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Lay Summary

The viability of using innovate data solutions to understand traffic and combining it with

incidents and weather data is explored to enhance traffic forecasting. The overall objec-

tive is to offer a digital platform that can analyze historical and future data offering ac-

curate and fast insights on traffic performance. Car-related information is collected from

sensors mounted on a subset of cars within the traffic network and delivered to a cloud-

based service that can store the data. The stored data is then used in different ways. First,

the spatiotemporal relationships between data points are learned through structuring the

data in multi-dimensional arrays and feeding them to an Artificial Intelligence (AI) model

that can learn the spatiotemporal relationships. Then historical data and prediction re-

sults inferred from the trained AI model are displayed on a customized website that can

quickly query and display map visualizations of the traffic performance. The website is

built with support of voice commands, meaning that you can speak-to to navigate through

different pages and request specific traffic information (ex: a certain road/day/time) to

display.
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Abstract

Traffic congestion is a perennial issue because of the increasing traffic demand yet limited

budget for maintaining current transportation infrastructure; let alone expanding them.

Many congestion management techniques require timely and accurate traffic estimation

and prediction. Examples of such techniques include incident management, real-time

routing, and providing accurate trip information based on historical data. In this disserta-

tion, a speech-powered traffic prediction platform is proposed, which deploys a new deep

learning algorithm for traffic prediction using ConnectedVehicles (CV) data. To speed-up

traffic forecasting, a Graph Convolution – Gated Recurrent Unit (GC-GRU) architecture is

proposed and analysis of its performance on tabular data is compared to state-of-the-art

models. GC-GRU’s Mean Absolute Percentage Error (MAPE) was very close to Trans-

former (3.16 vs 3.12) while achieving the fastest inference time and a six-fold faster train-

ing time than Transformer, although Long-Short-Term Memory (LSTM) was the fastest

in training. Such improved performance in traffic prediction with a shorter inference time

and competitive training time allows the proposed architecture to better cater to real-time

applications. This is the first study to demonstrate the advantage of using multiscale ap-

proach by combining CV data with conventional sources such as Waze and probe data.

CVdatawas better at detecting short duration, Jamand stand-still incidents and detected

them earlier as compared to probe. CV data excelled at detecting minor incidents with

a 90% detection rate versus 20% for probes and detecting them 3 minutes faster. To

xvi



process the big CV data faster, a new algorithm is proposed to extract the spatial and

temporal features from the CSV files into a Multiscale Data Analysis (MDA). The algo-

rithm also leverages Graphics Processing Unit (GPU) using the Nvidia Rapids framework

and Dask parallel cluster in Python. The results show a seventy-fold speedup in the data

Extract, Transform, Load (ETL) of the CV data for the State of Missouri of an entire day

for all the unique CV journeys (reducing the processing time from about 48 hours to 25

minutes). The processed data is then fed into a customized UNet model that learns high-

level traffic features from network-level images to predict large-scale, multi-route, speed

and volume of CVs. The accuracy and robustness of the proposedmodel are evaluated by

taking different road types, times of day and image snippets of the developed model and

comparable benchmarks. To visually analyze the historical traffic data and the results of

the prediction model, an interactive web application powered by speech queries is built

to offer accurate and fast insights of traffic performance, and thus, allow for better po-

sitioning of traffic control strategies. The product of this dissertation can be seamlessly

deployed by transportation authorities to understand andmanage congestions in a timely

manner.
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Chapter 1

Introduction and overview

1.1 Background

Traffic congestion costs cities billions of dollars every yearwhen factors such as accidents,

pollution and delays are factored in. According to a recent report published by the Texas

Transportation Institute [1], all 494 metropolitan areas in the United States experienced

8.7 billion vehicle-hours of delay in 2019, resulting in 3.5 billion gallons of wasted fuel

and 190 billion in lost productivity, or about 0.15 percent of the nation’s Gross Domestic

Product (GDP).When traffic demand approaches or exceeds the traffic system’s available

capacity, traffic congestion occurs. Traffic Management Center (TMC)s utilize real-time

traffic information to help relieve traffic congestion and improve safety. This requires

operators to constantly monitor road conditions through data streaming from a variety of

sources including traffic sensors, GPS-enabled devices (probes), closed-circuit cameras,

dynamic message signs, etc.

The Federal Highway Administration (FHWA) has long maintained nationwide pro-

grams to track traffic trends and vehicle distributions in order to meet data requirements

set forth in federal highway legislation. To gauge traffic flow, the following methods are

commonly used: video analytics systems such as Closed-Circuit Television (CCTV) cam-
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eras which can provide a 24/7/365 coverage of speed and location of vehicles. The lo-

cations of vehicles provided, however, can be inaccurate due to the camera being fixed

or heavy weather conditions. Another common data source is in-roadway sensors which

come in a variety of shapes and sizes, and they can be installed on orwithin the pavement.

Such a data source provides full coverage as well, but doesn’t collect any information

about the vehicles so the traffic coverage is done at a macroscopic scale. Additionally,

transponder toll devices in cars are used to transmit data that contains a unique identi-

fier (the toll card number) and position. Data from mobile phones with location tracking

turned on can be utilized as a traffic probe in aggregate. Floating cellular data is another

name for this type of data. This method is considered a low-cost or no-cost solution

since phones are owned by the user (commuter) and can travel everywhere. Identify-

ing the transportation mode used, however, can be a challenging task and may require

complex algorithms. Recently, Connected Vehicles (CV) have become a very useful and

direct source of traffic data as more vehicles become connected via built-in telematics

and onboard gadgets. CV data is low cost since no significant installation or maintenance

required, and rich with very frequent location and speed updates for every vehicle so it

provides a complete view of geographic areas.

This dissertation is structured as follows: we briefly introduce each chapter in the

current section along with the overall objectives. In the numbered chapters that follow,

we dive into each chapter by discussing related work, methodology of our approach, fol-

lowed by results, analysis and discussion. While each chapter has its own summary, a

conclusion section is added at the end to summarize the dissertation work.

1.2 Connected Vehicles Data

CV technology can be defined as an application that utilizes Vehicle-To-Everything (V2X)

communications to address mobility and safety concerns on roadways. CV data avail-
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ability has been exploding in recent years. This is as a result of the advent of Original

Equipment Manufacturer (OEM)s, Telematics platforms, and other in-vehicle technolo-

gies, that can continuously stream high-resolution, reliable and accurate vehicle data. A

probe vehicle feature, which is part of connected vehicle technology, collects data about

the state of the vehicle. Information from the collected data is used to estimate critical

performance indicators such as travel time. Data generally used for traffic analysis and

prediction has two main issues: availability, size of data, and the overreliance on probe

data. When qualified traffic data is unavailable, the trained prediction model’s perfor-

mance degrades since performance correlates with the quality of input data. While we

can collect more probe data due to transportation infrastructure modernization, the data

doesn’t capture themicroscopic changes in traffic behavior. Themain difference between

probe data and CV data is scale and velocity. Probe data provides speed per road seg-

ment (line data) at a frequency of around five minutes, however, CV data provides speed

at the vehicle’s location (point data) at a frequency of three seconds.

To our knowledge, most prior studies [2–4] used probe traffic data that was less than

a year old and, in some cases, as recent as one or two months [5]. Probe data cannot

capture themicroscopic travel speed or volume, and using it for traffic forecasting is likely

to yield unreliable estimates, in our study, since our goal is to predict speed and volume

simultaneously. Therefore, there is a need to use a more reliable data source that can

provide microscopic live travel information to improve the reliability of traffic predictions

along road segments such as CV data.

The future of Intelligent Transportation Systems (ITS) is shifting towards big real-

time data from CV as automobile makers rush to incorporate CV technology in novel

and current vehicles for numerous apparent advantages, which include vehicle autonomy

and navigation, vehicle sensor and driver monitoring, live over-the-air updates, advanced

road warnings, improved battery and fuel efficiency. Government and state institutions
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that create, maintain and manage road infrastructure may take advantage of the CV data

available to know what is happening on the road and make informed decisions on traffic

flow and road pavement infrastructure. Thus, it is critical to effectively process all CV

data on a state level for statewide transportation infrastructure management.

Themain goal of this chapter is to study the resolution, coverage, and diversity of real-

time traffic data streams that enable operators to detect problem areas and respond to

them in reasonable time. There is a growing interest among state agencies in leveraging

CV data to improve operations, incident management and predictive analytics. The size,

coverage, resolution and penetration rates of this new dataset offers new challenges and

opportunities that need to be explored prior to full scale integration into day-to-day traffic

operations.

1.3 Big Data Processing

As automakers scramble to integrate CV technology in new and existing vehicles for sev-

eral salient benefits including vehicle autonomy and navigation, vehicle sensor and driver

monitoring, live over-the-air updates, advanced roadwarnings, and improved battery and

fuel efficiency, the future of transportation infrastructuremanagement is shifting towards

real-time big data fromCV. In order to knowwhat is happening on the road andmakewise

judgments about traffic flow and road pavement infrastructure, government and state or-

ganizations that design, maintain, and administer road infrastructure may benefit from

the CV data readily available. Howwe efficiently process all CV data at the state level for

statewide transportation infrastructure management remains to be seen.

The development of the modern urban economy in cities has been both an indicator

of and a driver of the transportation infrastructure, which includes information about the

road pavement surface, road networks, signals, and intersections, as well as parking. Pro-

cessing and analyzing data from transportation infrastructure had not been difficult until
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recently, and this is in accordance with Moore’s Law, which states that computing power

will double approximately every 18 months [6]. The development of Central Processing

Unit (CPU)s has put them at the forefront of data processing. Moore’s Law is thought to

have reached its physical limits, and the emergence and growth of big data across several

industry verticals, including finance, social networks, transportation, retail, telecommu-

nications, and biology, has necessitated the adoption of fresh, cutting-edge methods for

processing and analyzing this data in order to derive useful insights. Finding fresh and

different approaches of digesting large amounts of data to produce useful insights has

been the focus of recent research [7–9].

These strategies include quantum computing, Graphics Processing Unit (GPU) data

processing, parallel computing, and edge computing (still in the infancy of its develop-

ment). GPUs aremassively parallel processing devices thatwere initially created to speed

up graphics operations on computers. On GPUs originally designed for gaming and visual

graphics processing, the advent of Nvidia Compute Unified Device Architecture (CUDA)

ushered in the era of extremely parallel scientific computations [10, 11]. Although GPUs

have limited computational power, themassively parallel architecture, also known as Sin-

Figure 1.1: CPU vs GPU architecture
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gle Instruction Multiple Data (SIMD), significantly accelerates simple data processing

jobs using independent execution paths (see Figure 1.1).

Launchingmillions of threads on thousands of processing cores on a singleGPU is typ-

ically required tomake use of the tremendous parallelism of GPUs [12]. Constraints when

employing GPUs for data processing typically include GPU memory limits and slow data

transmission rates between the CPU and GPU. However, there are ways to get around or

cover up certain problems that GPUs have, such as simultaneous data transfer and batch

processing. Despite these difficulties, when used properly, GPUs have been shown to ac-

celerate scientific computations up to 200,000× over CPUs [10, 11, 13]. As a result, the

core of all supercomputing infrastructure today consists of GPUs and similar accelerator

hardware technologies.

1.4 Traffic Forecasting

Traffic forecasting is a critical component of advanced traffic management systems that

can help transportation planners in planning for volatile events ahead, by taking early

actions and arrangements, which contributes to better traffic management and service

quality. It may not only serve as a valuable reference for increasing the efficiency of lim-

ited traffic management resources, but it can also assist passengers in making arrange-

ments ahead of time tominimize traffic congestion. Long-termprojections aremore likely

than short-term forecasts to reduce travelers’ average trip time [14]. Common forecasted

traffic parameters include: traffic flow [15], traffic speed [16], and traffic time [17]. The

increasing availability of large-scale traffic data, which can be looked at from a temporal

and spatial lens, has paved the way to develop prediction models that are robust to cap-

ture the underlying driving mechanism of traffic volatilities, especially the random (un-

foreseen) components.

Many studies [18–20] have shown that traffic datasets can be used to predict traffic
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congestion, allowing drivers to avoid congested areas (e.g., through traffic flow forecast-

ing navigation systems), policymakers to decide on changes to traffic regulations (e.g.,

replacing a normal lane with a toll lane), urban planners to design better pathways (e.g.,

adding or removing a road lane), and transportation engineers to better plan for the timing

of construction activities.

Temporally, majority of prior studies have focused on single-step traffic flow predic-

tion for a single road or road section. Single-step predictions can be defined as a single

value prediction at the next time-stepwhilemulti-stepwould predict a sequence of values

into the future (multiple time steps). For some applications in ITS, such as traffic plan-

ning, single-step can be insufficient because it doesn’t provide enough valuable insights

for transportation planners when planning future strategies for traffic management As a

result, multi-step traffic flow prediction is gaining popularity. Multi-step traffic flow pre-

diction uses the samemethodology as single-step traffic flow prediction in predicting the

first time-step; however, for the future multi-steps there are different strategies that can

be used such as:

• DirectMulti-step Forecast; where a separatemodel for each time step is developed.

• RecursiveMulti-step Forecast; where the prediction output from the previous time-

step is used as an input to predict the next step.

• Direct-Recursive hybridmulti-step Forecast; which combines theprevious two strate-

gies.

• Multiple Output Forecast; where the entire multi-step future is predicted in one-

shot.

In addition, many studies only focused on predicting traffic on a single-route or a spe-

cific connection or crossing. The development of an ITS demands the need to explore

multi-route predictions on a larger scale by considering the complex spatial dynamics of
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a network [21]. While prior knowledge of the distance or travel time between regions

can aid in capturing spatial correlation, there are still some hidden time-varying traffic

patterns that data-driven methods must uncover. The challenge is resolving the intricate

spatio-temporal dependencies, which refer to traffic information (e.g., speed or volume)

at a certain location in space and moment in time. With the emergence of deep learning

models, this research aims to solve the question of how to construct appropriate deep

learning models to cope with large-scale complex network-wide traffic data.

Large-scale network traffic prediction demands an intelligent and efficient prediction

methodology to forecast traffic on longer horizons and reflect the flow propagation. Nu-

merous variables affect a region’s future traffic state, including historical observations of

traffic, road geometry and network dependencies, weather, incidents, and other external

factors (holidays and special events). The technique used to fuse multi-purpose vari-

ables is a challenge for the current generation of prediction models when incorporating

information from multiple senses together. The interrelationships between regions are

intricate and complex, along with the use of big amount of data, adds to the challenges in

developing a robust prediction model.

The main goal of this chapter is to create an accurate and reliable network-wide (by

exploring multi-routes), multi-purpose (such as speed and volume), multi-step (longer

prediction horizon) prediction model.

1.5 Web-based Visual Analytics

The increasing complexity of urban transportation networks makes it difficult to manage

transportation operations in cities. ITS and Information and Communication Technology

(ICT)s are frequently used to handle traffic monitoring, estimate, and control problems.

In order to apply suitable control techniques, ITSs combinemodern technology with real-

time information about traffic conditions. Transportation networks are closelymonitored,
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resulting in massive traffic and incident databases. The problem of traffic congestion

on the roads is serious and widespread, and the integration of various technologies and

systems can greatly aid in its resolution. The requirement for massive traffic databases

to be efficiently used by traffic operators and managers necessitates the development

of innovative apps and state-of-the-art visualization tools as the amount of traffic data

transmitted via ITSs grows fast. Interactive visualization allows extracting data of interest

by displaying it in various visual forms and interacting with it through various filters.

Most transportation agencies use ArcGIS, Tableau, and D3 as their primary visual

analytic platforms. Tableau, an analytical visualization tool, is used by the NHTSA (Na-

tionalHighwayRoad SafetyAdministration) to offer insights regarding speed-related traf-

fic fatalities across the United States. Other agencies, like the Virginia Department of

Transportation (VDOT2015), the Bureau of Transportation Statistics (BTS) (2019), and

the Iowa Department of Transportation [22], employ comparable platforms to dig into

work zone, traffic, and freight data. The data being visualized on these platforms might

be anywhere from a few megabytes to a few gigabytes in size. When the size of the data

being viewed surpasses 250 megabytes, significant latency might be detected in terms

of updates. For all the heavy-lifting calculations (on large data sizes) such as data inges-

tion, aggregation, integration, and reduction, recent advances aimed at managing huge

transportation data employ high-performance computing clusters in the backend [23].

The data is then provided to the front end for visual exploration after being filtered, ag-

gregated, and lightweight. Although this method is useful for managing the challenges of

massive data, it restricts the effectiveness of visual analytics because tiny details are lost

in the aggregate and filtering processes [24].

The main purpose of this chapter is to develop an interactive visual analytics applica-

tion that allows the big CV dataset (historical and predicted) to be visualized, interacted

with, and analyzed in the browser (front end). The framework will make use of CPUs
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to allow heavy-lifting computations like data reduction, aggregation, and filtering to be

performed with user input from the front end.

1.6 Dissertation Objectives

The main purpose of this dissertation is to analyze and understand congestions better.

To accomplish this purpose, we decompose the congestion understanding pipleine into

predictions, data, processing and analysis. This break up into constituent parts presents

the following research questions:

• Could there be a faster way to perform traffic predictions?

• What better sources of data exist and how do they compare to traditionally used

sources?

• Howcandata beprocessed faster to scale predictionmodels along longer-horizons?

• How can decisions be made from the forecasted model results?

To accomplish our main purpose we deliver an interactive web application that can

perform faster predictions with higher accuracy data. The following objectives, to be dis-

cussed in detail through each of the following chapters, answers each of the research

questions:

• Developing a GC-GRU Deep Learning architecture that can perform faster predic-

tions on tabular data

• Comparative Analysis of CV data to traditionally used traffic data such as probe.

This study answers the question of how a different scale like the microscopic CV

point data compares to macroscopic probe line data. Using a multiscale data min-

ing approach, trends are compared between both datasets.
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• Desigining a pipeline for performing simultaneous, pixel-level, dense prediction of

traffic flow variables (speed and volume)while considering the network traffic tem-

poral evolutions and spatial dependencies.

• Building an interactive web application that analyzes and predicts traffic perfor-

mance using CV data, for a faster understanding of bottlenecks and situations trig-

gering a degraded traffic performance.

The web app is designed to assist traffic operators in estimating traffic congestion.

Using a map layer, it depicts various levels of congestion that are estimated and labeled

with green, yellow, red, corresponding to normal, medium, and severe congestion, and

updated automatically with the time frequency selected by the user. The second tool

aims to make databases more understandable for traffic operators and analysts by pro-

viding tabular and graphical depiction, as well as several filtering options. The next sec-

tions of the dissertation are organized as follows: the second chapter introduces CV data

and compares it to detector and probe data to understand its penetration rate and how

it compares when detecting congestion and incident events. In the third chapter, we dis-

cuss state-of-the-art machine learning models for timeseries forecasting and propose a

faster architecture for similar prediction results. In the fourth chapter, we introduce the

different datasets used and how our data processing pipeline was developed to efficiently

process large-scale data by leveraging distributed GPU clusters through Nvidia Rapids

and Dask Framework. In the same chapter we also present our developed Deep Learning

(DL) Framework for simultaneous, pixel-level prediction of traffic flow variables (speed

and volume). In the fifth and final chapter we talk about how we developed a web-based

platform to visually analyze the historical and predicted traffic data, powered by speech

queries.
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Chapter 2

GC-GRU Deep Learning Architecture

for Tabular Data Predictions

2.1 Introduction

The path toward an ITS has recently become more feasible due to the influence of two

major factors: 1) exponential growth of data collected by embedded traffic sensors, and

2) advancement of effective deep learning techniques [25]. An intelligent transportation

system consists of several components, one of which is traffic forecasting. Traffic fore-

casting is an essential component of an ITS because it predicts future traffic flows on road

networks by analyzing both historical traffic data and the configuration of road networks.

Forecasted traffic flows are required for several traffic management applications, includ-

ing traffic control [26, 27], traffic classification [28, 29], and vehicle scheduling [30].

Despite its many benefits, traffic forecasting remains a daunting task.

Traffic forecasting is a challenging task because traffic variables such as speed, vol-

ume, and traffic patterns are influenced by dynamic and static factors known as spa-

tiotemporal correlations and external events. The above-mentioned factors canprofoundly
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influence the performance of a traffic forecasting system directly and indirectly. First,

studies have shown that spatial information, precisely the locations of embedded com-

munication sensors, significantly influences a traffic forecasting system [21]. This is be-

cause roads in a Euclidean space are bound to have different traffic conditions at any

given time [21]. For example, on a two-lane highway network, there is usually a signifi-

cant difference in the amount of traffic traveling in each lane at any given time. Also, the

traffic speed on a given roadway is influenced and directed by the traffic condition further

downstream. Second, traffic dynamics and their temporal dependencies can be different

from one another by combining recurring patterns and unpredictability of occurrences.

For example, traffic follows a cyclical pattern on a daily and weekly basis, but there may

be dynamic shifts in temporal patterns due to crashes, and this results in difficulties dur-

ing traffic forecasting. Third, extraneous factors such as one-time events and weather

conditions can significantly impact traffic flow, making long-term traffic forecastingmore

difficult. According to the FHWA report on weather impacts on mobility, it was found

that the average speed of traffic can be reduced by 2 to 13 percent in light rain, 3 to 16

percent in heavy rain and 5 to 40 percent in heavy snow.

Several methodologies for short- and long-term traffic forecasting have been imple-

mented considering the numerous challenges identified in forecasting traffic. There are

two types ofmethodologies usually employed. First, statisticalmethods such asK-Nearest

Neighbor (KNN) [31, 32], Gaussian process, hidden Markov model [33], Support Vector

Regression (SVR) [34], and Autoregressive Integrated Moving Average (ARIMA) [35,

36] were used in the past. Typically, these techniques are limited to less complex traffic

conditions and situations with small data. Second, deep-learning-based methods, pri-

marily Recurrent Neural Networks (RNN)s and Convolutional Neural Networks (CNN)s.

RNNs, such as Long-Short-Term Memory (LSTM) [37] and Gated Recurrent Unit (GRU)

[38], are commonly used for sequential and temporal learning, whereas CNNs, such as
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ResNet [39], are commonly used for learning spatial structures. ST-ResNet [40] is a

time-seriesmodel that uses a residual network and LSTM. Although the approaches have

produced cutting-edge results, they do not consider the connectivity of road networks.

This is significant because traffic conditions on one road will be influenced by another.

As such, methodologies need to consider both traffic variables and the road network’s

configuration.

Most recently, researchers have begunmodeling traffic data collected by road sensors

using graph-theoretic approaches. The spatial correlations between traffic sensors are

represented by a directed graph with nodes representing the sensors and edge weights

representing the proximity of sensor pairs as determined by road network distance. Re-

cent advancements in graph neural networks [41], especially convolutional graph neu-

ral networks [42], have fueled the development of several graph-based traffic predic-

tion models [41, 43, 44]because sensor networks are naturally organized as graphs, as

in the case of Diffusion Convolution Recurrent Neural Network (DCRNN). DCRNN [21]

represents the road network as a directed weighted graph and proposes a diffusion con-

volutional RNN for traffic prediction. Even though GCN has achieved great success in

spatial analysis over the years, few studies have investigated using GCN for spatiotempo-

ral analysis. [45] combined recurrent neural networks and Graph Convolution Network

(GCN) to perform spatiotemporal analysis. Although a significant result was obtained,

the architecture is constrained by the limitations of the RNN, which cannot be used for

long-term forecasting due to vanishing and exploding gradients. Other studies, such as

[46], investigated combining LSTM and GCN to capitalize on LSTM’s ability to learn from

long-term dependencies. This was a significant accomplishment, as the results of these

studies were state-of-the-art. Even though LSTM has achieved respectable results in re-

cent years, training LSTM takes longer [47].

The primary goal of this chapter is to perform a comparative analysis among various

14



state-of-the-art models used for traffic forecasting. We also propose a Graph Convolu-

tion – Gated Recurrent Unit (GC-GRU) model to perform network–wide traffic forecast-

ing. The dataset used to test the proposed architecture against state-of-the-art models is

the benchmark dataset of [48] inductive loop detectors installed on freeways throughout

the Greater Seattle area. This dataset contains freeway traffic performance score (TPS),

speed, and volume information. The freeways include I-5, I-405, I-90, and SR-520. The

traffic states of loop detectors on main lanes traveling in the same direction are aggre-

gated every two miles in this dataset. In our proposed model, the GRU cells was used

to model the temporal aspect of the problem, while the GC cells were used to model the

spatial aspect of the problem based on the road network configuration using the adja-

cency matrix. The ability of a neural network to achieve high accuracy is determined by

the training data and the hyperparameters used to train the model. Choosing hyperme-

ters to train a neural network can be time-consuming and frustrating because it requires

a lot of trial and error. In this study, the we also provide the best practice in choosing

hyperparameters to train a GC-GRU to achieve great results. The rest of the chapter is

structured as follows. Section two examines previous traffic forecasting methodologies.

The third section explains the data used to test our newly developed architecture. Section

four goes over themethodology used in developing the newGC-GRUmodel and the other

models used as benchmarks . Section five presents and discusses the results. Sections

six and seven present the chapter’s conclusion and recommendations.

2.2 RelatedWork

This section reviews methodologies employed extensively by previous studies. Numer-

ous traffic network modeling methodologies have been identified as useful for estimating

and predicting traffic patterns. In the past, parametric statistical models were utilized fre-

quently to model traffic data flow. Several studies favored the Autoregressive Integrated
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Moving Average Model (ARIMA) because of the model’s capacity to model sequential

input [49–51]. In addition, various approaches based on machine learning have been

suggested as possible ways to model traffic data. In previous studies, researchers made

use of techniques such as Support Vector Regression (SVR) [52–54], k-nearest neigh-

bors (k-NN) [55], Bayesian Networks (BN) [56], and feed-forward Neural Network (NN)

[57–60]. A new frontier has been opened for trafficmodeling based on deep learning due

to traffic data’s growing pervasiveness, availability, and size. Deep neural network–based

methods have recently been shown to achieve high accuracies for traffic estimation and

prediction tasks due to the availability of large amounts of data pertaining to traffic. This

wasmade possible by the availability of big data. RNNs, or recurrent neural networks, are

a subcategory of deep neural networks developed specifically to model sequential data.

Long Short-TermMemory (LSTM) andGated Recurrent Units (GRUs), which are both

subclasses of RNNs, were used extensively in recent research to model the spatiotempo-

ral behavior of traffic [47, 61]. For instance, Cui et al. [62] proposed a Stacked Bidirec-

tional andUnidirectional LSTMNetwork (SBU-LSTM) tomodel traffic’s chronological and

reverse chronological temporal dependencies. Many authors used convolutional neural

networks to improve the spatial modeling capability of deep learning models. This was

done by combining multiple layers of neural connections (CNNs). CNNs can model both

local and global relationships between neighboring pixels as they were initially developed

for use in computer vision applications. CNNswere utilized in a great number of research

projects tomodel the connection between neighboring stretches of roadway [63, 64]. For

instance, Ke et al. [65] modeled lane-wise traffic speed and volume data by employing a

CNNwithmultiple channels to analyze the data. The proposedmethodwas developed to

capture the spatial relationship between the traffic lanes that are immediately adjacent

to one another.

GCNwere also used tomodel spatial traffic dependencies [66, 67]. These dependen-
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cies were derived from the topological structure of the road network. In their study [45],

Zhao et al. combined GCN for spatial modeling with GRU for temporal modeling, and

the result was a Temporal Graph Convolutional Network (T-GCN). T-GCN was trained

and tested for its ability to predict traffic speed using two distinct datasets: data based

on a probe-vehicle type and data based on a loop detector. An Attention-based Spatio-

Temporal Graph convolutional network (ASTGCN) was proposed in a paper by Guo et al.

[68]. Inspired by theseworks and aiming towards developing an accurate timeseries traf-

fic prediction model, we utilized two cells (temporal and spatial) to propose a GC-GRU

architecture.

2.3 Data

2.3.1 Training Data

In order to understand how the proposed architecture performs against state-of-the-art

models, we use the Seattle inductive loop benchmark dataset. Traffic Performance Score

in the dataset is calculated based on the data collected from almost 8000 inductive lop

detectors deployed on the freeway network in the Northwest region inWashington State.

The freeways covered in the study include I-5, I-405, I-90, and SR-520 as shown in Fig-

ure 2.1. The dataset consists of traffic performance score, spatio-temporal speed and

volume information of the freeway system. Each blue icon represents the loop detectors

at a milepost, the speed data at a milepost is averaged from the several loop detectors on

the main lanes in the same direction at a particular milepost. The training dataset used

in the study is sampled from January 1st, 2020, to May 31st, 2020, at 15-minute sam-

pling intervals. The horizontal header represents the average speed (AVG Spd), average

volume (AVG Vol) and traffic index (TrafficIndex) for the general purpose (GP) and High

Occupancy Vehicle (HOV) lanes. The vertical header represents the timestamp.
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2.3.2 Testing Data

In order to test the performance of the model, there are 15 testing data points which will

represent the ground truth in the studywith 36 previous time steps. The test data covered

weekday, weekends, morning and afternoon peak hours. The developedmodel is required

to predict the next 12 steps ahead of ‘TrafficIndex GP’.

2.4 Methodology

2.4.1 GC-GRU Architecture

In this section, we discuss our end-to-end traffic prediction model, designed to tackle

the traffic forecasting challenge using the loop detectors data, which consists of spatial-

temporal GC-GRU cells for the encoder and decoder components. The overall architec-

ture of the proposedmodel is illustrated in Figure 2.2. Specifically, the proposed architec-

ture consists of two main parts: encoder and decoder. The encoder module consists of

GC and GRU cells to encode the traffic features (input) and the decoder module consists

of GC andGRU cells to forecast traffic parameters (output) from the encoded state. GC is

employed to learn the complex spatial relationships between traffic detectors and GRU is

Figure 2.1: Freeways within the study area
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utilized to capture the dynamic temporal dependencies of traffic data reported by traffic

detectors at different times.

2.4.2 GC for Spatial Relationships

In the past decade, neural networks have experienced tremendous success. Although

many data sets in the real world contain underlying graph structures that are not Eu-

clidean, early neural network variations could only be built using regular or Euclidean

data. New developments in Graph Neural Network (GNN) have been made possible by

the non-regularity of data structures. GCN are one of the many variations of GNNs that

have been developed over the last several years and are regarded as one of the funda-

mental Graph Neural Networks subtypes. The actions carried out by GCNs are similar

to CNN, however the model learns the features by looking at the nearby nodes. The pri-

mary distinction between CNNs and GNNs is that the former was developed specifically

Figure 2.2: GC-GRU model architecture
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to function on regular (Euclidean) organized data, whilst the latter are generalized CNNs

with varying numbers of connections and unordered nodes. In our proposed model, the

input to the model is a network of traffic loop detectors represented by nodes (N) and

edges (E). Nodes represent the location or order of the detectors while edges represent

the existence of a link in between the nodes. This can be represented by an undirected

graph whereG = (N,E)withN defined as the set of detectors. One detector ni is con-

nected by vertices i and j which represent the network edges (ni, nj). To consider the

impact of traffic events, bidirectionally on upstream and downstream roads, we let G

be an undirected graph even if certain roads are directed. Subsequently, the Adjacency

square matrix (A) element for each E is represented as Ai, j = Aj, j with values of 0,1,

in which Ai, j = 1 for an existing connection between nodes ni and nj and Ai, j = 0

otherwise. Node self-features are also considered by performing a self-loop, adding the

adjacency and identity matrix using the following formula for the -hop neighborhood of a

node (clipping nodes that might exceed one):

Ãk
i,j = min((A+ 1)ki,j , 1) (2.1)

To capture the spatial properties in the coded graph (G), the Graph Convolution (GC)

layer builds a filter in the Fourier domain that acts on the nodes and their first-order neigh-

bors using the input adjacency matrix (A). Adjacency matrix weights for all edges are

then input into a diagonal vector (D) that now contains information about the degree

(edges count) of each vertex. The stronger a node’s affiliation with a particular group

or cluster, the lower its degree. To ensure numerical stability during training, symmetric

normalization is then performed using the following formula:

Âk
i,j = D̃k

i,j
− 1

2 Ãk
i,jD̂

k
i,j

− 1
2 (2.2)
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Output for each GC layer (z) is then calculated using the dot product of the normalized

adjacency matrix (Âk
i,j) , input feature (X

k
i,j) and the weight matrix (W k

i,j
i−1) of the pre-

vious GC layer. Rectified Linear Activation Unit (ReLu) is then used as the activation

function. The calculation can be expressed using:

Lz = ReLu(Âk
i,jX

k
i,jW

k
i,j

(i−1)) (2.3)

The output from our 2-layer GC model can finally be expressed using:

gc(St, A) = Âk
i,jLiW

k
i,j

(i) (2.4)

2.4.3 GRU for Temporal Relationships

Another significant issue with traffic prediction is acquiring temporal dependence. Given

the exceptional time series predictions, the RNN has shown good results over the past

decade. However, because of flaws like gradient disappearance and explosion, classical

RNN has limitations for long-term projections. To solve these issues, the LSTM cell and

the GRU cell are explored as an addition to our proposed architecture. Nearly all the fun-

damental ideas of both are the same. Bothmodels can handle longer task sequences, and

all include gated systems. In contrast to LSTM, GRU reduces the data flow by combin-

ing the forget gate and the input gate into one update gate. As a result, it has a simpler

structure, fewer parameters, and a faster convergence speed. Each cell in the GRU com-

putes its internal state (ct) and hidden state (ht) based on two gating units that regulate

the flow of information: update gate (ut) and reset gate (rt). The update gate decides

the amount of information the unit updates its content from the input features while the

reset gate decides the amount of previous information to forget. W and b represent the

weight and biasmatrices in the training process. σ(.) and tanh(.) denote the sigmoid and

21



hyperbolic tangent activation functions, respectively. The computations are repeated for

each element in the modeled sequence (t). The specific calculations can be expressed

as:

ut = σ(Wu[gc(St, A), ht−1] + bu) (2.5)

rt = σ(Wr[gc(St, A), ht−1] + br) (2.6)

ct = tanh(Wc[gc(St, A), (rt ∗ ht−1)] + bc) (2.7)

ht = (1− ut) ∗ ct + ut ∗ ht−1 (2.8)

2.5 Data Preprocessing

The traffic loop detectors data and its corresponding adjacency matrix were used to train

and evaluate the proposed GC-GRU architecture to predict the future Traffic Index on

the General Purpose (GP) lane. The training set is from January 1st 2020 to May 31th

2020 with 15-minute time interval. In other words, the number of rows in the provided

data is 14,551 reporting speeds at different segments (87 detectors) and time steps. The

respective adjacency matrix provided for the data had a few additional nodes, so it was

pruned by detector (node) number to match the information provided in the traffic data.

A few ‘nones’ also existed in the data, indicating non-available information sowe changed

them to ‘0’, since the model only accepts integers.

2.6 Models Evaluation

The test for the model for the models is performed on a separate (unseen) data for 15

days; from June 1st 2020 to June 16th 2020 also with 15-minute time interval. Each day

provides 36 time-steps at which the prediction is to be made for the future 12 time-steps.

The ground truth is not provided so the predicted values are then submitted as a json file
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to the leaderboard for evaluation using the MAPE calculated as:

MAPE =
1

n
Σn
i=1(

yi− ŷi

yi
) (2.9)

where yi and ŷi represent the ground truth and predicted value respectively. The train-

ing/testing split on the data was experimented with a split of 80/20 and 90/10. Five

datasets are then input into the model; training data, training labels, test data, test labels

and adjacency matrix.

2.7 Models Setup

2.7.1 GC-GRU Setup

Once the training data was cleaned, pre-processed and split for the model, it is fed into

the GC cell encoder as a normalized tensor of shape (N,Tin, D) where N is the number

of rows used for training, Tin is the length of time-steps and D is the number of detectors.

The outputs from the GC network gc(St, A) for each time is then fed into the encoder

GRU cell to encode the temporal features between each time index. The decoder is then

used to shape the output in the desired tensor of shape (N,Tout, D) where Tout is the

length of time-steps for the forecasted horizon. The decoder GC cell uses the encoded

intermediate representation vector to decode the spatial relationships and then passes

it to the decoder GRU cell to decode the temporal relationships between output time-

steps. The flattened output is then passed into a fully connected network layer which

uses multi-output sigmoid activated layers to generate the predicted tensor which was

then denormalized and reshaped tomatch the submission format. The loss function used

for the proposed architecture is L2, defined as the sum of all the squared differences be-

tween the ground truth and predicted values then adding a ‘regularization term’ to avoid

overfitting with a lambda loss (λ) of 0.0015 applied on the weights of the respective pre-
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diction (i) . The loss function can be expressed as:

L(Ytrue, Ypred) =
1

NxToutxD
ΣN
n ΣTout

t ΣD
d | (Ttrue)n,t,d − (Tpred)n,t,d |2 +λΣM

i=1 | wi |

(2.10)

2.7.2 Transformer Model for Traffic Forecasting

The transformer architecture was originally designed for Natural Language Processing

(NLP) to provide contextual meaning for word tokens, which was a missing concept in

feedforward networks like RNN, LSTM, and GRU. Prior to the introduction of transform-

ers in NLP, word tokens were typically passed sequentially through NLP architectures.

Figure 2.3: Transformer Model Architecture
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This method results in local understanding of word tokens rather than global understand-

ing. Transformers, on the other hand, introduced a self-attention mechanism that allows

each word token to attend to all other word tokens at the same time, giving it a global

contextual meaning. Currently, transformers remain the state-of-art model for NLPs and

other research areas such as computer vision.

Table 2.1: Transformer trained model Parameters

Model Parameter Value

Batch size 40
Sequence length 36
Prediction length 12
Learning rate 0.00001
Epochs 100
Minimum delta 0.0005
Patience 10
Model dimension 512
Model number of heads 8
Model number of layers 6
Model dropout 0.3

The transformer network shown in Figure 2.3 employs an encoder-decoder architec-

ture similar to that of recurrent neural networks. The difference is that the input sequence

can be passed in parallel. The encoder block accepts both input embeddings and posi-

tional embeddings. The encoder network is made up of a multi-head attention and a

feedforward neural network. The attention layer computes an attention vector for each

word token. The attention vectors are fed into the feedforward network, one vector at a

time. Each attention network is self-contained, allowing for parallelization. The feedfor-

ward network is a simple neural network that is applied to each of the attention vectors.

In practice, feedforward networks are used to convert attention vectors into a format that

can be processed by the next encoder or decoder block. The feedforward network’s fi-

nal output is passed to the decoder block. The decoder block is made up of three com-

ponents, two of which are similar to the encoder block. The decoder output is passed

25



through a linear layer before being passed through a SoftMax to calculate probabilities.

The model was adopted from [69] and a summary of the model hyperparameters is pre-

sented in Table 2.1.

2.7.3 LSTMModel for sequence-to-sequence Traffic Forecasting

LSTM, or long short-term memory, is a particular class of RNN that can learn long-term

sequences. Long-term reliance issues are specifically avoided in its design. Its method of

operation involves recalling lengthy sequences over an extended period of time. The fact

that each LSTM cell has a mechanism involved contributes to the popularity of LSTM. In

a typical RNN cell, the activation layer transforms the input at the time stamp and the

hidden state from the previous time step into a new state. In contrast, the LSTM process

is a little more complicated because it requires input from three different states at once:

the current input state, the short-term memory from the previous cell, and finally the

long-term memory.

Figure 2.4 depicts the usual layout of an LSTM memory block with a single cell. An

outside input is received by the input gate, which processes the fresh data. The forget

gate chooses the ideal time lag for the input sequence by determining when to forget the

Figure 2.4: LSTMModel Architecture
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Table 2.2: LSTM trained model Parameters

Model Parameter Value

Batch size 40
Sequence length 36
Prediction length 12
Learning rate 0.00001
Epochs 100
Minimum delta 0.0005
Patience 10
Input dimension 87
Hidden dimension 87
Output dimension 87

prior state. The output gate produces output for the LSTM cell using all the calculated

results. In language models, a soft-max layer is typically introduced to control the NN’s

final output. On the output layer of the LSTM cell in our traffic flow prediction model, a

linear regression layer is used. The model was adopted from [69] and a summary of the

model hyperparameters is presented in Table 2.2

2.8 Results

Table 2.3 summarizes the training time, inference time and leaderboard scores for our

proposed model along with the benchmark models. A Historical Average (HA) model

was also added as an additional benchmark to evaluate the performance of a simple sta-

tistical estimation. Our model performance on the provided test data ranked second in

terms of Mean Absolute Percentage Error (MAPE) which is very close to Transformer’s

performance. We also evaluated additional parameters such as training and inference

time and found that LSTM had the fastest training time which was expected given the

simplicity of the model architecture when compared to the other models. It’s worth not-

ing that our model not only had the fastest inference time, which is one of the crucial
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factors when implementing the model in real-time applications, but also had a training

time that is six times faster than transformer. Figure 2.5 reflects a violin plot of the distri-

bution of errors Mean Absolute Error (MAE) along different models with a scaled distri-

bution amplitude. HA has the highest distribution of errors followed by LSTM. Comparing

GC-GRU and Transformers at bigger errors, we can observe that GC-GRU has a smaller

distribution.

Table 2.3: Summary of model results

LSTM Transformer GC-GRU

Leaderboard MAPE 4.50 3.12 3.16
Training time (sec) 76.23 1,397.88 217.79
Inference time (sec) 4.58 8.84 2.04

2.8.1 GC-GRU for Traffic Forecasting

The proposed model was implemented with the aid of Tensorflow deep learning library

[70] and the GridSearchCV was used from scikit-learn [71] to find the optimal hyperpa-

rameters that can optimize the model performance. Table 2.4 summarizes the hyperpa-

Figure 2.5: MAE visualized distribution over segments
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rameters values used and Figure 2.6 illustrates the results in a 3D bubble plot along differ-

ent model parameters, colored by MAPE. The selected bubble highlights the parameters

for the best performing model.

Table 2.4: GC-GRUModel training parameters

Model Parameter Value

Training ratio 0.8, 0.9
Sequence length 36
Prediction length 12
Learning rate 0.0001, 0.001, 0.01
Batch Size 8, 16, 32, 64
Epochs 20, 50
Dropout 0.1, 0.2, 0.5
GC layers 2, 3, 4
GC layer size 4, 8, 12, 16
GRU layers 2, 3, 4
GRU layer size 16, 32, 64
Optimizer AdamOptimizer

Table 2.5 presents the results for each of the trained models. The models are eval-

uated along the forecasted horizon of 12 time-steps or 3-hours (12 time-steps divided

Figure 2.6: 3D bubble plot of performed experiments
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Table 2.5: Prediction results of the proposed model and baseline models

Horizon Metric HA LSTM Transformer GC-GRU

1− hourforecast
MAE 0.131 0.07 0.048 0.043

15 min RMSE 0.221 0.108 0.083 0.066
MAPE 0.248 0.109 0.076 0.069
MAE 0.132 0.079 0.053 0.052

30 min RMSE 0.231 0.118 0.087 0.08
MAPE 0.272 0.132 0.079 0.086
MAE 0.141 0.08 0.058 0.054

45 min RMSE 0.239 0.122 0.092 0.082
MAPE 0.294 0.144 0.089 0.092
MAE 0.154 0.088 0.059 0.058

60 min RMSE 0.252 0.136 0.094 0.089
MAPE 0.314 0.157 0.09 0.095

2− hourforecast
MAE 0.171 0.102 0.068 0.075

75 min RMSE 0.276 0.16 0.11 0.105
MAPE 0.381 0.207 0.115 0.131
MAE 0.162 0.1 0.07 0.067

90 min RMSE 0.27 0.158 0.108 0.097
MAPE 0.372 0.208 0.114 0.118
MAE 0.172 0.104 0.072 0.071

105 min RMSE 0.277 0.168 0.105 0.1
MAPE 0.404 0.236 0.127 0.135
MAE 0.181 0.111 0.079 0.086

120 min RMSE 0.281 0.18 0.113 0.114
MAPE 0.413 0.253 0.141 0.159

3− hourforecast
MAE 0.18 0.112 0.076 0.084

135 min RMSE 0.275 0.182 0.111 0.115
MAPE 0.393 0.251 0.139 0.155
MAE 0.176 0.12 0.08 0.096

150 min RMSE 0.272 0.195 0.116 0.131
MAPE 0.393 0.273 0.155 0.183
MAE 0.176 0.126 0.079 0.100

165 min RMSE 0.274 0.205 0.121 0.145
MAPE 0.39 0.285 0.157 0.197
MAE 0.158 0.121 0.071 0.095

180 min RMSE 0.257 0.196 0.114 0.146
MAPE 0.347 0.265 0.139 0.19

by four 15-minute intervals per hour). The evaluation is performed on the test data split

from the provided traffic features data and all three models use the same exact data for

testing. We split the table along each forecasted hour to better understand how each

model performs on different horizons. The metrics used for evaluation are MAE, Root

Mean Squared Error (RMSE) andMAPE. MAE is defined as the average magnitude of the
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differences between the predicted and observed true values while, RMSE is the standard

deviation or a measure of how spread the differences between predictions and observed

true values are, and MAPE is defined as how far the predicted values are away from the

corresponding observed truth on average.

In general, the proposed GC-GRU model achieved the best results along 1-hour fore-

casted horizon while transformers were dominant along the 3-hour forecasted horizon.

Along the 2-hours horizon both our model and Transformer seemed to share equal suc-

cess when looking at the performance metrics. The HA model performed the worst in

predictions demonstrating the need for a deep-learning model. The stand-alone LSTM

model seemed to struggle in performing predictions with errors almost double in magni-

tude when compared to the other two models. This signifies the fact that learning from

temporal dependency only is not enough and the synergetic effect of combining spatial

and temporal dependencies is critical to maximize the network’s learning capabilities for

more accurate predictions.

Figure 2.7: Visualization results of all prediction horizons along traffic detectors for: (a)
HA, (b) LSTM, (c) Transformer, (d) GC-GRU
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2.8.2 Spatial Analysis of TrainedModels

Figure 2.7 presents the predicted values of eachmodel and the observed truth along each

detector. The plot is for all predicted time-steps, so we have twelve lines for predictions

and twelve for the true values. Once again, the HA had the worst performance with pre-

dictions very far off the ground truth. Generally, we can observe that Transformer and

GC-GRU predicted peak values much better than LSTM. Transformer predictions seem

to be much closer to true values during peaks than GC-GRU and we suspect that may be

due to the smooth filter applied by the GC that captures spatial features by constantly

moving the filter. This leads to much smoother peaks. The results also show that there

still seems to be a certain error even at non-peaks which can be explained by the fact that

there are times when we don’t have traffic data, or the values are very small.

Figure 2.8: MAE box-plots of all traffic stations results along future prediction horizons
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2.8.3 Temporal Analysis of TrainedModels

Figure 2.8 presents the MAE box-plot for each model along the forecasted horizon. Box

plots provide a standardized way of interpreting the distribution of errors based on the

minimum, maximum, median, 25th and 75th percentiles and the outliers. In a box-plot,

density of values is inversely proportional to the size of the box which means that smaller

boxes have a higher number of values packed in their respective range. HAmodel had the

largest amount to errors as expected. MAE box-plots for the other models increase over

the length of the forecasted horizon indicating a positive association between the fore-

casting errors and the distance to future predictions. LSTM seemed to have the highest

range and distribution of errors when compared to Transformer and GC-GRU. Compar-

ing our proposed model to Transformer, we can notice that our model had smaller errors

(better performance) on the closer predictions up to 60 minutes ahead, after which the

Transformer model has a better performance on the longer horizon.

2.9 Summary

In this chapter, we performed a comparative analysis of various traffic forecasting meth-

ods aswell as introduced aGC-GRUbasedneural network-based traffic forecastingmethod.

Tomodel the aggregated loop detector data , we utilized a graph convolution, in which the

nodes on the graph represent the roads, the edges indicate the connections between the

roads, and the attribute of the nodes on the graph is the traffic information on the roads.

In order to acquire the spatial dependence, the GC cell is used to capture the topologi-

cal structure of the graph. In order to obtain the temporal dependence, the GRU cell is

used to capture the dynamic change in node attribute. We then performed a compara-

tive analysis on the proposed model along with benchmark models such as: HA, LSTM

and Transformer. In summary, our GC-GRUmodel performance on the provided test data

ranked second with a MAPE of 3.16 which is very close to Transformer’s performance of
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3.12. In terms of training and inference time, we found that LSTM had the fastest training

time which was expected given the simplicity of the model architecture when compared

to the other models. It’s worth noting that our model not only had the fastest inference

time, but also had a training time that is six times faster than Transformer. Compara-

tive analysis of the results on the test data demonstrates that the proposed GC-GRU is a

strong competitor to state-of-the-art traffic forecasting approaches.
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Chapter 3

Comparative Analysis of Connected

Vehicles and Probe Data.

3.1 Introduction

TMCs utilize real-time traffic information to help relieve traffic congestion and improve

safety. This requires operators to constantlymonitor road conditions throughdata stream-

ing from a variety of sources including traffic sensors, Global Positioning System (GPS)-

enabled devices (probes), closed-circuit cameras, dynamicmessage signs, etc. The accu-

racy, resolution, coverage, and diversity of real-time traffic data streams enable operators

to detect problem areas and respond to them in reasonable time. There is a growing in-

terest among State agencies in leveraging connected vehicle data to improve operations,

incident management and predictive analytics. The size, coverage, resolution and pen-

etration rates of this new dataset offers new challenges and opportunities that need to

be explored prior to full scale integration into day-to-day traffic operations. The current

paper evaluates this new dataset and compares it to existing traffic data sources for con-

gestion and incident detection.
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CV technology can be defined as an application that utilizes V2X communications

to address mobility and safety concerns on roadways. CV data availability has been ex-

ploding in recent years. This is as a result of the advent of OEMs, Telematics platforms,

and other in-vehicle technologies, that are able to continuously stream high-resolution,

reliable and accurate vehicle data. A probe vehicle feature, which is part of connected

vehicle technology, collects data about the state of the vehicle. Information from the col-

lected data is used to estimate some critical performance indicators such as travel time,

a critical parameter in traffic management.

The use of CV data has demonstrated improved traffic performance. Paikari and Far

[72] investigated the impact of Vehicle-To-Vehicle (V2V) communication and ITS appli-

cations on traffic safety andmobility The study demonstrated that CVs have the potential

to significantly improve traffic safety and mobility. Olia et al. [73] modeled the exchange

of information between connected vehicles using Paramics simulations. The study’s find-

ings indicate that if CVs were used, travel time could be reduced by 37 percent. Olia et al.

[74] also assessed the impact of connected and automated vehicle technology on high-

way system capacity through the development of an analytical framework that demon-

strated that CV has potential to increase highway capacity by 300 percent. VanderWerf

et al. [74] conducted a study to determine the effect of vehicle communication on high-

way capacity. The study concluded that by maintaining a 0.5-second gap between CVs,

the capacity of the highway could be doubled under certain conditions. When vehicle

communication was implemented in a four-lane highway merger scenario, van Arem et

al. [15] found that it had a statistically significant effect on traffic flow. The analysis dis-

covered a slight improvement in traffic flow efficiency when vehicles were not equipped.

Additionally, a microsimulation of vehicle-to-vehicle communication on a freeway with

an on-rampwas used to assess the effect on traffic performance [75]. The study demon-

strates that CV significantly impacted traffic flow asmeasured by theMarket Penetration
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(MP). In comparison, Arnaout and Bowling [76] used a microscopic traffic simulator to

investigate the feasibility of improving traffic flow for high occupancy vehicles (HOVs) on

a four-lane freeway at lower MP levels (CVs). Congestion could be significantly reduced

if vehicles utilized HOV lanes at a rate of up to 40percent of the MP.

Mekker et al. [77] integrated CV data and Light Detection and Ranging (LiDAR) data

to evaluate the impact of work zone geometry on traffic operations. The authors of the

study considered two case studieswhere geometric anomalies were identified. The study

discovered that the work zone features in both case studies did not conform to project

specifications but were difficult to assess safely by an inspector on the field due to the

high volume of traffic. The authors suggested utilizing connected vehicle data to iden-

tify recurring congestion and LiDAR to evaluate work zone geometry. Li et al. [78] con-

ducted a study using CV data to reassess dilemma zone performance of heavy vehicles.

The study had three objectives; (1) to assess whether matching Basic Safety Messages

(BSM)s to virtual waypoints provides sufficient performance for dilemma zone mitigat-

ing tactics; (2) to develop a dilemma zone mitigating tactic for CV; and (3) evaluate the

performance of the tactic using Automated Traffic Signal Performance Measures (AT-

SPM) data. The study used BSM data to map-match virtual waypoints. Also, the ATSPM

projection indicated that dilemma zone incursions would break even for the northbound

approach, with a net reduction of 34 percent for the southbound approach. The study

concluded by recommending a more robust control support for dilemma zones and other

emerging CV applications.

The goal of this chapter is to compare connected vehicle data and traditional probe

data based on traffic flow estimates and their ability to detect congestion and traffic inci-

dents. A data conflation methodology is developed to integrate CV data with traditional

traffic data sources such as probe and Waze data feeds. The study analyzed speed bias

trends using a multiscale data mining approach. To the best of the authors’ knowledge,
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this is the first study that integrates real world connected vehicle data with Probe and

Waze data for comparative analysis. The remainder of the chapter is structured as fol-

lows. Section two summarizes previous studies on connected vehicles based on the type

of data used in their research. The chapter’s data is presented in section three. Section

four discusses the methodology used in this study. Section five presents the findings and

analysis of this study. Finally, section six discusses the conclusion and recommendations.

3.2 RelatedWork

This section reviews the previous work in understanding the reliability of CV data and

its applications. It was discovered that the State of Maryland’s Vehicle-Mile-Travelled

(VMT) can be inferred from CV data with as little as 1.5–2 percent penetration [79]. Ad-

ditionally, GPS-based ATSPM with increased coverage and scalability have been devel-

oped using CV data. With as little as 0.04 percent [80], a rapid diagnosis of the current

signal performance problems can be made. Using CV data, it was possible to identify

arterial congestion based on the percentage of slow-moving vehicles and queue propa-

gation around freeway bottlenecks [81]. Additionally, a microsimulation of vehicle-to-

vehicle communication on a freeway with an on-ramp was used to assess the effect on

traffic performance [82]. The study demonstrates that CV significantly impacted traffic

flow as measured by the market penetration (MP). In comparison, Arnaout and Bowling

[83] used a microscopic traffic simulator to investigate the feasibility of improving traffic

flow for high occupancy vehicles (HOVs) on a four-lane freeway at lowerMP levels (CVs).

Congestion could be significantly reduced if vehicles utilized HOV lanes at a rate of up to

40 percent of the MP.

Mekker et al. [84] integrated CV data and LiDAR data to evaluate the impact of work

zone geometry on traffic operations. The authors of the study considered two case stud-

ies where geometric anomalies were identified. The study discovered that the work zone
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features in both case studies did not conform to project specifications but were difficult

to assess safely by an inspector on the field due to the high volume of traffic. The au-

thors suggested utilizing connected vehicle data to identify recurring congestion and Li-

DAR to evaluate work zone geometry. Li et al. [85] conducted a study using CV data

to reassess dilemma zone performance of heavy vehicles. The study had three objec-

tives: 1) to assess whether matching BSMs to virtual waypoints provides sufficient per-

formance for dilemma zone mitigating tactics; 2) to develop a dilemma zone mitigating

tactic for CV; and 3) evaluate the performance of the tactic using automated traffic signal

performance measures (ATSPM) data. The study used BSM data to map-match virtual

waypoints. Also, the ATSPM projection indicated that dilemma zone incursions would

break even for the northbound approach, with a net reduction of 34 percent for the south-

bound approach. The study concluded by recommending a more robust control support

for dilemma zones and other emerging CV applications.

Additional applications of Wejo trajectory data were used by Saldivar-Carranza et al.

[86] to evaluate the traffic impact on nearby arterial roads, particularly for the unautho-

rized detour that was made possible by Google Maps Navigation. Over the course of the

11 weeks, volumes during theweekly afternoon peak hour, split failures, travel time, down-

stream bottleneck, and arrivals on green were monitored. Another related application of

near ubiquity is [87] using Wejo data for areas where sensing is scarce or nonexistent

sensing infrastructure. In addition, the same data was utilized by Khadka et al. [88] to

directly measure queue length and its spread on motorway bottlenecks. In Arlington,

Texas, an interstate portion was discretized into 0.5-mile segments and a local empiri-

cal speed threshold of 45 mph was applied. Although just a portion of the total traffic

stream was included in the sample trajectory, a strong link between trip time and slow

trajectories were found. To summarize themain advantages of using CV data in literature

are:
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• Greater spatial precision - OEM telematics frequently incorporate GPS and cellular

antennae into the car for more dependable telemetry, producing data of greater

quality.

• Additional data attributes: In addition to location, CV data frequently include de-

tails about how the car operates, like if the wipers are on or off, whether seatbelts

are being used, and wether it makes hard stops.

• Data is reported at a constant higher frequency every few seconds.

• Underpins new mobility propositions.

3.3 Methodology

This section discusses the use of the three collected datasets (CV, Probe andWaze) de-

scribed in the previous section to fuse them together and integrated using spatiotempo-

ral conflation which maps the points data from connected vehicles and Waze dataset to

road line segments from probe dataset into a unified data layer. Construction of road seg-

ments from road shapes from the conflated datasets is then performed. With datasets

conflated in time and space, a framework for comparative analysis is developed based

on speed differentials, incident and congestion trend analysis. Themethodology adopted

for evaluating connected vehicle data consists of several key components as illustrated

by Figure 3.1.

Studying the resolution, coverage, and diversity of real-time traffic data streams is

critical to enable operators to detect problem areas and respond to them in reasonable

time. There is a growing interest among state agencies in leveraging CV data to improve

operations, incident management and predictive analytics. The size, coverage, resolution

and penetration rates of this new dataset offers new challenges and opportunities that

need to be explored prior to full scale integration into day-to-day traffic operations. The
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study area of our analysis in the current chapter is the city of Saint Louis and the Figure 3.2

presents a visual instance (colored by speed) of each of the used datasets; CV,Waze and

Probe.

Figure 3.1: Overview of Probe vs CV data Comparative Analysis

Figure 3.2: Data Sources and Analysis Region: a) Connected vehicle trajectories. b).
Waze incidents. c). INRIX probe data.
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3.3.1 Connected Vehicles Data

The CV data landscape has changed from a few cars to OEM data providers (like INRIX,

Wejo and Otonomo) who have compiled millions of equipped vehicle data points from

commercial fleet operations to passenger cars. Despite differences betweenOEMs, these

kinds of data are gathered through the OEM’s telematics system using the built-in wire-

less communication capability in the most recent vehicles. One of the main benefits of

such commercialized CV data over ad hoc CV data or CV data combined with handheld

devices is the granularity. This offers enormous possibilities for incident management,

operation, andmaintenance of transportation systems. These newly developed data sets

offer vehicle telemetry data in addition to high-resolution waypoint data (e.g., Movement

–vehicle trajectory, acceleration (including lateral), geo-position, speed, heading, trips

and Event Information –hard-braking, seat-belt status and other discrete events.). Ac-

cording to the National Renewable Energy Lab report, INRIX dataset covers 10 percent of

all automobile travel in theUS [89]. However, the 10percent penetration rate is not evenly

distributed in the geographical and temporal dimensions, thus coverage may be limited

in some isolated places or at night. In comparison to on-board devices, data obtained

from smartphones with low power consumption profiles is typically sparser. According

to internal estimates by Wejo, a top CV data provider, it receives data from 1 in 20 auto-

mobiles in the United States and 1 in 50 vehicles in Europe. According to other reports,

Otonomos’ platform includes more than 4 billion data points from more than 40 million

registered automobiles [90]. This study uses CV data obtained fromWejo Group Ltd. It

offers vehicle waypoints (latitude and longitude), a time stamp, instantaneous speed, the

direction the vehicle is traveling, and other metrics. For a vehicle, it is discovered that the

typical ping interval between two consecutive waypoints is 3 seconds. The data’s spatial

resolution has a 6-digit decimal point, or a resolution of roughly 3 meters (lane-level res-

olution). Given its granularity, sample size, and coverage, the volume of the data is a bar-
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rier in terms of data storage, processing, visualization, and analytics. Figure 3.3 presents

a snapshot of point CV data in the State of Missouri, colored by speed of vehicles.

The Data collection process by Wejo starts with the OEM who receives data from

automobiles, packages it, cleans it from errors, and then transfers it toWejo, who consol-

idates and transmits it in real time. The procedure has amaximum latency of 60 seconds,

or 30 to 60 seconds from the time it leaves the vehicle until it is prepared for applications.

TheWejo CV data is collected in CSV format presenting the following attributes:

• Journey ID – the identification number for the trip performed by a specific vehicle

from start to finish

• Captured Timestamp – a 19-digit time format used byWejo to define the

year:month:day:hour:minute:second (e.g., 2021-02-09 10:05:34 for September 2nd,

2021, at the 10th hour, 5th minute and 34th second) for each record.

• Latitude – geographic coordinate describing the north-south location of a point on

Figure 3.3: Snapshot of point CV data in the state of Missouri, colored by speed

43



the earth’s surface. The angle ranges from –90 degrees at the south pole to 90

degrees at the north pole with 0 degrees at the equator.

• Longitude - geographic coordinate describing the east-west location of a point on

the earth’s surface. The angle ranges from –180 degrees at the west pole to 180

degrees at the east pole with 0 degrees at the prime meridian.

• Speed – representing the current speed of the vehicle at the captured timestamp or

record in kilometers per hour.

• Heading – representing the angle of direction of the vehicle at the captured times-

tamp or record in degrees.

• Ignition Status – the operation status of the vehicle

• Event Type – the type of journey the vehicle is making

• Acceleration Type – type of acceleration which is calculated based on the change

in speed of the vehicle

• Journey Event Type – status of the vehicle event calculated on its location along its

journey’s route.

• Postal Code – series of digits representing the location of the geographical area

Table 3.1 presents a row sample of the collected CV data. As observed, there is a vari-

ation in the data types across different attributes/columns such as: characters; integers;

floats and strings. We can also notice that at certain attributes such as

’location_road_name’, the field value includes a comma, which is character used to

separate fields or values in a CSV file.

To understand the amount of CV points as a newer source of data, we compare it to

conventionally used loop detector data and estimate its penetration rate for a specific
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Table 3.1: CSV sample (one row) for the collected CV Data.

Attribute Value

vehicle identification otonomo id 1ddb0685638666fb70a4eb6fb4bb9851
metadata time epoch 1639245925350
location country code US
location latitude value 38.8084493
location longitude value -90.8640632
mobility heading angle 137.03
mobility speed value 91.73238
mobility acceleration value 0.13052416
mobility acceleration lateral 0.00815776
metadata provider name 9e00681ca48f27ea4c05b3485245a9
location polygon geohash 9yzku2fg9g7c
location country name United States
location state name Missouri
location county name Saint Charles County
location town name Wentzville
location road name I 70, US 40
location road id I 70, US 40
location zone postal code 63385
location road speed limit 104
location road type 1

road along the hours of day. Figure 3.4 presents the loop detectors (red points) and the

different CVs colored by their unique ID. The data is presented for I-70 on 19th February

2021.

To calculate penetration rate, a buffer of size 20m is used around each detector and

the number of unique CVs passing through the detector during a specific time period

(one hour) is recorded. The filters used on both datasets are then location, date and

hour. The volume from CV data is then divided by the reported volume from detectors

to calculate the penetration rate. It’s worth nothing that penetration rate varies between

different times of day and locations and sowe averaged the rates spatially and temporally,

achieving a rate of 8 percent. The variations of volume between detectors and CV data

are presented in Figure 3.5.
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3.3.2 Probe Data

INRIX Probe data also provides high-resolution, segment by segment traffic speed and

travel time information from millions of GPS-enabled vehicles, mobile devices, and other

sources. The data collected is processed near real-time, creating aggregated traffic infor-

Figure 3.4: Map visualization of CV data (small colorful points) and Detector data (large
red points)

Figure 3.5: Variations of CV and Detector volume counts over time.
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mation for major freeways, highways and arterials. The quantity of probes on the road

network has a significant impact on the quality of the data collected. The network cover-

age improves with the number of probes. In situations where real-time data is not acces-

sible, INRIX also offers historical data. The quality of the data improves with increasing

device penetration (i.e., more probes). Figure 3.6 presents a snapshot of probe line data

in the city of Saint Louis, colored by traffic speed along roads.

This study uses INRIX line data along eachmile-long travel segment at a frequency of

oneminute with geographical location information, timestamp and traffic attributes such

as: speed and volume. INRIX uses the following methods to produce historical flow data

[91]:

• Traffic sensors - local Department of Transportation (DOT) or private sector busi-

nesses install sensors in the road from which traffic speed is either recorded or

inferred. The sensors make use of one of several technological platforms: Toll tag

readers, Radar sensors, and Embedded induction loop sensors.

Figure 3.6: Overview of probe data in the city of Saint Louis, colored by speed.
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• Probe vehicles - Hundreds of thousands of probe vehicles, including trucks, taxis,

buses, and passenger cars, are part of the INRIX network and may communicate

speed and position data back to a central site. To get the speed and location infor-

mation discreetly, INRIX has agreements with numerous fleets.

• INRIX Smart Dust Network - This network combines real-timeGPS probe data from

more than 650,000 commercial vehicles across the United States that travel on a

particular section of road during a specific time window, physical sensor informa-

tion, and other real-time traffic flow information with hundreds of market-specific

factors that affect traffic, such as construction and road closures, real-time inci-

dents, sporting and entertainment events, weather forecasts, and schedules. The

speed that occurs on that road segment is calculated with a measured level of pre-

cision by this component after it collects all input points andweights them properly

based on the quality and latency of the input.

A typical INRIX dataset contains the following important information:

• TMC code – spatial unit that INRIX uses to present traffic flow data with each seg-

ment defined by a 9-digit TMC code.

• Measurement timestamp – a 19-digit time format used by INRIX to define the

year:month:day:hour:minute:second (e.g., 2021-02-09 10:05:34 for September 2nd,

2021, at the 10th hour, 5th minute and 34th second) for each record.

• Speed – representing the segment’s historical mean speed for the respective seg-

ment in miles per hour

• Travel Time – representing the accumulation of informationprovidedbyGPSprobes.

• Road order – the index of the segment along its respective road.

• Bearing – the direction or position of the segment relative to a fixed point
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• Miles – representing length of the road segment

• Start latitude – the starting point of the road segment defined by a geographic co-

ordinate describing the north-south location of a point on the earth’s surface. The

angle ranges from –90 degrees at the south pole to 90 degrees at the north pole

with 0 degrees at the equator.

• Start longitude - the starting point of the road segment defined by a geographic

coordinate describing the east-west location of a point on the earth’s surface. The

angle ranges from –180 degrees at the west pole to 180 degrees at the east pole

with 0 degrees at the prime meridian.

• End latitude - the ending point of the road segment defined by a geographic coor-

dinate describing the north-south location of a point on the earth’s surface. The

angle ranges from –90 degrees at the south pole to 90 degrees at the north pole

with 0 degrees at the equator.

• End longitude - the ending point of the road segment defined by a geographic coor-

dinate describing the east-west location of a point on the earth’s surface. The angle

ranges from –180 degrees at the west pole to 180 degrees at the east pole with 0

degrees at the prime meridian.

• C value – The confidence value is a scale from 0 to 100 that agencies can use to

assess if the INRIX value satisfies their requirements for real-time data.

Table 3.2 presents a row sample of the collected Probe data. As observed, there is a

variation in the data types across different attributes/columns such as: characters; inte-

gers; floats and strings.
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Table 3.2: CSV sample (one row) for the collected Probe Data.

Attribute Value

tmc 119P14457
road TOWER GROVE AVE/CENTER CROSS DR
direction NORTHBOUND
county ST. LOUIS (CITY)
zip 63116
start latitude 38.60442
start longitude -90.25886
end latitude 38.60463
end longitude -90.25882
miles 0.014646
road order 2
type P1.11
bearing 8.46
dxn NE

3.3.3 Events Data

Transportation authorities can learn about traffic events throughEmergency servicesComputer-

Aided Dispatch (CAD), media reports, and staff monitoring of CCTV feeds of the routes.

Organizations may also use crowdsourced information, which can be categorized as pas-

sive or active. Mobile devices serving as probes, such as cars and trucks, can collect

passive data without the user having to manually enter any information. This informa-

tion may be gathered either voluntarily, as in the case of location tracking used by most

mobile phone navigation applications, or inadvertently, as in the case of Bluetooth sen-

sors placed along a road that identify the unique Media Access Control (MAC) address

of discoverable Bluetooth-equipped devices. The following information can be gathered

passively: speed, journey times, pavement texture, and weather [92]. In contrast, ac-

tive data necessitates that individuals willingly and manually report on the state of the

roads. This can be as conventional as people calling the TMC directly, but it frequently

consists of social media posts about traffic that are geotagged to the incident’s location

and posted as soon as possible. Popular sources of crowdsourced traffic data on social

media include Twitter and Facebook. An event (congestion or incident) occurrence time,
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reliability and other attributes such as confidence, location, and streets are captured in a

Waze dataset. Waze congestion and accident reported data were assessed by [93] and

found reasonable spatial and temporal accuracy. [94] used Waze accident report data

and found acceptable reliability of the reported events. [95] used a t-test to prove that

travel times from Waze data and the ground truth are almost equal. Figure 3.7 presents

a snapshot of events point data in the city of Saint Louis, colored by traffic speed along

roads.

This study uses Events data obtained fromWaze which is a very popular mobile nav-

igation app used by over 100 million people every month. Users of the Waze app can

report traffic jams, weather conditions, queues, collisions, disabled vehicles, and other

road-related information using the app. Other Waze users are prompted by the app to

confirm an ongoing incident as they pass it while traveling. Users are given increasing

experience levels as they submit more reports, which enhances the perceived reliability

of their reports. And so, Waze data includes incidents such as crashes, traffic jams, con-

struction, road closures, stalled vehicles, weather events and other road hazards. Waze

Figure 3.7: Overview of Waze data in the city of Saint Louis, colored by type.
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offers point data of the event typewith geographical location information and timestamp.

It contains the following important information:

• Sub Type – the severity of the reported event type with each type having multiple

subcategories to represent the magnitude of the event.

• Type – the type of the reported event as reported by the app user

• UUID – unique identification number for the reported event

• Longitude - geographic coordinate describing the east-west location of the reported

event on the earth’s surface. The angle ranges from –180 degrees at the west pole

to 180 degrees at the east pole with 0 degrees at the prime meridian.

• Latitude - geographic coordinate describing the north-south location of the reported

event on the earth’s surface. The angle ranges from –90 degrees at the south pole

to 90 degrees at the north pole with 0 degrees at the equator.

• Time Stamp - a 19-digit time format used byWAZE to define the

year:month:day:hour:minute:second (e.g., 2021-02-09 10:05:34 for September 2nd,

2021, at the 10th hour, 5th minute and 34th second) for each record.

Table 3.3 presents a row sample of the collected Waze data. As observed, there is a

variation in the data types across different attributes/columns such as: characters; inte-

gers; timestamp; floats and strings.

3.4 Data Conflation

Conflation enables us to fuse the different datasets into one table, allowing for multi-

dimensional analysis of the datasets. The conflation process is illustrated in Figure 3.8.

Both Waze and CV datasets were conflated to roads for which probe data was avail-

able for at least every 1 minute. First, a multi-line string geometry is generated using the
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Table 3.3: CSV sample (one row) for the collectedWaze Data.

Attribute Value

country US
n thumbs up 1
city Saint Louis
report rating 0
confidence 0
reliability 6
type ACCIDENT
uuid 0c85168e-ce9b-493d-be25-0f2fba901c82
road type 7
magvar 91
subtype ACCIDENTMAJOR
street MO-38
report description 911-reported accident
longitude -92.979457
latitude 37.355442
pub millis 2022-04-27 16:49:26.000000
request millis 2022-04-27 16:51:11.553082
county WEBSTER
event class ACCIDENTMAJOR
req date 2022-04-27 00:00:00.000000
start time 2022-04-27 16:51:11.553082
end time 2022-04-27 18:07:43.106747
duration 76.5258944166667

start and end coordinates for each probe segment. Point geometries are also generated

for connected vehicles andWaze data using their respective coordinates. A 12 feet buffer

is generated around each line string to create a polygon layer for spatial joining with the

point geometry layers. Each point is then mapped to the corresponding (closest) line

segment if contained within its buffer. The 12 feet buffer distance was chosen based on

Figure 3.8: Road Segments with mapped CV points and Probe segments
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the standard US lane width. To account for direction of travel, a direction column is cre-

ated for each dataset based on heading and bearing information. This resulted in four

5 categories of travel directions: Northeast (NE), Southeast (SE), Southwest (SW) and

Northwest (NW). The direction column is subsequently used to refine the initial proximity

mappings. The process is repeated for all other point geometry datasets. The final step

in the conflation process is to match the timestamps of the 8 different datasets. In this

study, a 1 – minute aggregation window is used for temporal mapping. Each row contains

information from all three datasets where available. A manual verification of a subset of

the integrated data showed a conflation accuracy of about 97 percent. Figure 3.9 sum-

marizes the key elements of a conflated dataset. To ensure that the fused datasets are

compared along the same routes, we adopted the road segmentation scheme provided

by the probe data vendor. About 80 percent of all road segments used in this study were

between 0.1 to 0.5 miles. Figure 3.10 presents the distribution of road segments for a

subset of Probe data. The ratio of the connected vehicle speed divided by the length of

the conflated probe segment length is used to estimate the travel time. Where there are

multiple CVs on a probe segment, the average speed of all vehicles is used.

3.5 Multiscale Data Analysis

Multiscale Data Analysis (MDA) is used to extract and compare trends at different fre-

quency. TheWavelet transform is used to implementMDA in the current study. Wavelets

use mathematical functions to segment data into distinct frequency components and

then investigate each component with a resolution proportional to its scale. They out-

perform traditional Fourier methods in analyzing physical situations characterized by dis-

continuities and sharp spikes. Detailed discussion ofwavelet decomposition can be found

in [78]. Wavelets are a class of time and frequency localized basis functions that can be
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expressed as:

Ψsu(t) =
1√
s
Ψ(

t− u

s
) (3.1)

Figure 3.9: Sample table of conflated datasets

Figure 3.10: Histogram plot of count for road segment lengths
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where s andudenote the parameters for dilation and translation, respectively. The central

wavelet (t) is time and frequency localized, occupying an equal area above and below

the time-axis. The wavelet dilation and translation parameters are usually discretized

dyadically for most practical applications to measure data as: s = 2m, u = 2mk.

Where m and k are integers indicating the dilation and translation parameters, re-

spectively. The resulting wavelet family is denoted by:

Ψmk(t) = 2−m/2Ψ(2−m)(t− k) (3.2)

The translation parameter specifies thewavelet’s location in the timedomain, whereas

the dilation parameter specifies its location in the frequency domain, taking into account

the extent of the time–frequency localization. The wavelet equation represented in Equa-

tion 3.2 may be designed to be orthonormal to one another and to have varying degrees

of smoothness.

3.5.1 Short-Term, Medium Term and Long-Term Speed Variation

Figure 3.11 shows results of wavelet decomposition of both CV and probe data. Three

main trends are apparent: Short-term, Medium-term and Long-term trends. In the cur-

rent study, short-term trends capture five - 15-minute variations in the original dataset.

In Figure 10, mode decomposition 1 (mode 1) illustrates the short-term trends for CV and

probe data collected over a 15- to 30-minute period on Freeways and arterials. Medium-

term trends capture hourly variations (1–3 hours) and the average daily trend. They con-

tain critical information about the hourly peak and off-peak periods. These are illustrated

by the mode 6 decomposition. The final wavelet batch of variations represents observed

daily trends in the datasets. As illustrated in Figure 10, specifically the general trend, there

is a strong correlation between the two datasets.
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3.5.2 Connected Vehicles vs Probe Data – Speed Bias, Congestions and
Incidents

The key performance measures used to compare the different datasets are Latency and

Speed Bias. Latency –used to calculate the accuracy of CV and probe data for congestion

and incident detection. In the current study, the term “Latency” refers to the difference

between the recorded (actual) start and clearance time of an event and the correspond-

ing times captured by the CV or probe data. Speed Bias – Is the absolute difference in

speed between the different datasets at different times of the data. The average speed

bias is reported as themean absolute difference between CV and probe speed for all road

types. Three main experiments were conducted to evaluate the opportunities and chal-

lenges with using connected vehicle data as compared to traditional probe datasets. The

experiments which are discussed as follows include: a comparison of the bias in speed

estimates from both data sources, as well as the congestion detection and incident de-

tection accuracy.

Figure 3.11: Short, Medium, and Long-Term trends extracted from CV and Probe data
using Wavelet decomposition.
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3.5.3 Speed Bias Comparison

There is almost always a bias in speed estimates from both datasets as shown in the first

row of Figure 3.12. About 95 percent of the time the speed bias stays within a range of 0

to 20 mph. The bias, however, varies by location, road type, and time of day. As shown

in second row of Figure 3.12, the differences in speed are much smaller on freeways as

compared to arterials. It is also worth noting that CV data generally shows high speed

variability on both freeways and arterials as compared to probe data. The low penetration

rate of probe data on local routes and arterials could be the reason for this trend.

Lastly, in Table 3.4 and the heatmap in Figure 3.13, we compare the differences in

speed during peak and off-peak hours. Although the differences in speed bias are not

significantly high, there is an observable reduction in speed bias (between 2 and 5 mph)

during peak vs non-peak hours. The heatmap confirms this trend and shows the variability

in speed bias across different locations.

Figure 3.12: Speed variations of CV data and Probe data across datetime: first row –
superimposed plot of CV and probe speeds for road segment over time. second row -
PDF plot of mean absolute difference between CV speed and probe speed for all road
types, freeways
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Table 3.4: Absolute Mean Difference between CV and probe speeds on Freeways and
Arterials

Freeway (mph) Arterial (mph)

AM peak hours 10.51 9.30
PM peak hours 9.68 9.00
off-Peak hours 9.70 9.61

While Waze data is our source of incident and congestion events, there exists some

limitations using such data where it is unable to provide information on traffic incidents

that do not fall under one of its predefined event categories [93]. Additionally,Waze was

made specifically for use in private vehicles; so, it does not offer information about public

transportation. Waze’s data are also restricted to registered users, making it challenging

for the public sector (such as traffic management organizations) to access them. Such

limited access limits the exposure of non-users to the app and hence limits the amounts

or accuracy of reported events.

3.5.4 Congestion Detection

This experiment evaluates the ability to detect congestion events with probe and con-

nected vehicle data for a total of 28 congestion events. Twomain levels of congestion are

Figure 3.13: Heatmap of speed bias by road and hour of day
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investigated based on classifications from Waze incident data feed: 1) Jam, Stand-Still

Traffic, 2) Jam, Heavy Traffic and 3) Jam, Moderate Traffic. The congestion detection and

clearance time latency is used as a measure of performance for comparing the accuracy

of the different datasets for congestion detection. As shown in Figure 3.14, both datasets

can detect all three types of incidents identified in this study. CV data were slightly bet-

ter at detecting short duration, jam, stand-still incidents. It is also observed that for the

jam-stand-still-traffic condition, the CV data detected the freeway congestion about 3 -

minutes on average prior to the probe data. Similar trends were observed on both free-

ways and arterials.

3.5.5 Incident Detection

The final experiment evaluates the ability to detect different types of incidents using probe

and connected vehicle data for a total of 10 incidents. Three main types of incidents

(based on Waze feed classifications) are used in this study: 1) Major Accident, 2) Mi-

nor Accident, 3) Road Construction. Other incidents such as stalled vehicles, weather

events and road closures were not included due to low impact on traffic flow during the

analysis period. Like the congestion detection case, the incident detection and clearance

time latency is used as a measure of performance for incident detection. As shown in

Figure 3.15, both datasets can detect most major accidents and road construction events

Figure 3.14: Probe and CV data congestion detection rate comparison on freeways and
arterials (left), probe and CV speed changes during a congestion event (right)
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accurately. For minor accidents, it is observed that while CV data had 100 percent de-

tection rate, probe data could only detect about 20 percent. The incident detection and

clearance time latencies were also significantly lower for CVs: 5 – 8 minutes faster than

probe data.

3.6 Summary

The first purpose of this chapter was to evaluate the opportunities and challenges for

using CV data to estimate travel times, detect congestion and incidents. Data was inte-

grated with traditional traffic data sources for comparative analysis purposes. This is the

first study that integrates actual CV data (not simulated) with conventional data streams

including WAZE and probe data. The study made use of wavelet decomposition to ob-

serve the short, medium and long-term trends observed between the two datasets. The

study performed threemain analyses to compare the bias in speed estimates from the CV

and probe data, as well as their congestion and incident detection accuracies. For most of

the time, CV data outperforms probe data in terms of incident and congestion detection

on both freeways and arterials due to its microscopic nature. Although the probe data

appears to perform better than the CV in some instances, the penetration rate of the CV

was low in those instances. Overall, CV dataset performs much better than the probe

Figure 3.15: Probe and CV data incident detection rate comparison on Freeways and Ar-
terials (left), probe and CV speed changes during an incident event (right)
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data in congestion and incident detection and thus, offers the possibility to be used not

only in analyzing historical traffic patterns but also in performing predictions. To exam-

ine its reliability in future predictions, we leveraged Deep learning models to perform a

multi-step traffic forecasting model on CV data and relevant influencing datasets such as

weather and events. The next chapter introduces the methodology, results and analysis

of the developed models.
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Chapter 4

Multi-Purpose, Multi-Step Deep

Learning Framework for

Network-Level Traffic Flow Prediction

4.1 Introduction

Traffic congestion costs cities billions of dollars every yearwhen factors such as accidents,

pollution and delays are factored in. According to a recent report published by the Texas

Transportation Institute all 494 metropolitan areas in the United States experienced 8.7

billion vehicle-hours of delay in 2019; resulting in 3.5 billion gallons of wasted fuel and 190

billion dollars in lost productivity, or about 0.15 percent of the nation’s GDP. These costs

drive the need for a data-driven strategy to solve these issues. When traffic demand

approaches or exceeds the traffic system’s available capacity, traffic congestion occurs.

Many studies [18–20] have shown that traffic datasets can be used to predict traffic con-

gestion, allowing drivers to avoid congested areas (e.g., through traffic flow forecasting

navigation systems), policymakers to decide on changes to traffic regulations (e.g., re-
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placing a normal lane with a toll lane), urban planners to design better pathways (e.g.,

adding or removing a road lane), and transportation engineers to better plan for the tim-

ing of construction activities. Traffic forecasting is a critical component of advanced traffic

management systems that can help transportation planners in planning for volatile events

ahead, by taking early actions and arrangements, which contributes to better traffic man-

agement and service quality. It may not only serve as a valuable reference for increasing

the efficiency of limited traffic management resources, but it can also assist passengers

in deciding ahead of time to minimize traffic congestion. Longterm projections are more

likely than short-term forecasts to reduce travelers’ average trip time [14]. Common fore-

casted traffic parameters include traffic flow [15], traffic speed [16], and traffic time [17].

The increasing availability of large-scale traffic data, which can be looked at from a tem-

poral and spatial lens, has paved the way to develop prediction models that are robust

to capture the underlying driving mechanism of traffic volatilities, especially the random

(unforeseen) components. Temporally, majority of prior studies have focused on single-

step traffic flow forecast for a single road section with a time interval of less than 30

minutes. For some applications in ITS, such as traffic planning, it can be insufficient.

Another issue is the increased frequency of collected (input) data which allowed the

value of long-time horizon predictions to supersede shorter term. As a result, multi-step

traffic flow prediction is gaining popularity. Multi-step traffic flow prediction uses the

same methodologies as single-step traffic flow prediction; however, the prediction per-

formance rapidly degrades as the number of steps grows. Developing a practical multi-

step predictionmodel is, thus, more important than a single-step prediction task because

it provides valuable insights over longer time horizons which allows for better positioning

of traffic management strategies. In addition, many studies only focused on the spatial

component by predicting traffic on a single-route or a specific connection or crossing. The

development of an ITS demands the need to explore multi-route predictions on a larger

64



scale by considering the complex spatial dynamics of a network [21]. While prior knowl-

edgeof the distanceor travel timebetween regions can aid in capturing spatial correlation,

there are still some hidden time-varying traffic patterns that data-driven methods must

uncover. The challenge is resolving the intricate spatiotemporal dependencies, which re-

fer to traffic information (e.g., speed or volume) at a certain location in space and mo-

ment in time. With the emergence of deep learning models, this research aims to solve

the question of how to construct appropriate deep learning models to cope with large-

scale complex network-wide traffic data. Large-scale network traffic prediction demands

an intelligent and efficient prediction methodology to forecast traffic on longer horizons

and reflect the flow propagation. Numerous variables affect a region’s future traffic state,

including historical observations of traffic, correlation with other regions, and external

factors (holidays and special events). The technique used to fuse muti-purpose variables

such as traffic speed and volume is a challenge for the current generation of prediction

models. The interrelationships between regions are intricate and complex which adds to

the challenges in developing a prediction model. As a result, more research into how to

create an accurate and reliable network-wide (by exploring multi-routes), multi-purpose

(such as speed and volume), multi-step (longer prediction horizon) prediction model is

required.

Reliability of the estimates obtained from the developedmodels is another issue since

it greatly depends on the data source. Data used for traffic forecasting has two main is-

sues: availability, size of data, and the overreliance on probe data. When qualified traffic

data is unavailable, the trained model’s performance degrades since performance corre-

lates with the quality of input data. While we can collect more traffic data due to trans-

portation infrastructure modernization, the data is frequently of poor quality, with noise

and critical features missing. Currently, the amount of qualified traffic data available for

analysis is insufficient. To our knowledge, most prior studies [72, 73] used probe traffic
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data thatwas less than a year old and, in some cases, as recent as one or twomonths [74].

Probe data cannot capture the live travel time or volume on road segments and using it for

traffic forecasting is likely to yield unreliable estimates. Therefore, there is a need to use a

more reliable data source that can provide microscopic live travel information to improve

the reliability of traffic predictions along road segments. The projected growth of CV will

provide an alternative way of collecting real-time data for traffic forecasting. The future

of ITS is shifting towards big real-time data from CV as automobile makers rush to incor-

porate CV technology in novel and current vehicles for numerous apparent advantages,

which include vehicle autonomy and navigation, vehicle sensor and drivermonitoring, live

over-the-air updates, advanced road warnings, and improved battery and fuel efficiency.

Government and state institutions that create, maintain and manage road infrastructure

may take advantage of the CV data available to know what is happening on the road and

make informed decisions on traffic flow and road pavement infrastructure. Thus, it is

critical to effectively process all CV data on a state level for statewide transportation in-

frastructure management. This study’s CV data is from wego technologies. The data

was collected and transmitted every 3 seconds. The study estimated travel times on ar-

terials and freeways by analyzing data from connected vehicles, including the vehicle’s

speed, acceleration, GPS location, and “brake press”. Additionally, the current chapter

advances the state-of-the-art by developing a traffic forecasting model using UNet ar-

chitecture. Figure 4.1 presents the framework for the network-wide predictions using the

image outputs from each phase. The significant contributions of this chapter are sum-

marized below:

• Propose a pipeline for processing and learning from large-scale spatiotemporal data

by leveraging distributed GPU clusters.

• Propose a data fusion technique that enables state-of-the-art Machine Learning

(ML)models to learn frommultisource data, by leveragingGPU computing through
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Nvidia Rapids and Dask framework.

• Design aDL framework for simultaneous, pixel-level, dense prediction of traffic flow

variables (speed and volume)while considering the network traffic temporal evolu-

tions and spatial dependencies using a UNet model that learns traffic data through

3-dimensional matrices.

4.2 RelatedWork

Developing an ITS is a promising solution to provide more accurate travel information

based on future predictions to transportation users and developers. The techniques used

to predict traffic across the literature are summarized into the following categories: sta-

tistical, light machine learning and deep learning. Statistical mainly uses time series anal-

ysis models such as historical and moving averages which can be helpful with short-term

predictions on static data. Standard machine learning models include Artificial Neural

Network (ANN), Support Vector Machine (SVM) and KNN, which are generally better

performing than statistical models because of their architecture’s capability in captur-

ing more features. However, extracting the complex and dynamic patterns in the spatio-

temporal dynamic traffic data adds to the model limitations. The rise in faster Graphics

Processing Units (GPU) paved the way for the increased use of deep learning models to

perform predictions. Due to their superior ability to capture complex traffic patterns, var-

Figure 4.1: Framework for network wide traffic predictions
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ious deep learning-based methods for traffic prediction have recently been successfully

applied to traffic forecasting. Table 4.3 presents a sample of the recent use of deep learn-

ing models for traffic predictions. The table presents the authors, used prediction model,

predicting variables, road-type, prediction horizon and results.

Short-term traffic forecasts restrict many existing approaches, and there are few suc-

cessful methods existing for predicting long-term traffic status. Short-term is also re-

ferred to as single step. We define short term predictions as any predictions that fall in

the range of 5 to 15 minutes into the future. Medium-term predictions are 15 minutes

to one hour, and long-term predictions are beyond one hour. Long-term or multi-step

forecasting is more difficult than short-term prediction because of the sensitivity of er-

ror propagation [96]. Real-time traffic control is where short-term forecasting is most

useful. Long-term forecasting that is accurate and timely may assist managers in mak-

ing early judgments, actions, and overall arrangements, which can help improve traffic

management and service quality.

It can not only serve as a valuable reference for increasing the efficiency of limited

traffic management resources, but it can also assist passengers in planning ahead of time

to avoid traffic congestion [16]. Sequence-to-sequence (Seq2Seq) is a frequently used

technique in multi-step forecasting [66, 97, 98]. It is also common to capture temporal

dependency using RNNs and temporal convolutional networks (TCNs) [76–78]. LSTM

is a widespread technique that Chen et al. (2021) and Cui et al. (2018) used in their

studies to predict the short-term changes in traffic flow and speed, respectively. Several

authors used graph neural networks by focusing attention on different space and time

features. Yu (2021) performed short-, medium- and long-termpredictions of traffic speed

on urban roads while other authors (Li et al. (2021), Yin et al. (2021), Zhao et al. (2020))

used freeway segments. It is worth noting that Zhao et al. (2020) attention of temporal

changes in their model performedmuch better than Li et al. (2021) on the same road type
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Table 4.1: Comparison of recent use of deep learning models for traffic predictions

Author Model Predicting Road Type Horizon Results

CHEN ET AL. LSTM + Ensemble Empirical Traffic flow Freeway Short (5-15min) RMSE:0.79
(2021) Model Decomposition (EEMD)
WU ET AL. CNN + Recurrent Traffic flow Freeway Short (5-15min) RMSE: 15min = 32.16,
(2018) Neural Network (RNN) Traffic flow Freeway medium (15min – 1hr) 30min = 34.29,

45min = 36.08
YAO ET AL. CNN Traffic flow Network-wide Medium (15min – 1hr) RMSE: 24.10
(2019) + LSTM and volume
MA ET AL. LSTM Neural Network Traffic Speed Freeway Short (5-15min) MAPE: 5min = 3.78
(2015) (LSTM NN) 10min = 3.78

15min = 3.78
LI ET AL. Graph Convolution Network Traffic flow Freeway Short (5-15min) RMSE: 15min = 32.17
(2021) (GCN) medium (15min – 1hr) 30min = 32.96,

45min = 33.68,
60min = 34.53

YU Generative Adversarial Traffic Speed Urban Short (5-15min) MAPE: Short: 6.1,
(2021) Graph Attention Network medium (15min – 1hr) Medium: 8.3,

and long (1 - 4hr) Long: 12.6
YIN ET AL. Multi-stage Attention Traffic flow Freeway Short (5-15min) RMSE: 17.73
(2021) Spatial-Temporal Graph and Speed

Network (MASTGN)
ZHAO ET AL. Temporal Graph Traffic Speed Freeway Short (5-15min) RMSE: 15min = 4.53,
(2020) Convolutional Network medium (15min – 1hr) 30min = 5.01,

(TGCN) 45min = 5.35,
60min = 5.64,

CUI ET AL. Deep stacked bidirectional Traffic Speed Network-wide Short (5-15min) MAPE: 5.6
(2018) and unidirectional LSTM
CHOI UNet Traffic Speed Network-wide Short (5-15min) MSE: 0.0016
(2020) and Volume medium (15min – 1hr)

and prediction horizon. Traffic prediction algorithms can be divided into two categories:

single and multi-purpose techniques.

The single-purpose technique is focused onmodeling traffic condition using one vari-

able (such as speed, flow, or occupancy), whereas the multi-purpose approach is based

on constructing a model that considers more than one variable. These models, unlike

single-purpose models, are capable of capturing travel characteristics from multiple di-

mensions of a transportation network over time. Multilinear regressionmodelswere used

by [99] to forecast bus arrival time using multi-purpose attributes such as: distance,

number of passengers at stops, stop numbers, and weather conditions. The performance

of regression models will degrade as the dimension of the data rises, because the at-

tributes in transportation services are frequently not independent but connected with

one another. Complex interactions and noisy data demand the use of machine learning
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algorithms. Other authors [100] proposed a data clustering and genetic programming

technique for predicting highway trip time. Two of the most extensively used machine

learning models in multi-purpose bus travel time prediction are ANN, and SVM, [101].

Kalman Filtering models, which use both historical and real-time data, have been widely

used to estimate bus arrival times [22, 102, 103]. Previous research in this field hasmostly

focused on constructing models for anticipating delay as a self-contained single-purpose

prediction process.

Numerous GNNs were used in literature, to extract spatial dependency from traffic

networks [21, 104–106]. Chen et al. (2021) filtered freeway segments from the traffic

network and achieved good results. The entire network was used by Cui et al. (2018).

However, most models lacked the use of a network-wide dataset and longer-term pre-

dictions. Image segmentation and classification has been widely successful using UNet

[107]. U-Net is a CNN based on a fully convolutional neural network where its architec-

ture is altered and expanded to work with fewer training images to obtain significantly

precise segmentation results. Choi (2020) achieved strong results using a UNet model

for predicting traffic speed and volume for multiple routes in the short and medium term.

Although GCN-based techniquesmay learnmore hidden aspects of traffic networks than

CNNs, they are ineffective at capturing dynamic spatial traffic dependency. The term

”multi-routes” presents a challenge since the relationship between two static places can

change over time. For example, during morning and evening peak hours, the spatial links

between residential and commercial districts are more important than at other times.

Since most previously published works fall short of accurately maintaining spatial infor-

mation while simultaneously making good predictions [108, 109], this study seeks to

adopt an approach that sought to maintain spatial information. Numerous publications

[106? ] have described the development of an adaptive matrix for data-driven spatial

correlation discovery using spatial correlation data.
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When the data is insufficient or noisy, the efficiency of data-driven methods is lim-

ited, and accurate prior knowledgemay help themodel perform better in these situations.

Most studies focus exclusively on predefined correlations or data-driven correlations for

prediction. Also, most prediction models suffer from information dilution, observed in

other multi-step prediction models [66, 110]. The original data from each input step has

been diluted several times by both the encoder and decoder cells before reaching a spe-

cific output step in the sequence. When there is sufficient data, the dilution effect can

be mitigated; however, insufficient data can exaggerate the effect, resulting in decreased

prediction performance. To eliminate the issues mentioned earlier, we use connected ve-

hicle data in this study for traffic forecasting. Each experimental traffic feature (for exam-

ple, traffic speed and flow) has both spatial and temporal attributes (i.e., its observation

location and time).

Generally, studies [111, 112] extracted spatiotemporal patterns solely from traffic fea-

tures without fully exploiting those traffic features’ spatiotemporal attributes. By provid-

ing additional information, these attributes, on the other hand, can directly aid the model

in identifying spatiotemporal correlations between traffic states. Apart from that, they

can augment existing spatiotemporal information when sufficient feature data is unavail-

able. Furthermore, versatile and extendable transportation data integration frameworks

are critical for modern transportation analysis and management. Data Fusion is the chal-

lenge of merging data from several sources and giving consumers a consistent represen-

tation of that data [113]. Data integration systemdesign is a critical step in awide range of

real-world applications, particularly in ITS. Other common challenges in traffic prediction,

such as planning issues and traffic estimation, are similarly involved with multi-source

fusion [114]. In both research and practice, transportation data integration frameworks

and tools have been devised and deployed for a variety of applications. To address the

challenges mentioned earlier and limitations, we employed a large-scale GPU cluster-
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based data processing framework to fuse large-scale datasets and then leveraged the

UNet architecture for multi-step forecasting by combining the volatile traffic features on

a network-wide level to augment the spatiotemporal information contained in the model

input.

4.3 Problem Formulation and Overview

Many existing studies ignore the use of large-scale data to develop traffic predictionmod-

els and thus disregard the complex topological structure of road networks and tempo-

ral patterns by using a single-route, single-step and single-purpose predictions. Such

approaches are motivated by faster computations and reporting with high accuracies.

However, in practice, the applications of such techniques are very limited since it only

captures the instantaneous and steady-state interactions among traffic variables, there-

fore, a multi-step, multi-purpose traffic prediction framework for multiple routes should

be developed.

Specifically, let xi = (T ∗W ∗H ∗ C) represent the input data tensor for a specific

day from the training data (i) with C number of channels or purpose, (W ∗H) is the 2D

array width and height and T is the time bins per day with each time step aggregated by

five-minute intervals. The goal is to predict xp on test data (p) using only one hour from

the test dataset (T + 1, T + 2, ..., T + 11) to predict the remaining hours in the same

day (T + 12, T + 13,…, T + 287). Compared to existing approaches where C is usually

one (i.e, 3D tensor instead of 4D) and predictions are usually short or medium-termed

Figure 4.2: Framework of the proposed methodology
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(i.e, T + 12, T + 13,…, T + 23), the current framework proposed in this study addresses

the multi-purpose, multi-step large-scale traffic forecasting challenge at a network level.

Figure 4.2 presents the framework of the proposed methodology. Firstly, CV data was

collected for one month in Saint Louis County. The data provides attributes such as the

vehicle’s location, heading, speed, volume and flow, etc. This work uses historical traffic

speed, volume, and incidents to forecast future speed and volume. The data then goes

through a pre-processing stage to make it feasible in our prediction models. Data clean-

ing is then performed to clean the data frommissing values and anomalies. Cleaned data

is then formatted by grouping different headings and time bins together. Data fusion is

then performed on the different datasets along with the same spatial and temporal bins.

MDAs or images are then generated to efficiently leverage smaller size compacted data

layers as an input to the proposed predictionmodel. In the predictionmodel, UNet is used

as our CNN as it is designed to learn from the MDAmatrices and make predictions. The

accuracy and robustness of the UNet model are compared to the conventional Convolu-

tional Long Short-Term Memory (ConvLSTM) model and a statistical historical average

model. The following section discusses data fusion and MDA generation in detail.

Figure 4.3: Spatial bins created for a consistent scaling of H5 arrays
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4.4 Input Data Structuring

4.4.1 Multi-Dimensional Arrays (MDA)

Thirty-one unique dates (days) of CV data are used as input data. Twelve separations

are exported from hourly CSV files since 12 (five-minute) time bins per hour (60 min-

utes per hour/5-minute bins). Each separate file then goes through the splitting channels

process where separations are made for the unique columns/channels: incidents, speed

and volume. The direction column is estimated and added based on the bearing infor-

mation provided by the speed and volume channels. Four main heading quadrants are

used in the estimation: NE, SE, SW, NW. However, the incidents channel did not provide

a bearing column, so we could not split its directions. To create an MDA for each CSV

exported in the previous step, we first created an empty raster with latitude and longitude

coordinates for the study area, scaled at a height and width of 495 and 436, accordingly.

The coordinates used in spatial bins are fixed throughout all MDAs to ensure that they

are all developed at the same scale, as presented in Figure 4.3. We use the mean of val-

ues within a temporal (frame) and spatial (bin) for the speed channel to get the average

speed. We use the sum of values within a temporal (frame) and spatial (bin) for each

volume and incident channel to get the total count. Each array created at this step has

the shape [495*436].

4.4.2 Incidents andWeather Events

Wealso investigated additional data thatmay help usmakemore accurate forecasts such

as using an additional input channel (incidents and weather events) for forecasting the

main channels (speed and volume). Additional channels or traffic variables could pro-

vide useful information about a particular place and aid in the development of a more

realistic model. To embed such channels in our input data, we explored three different

experiments to make sure that the features from event data can be learned by the model:
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• Experiment 1: Events data is binned in the same way speed and volume data were

binned.

• Experiment 2: The binned data points from experiment 1 are extended along the

respective event duration.

• Experiment 3: The binned points from experiment 3 are scaled by a factor to mag-

nify the impact of the event taking place.

Figure 4.4 presents a snapshot of the three experiments explored over time with the

variation of binned data points.

MDA for speed along with four directions, volume along with four directions, inci-

dent and weather events are then stacked together to form a stacked array of the shape

[495*436*10]. The channels are stacked along the third axis/dimension. Time bins along

each hour are then stacked together along all channels to form another stacked array of

the shape [12*495*436*10]. Time bins are stacked along the fourth axis/dimension. Each

Figure 4.4: Experiments with static events channel over time
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day, hourly bins are stacked together along stacked time bins and channels to form a fur-

ther stacked array of the shape [288*495*436*10]. Hourly bins are stacked along the

fourth axis/dimension. This process is performed for each unique date, so at the end,

we can have an array of shapes [288*495*436*10] for each day. Figure 4.5 presents a

visualized shape of the temporal aggregation of channels and bins of an MDA.

4.4.3 Processing Pipeline

To accelerate the processing of big CV data in our study, we use Nvidia Rapids and Dask

framework. Nvidia Rapids is an open-source suite of software libraries for end-to-end

data science and analytics pipelines on GPUs. Rapids is built on top of Nvidia CUDA

for accelerated computing and Apache Arrow for GPU in-memory computing, see Fig-

ure 4.6(a) and includes several libraries across the data science toolchain. Rapids is the

GPU implementation of conventional data science libraries and natively scales fromwork-

stations to clusters to cloud systems with the help of Dask libraries. A comparison of

Rapids library with popular data science libraries is shown in Figure 4.6(b).

Dask natively scales Python data frames (CPU and GPU) across several nodes and

partitions. Dask also offers advanced parallelism and data processing pipelines that en-

able large-scale analytics by using a directed acyclic graph (DAG) lazy execution frame-

work, which ensures that computational work is scheduled, rebalanced, and optimized

before the data is needed. This allows for fast prototyping and experimenting even on

Figure 4.5: Temporal aggregation of MDA per day
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massive cluster systems. Dask integrationwith Rapids allows for large-scaleGPU cluster-

based data processing.

The experimental setup for the project was on AWS GPU virtual machines with Intel

Xeon Platinum 8259CL 48 core vCPUs@ 2.50GHz, 192 GB of RAM and 4xT4 GPUs with

16 GB vRAM each. The virtual machines were running AWS optimized Ubuntu 18.04

LTS operating system software. The software stack installed included CUDA 10.2 with

driver version 440.33.01. Additional software includes Docker CE v18.03.1-ce and Nvidia

Docker2 software for GPU containerized setup. The DLI RAPIDS Course – Base Environ-

ment container image v1.0.0 available at theNvidia Container Catalogue (NGC)was used

to launch a Python Jupyter Lab environment for this experiment on the AWS virtual ma-

chine. The NGC DLI RAPIDS container image already comes with preinstalled software

including Rapids, Conda, Graphiz, cuDF, cuPy, etc., simplifying the experimental setup. In

addition, the pull and launch of the container image expose internal ports to the container

Figure 4.6: (a) Nvidia Rapids Framework, (b) Comparison of Rapids to popular libraries
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and allow for global internet access to the Jupyter Lab environment outside the localhost

environment. The algorithm and overview of the data structuring approach for process-

ing the CV and sensor data fusion are presented in Figure 4.7, with each step numbered

in curly brackets.

The main reason behind structuring the data in such a format is because MDAs can

store and organize large amounts of data better than CSV, which allows for more effi-

cient processing of files. One CSV file size 16GB can be structured into a 20MB MDA.

Our approach was to query the data from several CV data files across several folders and

drives into a giant temporary in-memory database and then transform it into a Spatio-

temporal 3D lattice with unique attributes that can be further used for attribute-based

hyper-dimensional analysis. To achieve this, we used the Dask framework for massively

large distributed data processing and filtering with the GPU backend on Nvidia Rapids.

After setting up a local cluster, the Dask framework was used to read all the CV and sen-

sor data files 1 and filtered on interest columns into a giant in-memory data lake 2. A

new unique index was computed for the data, and the data was repartitioned to reduce

the number of Dask workers and optimize performance while at 2. In order to translate

the data into a 3D Spatio-temporal matrix, unique indices of each data row were com-

puted using the procedure in 3a. This began with the computation of the unique spatial

discretized bins for longitude and latitude, and each data row longitude and latitude were

used to compute the spatial positional index and placed in the appropriate bin.

The same procedure created a discretized temporal bin based on the day, hour and

minute. Using the unique spatial, temporal, and directional indices, unique unrolled posi-

tional global indices were computed for each data point which was then used to translate

the in-memory database into the 3D spatial-time lattice 3b. Each spatial-time lattice cube

4 contained all data entries with the same index as well as other attributes such as speed

and direction, which could then be used in hyper-dimensional data operations based on
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the data attributes 5. After filtering and stacking based on attributes, other analytics

based on speed, data counts and direction were performed and used in this study.

To benchmark the experimental setup, we used the in-built Python timeit() function

Figure 4.7: Overview of data structuring approach
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Table 4.2: Overview of Weather stations in the city of Saint Louis, colored by weather
condition

Number CV Data Name Platform

1 Data Binning
2 Indexing - Latitude
3 Speed Indexing - Longitude
4 Normalization
5 Data Export
6 Reduction - Count CPU/GPU
7 Reduction - Sum
8 Indexing - Latitude
9 Volume Indexing - Longitude
10 Filter
11 Normalization
12 Data Export

with repeat() method to run each algorithm a couple of times. The standard deviations of

the average, best, and worst running times were noted and examined. Table 4.2 provides

the setting for these studies considering different algorithm modifications for speeding

up Extract, Transform, Load (ETL) workflows for huge CV data.

4.4.4 Comparison of CPU versus RAPIDs GPU Source Code

Algorithm 1 below displays the original code for the preparation of the large CV data.

Here, the code initializes the standard libraries before implementing the traffic volume

and speed data preparation logic. The algorithm for binning traffic speed data to a 2D pic-

ture array is shown in Algorithm 1 , and the indexing of the speed data along the latitude

bins is presented. Algorithm 2 illustrates how to use the RAPIDs framework to achieve

the same outcomes. Standard libraries are initialized, and a GPU cluster is set up as pre-

sented.

4.4.5 Performance Evaluation of the Running Times

The performance evaluation of the ETL pipeline for huge CV data under various algorithm

optimizations stated in the part before is presented in this section. The section displays
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Algorithm 1 Sample code from big CV data on CPUs

1: procedure bining spatial points
2: d← (’2021-02-06’, ’2021-02-07’, ’2021-02-08’,...)
3: h← (’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ...)
4: t← range(1,13)
5: loop: (t)in range(1,13):
6: df ←′ time_bins_csv/′+str(n)+′/′+str(d)+′/′+str(h)+/′+str(t)+′ .csv′.
7: df ← df [[′latitude′,′ longitude′,′ speed′]].
8: df [′latitude′]← df [′latitude′] ∗ −1.
9: xcut ← pd.cut(df.latitude, np.linspace(−38.71,−38.53, 248), right = False).
10: ycut ← pd.cut(df.longitude, np.linspace(−90.32,−90.18, 219), right =

False).
11: df ← df.groupby([xcut, ycut]).mean().

Algorithm 2 Sample code from big CV data on GPU using RAPIDS and Dask CUDA

1: procedure bining spatial points
2: df [′bin′]← df [′min′]//minstep.
3: df [′dxn′]← df [′heading′]//dxnstep.
4: df [′lat_bin′]← (df [′latitude′]− latmin)//latstep.
5: df [′lon_bin′]← (df [′longitude′]− lnmin)//lnstep.

the experiment run times under various conditions, as stated in Table 4.3. The summary

of 25 runs for each experiment on CPUs andGPUs are shown here. When the experiment

is run on the GPU, the speed improves noticeably, going from 25.6 times to 72.2 times

faster. Overall, the GPU experiment lasted only 25 minutes, while the typical experiment

on the CPU lasted over 42 hours.

4.4.6 UNet Model

Image segmentation and classification has been widely successful using UNet. U-Net is

a CNN based on a fully convolutional neural network where its architecture is altered and

expanded toworkwith fewer training images to obtain significantly precise segmentation

results. While training on an NVIDIA GTX 1080 Ti GPU, the segmentation of a 495 * 436

image took less than a second. As shown in Figure 4.8, UNet’s architecture consists of a

contracting path to absorb context and an expansive symmetric path to facilitate precise
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Table 4.3: Running times of the ETL algorithms by number of CV data in seconds

Metric Metric CPU (seconds) GPU (seconds) Speedup (X)

Avg 31207.30 442.92
Min 28250.79 399.21

Speed Max 34100.80 482.94 70.45
Data Binning Std. Dev. 1610.11 28.54
(Bucketing) Avg 270.36 4.52

Min 244.85 3.75
Volume Max 292.50 4.99 59.74

Std. Dev. 14.57 0.30
Avg 17302.22 248.48

Latitude Min 15621.62 222.11
(Speed) Max 19099.29 268.87 69.63

Std. Dev. 978.03 14.20
Avg 20386.04 295.99

Latitude Min 18430.08 269.42
(Volume) Max 22027.04 314.43 68.87

Data Indexing Std. Dev. 1103.70 13.92
Avg 16096.90 222.91

Longitude Min 14394.11 202.23
(Speed) Max 17544.64 246.68 72.21

Std. Dev. 971.42 14.31
Avg 18564.84 260.43

Longitude Min 17018.96 236.06
(Volume) Max 20318.35 285.40 71.28

Std. Dev. 987.98 15.64
Avg 1148.60 16.63
Min 1048.05 15.35

Speed Max 1245.09 17.95 69.03
Normalize Std. Dev. 63.48 0.86

Avg 704.06 10.10
Min 640.62 9.02

Volume Max 765.62 10.99 69.64
Std. Dev. 38.22 0.58
Avg 37.46 1.46

Count Min 34.21 0.53
Unique Max 41.60 1.97 25.57
(Volume) Std. Dev. 2.09 0.36

42178.21 599.04
Reduction Sum Min 37627.96 535.47

(Volume) Max 46179.47 647.91 70.40
Std. Dev. 2641.91 31.79
Avg 826.43 11.83

Filtering Min 752.76 11.03
(Volume) Max 886.79 12.98 69.81

Std. Dev. 38.37 0.54
Avg 250.79 4.40
Min 232.20 3.53

Speed Max 276.38 4.99 56.94
Data Std. Dev. 13.55 0.34
Export Avg 142.45 2.55

Min 124.80 1.95
Volume Max 152.32 2.97 55.77

Std. Dev. 7.46 0.26
Overall Avg 149115.73 2121.34 70.29

localization. The contracting path follows the typical convolutional network with multiple

convolutions accompanied by Rectified Linear Unit (ReLU) and max-pooling operation.
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Similarly, the contracting part reduces spatial information and increment in features in-

formation. However, the expansive path integrates spatial and feature information using

upconvolutionswith feature information from the contracting path. In ourmodel, the con-

volution layer was heavily connected to the average pooling layer and then decoded using

one deconvolution layer trailed by one convolution layer. Wedecided to use average pool-

ing because of its ability to retain features and give smooth arrays. The learning rate is

3e-4 and was configured/lowered to improve the model performance. Adam optimizer

was used as the optimization algorithm, and mean squared error was used to measure

how well each model performed.

Table 4.4 presents the UNet input parameters used in our model and explains how

each value was extracted/calculated.

The input to the training model is the MDAs generated from the study area with spa-

tial and temporal characteristics, which can be defined as:

Xi
j = [vi, vi+1, ..., vi+o−1], i ∈ [1, L− I − F + 1] (4.1)

Figure 4.8: Designed UNet architecture with output shape per block
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Table 4.4: UNet model input parameters

Input Parameter Value Explanation

No. of training files 24 First 24 days
No. of validation files 3 Three random days
No. of testing files 3 Last three days
No. of frames/day 288 (60mins per hour / 5mins time bin) * 24 hours/day
No. of frames before 12 Previous hour time frames
No. of frame sequence 24 Used time frames (12) + Frames to predict (12)
No. of frames output 12 Subset to predict
Height 495 Image height
Width 436 Image width
No. of channels 9 Speed (4 directions) + Volume (4 directions) + Incidents
No. of channels output 8 Speed (4 directions) + Volume (4 directions)
Visual input channels 108 [channels (9) * Used time frames (12)]
Visual output channels 96 No. of channels output (8) * No. of frames output (12)
Batch size 2 No. of samples processed
Learning rate 3e-4 The amount that the weights are updated during training
Number of epochs 20 No. of complete passes through the training dataset

Where,

• i is the image index;

• j is the channel index;

• vi is a column vector representing the traffic variable (speed/volume);

• O is the span of output intervals;

• I am the span of input intervals and

• L is the period intervals.

The input image goes through convolution and pooling to extract the significant im-

age features, which is the principal phase of the UNet model where the output size gets

smaller in dimension. The output from this phase can be defined as:

Ok
m = P (σ(W k

mxkm) + bkm), k ∈ [1, c1] (4.2)
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Where,

• P is the pooling procedure;

• σis the activation function;

• (W k
m, bkm) is the parameters of the mth layer and

• k is the convolutional filter channel index.

The output from the preceding convolutional layer is max-pooled in the succeeding

block, and then the identical architecture is applied again. Maxpooling is applied to down-

sample the size of the image (pixels), reducing the number of used parameters. The join-

ing of layers together is done in the concatenation phase.

Figure 4.9: ConvLSTM architecture
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4.4.7 ConvLSTMModel

The first benchmark model used to validate the accuracy and robustness of our proposed

UNet model is ConvLSTM. LSTM is a Recurrent Neural Network (RNN) that focuses on

learning long-term dependencies. A series of memory blocks make up the LSTM archi-

tecture. Each block has one or more self-contained memory cells, as well as three gates:

input, forget, and output. The input gate receives new data from the outside and pro-

cesses it. The forget gate determines when to forget the initial state and, as a result,

the input sequence’s ideal time lag. The output gate is responsible for generating output

for the LSTM cell by combining all the computed results. ConvLSTM is a recurrent layer,

except convolution operations are used instead of internal matrix multiplications.

As a consequence, instead of being a 1D vector containing features, the data that trav-

els through the ConvLSTM cells retains the input dimension (3D in our case). ConvLSTM

has been proven in recent literature that it is capable of handling the spatial temporal

dependence in traffic data, however, due to its complex structure it has a longer training

time. MDA (Images) is used as the model input. Figure 4.9 presents the model architec-

ture, and Table 4.5 presents the input parameters. The shape of data is presented in the

following format: (samples, frames, channels, rows, cols). The final input format is when

the frames are limited to 1000 per sample, and the image is an eight-channel 495x436

pixel picture (samples, 288, 8, 495, 436). The number of available trailers for training is

referred to as samples. ’returnsequences’ is set to True, which means the output should

be (samples, frames, categories), but because the model has eight separate outputs, the

result should be (categories, samples, frames, 1), implying (8, samples, 1000, 1). Return

sequences have the effect of classifying each frame into several categories.

Themodel architecture beginswith twoConvLSTM layers, eachwith a ’BatchNormal-

ization’ and a ’MaxPooling’ layer in between. It breaks into branches in order, one for each

category. All branches start with one ConvLSTM layer and then a MaxPooling layer. The
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output is then linked to a Dense network that is completely connected. Finally, the final

layer is a Dense single-cell.

Table 4.5: ConvLSTMmodel input parameters

Input Parameter Value Explanation

No. of frame sequence 24 Used time frames (12) + Frames to predict (12)
No. of frames output 12 Subset to predict
Height 495 Image height
Width 436 Image width
No. of channels 8 Speed (4 directions) + Volume (4 directions)
No. of channels output 8 Speed (4 directions) + Volume (4 directions)
Batch size 2 No. of samples processed
Number of epochs 20 No. of complete passes through the training dataset
Activation Relu Linear Function
Padding same The output will have the same size as the input

4.4.8 Historical Average (HA)Model

The second benchmark model used to validate the accuracy and robustness of our pro-

posed UNet model is a simple historical average model. HA simply uses the average of

historical variables as predictions. We calculated the average at a spatial and temporal

level for each variable/channel, meaning, data was filtered along each pixel and time bin

for each day and then the average is calculated along all days. The formula used can be

defined as:

xT,j,k,z = Σd
i=1

[T,Wj ,Hk, Cz]

d
(4.3)

Where,

• x(T, j, k, z) represent the predicted pixel along a specific time-step (T );

• WjandHkare the pixel index along the tensor width and height, respectively;

• Cz is the channel index and
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• d is the number of days used in the training model.

4.5 Model Training

The prediction model uses the previous hour (12 frames) to predict the future hour (12

frames). The output file is a tensor of the shape (12, 495, 436, 8). The first dimension of

six represents the future 12 time-bins: 5min, 10min, 15min, 20min, 25min, 30min, 35min,

40min, 45min, 50min, 55min and 60min. The width of an image is 495, and the height is

436. The main task is to forecast traffic conditions so the first eight channels (speed and

volume, for each of the four headings) are forecasted. The ratio of data used for training,

validation and testing is (0.8:0.1:0.1).

4.6 Model Testing

4.6.1 Recursive multi-step forecast

For the testing dataset, we select the last three days of available data to test the reliability

of the forecastingmodel. Weperform forecasting throughout all hours of the day, using an

hour of actual data to predict the future hour and thenusing every newpredicted hour for a

newer prediction, as presented in Figure 4.10. Themain prediction task is to test the UNet

algorithm in predicting network-wide traffic speed and volume. Eventually, we forecast

the traffic flow propagation throughout the day by performing a multi-step prediction.

The previous hour (12 steps) of observed data is fed into the trained model to predict the

next hour (12 steps), and then every new predicted hour is an updated input bin to predict

the next hour.

4.6.2 Losses and metrics of trained model results

This section evaluates the performance of the trained UNet model against a test dataset

which consisted of the last three days of data from the data collected for one month. In
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order to test the performance of the proposed algorithm, statistical and deep learning-

based algorithms are chosen for comparison. HA and ConvLSTM neural network is used,

an extension of RNN, which is more popular due to its capability to deal with longer-term

memories and evade fading gradient problems that conventional RNNs suffer from [115].

First, we will present the general results for the UNet model performance compared to

benchmark models: HA and ConvLSTM, followed by a visual comparison of a few images

exported from the results of each model and a deeper dive into the UNet model results.

While forecasting CV speed and volume, errors from the models are calculated from the

observed CV speed and volume and shall be used to justify forecasting results.

RMSE is the performance metric we use in evaluating our model because of its very

Figure 4.10: Testing data hourly predictions

Figure 4.11: RMSE results across variousmodels: (a) freeway roads and (b) arterial roads
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intuitive statistic interpretation in terms of having the samemeasurement unit as the vari-

able predicted, with smaller RMSE values indicating higher model accuracy. The formula

can be defined as:

RMSE =

√
ΣN
i=1

(ŷi − yi)2

n
(4.4)

Where,

• ŷi − yi represents the difference between actual and predicted values and

• n represents the number of samples

Structural Similarity Index Measure (SSIM) is also used when comparing images ex-

ported from each model since it is a more indicative metric that can reflect perceived

structural similarity by taking image texture into account. Structural similarity refers to

the assumption that pixels havemany interdependencies, especially when close together.

SSIM values closer to (1) indicate higher similarity, while (-1) indicate lower similarity.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.5)

Where,

• µx is the mean of x;

• µy is the mean of y;

• σ2
x is the variance of x;

• σ2
y is the variance of y;

• σxy is the covariance of x and y;

• c1 = (k1L)
2, c2 = (k2L)

2 are two variables that stabilize the division;

• L is the dynamic range of pixel-values and
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• k1 and k2 are 0.01 and 0.03, respectively, by default.

In terms of RMSE, the performance of models across all subsets can be seen in Fig-

ure 4.11 and ranked: UNet, ConvLSTM and HA, where UNet saw an average improvement

of 65 percent over HA model and 15 percent over ConvLSTM. UNet significantly out-

performs the other models because it applies a considerable amount of kernels to each

image to perform the dense predictions at a pixel level. Ultimately, this leads to a lower

RMSE across volume and speed channels, too, though the significance of error varies

enormously (Speed - UNet peak NZ: 7 kph, Volume - UNet peak NZ: 1 vehicle). The rea-

son for this is relatively simple: speed channels are normalized from 1 to 255while volume

is normalized from 0 to 255. As a result, incorrect speed forecasts are more likely to be

penalized (for example, volume, which is usually close to zero for most pixels). Generally,

both channels’ forecasts along arterialswere better than freeways, reasoned by the higher

density of data points (pixels) on arterials than freeways. RMSE peaks occur during peak

hours (bin 72: hour 6:00) and (bin 192: hour 16:00), reflecting the model’s challenging

task with higher volume around peak hours.

4.6.3 Extracted images comparison

Figure 4.12 presents a few images exported from the forecasting results of the models.

The forecasting snippet is for hours: 5:00, 6:40, 17:00 and 20:00. SSIM and RMSE are

presented above each image exported from the model and calculated concerning the ob-

served image. The count of non-zero pixels for each image is presented below each image

to analyze performance concerning spatial granularity. In terms of results, the forecast-

ing models need to decide the non-zero positions through a map with 215,820 spaces,

which is a challenging assignment because the model input state of traffic could be re-

duced or expanded spatially. The performance of the UNet model was dominant in pre-

dicting closer non-zero pixels, higher SSIM and lower RMSE, followed by ConvLSTM and
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HAmodels. UNet exhibits an excellent learning ability in comprehending images because

of its locally linked layers which means that output neurons are linked to local adjacent

input layers, rather than all input neurons in fully-linked layers. The pooling mechanism

Figure 4.12: Forecasted snippets from prediction algorithms
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in the UNet model also enhances the model to retain the essential image features while

efficiently reducing the number of used parameters.

4.6.4 Influence of forecasting horizon

To understand the influence of the length of the forecasting period and road type on our

proposed forecasting UNet model, we present Figure 4.13 as a box plot analysis of the

change in RMSE along 12 future time steps averaged for the entire day forecast. Box plots

provide a standardized way of interpreting the distribution of errors based on the mini-

mum, maximum, median, 25th and 75th percentiles and the outliers. RMSEs for all plots

increase over the length of prediction time steps, indicating a positive association be-

tween prediction errors and the span of prediction length. On shorter prediction horizons,

Figure 4.13: RMSE Box plots along 12 future time steps: (a) volume channel on arterials,
(b) volume channel on freeways, (c) speed channel on arterials, (d) speed channel on
freeways
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the lower RMSE errors indicate that the model had better prediction estimates near-term

because closer time-steps havemuch lower variations. Themedian of RMSE on Arterials

is very close for volume and speed channels with minimal deviations. For Freeways, the

number of time steps is larger than 6, RMSE deviations start increasing and are much

larger than other cases. The number of predicted horizon time-steps tends to influence

performance in such a case. It is worth noting that generally, the errors and range of

errors throughout the forecasting period was stable with insignificant increases, which

implies that the proposed model was robust in learning temporal features achieving the

most accurate forecasts in all circumstances.

4.7 Additional experiments

We also experimented with different encoder and decoder structures. Instead of using

average pooling in the encoder, we implemented a convolution pooling layer in two other

models. We added a linear interpolation layer in parallel path to one of the additional

models in addition to the deconvolution layer, which may be thought of as the inverse of

the average pooling layer. The decoder block also includes tightly coupled convolution

layers. We cannot assert that the additional trials are superior to the finally implemented

model based on test set assessment scores alone. Performance varies per training it-

eration, but there is no noticeable difference in terms of performance between them in

general.

4.8 Summary

Working with the massive amounts of data from linked automobiles continues to be dif-

ficult for everyone. In our experiment, it typically takes two days to process data from

1,500 different trips made by connected automobiles in a single day. The transportation

authorities and security agencies receive no benefit from the 48-hour delay between data
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sensing and interpretation. Considering this, numerous initiatives are underway to dis-

cover quicker and more effective methods of working with massive data from connected

vehicles. We concentrated onGPUs for this work since they aremore developed, accessi-

ble, and cost-effective. We saw up to 72 times faster performance in the GPU trials when

compared to conventional CPU-based processing. Our findings supportwhat other scien-

tists have reported in many fields of study. For instance, one researcher claimed that em-

ploying GPUs to speed up his computing workloads resulted in speedups of up to 400X

[97, 98]. The authors of a recent flood forecasting study claimed that usingGPUs sped up

their work by between 80X and 88X. Similar studies have demonstrated that employing

GPUs as coprocessors can speed up image processing by between 10x and 20x. In this

chapter, we investigated how the RAPIDS framework and Dask CUDAmay be used to ac-

celerate big CV data pipelines onGPU. According to our findings, the complete procedure

was 70 times faster when the computation was reduced from 41 hours to 25 minutes. In

addition, the RAPIDS and Dask architecture made the source codes considerably easier

by condensing most computations to a single line of code, except for the initial library

imports and cluster setup routines. The original CPU code, however, required numerous

lines of code (about 20 for each task). In conclusion, the necessity for real-time sensor

data processing and data fusion will continue to be a difficulty as our community’s con-

nected vehicles and sensors proliferate. Considering this, we think that utilizing contem-

porary tools like GPUs and other accelerators can offer a low-cost means of processing

these data in real-time. This will enhance the administration and security of our trans-

portation infrastructure while enabling faster real-time insights. The faster developed

data processing pipeline paved the way for faster processing of input data to the traffic

forecasting models presented. Prediction of traffic flow has seen a rich use of deep learn-

ing methods, which yielded satisfactory results. These approaches can perform dense

predictions and portray more non-linear functions than other neural networks [115, 116].
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However, most of these studies address a single step, channel or route prediction. Amul-

tipurpose, multi-step, spatiotemporal forecasting is necessary to improve the accuracy

of predictions and provide a longer prediction length into the future. In the scope of this

study, the UNet model has the following properties: (a) space and time features can be

extracted automatically because of the implementation of convolutional andmax-pooling

layers; and (b) represents speed, volume and incident features on a pixel-level dense traf-

fic network that are then used to create traffic speed and volume predictions on all routes.

The testing model used one hour of actual data to forecast all future hours. To test the

applicability of the proposed model and its performance, the comparison to HA statisti-

cal method and ConvLSTM saw an average improvement of 65 percent and 15 percent,

respectively. The image snippets from each predictionmodel to the actual image showed

that image textures were more similar in UNet than the benchmark models used. UNet’s

dominance in performing image predictions was also evident in multi-step forecasting,

where the increase in errors was relatively minimal over longer prediction spans. Most

existing traffic flow prediction research, to our knowledge, focuses on findingmodels with

higher prediction accuracy; however, this work not only provides a long-term prediction

modelwith trustworthy accuracy, but also examines the underlying process of structuring

network-wide data. It provides a different way of thinking about structuring large-scale

point data to forecast high-level traffic features. With the availability of more accurate

traffic predictions and historical transportation data from multiple datasets, we are now

able to develop a web-app that can query and visualize transportation user requested in-

formation in an efficient manner. In the next chapter, we present the architecture of the

developed platform and how leveraging AI power can speed-up web user requests.
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Chapter 5

InteractiveWeb Platform Powered by

Speech Queries

5.1 Introduction

The increasing complexity of urban transportation networks makes it difficult to man-

age transportation operations in cities. ITSs and ICTs are frequently used to handle traf-

fic monitoring, estimate, and control problems. In order to apply suitable control tech-

niques, ITSs combine modern technology with real-time information about traffic condi-

tions. Transportation networks are closelymonitored, resulting inmassive traffic and inci-

dent databases. The problemof traffic congestion on the roads is serious andwidespread,

and the integration of various technologies and systems can greatly aid in its resolution.

The requirement for massive traffic databases to be efficiently used by traffic operators

and managers necessitates the development of innovative apps and state-of-the-art vi-

sualization tools as the amount of traffic data transmitted via ITSs grows fast. Interactive

visualization allows extracting data of interest by displaying it in various visual forms and

interacting with it through various filters. The amount of data generated is rising quickly
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in the digital age. Huge amounts of data are typically stored in a database and filtering is

typicallymade possible using query languages such as StructuredQuery Language (SQL).

However, queries from the database can be a daunting task since it demands knowledge

from the user’s side about the exact schema of the database, functions of different enti-

ties in the query and correct join paths of different tables within the database. The techni-

cal challenges of formal query languages typically overwhelm non-technical users of the

database. To navigate this daunting task and allow users to easily make requests to the

database, the use of speech orNLP can be helpful. If userswouldwant to find all accidents

on I-70, for instance, the input question through the microphone would be: “Show me all

accidents on I-70” and the platformwould translate the keywords into an SQLquery that it

can then use to query the requested information from the database. Most transportation

agencies use ArcGIS, Tableau, and D3 as their primary visual analytic platforms. Tableau,

an analytical visualization tool, is used by the NHTSA (National Highway Road Safety Ad-

ministration) to offer insights regarding speed-related traffic fatalities across the United

States. Other agencies, like the Virginia Department of Transportation (VDOT2015), the

BTS (2019), and the IowaDepartment of Transportation, employ comparable platforms to

dig into work zone, traffic, and freight data. The data being visualized on these platforms

might be anywhere from a few megabytes to a few gigabytes in size. When the size of

the data being viewed surpasses 250megabytes, significant latencymight be detected in

terms of updates. For all the heavy-lifting calculations (on large data sizes) such as data

ingestion, aggregation, integration, and reduction, recent advances aimed at managing

huge transportation data employ high-performance computing clusters in the backend

[117]. The data is then provided to the front end for visual exploration after being filtered,

aggregated, and lightweight. Although this method is useful for managing the challenges

of massive data, it restricts the effectiveness of visual analytics because tiny details are

lost in the aggregate and filtering processes [118]. The main purpose of this chapter is to
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develop an interactive visual analytics application that allows the big CV dataset (histor-

ical and predicted) to be visualized, interacted with, and analyzed in the browser (front

end). The framework will allow speech queries and heavy-lifting computations like data

reduction, aggregation, and filtering to be easily performed with user input from the front

end.

5.2 RelatedWork

The large volume of traffic data recorded in transportation databases makes it difficult

for humans to understand and extract traffic patterns directly from the data. Given the

variety of such complex and big datasets such as transportation data, data visualiza-

tion is critical and required for their interpretation. It simplifies the process of discover-

ing the structure, characteristics, anomalies, patterns, and interconnections in complex

data, which can be time-consuming. For performing speech queries, Automatic Speech

Recognition (ASR) and Machine Translation (MT) are commonly used in speech-to-text

translation systems [119]. Hundreds of hours are then needed to perform the audio tran-

scription and building a high-quality MT would demand millions of words of parallel text

– resources of which are only available for a small fraction of the estimated 7,000 lan-

guages [120]. To process words from a listener (microphone), [121] suggested a system

to tokenize words that uses the knowledge of the underlying database to automatically

construct a lex file (spelling dictionary) which contains information about the underly-

ing database, such as columns and table names. Speech is first turned into text in the

initial phase, followed by a grammar checker to check whether the text is syntactically

correct or not. In the following phase, a lexer, parser and syntax guided translation are

used to map the text into an intermediate question. The intermediate query’s (SELECT)

and (WHERE) clauses are extracted in the fourth phase. The fifth phase is when all nec-

essary tables are located to create the (FROM) clause and build the SQL query. A pre-
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pared SQL query is then sent to the database and returned in the sixth phase. To test

their developed system, they used it on single and numerous tables, and it produced ac-

curate results only when the input query compiled with the syntactic rules in terms of

syntax. [122] proposed a strategy that is most frequently used in addressing the speech

understanding issue by using an unsupervised Bayesian network. They start by describing

three techniques for vector representation of words, which are meant to aid the Bayesian

network in developing effective concepts. The approach is then put to test using data

from two different applications comparing the results of Bayesian network to those of

Kohonen maps and K-means algorithm. [123] suggested the use of Search Over Data

(SODA) that uses keyword searches of business users and automatically produces exe-

cutable SQL and provides data with a search experience analogous to Google. The key

concept is to employ a graph patternmatching algorithm that takes advantage of the data

warehouse’s metadata scheme. For displaying the data, visualization specifies a variety

of visual forms and interactions. It can not only provide a qualitative overview of large

data sets, but it can also help identify areas of interest and parameters for more detailed

quantitative study. This prompted some academics to concentrate their efforts on devel-

oping visualization tools to aid humans in comprehending traffic patterns. Shekhar et al.

[124] created CubeView, a web-based visualization software for monitoring sensor net-

work measurements collected from the Minneapolis-St. Paul (Twin-Cities) metropolitan

area’s motorway system. The app allows users to identify patterns and rules from pre-

vious data to help make better decisions. Approximately 900 sensor stations make up

the sensor network. Sensors have one to four loop detectors, depending on the number

of lanes. Sensors measure the amount of traffic on the road and send the information

to the Traffic Management Center. Raw data acquired by loop detectors is saved in bi-

nary format in CubeView, then transformed to text data and stored in database servers.

Traffic managers, traffic engineers, travelers and commuters, as well as researchers and
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planners, can use the transportation visualization tools. Piringer et al. [125] investigated

tunnel surveillance videos. Different sorts of occurrences were automatically detected,

ranked, andmarked in place and time. Users could view the original videos for each event.

The visualization techniques usedbyZaiat et al. [126] are as follows: amap-based viewof

the performance state of local transportation systems; filtering dashboard information by

transport domains, modes, and components; aggregations for any Level of Service (LOS)

and geographic abstraction; and charting perspective of transport system behavior over

time. The Advanced Interactive Traffic Visualization System (AITVS) was proposed by Lu

et al. [127], which provides data cube visualization features for real-time and historical

pattern analysis. It’s a web-based visualization system that uses cutting-edge visualiza-

tion components including spatial and temporal plots and a data cube to evaluate and

monitor traffic conditions, volume, speed, and occupancy, and so overcomes the short-

comings of other systems. AITVS, like our proposedweb applications, is geared for traffic

analysts and managers rather than travelers. Pack [128] presented a web-based visual

analytics solution for finding and observing major bottlenecks. It includes a dashboard

with a map and a popup window for displaying the journey time index, various contour

plots, an interactive animated map for displaying average speeds, travel times, reliabil-

ity, and other metrics, interactive charts and graphs, and a performance summary table.

The time spiral image, which depicts the time of occurrence and how long the bottleneck

lasted until it was resolved, is an intriguing visualization tool included in the bottleneck

ranking (Figure 5.1 adopted from [127]).

Web-based traffic visualization tools are generally simple to use and canbeused to re-

duce complex and tedious statistical data, offering useful information to both traffic spe-

cialists and travelers. Several visualization tools have been built expressly for the analysis

and understanding of congestion levels. CongestionGrid [85] is an example of conges-

tion level estimation and representation. It’s a platform that automatically gathers current
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congestion data from a traffic data provider and displays previous patterns on a grid for

customers to see. Users can use CongestionGrid to investigate temporal traffic trends

by seeing congestion data from a certain week or an aggregation of data over a period

of time. (Figure 5.2 adopted from [85]) uses visual depiction of traffic states for traffic

estimation, which uses red, yellow, and green colored cells to indicate high, normal, and

low traffic, respectively.

Figure 5.1: Visualization of ranked bottlenecks locations

Figure 5.2: Congestion grid created from historical traffic data
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Maps, graphs, and clusterswere employed as visualization tools byDiker andNasibov

[129] and Yoon et al. [130]. Diker and Nasibov clustered road segments based on traffic

congestion levels, while Yoon employed spatio-temporal traffic status plots of trace data

in addition to threshold-based quadrant clustering. As a source for visualization, Wang

et al. [131] used traffic trajectories (as a significant form of traffic data obtained from

road sensors), as well as incidents, road speed, and traffic congestion. This Beijing-based

approach also organizes the relationships between traffic jams. Visual study of traffic

trajectories frequently necessitates aggregation, such as a density map [132]. The den-

sity map depicts the trajectory density and allows for the detection of ”hot” regions. The

authors used a variety of techniques, including propagation graph level estimates, traffic

jam density display on a map (OpenStreetMap), topological filters, temporal and size fil-

ters, mapmatching, and so on. The authors used animation, flowmaps, and graph layout

approaches to show the propagation graph. The system provides five visualization views:

1) pixel-based road velocity view, which displays speeds and events; 2) graph list view,

which displays propagation graphs; and 3) graph projection view, which renders the topo-

logical relationships of propagation graphs; and 4) spatial view, which represents traffic;

5) multidimensional filter view, which allows for filtering by time, space, size, and topol-

ogy, as well as the propagation path of a single chosen graph; and sorting the propagation

graphs by size and similarity yields a structured representation. Unlike this technique,

Pack et al. [133] and Khotanzad [134] looked at transportation incident datasets rather

than traffic trajectories. They created Incident Cluster Explorer, a web-based visual ana-

lytics tool. It is a program that displays the spatial, temporal, andmulti-dimensional char-

acteristics of incidents using an integrated view interface. Users’ engagement is aided

with choices for selection, filtering, and clustering incidents, as well as an emphasis on a

smaller dataset. Multiple visualization tools, such as histograms, interactive maps, two-

dimensional and parallel coordinate plots, can interact with each other at the same time.
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The authors utilized either scatter plot mode or grid mode to depict relationships be-

tween a pair of variables. There are also two mapping types to choose from: icon mode

and heat mode. This program is far more complete, sophisticated, and user-friendly than

somewebsites (FARS), which present a considerable amount of row data but do not offer

any visualization options, leaving this challenging task to the user who can only down-

load them. Another advantage of this tool over commercial data visualization programs

like Spotfire and Tableau is the ability to plot data on a map using heat maps to minimize

occlusion and overcrowding when dealing with massive datasets like transportation inci-

dent data. Anwar et al. [135] proposed Traffic Origins, a simple way for visualizing the

impact of road incidents on congestion and vehicle flow in their immediate neighborhood,

as well as the cascading effect of many incidents on a road network. The incident site is

marked with an expanding circle just before a traffic incident to disclose the basic traffic

flowmap, and it recedes once the incident is over. They designed appealing visualizations

to assist traffic management controllers in simply comprehending and accessing traffic

and congestion data. One of the most efficient and visually pleasing map tools, to date,

is Kepler.gl. This tool has evolved from a single page app to a robust geo-analytics and

visualization platform since its inception as an internal product in 2020, It creates an all-

in-one geographic data exploration and visualization environment, and it’s been widely

utilized by Uber engineers, analysts, and data scientists to fuel advanced geospatial an-

alytics. Data scientists, architects, visualization specialists, and engineers fromMapbox,

Limebike, Airbnb, Sidewalk Labs, HERE technologies, Atkins Global, Cityswifter, UBILabs,

and 300000kms have found kepler.gl’s simplicity, capability, and speed to be extremely

valuable. Academics, such as architecture studentDiegoCrescêncio fromEstácio de Sá in

Rio de Janeiro, have also used the software. The author used open crime data at kepler.gl

for his studies to better understand the built environment for urban design research. To

understand how urban architecture might improve safety within favelas, he’s been em-
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ploying 2D and 3D representations of data relevant to city-wide crime statistics. A data

scientist at CitySwifter, explored the origin and destination trips (home-to-work) in New

York city using Kepler’s brushing interaction (Figure 4). The brushing interaction allows

the user of the map dashboard to hover the mouse (click) over different regions (origins)

to display the arcs of the destination of such trips. Processing maps with many different

variable or fused datasets is a challenging and time-consuming task. The fundamental

reason for this is because maps contain a lot of overlapping data, to deliver as much

insight as possible. As a result, reducing user effort in map processing and developing

effective interactive tools for visualizing traffic data can transportation planners better

comprehend map representations and integrate them into a variety of applications and

eventually make better data-driven decisions.

5.3 Methodology

This section introduces the developed analysis platform. Figure 5.3 presents the compo-

nents of our developed web app. At the top of the diagram, the device is composed of the

monitor (hardware) that will display the platform powered by React app (frontend) and

SQLite database (backend), which are connectedwith Express (Application Programming

Interface (API)).

5.3.1 Speech to SQL Queries

To speed up queries performed using speech on our platform, the development of a sys-

tem that can quickly listen and render results on the platform is critical. Our simple

speech to SQL system is designed without the use of any trained models, in comparison

to the conventional approach used by other authors in literature. Figure 5.4 presents an

example of our designed system, where a user would perform a speech request through

the microphone and the listener returns a series of words. We use React’s speech Recog-

nition [136], to extract the words in a text format. The returned words are then compared
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to a list of words we have created from the fields within our database to assure that it

matches the user’s request. Once that phase is successfully passed, an SQL statement is

generated from the keywords and performed on the summary table named (Data). The

returned information is then used to perform queries on the actual tables to finally display

the results on screen. The main concept is that our main data table (Data) is structured

(merged) on common attributes before feeding it into the database so that SQL queries

don’t have to perform any (JOIN) methods. This avoids the systems confusion with the

received text and helps in skipping the use of a ML model to fully understand the state-

Figure 5.3: WebApp components
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ment made by the user.

The logic of the developed framework is like a decision tree heuristic in away; depend-

ing on the availability of data returned from the query requested by user, further queries

are activated from other data tables. In addition to querying data, the voice commands

can also perform mouse functions and help navigate through the different pages in the

platform by activatingwindowsmethods to control the screen size, reroute to a newpage,

scroll through a page, save a map layer, export filtered table, etc.

5.3.2 User Perspective

Froma user perspective, we aim towards developing a delightful experience for users nav-

igating through the website. Thus, it’s important to consider an organized structure for

the web-app architecture and design layout. The structure of our developed application

is presented in Figure 5.5. The home page presents the main page through which web-

site users can navigate to parent pages. Each parent page then links to children pages.

The hierarchical website structure is used in our design in order to form understandable,

discoverable and predictable patterns.

Figure 5.4: Design of Speech to SQL system
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The home page at the top of the structure acts as a hub for the application visitors

through which they have cards displaying the pages that a user can navigate to such

as: Historical Analysis, Predictions and Whatif Scenarios. Categorization of the data we

are displaying in this format allows for faster and easier decisions by users to reduce the

amount of time spent considering a decision. Subcategories within each category allow

for a structured methodology when browsing and categorizing information, especially

with complex data. Individual pages or child pages at the bottom of the hierarchy con-

tain the basic elements of the website so that the user’s time browsing the website or

consuming content can be minimized.

5.3.3 Development and Design Perspective

For the development of theWeb-App and User Interface(UI) coding, we used the follow-

ing languages: “HTML,CSS, JavaScript, Python, SQL” where:

• HTML:HyperTextMarkup Language that builds themain structure of thewebpage.

Figure 5.5: Design of Web Application pages
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• CSS: Cascading Style sheets that are used to style the web page.

• JavaScript: Allows for dynamic behavior and interactions on the web page.

• Python: Structuring ?? files before inserting them into the database – in line with

the goal in mind.

• SQL:Manipulating the tables in the backend database (SQLite) with functions such

as addition, deletion...etc.

Since such a project demands multiple pages with heavy interactions, it’s critical to

have a structured folder approach. The structure presented in Figure 5.6 worked best

for our project after multiple trial and error experiments of design, testing, integration

and delivery of content. A few aspects that were kept in mind during the entire design

process are: Easiness of locating files, consistency throughout the application with the

design structure and naming of files to easily locate components.

5.3.4 Frontend Development

First is the main folder named “Web-App Structure” which contains two main folders

“Front End” and “Back End”. The user-side of a web application is also known as the

frontend. Inside the browser, the frontend is the interface that the user can access and

interact with. The client-primary side’s goal is to collect data from users in an engaging

manner. JavaScript code is used to script the frontend components built in React.js. Re-

act.js is an open-source JavaScript package that is used to create single-page apps’ user

interfaces. For web and mobile apps, it’s utilized to manage the view layer. We can also

make reusable UI components with React. There are several open-source systems, such

as Angular, that make developing front-end web applications easier, however, React has

competitive benefits over other frameworks such as:

• React is relatively easy to use thanks to its component-based design, well-defined
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lifecycle, and use of only plain JavaScript.

• React is simple to comprehend for anyone with a basic understanding of program-

ming, whereas Angular and Ember are described as ’Domain-specific Languages,’

meaning that they are harder to learn. You only need a basic understanding of CSS

Figure 5.6: Design of Web-Application structure
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and HTML to “React”. HTML is a markup language that may be used to generate

both static and dynamic web pages and apps. CSS is a style sheet language that

controls how documents produced in a markup language are displayed.

• The Virtual Document Object Module (DOM), which represents the document

structure, style and content, is used by React to keep track of the values of each

component’s state. When the state of a component changes, React compares the

current DOM state to the new DOM state. After that, it determines the most cost-

effective method of updating the DOM.

• Whendata is updated, React’s simple programming approach allows it to alter state

automatically. This takes place in the memory; thus, it is quick.

• React’s library is likewise quite small. It’s only about 6 kilobytes in size. This is a

fraction of the size of its competitors.

Inside the ”Front End” folder, we havemultiple folders and files that make up the fron-

tend of the project such as:

• Platform Cards:

Historical_analysis.jsx: contains an exported function that defines a media

card along with its dimension properties, colors, font details and button actions for

the historical page.

Predictions.jsx: contains an exported function that defines a media card

along with its dimension properties, colors, font details and button actions for the

predictions page.

Whatif.jsx: contains an exported function that defines a media card along

with its dimension properties, colors, font details and button actions for theWhatif

page.
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• Misc:

Routes.js: contains a list of items for the navigation bar with each item de-

scribed with its respective id, label, path, icon, active icon and component. The id

describes the items order on the navigation bar. Label gives a name for the item

on the navigation bar. Path defines the item’s route. Icon presents the item’s im-

age on the navigation bar while inactive (unclicked), while the active icon presents

the item’s image on the navigation bar while active (clicked). Component links the

actual child page to the item.

Styles.js: includes styling of the different pageswith alignment, width, height,

margins, padding, colors, position, etc. For example, setting ‘flex’ as a display prop-

erty allows for automatic adjustment of elementswithin awebpage upon stretching

or shrinking a webpage.

Navigation.js: contains a drawer element that displays menu items and link

them to their respective routes upon clicking. The navigation panel can also be

minimized and maximized easily with a click, to allow users a wider display of page

content.

MenuItem.js: returns a list of menu items mapped to their respective icons

with an icon appearing based on the user’s choice or click.

• Parent Page:

Header.jsx: contains a static bar at the very top of the page that is visible

during all website interactions and navigations. A home button is added so that

users can easily navigate to the home page at any time.

Footer.jsx: contains a static bar at the very bottom of the page that is visible

only on the home page providing information about the website developers.

Historical_analysis.js: Contains a summary description for each of the child
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pages within historical analysis (parent page) alongwith a button that routes to the

clicked menu item page once clicked. The page also contains a navigation bar that

can easily switch the user from one child page to another within the history page.

Predictions.js: Contains a summary description for each of the child pages

within predictions (parent page) alongwith a button that routes to the clickedmenu

item page once clicked. The page also contains a navigation bar that can easily

switch the user from one child page to another within the predictions page.

Whatif.js: Contains a summary description for each of the child pageswithin

Whatif (parent page) alongwith a button that routes to the clickedmenu item page

once clicked. The page also contains a navigation bar that can easily switch the user

from one child page to another within the Whatif page.

• Fused_config.json: json file describing the properties of the rendered map

with information such as: attributes to display, filters to use, styling of points, data

type, map state and map style.

Fused_dash.js: returns the navigation bar alongwith themap fromFusedmap.js

Fused_map.js: returns a map function that fetches data from the backend

database and dispatches it to the map layer. Customized reducers are then used to

control the map.

CV (Journey)… similar structure to Fused Layers folder with naming relevant

to the current folder.

CV (Trips) … similar structure to Fused Layers folder with naming relevant to

the current folder.

CV (Roads)… similar structure to Fused Layers folder with naming relevant to

the current folder.
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Weather … similar structure to Fused Layers folder with naming relevant to

the current folder.

Events … similar structure to Fused Layers folder with naming relevant to the

current folder.

• Hooks:

Speech.js: contains a list of commands that can be heard by the web-app

user. The commands are translated towindowmethods and queries to the backend

database. For example: user can say “open history page” and that will activate an

open method within the window to route (/history)

Index.js: Contains the ReactDom that renders the React elements to the web

page

Index.css: Stylng of themain home pagewithmargins, padding, positions and

colors.

App.js: Contains two main components: speech and routes. They are both

linked on this page so that speech is always activated throughout different pages.

Routes provide the path for all parent and child pages.

Package.json: Collection of all the libraries and packages imported in this

project along with their version number.

5.3.5 Frontend Development

The server-side of the application is also known as the backend. SQLite is used for data

processing, handled by the backend components. The data is manipulated and validated

in the backend stores in response to the requests that users send are handled. Themajor-

ity of requests ”fetch” the data that the user has requested. SQLite is a relational database

management system that runs without a server. It is a zero-configuration, in-memory
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open-source library that does not require installation. It is also convenient because it’s

only 500kb in size, far smaller than other database management systems. The following

are some of the benefits of utilizing SQLite as an application file format:

• For tables, SQLite employs dynamic types. It indicates that any value, regardless of

data type, can be stored in any column.

• SQLite allows several database files to be accessed at the same time using a single

database connection. This adds several useful functionalities, such as connecting

tables across databases or copying data between databases with a single query.

• SQLite can create in-memory databases that are extremely quick to work with.

Inside the ”Back End” folder, we havemultiple folders and files that make up the back-

end of the project such as:

• to database:

CV _journey.py: After connecting to the created SQLite database, a CV_jour-

ney table is created with the table fields mirroring the CSV file columns. Datatype

for each field is also defined in this step. The CSV file is then read line by line and

each column value is inserted into the created table.

CV _trip.py … similar structure to CV _journey.py file with naming relevant

to the current folder.

CV _roads.py … similar structure toCV _journey.py file with naming relevant

to the current folder.

Incidents.py … similar structure toCV _journey.py file with naming relevant

to the current folder.

Weather.py … similar structure to CV _journey.py file with naming relevant

to the current folder.

115



• Data.db

CV _journey_table

CV _trip_table

CV _roads_table

Incidents_table

Weather_table

Index.js: Here we connect the created SQLite database and then use Express

API to send the data from each of the created tables to a unique route. Each layer

in the created map on the front end demands a specific structuring of data to be

sent.

5.3.6 Application Programming Interface

Finally, to connect the frontend and backend components, Express server is used

to create controllers, routes and server. Controllers are server-side routines that

process all requests sent to specific API endpoints (i.e, when you use the retrieve

endpoint in the React app to get all the traffic flow on a specific data from the map

layer, one of these functions will generate the response). Routes will be the next

quick and straightforward step after controllers. The Express library will then be

used to develop the router for all API endpoints, such as retrieving traffic flow on all

days, routes with highest congestion index, incidents causing highest delays, etc.
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5.4 Performance Evaluation

5.4.1 Query Speeds and User-Friendliness

The queries performed on the platform use six main datasets as presented in Ta-

ble 5.1 with information about the number of rows and query response times. The

output of each query is a JavaScript Object Notation (JSON) formatted data that is

loaded from a comma-delimited (CSV) file containing all the information requested

by the user. The displayed times are the maximum query times for all the rows

within the dataset.

Table 5.1: Query response time for data tables

Dataset Rows Count Query Time (sec)

Incidents 191,075 2
Weather 227,140 2
Connected Vehicles (point) 3,163,946 5
Connected Vehicles (arc) 919,413 3
Connected Vehicles (line) 9,854,555 8
Connected Vehicles (journey) 9,854,555 8

In addition, the platform enables interactive user-friendly operations from users.

Users can select or use voice to filter locations of interest from the chart by zooming

in, zooming out, or using a circular filter. Different time periods can also be selected

using the accompanying charts as explained in the following sections. The following

characteristics contribute towards making our platform user-friendly:

– Clear logic and navigation for broad topics only, where users arriving at the

platform for the first time can easily navigate around without the need for any

guesswork.

– Responsive and compatible design, where the application can function prop-

erly ondifferent screen sizes (desktop, tablets, phones)with a rangeof browsers.
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– Easily digestible content with most important information offered first.

– Clickable links have a consistent clickable look so that users can easily be di-

rected to home or exit pages.

– Accessible using voice commands than can respond back to the user with

helpful commands that can help direct the user around the platform.

5.5 Web-App Pages and Features

Starting at the first page, web-app visitors are first welcomed with the home page

as presented in the Figure 5.7. TheNavigation bar is then presented along all parent

and children pages or routes. A visual of the navigation bar is displayed on the right

(non-active and active icons).

To manage the state and data flow of the CV dataset, we use Kepler.gl. Kepler, a

React component, is a web-based application for visual exploration of large-scale

geolocation data sets that is data agnostic and high-performance. This web app

usesMapbox GL and deck.gl to render millions of points representing thousands of

trips and conduct spatial aggregations on the fly. Layers are used as building blocks

in kepler.gl to generate interactive maps, with customizable layer generation and

data (e.g., fares, ETA, and timestamps) encoded to visual channels (e.g., circle size,

Figure 5.7: Screenshot of Web-App: Home Page (left) and Navigation Bar (Right)
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arc color, and circle color) with scaling functions (e.g., linear, quantile, and quan-

tize). A point layer, for example, can be used to plot event and place locations; an

arc layer can be used to visualize origin-destination correlations; a hexbin or grid

layer can be used to aggregate a collection of points to show its distribution; and a

polygon layer can be used to visualize a choropleth map showing aggregate statis-

tics of geographic regions. Beyond the usual 2D x and y cartographic plane, we use

the Geographic JavaScript Object Notation (GeoJSON) format discussed earlier to

add Line-string geometry along with a timestamp for each point; a third dimension

to encode data in an isometric perspective view that displays the movement of ve-

hicle from one point to another. A user can more rapidly spot abnormalities in an

aggregate map when actual movement of vehicle is displayed, as demonstrated in

Figure 5.8.

In addition to standard metric-based filtering, we add Brushing properties (Fig-

ure 5.9) to allow users to highlight arcs and points that originate within a particular

radius of where the mouse is now located (hovered) over the map. This feature is

particularly useful for visualizing origin-destination correlations in order to better

Figure 5.8: CV journey’s from point to point along their routes
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understand how different locations are connected.

Wedeveloped the currentweb-app froma single page app to a robust geo-analytics

and visualization platform. It creates an all-in-one geographic data exploration and

visualization environment, and can be used to fuel advanced geospatial analytics.

The speed, deep insights and geo-analytical capabilities of the toolbox allows us to

achieve powerful and quick data analysis for CV historical data and predictions and

perform road predictions as displayed in Figure 5.10.

5.6 Strategy Canvas

Tounderstandhowour developedplatformcompares to common relational database

systems, we use the blue ocean strategy. [116] introduced the phrases “red ocean”

and “blue ocean” to represent the market universe in their influential book “Blue

OceanStrategy”. All the existing industriesmakeup the knownspaceor “redoceans”.

Industry oceans and the game’s rules of competition are well known. Traditional

Figure 5.9: Layers can be rendered using subtractive blending (left) and additive blending
(right)
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players strive to outperform their rivals in order to snag a bigger piece of the mar-

ket. Profits and growth are decreased as the market becomes more crowded which

fuels fierce competition; thus, the name “red ocean”. In contrast, “blue oceans”

represent all sectors that do not yet exist and have an untapped market space. De-

mand is created rather than contested. Competition is unimportant since the rules

of the game are still being established. An analogy used to depict the greater and

deeper potential to be discovered in untapped market space is a “blue ocean”. In

terms of lucrative growth, a blue ocean is large and deep. We use the same concept

to higlight the value of our application as presented in Figure 5.11, with the strategy

canvas labeled in terms of costs and capabilities for our developed platform (blue)

and the traditionally used platform such as Oracle (Red). A score out of 10 was

given for each characteristic and so a higher score reflects a higher value. Our plat-

form utilizes open-source language and software tools, so the cost of development

ismuchmore affordable. However, integration of such open-source demands effort

and technical knowledge from the developer’s side. The usage of CPUs for querying

Figure 5.10: Roads colored by speed from CV speeds
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data for both platforms is reflected with a tied score for cloud costs. The location

of the platform’s deployment largely affects the administration’s cost. A relational

database service like Oracle costs substantially more if the server is built internally.

In terms of automation, many procedures on our platform are automated, meaning

that with new unseen data, the app can quickly update to the changes. For Ora-

cle, however, an administrator needs to monitor the changes, rewrite queries and

in turn increase the workload. In terms of capabilities, our platform offers much

more than just interactive visualizations of 2GB Data (Oracle) where we can per-

form that on large amounts of data seamlessly with no delays on the front-end. The

platform developed also allows for geospatial analysis and working with GeoJSON

files, essentially offering predictive analytics. Lastly, we offer speech navigation and

queries for easier browsing.

5.7 Summary

A fully functional, interactive Web-App has been designed for storing, retrieving,

fusing and visualizing numerous massive transportation datasets. The develop-

ment of the application was done utilizing the latest developments in the science of

Figure 5.11: Strategy canvas (value curve) for the developed platform and Oracle
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big data. The developed web-app allows for a lightning-fast analysis and visualiza-

tion of the data. To create the application, a modular design structure was adopted

for the front and back ends. A user navigating through the front end submits re-

quests through various clicks or voice commands that are then sent to the back end

to fetch the data. The main goal of designing a fast and interactive platform is to

minimize the latency between front and back ends which eventually minimizes the

amount of time spent by the user on the application and provides quicker insights.
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Chapter 6

Conclusion

In this dissertation a solution to control traffic congestions was developed by de-

livering an interactive web application that performs faster prediction with higher

accuracy data. That wasmade possible by accomplishing four designed objectives.

First, we proposed a GC-GRU based neural network traffic forecasting model and

compared various traffic forecasting techniques for a small dataset of few routes.

After that, we conducted a comparison analysis between the suggested model and

state-of-the-art models like HA, LSTM, and Transformers. A comparison of the

model results show that the suggested GC-GRU is a challenging rival to cutting-

edge traffic forecasting techniques. The developed architecture has the following

advantages:

– Model performance on the provided test data ranked second with a MAPE of

3.16 which is very close to Transformer’s performance of 3.12.

– It’s worth noting that our model not only had the fastest inference time, but

also had a training time that is six times faster than Transformer.

Connected vehicle data offers a wide array of opportunities for transportation sys-
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temsandoperationsmanagement. This technologymakes useof vehicle-to-everything

(V2X) communications to address roadway mobility and safety concerns, such as

travel time and near-accident occurrence. Agencies interested in integrating this

data with existing data sources should understand the added benefits and limita-

tions of the technology. In this dissertation, we compared CV data to traditionally

used probe data to extract the benefits it can offer in accurately detecting incident

and congestion events. The key contributions that were found are as follows:

– Both CV and probe data indicated a strong correlation between speed on the

freeway. The observed difference is that the CV data captures the peak hours

better than the probe data.

– The bias on freeways was found to be significantly less than the bias on ar-

terials. This can be explained by the fact that most probe data do not cover

enough arterials, resulting in large biases.

– For the jam-stand-still-traffic condition, it is observed that the CV data de-

tected the freeway congestion about 3-minutes on average prior to the probe

data.

– Also, CV data detectedmore traffic incidents on the freeway than probe data.

– Similarly, the CVdata detectedmore incidents on the arterial than probe data.

– It was observed that the influence of probe penetration rate is insignificant, if

an incident leads to jammed or heavy traffic.

– The study’s findings indicate that the higher the penetration rate, the lower

the speed bias.

In addition, we developed larger scale models that can handle the volume of CV

data and learn not only the temporal but also the spatial features that may exist.

The key contributions and findings are summarized below:
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– We investigated how the RAPIDS framework and Dask CUDAmay be used to

accelerate big CV data pipelines on GPU and managed the complete proce-

dure at 70 times faster speed, reducing the computation time from 41 hours

to 25 minutes.

– In addition, the RAPIDS and Dask architecture made the source codes con-

siderably easier by condensing most computations to a single line of code,

except for the initial library imports and cluster setup routines. The original

CPU code, however, required numerous lines of code (about 20 for each task).

– To test the applicability of the proposed UNet model, the comparison to HA

statistical method and ConvLSTM saw an average improvement of 65 percent

and 15 percent, respectively. The image snippets from each prediction model

to the actual image showed that image textures were more similar in UNet

than the benchmark models used.

– UNet’s dominance in performing image predictions was also evident in multi-

step forecasting, where the increase in errorswas relativelyminimal over longer

prediction spans.

To accomplish the last objective, we developed an interactive visual analytics web

application that enables fast speech queries, visualization, interaction, and analysis

of the big CV data (historical and anticipated) in the browser (front end). The web

application leverages Central processing units (CPUs) to enable computationally

intensive tasks like data reduction, aggregation, and filtering to be carried out with

user input from the front end.

The presented work, however, comes with a few limitations and recommendations

for future work. While the average penetration rate of CVs in the study is around

8%, it was observed that CVs on freeways contributemore to that number thanCVs

on arterials. One way to tackle this issue can be by performing simulation on the
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roads with fewer CVs to ensure a consistent average and more reliable results. The

traffic events data used to locate congestions and incidents is reported by drivers

on the road and so their location might not be very accurate. To accomodate for

that, we filtered the most severe events by type with the highest number of votes

by drivers. A possible extension to improve its reliability can involve comparing it

to police reports, to better understand the bias such data can generate.

The prediction models trained in this dissertation were focused on the study area

of Saint Louis city in the state of Missouri, but can be scaled for other geogrpahical

areas of interest by applying transfer learning. This allows for the use of a smaller

dataset than the one we used for training the current model. Another possible ex-

tension for the platform features can be the use of hand gestures (vision) to navi-

gate along with the speech queries. The additional feature can allow drivers to nav-

igate the application in more than one method without having to touch the screen

while driving.

Finally, when analyzing the predicted recurring congestion events through the de-

veloped platform its important to be cautious of the positive feedback loop when

collecting data in thepredicted locations since the higher number of detected events

can be due to the efforts focused on the source rather than an actual increase in the

number of events.
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