filter[100] and average filter [101]

have proved CNN could be a valuable tool for digital image forensics.

81

In prior studies on CNN-based Gaussian filtering and Average filtering detection,

thousands of images are fed to train CNN. Also, every CNN-based model could only

determine one certain filter. When a CNN model is applied to two or more similar tasks, it

must be fine-tuned to adapt to each task. Thus, even though these two filters have the

similar effects on images, a CNN model cannot work perform optimally for both tasks

without fine-tuning.

In this chapter, we propose a prototypical networks model to detect Gaussian

filtering and average filtering. It is a few-shot learning model based on meta-learning

framework. The novelty of our work is twofold. We detect Gaussian filtering and average

filtering both in a same prototypical networks model. In this model design, fine-turning is

no longer necessary Also, we use far less images to train our model. The experimental

results denominate our model could obtain high accuracies on both tasks.

The rest of this chapter is organized as follows. In Section 5.2, the theoretical idea

of prototype networks is introduced. Section 5.3 explains how to prepare dataset. Section

5.4 illustrates how to design CNN as an embedding function for prototypical networks.

And our experimental results are presented in section 5.5.

5.2 Prototypical Networks

Prototypical networks [90] are simple but efficient few-shot learning algorithm. A

prototypical network attempt to learn the metric space to make classification. The

fundamental concept underlying prototypical networks is to compute a prototypical

representation of each class based on an embedding function 𝑓∅() . The embedding

function can be any function that has the ability to extract features, such as convolutional

82

neural networks(CNN) and long-short term memory networks(LSTM). Then prototypical

networks could make classification based on the distance between every class prototype

and the data’s embeddings.

As the embedding function in our prototypical networks, convolution neural

networks are designed. The training and testing process for prototypical networks differs

from that of conventional CNN but is otherwise identical. Figure 5.2 depicts our

prototypical networks architecture.

Figure 5.2 Proposed Prototypical networks.

The workflow of prototypical networks is shown below:

1. We have a support-set which contains N classes labeled data, comprising

𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛, 𝑦𝑛)} where 𝑥𝑖 ∈ ℝ𝐷 is D-dimensional

feature vector of an example and 𝑦𝑖 ∈ {1,2, … , 𝑛} is the corresponding class

label. There are k samples in each class.

2. The query-set contains samples from the same N classes. Every class has Q

samples in it.

3. We use episodic training. In each episode, prototypical networks are trained

on support set S and test on query set Q. prototypical networks aim to

classify 𝑁 × 𝑄 query data into N classes.

83

4. CNN work as an embedding function 𝑓∅(𝑥𝑖): ℝ𝐷 → ℝ𝑀 with learnable

parameters ∅ , to compute each data’s embedding. By the end of CNN

extract each data’s M-dimensional features, these features constitute each

data’s embeddings. After we have the embeddings for each data in support

set S, we can calculate the class prototype of each class. 𝑆𝑛 is a group of

examples labeled with class 𝑛. For a certain class, the average value of all

data’s embeddings under this class is its class prototype:

𝒄𝑛 =
1

|𝑆𝑛|
∑ 𝑓∅(𝒙𝑖)(𝑥𝑖,𝑦𝑖)∈𝑆𝑛

 (5.1)

5. Similarly, we calculate the data’s embeddings in query set.

6. We calculate the Euclidean distance, 𝑑: ℝ𝑀 × ℝ𝑀 → [0, +∞), between a

query data’s embeddings and the class prototypes. Classification will be

performed to a query data by finding its nearest class prototype.

7. We predict a query data’s class by a probability function, 𝑝∅((y = n|x)

based on a SoftMax over distance to the prototypes in the embedding space:

𝑝∅((y = n|x) =
exp (−𝑑(𝑓∅(𝑥),𝑐𝑛))

∑ exp (−𝑑(𝑓∅(𝑥),𝑐𝑛))𝑛
 (5.2)

Since we have n classes, we will have n probabilities. The query data belong

to the class which has the highest probability.

8. We compute the loss function 𝑗(∅) = −log [𝑝∅((y = n|x)].Then we use

the Adam optimizer to minimize the loss:

5.3 Preparation for the Dataset

5.3.1 Gaussian Filter and Average Filter

In digital image processing, Gaussian filtering and average filtering are typically used to

remove image noise and blur detail. They are straightforward, intuitive, and simple to

implement methods to smooth images. To utilize these two filters on an image, we firstly

define the size of window W, which determines determine the range of filtering operation.

The dimensions are typically odd numbers, such as 3 × 3 or 5 × 5. The value of each pixel

is replaced by all the values in the kernel.

84

For average filter, the size of filter is the only one parameter that must be specified.

For Gaussian filter, the standard deviation 𝜎 is another important parameter. Consequently,

the filtering result produced by a Gaussian filter will be affected from both the window size

and standard deviation 𝜎. Functions of Gaussian filtering and average filtering are shown

in Function 3 and Function 4 respectively. Where M is the total number of pixels in the

kernel N. Figures 5.3 and 5.4 provide instances of Gaussian filtered and average filtered

images.

𝐺(𝑥, 𝑦) =
1

𝜎22𝜋
𝑒

(−
𝑥2+𝑦2

2𝜎2)

………………….(3)

ℎ[𝑖, 𝑗] =
1

𝑀
∑ 𝑓[𝑥, 𝑦]

(𝑥,𝑦)𝜖𝑁

 (4)

Figure 5.3 Gaussian filtered images with different window sizes and standard deviation.

Figure 5.4 Average filtered images with different window sizes.

85

5.3.2 Creating Support-set and Query-set

The objective of meta-training is to train prototypical networks with good classification

performance. All images in meta-training step are not applied any filtering operation. We

use an miniImageNet [103] dataset for meta training classification. This dataset comprises

100 classes images sampled from ILSVRC-20 [104]. It splits to 64, 16, 20 classes as

training, validation, and testing set respectively. In each class, there are 600 images of size

84 × 84.We construct our meta-training support-set from its 64 classes training set. In each

meta-training episode, we randomly sample 5 classes from 64 classes. In these 5 classes

images, we then sample 5 images per class to generate the meta-training support-set and 5

different images per class to build the meta-training query-set. This randomly sampling

process is repeated at the beginning of each meta-training episode. Therefore, in each meta-

training episode, the input support-set and query-set are 5 different images per class. Each

meta-training task is a 5-way 5-shot classification task.

After meta-training step, the prototypical networks could make classification with

a good accuracy. But we do not focus on this accuracy. Because the prototypical networks

will continuously update during the meta-testing step. The classification accuracy in meta-

testing step is what we must pay attention to.

For the meta-testing step, we use two datasets: Boss1.01[105] and Oxford-IIIT Pet

[106]. Boss 1.01contains 10000 images includes size of 512 × 512. And Oxford-IIIT Pet

has 37 categories dogs and cats with roughly 200 images for each class. Images in Oxford-

IIIT Pet do not have a common image size. Since in the meta-training step, we utilize

images with size of 84 × 84, here we need to resize all images in Boss 1.01 and Oxford-

IIIT Pet appropriately to the size of 84 × 84. Images used in meta-testing step must have

86

the same size of images as those used in meta-training step. Otherwise, they are

incompatible with prototypical networks.

The proposed prototypical networks are design to distinguish filtered images from

original images. The idea of original images means these images have not been applied for

any manipulation. We prepare two filtering operations. The first one is the Gaussian

filtering and the second one is the average filtering. Our first experiment aims to recognize

Gaussian filtered images from original images. Then, we try to classify average filtered

images from original images. In meta-testing step, our proposed prototypical networks will

perform binary classification instead of 5-class classification in meta-training step.

In the first experiment, images are filtered by three different Gaussian filters. The

parameters that control the Gaussian filtering result are the widow size W and the standard

deviation 𝜎. There are three groups of images are prepared by passing through Gaussian

filters with widow size of 3 and standard deviation of 0.5, widow size of 5 and standard

deviation of 1, widow size of 7 and standard deviation of 1.5 respectively. Each group

contains 200 Gaussian filtered images. At the end, we have three groups of various

Gaussian filtered images in Boss 1.01 and Oxford-IIIT Pet dataset separately. Now we can

create our meta-testing tasks. We totally have 6 meta-testing tasks. Three tasks created in

Boss 1.01 and three tasks crated in Oxford-IIIT Pet. For each meta-testing task, we have

two classes labeled images: Gaussian filtered images and original images. We randomly

sample 5 images per class to build the meta-testing support-set and 5 different images per

class to build the meta-testing query-set. Each meta-testing task is described as a 2-way 5-

shot classification task.

In the second experiment, similarly, we create six average filtering datasets. The

87

only difference is the filtering operation. At this stage, images undergo an average filtering

procedure. There is only one parameter influence the average filtering effect alone. That is

the widow size of an average filter. We prepare three different average filters. Their

window sizes vary from 3 × 3, 5 × 5 and 7 × 7. We develop six 2-way 5-shot meta-testing

tasks to discern between the average filtered image and the original image.

In some previous digital image forensic research[100, 102], only using Boss1.01

dataset could prove their CNN models have good performance for their experimental

purposes. In our experiment, we were also able to test our prototypical networks only on

Boss 1.01. However, to strengthen the argument that our prototypical networks approach

the idea of learning to learn from few examples, we test out model on additional dataset.

Although the Oxford-IIIT Pet dataset is not commonly used for digital image forensics, it

compensates for Boss 1.01's shortcomings. The majority of Boss 1.01’s images are

landscapes. They lack a prominent item in the center of an image. Even some central

objects such as people or car are obscure. These landscape image will be very blur after

filtering operation. It is challenging to distinguish any distinct item in an image. In contrast,

images of cats and dogs in Oxford-IIIT Pet always have a clear central object. After

performing filtering operation, we could still recognize the profile of a cat or dog. Boss

1.01 and Oxford-IIIT Pet contains two completely different styles of images. Our

experiential results indicate that the proposed prototypical networks have good

performance on both two datasets.

88

5.4 Designing the Convolutional Neural Networks as an Embedding Function

Convolutional neural networks have a good performance in processing tasks related to

images. Convolutional neural networks take advantage to extract complex statistics and

learn high levels features from datasets. Convolutional neural networks have demonstrated

its successful applications in many research and commercial fields, such as image and

video recognition, image classification, and self-driving system.

The key to the performance of any machine learning algorithm is to extract

important features from datasets. Convolutional neural networks can automatically learn

features from raw data. Earlier layers extract low-level features from input data. Low-level

features will transform into high-level features throughout the operations of convolutional

neural networks. The subsequent layers, such as the fully connected layers, will then utilize

these features for prediction. Combining low-level features to form higher-level features is

referred to as feature hierarchy.

Designing an effective embedding function 𝑓∅(𝑥𝑖) is the most crucial stage in

building prototypical networks. As the embedding function in our experiment,

convolutional neural networks (CNN) are utilized. In prototypical networks, each class

prototype generated from meta-data embeddings is an expression of the class at a high level

rather than a collection of labelled data.

The layers of a typical convolutional neural networks model comprise of many

types. These layers are crucial components of convolutional neural networks. Figure 5.3

depicts the general structure of our CNN.

89

Figure 5.5 Proposed CNN architecture.

The input layer is the network's entrance. It evaluates whether the input image's

dimensions match those we specify. Height, breadth, and channels denote the dimensions

of an image's input. An RGB color image consists of three channels. A greyscale image

has only one channel. In TensorFlow, the number of channels is one of the image

dimensions. When inputted into CNN, all images must have identical dimensions. The

TensorFlow program will generate errors if images with varying dimensions are input.

Only the Boss 1.01 dataset contains grey images, while the other three datasets we utilized

have color images, so we must convert color images to grey images before feeding them

into CNN. Since we are mainly interested in how prototypical networks classify images

rather than recognizing objects in an image, grey images are appropriate for our

experiment. In addition, Boss 1.01 is widely utilized in digital image forensics; therefore,

to validate our proposed prototypical networks, we must test our model on this dataset.

In CNN, the convolutional layer has the most important function for extracting

feature maps. It consists of numerous filters. These filters have their own learnable

parameters. The initial values of filter parameters were generated at random, and they will

be updated during the training procedure. Our CNN architecture is composed of two

convolutional layers. The first comprises 64 filters, while the second includes 128 filters.

90

Each filter has a window size of 3 × 3.

Typically, the number of convolutional layers determines the CNN's depth.

However, the performance of a network with more convolutional layers may not be

outstanding. When a complicated network is applied to solve a simple problem, overfitting

will occur. In addition, the dimensions of feature maps are typically less than those of the

input images. When an input image passes through multiple convolutional layers, feature

maps with reduced dimensions are formed at the end of the final convolutional layer. How

to determine the final dimensions of feature maps depends greatly on the specific problems.

Training complex networks is always time-consuming. According to our experiments,

increasing depth will not improve the precision of experimental results. In the proposed

prototypical network, constructing two convolutional layers could achieve a balance

between time and performance.

Batch normalization is a standard procedure in CNN construction. Batch

normalization could make CNN training more stable and efficient. In our CNNs, we add a

batch normalization layer following the convolutional layer.

CNNs require an activation layer as well. It is always following the convolutional

layer but precedes the pooling layer. The activation layer imparts nonlinear properties to

the extracted features via the convolution layer. A classifier with both linear and nonlinear

properties will be more suitable for classification, particularly for classification of several

classes. There are three classic activation functions, the Sigmoid, the ReLU and TanH

which are commonly use in CNNs. Choosing an appropriate activation function for each

activation will significantly impact the precision of an experiment. In our experiment,

Leaky ReLU brings the best performance compared with other two classic activation

91

functions. Figure 5.4 illustrates the RuLu and Leaky ReLU functions.

Figure 5.6 RuLu and Leaky ReLU functions.

RuLU(x) = {
0, 𝑥 ≤ 0
𝑥, 𝑥 ≥ 0

 (5.3)

Leaky RuLU(x) = {
𝛼𝑥, 𝑥 ≤ 0

𝑥, 𝑥 ≥ 0
 (5.4)

Leaky Relu is a variant of ReLU. Instead of being 0 when x<0, a leaky ReLU allows

a small, non-zero, constant gradient α. From Function 5.3 and Function 5.4, we can find

that Leaky ReLU could keep more information from features, especially useful for features

with a lot of negative values. The constant gradient α is set to 0.2 in our experiments.

Pooling layers decreases the dimensionality of feature maps, which results in

increased computational efficiency. Also, smaller dimensions of feature maps assist

prevent overfitting. Average pooling and max pooling are the two basic down-sampling

methods. In our experiments, we choose max pooling in every pooling layer. The window

size of max pooling determines the scope of application of max pooling operation. It will

calculate the maximum value within the range of the window size. We set 3 × 3 max

pooling in both two pooling layers

92

After the last max pooling layer, CNN has finished extracting feature maps from

the input images. These feature maps construct an image’s embeddings. We then calculate

the average value of all embeddings in one class. That is the prototype to represent one

class of images.

5.5 Experimental Results

Systematic experimentation is a crucial component of applied machine learning. The

essential experimental environment settings are arranged as below:

1. Jupyter Notebook

2. TensorFlow 1.15

3. Python 3.6.13

4. NVIDIA GeForce RTX with Max-Q Design

How to build support-sets and query-sets in meta-training and meta-testing steps

are introduced separately before in section 5.3. In the meta-training step, all the meta-

training tasks are 5-way 5-shot tasks. We use miniImageNet dataset in this step. We set 10

epochs and each epoch contains 100 episodes for training. After meta-training step, the

proposed prototypical networks model could achieve an accuracy of approximately 60%

for 5-class classification. The accuracy in this range is good enough for few-shot learning

algorithms applied on miniImageNet dataset. That indicates that our proposed prototypical

networks model is already capable of classification. A solid meta-training accuracy lays

the groundwork for further meta-testing.

In meta-testing step, the best advantage of prototypical networks is that when feed

new class data which was unseen in previous meta-training step, the parameters

93

continuously update to accommodate the new data. In other words, when input new data

to prototypical networks, it does not need to learn from sketch. Also, we do not need fine-

tuning operation when we input new data. That is the most difference from training a

traditional convolutional neural network with new data.

In the meta-testing step, we intend to train our proposed prototypical networks to

distinguish filtered images from original images. All the meta-testing tasks are 2-way 5-

shot tasks. In this step, we set 500 episodes for training.

The proposed prototypical networks are initially constructed to classify Gaussian

filtered images from original images. We train and test our model on Boss 1.01 and

Oxford-IIIT Pet datasets respectively. The small letter w represents the window size of a

Gaussian filter. And the character 𝜎 represents standard deviation. The experimental

results are show in Tables 5.1 and 5.2.

Table 5.1 Binary Classification Accuracy for Detection of Different Gaussian Filtered

Images from Original Images in Boss 1.01

 Dataset: Boss 1.01

Gaussian Filter w:3 × 3

𝜎: 0.5

w:5×5

𝜎:1

w:7×7

𝜎:1.5

Accuracy 84.64% 85.98% 86.76 %

Table 5.2 Binary Classification Accuracy for Detection of Different Gaussian Filtered

Images from Original Images in Oxford-IIIT Pet

 Dataset: Oxford-IIIT Pet

Gaussian Filter w:3 × 3

𝜎: 0.5

w:5×5

𝜎:1

w:7×7

𝜎:1.5

Accuracy 85.00% 85.2% 86.75%

It can be observed that the accuracy of binary classification could reach

approximately 85%. Only using 5 images per class in a signal episode to train the

94

prototypical networks could reach fairly good experimental results. Training traditional

CNN usually need prepare thousands of images. Our model totally only needs 400 images

to train in meta-testing step. The proposed prototypical networks require significantly less

images for training. Even our model are feed data from different sources, it could achieve

relevant accuracy.

Then we conduct another experiment to test if our proposed method is capable to

differentiate the average filtered images from original images. We just repeat the meta-

training stage and then proceed to the meta-testing step. Similarly, we train our model on

two datasets separately. Various window size of average filters could lead to different

filtering effects. Tables 5.3 and 5.4 are our experimental results.

Table 5.3 Binary Classification Accuracy for Detection of Different Average Filtered

Images from Original Images in Boss 1.01

 Dataset: Boss 1.01

Average Filter w:3 × 3 w:5×5 w:7×7

Accuracy 85.56 % 85.22 % 82.38%

Table 5.4 Binary Classification Accuracy for Detection of Different Average Filtered

Images from Original Images in Oxford-IIIT Pet

 Oxford-IIIT Pet

Average Filter w:3 × 3 w:5×5 w:7×7

Accuracy 83.50 % 84.44% 84.64%

We can find that the accuracy could still reach to approximately 85%. We simply

replace the input images from Gaussian filtered images to average filtered images. We do

not need fine-tuning also. The fact that our proposed prototypical networks can tackle a

variety of digital image forensics tasks despite varying datasets demonstrates their

adaptability.

95

5.6 Summary

The meta-learning framework for few-shot learning is based on the principle of learning to

learn with few data. Thanks to the development of meta-learning and few-shot learning,

these novel machine learning models could be applied to a variety of tasks and achieve

satisfactory accuracies. In addition, training these new types of machine learning models

requires far less data.

In this chapter, we present a prototypical networks model for different digital image

forensics tasks. Without a complicated neural network design, our model could classify

Gaussian filtered and average filtered images from original images with high accuracy.

From the perspective of datasets, our experiments demonstrate that the proposed

prototypical networks have the flexibility to classify filtered images with high accuracies

on different datasets. When utilizing datasets from different sources, there may be some

limitations. For example, images have various sizes or channels. These constraints from

datasets may require more consideration in future work.

96

CHAPTER 6

CONTRIBUTION AND FUTURE WORK

6.1 Major Contributions

In this dissertation, methods based on machine learning are used to address digital picture

forensics challenges. In the first chapter, the history of neural networks is briefly discussed.

From perceptrons to today's complex neural networks, neural network development has

been a tremendous success. The second chapter describes the fundamental mathematical

processes of neural networks. The convolutional layer, pooling layer, and activation layer

are thoroughly analyzed.

In Chapter 3, a convolutional neural network architecture is developed and applied

to the detection of seam carving. It is the first deep learning framework on this study issue.

Experimental results demonstrate that the proposed deep learning method can successfully

detect seam carving in uncompressed digital images and outperforms the state-of-the-art in

the majority of research. In many instances, the experimental results indicate that the

detection accuracy can approach 99%. In particular, the proposed deep convolutional

neural network has demonstrated good performance in recognizing situations with low

seam carving rates.

In Chapter 4, we propose a method for real-time estimation of Gaussian filtered

image parameters. This method is based on the capability of convolutional neural networks

to classify multiple classes. Experiments were conducted to assess the overall effectiveness

of the proposed method. Based on the data and discussion, the proposed network is capable

of achieving high estimating accuracy quickly, allowing it to serve as an parameters

97

estimator in real time.

In Chapter 5, we provide a prototypical networks model for various digital image

forensics tasks. Our model could detect Gaussian filtered and average filtered images from

original images without requiring a complex neural network architecture. In terms of

datasets, our experiments show that the proposed prototypical networks can classify

filtered images with good accuracies on a variety of datasets.

6.2 Limitations

Convolutional neural networks have seen tremendous success in recent years. The structure

of neural networks is becoming increasingly complicated. Convolutional neural network

models with more than 100 layers are available. Parallel architectures are also used in some

convolutional neural network models.

 Complex structures are not designed in neural network models in this dissertation.

Even if simple neural network structures are sufficient for our studies. More complicated

neural network structures, on the other hand, deserve consideration.

 Also, the data source also has an impact on the experimental results. Only images

from a signal dataset are used in some of the experiments in this dissertation. Testing

images from various sources aids in the improvement of neural network model

performance.

6.3 Future Research

Image manipulation is becoming more accessible. Ordinary individuals can now easily

modify images without the need for professional skills. Image detection techniques that

98

work today may no longer be applicable in the future. As a result, image detection

technology must be constantly updated. In the future research, More complicated neural

network structures will be designed. In addition, more datasets will be tested in a neural

network model. Thus, a neural network model could be effective for future digital image

forensics tasks.

99

REFERENCES

[1] Ciregan, D., Meier, U., & Schmidhuber, J. (2012, June). Multi-column deep neural

networks for image classification. In 2012 IEEE conference on computer vision and

pattern recognition (pp. 3642-3649). IEEE.

[2] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. Advances in neural information processing

systems, 25.

[3] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 770-778).

[4] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely

connected convolutional networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 4700-4708).

[5] Patrick, R. L. (1987). General motors/North American monitor for the IBM 704

computer (Vol. 7316). Rand.

[6] Lorenzo, M. J. (2019). Abstracting Away the Machine: The History of the

FORTRAN Programming Language (FORmula TRANslation). Independently

published.

[7] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., & Darrell,

T. (2014, November). Caffe: Convolutional architecture for fast feature embedding.

In Proceedings of the 22nd ACM international conference on Multimedia (pp. 675-

678).

[8] LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361(10), 1995.

[9] LeCun, Y. (1989). Generalization and network design strategies. Connectionism in

perspective, 19(143-155), 18.

[10] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,

& Jackel, L. D. (1989). Backpropagation applied to handwritten zip code

recognition. Neural computation, 1(4), 541-551.

[11] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

100

[12] Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., & Fergus, R. (2013, May).

Regularization of neural networks using drop connect. In International conference

on machine learning (pp. 1058-1066). PMLR.

[13] Piva, A. (2013). An overview on image forensics. International Scholarly Research

Notices, 2013.

[14] Avidan, S., & Shamir, A. (2007). Seam carving for content-aware image resizing.

In ACM SIGGRAPH 2007 papers (pp. 10-es).

[15] Sarkar, A., Nataraj, L., & Manjunath, B. S. (2009, September). Detection of seam

carving and localization of seam insertions in digital images. In Proceedings of the

11th ACM workshop on multimedia and security (pp. 107-116).

[16] Fillion, C., & Sharma, G. (2010, January). Detecting content adaptive scaling of

images for forensic applications. In Media forensics and security II (Vol. 7541, pp.

359-370). SPIE.

[17] Lu, W., & Wu, M. (2011, September). Seam carving estimation using forensic hash.

In Proceedings of the thirteenth ACM multimedia workshop on multimedia and

security (pp. 9-14).

[18] Chang, W. L., Shih, T. K., & Hsu, H. H. (2013, November). Detection of seam

carving in JPEG images. In 2013 International joint conference on awareness

science and technology & ubi-media computing (iCAST 2013 & UMEDIA 2013)

(pp. 632-638). IEEE.

[19] Wattanachote, K., Shih, T. K., Chang, W. L., & Chang, H. H. (2015). Tamper

detection of JPEG image due to seam modifications. IEEE transactions on

information forensics and security, 10(12), 2477-2491.

[20] Liu, Q., & Chen, Z. (2014). Improved approaches with calibrated neighboring joint

density to steganalysis and seam-carved forgery detection in JPEG images. ACM

transactions on intelligent systems and technology (TIST), 5(4), 1-30.

[21] Liu, Q. (2016, December). Exposing seam carving forgery under recompression

attacks by hybrid large feature mining. In 2016 23rd International conference on

pattern recognition (ICPR) (pp. 1041-1046). IEEE.

[22] Liu, Q. (2017). An approach to detecting JPEG down-recompression and seam

carving forgery under recompression anti-forensics. Pattern recognition, 65, 35-

46.

[23] Ryu, S. J., Lee, H. Y., & Lee, H. K. (2014). Detecting trace of seam carving for

forensic analysis. IEICE TRANSACTIONS on Information and systems, 97(5),

1304-1311.

101

[24] Wei, J. D., Lin, Y. J., & Wu, Y. J. (2014). A patch analysis method to detect seam

carved images. Pattern recognition letters, 36, 100-106.

[25] Yin, T., Yang, G., Li, L., Zhang, D., & Sun, X. (2015). Detecting seam carving

based image resizing using local binary patterns. Computers & security, 55, 130-

141.

[26] Ye, J., & Shi, Y. Q. (2016, September). A local derivative pattern based image

forensic framework for seam carving detection. In International workshop on

digital watermarking (pp. 172-184). Springer, Cham.

[27] Ye, J., & Shi, Y. Q. (2017). An effective method to detect seam carving. Journal of

information security and applications, 35, 13-22.

[28] Ye, J., & Shi, Y. Q. (2017, August). A hybrid feature model for seam carving

detection. In International workshop on digital watermarking (pp. 77-89).

Springer, Cham.

[29] Zhang, D., Yin, T., Yang, G., Xia, M., Li, L., & Sun, X. (2017). Detecting image

seam carving with low scaling ratio using multi-scale spatial and spectral entropies.

Journal of visual communication and image representation, 48, 281-291.

[30] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. Advances in neural information processing

systems, 25.

[31] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... &

Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 1-9).

 [32] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L.

(2015). Imagenet large scale visual recognition challenge. International journal of

computer vision, 115(3), 211-252.

[33] Xu, G., Wu, H. Z., & Shi, Y. Q. (2016). Structural design of convolutional neural

networks for steganalysis. IEEE signal processing letters, 23(5), 708-712.

[34] Fridrich, J., & Kodovsky, J. (2012). Rich models for steganalysis of digital images.

IEEE transactions on information forensics and security, 7(3), 868-882.

[35] Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference

on machine learning (pp. 448-456). PMLR.

102

[36] Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial

intelligence and statistics (pp. 315-323). JMLR Workshop and Conference

Proceedings.

[37] Bas, P., Filler, T., & Pevný, T. (2011, May). ” Break our steganographic system”:

the ins and outs of organizing BOSS. In International workshop on information

hiding (pp. 59-70). Springer, Berlin, Heidelberg.

[38] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell,

T. (2014, November). Caffe: Convolutional architecture for fast feature embedding.

In Proceedings of the 22nd ACM international conference on multimedia (pp. 675-

678).

[39] Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines.

ACM transactions on intelligent systems and technology (TIST), 2(3), 1-27.

[40] Farid, H. (2009). Image forgery detection. IEEE signal processing magazine, 26(2),

16-25.

[41] Fridrich, J. (2009). Digital image forensics. IEEE signal processing magazine,

26(2), 26-37.

[42] Piva, A. (2013). An overview on image forensics. International scholarly research

notices, 2013.

[43] Swaminathan, A., Wu, M., & Liu, K. R. (2008). Digital image forensics via intrinsic

fingerprints. IEEE transactions on information forensics and security, 3(1), 101-

117.

[44] Qi, L., Wang, R., Hu, C., Li, S., He, Q., & Xu, X. (2019). Time-aware distributed

service recommendation with privacy-preservation. Information sciences, 480,

354-364.

[45] Qi, L., Zhang, X., Dou, W., Hu, C., Yang, C., & Chen, J. (2018). A two-stage

locality-sensitive hashing based approach for privacy-preserving mobile service

recommendation in cross-platform edge environment. Future generation computer

systems, 88, 636-643.

[46] Jung, K. H., & Yoo, K. Y. (2015). Steganographic method based on interpolation

and LSB substitution of digital images. Multimedia tools and applications, 74(6),

2143-2155.

[47] Meng, R., Rice, S. G., Wang, J., & Sun, X. (2018). A fusion steganographic

algorithm based on faster R-CNN. Computers, materials & continua, 55(1), 1-16.

103

[48] Lyu, S., & Farid, H. (2006). Steganalysis using higher-order image statistics. IEEE

transactions on information forensics and security, 1(1), 111-119.

[49] Silva, E., Carvalho, T., Ferreira, A., & Rocha, A. (2015). Going deeper into copy-

move forgery detection: Exploring image telltales via multi-scale analysis and

voting processes. Journal of visual communication and image representation, 29,

16-32.

[50] Lee, J. C. (2015). Copy-move image forgery detection based on Gabor magnitude.

Journal of visual communication and image representation, 31, 320-334.

 [51] Lukas, J., Fridrich, J., & Goljan, M. (2006). Digital camera identification from

sensor pattern noise. IEEE transactions on information forensics and security, 1(2),

205-214.

[52] Li, C. T. (2010). Source camera identification using enhanced sensor pattern noise.

IEEE transactions on information forensics and security, 5(2), 280-287.

[53] Ding, F., Zhu, G., Yang, J., Xie, J., & Shi, Y. Q. (2014). Edge perpendicular binary

coding for USM sharpening detection. IEEE signal processing letters, 22(3), 327-

331.

[54] Ding, F., Zhu, G., Dong, W., & Shi, Y. Q. (2018). An efficient weak sharpening

detection method for image forensics. Journal of visual communication and image

representation, 50, 93-99.

[55] Zhu, N., Deng, C., & Gao, X. (2017). Image sharpening detection based on

multiresolution overshoot artifact analysis. Multimedia tools and applications,

76(15), 16563-16580.

[56] Guo, J. M., & Le, T. N. (2010). Secret communication using JPEG double

compression. IEEE signal processing letters, 17(10), 879-882.

[57] Barni, M., Bondi, L., Bonettini, N., Bestagini, P., Costanzo, A., Maggini, M., ... &

Tubaro, S. (2017). Aligned and non-aligned double JPEG detection using

convolutional neural networks. Journal of visual communication and image

representation, 49, 153-163.

[58] Yang, J., Xie, J., Zhu, G., Kwong, S., & Shi, Y. Q. (2014). An effective method for

detecting double JPEG compression with the same quantization matrix. IEEE

transactions on information forensics and security, 9(11), 1933-1942.

[59] Zhang, Y., Li, S., Wang, S., & Shi, Y. Q. (2014). Revealing the traces of median

filtering using high-order local ternary patterns. IEEE signal processing letters,

21(3), 275-279.

104

[60] Boroumand, M., & Fridrich, J. (2017). Scalable processing history detector for jpeg

images. Electronic imaging, 2017(7), 128-137.

[61] Cao, G., Zhao, Y., Ni, R., Yu, L., & Tian, H. (2010, July). Forensic detection of

median filtering in digital images. In 2010 IEEE international conference on

multimedia and expo (pp. 89-94). IEEE.

[62] Ravi, H., Subramanyam, A. V., & Emmanuel, S. (2015). ACE–an effective anti-

forensic contrast enhancement technique. IEEE signal processing letters, 23(2),

212-216.

[63] Stamm, M. C., Tjoa, S. K., Lin, W. S., & Liu, K. R. (2010, September).

Undetectable image tampering through JPEG compression anti-forensics. In 2010

IEEE international conference on image processing (pp. 2109-2112). IEEE.

[64] Li, J., Li, X., Yang, B., & Sun, X. (2014). Segmentation-based image copy-move

forgery detection scheme. IEEE transactions on information forensics and security,

10(3), 507-518.

[66] Rhee, K. H. (2016, October). Gaussian filtering detection using band pass residual

and contrast of forgery image. In 2016 IEEE 7th annual information technology,

electronics and mobile communication conference (IEMCON) (pp. 1-4). IEEE.

[67] Paszke, A., Chaurasia, A., Kim, S., & Culurciello, E. (2016). Enet: A deep neural

network architecture for real-time semantic segmentation. ArXiv preprint

arXiv:1606.02147.

[68] Xu, G., Wu, H. Z., & Shi, Y. Q. (2016). Structural design of convolutional neural

networks for steganalysis. IEEE signal processing letters, 23(5), 708-712.

[69] Chen, J., Kang, X., Liu, Y., & Wang, Z. J. (2015). Median filtering forensics based

on convolutional neural networks. IEEE signal processing letters, 22(11), 1849-

1853.

[70] Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2016).

First steps toward camera model identification with convolutional neural networks.

IEEE signal processing letters, 24(3), 259-263.

[71] Cui, Q., McIntosh, S., & Sun, H. (2018). Identifying materials of photographic

images and photorealistic computer generated graphics based on deep CNNs.

Comput. Mater. Continua, 55(2), 229-241.

[72] Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines.

ACM transactions on intelligent systems and technology (TIST), 2(3), 1-27.

105

[73] Ding, F., Shi, Y., Zhu, G., & Shi, Y. Q. (2019). Smoothing identification for digital

image forensics. Multimedia tools and applications, 78(7), 8225-8245.

[74] Yang, J., Zhu, G., Huang, J., & Zhao, X. (2015). Estimating JPEG compression

history of bitmaps based on factor histogram. Digital signal processing, 41, 90-97.

[75] Zhou, Z., Wu, Q. J., & Sun, X. (2019). Multiple distance-based coding: toward

scalable feature matching for large-scale web image search. IEEE transactions on

big data, 7(3), 559-573.

[76] Ye, J., Shen, Z., Behrani, P., Ding, F., & Shi, Y. Q. (2018). Detecting USM image

sharpening by using CNN. Signal processing: image communication, 68, 258-264.

[77] Yuan, C., Li, X., Wu, Q. J., Li, J., & Sun, X. (2017). Fingerprint liveness detection

from different fingerprint materials using convolutional neural network and

principal component analysis. Computers, materials & continua, 53(3), 357-371.

[78] Slavkovikj, V., Verstockt, S., De Neve, W., Van Hoecke, S., & Van de Walle, R.

(2015, October). Hyperspectral image classification with convolutional neural

networks. In Proceedings of the 23rd ACM international conference on Multimedia

(pp. 1159-1162).

[79] Bas, P., Filler, T., & Pevný, T. (2011, May). ” Break our steganographic system”:

the ins and outs of organizing BOSS. In International workshop on information

hiding (pp. 59-70). Springer, Berlin, Heidelberg.

[80] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 770-778).

[81] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and

tree search. Nature, 529(7587), 484-489.

[82] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of

deep bidirectional transformers for language understanding. ArXiv preprint

arXiv:1810.04805.

[83] Fei-Fei, L., Fergus, R., & Perona, P. (2006). One-shot learning of object categories.

IEEE transactions on pattern analysis and machine intelligence, 28(4), 594-611.

[84] Fink, M. (2004). Object classification from a single example utilizing class

relevance metrics. Advances in neural information processing systems, 17.

[85] Altae-Tran, H., Ramsundar, B., Pappu, A. S., & Pande, V. (2017). Low data drug

discovery with one-shot learning. ACS central science, 3(4), 283-293.

106

[86] Wu, Y., & Demiris, Y. (2010, May). Towards one shot learning by imitation for

humanoid robots. In 2010 IEEE international conference on robotics and

automation (pp. 2889-2894). IEEE.

[87] Duan, Y., Andrychowicz, M., Stadie, B., Jonathan Ho, O., Schneider, J., Sutskever,

I., ... & Zaremba, W. (2017). One-shot imitation learning. Advances in neural

information processing systems, 30.

[88] Finn, C., Abbeel, P., & Levine, S. (2017, July). Model-agnostic meta-learning for

fast adaptation of deep networks. In International conference on machine learning

(pp. 1126-1135). PMLR.

[89] Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., & Ahn, S. (2018). Bayesian model-

agnostic meta-learning. Advances in neural information processing systems, 31.

[90] Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot

learning. Advances in neural information processing systems, 30.

[91] Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks

for one shot learning. Advances in neural information processing systems, 29.

[92] Finn, C., Abbeel, P., & Levine, S. (2017, July). Model-agnostic meta-learning for

fast adaptation of deep networks. In International conference on machine learning

(pp. 1126-1135). PMLR.

[93] Finn, C., Xu, K., & Levine, S. (2018). Probabilistic model-agnostic meta-learning.

Advances in neural information processing systems, 31.

[94] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., ...

& De Freitas, N. (2016). Learning to learn by gradient descent by gradient descent.

Advances in neural information processing systems, 29.

[95] Finn, C., Xu, K., & Levine, S. (2018). Probabilistic model-agnostic meta-learning.

Advances in neural information processing systems, 31.

[96] Ravi, S., & Larochelle, H. (2016). Optimization as a model for few-shot learning.

[97] Xu, G., Wu, H. Z., & Shi, Y. Q. (2016). Structural design of convolutional neural

networks for steganalysis. IEEE signal processing letters, 23(5), 708-712.

[98] Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2016).

First steps toward camera model identification with convolutional neural networks.

IEEE Signal Processing Letters, 24(3), 259-263.

107

[99] Cui, Q., McIntosh, S., & Sun, H. (2018). Identifying materials of photographic

images and photorealistic computer generated graphics based on deep CNNs.

Comput. Mater. Continua, 55(2), 229-241.

[100] Ding, F., Shi, Y., Zhu, G., & Shi, Y. Q. (2020). Real-time estimation for the

parameters of Gaussian filtering via deep learning. Journal of real-time image

processing, 17(1), 17-27.

[101] Chen, J., Kang, X., Liu, Y., & Wang, Z. J. (2015). Median filtering forensics based

on convolutional neural networks. IEEE signal processing letters, 22(11), 1849-

1853.

[102] Ye, J., Shi, Y., Xu, G., & Shi, Y. Q. (2018, October). A convolutional neural

network based seam carving detection scheme for uncompressed digital images. In

International workshop on digital watermarking (pp. 3-13). Springer, Cham.

[103] Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks

for one shot learning. Advances in neural information processing systems, 29.

[104] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L.

(2015). Imagenet large scale visual recognition challenge. International journal of

computer vision, 115(3), 211-252.

[105] Bas, P., Filler, T., & Pevný, T. (2011, May). ” Break our steganographic system”:

the ins and outs of organizing BOSS. In International workshop on information

hiding (pp. 59-70). Springer, Berlin, Heidelberg.

[106] Parkhi, O. M., Vedaldi, A., Zisserman, A., & Jawahar, C. V. (2012, June). Cats and

dogs. In 2012 IEEE conference on computer vision and pattern recognition (pp.

3498-3505). IEEE.

	Digital image forensics via meta-learning and few-shot learning
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Giving Computers the Ability to Learn From Data
	Chapter 2: A Roadmap for Building Convolutional Neural Networks
	Chapter 3: A Convolutional Neural Network Based Seam Carving Detection Scheme for Uncompressed Digital Images
	Chapter 4: Real-Time Estimation for the Parameters of Gaussian Filtering via Deep Learning
	Chapter 5: Digital Image Forensics by Using Prototypical Networks
	Chapter 6: Contribution and Future Work
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

