INTERACTIVE, MULTI-PURPOSE TRAFFIC PREDICTION
PLATFORM USING CONNECTED VEHICLES DATA

by
Maged Shoman
B.Sc. Civil Engineering, American University of Sharjah, 2015
M.Sc. Environmental Engineering, Technical University of Munich, 2019
A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
Doctor of Philosophy
in
CIVIL AND ENVIRONMENTAL ENGINEERING

University of Missouri
(Columbia)

December 2022

© Maged Shoman, 2022

The following individuals certify that they have read, and recommend to the
Faculty of Graduate School at the University of Missouri (Columbia) for
acceptance, the dissertation entitled:

INTERACTIVE, MULTI-PURPOSE TRAFFIC PREDICTION PLATFORM USING
CONNECTED VEHICLES DATA

submitted by Maged Shoman in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Civil and Environmental Engineering.
Examining Committee:

Yaw Adu-Gyamfi, Civil and Environmental Engineering
Supervisor

Praveen Edara, Civil and Environmental Engineering
Supervisory Committee Member

Carlos Sun, Civil and Environmental Engineering
Supervisory Committee Member

Timothy Matisziw, Geography, Civil and Environmental Engineering
Supervisory Committee Member

Dedication

To my beloved parents Ahmed Sabri and Wallaa,

and dear siblings Haitham, Hossam and Dana.

Acknowledgments

The work presented in this dissertation not only sums up many hours of work in study and
experimentation, but it also exemplifies a success story that is celebrated by many bright
scholars and researchers. Firstly, | would like to thank my advisor Dr. Yaw Adu-Gyamfi
for supervising my dissertation and supporting me throughout my PhD. | would also like
to thank all members of my committee; Prof. Praveen, Prof. Carlos and Prof. Timothy for
their support, time, guidance and feedback which helped in shaping this PhD dissertation.

| express my gratitude to Dr. Derek Anderson, Dr. Ye Duan and my colleague Alex
Morehead from the Electrical Engineering and Computer Science Department for solidi-
fying several fundamental concepts in building deep learning models. | am also grateful
to my fellow lab members: Vishal Mandal, Khaled Aati, Dr. Mark Amo-Boaeteng, Aboah
Armstrong, Linlin Zhang and Peng Jin; whose dedication, hard work and collaboration has
inspired me (both, academically and personally) and positively impacted my PhD journey.

In addition to the Mizzou faculty and students, | would like to thank my instructors,
classmates and friends from my high-school, bachelors and masters journey in the United
Arab Emirates, Egypt and Germany. Above all, a special feeling of gratitude to my family

for their endless support and unconditional love.

Table of Contents

Acknowledgments ittt it i i ii
ListofTables it it ittt et et st s n s annnnn vii
Listof Figures i it it ittt et s e s s n s nnnnn viii
GloSSary . « - v ¢ttt hhh s h e s a s s Xi
LaySummary & &t v i i s frh s e e s e s s s s XV
Abstract. i it i s i e s e e e e XVi
1 Introductionandoverview it it it i e e 1
11 Background 1
1.2 Connected VehiclesData 2
1.3 BigDataProcessing 4
1.4 TrafficForecasting 6
1.5 Web-based Visual Analytics 8
1.6 Dissertation Objectives 10
2 GC-GRU Deep Learning Architecture for Tabular Data Predictions 12
21 Introduction 12

2.2 RelatedWork 15

23 Data ... 17
231 TrainingData 17
232 TestingData. 18

24 Methodology 18
241 GC-GRU Architecture o 18
2.4.2 GCfor Spatial Relationships 19
2.4.3 GRU for Temporal Relationships 21

2.5 DataPreprocessing 22

26 ModelsEvaluation. 22

27 ModelsSetup 23
271 GC-GRUSetup 23
2.7.2 Transformer Model for Traffic Forecasting 24

2.73 LSTM Model for sequence-to-sequence Traffic Forecasting 26

28 Results 27
2.81 GC-GRU for Traffic Forecasting 28
2.8.2 Spatial Analysis of Trained Models 32
2.8.3 Temporal Analysis of Trained Models 33

29 Summary e 33

Comparative Analysis of Connected Vehicles and ProbeData. 35

31 Introduction 35

3.2 RelatedWork 38

3.3 Methodology 40
3.31 Connected VehiclesData 42
332 ProbeData 46
333 EventsData 50

34 DataConflation 52
3.5 Multiscale Data Analysis 54
3.51 Short-Term, Medium Term and Long-Term Speed Variation 56

3.5.2 Connected Vehicles vs Probe Data - Speed Bias, Congestions and

Incidents 57

3.5.3 SpeedBias Comparison 58
3.54 Congestion Detection 59
355 Incident Detection o 60

3.6 Summary 61

Multi-Purpose, Multi-Step Deep Learning Framework for Network-Level Traf-

ficFlowPredictiono enns 63
41 Introduction 63
4.2 RelatedWork 67
4.3 Problem Formulation and Overview 72
4.4 |Input Data Structuring 74
4.41 Multi-Dimensional Arrays (MDA) 74
4.4.2 Incidents and WeatherEvents L. 74
4.4.3 Processing Pipeline 76
4.4.4 Comparison of CPU versus RAPIDs GPU Source Code 80
445 Performance Evaluation of the Running Times 80
446 UNetModel 81
447 ConvLSTM Model 86
4.4.8 Historical Average (HA) Model 87
45 Model Training e 88
4.6 ModelTesting 88
461 Recursive multi-step forecast L. 88

4.6.2 Losses and metrics of trained modelresults 88

4.6.3 Extracted images comparison 91

4.6.4 Influence of forecasting horizon 93

4.7 Additional experiments oL 94
4.8 Summary 94
Interactive Web Platform Powered by SpeechQueries 97

51 Introduction 97
52 RelatedWork 99
5.3 Methodology 105
531 SpeechtoSQLQueries, 105

5.3.2 UserPerspective 107

5.3.3 Development and Design Perspective 108

5.3.4 Frontend Development 109

5.3.5 Frontend Development N4

5.3.6 Application Programming Interface 16

5.4 Performance Evaluation, n7
541 Query Speeds and User-Friendliness n7

55 Web-App Pagesand Features n8
5.6 StrategyCanvas 120

5.7 Summaryo e 122

6 Conclusionccuii it ennnnnrsnnnnnas 124
Bibliographyttt i it it s 128
A Publications i e e e e e e 143
1 145

i

List of Tables

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5

Table 3.1
Table 3.2
Table 3.3
Table 3.4

Table 4.1
Table 4.2

Table 4.3
Table 4.4
Table 4.5

Table 5.1

Transformer trained model Parameters 25
LSTM trained model Parameters 27
Summary of modelresults 28
GC-GRU Model training parameters 29
Prediction results of the proposed model and baseline models 30
CSV sample (one row) for the collected CV Data. 45
CSV sample (one row) for the collected Probe Data. 50
CSV sample (one row) for the collected Waze Data. 53

Absolute Mean Difference between CV and probe speeds on Freeways

and Arterials 59

Comparison of recent use of deep learning models for traffic predictions 69
Overview of Weather stations in the city of Saint Louis, colored by
weather condition 80

Running times of the ETL algorithms by number of CV data in seconds 82

UNet model input parameters, . 84
ConvLSTM model input parameters 87
Query response time for datatables n7

vii

List of Figures

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7

Figure 2.8

Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4

Figure 3.5

CPUvs GPU architecture

Freeways withinthe studyarea
GC-GRU model architecture
Transformer Model Architecture
LSTM Model Architecture
MAE visualized distribution over segments
3D bubble plot of performed experiments
Visualization results of all prediction horizons along traffic detectors

for: (a) HA, (b) LSTM, (c) Transformer, (d) GC-GRU
MAE box-plots of all traffic stations results along future prediction

horizons

Overview of Probe vs CV data Comparative Analysis
Data Sources and Analysis Region: a) Connected vehicle trajectories.
b). Waze incidents. ¢). INRIX probedata.
Snapshot of point CV data in the state of Missouri, colored by speed .
Map visualization of CV data (small colorful points) and Detector data
(largeredpoints)

Variations of CV and Detector volume counts over time.

viii

Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13
Figure 3.14

Figure 3.15

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Figure 4.7

Overview of probe data in the city of Saint Louis, colored by speed. . .
Overview of Waze data in the city of Saint Louis, colored by type. . . .
Road Segments with mapped CV points and Probe segments
Sample table of conflated datasets
Histogram plot of count for road segment lengths
Short, Medium, and Long-Term trends extracted from CV and Probe
data using Wavelet decomposition.
Speed variations of CV data and Probe data across datetime: first row
- superimposed plot of CV and probe speeds for road segment over
time. second row - PDF plot of mean absolute difference between CV
speed and probe speed for all road types, freeways
Heatmap of speed bias by road and hourofday
Probe and CV data congestion detection rate comparison on freeways
and arterials (left), probe and CV speed changes during a congestion
event (right)
Probe and CV data incident detection rate comparison on Freeways
and Arterials (left), probe and CV speed changes during an incident

event (right)

Framework for network wide traffic predictions
Framework of the proposed methodology
Spatial bins created for a consistent scaling of H5 arrays
Experiments with static events channel overtime
Temporal aggregation of MDA perday
(a) Nvidia Rapids Framework, (b) Comparison of Rapids to popular

libraries

Overview of data structuringapproach

Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

Figure 4.12
Figure 4.13

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

Figure 5.10

Figure 511

Designed UNet architecture with output shape per block 83
ConvLSTM architecture 85
Testing data hourly predictions 89
RMSE results across various models: (a) freeway roads and (b) arte-

rialroads 89
Forecasted snippets from prediction algorithms 92
RMSE Box plots along 12 future time steps: (a) volume channel on

arterials, (b) volume channel on freeways, (c) speed channel on arte-

rials, (d) speed channelonfreeways 93
Visualization of ranked bottlenecks locations 102
Congestion grid created from historical trafficdata 102
WebApp components 106
Design of Speechto SQLsystem 107
Design of Web Applicationpages 108
Design of Web-Application structure 10

Screenshot of Web-App: Home Page (left) and Navigation Bar (Right) 118
CV journey's from point to point along theirroutes 19
Layers can be rendered using subtractive blending (left) and additive

blending (right) 120
Roads colored by speed from CVspeeds 121

Strategy canvas (value curve) for the developed platform and Oracle . 122

Glossary

Al Artificial Intelligence iv

AITVS Advanced Interactive Traffic Visualization System 96, 97
ANN Artificial Neural Network 64, 66

APl Application Programming Interface 100

ARIMA Autoregressive Integrated Moving Average 39

ASR Automatic Speech Recognition 95

ATSPM Automated Traffic Signal Performance Measures 13, 14

BSM Basic Safety Messages 13, 14

BTS Bureau of Transportation Statistics 8, 94

CAD Computer-Aided Dispatch 25

CCTV Closed-Circuit Television 1, 25

CNN Convolutional Neural Networks 39, 44, 66, 69

ConvLSTM Convolutional Long Short-Term Memory 69, 80, 83, 85, 90

CPU Central Processing Unit x, 4, 5, 9, 89, 116

Xi

CUDA Compute Unified Device Architecture 5, 72, 89

CV Connected Vehicles iii, iv, 2-4, 9-12,18, 21, 36, 62, 63, 68, 69, 74, 89, 94

DCRNN Diffusion Convolution Recurrent Neural Network 40

DL Deep Learning 10, 63

DOT Department of Transportation 22

ETL Extract, Transform, Load iii, 76

FHWA Federal Highway Administration 1

GC Graph Convolution 46, 56, 58

GC-GRU Graph Convolution - Gated Recurrent Unit 40, 53, 55, 56, 58

GCN Graph Convolution Network 40, 42, 66

GDP Gross Domestic Product 1, 60

GeoJSON Geographic JavaScript Object Notation 113, 117

GNN Graph Neural Network 44

GPS Global Positioning System 11, 15, 23, 63

GPU Graphics Processing Unit iii, x, 4, 5, 9, 10, 63, 68, 72, 77, 89

GRU Gated Recurrent Unit 39, 58

HA Historical Average 53, 56, 58, 81, 83, 85, 90

ICT Information and Communication Technology 8, 93

Xii

ITS Intelligent Transportation Systems 3, 6-8, 12, 38, 61-63, 67, 93

JSON JavaScript Object Notation 111

KNN K-Nearest Neighbor 39, 64

LiDAR Light Detection and Ranging 13, 14

LOS Level of Service 96

LSTM Long-Short-Term Memory 39, 47, 53, 56-58, 65

MAC Media Access Control 25

MAE Mean Absolute Error 53, 55, 57

MAPE Mean Absolute Percentage Error 53, 55, 58

MDA Multiscale Data Analysis 30, 69

ML Machine Learning 63,102

MP Market Penetration 12

MT Machine Translation 95

NE Northeast 29, 70

NLP Natural Language Processing 50, 94

NN Neural Network 41

NW Northwest 29, 70

OEM Original Equipment Manufacturer 2,12,15, 17,18

xiii

RMSE Root Mean Squared Error 55, 83, 85, 86

RNN Recurrent Neural Networks 39, 46, 65, 83

SBU-LSTM Stacked Bidirectional and Unidirectional LSTM Network 42

SE Southeast 29, 70

SIMD Single Instruction Multiple Data 5

SODA Search Over Data 96

SQL Structured Query Language 94, 96, 101

SVM Support Vector Machine 64, 66

SVR Support Vector Regression 39

SW Southwest 29, 70

TMC Traffic Management Center 1,11, 23, 26

V2V Vehicle-To-Vehicle 12

V2X Vehicle-To-Everything 2, 11

VMT Vehicle-Mile-Travelled 14

Xiv

Lay Summary

The viability of using innovate data solutions to understand traffic and combining it with
incidents and weather data is explored to enhance traffic forecasting. The overall objec-
tive is to offer a digital platform that can analyze historical and future data offering ac-
curate and fast insights on traffic performance. Car-related information is collected from
sensors mounted on a subset of cars within the traffic network and delivered to a cloud-
based service that can store the data. The stored data is then used in different ways. First,
the spatiotemporal relationships between data points are learned through structuring the
data in multi-dimensional arrays and feeding them to an Artificial Intelligence (Al) model
that can learn the spatiotemporal relationships. Then historical data and prediction re-
sults inferred from the trained Al model are displayed on a customized website that can
quickly query and display map visualizations of the traffic performance. The website is
built with support of voice commands, meaning that you can speak-to to navigate through
different pages and request specific traffic information (ex: a certain road/day/time) to

display.

XV

Abstract

Traffic congestion is a perennial issue because of the increasing traffic demand yet limited
budget for maintaining current transportation infrastructure; let alone expanding them.
Many congestion management techniques require timely and accurate traffic estimation
and prediction. Examples of such techniques include incident management, real-time
routing, and providing accurate trip information based on historical data. In this disserta-
tion, a speech-powered traffic prediction platform is proposed, which deploys a new deep
learning algorithm for traffic prediction using Connected Vehicles (CV) data. To speed-up
traffic forecasting, a Graph Convolution - Gated Recurrent Unit (GC-GRU) architecture is
proposed and analysis of its performance on tabular data is compared to state-of-the-art
models. GC-GRU's Mean Absolute Percentage Error (MAPE) was very close to Trans-
former (3.16 vs 3.12) while achieving the fastest inference time and a six-fold faster train-
ing time than Transformer, although Long-Short-Term Memory (LSTM) was the fastest
in training. Such improved performance in traffic prediction with a shorter inference time
and competitive training time allows the proposed architecture to better cater to real-time
applications. This is the first study to demonstrate the advantage of using multiscale ap-
proach by combining CV data with conventional sources such as Waze and probe data.
CV data was better at detecting short duration, Jam and stand-still incidents and detected
them earlier as compared to probe. CV data excelled at detecting minor incidents with

a 90% detection rate versus 20% for probes and detecting them 3 minutes faster. To

XVi

process the big CV data faster, a new algorithm is proposed to extract the spatial and
temporal features from the CSV files into a Multiscale Data Analysis (MDA). The algo-
rithm also leverages Graphics Processing Unit (GPU) using the Nvidia Rapids framework
and Dask parallel cluster in Python. The results show a seventy-fold speedup in the data
Extract, Transform, Load (ETL) of the CV data for the State of Missouri of an entire day
for all the unique CV journeys (reducing the processing time from about 48 hours to 25
minutes). The processed data is then fed into a customized UNet model that learns high-
level traffic features from network-level images to predict large-scale, multi-route, speed
and volume of CVs. The accuracy and robustness of the proposed model are evaluated by
taking different road types, times of day and image snippets of the developed model and
comparable benchmarks. To visually analyze the historical traffic data and the results of
the prediction model, an interactive web application powered by speech queries is built
to offer accurate and fast insights of traffic performance, and thus, allow for better po-
sitioning of traffic control strategies. The product of this dissertation can be seamlessly
deployed by transportation authorities to understand and manage congestions in a timely

manner.

XVii

Chapter1

Introduction and overview

1.1 Background

Traffic congestion costs cities billions of dollars every year when factors such as accidents,
pollution and delays are factored in. According to a recent report published by the Texas
Transportation Institute [1], all 494 metropolitan areas in the United States experienced
8.7 billion vehicle-hours of delay in 2019, resulting in 3.5 billion gallons of wasted fuel
and 190 billion in lost productivity, or about 0.15 percent of the nation’s Gross Domestic
Product (GDP). When traffic demand approaches or exceeds the traffic system'’s available
capacity, traffic congestion occurs. Traffic Management Center (TMC)s utilize real-time
traffic information to help relieve traffic congestion and improve safety. This requires
operators to constantly monitor road conditions through data streaming from a variety of
sources including traffic sensors, GPS-enabled devices (probes), closed-circuit cameras,
dynamic message signs, etc.

The Federal Highway Administration (FHWA) has long maintained nationwide pro-
grams to track traffic trends and vehicle distributions in order to meet data requirements
set forth in federal highway legislation. To gauge traffic flow, the following methods are

commonly used: video analytics systems such as Closed-Circuit Television (CCTV) cam-

eras which can provide a 24/7/365 coverage of speed and location of vehicles. The lo-
cations of vehicles provided, however, can be inaccurate due to the camera being fixed
or heavy weather conditions. Another common data source is in-roadway sensors which
come in a variety of shapes and sizes, and they can be installed on or within the pavement.
Such a data source provides full coverage as well, but doesn't collect any information
about the vehicles so the traffic coverage is done at a macroscopic scale. Additionally,
transponder toll devices in cars are used to transmit data that contains a unique identi-
fier (the toll card number) and position. Data from mobile phones with location tracking
turned on can be utilized as a traffic probe in aggregate. Floating cellular data is another
name for this type of data. This method is considered a low-cost or no-cost solution
since phones are owned by the user (commuter) and can travel everywhere. Identify-
ing the transportation mode used, however, can be a challenging task and may require
complex algorithms. Recently, Connected Vehicles (CV) have become a very useful and
direct source of traffic data as more vehicles become connected via built-in telematics
and onboard gadgets. CV data is low cost since no significant installation or maintenance
required, and rich with very frequent location and speed updates for every vehicle so it
provides a complete view of geographic areas.

This dissertation is structured as follows: we briefly introduce each chapter in the
current section along with the overall objectives. In the numbered chapters that follow,
we dive into each chapter by discussing related work, methodology of our approach, fol-
lowed by results, analysis and discussion. While each chapter has its own summary, a

conclusion section is added at the end to summarize the dissertation work.

1.2 Connected Vehicles Data

CV technology can be defined as an application that utilizes Vehicle-To-Everything (V2X)

communications to address mobility and safety concerns on roadways. CV data avail-

ability has been exploding in recent years. This is as a result of the advent of Original
Equipment Manufacturer (OEM)s, Telematics platforms, and other in-vehicle technolo-
gies, that can continuously stream high-resolution, reliable and accurate vehicle data. A
probe vehicle feature, which is part of connected vehicle technology, collects data about
the state of the vehicle. Information from the collected data is used to estimate critical
performance indicators such as travel time. Data generally used for traffic analysis and
prediction has two main issues: availability, size of data, and the overreliance on probe
data. When qualified traffic data is unavailable, the trained prediction model's perfor-
mance degrades since performance correlates with the quality of input data. While we
can collect more probe data due to transportation infrastructure modernization, the data
doesn't capture the microscopic changes in traffic behavior. The main difference between
probe data and CV data is scale and velocity. Probe data provides speed per road seg-
ment (line data) at a frequency of around five minutes, however, CV data provides speed
at the vehicle's location (point data) at a frequency of three seconds.

To our knowledge, most prior studies [2-4] used probe traffic data that was less than
a year old and, in some cases, as recent as one or two months [5]. Probe data cannot
capture the microscopic travel speed or volume, and using it for traffic forecasting is likely
to yield unreliable estimates, in our study, since our goal is to predict speed and volume
simultaneously. Therefore, there is a need to use a more reliable data source that can
provide microscopic live travel information to improve the reliability of traffic predictions
along road segments such as CV data.

The future of Intelligent Transportation Systems (ITS) is shifting towards big real-
time data from CV as automobile makers rush to incorporate CV technology in novel
and current vehicles for numerous apparent advantages, which include vehicle autonomy
and navigation, vehicle sensor and driver monitoring, live over-the-air updates, advanced

road warnings, improved battery and fuel efficiency. Government and state institutions

that create, maintain and manage road infrastructure may take advantage of the CV data
available to know what is happening on the road and make informed decisions on traffic
flow and road pavement infrastructure. Thus, it is critical to effectively process all CV
data on a state level for statewide transportation infrastructure management.

The main goal of this chapter is to study the resolution, coverage, and diversity of real-
time traffic data streams that enable operators to detect problem areas and respond to
them in reasonable time. There is a growing interest among state agencies in leveraging
CV data to improve operations, incident management and predictive analytics. The size,
coverage, resolution and penetration rates of this new dataset offers new challenges and
opportunities that need to be explored prior to full scale integration into day-to-day traffic

operations.

1.3 Big Data Processing

As automakers scramble to integrate CV technology in new and existing vehicles for sev-
eral salient benefits including vehicle autonomy and navigation, vehicle sensor and driver
monitoring, live over-the-air updates, advanced road warnings, and improved battery and
fuel efficiency, the future of transportation infrastructure management is shifting towards
real-time big data from CV. In order to know what is happening on the road and make wise
judgments about traffic flow and road pavement infrastructure, government and state or-
ganizations that design, maintain, and administer road infrastructure may benefit from
the CV data readily available. How we efficiently process all CV data at the state level for
statewide transportation infrastructure management remains to be seen.

The development of the modern urban economy in cities has been both an indicator
of and a driver of the transportation infrastructure, which includes information about the
road pavement surface, road networks, signals, and intersections, as well as parking. Pro-

cessing and analyzing data from transportation infrastructure had not been difficult until

recently, and this is in accordance with Moore's Law, which states that computing power
will double approximately every 18 months [6]. The development of Central Processing
Unit (CPU)s has put them at the forefront of data processing. Moore's Law is thought to
have reached its physical limits, and the emergence and growth of big data across several
industry verticals, including finance, social networks, transportation, retail, telecommu-
nications, and biology, has necessitated the adoption of fresh, cutting-edge methods for
processing and analyzing this data in order to derive useful insights. Finding fresh and
different approaches of digesting large amounts of data to produce useful insights has
been the focus of recent research [7-91.

These strategies include quantum computing, Graphics Processing Unit (GPU) data
processing, parallel computing, and edge computing (still in the infancy of its develop-
ment). GPUs are massively parallel processing devices that were initially created to speed
up graphics operations on computers. On GPUs originally designed for gaming and visual
graphics processing, the advent of Nvidia Compute Unified Device Architecture (CUDA)
ushered in the era of extremely parallel scientific computations [10, 11]. Although GPUs

have limited computational power, the massively parallel architecture, also known as Sin-

= [
= [
[[
= [l
l
l
|
|

ALU ALU

Control

ALU ALU

E=
Cache E E
=]

DRAM DRAM

CPU GPU

Figure 1.1: CPU vs GPU architecture

gle Instruction Multiple Data (SIMD), significantly accelerates simple data processing
jobs using independent execution paths (see Figure 1.1).

Launching millions of threads on thousands of processing cores on a single GPU is typ-
ically required to make use of the tremendous parallelism of GPUs [12]. Constraints when
employing GPUs for data processing typically include GPU memory limits and slow data
transmission rates between the CPU and GPU. However, there are ways to get around or
cover up certain problems that GPUs have, such as simultaneous data transfer and batch
processing. Despite these difficulties, when used properly, GPUs have been shown to ac-
celerate scientific computations up to 200,000 x over CPUs [10, 11, 13]. As a result, the
core of all supercomputing infrastructure today consists of GPUs and similar accelerator

hardware technologies.

1.4 Traffic Forecasting

Traffic forecasting is a critical component of advanced traffic management systems that
can help transportation planners in planning for volatile events ahead, by taking early
actions and arrangements, which contributes to better traffic management and service
quality. It may not only serve as a valuable reference for increasing the efficiency of lim-
ited traffic management resources, but it can also assist passengers in making arrange-
ments ahead of time to minimize traffic congestion. Long-term projections are more likely
than short-term forecasts to reduce travelers' average trip time [14]. Common forecasted
traffic parameters include: traffic flow [15], traffic speed [16], and traffic time [17]. The
increasing availability of large-scale traffic data, which can be looked at from a temporal
and spatial lens, has paved the way to develop prediction models that are robust to cap-
ture the underlying driving mechanism of traffic volatilities, especially the random (un-
foreseen) components.

Many studies [18-20] have shown that traffic datasets can be used to predict traffic

congestion, allowing drivers to avoid congested areas (e.g., through traffic flow forecast-
ing navigation systems), policymakers to decide on changes to traffic regulations (e.g.,
replacing a normal lane with a toll lane), urban planners to design better pathways (e.g.,
adding or removing aroad lane), and transportation engineers to better plan for the timing
of construction activities.

Temporally, majority of prior studies have focused on single-step traffic flow predic-
tion for a single road or road section. Single-step predictions can be defined as a single
value prediction at the next time-step while multi-step would predict a sequence of values
into the future (multiple time steps). For some applications in ITS, such as traffic plan-
ning, single-step can be insufficient because it doesn't provide enough valuable insights
for transportation planners when planning future strategies for traffic management As a
result, multi-step traffic flow prediction is gaining popularity. Multi-step traffic flow pre-
diction uses the same methodology as single-step traffic flow prediction in predicting the
first time-step; however, for the future multi-steps there are different strategies that can

be used such as:
* Direct Multi-step Forecast; where a separate model for each time step is developed.

* Recursive Multi-step Forecast; where the prediction output from the previous time-

step is used as an input to predict the next step.

* Direct-Recursive hybrid multi-step Forecast; which combines the previous two strate-

gies.

* Multiple Output Forecast; where the entire multi-step future is predicted in one-

shot.

In addition, many studies only focused on predicting traffic on a single-route or a spe-
cific connection or crossing. The development of an ITS demands the need to explore

multi-route predictions on a larger scale by considering the complex spatial dynamics of

7

a network [21]. While prior knowledge of the distance or travel time between regions
can aid in capturing spatial correlation, there are still some hidden time-varying traffic
patterns that data-driven methods must uncover. The challenge is resolving the intricate
spatio-temporal dependencies, which refer to traffic information (e.g., speed or volume)
at a certain location in space and moment in time. With the emergence of deep learning
models, this research aims to solve the question of how to construct appropriate deep
learning models to cope with large-scale complex network-wide traffic data.

Large-scale network traffic prediction demands an intelligent and efficient prediction
methodology to forecast traffic on longer horizons and reflect the flow propagation. Nu-
merous variables affect a region's future traffic state, including historical observations of
traffic, road geometry and network dependencies, weather, incidents, and other external
factors (holidays and special events). The technique used to fuse multi-purpose vari-
ables is a challenge for the current generation of prediction models when incorporating
information from multiple senses together. The interrelationships between regions are
intricate and complex, along with the use of big amount of data, adds to the challenges in
developing a robust prediction model.

The main goal of this chapter is to create an accurate and reliable network-wide (by
exploring multi-routes), multi-purpose (such as speed and volume), multi-step (longer

prediction horizon) prediction model.

1.5 Web-based Visual Analytics

The increasing complexity of urban transportation networks makes it difficult to manage
transportation operations in cities. ITS and Information and Communication Technology
(ICT)s are frequently used to handle traffic monitoring, estimate, and control problems.
In order to apply suitable control techniques, ITSs combine modern technology with real-

time information about traffic conditions. Transportation networks are closely monitored,

resulting in massive traffic and incident databases. The problem of traffic congestion
on the roads is serious and widespread, and the integration of various technologies and
systems can greatly aid in its resolution. The requirement for massive traffic databases
to be efficiently used by traffic operators and managers necessitates the development
of innovative apps and state-of-the-art visualization tools as the amount of traffic data
transmitted via ITSs grows fast. Interactive visualization allows extracting data of interest
by displaying it in various visual forms and interacting with it through various filters.

Most transportation agencies use ArcGlS, Tableau, and D3 as their primary visual
analytic platforms. Tableau, an analytical visualization tool, is used by the NHTSA (Na-
tional Highway Road Safety Administration) to offer insights regarding speed-related traf-
fic fatalities across the United States. Other agencies, like the Virginia Department of
Transportation (VDOT2015), the Bureau of Transportation Statistics (BTS) (2019), and
the lowa Department of Transportation [22], employ comparable platforms to dig into
work zone, traffic, and freight data. The data being visualized on these platforms might
be anywhere from a few megabytes to a few gigabytes in size. When the size of the data
being viewed surpasses 250 megabytes, significant latency might be detected in terms
of updates. For all the heavy-lifting calculations (on large data sizes) such as data inges-
tion, aggregation, integration, and reduction, recent advances aimed at managing huge
transportation data employ high-performance computing clusters in the backend [23].
The data is then provided to the front end for visual exploration after being filtered, ag-
gregated, and lightweight. Although this method is useful for managing the challenges of
massive data, it restricts the effectiveness of visual analytics because tiny details are lost
in the aggregate and filtering processes [24].

The main purpose of this chapter is to develop an interactive visual analytics applica-
tion that allows the big CV dataset (historical and predicted) to be visualized, interacted

with, and analyzed in the browser (front end). The framework will make use of CPUs

to allow heavy-lifting computations like data reduction, aggregation, and filtering to be

performed with user input from the front end.

1.6 Dissertation Objectives

The main purpose of this dissertation is to analyze and understand congestions better.
To accomplish this purpose, we decompose the congestion understanding pipleine into
predictions, data, processing and analysis. This break up into constituent parts presents

the following research questions:

* Could there be a faster way to perform traffic predictions?

What better sources of data exist and how do they compare to traditionally used

sources?

* How candatabe processed faster to scale prediction models along longer-horizons?

* How can decisions be made from the forecasted model results?

To accomplish our main purpose we deliver an interactive web application that can
perform faster predictions with higher accuracy data. The following objectives, to be dis-
cussed in detail through each of the following chapters, answers each of the research

questions:

* Developing a GC-GRU Deep Learning architecture that can perform faster predic-

tions on tabular data

* Comparative Analysis of CV data to traditionally used traffic data such as probe.
This study answers the question of how a different scale like the microscopic CV
point data compares to macroscopic probe line data. Using a multiscale data min-

ing approach, trends are compared between both datasets.

10

* Desigining a pipeline for performing simultaneous, pixel-level, dense prediction of
traffic flow variables (speed and volume) while considering the network traffic tem-

poral evolutions and spatial dependencies.

* Building an interactive web application that analyzes and predicts traffic perfor-
mance using CV data, for a faster understanding of bottlenecks and situations trig-

gering a degraded traffic performance.

The web app is designed to assist traffic operators in estimating traffic congestion.
Using a map layer, it depicts various levels of congestion that are estimated and labeled
with green, yellow, red, corresponding to normal, medium, and severe congestion, and
updated automatically with the time frequency selected by the user. The second tool
aims to make databases more understandable for traffic operators and analysts by pro-
viding tabular and graphical depiction, as well as several filtering options. The next sec-
tions of the dissertation are organized as follows: the second chapter introduces CV data
and compares it to detector and probe data to understand its penetration rate and how
it compares when detecting congestion and incident events. In the third chapter, we dis-
cuss state-of-the-art machine learning models for timeseries forecasting and propose a
faster architecture for similar prediction results. In the fourth chapter, we introduce the
different datasets used and how our data processing pipeline was developed to efficiently
process large-scale data by leveraging distributed GPU clusters through Nvidia Rapids
and Dask Framework. In the same chapter we also present our developed Deep Learning
(DL) Framework for simultaneous, pixel-level prediction of traffic flow variables (speed
and volume). In the fifth and final chapter we talk about how we developed a web-based
platform to visually analyze the historical and predicted traffic data, powered by speech

queries.

1

Chapter 2

GC-GRU Deep Learning Architecture

for Tabular Data Predictions

2.1 Introduction

The path toward an ITS has recently become more feasible due to the influence of two
major factors: 1) exponential growth of data collected by embedded traffic sensors, and
2) advancement of effective deep learning techniques [25]. An intelligent transportation
system consists of several components, one of which is traffic forecasting. Traffic fore-
casting is an essential component of an ITS because it predicts future traffic flows on road
networks by analyzing both historical traffic data and the configuration of road networks.
Forecasted traffic flows are required for several traffic management applications, includ-
ing traffic control [26, 27], traffic classification [28, 29], and vehicle scheduling [30].
Despite its many benefits, traffic forecasting remains a daunting task.

Traffic forecasting is a challenging task because traffic variables such as speed, vol-
ume, and traffic patterns are influenced by dynamic and static factors known as spa-

tiotemporal correlations and external events. The above-mentioned factors can profoundly

12

influence the performance of a traffic forecasting system directly and indirectly. First,
studies have shown that spatial information, precisely the locations of embedded com-
munication sensors, significantly influences a traffic forecasting system [21]. This is be-
cause roads in a Euclidean space are bound to have different traffic conditions at any
given time [21]. For example, on a two-lane highway network, there is usually a signifi-
cant difference in the amount of traffic traveling in each lane at any given time. Also, the
traffic speed on a given roadway is influenced and directed by the traffic condition further
downstream. Second, traffic dynamics and their temporal dependencies can be different
from one another by combining recurring patterns and unpredictability of occurrences.
For example, traffic follows a cyclical pattern on a daily and weekly basis, but there may
be dynamic shifts in temporal patterns due to crashes, and this results in difficulties dur-
ing traffic forecasting. Third, extraneous factors such as one-time events and weather
conditions can significantly impact traffic flow, making long-term traffic forecasting more
difficult. According to the FHWA report on weather impacts on mobility, it was found
that the average speed of traffic can be reduced by 2 to 13 percent in light rain, 3 to 16
percent in heavy rain and 5 to 40 percent in heavy snow.

Several methodologies for short- and long-term traffic forecasting have been imple-
mented considering the numerous challenges identified in forecasting traffic. There are
two types of methodologies usually employed. First, statistical methods such as K-Nearest
Neighbor (KNN) [31, 321, Gaussian process, hidden Markov model [33], Support Vector
Regression (SVR) [34], and Autoregressive Integrated Moving Average (ARIMA) [35,
36] were used in the past. Typically, these techniques are limited to less complex traffic
conditions and situations with small data. Second, deep-learning-based methods, pri-
marily Recurrent Neural Networks (RNN)s and Convolutional Neural Networks (CNN)s.
RNNs, such as Long-Short-Term Memory (LSTM) [37] and Gated Recurrent Unit (GRU)

[38], are commonly used for sequential and temporal learning, whereas CNNs, such as

13

ResNet [39], are commonly used for learning spatial structures. ST-ResNet [40] is a
time-series model that uses a residual network and LSTM. Although the approaches have
produced cutting-edge results, they do not consider the connectivity of road networks.
This is significant because traffic conditions on one road will be influenced by another.
As such, methodologies need to consider both traffic variables and the road network's
configuration.

Most recently, researchers have begun modeling traffic data collected by road sensors
using graph-theoretic approaches. The spatial correlations between traffic sensors are
represented by a directed graph with nodes representing the sensors and edge weights
representing the proximity of sensor pairs as determined by road network distance. Re-
cent advancements in graph neural networks [41], especially convolutional graph neu-
ral networks [42], have fueled the development of several graph-based traffic predic-
tion models [41, 43, 44]because sensor networks are naturally organized as graphs, as
in the case of Diffusion Convolution Recurrent Neural Network (DCRNN). DCRNN [21]
represents the road network as a directed weighted graph and proposes a diffusion con-
volutional RNN for traffic prediction. Even though GCN has achieved great success in
spatial analysis over the years, few studies have investigated using GCN for spatiotempo-
ral analysis. [45] combined recurrent neural networks and Graph Convolution Network
(GCN) to perform spatiotemporal analysis. Although a significant result was obtained,
the architecture is constrained by the limitations of the RNN, which cannot be used for
long-term forecasting due to vanishing and exploding gradients. Other studies, such as
[46], investigated combining LSTM and GCN to capitalize on LSTM's ability to learn from
long-term dependencies. This was a significant accomplishment, as the results of these
studies were state-of-the-art. Even though LSTM has achieved respectable results in re-
cent years, training LSTM takes longer [47].

The primary goal of this chapter is to perform a comparative analysis among various

14

state-of-the-art models used for traffic forecasting. We also propose a Graph Convolu-
tion - Gated Recurrent Unit (GC-GRU) model to perform network-wide traffic forecast-
ing. The dataset used to test the proposed architecture against state-of-the-art models is
the benchmark dataset of [48] inductive loop detectors installed on freeways throughout
the Greater Seattle area. This dataset contains freeway traffic performance score (TPS),
speed, and volume information. The freeways include -5, [-405, I-90, and SR-520. The
traffic states of loop detectors on main lanes traveling in the same direction are aggre-
gated every two miles in this dataset. In our proposed model, the GRU cells was used
to model the temporal aspect of the problem, while the GC cells were used to model the
spatial aspect of the problem based on the road network configuration using the adja-
cency matrix. The ability of a neural network to achieve high accuracy is determined by
the training data and the hyperparameters used to train the model. Choosing hyperme-
ters to train a neural network can be time-consuming and frustrating because it requires
a lot of trial and error. In this study, the we also provide the best practice in choosing
hyperparameters to train a GC-GRU to achieve great results. The rest of the chapter is
structured as follows. Section two examines previous traffic forecasting methodologies.
The third section explains the data used to test our newly developed architecture. Section
four goes over the methodology used in developing the new GC-GRU model and the other
models used as benchmarks . Section five presents and discusses the results. Sections

six and seven present the chapter's conclusion and recommendations.

2.2 Related Work

This section reviews methodologies employed extensively by previous studies. Numer-
ous traffic network modeling methodologies have been identified as useful for estimating
and predicting traffic patterns. In the past, parametric statistical models were utilized fre-

quently to model traffic data flow. Several studies favored the Autoregressive Integrated

15

Moving Average Model (ARIMA) because of the model's capacity to model sequential
input [49-51]. In addition, various approaches based on machine learning have been
suggested as possible ways to model traffic data. In previous studies, researchers made
use of techniques such as Support Vector Regression (SVR) [52-54], k-nearest neigh-
bors (k-NN) [55], Bayesian Networks (BN) [56], and feed-forward Neural Network (NN)
[57-60]. A new frontier has been opened for traffic modeling based on deep learning due
to traffic data's growing pervasiveness, availability, and size. Deep neural network-based
methods have recently been shown to achieve high accuracies for traffic estimation and
prediction tasks due to the availability of large amounts of data pertaining to traffic. This
was made possible by the availability of big data. RNNs, or recurrent neural networks, are
a subcategory of deep neural networks developed specifically to model sequential data.

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs), which are both
subclasses of RNNs, were used extensively in recent research to model the spatiotempo-
ral behavior of traffic [47, 61]. For instance, Cui et al. [62] proposed a Stacked Bidirec-
tional and Unidirectional LSTM Network (SBU-LSTM) to model traffic's chronological and
reverse chronological temporal dependencies. Many authors used convolutional neural
networks to improve the spatial modeling capability of deep learning models. This was
done by combining multiple layers of neural connections (CNNs). CNNs can model both
local and global relationships between neighboring pixels as they were initially developed
for use in computer vision applications. CNNs were utilized in a great number of research
projects to model the connection between neighboring stretches of roadway [63, 64]. For
instance, Ke et al. [65] modeled lane-wise traffic speed and volume data by employing a
CNN with multiple channels to analyze the data. The proposed method was developed to
capture the spatial relationship between the traffic lanes that are immediately adjacent
to one another.

GCN were also used to model spatial traffic dependencies [66, 67]. These dependen-

16

cies were derived from the topological structure of the road network. In their study [45],
Zhao et al. combined GCN for spatial modeling with GRU for temporal modeling, and
the result was a Temporal Graph Convolutional Network (T-GCN). T-GCN was trained
and tested for its ability to predict traffic speed using two distinct datasets: data based
on a probe-vehicle type and data based on a loop detector. An Attention-based Spatio-
Temporal Graph convolutional network (ASTGCN) was proposed in a paper by Guo et al.
[68]. Inspired by these works and aiming towards developing an accurate timeseries traf-
fic prediction model, we utilized two cells (temporal and spatial) to propose a GC-GRU

architecture.

2.3 Data

2.3.1 Training Data

In order to understand how the proposed architecture performs against state-of-the-art
models, we use the Seattle inductive loop benchmark dataset. Traffic Performance Score
in the dataset is calculated based on the data collected from almost 8000 inductive lop
detectors deployed on the freeway network in the Northwest region in Washington State.
The freeways covered in the study include I-5, 1-405, 1-90, and SR-520 as shown in Fig-
ure 2.1. The dataset consists of traffic performance score, spatio-temporal speed and
volume information of the freeway system. Each blue icon represents the loop detectors
at a milepost, the speed data at a milepost is averaged from the several loop detectors on
the main lanes in the same direction at a particular milepost. The training dataset used
in the study is sampled from January 1st, 2020, to May 31st, 2020, at 15-minute sam-
pling intervals. The horizontal header represents the average speed (AVG Spd), average
volume (AVG Vol) and traffic index (Trafficindex) for the general purpose (GP) and High

Occupancy Vehicle (HOV) lanes. The vertical header represents the timestamp.

17

2.3.2 Testing Data

In order to test the performance of the model, there are 15 testing data points which will
represent the ground truth in the study with 36 previous time steps. The test data covered
weekday, weekends, morning and afternoon peak hours. The developed modelis required

to predict the next 12 steps ahead of ‘TrafficIndex GP'.

2.4 Methodology

2.4.1 GC-GRU Architecture

In this section, we discuss our end-to-end traffic prediction model, designed to tackle
the traffic forecasting challenge using the loop detectors data, which consists of spatial-
temporal GC-GRU cells for the encoder and decoder components. The overall architec-
ture of the proposed model is illustrated in Figure 2.2. Specifically, the proposed architec-
ture consists of two main parts: encoder and decoder. The encoder module consists of
GC and GRU cells to encode the traffic features (input) and the decoder module consists
of GC and GRU cells to forecast traffic parameters (output) from the encoded state. GC is

employed to learn the complex spatial relationships between traffic detectors and GRU is

DD

Figure 2.1: Freeways within the study area

18

utilized to capture the dynamic temporal dependencies of traffic data reported by traffic

detectors at different times.

2.4.2 GC for Spatial Relationships

In the past decade, neural networks have experienced tremendous success. Although
many data sets in the real world contain underlying graph structures that are not Eu-
clidean, early neural network variations could only be built using regular or Euclidean
data. New developments in Graph Neural Network (GNN) have been made possible by
the non-regularity of data structures. GCN are one of the many variations of GNNs that
have been developed over the last several years and are regarded as one of the funda-
mental Graph Neural Networks subtypes. The actions carried out by GCNs are similar
to CNN, however the model learns the features by looking at the nearby nodes. The pri-

mary distinction between CNNs and GNNs is that the former was developed specifically

Input Output
7Y X 7Y /'y
| SE S GC Fc o EC - K
]) <
s Xer X1 Xy o L) L N
. NS SN AN e A g | '
(()) A GRU GRU GRU
GRU | hu - GRU |ha| GRU |p, cell cell o cell
—> 1 .
cell cell cell Q y . : y € y

Chea) AU Ge Ge Ge
I he y
- - A A A A
X .

Figure 2.2: GC-GRU model architecture

19

to function on regular (Euclidean) organized data, whilst the latter are generalized CNNs
with varying numbers of connections and unordered nodes. In our proposed model, the
input to the model is a network of traffic loop detectors represented by nodes (V) and
edges (F). Nodes represent the location or order of the detectors while edges represent
the existence of a link in between the nodes. This can be represented by an undirected
graph where G = (N, E) with N defined as the set of detectors. One detector ni is con-
nected by vertices i and j which represent the network edges (ni, nj). To consider the
impact of traffic events, bidirectionally on upstream and downstream roads, we let G
be an undirected graph even if certain roads are directed. Subsequently, the Adjacency
square matrix (A) element for each E is represented as Ai, j = Aj, j with values of O],
in which Ai, j = 1 for an existing connection between nodes ni and nj and Ai,j7 =0
otherwise. Node self-features are also considered by performing a self-loop, adding the
adjacency and identity matrix using the following formula for the -hop neighborhood of a
node (clipping nodes that might exceed one):

AF ;= min((A+1);;,1) 2.1

1’7j ’

To capture the spatial properties in the coded graph (&), the Graph Convolution (GC)
layer builds a filter in the Fourier domain that acts on the nodes and their first-order neigh-
bors using the input adjacency matrix (A). Adjacency matrix weights for all edges are
then input into a diagonal vector (D) that now contains information about the degree
(edges count) of each vertex. The stronger a node's affiliation with a particular group
or cluster, the lower its degree. To ensure numerical stability during training, symmetric
normalization is then performed using the following formula:

Aby = Df,j_%f‘ﬁjﬁﬁf% (2.2)

20

Output for each GC layer (2) is then calculated using the dot product of the normalized
adjacency matrix (Af;j) , input feature (Xi’fj) and the weight matrix (Wi’fji_l) of the pre-
vious GC layer. Rectified Linear Activation Unit (ReLu) is then used as the activation

function. The calculation can be expressed using:
L? = ReLu(Af, xF,wl, (=) (2.3)
The output from our 2-layer GC model can finally be expressed using:

ge(Sy, A) = AF L,k 2.4

2.4.3 GRU for Temporal Relationships

Another significant issue with traffic prediction is acquiring temporal dependence. Given
the exceptional time series predictions, the RNN has shown good results over the past
decade. However, because of flaws like gradient disappearance and explosion, classical
RNN has limitations for long-term projections. To solve these issues, the LSTM cell and
the GRU cell are explored as an addition to our proposed architecture. Nearly all the fun-
damental ideas of both are the same. Both models can handle longer task sequences, and
all include gated systems. In contrast to LSTM, GRU reduces the data flow by combin-
ing the forget gate and the input gate into one update gate. As a result, it has a simpler
structure, fewer parameters, and a faster convergence speed. Each cell in the GRU com-
putes its internal state (¢;) and hidden state (h;) based on two gating units that regulate
the flow of information: update gate (u;) and reset gate (r;). The update gate decides
the amount of information the unit updates its content from the input features while the
reset gate decides the amount of previous information to forget. W and b represent the

weight and bias matrices in the training process. ¢(.) and tanh(.) denote the sigmoid and

21

hyperbolic tangent activation functions, respectively. The computations are repeated for

each element in the modeled sequence (¢). The specific calculations can be expressed

as:
up = o(Wu[ge(St, A), hi—1] + bu) (2.5

ry = o(W,[gc(Se, A), hi—1] + by) 2.6)

cr = tanh(We[ge(Si, A), (re * hy—1)] + be) (2.7)

he = (1 — ug) % ¢t + ug * hy_y (2.8)

2.5 DataPreprocessing

The traffic loop detectors data and its corresponding adjacency matrix were used to train
and evaluate the proposed GC-GRU architecture to predict the future Traffic Index on
the General Purpose (GP) lane. The training set is from January 1st 2020 to May 31th
2020 with 15-minute time interval. In other words, the number of rows in the provided
datais 14,551 reporting speeds at different segments (87 detectors) and time steps. The
respective adjacency matrix provided for the data had a few additional nodes, so it was
pruned by detector (node) number to match the information provided in the traffic data.
A few ‘nones’ also existed in the data, indicating non-available information so we changed

them to ‘0’, since the model only accepts integers.

2.6 Models Evaluation

The test for the model for the models is performed on a separate (unseen) data for 15
days; from June 1st 2020 to June 16th 2020 also with 15-minute time interval. Each day
provides 36 time-steps at which the prediction is to be made for the future 12 time-steps.

The ground truth is not provided so the predicted values are then submitted as a json file

22

to the leaderboard for evaluation using the MAPE calculated as:

1 . _ ~L
MAPE = ~xn (LYY (2.9)
n yi

where y; and yi represent the ground truth and predicted value respectively. The train-
ing/testing split on the data was experimented with a split of 80/20 and 90/10. Five
datasets are then input into the model; training data, training labels, test data, test labels

and adjacency matrix.

2.7 Models Setup

2.71 GC-GRU Setup

Once the training data was cleaned, pre-processed and split for the model, it is fed into
the GC cell encoder as a normalized tensor of shape (IV, T},,, D) where N is the number
of rows used for training, Tin is the length of time-steps and D is the number of detectors.
The outputs from the GC network ge(S;, A) for each time is then fed into the encoder
GRU cell to encode the temporal features between each time index. The decoder is then
used to shape the output in the desired tensor of shape (V, Ty, D) where Tout is the
length of time-steps for the forecasted horizon. The decoder GC cell uses the encoded
intermediate representation vector to decode the spatial relationships and then passes
it to the decoder GRU cell to decode the temporal relationships between output time-
steps. The flattened output is then passed into a fully connected network layer which
uses multi-output sigmoid activated layers to generate the predicted tensor which was
then denormalized and reshaped to match the submission format. The loss function used
for the proposed architecture is L2, defined as the sum of all the squared differences be-
tween the ground truth and predicted values then adding a ‘regularization term’ to avoid

overfitting with a lambda loss () of 0.0015 applied on the weights of the respective pre-

23

diction (3) . The loss function can be expressed as:

1
L(Yirue, Ypred) = mzijzﬁng | (Torue)ntd — (Tprea)nd |* +ASE, | w; |
(210)

2.7.2 Transformer Model for Traffic Forecasting

The transformer architecture was originally designed for Natural Language Processing
(NLP) to provide contextual meaning for word tokens, which was a missing concept in
feedforward networks like RNN, LSTM, and GRU. Prior to the introduction of transform-

ers in NLP, word tokens were typically passed sequentially through NLP architectures.

Oulput
Probabiities
Add & Norm
Fead
Forward
[Add & Narm I-Q_:
(—LAdd & Nomn) Multi-Head
Feed Altention
Forward T 7 M
| —
N Add & Norm
~{_Add & Norm | Masked
Muli-Haad Multi-Head
Attention Attention
At At
\ — J pr—
Positional B é Positional
Encoding ¥ Encoding
|nput Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Figure 2.3: Transformer Model Architecture

24

This method results in local understanding of word tokens rather than global understand-
ing. Transformers, on the other hand, introduced a self-attention mechanism that allows
each word token to attend to all other word tokens at the same time, giving it a global
contextual meaning. Currently, transformers remain the state-of-art model for NLPs and

other research areas such as computer vision.

Table 2.1: Transformer trained model Parameters

Model Parameter Value
Batch size 40
Sequence length 36
Prediction length 12
Learning rate 0.00001
Epochs 100
Minimum delta 0.0005
Patience 10
Model dimension 512

Model number of heads 8
Model number of layers 6
Model dropout 0.3

The transformer network shown in Figure 2.3 employs an encoder-decoder architec-
ture similar to that of recurrent neural networks. The difference is that the input sequence
can be passed in parallel. The encoder block accepts both input embeddings and posi-
tional embeddings. The encoder network is made up of a multi-head attention and a
feedforward neural network. The attention layer computes an attention vector for each
word token. The attention vectors are fed into the feedforward network, one vector at a
time. Each attention network is self-contained, allowing for parallelization. The feedfor-
ward network is a simple neural network that is applied to each of the attention vectors.
In practice, feedforward networks are used to convert attention vectors into a format that
can be processed by the next encoder or decoder block. The feedforward network’s fi-
nal output is passed to the decoder block. The decoder block is made up of three com-

ponents, two of which are similar to the encoder block. The decoder output is passed

25

through a linear layer before being passed through a SoftMax to calculate probabilities.
The model was adopted from [69] and a summary of the model hyperparameters is pre-

sented in Table 2.1.

2.7.3 LSTM Model for sequence-to-sequence Traffic Forecasting

LSTM, or long short-term memory, is a particular class of RNN that can learn long-term
sequences. Long-term reliance issues are specifically avoided in its design. Its method of
operation involves recalling lengthy sequences over an extended period of time. The fact
that each LSTM cell has a mechanism involved contributes to the popularity of LSTM. In
a typical RNN cell, the activation layer transforms the input at the time stamp and the
hidden state from the previous time step into a new state. In contrast, the LSTM process
is a little more complicated because it requires input from three different states at once:
the current input state, the short-term memory from the previous cell, and finally the
long-term memory.

Figure 2.4 depicts the usual layout of an LSTM memory block with a single cell. An
outside input is received by the input gate, which processes the fresh data. The forget

gate chooses the ideal time lag for the input sequence by determining when to forget the

J LSTM Cell {
o Output N,

r
I
i
I \
H Input (o \ ante e \
| gate \ J - \. /.-' I
. P L Memory . ' '

\ ce

: A\ - =1l L -7 0, :

= —, bd < — '}

' { Output

Layer

'\ le, N/) i

I I

Input] E};{ I
modulation I < i
[- i

I
I
I
I
I
I
\ gate
|
|
|
|
I
I
I

Figure 2.4: LSTM Model Architecture

26

Table 2.2: LSTM trained model Parameters

Model Parameter Value

Batch size 40
Sequence length 36
Prediction length 12

Learning rate 0.00001
Epochs 100
Minimum delta 0.0005
Patience 10

Input dimension 87

Hidden dimension 87
Output dimension 87

prior state. The output gate produces output for the LSTM cell using all the calculated
results. In language models, a soft-max layer is typically introduced to control the NN's
final output. On the output layer of the LSTM cell in our traffic flow prediction model, a
linear regression layer is used. The model was adopted from [69] and a summary of the

model hyperparameters is presented in Table 2.2

2.8 Results

Table 2.3 summarizes the training time, inference time and leaderboard scores for our
proposed model along with the benchmark models. A Historical Average (HA) model
was also added as an additional benchmark to evaluate the performance of a simple sta-
tistical estimation. Our model performance on the provided test data ranked second in
terms of Mean Absolute Percentage Error (MAPE) which is very close to Transformer’s
performance. We also evaluated additional parameters such as training and inference
time and found that LSTM had the fastest training time which was expected given the
simplicity of the model architecture when compared to the other models. It's worth not-

ing that our model not only had the fastest inference time, which is one of the crucial

27

factors when implementing the model in real-time applications, but also had a training
time that is six times faster than transformer. Figure 2.5 reflects a violin plot of the distri-
bution of errors Mean Absolute Error (MAE) along different models with a scaled distri-
bution amplitude. HA has the highest distribution of errors followed by LSTM. Comparing
GC-GRU and Transformers at bigger errors, we can observe that GC-GRU has a smaller

distribution.

Table 2.3: Summary of model results

LSTM Transformer GC-GRU

Leaderboard MAPE 4.50 312 3.16
Training time (sec) 76.23 1,397.88 217.79
Inference time (sec) 4.58 8.84 2.04

2.8.1 GC-GRU for Traffic Forecasting

The proposed model was implemented with the aid of Tensorflow deep learning library
[70] and the GridSearchCV was used from scikit-learn [71] to find the optimal hyperpa-

rameters that can optimize the model performance. Table 2.4 summarizes the hyperpa-

—— HA
041 — LsTM
—— GC-GRU
~ - Transf
£ 03 -
w
R
=2
Q
502
-8
[—
m
L]
=
0.1 -
0.0 -

06 08 10 12 14
Scaled distribution amplitude (after Gaussian convolution)

Figure 2.5: MAE visualized distribution over segments

28

rameters values used and Figure 2.6 illustrates the results in a 3D bubble plot along differ-

ent model parameters, colored by MAPE. The selected bubble highlights the parameters

for the best performing model.

Table 2.4: GC-GRU Model training parameters

Model Parameter Value
Training ratio 0.8,0.9
Sequence length 36
Prediction length 12
Learning rate 0.0001, 0.001, 0.01
Batch Size 8,16,32, 64
Epochs 20,50
Dropout 01,0.2,05
GC layers 2,34
GC layer size 4,8,12,16
GRU layers 2,34
GRU layer size 16, 32, 64
Optimizer

AdamOptimizer

Table 2.5 presents the results for each of the trained models. The models are eval-

uated along the forecasted horizon of 12 time-steps or 3-hours (12 time-steps divided

mape
4.6
|
| g ® 4.4
a00
350
~ N
-Eé 300 -~ | \ \\.
i 20 ,/ . I batch_sz=16
z 7 o . I o1y _nu=64
3 1()6 = . .
(L2 o [} ~. run_time(sec)=217.79
‘s \"0 S [l mape=3.162
> ¥ L N~
0 > g
gk / 0
20 yd % <0
h()
9,«0 o // 9 gy
No, © S &
(4 -~ 2
‘OQ 0‘0 0

Figure 2.6: 3D bubble plot of performed experiments

29

Table 2.5: Prediction results of the proposed model and baseline models

Horizon Metric HA LSTM Transformer GC-GRU

1 — hour forecast

MAE 0131 0.07 0.048 0.043
15 min RMSE 0.221 0108 0.083 0.066
MAPE 0.248 0109 0.076 0.069
MAE 0132 0.079 0.053 0.052
30min RMSE 0.231 0118 0.087 0.08
MAPE 0.272 0132 0.079 0.086
MAE 0141 0.08 0.058 0.054
45min RMSE 0.239 0.122 0.092 0.082
MAPE 0.294 0144 0.089 0.092
MAE 0.154 0.088 0.059 0.058
60min RMSE 0.252 0136 0.094 0.089
MAPE 0314 0157 0.09 0.095
2 — hour forecast
MAE 0171 0102 0.068 0.075
75min RMSE 0.276 0.6 on 0.105
MAPE 0381 0.207 0.115 0.131
MAE 0162 01 0.07 0.067
90 min RMSE 0.27 0158 0.108 0.097
MAPE 0372 0.208 0.114 0118
MAE 0172 0104 0.072 0.071
105min RMSE 0.277 0.168 0.105 0.1
MAPE 0.404 0.236 0.127 0.135
MAE 0181 0 0.079 0.086
120min RMSE 0.281 0.8 0.113 on4
MAPE 0413 0.253 0.141 0.159
3 — hour forecast
MAE 0.18 0m2 0.076 0.084
135min RMSE 0.275 0.182 0.111 0.115
MAPE 0393 0.251 0.139 0.155
MAE 0176 012 0.08 0.096
150 min RMSE 0.272 0195 0.116 0.131
MAPE 0393 0.273 0.155 0.183
MAE 0176 0126 0.079 0.100
165min RMSE 0.274 0.205 0.21 0.145
MAPE 039 0.285 0.157 0.197
MAE 0158 0121 0.071 0.095
180 min RMSE 0.257 0.196 0.114 0.146
MAPE 0347 0.265 0.139 0.19

by four 15-minute intervals per hour). The evaluation is performed on the test data split
from the provided traffic features data and all three models use the same exact data for
testing. We split the table along each forecasted hour to better understand how each
model performs on different horizons. The metrics used for evaluation are MAE, Root

Mean Squared Error (RMSE) and MAPE. MAE is defined as the average magnitude of the

30

differences between the predicted and observed true values while, RMSE is the standard
deviation or a measure of how spread the differences between predictions and observed
true values are, and MAPE is defined as how far the predicted values are away from the
corresponding observed truth on average.

In general, the proposed GC-GRU model achieved the best results along 1-hour fore-
casted horizon while transformers were dominant along the 3-hour forecasted horizon.
Along the 2-hours horizon both our model and Transformer seemed to share equal suc-
cess when looking at the performance metrics. The HA model performed the worst in
predictions demonstrating the need for a deep-learning model. The stand-alone LSTM
model seemed to struggle in performing predictions with errors almost double in magni-
tude when compared to the other two models. This signifies the fact that learning from
temporal dependency only is not enough and the synergetic effect of combining spatial
and temporal dependencies is critical to maximize the network’s learning capabilities for

more accurate predictions.

T LB hG 6T b2 AR52% 5505 5D A 2555 %7 55 b 45D b4 %5152 555 5 % 6 6l 62 6 6 6 6 67 66 6 1075 7 75 J6 77 7o 7o 60 B 6 6 B4 5 B 67 B 6 %0 81 %2 95 % % % 97 % 0102103104106
ation

Figure 2.7: Visualization results of all prediction horizons along traffic detectors for: (a)
HA, (b) LSTM, (c) Transformer, (d) GC-GRU

31

2.8.2 Spatial Analysis of Trained Models

Figure 2.7 presents the predicted values of each model and the observed truth along each
detector. The plot is for all predicted time-steps, so we have twelve lines for predictions
and twelve for the true values. Once again, the HA had the worst performance with pre-
dictions very far off the ground truth. Generally, we can observe that Transformer and
GC-GRU predicted peak values much better than LSTM. Transformer predictions seem
to be much closer to true values during peaks than GC-GRU and we suspect that may be
due to the smooth filter applied by the GC that captures spatial features by constantly
moving the filter. This leads to much smoother peaks. The results also show that there
still seems to be a certain error even at non-peaks which can be explained by the fact that

there are times when we don't have traffic data, or the values are very small.

08 ° o o
8
07 o Q. 8
I 0 o 8
8 E ¢ o ©
505 8 5 S 8 e
) [}
£ 04 ° S o ° 8 § 5
= o
w' o 8 o <] b o
go03 g 5 e © P, , ©° ©° 5 cé o
02 8 ° 8 2 o © 8])
. = =
00
5 0 F3 & 3 %0
prediction_horizon (min)
08
o o o o
07 8 ‘8’ ° 8 8
o
06 o o 8 g 8
° 2 S 8oy o 8
] 8 o 8 o o 8 o 8 °
w' o g o g © °© E o
< 03 (o] o e
£ o o 8 @ 8 8 8
02) 3 o °
00
165

105 120 135 150
prediction_horizon (min)

180

mmm HA mmm LSTM m=mm GCN-GRU == Transformer

Figure 2.8: MAE box-plots of all traffic stations results along future prediction horizons

32

2.8.3 Temporal Analysis of Trained Models

Figure 2.8 presents the MAE box-plot for each model along the forecasted horizon. Box
plots provide a standardized way of interpreting the distribution of errors based on the
minimum, maximum, median, 25th and 75th percentiles and the outliers. In a box-plot,
density of values is inversely proportional to the size of the box which means that smaller
boxes have a higher number of values packed in their respective range. HA model had the
largest amount to errors as expected. MAE box-plots for the other models increase over
the length of the forecasted horizon indicating a positive association between the fore-
casting errors and the distance to future predictions. LSTM seemed to have the highest
range and distribution of errors when compared to Transformer and GC-GRU. Compar-
ing our proposed model to Transformer, we can notice that our model had smaller errors
(better performance) on the closer predictions up to 60 minutes ahead, after which the

Transformer model has a better performance on the longer horizon.

2.9 Summary

In this chapter, we performed a comparative analysis of various traffic forecasting meth-
ods as well as introduced a GC-GRU based neural network-based traffic forecasting method.
To model the aggregated loop detector data, we utilized a graph convolution, in which the
nodes on the graph represent the roads, the edges indicate the connections between the
roads, and the attribute of the nodes on the graph is the traffic information on the roads.
In order to acquire the spatial dependence, the GC cell is used to capture the topologi-
cal structure of the graph. In order to obtain the temporal dependence, the GRU cell is
used to capture the dynamic change in node attribute. We then performed a compara-
tive analysis on the proposed model along with benchmark models such as: HA, LSTM
and Transformer. In summary, our GC-GRU model performance on the provided test data

ranked second with a MAPE of 3.16 which is very close to Transformer's performance of

33

3.12. In terms of training and inference time, we found that LSTM had the fastest training
time which was expected given the simplicity of the model architecture when compared
to the other models. It's worth noting that our model not only had the fastest inference
time, but also had a training time that is six times faster than Transformer. Compara-
tive analysis of the results on the test data demonstrates that the proposed GC-GRU is a

strong competitor to state-of-the-art traffic forecasting approaches.

34

Chapter 3

Comparative Analysis of Connected

Vehicles and Probe Data.

3.1 Introduction

TMCs utilize real-time traffic information to help relieve traffic congestion and improve
safety. This requires operators to constantly monitor road conditions through data stream-
ing from a variety of sources including traffic sensors, Global Positioning System (GPS)-
enabled devices (probes), closed-circuit cameras, dynamic message signs, etc. The accu-
racy, resolution, coverage, and diversity of real-time traffic data streams enable operators
to detect problem areas and respond to them in reasonable time. There is a growing in-
terest among State agencies in leveraging connected vehicle data to improve operations,
incident management and predictive analytics. The size, coverage, resolution and pen-
etration rates of this new dataset offers new challenges and opportunities that need to
be explored prior to full scale integration into day-to-day traffic operations. The current
paper evaluates this new dataset and compares it to existing traffic data sources for con-

gestion and incident detection.

35

CV technology can be defined as an application that utilizes V2X communications
to address mobility and safety concerns on roadways. CV data availability has been ex-
ploding in recent years. This is as a result of the advent of OEMs, Telematics platforms,
and other in-vehicle technologies, that are able to continuously stream high-resolution,
reliable and accurate vehicle data. A probe vehicle feature, which is part of connected
vehicle technology, collects data about the state of the vehicle. Information from the col-
lected data is used to estimate some critical performance indicators such as travel time,
a critical parameter in traffic management.

The use of CV data has demonstrated improved traffic performance. Paikari and Far
[72] investigated the impact of Vehicle-To-Vehicle (V2V) communication and ITS appli-
cations on traffic safety and mobility The study demonstrated that CVs have the potential
to significantly improve traffic safety and mobility. Olia et al. [73] modeled the exchange
of information between connected vehicles using Paramics simulations. The study's find-
ings indicate that if CVs were used, travel time could be reduced by 37 percent. Olia et al.
[74] also assessed the impact of connected and automated vehicle technology on high-
way system capacity through the development of an analytical framework that demon-
strated that CV has potential to increase highway capacity by 300 percent. Vander Werf
et al. [74] conducted a study to determine the effect of vehicle communication on high-
way capacity. The study concluded that by maintaining a 0.5-second gap between CVs,
the capacity of the highway could be doubled under certain conditions. When vehicle
communication was implemented in a four-lane highway merger scenario, van Arem et
al. [15] found that it had a statistically significant effect on traffic flow. The analysis dis-
covered a slight improvement in traffic flow efficiency when vehicles were not equipped.
Additionally, a microsimulation of vehicle-to-vehicle communication on a freeway with
an on-ramp was used to assess the effect on traffic performance [75]. The study demon-

strates that CV significantly impacted traffic flow as measured by the Market Penetration

36

(MP). In comparison, Arnaout and Bowling [76] used a microscopic traffic simulator to
investigate the feasibility of improving traffic flow for high occupancy vehicles (HOVs) on
a four-lane freeway at lower MP levels (CVs). Congestion could be significantly reduced
if vehicles utilized HOV lanes at a rate of up to 40percent of the MP.

Mekker et al. [77] integrated CV data and Light Detection and Ranging (LiDAR) data
to evaluate the impact of work zone geometry on traffic operations. The authors of the
study considered two case studies where geometric anomalies were identified. The study
discovered that the work zone features in both case studies did not conform to project
specifications but were difficult to assess safely by an inspector on the field due to the
high volume of traffic. The authors suggested utilizing connected vehicle data to iden-
tify recurring congestion and LiDAR to evaluate work zone geometry. Li et al. [78] con-
ducted a study using CV data to reassess dilemma zone performance of heavy vehicles.
The study had three objectives; (1) to assess whether matching Basic Safety Messages
(BSM)s to virtual waypoints provides sufficient performance for dilemma zone mitigat-
ing tactics; (2) to develop a dilemma zone mitigating tactic for CV; and (3) evaluate the
performance of the tactic using Automated Traffic Signal Performance Measures (AT-
SPM) data. The study used BSM data to map-match virtual waypoints. Also, the ATSPM
projection indicated that dilemma zone incursions would break even for the northbound
approach, with a net reduction of 34 percent for the southbound approach. The study
concluded by recommending a more robust control support for dilemma zones and other
emerging CV applications.

The goal of this chapter is to compare connected vehicle data and traditional probe
data based on traffic flow estimates and their ability to detect congestion and traffic inci-
dents. A data conflation methodology is developed to integrate CV data with traditional
traffic data sources such as probe and Waze data feeds. The study analyzed speed bias

trends using a multiscale data mining approach. To the best of the authors’ knowledge,

37

this is the first study that integrates real world connected vehicle data with Probe and
Waze data for comparative analysis. The remainder of the chapter is structured as fol-
lows. Section two summarizes previous studies on connected vehicles based on the type
of data used in their research. The chapter’s data is presented in section three. Section
four discusses the methodology used in this study. Section five presents the findings and

analysis of this study. Finally, section six discusses the conclusion and recommendations.

3.2 Related Work

This section reviews the previous work in understanding the reliability of CV data and
its applications. It was discovered that the State of Maryland's Vehicle-Mile-Travelled
(VMT) can be inferred from CV data with as little as 1.5-2 percent penetration [79]. Ad-
ditionally, GPS-based ATSPM with increased coverage and scalability have been devel-
oped using CV data. With as little as 0.04 percent [80], a rapid diagnosis of the current
signal performance problems can be made. Using CV data, it was possible to identify
arterial congestion based on the percentage of slow-moving vehicles and queue propa-
gation around freeway bottlenecks [81]. Additionally, a microsimulation of vehicle-to-
vehicle communication on a freeway with an on-ramp was used to assess the effect on
traffic performance [82]. The study demonstrates that CV significantly impacted traffic
flow as measured by the market penetration (MP). In comparison, Arnaout and Bowling
[83] used a microscopic traffic simulator to investigate the feasibility of improving traffic
flow for high occupancy vehicles (HOVs) on a four-lane freeway at lower MP levels (CVs).
Congestion could be significantly reduced if vehicles utilized HOV lanes at a rate of up to
40 percent of the MP.

Mekker et al. [84] integrated CV data and LiDAR data to evaluate the impact of work
zone geometry on traffic operations. The authors of the study considered two case stud-

ies where geometric anomalies were identified. The study discovered that the work zone

38

features in both case studies did not conform to project specifications but were difficult
to assess safely by an inspector on the field due to the high volume of traffic. The au-
thors suggested utilizing connected vehicle data to identify recurring congestion and Li-
DAR to evaluate work zone geometry. Li et al. [85] conducted a study using CV data
to reassess dilemma zone performance of heavy vehicles. The study had three objec-
tives: 1) to assess whether matching BSMs to virtual waypoints provides sufficient per-
formance for dilemma zone mitigating tactics; 2) to develop a dilemma zone mitigating
tactic for CV; and 3) evaluate the performance of the tactic using automated traffic signal
performance measures (ATSPM) data. The study used BSM data to map-match virtual
waypoints. Also, the ATSPM projection indicated that dilemma zone incursions would
break even for the northbound approach, with a net reduction of 34 percent for the south-
bound approach. The study concluded by recommending a more robust control support
for dilemma zones and other emerging CV applications.

Additional applications of Wejo trajectory data were used by Saldivar-Carranza et al.
[86] to evaluate the traffic impact on nearby arterial roads, particularly for the unautho-
rized detour that was made possible by Google Maps Navigation. Over the course of the
11 weeks, volumes during the weekly afternoon peak hour, split failures, travel time, down-
stream bottleneck, and arrivals on green were monitored. Another related application of
near ubiquity is [87] using Wejo data for areas where sensing is scarce or nonexistent
sensing infrastructure. In addition, the same data was utilized by Khadka et al. [88] to
directly measure queue length and its spread on motorway bottlenecks. In Arlington,
Texas, an interstate portion was discretized into 0.5-mile segments and a local empiri-
cal speed threshold of 45 mph was applied. Although just a portion of the total traffic
stream was included in the sample trajectory, a strong link between trip time and slow
trajectories were found. To summarize the main advantages of using CV data in literature

are:

39

* Greater spatial precision - OEM telematics frequently incorporate GPS and cellular
antennae into the car for more dependable telemetry, producing data of greater

quality.

« Additional data attributes: In addition to location, CV data frequently include de-
tails about how the car operates, like if the wipers are on or off, whether seatbelts

are being used, and wether it makes hard stops.
* Datais reported at a constant higher frequency every few seconds.

* Underpins new mobility propositions.

3.3 Methodology

This section discusses the use of the three collected datasets (CV, Probe and Waze) de-
scribed in the previous section to fuse them together and integrated using spatiotempo-
ral conflation which maps the points data from connected vehicles and Waze dataset to
road line segments from probe dataset into a unified data layer. Construction of road seg-
ments from road shapes from the conflated datasets is then performed. With datasets
conflated in time and space, a framework for comparative analysis is developed based
on speed differentials, incident and congestion trend analysis. The methodology adopted
for evaluating connected vehicle data consists of several key components as illustrated
by Figure 3.1.

Studying the resolution, coverage, and diversity of real-time traffic data streams is
critical to enable operators to detect problem areas and respond to them in reasonable
time. There is a growing interest among state agencies in leveraging CV data to improve
operations, incident management and predictive analytics. The size, coverage, resolution
and penetration rates of this new dataset offers new challenges and opportunities that

need to be explored prior to full scale integration into day-to-day traffic operations. The

40

study area of our analysis in the current chapter is the city of Saint Louis and the Figure 3.2
presents a visual instance (colored by speed) of each of the used datasets; CV, Waze and

Probe.

Data
a cv
@ Probe
Waze

4
Conflation

"
Road Segmentation

N Route segmented
/ at changing
road units

1

/

l , ;

CV Speed calculation Congestion Impact Incident Impact
using CV points on road using waze incidents on CV using waze incidents on CV
segments and probe speeds and probe speeds

Comparative Analysis

Figure 3.1: Overview of Probe vs CV data Comparative Analysis

C¥ TRAJECTORIES COLORED BY SPEED WAZE INCIDENTS PROBE DATA

P
v 1
ol .
i ‘t
¥ | Y
o : 1 ! / \
- Y \ 4
[} “-——' sﬁng‘ = J
pdiperes i &
" K
S - ’ R s A ‘_*‘ ST'[%{R

Figure 3.2: Data Sources and Analysis Region: a) Connected vehicle trajectories. b).
Waze incidents. ¢). INRIX probe data.

41

3.3.1 Connected Vehicles Data

The CV data landscape has changed from a few cars to OEM data providers (like INRIX,
Wejo and Otonomo) who have compiled millions of equipped vehicle data points from
commercial fleet operations to passenger cars. Despite differences between OEMs, these
kinds of data are gathered through the OEM's telematics system using the built-in wire-
less communication capability in the most recent vehicles. One of the main benefits of
such commercialized CV data over ad hoc CV data or CV data combined with handheld
devices is the granularity. This offers enormous possibilities for incident management,
operation, and maintenance of transportation systems. These newly developed data sets
offer vehicle telemetry data in addition to high-resolution waypoint data (e.g., Movement
-vehicle trajectory, acceleration (including lateral), geo-position, speed, heading, trips
and Event Information -hard-braking, seat-belt status and other discrete events.). Ac-
cording to the National Renewable Energy Lab report, INRIX dataset covers 10 percent of
all automobile travel in the US [89]. However, the 10 percent penetration rate is not evenly
distributed in the geographical and temporal dimensions, thus coverage may be limited
in some isolated places or at night. In comparison to on-board devices, data obtained
from smartphones with low power consumption profiles is typically sparser. According
to internal estimates by Wejo, a top CV data provider, it receives data from 1in 20 auto-
mobiles in the United States and 1in 50 vehicles in Europe. According to other reports,
Otonomos' platform includes more than 4 billion data points from more than 40 million
registered automobiles [90]. This study uses CV data obtained from Wejo Group Ltd. It
offers vehicle waypoints (latitude and longitude), a time stamp, instantaneous speed, the
direction the vehicle is traveling, and other metrics. For a vehicle, it is discovered that the
typical ping interval between two consecutive waypoints is 3 seconds. The data’s spatial
resolution has a 6-digit decimal point, or a resolution of roughly 3 meters (lane-level res-

olution). Given its granularity, sample size, and coverage, the volume of the data is a bar-

42

rier in terms of data storage, processing, visualization, and analytics. Figure 3.3 presents
a snapshot of point CV data in the State of Missouri, colored by speed of vehicles.

The Data collection process by Wejo starts with the OEM who receives data from
automobiles, packages it, cleans it from errors, and then transfers it to Wejo, who consol-
idates and transmits it in real time. The procedure has a maximum latency of 60 seconds,
or 30 to 60 seconds from the time it leaves the vehicle until it is prepared for applications.

The Wejo CV data is collected in CSV format presenting the following attributes:

* Journey ID - the identification number for the trip performed by a specific vehicle

from start to finish

* Captured Timestamp - a 19-digit time format used by Wejo to define the
year:month:day:hour:minute:second (e.g., 2021-02-09 10:05:34 for September 2nd,
2021, at the 10th hour, 5th minute and 34th second) for each record.

* Latitude - geographic coordinate describing the north-south location of a point on

~, /! a
~, 3
] . - L : a
{ [= [
L] 4,
] / [} ‘,\ .
A e of LY ; o
§ R vl [} %
e -
a4 H
’ ¥
e -
AR e o T Y et
; | i o
L] L N B4
T ek, 1
e AL e
A A 7
T
. i i
T 4 H
i 2 Mi§30 P A
H . YA
! g o ¢
e ¥
b] H g \
. K piains 1 LY
o
.
#
EA
e j ¢
; g Y |
ol - [
H e
i Akt
e te
i d
' f

Figure 3.3: Snapshot of point CV data in the state of Missouri, colored by speed

43

the earth's surface. The angle ranges from -90 degrees at the south pole to 90

degrees at the north pole with O degrees at the equator.

Longitude - geographic coordinate describing the east-west location of a point on
the earth’s surface. The angle ranges from -180 degrees at the west pole to 180

degrees at the east pole with O degrees at the prime meridian.

Speed - representing the current speed of the vehicle at the captured timestamp or

record in kilometers per hour.

Heading - representing the angle of direction of the vehicle at the captured times-

tamp or record in degrees.

Ignition Status - the operation status of the vehicle

Event Type - the type of journey the vehicle is making

Acceleration Type - type of acceleration which is calculated based on the change

in speed of the vehicle

Journey Event Type - status of the vehicle event calculated on its location along its

journey'’s route.

Postal Code - series of digits representing the location of the geographical area

Table 3.1 presents a row sample of the collected CV data. As observed, there is a vari-

ation in the data types across different attributes/columns such as: characters; integers;
floats and strings. We can also notice that at certain attributes such as
"location_road_name’, the field value includes a comma, which is character used to

separate fields or values in a CSV file.

To understand the amount of CV points as a newer source of data, we compare it to

conventionally used loop detector data and estimate its penetration rate for a specific

44

Table 3.1: CSV sample (one row) for the collected CV Data.

Attribute Value

vehicle identification otonomo id 1ddb0685638666fb70a4eb6fb4bb9851
metadata time epoch 1639245925350
location country code us

location latitude value 38.8084493
location longitude value -90.8640632
mobility heading angle 137.03

mobility speed value 91.73238

mobility acceleration value 0.13052416

mobility acceleration lateral 0.00815776
metadata provider name 9e00681cad8f27ea4c05b3485245a9
location polygon geohash Oyzku2fg9g7c
location country name United States
location state name Missouri

location county name Saint Charles County
location town name Wentzville

location road name | 70, US 40

location road id | 70, US 40

location zone postal code 63385

location road speed limit 104

location road type 1

road along the hours of day. Figure 3.4 presents the loop detectors (red points) and the
different CVs colored by their unique ID. The data is presented for [-70 on 19th February
2021.

To calculate penetration rate, a buffer of size 20m is used around each detector and
the number of unique CVs passing through the detector during a specific time period
(one hour) is recorded. The filters used on both datasets are then location, date and
hour. The volume from CV data is then divided by the reported volume from detectors
to calculate the penetration rate. It's worth nothing that penetration rate varies between
different times of day and locations and so we averaged the rates spatially and temporally,
achieving a rate of 8 percent. The variations of volume between detectors and CV data

are presented in Figure 3.5.

45

3.3.2 Probe Data
INRIX Probe data also provides high-resolution, segment by segment traffic speed and
travel time information from millions of GPS-enabled vehicles, mobile devices, and other

sources. The data collected is processed near real-time, creating aggregated traffic infor-

]

|
-
®
g
i

Figure 3.4: Map visualization of CV data (small colorful points) and Detector data (large

red points)

40 P
—— CV Data
—— Detector Data

Hour

Figure 3.5: Variations of CV and Detector volume counts over time.

46

mation for major freeways, highways and arterials. The quantity of probes on the road
network has a significant impact on the quality of the data collected. The network cover-
age improves with the number of probes. In situations where real-time data is not acces-
sible, INRIX also offers historical data. The quality of the data improves with increasing
device penetration (i.e., more probes). Figure 3.6 presents a snapshot of probe line data
in the city of Saint Louis, colored by traffic speed along roads.

This study uses INRIX line data along each mile-long travel segment at a frequency of
one minute with geographical location information, timestamp and traffic attributes such
as: speed and volume. INRIX uses the following methods to produce historical flow data

[911:

« Traffic sensors - local Department of Transportation (DOT) or private sector busi-
nesses install sensors in the road from which traffic speed is either recorded or
inferred. The sensors make use of one of several technological platforms: Toll tag

readers, Radar sensors, and Embedded induction loop sensors.

/

/ [

Figure 3.6: Overview of probe data in the city of Saint Louis, colored by speed.

47

* Probe vehicles - Hundreds of thousands of probe vehicles, including trucks, taxis,
buses, and passenger cars, are part of the INRIX network and may communicate
speed and position data back to a central site. To get the speed and location infor-

mation discreetly, INRIX has agreements with numerous fleets.

* INRIX Smart Dust Network - This network combines real-time GPS probe data from
more than 650,000 commercial vehicles across the United States that travel on a
particular section of road during a specific time window, physical sensor informa-
tion, and other real-time traffic flow information with hundreds of market-specific
factors that affect traffic, such as construction and road closures, real-time inci-
dents, sporting and entertainment events, weather forecasts, and schedules. The
speed that occurs on that road segment is calculated with a measured level of pre-
cision by this component after it collects all input points and weights them properly

based on the quality and latency of the input.
A typical INRIX dataset contains the following important information:

* TMC code - spatial unit that INRIX uses to present traffic flow data with each seg-
ment defined by a 9-digit TMC code.

* Measurement timestamp - a 19-digit time format used by INRIX to define the
year:month:day:hour:minute:second (e.g., 2021-02-09 10:05:34 for September 2nd,
2021, at the 10th hour, 5th minute and 34th second) for each record.

* Speed - representing the segment’s historical mean speed for the respective seg-

ment in miles per hour
* Travel Time - representing the accumulation of information provided by GPS probes.
* Road order - the index of the segment along its respective road.

* Bearing - the direction or position of the segment relative to a fixed point

48

* Miles - representing length of the road segment

« Start latitude - the starting point of the road segment defined by a geographic co-
ordinate describing the north-south location of a point on the earth’s surface. The
angle ranges from -90 degrees at the south pole to 90 degrees at the north pole

with O degrees at the equator.

« Start longitude - the starting point of the road segment defined by a geographic
coordinate describing the east-west location of a point on the earth’s surface. The
angle ranges from -180 degrees at the west pole to 180 degrees at the east pole

with O degrees at the prime meridian.

* End latitude - the ending point of the road segment defined by a geographic coor-
dinate describing the north-south location of a point on the earth’s surface. The
angle ranges from -90 degrees at the south pole to 90 degrees at the north pole

with O degrees at the equator.

* End longitude - the ending point of the road segment defined by a geographic coor-
dinate describing the east-west location of a point on the earth’s surface. The angle
ranges from -180 degrees at the west pole to 180 degrees at the east pole with O

degrees at the prime meridian.

* C value - The confidence value is a scale from O to 100 that agencies can use to

assess if the INRIX value satisfies their requirements for real-time data.

Table 3.2 presents a row sample of the collected Probe data. As observed, there is a
variation in the data types across different attributes/columns such as: characters; inte-

gers; floats and strings.

49

Table 3.2: CSV sample (one row) for the collected Probe Data.

Attribute Value

tmc 19P14457

road TOWER GROVE AVE/CENTER CROSS DR
direction NORTHBOUND

county ST. LOUIS (CITY)

zip 63116

start latitude 38.60442
start longitude -90.25886
end latitude 38.60463
end longitude -90.25882

miles 0.014646
road order 2

type P1M
bearing 8.46

dxn NE

3.3.3 EventsData

Transportation authorities can learn about traffic events through Emergency services Computer-
Aided Dispatch (CAD), media reports, and staff monitoring of CCTV feeds of the routes.
Organizations may also use crowdsourced information, which can be categorized as pas-
sive or active. Mobile devices serving as probes, such as cars and trucks, can collect
passive data without the user having to manually enter any information. This informa-
tion may be gathered either voluntarily, as in the case of location tracking used by most
mobile phone navigation applications, or inadvertently, as in the case of Bluetooth sen-
sors placed along a road that identify the unique Media Access Control (MAC) address
of discoverable Bluetooth-equipped devices. The following information can be gathered
passively: speed, journey times, pavement texture, and weather [92]. In contrast, ac-
tive data necessitates that individuals willingly and manually report on the state of the
roads. This can be as conventional as people calling the TMC directly, but it frequently
consists of social media posts about traffic that are geotagged to the incident's location
and posted as soon as possible. Popular sources of crowdsourced traffic data on social

media include Twitter and Facebook. An event (congestion or incident) occurrence time,

50

reliability and other attributes such as confidence, location, and streets are captured in a
Waze dataset. Waze congestion and accident reported data were assessed by [93] and
found reasonable spatial and temporal accuracy. [94] used Waze accident report data
and found acceptable reliability of the reported events. [95] used a t-test to prove that
travel times from Waze data and the ground truth are almost equal. Figure 3.7 presents
a snapshot of events point data in the city of Saint Louis, colored by traffic speed along
roads.

This study uses Events data obtained from Waze which is a very popular mobile nav-
igation app used by over 100 million people every month. Users of the Waze app can
report traffic jams, weather conditions, queues, collisions, disabled vehicles, and other
road-related information using the app. Other Waze users are prompted by the app to
confirm an ongoing incident as they pass it while traveling. Users are given increasing
experience levels as they submit more reports, which enhances the perceived reliability
of their reports. And so, Waze data includes incidents such as crashes, traffic jams, con-

struction, road closures, stalled vehicles, weather events and other road hazards. Waze

e & e
'Y 4 \
b @&y o o
@ Iy
&
SAERT A.HS
— S <
MANCHESTER g 6 A a ‘
é @
L PR3

Figure 3.7: Overview of Waze data in the city of Saint Louis, colored by type.

51

offers point data of the event type with geographical location information and timestamp.

It contains the following important information:

* Sub Type - the severity of the reported event type with each type having multiple

subcategories to represent the magnitude of the event.
* Type - the type of the reported event as reported by the app user
* UUID - unique identification number for the reported event

* Longitude - geographic coordinate describing the east-west location of the reported
event on the earth’s surface. The angle ranges from -180 degrees at the west pole

to 180 degrees at the east pole with O degrees at the prime meridian.

* Latitude - geographic coordinate describing the north-south location of the reported
event on the earth’s surface. The angle ranges from -90 degrees at the south pole

to 90 degrees at the north pole with O degrees at the equator.

* Time Stamp - a 19-digit time format used by WAZE to define the
year:month:day:hour:minute:second (e.g., 2021-02-09 10:05:34 for September 2nd,
2021, at the 10th hour, 5th minute and 34th second) for each record.

Table 3.3 presents a row sample of the collected Waze data. As observed, there is a
variation in the data types across different attributes/columns such as: characters; inte-

gers; timestamp; floats and strings.

3.4 Data Conflation

Conflation enables us to fuse the different datasets into one table, allowing for multi-
dimensional analysis of the datasets. The conflation process is illustrated in Figure 3.8.
Both Waze and CV datasets were conflated to roads for which probe data was avail-

able for at least every 1 minute. First, a multi-line string geometry is generated using the

52

Table 3.3: CSV sample (one row) for the collected Waze Data.

Attribute Value

country us

n thumbs up 1

city Saint Louis

report rating 0

confidence 0

reliability 6

type ACCIDENT

uuid 0c85168e-ce9b-493d-be25-0f2fba901c82
road type 7

magvar 91

subtype ACCIDENT MAJOR

street MO-38

report description 911-reported accident
longitude -92.979457

latitude 37.355442

pub millis 2022-04-27 16:49:26.000000
request millis 2022-04-27 16:51:11.553082
county WEBSTER

event class ACCIDENT MAJOR

req date 2022-04-27 00:00:00.000000
start time 2022-04-27 16:51:11.553082
end time 2022-04-2718:07:43.106747
duration 76.5258944166667

start and end coordinates for each probe segment. Point geometries are also generated
for connected vehicles and Waze data using their respective coordinates. A 12 feet buffer
is generated around each line string to create a polygon layer for spatial joining with the
point geometry layers. Each point is then mapped to the corresponding (closest) line

segment if contained within its buffer. The 12 feet buffer distance was chosen based on

Mapped CV points }_and Segments

Intersection

\
Probe segments

Figure 3.8: Road Segments with mapped CV points and Probe segments

53

the standard US lane width. To account for direction of travel, a direction column is cre-
ated for each dataset based on heading and bearing information. This resulted in four
5 categories of travel directions: Northeast (NE), Southeast (SE), Southwest (SW) and
Northwest (NW). The direction column is subsequently used to refine the initial proximity
mappings. The process is repeated for all other point geometry datasets. The final step
in the conflation process is to match the timestamps of the 8 different datasets. In this
study, a 1- minute aggregation window is used for temporal mapping. Each row contains
information from all three datasets where available. A manual verification of a subset of
the integrated data showed a conflation accuracy of about 97 percent. Figure 3.9 sum-
marizes the key elements of a conflated dataset. To ensure that the fused datasets are
compared along the same routes, we adopted the road segmentation scheme provided
by the probe data vendor. About 80 percent of all road segments used in this study were
between 0.1 to 0.5 miles. Figure 3.10 presents the distribution of road segments for a
subset of Probe data. The ratio of the connected vehicle speed divided by the length of
the conflated probe segment length is used to estimate the travel time. Where there are

multiple CVs on a probe segment, the average speed of all vehicles is used.

3.5 Multiscale Data Analysis

Multiscale Data Analysis (MDA) is used to extract and compare trends at different fre-
guency. The Wavelet transform s used to implement MDA in the current study. Wavelets
use mathematical functions to segment data into distinct frequency components and
then investigate each component with a resolution proportional to its scale. They out-
perform traditional Fourier methods in analyzing physical situations characterized by dis-
continuities and sharp spikes. Detailed discussion of wavelet decomposition can be found

in [78]. Wavelets are a class of time and frequency localized basis functions that can be

54

expressed as:

3D

Probe Data Connected Vehicles Data Waze Data
tme_code 119+19153
Journey_id 750ad6c439516a5b9c¢.. Sub_type Accident_Major
Measurement_tstamp 2021-02-09 Captured_timestamp
10:00:00 2021-02-09 10:05:34
i Type Accident
speed 9.0 latitude 38.626501
travel time minutes 0.99
uuid 5ba72319...
Road_order 4.0 longitude -90.198566
Road N 184 8T
County St. Louis (city) speed 7.0
Zip 63102 Longitude 94,4989
Start_latitude 38.63141
heading 17.0
Start_longitude -90.20572
End_latitude 38.63347 Ignition_status MID_JOURNEY
End_longitude -90.20492 Event_type JOURNEY Latitude 39,1314
Miles 0.15 Acceleration_type Hard Braking
Road_order 4.0 Journey event_type END
N Time_stamp 2021-02-07
Bearing 25 Postal_code 63102 - 00:02:37
Figure 3.9: Sample table of conflated datasets
Distribution of road segments
800
700 +
600 -
2 500
E
o
3
H
g 400+
s
!
5300
200 -
100 1
0 T T T T T T T
o \eJ Q “ N “ ©
Qo QO s % v Vv kel

Segment length

Figure 3.10: Histogram plot of count for road segment lengths

55

where s and u denote the parameters for dilation and translation, respectively. The central
wavelet (¢) is time and frequency localized, occupying an equal area above and below
the time-axis. The wavelet dilation and translation parameters are usually discretized
dyadically for most practical applications to measure data as: s = 2™, u = 2™k.

Where m and k are integers indicating the dilation and translation parameters, re-

spectively. The resulting wavelet family is denoted by:

() = 2720 (27™) (8 — k) (3.2)

The translation parameter specifies the wavelet's location in the time domain, whereas
the dilation parameter specifies its location in the frequency domain, taking into account
the extent of the time-frequency localization. The wavelet equation represented in Equa-
tion 3.2 may be designed to be orthonormal to one another and to have varying degrees

of smoothness.

3.5.1 Short-Term, Medium Term and Long-Term Speed Variation

Figure 3.11 shows results of wavelet decomposition of both CV and probe data. Three
main trends are apparent: Short-term, Medium-term and Long-term trends. In the cur-
rent study, short-term trends capture five - 15-minute variations in the original dataset.
In Figure 10, mode decomposition 1 (mode 1) illustrates the short-term trends for CV and
probe data collected over a 15- to 30-minute period on Freeways and arterials. Medium-
term trends capture hourly variations (1-3 hours) and the average daily trend. They con-
tain critical information about the hourly peak and off-peak periods. These are illustrated
by the mode 6 decomposition. The final wavelet batch of variations represents observed
daily trends in the datasets. Asillustrated in Figure 10, specifically the general trend, there

is a strong correlation between the two datasets.

56

3.5.2 Connected Vehicles vs Probe Data - Speed Bias, Congestions and
Incidents

The key performance measures used to compare the different datasets are Latency and
Speed Bias. Latency -used to calculate the accuracy of CV and probe data for congestion
and incident detection. In the current study, the term “Latency” refers to the difference
between the recorded (actual) start and clearance time of an event and the correspond-
ing times captured by the CV or probe data. Speed Bias - Is the absolute difference in
speed between the different datasets at different times of the data. The average speed
bias is reported as the mean absolute difference between CV and probe speed for all road
types. Three main experiments were conducted to evaluate the opportunities and chal-
lenges with using connected vehicle data as compared to traditional probe datasets. The
experiments which are discussed as follows include: a comparison of the bias in speed
estimates from both data sources, as well as the congestion detection and incident de-

tection accuracy.

original signal

Y
0] e

13 %a ED 10690 1250 1500) 090 [] » ra i 03 06
mode & General trend

- — ovam

L3 o T o 3 E)

Figure 3.11: Short, Medium, and Long-Term trends extracted from CV and Probe data
using Wavelet decomposition.

57

3.5.3 Speed Bias Comparison

There is almost always a bias in speed estimates from both datasets as shown in the first
row of Figure 3.12. About 95 percent of the time the speed bias stays within a range of O
to 20 mph. The bias, however, varies by location, road type, and time of day. As shown
in second row of Figure 3.12, the differences in speed are much smaller on freeways as
compared to arterials. It is also worth noting that CV data generally shows high speed
variability on both freeways and arterials as compared to probe data. The low penetration
rate of probe data on local routes and arterials could be the reason for this trend.

Lastly, in Table 3.4 and the heatmap in Figure 3.13, we compare the differences in
speed during peak and off-peak hours. Although the differences in speed bias are not
significantly high, there is an observable reduction in speed bias (between 2 and 5 mph)
during peak vs non-peak hours. The heatmap confirms this trend and shows the variability

in speed bias across different locations.

100
100 — «cv_speed — cv_speed
probe_speed —— probe_speed
80 -]
" - ﬁ g ° J '
a) g ' g P
Lol) Tl UM AN
& g ' Y
V Nl
2 0
0
(1]
L R R e T I A ! ! ' !
3 %3 "3 " "3 S " ") 0 %] o) v] -3 xS R
A X X X b Y RS A R o o' of o ¥ ¥ 3 7
¥ 13 15 13 15 15 15 g 3 "9 " "3 "9 . .\ . “3 v
o o o o 9 o 9 ol 9 a¥ a¥ a¥ ¥ g o ¥ ¥ gt
Average Speed Bias Freeway Speed Bias Arterial Speed Bias

Figure 3.12: Speed variations of CV data and Probe data across datetime: first row -
superimposed plot of CV and probe speeds for road segment over time. second row -
PDF plot of mean absolute difference between CV speed and probe speed for all road
types, freeways

58

Table 3.4: Absolute Mean Difference between CV and probe speeds on Freeways and
Arterials

Freeway (mph) Arterial (mph)

AM peak hours 10.51 9.30
PM peak hours 9.68 9.00
off-Peak hours 9.70 9.61

While Waze data is our source of incident and congestion events, there exists some
limitations using such data where it is unable to provide information on traffic incidents
that do not fall under one of its predefined event categories [93]. Additionally, Waze was
made specifically for use in private vehicles; so, it does not offer information about public
transportation. Waze's data are also restricted to registered users, making it challenging
for the public sector (such as traffic management organizations) to access them. Such
limited access limits the exposure of non-users to the app and hence limits the amounts

or accuracy of reported events.

3.5.4 Congestion Detection

This experiment evaluates the ability to detect congestion events with probe and con-

nected vehicle data for a total of 28 congestion events. Two main levels of congestion are

Figure 3.13: Heatmap of speed bias by road and hour of day

59

investigated based on classifications from Waze incident data feed: 1) Jam, Stand-Still
Traffic, 2) Jam, Heavy Traffic and 3) Jam, Moderate Traffic. The congestion detection and
clearance time latency is used as a measure of performance for comparing the accuracy
of the different datasets for congestion detection. As shown in Figure 3.14, both datasets
can detect all three types of incidents identified in this study. CV data were slightly bet-
ter at detecting short duration, jam, stand-still incidents. It is also observed that for the
jam-stand-still-traffic condition, the CV data detected the freeway congestion about 3 -
minutes on average prior to the probe data. Similar trends were observed on both free-

ways and arterials.

3.5.5 Incident Detection

The final experiment evaluates the ability to detect different types of incidents using probe
and connected vehicle data for a total of 10 incidents. Three main types of incidents
(based on Waze feed classifications) are used in this study: 1) Major Accident, 2) Mi-
nor Accident, 3) Road Construction. Other incidents such as stalled vehicles, weather
events and road closures were not included due to low impact on traffic flow during the
analysis period. Like the congestion detection case, the incident detection and clearance
time latency is used as a measure of performance for incident detection. As shown in

Figure 3.15, both datasets can detect most major accidents and road construction events

100 1 — cov_speed
probe_speed
—— JAM_MODERATE TRAFFIC

_ . M
o - g
) a0 WW H
s Probe - \J
=
Acual [20
wJam_stand_still_tra raffic

(1] S]D 15 20
hour

Figure 3.14: Probe and CV data congestion detection rate comparison on freeways and
arterials (left), probe and CV speed changes during a congestion event (right)

60

accurately. For minor accidents, it is observed that while CV data had 100 percent de-
tection rate, probe data could only detect about 20 percent. The incident detection and
clearance time latencies were also significantly lower for CVs: 5 - 8 minutes faster than

probe data.

3.6 Summary

The first purpose of this chapter was to evaluate the opportunities and challenges for
using CV data to estimate travel times, detect congestion and incidents. Data was inte-
grated with traditional traffic data sources for comparative analysis purposes. This is the
first study that integrates actual CV data (not simulated) with conventional data streams
including WAZE and probe data. The study made use of wavelet decomposition to ob-
serve the short, medium and long-term trends observed between the two datasets. The
study performed three main analyses to compare the bias in speed estimates from the CV
and probe data, as well as their congestion and incident detection accuracies. For most of
the time, CV data outperforms probe data in terms of incident and congestion detection
on both freeways and arterials due to its microscopic nature. Although the probe data
appears to perform better than the CV in some instances, the penetration rate of the CV

was low in those instances. Overall, CV dataset performs much better than the probe

55

— ov_speed
« I %0 probe_speed
= —— ACCIDENT_MAJOR
£ Pobe [N
[60 {
actual - 5 :
§ 'l
o . W
) 01] 'Jw
§ Pobe [N
H
rctvol - 2
[6 8 10 12
wAccident_minor mAccident_major mhazard_on_road_construction 0
0 5 10 15 20
hour

Figure 3.15: Probe and CV data incident detection rate comparison on Freeways and Ar-
terials (left), probe and CV speed changes during an incident event (right)

61

data in congestion and incident detection and thus, offers the possibility to be used not
only in analyzing historical traffic patterns but also in performing predictions. To exam-
ine its reliability in future predictions, we leveraged Deep learning models to perform a
multi-step traffic forecasting model on CV data and relevant influencing datasets such as
weather and events. The next chapter introduces the methodology, results and analysis

of the developed models.

62

Chapter 4

Multi-Purpose, Multi-Step Deep
Learning Framework for

Network-Level Traffic Flow Prediction

4.1 Introduction

Traffic congestion costs cities billions of dollars every year when factors such as accidents,
pollution and delays are factored in. According to a recent report published by the Texas
Transportation Institute all 494 metropolitan areas in the United States experienced 8.7
billion vehicle-hours of delay in 2019; resulting in 3.5 billion gallons of wasted fuel and 190
billion dollars in lost productivity, or about 0.15 percent of the nation’s GDP. These costs
drive the need for a data-driven strategy to solve these issues. When traffic demand
approaches or exceeds the traffic system'’s available capacity, traffic congestion occurs.
Many studies [18-20] have shown that traffic datasets can be used to predict traffic con-
gestion, allowing drivers to avoid congested areas (e.g., through traffic flow forecasting

navigation systems), policymakers to decide on changes to traffic regulations (e.g., re-

63

placing a normal lane with a toll lane), urban planners to design better pathways (e.g.,
adding or removing a road lane), and transportation engineers to better plan for the tim-
ing of construction activities. Traffic forecasting is a critical component of advanced traffic
management systems that can help transportation planners in planning for volatile events
ahead, by taking early actions and arrangements, which contributes to better traffic man-
agement and service quality. It may not only serve as a valuable reference for increasing
the efficiency of limited traffic management resources, but it can also assist passengers
in deciding ahead of time to minimize traffic congestion. Longterm projections are more
likely than short-term forecasts to reduce travelers’ average trip time [14]. Common fore-
casted traffic parameters include traffic flow [15], traffic speed [16], and traffic time [17].
The increasing availability of large-scale traffic data, which can be looked at from a tem-
poral and spatial lens, has paved the way to develop prediction models that are robust
to capture the underlying driving mechanism of traffic volatilities, especially the random
(unforeseen) components. Temporally, majority of prior studies have focused on single-
step traffic flow forecast for a single road section with a time interval of less than 30
minutes. For some applications in ITS, such as traffic planning, it can be insufficient.
Another issue is the increased frequency of collected (input) data which allowed the
value of long-time horizon predictions to supersede shorter term. As a result, multi-step
traffic flow prediction is gaining popularity. Multi-step traffic flow prediction uses the
same methodologies as single-step traffic flow prediction; however, the prediction per-
formance rapidly degrades as the number of steps grows. Developing a practical multi-
step prediction model is, thus, more important than a single-step prediction task because
it provides valuable insights over longer time horizons which allows for better positioning
of traffic management strategies. In addition, many studies only focused on the spatial
component by predicting traffic on a single-route or a specific connection or crossing. The

development of an ITS demands the need to explore multi-route predictions on a larger

64

scale by considering the complex spatial dynamics of a network [21]. While prior knowl-
edge of the distance or travel time between regions can aid in capturing spatial correlation,
there are still some hidden time-varying traffic patterns that data-driven methods must
uncover. The challenge is resolving the intricate spatiotemporal dependencies, which re-
fer to traffic information (e.g., speed or volume) at a certain location in space and mo-
ment in time. With the emergence of deep learning models, this research aims to solve
the question of how to construct appropriate deep learning models to cope with large-
scale complex network-wide traffic data. Large-scale network traffic prediction demands
an intelligent and efficient prediction methodology to forecast traffic on longer horizons
and reflect the flow propagation. Numerous variables affect a region’s future traffic state,
including historical observations of traffic, correlation with other regions, and external
factors (holidays and special events). The technique used to fuse muti-purpose variables
such as traffic speed and volume is a challenge for the current generation of prediction
models. The interrelationships between regions are intricate and complex which adds to
the challenges in developing a prediction model. As a result, more research into how to
create an accurate and reliable network-wide (by exploring multi-routes), multi-purpose
(such as speed and volume), multi-step (longer prediction horizon) prediction model is
required.

Reliability of the estimates obtained from the developed models is another issue since
it greatly depends on the data source. Data used for traffic forecasting has two main is-
sues: availability, size of data, and the overreliance on probe data. When qualified traffic
data is unavailable, the trained model's performance degrades since performance corre-
lates with the quality of input data. While we can collect more traffic data due to trans-
portation infrastructure modernization, the data is frequently of poor quality, with noise
and critical features missing. Currently, the amount of qualified traffic data available for

analysis is insufficient. To our knowledge, most prior studies [72, 73] used probe traffic

65

datathat was less than a year old and, in some cases, as recent as one or two months [74].
Probe data cannot capture the live travel time or volume on road segments and using it for
traffic forecasting is likely to yield unreliable estimates. Therefore, there is a need to use a
more reliable data source that can provide microscopic live travel information to improve
the reliability of traffic predictions along road segments. The projected growth of CV will
provide an alternative way of collecting real-time data for traffic forecasting. The future
of ITS is shifting towards big real-time data from CV as automobile makers rush to incor-
porate CV technology in novel and current vehicles for numerous apparent advantages,
which include vehicle autonomy and navigation, vehicle sensor and driver monitoring, live
over-the-air updates, advanced road warnings, and improved battery and fuel efficiency.
Government and state institutions that create, maintain and manage road infrastructure
may take advantage of the CV data available to know what is happening on the road and
make informed decisions on traffic flow and road pavement infrastructure. Thus, it is
critical to effectively process all CV data on a state level for statewide transportation in-
frastructure management. This study's CV data is from wego technologies. The data
was collected and transmitted every 3 seconds. The study estimated travel times on ar-
terials and freeways by analyzing data from connected vehicles, including the vehicle's
speed, acceleration, GPS location, and “brake press”. Additionally, the current chapter
advances the state-of-the-art by developing a traffic forecasting model using UNet ar-
chitecture. Figure 4.1 presents the framework for the network-wide predictions using the
image outputs from each phase. The significant contributions of this chapter are sum-

marized below:

* Propose a pipeline for processing and learning from large-scale spatiotemporal data

by leveraging distributed GPU clusters.

* Propose a data fusion technique that enables state-of-the-art Machine Learning

(ML) models to learn from multisource data, by leveraging GPU computing through

66

Nvidia Rapids and Dask framework.

* Designa DL framework for simultaneous, pixel-level, dense prediction of traffic flow
variables (speed and volume) while considering the network traffic temporal evolu-
tions and spatial dependencies using a UNet model that learns traffic data through

3-dimensional matrices.

4.2 Related Work

Developing an ITS is a promising solution to provide more accurate travel information
based on future predictions to transportation users and developers. The techniques used
to predict traffic across the literature are summarized into the following categories: sta-
tistical, light machine learning and deep learning. Statistical mainly uses time series anal-
ysis models such as historical and moving averages which can be helpful with short-term
predictions on static data. Standard machine learning models include Artificial Neural
Network (ANN), Support Vector Machine (SVM) and KNN, which are generally better
performing than statistical models because of their architecture’s capability in captur-
ing more features. However, extracting the complex and dynamic patterns in the spatio-
temporal dynamic traffic data adds to the model limitations. The rise in faster Graphics
Processing Units (GPU) paved the way for the increased use of deep learning models to

perform predictions. Due to their superior ability to capture complex traffic patterns, var-

MDA generated
using Nvidia Rapids
& Dask Framework

Prediction Models
(UNet, LSTM,
Historical Average)

Figure 4.1: Framework for network wide traffic predictions

67

ious deep learning-based methods for traffic prediction have recently been successfully
applied to traffic forecasting. Table 4.3 presents a sample of the recent use of deep learn-
ing models for traffic predictions. The table presents the authors, used prediction model,
predicting variables, road-type, prediction horizon and results.

Short-term traffic forecasts restrict many existing approaches, and there are few suc-
cessful methods existing for predicting long-term traffic status. Short-term is also re-
ferred to as single step. We define short term predictions as any predictions that fall in
the range of 5 to 15 minutes into the future. Medium-term predictions are 15 minutes
to one hour, and long-term predictions are beyond one hour. Long-term or multi-step
forecasting is more difficult than short-term prediction because of the sensitivity of er-
ror propagation [96]. Real-time traffic control is where short-term forecasting is most
useful. Long-term forecasting that is accurate and timely may assist managers in mak-
ing early judgments, actions, and overall arrangements, which can help improve traffic
management and service quality.

It can not only serve as a valuable reference for increasing the efficiency of limited
traffic management resources, but it can also assist passengers in planning ahead of time
to avoid traffic congestion [16]. Sequence-to-sequence (Seq2Seq) is a frequently used
technigue in multi-step forecasting [66, 97, 98]. It is also common to capture temporal
dependency using RNNs and temporal convolutional networks (TCNs) [76-78]. LSTM
is a widespread technique that Chen et al. (2021) and Cui et al. (2018) used in their
studies to predict the short-term changes in traffic flow and speed, respectively. Several
authors used graph neural networks by focusing attention on different space and time
features. Yu (2021) performed short-, medium- and long-term predictions of traffic speed
on urban roads while other authors (Li et al. (2021), Yin et al. (2021), Zhao et al. (2020))
used freeway segments. It is worth noting that Zhao et al. (2020) attention of temporal

changes in their model performed much better than Li et al. (2021) on the same road type

68

Table 4.1: Comparison of recent use of deep learning models for traffic predictions

Author Model Predicting Road Type Horizon Results
CHENET AL. LSTM + Ensemble Empirical Traffic flow Freeway Short (5-15min) RMSE:0.79
(2021) Model Decomposition (EEMD)
WU ET AL. CNN + Recurrent Traffic flow Freeway Short (5-15min) RMSE: 15min = 32.16,
(2018) Neural Network (RNN) Traffic flow Freeway medium (15min - 1hr) 30min = 34.29,
45min = 36.08
YAO ET AL. CNN Traffic flow Network-wide Medium (15min - Thr) RMSE: 24.10
(2019) +LSTM and volume
MAET AL. LSTM Neural Network Traffic Speed Freeway Short (5-15min) MAPE: 5min = 3.78
(2015) (LSTM NN) 10min =3.78
15min =3.78
LIET AL. Graph Convolution Network Traffic flow Freeway Short (5-15min) RMSE: 15min = 32.17
(2021 (GCN) medium (15min - Thr) 30min = 32.96,
45min = 33.68,
60min = 34.53
YU Generative Adversarial Traffic Speed Urban Short (5-15min) MAPE: Short: 6.1,
(2021 Graph Attention Network medium (15min - Thr) Medium: 8.3,
and long (1 - 4hr) Long: 12.6
YIN ET AL. Multi-stage Attention Traffic flow Freeway Short (5-15min) RMSE: 17.73
(2021) Spatial-Temporal Graph and Speed
Network (MASTGN)
ZHAO ET AL. Temporal Graph Traffic Speed Freeway Short (5-15min) RMSE: 15min = 4.53,
(2020) Convolutional Network medium (15min - Thr) 30min = 5.01,
(TGCN) 45min = 5.35,
60min = 5.64,
CUIET AL. Deep stacked bidirectional Traffic Speed Network-wide Short (5-15min) MAPE: 5.6
(2018) and unidirectional LSTM
CHOI UNet Traffic Speed Network-wide Short (5-15min) MSE: 0.0016
(2020) and Volume medium (15min - Thr)

and prediction horizon. Traffic prediction algorithms can be divided into two categories:
single and multi-purpose techniques.

The single-purpose technique is focused on modeling traffic condition using one vari-
able (such as speed, flow, or occupancy), whereas the multi-purpose approach is based
on constructing a model that considers more than one variable. These models, unlike
single-purpose models, are capable of capturing travel characteristics from multiple di-
mensions of a transportation network over time. Multilinear regression models were used
by [99] to forecast bus arrival time using multi-purpose attributes such as: distance,
number of passengers at stops, stop numbers, and weather conditions. The performance
of regression models will degrade as the dimension of the data rises, because the at-
tributes in transportation services are frequently not independent but connected with

one another. Complex interactions and noisy data demand the use of machine learning

69

algorithms. Other authors [100] proposed a data clustering and genetic programming
technigue for predicting highway trip time. Two of the most extensively used machine
learning models in multi-purpose bus travel time prediction are ANN, and SVM, [101].
Kalman Filtering models, which use both historical and real-time data, have been widely
used to estimate bus arrival times [22,102,103]. Previous research in this field has mostly
focused on constructing models for anticipating delay as a self-contained single-purpose
prediction process.

Numerous GNNs were used in literature, to extract spatial dependency from traffic
networks [21, 104-106]. Chen et al. (2021) filtered freeway segments from the traffic
network and achieved good results. The entire network was used by Cui et al. (2018).
However, most models lacked the use of a network-wide dataset and longer-term pre-
dictions. Image segmentation and classification has been widely successful using UNet
[107]. U-Net is a CNN based on a fully convolutional neural network where its architec-
ture is altered and expanded to work with fewer training images to obtain significantly
precise segmentation results. Choi (2020) achieved strong results using a UNet model
for predicting traffic speed and volume for multiple routes in the short and medium term.
Although GCN-based techniques may learn more hidden aspects of traffic networks than
CNNs, they are ineffective at capturing dynamic spatial traffic dependency. The term
"multi-routes” presents a challenge since the relationship between two static places can
change over time. For example, during morning and evening peak hours, the spatial links
between residential and commercial districts are more important than at other times.
Since most previously published works fall short of accurately maintaining spatial infor-
mation while simultaneously making good predictions [108, 109], this study seeks to
adopt an approach that sought to maintain spatial information. Numerous publications
[106?] have described the development of an adaptive matrix for data-driven spatial

correlation discovery using spatial correlation data.

70

When the data is insufficient or noisy, the efficiency of data-driven methods is lim-
ited, and accurate prior knowledge may help the model perform better in these situations.
Most studies focus exclusively on predefined correlations or data-driven correlations for
prediction. Also, most prediction models suffer from information dilution, observed in
other multi-step prediction models [66, 110]. The original data from each input step has
been diluted several times by both the encoder and decoder cells before reaching a spe-
cific output step in the sequence. When there is sufficient data, the dilution effect can
be mitigated; however, insufficient data can exaggerate the effect, resulting in decreased
prediction performance. To eliminate the issues mentioned earlier, we use connected ve-
hicle data in this study for traffic forecasting. Each experimental traffic feature (for exam-
ple, traffic speed and flow) has both spatial and temporal attributes (i.e., its observation
location and time).

Generally, studies [111, 112] extracted spatiotemporal patterns solely from traffic fea-
tures without fully exploiting those traffic features’ spatiotemporal attributes. By provid-
ing additional information, these attributes, on the other hand, can directly aid the model
in identifying spatiotemporal correlations between traffic states. Apart from that, they
can augment existing spatiotemporal information when sufficient feature data is unavail-
able. Furthermore, versatile and extendable transportation data integration frameworks
are critical for modern transportation analysis and management. Data Fusion is the chal-
lenge of merging data from several sources and giving consumers a consistent represen-
tation of that data [113]. Data integration system design is a critical step in a wide range of
real-world applications, particularly in ITS. Other common challenges in traffic prediction,
such as planning issues and traffic estimation, are similarly involved with multi-source
fusion [114]. In both research and practice, transportation data integration frameworks
and tools have been devised and deployed for a variety of applications. To address the

challenges mentioned earlier and limitations, we employed a large-scale GPU cluster-

71

based data processing framework to fuse large-scale datasets and then leveraged the
UNet architecture for multi-step forecasting by combining the volatile traffic features on
a network-wide level to augment the spatiotemporal information contained in the model

input.

4.3 Problem Formulation and Overview

Many existing studies ignore the use of large-scale data to develop traffic prediction mod-
els and thus disregard the complex topological structure of road networks and tempo-
ral patterns by using a single-route, single-step and single-purpose predictions. Such
approaches are motivated by faster computations and reporting with high accuracies.
However, in practice, the applications of such techniques are very limited since it only
captures the instantaneous and steady-state interactions among traffic variables, there-
fore, a multi-step, multi-purpose traffic prediction framework for multiple routes should
be developed.

Specifically, let z; = (T« W % H % C') represent the input data tensor for a specific
day from the training data (i) with C' number of channels or purpose, (W x H) is the 2D
array width and height and T is the time bins per day with each time step aggregated by
five-minute intervals. The goal is to predict x;, on test data (p) using only one hour from
the test dataset (T'+ 1,T + 2,...,T 4 11) to predict the remaining hours in the same
day (T + 12,7 + 13, ...,T + 287). Compared to existing approaches where C'is usually

one (i.e, 3D tensor instead of 4D) and predictions are usually short or medium-termed

,| Testing
Data

Data Pre-processing

Data
Cleaning

Data N Image |, Training | | Prediction | | Prediction

. Format e . >)
Fusion Generation Data Models Results

Data

Collect
CvData |i

Figure 4.2: Framework of the proposed methodology

72

(e, T+ 12,T+13,.., T+ 23), the current framework proposed in this study addresses
the multi-purpose, multi-step large-scale traffic forecasting challenge at a network level.
Figure 4.2 presents the framework of the proposed methodology. Firstly, CV data was
collected for one month in Saint Louis County. The data provides attributes such as the
vehicle's location, heading, speed, volume and flow, etc. This work uses historical traffic
speed, volume, and incidents to forecast future speed and volume. The data then goes
through a pre-processing stage to make it feasible in our prediction models. Data clean-
ing is then performed to clean the data from missing values and anomalies. Cleaned data
is then formatted by grouping different headings and time bins together. Data fusion is
then performed on the different datasets along with the same spatial and temporal bins.
MDAs or images are then generated to efficiently leverage smaller size compacted data
layers as an input to the proposed prediction model. In the prediction model, UNet is used
as our CNN as it is designed to learn from the MDA matrices and make predictions. The
accuracy and robustness of the UNet model are compared to the conventional Convolu-
tional Long Short-Term Memory (ConvLSTM) model and a statistical historical average

model. The following section discusses data fusion and MDA generation in detail.

000... 000
00170... 050

° I 00255... 000
000... 060

Figure 4.3: Spatial bins created for a consistent scaling of H5 arrays

73

4.4 Input Data Structuring

4.41 Multi-Dimensional Arrays (MDA)

Thirty-one unique dates (days) of CV data are used as input data. Twelve separations
are exported from hourly CSV files since 12 (five-minute) time bins per hour (60 min-
utes per hour/5-minute bins). Each separate file then goes through the splitting channels
process where separations are made for the unique columns/channels: incidents, speed
and volume. The direction column is estimated and added based on the bearing infor-
mation provided by the speed and volume channels. Four main heading quadrants are
used in the estimation: NE, SE, SW, NW. However, the incidents channel did not provide
a bearing column, so we could not split its directions. To create an MDA for each CSV
exported inthe previous step, we first created an empty raster with latitude and longitude
coordinates for the study area, scaled at a height and width of 495 and 436, accordingly.
The coordinates used in spatial bins are fixed throughout all MDAs to ensure that they
are all developed at the same scale, as presented in Figure 4.3. We use the mean of val-
ues within a temporal (frame) and spatial (bin) for the speed channel to get the average
speed. We use the sum of values within a temporal (frame) and spatial (bin) for each
volume and incident channel to get the total count. Each array created at this step has

the shape [495*436].

4.4.2 Incidents and Weather Events

We also investigated additional data that may help us make more accurate forecasts such
as using an additional input channel (incidents and weather events) for forecasting the
main channels (speed and volume). Additional channels or traffic variables could pro-
vide useful information about a particular place and aid in the development of a more
realistic model. To embed such channels in our input data, we explored three different

experiments to make sure that the features from event data can be learned by the model:

74

* Experiment 1: Events data is binned in the same way speed and volume data were

binned.

* Experiment 2: The binned data points from experiment 1 are extended along the

respective event duration.

* Experiment 3: The binned points from experiment 3 are scaled by a factor to mag-

nify the impact of the event taking place.

Figure 4.4 presents a snapshot of the three experiments explored over time with the
variation of binned data points.

MDA for speed along with four directions, volume along with four directions, inci-
dent and weather events are then stacked together to form a stacked array of the shape
[495*436*10]. The channels are stacked along the third axis/dimension. Time bins along
each hour are then stacked together along all channels to form another stacked array of

the shape [12*495*436*10]. Time bins are stacked along the fourth axis/dimension. Each

g
EN
5,
& -
& | T
i la=m
1 — L i
Ll
» T T i mEt et i
wH o aE. {Ras
2 » "
ol gl g UL g L I
3 - B HE o HE
Eanam | HHHI HHHHElE t l t .

Time

Figure 4.4: Experiments with static events channel over time

75

day, hourly bins are stacked together along stacked time bins and channels to form a fur-
ther stacked array of the shape [288*495*436*10]. Hourly bins are stacked along the
fourth axis/dimension. This process is performed for each unique date, so at the end,
we can have an array of shapes [288*495*436*10] for each day. Figure 4.5 presents a

visualized shape of the temporal aggregation of channels and bins of an MDA.

4.4.3 Processing Pipeline

To accelerate the processing of big CV data in our study, we use Nvidia Rapids and Dask
framework. Nvidia Rapids is an open-source suite of software libraries for end-to-end
data science and analytics pipelines on GPUs. Rapids is built on top of Nvidia CUDA
for accelerated computing and Apache Arrow for GPU in-memory computing, see Fig-
ure 4.6(a) and includes several libraries across the data science toolchain. Rapids is the
GPU implementation of conventional data science libraries and natively scales from work-
stations to clusters to cloud systems with the help of Dask libraries. A comparison of
Rapids library with popular data science libraries is shown in Figure 4.6(b).

Dask natively scales Python data frames (CPU and GPU) across several nodes and
partitions. Dask also offers advanced parallelism and data processing pipelines that en-
able large-scale analytics by using a directed acyclic graph (DAG) lazy execution frame-
work, which ensures that computational work is scheduled, rebalanced, and optimized

before the data is needed. This allows for fast prototyping and experimenting even on

00:00 - 00:05 23:55 - 00:00

Speed \’%\ d5d
Volume * ¢

Incidents

Figure 4.5: Temporal aggregation of MDA per day

76

massive cluster systems. Dask integration with Rapids allows for large-scale GPU cluster-
based data processing.

The experimental setup for the project was on AWS GPU virtual machines with Intel
Xeon Platinum 8259CL 48 core vCPUs @ 2.50GHz, 192 GB of RAM and 4xT4 GPUs with
16 GB vRAM each. The virtual machines were running AWS optimized Ubuntu 18.04
LTS operating system software. The software stack installed included CUDA 10.2 with
driver version 440.33.01. Additional software includes Docker CE v18.03.1-ce and Nvidia
Docker2 software for GPU containerized setup. The DLI RAPIDS Course - Base Environ-
ment container image v1.0.0 available at the Nvidia Container Catalogue (NGC) was used
to launch a Python Jupyter Lab environment for this experiment on the AWS virtual ma-
chine. The NGC DLI RAPIDS container image already comes with preinstalled software
including Rapids, Conda, Graphiz, cuDF, cuPy, etc., simplifying the experimental setup. In

addition, the pull and launch of the container image expose internal ports to the container

(a)
Dask
cuDF cuML cuGraph Deep Learning cuXfilter
Data Prep/handling Machine Learning Graph Analytics Frameworks Visualization
A y A A}
\ 4 A\ 4 A A\ 4
GPU Memory - Apache Arrow
CPU GPU/RAPIDS CPU GPU/RAPIDS
Data Viz Bokeh/ cuXfilter
handiing Pandas cuDF Datashader
» Geospatial GeoPandas/ cuSpatial
Machine Scikit- SciPv.spatial
. cuML
Learning learn X
Signals NetowrkX cuSignal
Graph
analytics NetowrkX cuGraph Cyber cyberpanda CLX

Figure 4.6: (a) Nvidia Rapids Framework, (b) Comparison of Rapids to popular libraries

77

and allow for global internet access to the Jupyter Lab environment outside the localhost
environment. The algorithm and overview of the data structuring approach for process-
ing the CV and sensor data fusion are presented in Figure 4.7, with each step numbered
in curly brackets.

The main reason behind structuring the data in such a format is because MDAs can
store and organize large amounts of data better than CSV, which allows for more effi-
cient processing of files. One CSV file size 16GB can be structured into a 20MB MDA.
Our approach was to query the data from several CV data files across several folders and
drives into a giant temporary in-memory database and then transform it into a Spatio-
temporal 3D lattice with unique attributes that can be further used for attribute-based
hyper-dimensional analysis. To achieve this, we used the Dask framework for massively
large distributed data processing and filtering with the GPU backend on Nvidia Rapids.
After setting up a local cluster, the Dask framework was used to read all the CV and sen-
sor data files 1 and filtered on interest columns into a giant in-memory data lake 2. A
new unique index was computed for the data, and the data was repartitioned to reduce
the number of Dask workers and optimize performance while at 2. In order to translate
the data into a 3D Spatio-temporal matrix, unique indices of each data row were com-
puted using the procedure in 3a. This began with the computation of the unique spatial
discretized bins for longitude and latitude, and each data row longitude and latitude were
used to compute the spatial positional index and placed in the appropriate bin.

The same procedure created a discretized temporal bin based on the day, hour and
minute. Using the unique spatial, temporal, and directional indices, unique unrolled posi-
tional global indices were computed for each data point which was then used to translate
the in-memory database into the 3D spatial-time lattice 3b. Each spatial-time lattice cube
4 contained all data entries with the same index as well as other attributes such as speed

and direction, which could then be used in hyper-dimensional data operations based on

78

the data attributes 5. After filtering and stacking based on attributes, other analytics
based on speed, data counts and direction were performed and used in this study.

To benchmark the experimental setup, we used the in-built Python timeit() function

{1} Foaeo Folder_|

*esv

o)) —

XY YV ¥

Partition 0 {3])}

latitude,

Partition 1
ﬂ;;‘ Longitude L
R
&
CaF
&
- R TITE e Data Operations
Longitude Bin df{'lon_bin’) = (df{ longitude’] - Ln_min) // In_step Mecge/flterisliceistack
Latitude Bin dE[“lat_bin') = (df[latitsde'| - lat_min) // lat_step
Unique Longitude df('img_bin_index'| = df['lon_bin'] + (la_res *
Latinude I de[‘lat_bin“])
day G g Analytics Models
Day di["day’) = dff°capturadrimestanp’].dt.day Statistics 7| AUML/Predictions
Hour 4f['Re'] = df[capturedTimestamp’|.dt.Rour i
Minute Bin df[‘min') = df| capturedTimestamp’).dt.minute
d4f['bin'] = df['min'| // min_step Plots & Tmages
Unique Time Bin df=[‘uniq_tine_bin’] = ais
C0(ALE RE" |¥12)+dE] bin"]1)*(4957236)) +
df[‘ing_bin_index'
Unique Global dff "idx_stack_vol'] = (49544364268%4f[dxn’))*
Index £=[‘unig_time_bin‘)
w
~.._ Explanation of
"\.. addirional variables
-~
A
Variable Explanation Value
min step bin function for minutes 5
dxn_step ‘bin function for direction 90
lat_res latitude resolution 495
in res longitude resolution 436
lat min latitude minimum (bounding box [bettom lefi] for study area) 38.40274
lat max latitude maximum (bounding box [top right] for study area) 38.86540
1n_min longitude minimum (bounding box [bottom left] for study area) -90.73262
1n_max longitude maximum(bounding box [top right] for study area) -90.18459
lat_step Y-image resolution
(lat max - lat min) / lat res
1n_step X-image resolution

(ln max - 1n min) / 1n res

|

' [
' [
' [
' [
' [
| I
| I
| I
' [
' [
| |
| |
| I
| I
' [
| I
| I
| I
| I
' [
' [
| |
! I
| I
| I
' [
' |
' [
' — < [
| S lyper-dim,) |
| Tndex Visual How {5} (Multi-dimensional attributes |
I Direction Bin T df['dxn’] = df['heading’] // dxn_step |
| |
| I
| |
' [
' [
| |
| |
| I
| I
' |
' [
| I
| I
| I
| I
' [
| I
| I
| |
| I
' [
' [
' [
' [
' [
! [

Figure 4.7: Overview of data structuring approach

79

Table 4.2: Overview of Weather stations in the city of Saint Louis, colored by weather
condition

Number CV Data Name Platform

Data Binning

Indexing - Latitude
Speed Indexing - Longitude

Normalization

Data Export

Reduction - Count CPU/GPU

Reduction - Sum

Indexing - Latitude
Volume Indexing - Longitude

Filter

Normalization

Data Export

SOOO\IO\m.bWM—‘

—_
N —

with repeat() method to run each algorithm a couple of times. The standard deviations of
the average, best, and worst running times were noted and examined. Table 4.2 provides
the setting for these studies considering different algorithm modifications for speeding

up Extract, Transform, Load (ETL) workflows for huge CV data.

4.4.4 Comparison of CPU versus RAPIDs GPU Source Code

Algorithm 1 below displays the original code for the preparation of the large CV data.
Here, the code initializes the standard libraries before implementing the traffic volume
and speed data preparation logic. The algorithm for binning traffic speed datato a 2D pic-
ture array is shown in Algorithm 1, and the indexing of the speed data along the latitude
bins is presented. Algorithm 2 illustrates how to use the RAPIDs framework to achieve
the same outcomes. Standard libraries are initialized, and a GPU cluster is set up as pre-

sented.

4.4.5 Performance Evaluation of the Running Times

The performance evaluation of the ETL pipeline for huge CV data under various algorithm

optimizations stated in the part before is presented in this section. The section displays

80

Algorithm 1 Sample code from big CV data on CPUs

1: procedure BINING SPATIAL POINTS
2 d + ('2021-02-06', '2021-02-07’, '2021-02-08,...)
3 h<« (0,",'2,'3,'4,'5,'6','7,'8,'9", ...)
4; t + range(1,13)
5: loop: (t)in range(1,13):
6 df < time_bins_csv/'+str(n)+' /' +str(d)+' /' +str(h)+ /' + str(t)+ .csv’.
7 df < df[['latitude’) longitude', speed']].
8 df [latitude'] « df['latitude’] * —1.
9 Zeut < pd.cut(df latitude, np.linspace(—38.71, —38.53, 248), right = False).
10: Yeut < pd.cut(df.longitude, np.linspace(—90.32, —90.18, 219), right =
False).
df < df.groupby([xcut, Yeut]) - mean().

—_
jury

Algorithm 2 Sample code from big CV data on GPU using RAPIDS and Dask CUDA

procedure BINING SPATIAL POINTS
df [bin’] <= df 'min']/ /mingtep.
df['dzn’] < df['heading']//dznsiep.
df'lat_bin'] + (df latitude’] — latmin)/ /latsep.
df['lon_bin'] + (df['longitude’] — Inyin)//Instep.

1:
2
3:
4
5

the experiment run times under various conditions, as stated in Table 4.3. The summary
of 25 runs for each experiment on CPUs and GPUs are shown here. When the experiment
is run on the GPU, the speed improves noticeably, going from 25.6 times to 72.2 times
faster. Overall, the GPU experiment lasted only 25 minutes, while the typical experiment

on the CPU lasted over 42 hours.

4.4.6 UNet Model

Image segmentation and classification has been widely successful using UNet. U-Net is
a CNN based on a fully convolutional neural network where its architecture is altered and
expanded to work with fewer training images to obtain significantly precise segmentation
results. While training on an NVIDIA GTX 1080 Ti GPU, the segmentation of a 495 * 436
image took less than a second. As shown in Figure 4.8, UNet's architecture consists of a

contracting path to absorb context and an expansive symmetric path to facilitate precise

81

Table 4.3: Running times of the ETL algorithms by number of CV data in seconds

Metric Metric CPU (seconds) GPU (seconds) Speedup (X)

Avg 31207.30 442.92
Min 28250.79 399.21
Speed Max 34100.80 482.94 70.45
Data Binning Std. Dev. 1610.11 28.54
(Bucketing) Avg 270.36 452
Min 244.85 3.75
Volume Max 292.50 4.99 59.74
Std. Dev. 14.57 0.30
Avg 17302.22 248.48
Latitude Min 15621.62 2221
(Speed) Max 19099.29 268.87 69.63
Std. Dev. 978.03 14.20
Avg 20386.04 295.99
Latitude Min 18430.08 269.42
(Volume) Max 22027.04 314.43 68.87
Data Indexing Std. Dev. 1103.70 13.92
Avg 16096.90 22291
Longitude Min 1439411 202.23
(Speed) Max 17544.64 246.68 72.21
Std. Dev. 97142 14.31
Avg 18564.84 260.43
Longitude Min 17018.96 236.06
(Volume) Max 20318.35 285.40 71.28
Std. Dev. 987.98 15.64
Avg 1148.60 16.63
Min 1048.05 15.35
Speed Max 1245.09 17.95 69.03
Normalize Std. Dev. 63.48 0.86
Avg 704.06 10.10
Min 640.62 9.02
Volume Max 765.62 10.99 69.64
Std. Dev. 38.22 0.58
Avg 3746 146
Count Min 34.21 0.53
Unique Max 41.60 197 2557
(Volume) Std. Dev. 2.09 0.36
42178.21 599.04
Reduction Sum Min 37627.96 535.47
(Volume) Max 46179.47 64791 70.40
Std. Dev. 264191 3179
Avg 826.43 11.83
Filtering Min 752.76 1.03
(Volume) Max 886.79 12.98 69.81
Std. Dev. 38.37 0.54
Avg 250.79 4.40
Min 232.20 3.53
Speed Max 276.38 4.99 56.94
Data Std. Dev. 13.55 0.34
Export Avg 142.45 2.55
Min 124.80 1.95
Volume Max 152.32 297 55.77
Std. Dev. 746 0.26
Overall Avg 149115.73 2121.34 70.29

localization. The contracting path follows the typical convolutional network with multiple

convolutions accompanied by Rectified Linear Unit (ReLU) and max-pooling operation.

82

Similarly, the contracting part reduces spatial information and increment in features in-
formation. However, the expansive path integrates spatial and feature information using
upconvolutions with feature information from the contracting path. In our model, the con-
volution layer was heavily connected to the average pooling layer and then decoded using
one deconvolution layer trailed by one convolution layer. We decided to use average pool-
ing because of its ability to retain features and give smooth arrays. The learning rate is
3e-4 and was configured/lowered to improve the model performance. Adam optimizer
was used as the optimization algorithm, and mean squared error was used to measure
how well each model performed.

Table 4.4 presents the UNet input parameters used in our model and explains how
each value was extracted/calculated.

The input to the training model is the MDAs generated from the study area with spa-
tial and temporal characteristics, which can be defined as:

X} = [0, Vig1, oy Vigo1), 4 € [1,L — I — F + 1] 4N

Output Shape

DenseBlock-1 (495, 436, 64)

‘AvgPool (248,218, 64)
DenseBlock-2 (248, 218, 96)
AvgPool (124, 109, 96)

Copy and concatenate

DenseBlock-3 (124, 109, 128)

Copy and concatenate

Copy and concatenate /l DenseBlock7 (8,7,128)
Copy and concatenate l // AvgPool 4,4, 128)
— — > 1 DenseBlock-8 (4,4,128)

f Conv Layer (4,4,128)

DeconvBlock-1 (8,7,128)

DeconvBlock-2 (16, 14, 128)

(“f Conv+ReLU [~JMaxPool [~ Concatenate DeconvBlock-7 | (495, 436, 128)
. Upsampling ' Conv + BatchNormalization ConvLayer (495, 436, 96)

Figure 4.8: Designed UNet architecture with output shape per block

83

Table 4.4: UNet model input parameters

Input Parameter Value Explanation

No. of training files 24 First 24 days

No. of validation files 3 Three random days

No. of testing files 3 Last three days

No. of frames/day 288 (60mins per hour / 5mins time bin) * 24 hours/day
No. of frames before 12 Previous hour time frames

No. of frame sequence 24 Used time frames (12) + Frames to predict (12)

No. of frames output 12 Subset to predict

Height 495 Image height

Width 436 Image width

No. of channels 9 Speed (4 directions) + Volume (4 directions) + Incidents
No. of channels output 8 Speed (4 directions) + Volume (4 directions)

Visual input channels 108
Visual output channels 96

[channels (9) * Used time frames (12)]
No. of channels output (8) * No. of frames output (12)

Batch size 2 No. of samples processed

Learning rate 3e-4 The amount that the weights are updated during training

Number of epochs 20 No. of complete passes through the training dataset
Where,

1 is the image index;

j is the channel index;

v; is a column vector representing the traffic variable (speed/volume);

O is the span of output intervals;

I am the span of input intervals and

L is the period intervals.

The input image goes through convolution and pooling to extract the significant im-

age features, which is the principal phase of the UNet model where the output size gets

smaller in dimension. The output from this phase can be defined as:

OF = Plo(WEzE Y +bF), ke [1,e1] (4.2)

m

84

Where,

* P isthe pooling procedure;

* gis the activation function;

(Wk, bk) is the parameters of the mth layer and
* kis the convolutional filter channel index.

The output from the preceding convolutional layer is max-pooled in the succeeding
block, and then the identical architecture is applied again. Max pooling is applied to down-
sample the size of the image (pixels), reducing the number of used parameters. The join-

ing of layers together is done in the concatenation phase.

’ Input Layer | Input | (None, 1000, 8,495,436) |
| Output | (None, 1000, 8, 495, 436) |

ConvLSTM2D | Input | (None, 1000, 8,495, 436) |
| Output | (None, 1000, 20, 495, 436) |

v
BatchNormalization | Input \ (None, 1000, 20, 495, 436) |
| Output [(None, 1000, 20, 495, 436) |
v
‘ MaxPooling | Input | (None, 1000, 20, 495, 436) |
| Output | (None, 1000, 20, 248,218) |

ConvLSTM2D layer
BatchNormalization layer

MaxPooling | Tnput | (None, 1000, 20, 495,436) |
| Output | (None, 1000, 20, 248,218) |

ConvLSTM2D | Input | (None, 1000, 10, 124, 109) | ConvLSTM2D | Input | (None, 1000, 10, 124, 109) |
| Out[iut | (None, 1000, 5, 124,109) | | Output | (None, 1000, 5, 124, 109) |
MaxPooling3D layer MaxPooling3D layer
TimeDistributed (Flatten) layer TimeDistributed (Flatten) layer
TimeDistributed (Dense) layer TimeDistributed (Dense) layer
TimeDistributed (Dense) layer TimeDistributed (Dense) layer
TimeDistributed | Input [(None, 1000,122) | TimeDistributed | Input | (None, 1000,122) |
(Dense) | Qutput | (None, 1000,1) | (Dense) | Qutput | (None, 1000,1) |

Figure 4.9: ConvLSTM architecture

85

4.4, 7 ConvLSTM Model

The first benchmark model used to validate the accuracy and robustness of our proposed
UNet model is ConvLSTM. LSTM is a Recurrent Neural Network (RNN) that focuses on
learning long-term dependencies. A series of memory blocks make up the LSTM archi-
tecture. Each block has one or more self-contained memory cells, as well as three gates:
input, forget, and output. The input gate receives new data from the outside and pro-
cesses it. The forget gate determines when to forget the initial state and, as a result,
the input sequence’s ideal time lag. The output gate is responsible for generating output
for the LSTM cell by combining all the computed results. ConvLSTM is a recurrent layer,
except convolution operations are used instead of internal matrix multiplications.

As a consequence, instead of being a 1D vector containing features, the data that trav-
els through the ConvLSTM cells retains the input dimension (3D in our case). ConvLSTM
has been proven in recent literature that it is capable of handling the spatial temporal
dependence in traffic data, however, due to its complex structure it has a longer training
time. MDA (Images) is used as the model input. Figure 4.9 presents the model architec-
ture, and Table 4.5 presents the input parameters. The shape of data is presented in the
following format: (samples, frames, channels, rows, cols). The final input format is when
the frames are limited to 1000 per sample, and the image is an eight-channel 495x436
pixel picture (samples, 288, 8, 495, 436). The number of available trailers for training is
referred to as samples. 'returnsequences’ is set to True, which means the output should
be (samples, frames, categories), but because the model has eight separate outputs, the
result should be (categories, samples, frames, 1), implying (8, samples, 1000, 1). Return
sequences have the effect of classifying each frame into several categories.

The model architecture begins with two ConvLSTM layers, each with a 'BatchNormal-
ization’ and a '"MaxPooling’ layer in between. It breaks into branches in order, one for each

category. All branches start with one ConvLSTM layer and then a MaxPooling layer. The

86

output is then linked to a Dense network that is completely connected. Finally, the final

layer is a Dense single-cell.

Table 4.5: ConvLSTM model input parameters

Input Parameter Value Explanation

No. of frame sequence 24 Used time frames (12) + Frames to predict (12)
No. of frames output 12 Subset to predict

Height 495 Image height

Width 436 Image width

No. of channels 8 Speed (4 directions) + Volume (4 directions)
No. of channels output 8 Speed (4 directions) + Volume (4 directions)
Batch size 2 No. of samples processed

Number of epochs 20 No. of complete passes through the training dataset
Activation Relu Linear Function

Padding same The output will have the same size as the input

4.4.8 Historical Average (HA) Model

The second benchmark model used to validate the accuracy and robustness of our pro-
posed UNet model is a simple historical average model. HA simply uses the average of
historical variables as predictions. We calculated the average at a spatial and temporal
level for each variable/channel, meaning, data was filtered along each pixel and time bin
for each day and then the average is calculated along all days. The formula used can be

defined as:

[Tv Wj7Hk>Cz] (43)

xT7j7k7Z = Z’Lzl
Where,
* x(T, j, k, z) represent the predicted pixel along a specific time-step (77);

* W,andHjare the pixel index along the tensor width and height, respectively;

« (C, is the channel index and

87

* dis the number of days used in the training model.

4.5 Model Training

The prediction model uses the previous hour (12 frames) to predict the future hour (12
frames). The output file is a tensor of the shape (12, 495, 436, 8). The first dimension of
six represents the future 12 time-bins: 5min, 10min, 15min, 20min, 25min, 30min, 35min,
40min, 45min, 50min, 55min and 60min. The width of an image is 495, and the height is
436. The main task is to forecast traffic conditions so the first eight channels (speed and
volume, for each of the four headings) are forecasted. The ratio of data used for training,

validation and testing is (0.8:0.1:0.1).

4.6 Model Testing

4.6.1 Recursive multi-step forecast

For the testing dataset, we select the last three days of available data to test the reliability
of the forecasting model. We perform forecasting throughout all hours of the day, using an
hour of actual data to predict the future hour and then using every new predicted hour for a
newer prediction, as presented in Figure 4.10. The main prediction task is to test the UNet
algorithm in predicting network-wide traffic speed and volume. Eventually, we forecast
the traffic flow propagation throughout the day by performing a multi-step prediction.
The previous hour (12 steps) of observed data is fed into the trained model to predict the
next hour (12 steps), and then every new predicted hour is an updated input bin to predict

the next hour.

4.6.2 Losses and metrics of trained model results

This section evaluates the performance of the trained UNet model against a test dataset

which consisted of the last three days of data from the data collected for one month. In

88

order to test the performance of the proposed algorithm, statistical and deep learning-
based algorithms are chosen for comparison. HA and ConvLSTM neural network is used,
an extension of RNN, which is more popular due to its capability to deal with longer-term
memories and evade fading gradient problems that conventional RNNs suffer from [115].
First, we will present the general results for the UNet model performance compared to
benchmark models: HA and ConvLSTM, followed by a visual comparison of a few images
exported from the results of each model and a deeper dive into the UNet model results.
While forecasting CV speed and volume, errors from the models are calculated from the
observed CV speed and volume and shall be used to justify forecasting results.

RMSE is the performance metric we use in evaluating our model because of its very

_Actual Predictions(t+1) = Predictions (t+2)

el Poo=—>hpls Rr== 2l i -

I e | L | | 1
Time bins

Figure 4.10: Testing data hourly predictions

@ (b)
Freeway roads Arterial roads
20.0 20.0
Vblume_Peak s \blume_Peak
\blume_Off-peak Vblume_Off-peak
175 = Speed_Peak 175 = Speed_Peak
B Speed_Off-peak B Speed_Off-peak

15.0 15.0

125 125
] i
2 100 2 100
3 3
75 75
50 50

25 25

00 - 00 -

HA
ConvLSTM
UNet

HA
ConvLSTM
UNet

Figure 4.11: RMSE results across various models: (a) freeway roads and (b) arterial roads

89

intuitive statistic interpretation in terms of having the same measurement unit as the vari-
able predicted, with smaller RMSE values indicating higher model accuracy. The formula

can be defined as:

(Ui — y:)?

n

RMSE =2V, 4.4)

Where,
* 9; — y; represents the difference between actual and predicted values and
* n represents the number of samples

Structural Similarity Index Measure (SSIM) is also used when comparing images ex-
ported from each model since it is a more indicative metric that can reflect perceived
structural similarity by taking image texture into account. Structural similarity refers to
the assumption that pixels have many interdependencies, especially when close together.

SSIM values closer to (1) indicate higher similarity, while (-1) indicate lower similarity.

(2papy + 1) (202y + ¢2)

SSIM (xz,y) =
) = 2 T)2 o2t o)

(4.5)

Where,

* g is the mean of z;

* [y is the mean of y;

* 02 is the variance of z;

. 05 is the variance of y;

* 0.y is the covariance of z and y;

* ¢1 = (k1L)?, co = (ko L)? are two variables that stabilize the division;

« L isthe dynamic range of pixel-values and

90

* k1 and ko are 0.01 and 0.03, respectively, by default.

In terms of RMSE, the performance of models across all subsets can be seen in Fig-
ure 4.11 and ranked: UNet, ConvLSTM and HA, where UNet saw an average improvement
of 65 percent over HA model and 15 percent over ConvLSTM. UNet significantly out-
performs the other models because it applies a considerable amount of kernels to each
image to perform the dense predictions at a pixel level. Ultimately, this leads to a lower
RMSE across volume and speed channels, too, though the significance of error varies
enormously (Speed - UNet peak NZ: 7 kph, Volume - UNet peak NZ: 1 vehicle). The rea-
son for this is relatively simple: speed channels are normalized from 1to 255 while volume
is normalized from O to 255. As a result, incorrect speed forecasts are more likely to be
penalized (for example, volume, which is usually close to zero for most pixels). Generally,
both channels’ forecasts along arterials were better than freeways, reasoned by the higher
density of data points (pixels) on arterials than freeways. RMSE peaks occur during peak
hours (bin 72: hour 6:00) and (bin 192: hour 16:00), reflecting the model’s challenging

task with higher volume around peak hours.

4.6.3 Extracted images comparison

Figure 4.12 presents a few images exported from the forecasting results of the models.
The forecasting snippet is for hours: 5:00, 6:40, 17:00 and 20:00. SSIM and RMSE are
presented above each image exported from the model and calculated concerning the ob-
served image. The count of non-zero pixels for each image is presented below each image
to analyze performance concerning spatial granularity. In terms of results, the forecast-
ing models need to decide the non-zero positions through a map with 215,820 spaces,
which is a challenging assignment because the model input state of traffic could be re-
duced or expanded spatially. The performance of the UNet model was dominant in pre-

dicting closer non-zero pixels, higher SSIM and lower RMSE, followed by ConvLSTM and

91

HA models. UNet exhibits an excellent learning ability in comprehending images because
of its locally linked layers which means that output neurons are linked to local adjacent

input layers, rather than all input neurons in fully-linked layers. The pooling mechanism

Observed

Non-zero: 49,589 Non-zero: 40,898

Non-zero: 20,359 Non-zero: 38,216

ssim. 0.87, rmse: 2.1 ssim. 0.88, rmse: 3.1 ssim: 0.88, rmse: 3.6 ssim: 0.89, rmse: 3.1

Non-zero: 20,045 Non-zero: 29,918 Non-zero: 35,758 Non-zero: 32,914

HA

ssim: 0.97, rmse: 1.4 ssim: 0.98, rmse: 2.0 ssim: 0.98, rmse: 2.4 ssim: 0.97, ymse: 2.2

Non-zero: 21,258 Non-zero: 31,964 Non-zero: 36,970 Non-zero: 40,291

ConvLSTM

ssim: 0.99, rmse: 1.3 ssim: 0.98, rmse: 2.0 ssim: .99, rmse: 2.01 ssim. 0.99, rmse: 1.7

UNet

Non-zero: 38,769 Non-zero: 40,034

Non-zero: 26,522 Non-zero: 35,917

Figure 4.12: Forecasted snippets from prediction algorithms

92

in the UNet model also enhances the model to retain the essential image features while

efficiently reducing the number of used parameters.

4.6.4 Influence of forecasting horizon

To understand the influence of the length of the forecasting period and road type on our
proposed forecasting UNet model, we present Figure 4.13 as a box plot analysis of the
change in RMSE along 12 future time steps averaged for the entire day forecast. Box plots
provide a standardized way of interpreting the distribution of errors based on the mini-
mum, maximum, median, 25th and 75th percentiles and the outliers. RMSEs for all plots
increase over the length of prediction time steps, indicating a positive association be-

tween prediction errors and the span of prediction length. On shorter prediction horizons,

2 (a) " (b)
. 3000 - aaoAAAGDT
08 - 20-
06 - 15 - o o 1
o o

04 - i i 10 - T o

o o © o © T o ©

o o O © o © o o © o o ©

,® 8 8 88 8 8e 8888 888306 e 8 8 8 8 8
» i 2 ~‘1 € 7 11" 1‘1 1 i 2 3 € é ': 1 1‘1 1
.. () ..(d)

1
I

L o] 50
o © o © g
o o
) - o ©O (o]
§ o O g g g 8 0 © o 45
8 8 ©
1 3 5 8 0 11 1 1 4 i 0 1 1

Figure 4.13: RMSE Box plots along 12 future time steps: (a) volume channel on arterials,
(b) volume channel on freeways, (c) speed channel on arterials, (d) speed channel on
freeways

93

the lower RMSE errors indicate that the model had better prediction estimates near-term
because closer time-steps have much lower variations. The median of RMSE on Arterials
is very close for volume and speed channels with minimal deviations. For Freeways, the
number of time steps is larger than 6, RMSE deviations start increasing and are much
larger than other cases. The number of predicted horizon time-steps tends to influence
performance in such a case. It is worth noting that generally, the errors and range of
errors throughout the forecasting period was stable with insignificant increases, which
implies that the proposed model was robust in learning temporal features achieving the

most accurate forecasts in all circumstances.

4.7 Additional experiments

We also experimented with different encoder and decoder structures. Instead of using
average pooling in the encoder, we implemented a convolution pooling layer in two other
models. We added a linear interpolation layer in parallel path to one of the additional
models in addition to the deconvolution layer, which may be thought of as the inverse of
the average pooling layer. The decoder block also includes tightly coupled convolution
layers. We cannot assert that the additional trials are superior to the finally implemented
model based on test set assessment scores alone. Performance varies per training it-
eration, but there is no noticeable difference in terms of performance between them in

general.

4.8 Summary

Working with the massive amounts of data from linked automobiles continues to be dif-
ficult for everyone. In our experiment, it typically takes two days to process data from
1,500 different trips made by connected automobiles in a single day. The transportation

authorities and security agencies receive no benefit from the 48-hour delay between data

94

sensing and interpretation. Considering this, numerous initiatives are underway to dis-
cover quicker and more effective methods of working with massive data from connected
vehicles. We concentrated on GPUs for this work since they are more developed, accessi-
ble, and cost-effective. We saw up to 72 times faster performance in the GPU trials when
compared to conventional CPU-based processing. Our findings support what other scien-
tists have reported in many fields of study. For instance, one researcher claimed that em-
ploying GPUs to speed up his computing workloads resulted in speedups of up to 400X
[97,98]. The authors of a recent flood forecasting study claimed that using GPUs sped up
their work by between 80X and 88X. Similar studies have demonstrated that employing
GPUs as coprocessors can speed up image processing by between 10x and 20x. In this
chapter, we investigated how the RAPIDS framework and Dask CUDA may be used to ac-
celerate big CV data pipelines on GPU. According to our findings, the complete procedure
was 70 times faster when the computation was reduced from 41 hours to 25 minutes. In
addition, the RAPIDS and Dask architecture made the source codes considerably easier
by condensing most computations to a single line of code, except for the initial library
imports and cluster setup routines. The original CPU code, however, required numerous
lines of code (about 20 for each task). In conclusion, the necessity for real-time sensor
data processing and data fusion will continue to be a difficulty as our community’s con-
nected vehicles and sensors proliferate. Considering this, we think that utilizing contem-
porary tools like GPUs and other accelerators can offer a low-cost means of processing
these data in real-time. This will enhance the administration and security of our trans-
portation infrastructure while enabling faster real-time insights. The faster developed
data processing pipeline paved the way for faster processing of input data to the traffic
forecasting models presented. Prediction of traffic flow has seen arich use of deep learn-
ing methods, which yielded satisfactory results. These approaches can perform dense

predictions and portray more non-linear functions than other neural networks [115, 116].

95

However, most of these studies address a single step, channel or route prediction. A mul-
tipurpose, multi-step, spatiotemporal forecasting is necessary to improve the accuracy
of predictions and provide a longer prediction length into the future. In the scope of this
study, the UNet model has the following properties: (a) space and time features can be
extracted automatically because of the implementation of convolutional and max-pooling
layers; and (b) represents speed, volume and incident features on a pixel-level dense traf-
fic network that are then used to create traffic speed and volume predictions on all routes.
The testing model used one hour of actual data to forecast all future hours. To test the
applicability of the proposed model and its performance, the comparison to HA statisti-
cal method and ConvLSTM saw an average improvement of 65 percent and 15 percent,
respectively. The image snippets from each prediction model to the actual image showed
that image textures were more similar in UNet than the benchmark models used. UNet's
dominance in performing image predictions was also evident in multi-step forecasting,
where the increase in errors was relatively minimal over longer prediction spans. Most
existing traffic flow prediction research, to our knowledge, focuses on finding models with
higher prediction accuracy; however, this work not only provides a long-term prediction
model with trustworthy accuracy, but also examines the underlying process of structuring
network-wide data. It provides a different way of thinking about structuring large-scale
point data to forecast high-level traffic features. With the availability of more accurate
traffic predictions and historical transportation data from multiple datasets, we are now
able to develop a web-app that can query and visualize transportation user requested in-
formation in an efficient manner. In the next chapter, we present the architecture of the

developed platform and how leveraging Al power can speed-up web user requests.

96

Chapter 5

Interactive Web Platform Powered by

Speech Queries

5.1 Introduction

The increasing complexity of urban transportation networks makes it difficult to man-
age transportation operations in cities. ITSs and ICTs are frequently used to handle traf-
fic monitoring, estimate, and control problems. In order to apply suitable control tech-
niques, ITSs combine modern technology with real-time information about traffic condi-
tions. Transportation networks are closely monitored, resulting in massive traffic and inci-
dent databases. The problem of traffic congestion on the roads is serious and widespread,
and the integration of various technologies and systems can greatly aid in its resolution.
The requirement for massive traffic databases to be efficiently used by traffic operators
and managers necessitates the development of innovative apps and state-of-the-art vi-
sualization tools as the amount of traffic data transmitted via ITSs grows fast. Interactive
visualization allows extracting data of interest by displaying it in various visual forms and

interacting with it through various filters. The amount of data generated is rising quickly

97

in the digital age. Huge amounts of data are typically stored in a database and filtering is
typically made possible using query languages such as Structured Query Language (SQL).
However, queries from the database can be a daunting task since it demands knowledge
from the user's side about the exact schema of the database, functions of different enti-
tiesinthe query and correct join paths of different tables within the database. The techni-
cal challenges of formal query languages typically overwhelm non-technical users of the
database. To navigate this daunting task and allow users to easily make requests to the
database, the use of speech or NLP can be helpful. If users would want to find all accidents
on |-70, for instance, the input question through the microphone would be: “Show me all
accidents on I-70" and the platform would translate the keywords into an SQL query that it
can then use to query the requested information from the database. Most transportation
agencies use ArcGlIS, Tableau, and D3 as their primary visual analytic platforms. Tableau,
an analytical visualization tool, is used by the NHTSA (National Highway Road Safety Ad-
ministration) to offer insights regarding speed-related traffic fatalities across the United
States. Other agencies, like the Virginia Department of Transportation (VDOT2015), the
BTS (2019), and the lowa Department of Transportation, employ comparable platforms to
dig into work zone, traffic, and freight data. The data being visualized on these platforms
might be anywhere from a few megabytes to a few gigabytes in size. When the size of
the data being viewed surpasses 250 megabytes, significant latency might be detected in
terms of updates. For all the heavy-lifting calculations (on large data sizes) such as data
ingestion, aggregation, integration, and reduction, recent advances aimed at managing
huge transportation data employ high-performance computing clusters in the backend
[117]. The data is then provided to the front end for visual exploration after being filtered,
aggregated, and lightweight. Although this method is useful for managing the challenges
of massive data, it restricts the effectiveness of visual analytics because tiny details are

lost in the aggregate and filtering processes [118]. The main purpose of this chapter is to

98

develop an interactive visual analytics application that allows the big CV dataset (histor-
ical and predicted) to be visualized, interacted with, and analyzed in the browser (front
end). The framework will allow speech queries and heavy-lifting computations like data
reduction, aggregation, and filtering to be easily performed with user input from the front

end.

5.2 Related Work

The large volume of traffic data recorded in transportation databases makes it difficult
for humans to understand and extract traffic patterns directly from the data. Given the
variety of such complex and big datasets such as transportation data, data visualiza-
tion is critical and required for their interpretation. It simplifies the process of discover-
ing the structure, characteristics, anomalies, patterns, and interconnections in complex
data, which can be time-consuming. For performing speech queries, Automatic Speech
Recognition (ASR) and Machine Translation (MT) are commonly used in speech-to-text
translation systems [119]. Hundreds of hours are then needed to perform the audio tran-
scription and building a high-quality MT would demand millions of words of parallel text
- resources of which are only available for a small fraction of the estimated 7,000 lan-
guages [120]. To process words from a listener (microphone), [121] suggested a system
to tokenize words that uses the knowledge of the underlying database to automatically
construct a lex file (spelling dictionary) which contains information about the underly-
ing database, such as columns and table names. Speech is first turned into text in the
initial phase, followed by a grammar checker to check whether the text is syntactically
correct or not. In the following phase, a lexer, parser and syntax guided translation are
used to map the text into an intermediate question. The intermediate query's (SELECT)
and (WHERE) clauses are extracted in the fourth phase. The fifth phase is when all nec-

essary tables are located to create the (FROM) clause and build the SQL query. A pre-

99

pared SQL query is then sent to the database and returned in the sixth phase. To test
their developed system, they used it on single and numerous tables, and it produced ac-
curate results only when the input query compiled with the syntactic rules in terms of
syntax. [122] proposed a strategy that is most frequently used in addressing the speech
understanding issue by using an unsupervised Bayesian network. They start by describing
three techniques for vector representation of words, which are meant to aid the Bayesian
network in developing effective concepts. The approach is then put to test using data
from two different applications comparing the results of Bayesian network to those of
Kohonen maps and K-means algorithm. [123] suggested the use of Search Over Data
(SODA) that uses keyword searches of business users and automatically produces exe-
cutable SQL and provides data with a search experience analogous to Google. The key
concept is to employ a graph pattern matching algorithm that takes advantage of the data
warehouse's metadata scheme. For displaying the data, visualization specifies a variety
of visual forms and interactions. It can not only provide a qualitative overview of large
data sets, but it can also help identify areas of interest and parameters for more detailed
guantitative study. This prompted some academics to concentrate their efforts on devel-
oping visualization tools to aid humans in comprehending traffic patterns. Shekhar et al.
[124] created CubeView, a web-based visualization software for monitoring sensor net-
work measurements collected from the Minneapolis-St. Paul (Twin-Cities) metropolitan
area’s motorway system. The app allows users to identify patterns and rules from pre-
vious data to help make better decisions. Approximately 900 sensor stations make up
the sensor network. Sensors have one to four loop detectors, depending on the number
of lanes. Sensors measure the amount of traffic on the road and send the information
to the Traffic Management Center. Raw data acquired by loop detectors is saved in bi-
nary format in CubeView, then transformed to text data and stored in database servers.

Traffic managers, traffic engineers, travelers and commuters, as well as researchers and

100

planners, can use the transportation visualization tools. Piringer et al. [125] investigated
tunnel surveillance videos. Different sorts of occurrences were automatically detected,
ranked, and marked in place and time. Users could view the original videos for each event.
The visualization techniques used by Zaiat et al. [126] are as follows: a map-based view of
the performance state of local transportation systems; filtering dashboard information by
transport domains, modes, and components; aggregations for any Level of Service (LOS)
and geographic abstraction; and charting perspective of transport system behavior over
time. The Advanced Interactive Traffic Visualization System (AITVS) was proposed by Lu
et al. [127], which provides data cube visualization features for real-time and historical
pattern analysis. It's a web-based visualization system that uses cutting-edge visualiza-
tion components including spatial and temporal plots and a data cube to evaluate and
monitor traffic conditions, volume, speed, and occupancy, and so overcomes the short-
comings of other systems. AITVS, like our proposed web applications, is geared for traffic
analysts and managers rather than travelers. Pack [128] presented a web-based visual
analytics solution for finding and observing major bottlenecks. It includes a dashboard
with a map and a popup window for displaying the journey time index, various contour
plots, an interactive animated map for displaying average speeds, travel times, reliabil-
ity, and other metrics, interactive charts and graphs, and a performance summary table.
The time spiral image, which depicts the time of occurrence and how long the bottleneck
lasted until it was resolved, is an intriguing visualization tool included in the bottleneck
ranking (Figure 5.1 adopted from [127]).

Web-based traffic visualization tools are generally simple to use and can be used to re-
duce complex and tedious statistical data, offering useful information to both traffic spe-
cialists and travelers. Several visualization tools have been built expressly for the analysis
and understanding of congestion levels. CongestionGrid [85] is an example of conges-

tion level estimation and representation. It's a platform that automatically gathers current

101

congestion data from a traffic data provider and displays previous patterns on a grid for
customers to see. Users can use CongestionGrid to investigate temporal traffic trends
by seeing congestion data from a certain week or an aggregation of data over a period
of time. (Figure 5.2 adopted from [85]) uses visual depiction of traffic states for traffic

estimation, which uses red, yellow, and green colored cells to indicate high, normal, and

low traffic, respectively.

vehicle Probe Project Sute 1 () & 1§ 1 Sottleneck Ranking weicom, packmiurd.ed | EAQS | Sccasncasts | Lagss
Bottleneck Ranking
L e saarch Bottleneck locations on New Jersey Interstates between March 1, 2012 and March 31, 2012 (502 total) B Bxpont 1o CSV
Location | Average duration Average max length (.. Occurrences | impact factor w
[reen e ranrma o ihasm o - a7 4
178 8 @ Monmouth 5t “m 130 m 04
12985 @ 1-70/m 26 1haem e » ey p
|| 170 € @ Avaruwrent 1ea ihiem 1 " 12007
178 £ @ HunterdonSomarset Co tn 1h " n 1088
1:287 5 8 CR.301/New Durham A4/Exa 3 1h3em wn 2 185
1958 @ 1-200/8xk 13 1haom 310 » 9,087
N 0
| oo eiaer/enn 4y || Occurrences] v | () experrecsv | w
| allal ‘ r = FTU 'y I thin time apirel aach irg around ihe circle repraserts o [day__ |
- \,v | The carter reprasent March 1, 2013 and the outer sdge represents Apri 1, 2012.
1 e TRy
10m 3am
o e) an
. ™
T . ™
o oan
sy 7 a4
am X AN
3o am
20i

10 AM
1PM g g L1 AN

Haximum queve length < 1 [N D NEEEEE > 10 mies

I T~ N/}
PR WNE S

GitHub - rapidsai/cuxfilter: GPU accelerated cr...
7" hitps:jgithub.comjrapidsaijcuxfilter

/ VAR o DY
| KRAIsON
o % VILLAGE 0
N ur
s sl SEusY
Monday §:45pm deve TR Y
" - LLAGE
© Live waffic
® Traic ot day and fime D
Day: [Monday [3] [S
P . B R
& 12 S ':;‘
(Dot i estmated based 0 paat constons) g o

Figure 5.2: Congestion grid created from historical traffic data

102

Maps, graphs, and clusters were employed as visualization tools by Diker and Nasibov
[129] and Yoon et al. [130]. Diker and Nasibov clustered road segments based on traffic
congestion levels, while Yoon employed spatio-temporal traffic status plots of trace data
in addition to threshold-based quadrant clustering. As a source for visualization, Wang
et al. [131] used traffic trajectories (as a significant form of traffic data obtained from
road sensors), as well as incidents, road speed, and traffic congestion. This Beijing-based
approach also organizes the relationships between traffic jams. Visual study of traffic
trajectories frequently necessitates aggregation, such as a density map [132]. The den-
sity map depicts the trajectory density and allows for the detection of "hot” regions. The
authors used a variety of techniques, including propagation graph level estimates, traffic
jam density display on a map (OpenStreetMap), topological filters, temporal and size fil-
ters, map matching, and so on. The authors used animation, flow maps, and graph layout
approaches to show the propagation graph. The system provides five visualization views:
1) pixel-based road velocity view, which displays speeds and events; 2) graph list view,
which displays propagation graphs; and 3) graph projection view, which renders the topo-
logical relationships of propagation graphs; and 4) spatial view, which represents traffic;
5) multidimensional filter view, which allows for filtering by time, space, size, and topol-
ogy, as well as the propagation path of a single chosen graph; and sorting the propagation
graphs by size and similarity yields a structured representation. Unlike this technique,
Pack et al. [133] and Khotanzad [134] looked at transportation incident datasets rather
than traffic trajectories. They created Incident Cluster Explorer, a web-based visual ana-
lytics tool. It is a program that displays the spatial, temporal, and multi-dimensional char-
acteristics of incidents using an integrated view interface. Users' engagement is aided
with choices for selection, filtering, and clustering incidents, as well as an emphasis on a
smaller dataset. Multiple visualization tools, such as histograms, interactive maps, two-

dimensional and parallel coordinate plots, can interact with each other at the same time.

103

The authors utilized either scatter plot mode or grid mode to depict relationships be-
tween a pair of variables. There are also two mapping types to choose from: icon mode
and heat mode. This program is far more complete, sophisticated, and user-friendly than
some websites (FARS), which present a considerable amount of row data but do not offer
any visualization options, leaving this challenging task to the user who can only down-
load them. Another advantage of this tool over commercial data visualization programs
like Spotfire and Tableau is the ability to plot data on a map using heat maps to minimize
occlusion and overcrowding when dealing with massive datasets like transportation inci-
dent data. Anwar et al. [135] proposed Traffic Origins, a simple way for visualizing the
impact of road incidents on congestion and vehicle flow in theirimmediate neighborhood,
as well as the cascading effect of many incidents on a road network. The incident site is
marked with an expanding circle just before a traffic incident to disclose the basic traffic
flow map, and it recedes once the incident is over. They designed appealing visualizations
to assist traffic management controllers in simply comprehending and accessing traffic
and congestion data. One of the most efficient and visually pleasing map tools, to date,
is Kepler.gl. This tool has evolved from a single page app to a robust geo-analytics and
visualization platform since its inception as an internal product in 2020, It creates an all-
in-one geographic data exploration and visualization environment, and it's been widely
utilized by Uber engineers, analysts, and data scientists to fuel advanced geospatial an-
alytics. Data scientists, architects, visualization specialists, and engineers from Mapbox,
Limebike, Airbnb, Sidewalk Labs, HERE technologies, Atkins Global, Cityswifter, UBILabs,
and 300000kms have found kepler.gl's simplicity, capability, and speed to be extremely
valuable. Academics, such as architecture student Diego Crescéncio from Estacio de Sain
Rio de Janeiro, have also used the software. The author used open crime data at kepler.gl
for his studies to better understand the built environment for urban design research. To

understand how urban architecture might improve safety within favelas, he's been em-

104

ploying 2D and 3D representations of data relevant to city-wide crime statistics. A data
scientist at CitySwifter, explored the origin and destination trips (home-to-work) in New
York city using Kepler's brushing interaction (Figure 4). The brushing interaction allows
the user of the map dashboard to hover the mouse (click) over different regions (origins)
to display the arcs of the destination of such trips. Processing maps with many different
variable or fused datasets is a challenging and time-consuming task. The fundamental
reason for this is because maps contain a lot of overlapping data, to deliver as much
insight as possible. As a result, reducing user effort in map processing and developing
effective interactive tools for visualizing traffic data can transportation planners better
comprehend map representations and integrate them into a variety of applications and

eventually make better data-driven decisions.

5.3 Methodology

This section introduces the developed analysis platform. Figure 5.3 presents the compo-
nents of our developed web app. At the top of the diagram, the device is composed of the
monitor (hardware) that will display the platform powered by React app (frontend) and
SQLite database (backend), which are connected with Express (Application Programming

Interface (APD)).

5.3.1 Speech to SQL Queries

To speed up queries performed using speech on our platform, the development of a sys-
tem that can quickly listen and render results on the platform is critical. Our simple
speech to SQL system is designed without the use of any trained models, in comparison
to the conventional approach used by other authors in literature. Figure 5.4 presents an
example of our designed system, where a user would perform a speech request through
the microphone and the listener returns a series of words. We use React’s speech Recog-

nition [136], to extract the words in a text format. The returned words are then compared

105

to a list of words we have created from the fields within our database to assure that it
matches the user's request. Once that phase is successfully passed, an SQL statement is
generated from the keywords and performed on the summary table named (Data). The
returned information is then used to perform queries on the actual tables to finally display
the results on screen. The main concept is that our main data table (Data) is structured
(merged) on common attributes before feeding it into the database so that SQL queries
don't have to perform any (JOIN) methods. This avoids the systems confusion with the

received text and helps in skipping the use of a ML model to fully understand the state-

App
components

Device

-
.u. (hardware/software)

Front-¢nd software
Including user interface

.) React JS Front-end

Application
Application Programming
software Interface (API)

- e . ﬂ;(xﬂ ite Back-end

Back-end
software
Data Storage

Host Serviers

Figure 5.3: WebApp components

106

ment made by the user.

The logic of the developed framework is like a decision tree heuristic in a way; depend-
ing on the availability of data returned from the query requested by user, further queries
are activated from other data tables. In addition to querying data, the voice commands
can also perform mouse functions and help navigate through the different pages in the
platform by activating windows methods to control the screen size, reroute to a new page,

scroll through a page, save a map layer, export filtered table, etc.

5.3.2 User Perspective

From a user perspective, we aim towards developing a delightful experience for users nav-
igating through the website. Thus, it's important to consider an organized structure for
the web-app architecture and design layout. The structure of our developed application
is presented in Figure 5.5. The home page presents the main page through which web-
site users can navigate to parent pages. Each parent page then links to children pages.
The hierarchical website structure is used in our design in order to form understandable,

discoverable and predictable patterns.

Q Please display all weather events and accidents that happened on the I-70 road
)))) during August.
User input

= <

Database
Check

timestamp _month, road name FROM Data WHERE Weather Lat IS NOT
NULL OR Accident_lat IS NOT NULL AND timestamp month = 8 AND
road_name like ‘I-70’

SQLE SELECT Weather lat, Weather lon, Accident lat, Accident lon,

Database
Check

Figure 5.4: Design of Speech to SQL system

107

The home page at the top of the structure acts as a hub for the application visitors
through which they have cards displaying the pages that a user can navigate to such
as: Historical Analysis, Predictions and Whatif Scenarios. Categorization of the data we
are displaying in this format allows for faster and easier decisions by users to reduce the
amount of time spent considering a decision. Subcategories within each category allow
for a structured methodology when browsing and categorizing information, especially
with complex data. Individual pages or child pages at the bottom of the hierarchy con-
tain the basic elements of the website so that the user's time browsing the website or

consuming content can be minimized.

5.3.3 Development and Design Perspective

For the development of the Web-App and User Interface(Ul) coding, we used the follow-
ing languages: "HTML,CSS, JavaScript, Python, SQL" where:

* HTML: Hyper Text Markup Language that builds the main structure of the web page.

] Fused Layers

] CV (Journey)
|
CV (Trips)
I—A
~‘ Historical Analysis) i
-] CV (Routes)
|
l Events
£ Rr—
|
Weather
(o) |
I T
] CV (Roads)
-‘ Predictions —_
] CV (Points)
| Whatif Scenarios

Figure 5.5: Design of Web Application pages

108

CSS: Cascading Style sheets that are used to style the web page.

JavaScript: Allows for dynamic behavior and interactions on the web page.

« Python: Structuring ?? files before inserting them into the database - in line with

the goal in mind.

SQL: Manipulating the tables in the backend database (SQLite) with functions such

as addition, deletion...etc.

Since such a project demands multiple pages with heavy interactions, it's critical to
have a structured folder approach. The structure presented in Figure 5.6 worked best
for our project after multiple trial and error experiments of design, testing, integration
and delivery of content. A few aspects that were kept in mind during the entire design
process are: Easiness of locating files, consistency throughout the application with the

design structure and naming of files to easily locate components.

5.3.4 Frontend Development

First is the main folder named “Web-App Structure” which contains two main folders
“Front End"” and “Back End”. The user-side of a web application is also known as the
frontend. Inside the browser, the frontend is the interface that the user can access and
interact with. The client-primary side’s goal is to collect data from users in an engaging
manner. JavaScript code is used to script the frontend components built in React.js. Re-
act.js is an open-source JavaScript package that is used to create single-page apps’ user
interfaces. For web and mobile apps, it's utilized to manage the view layer. We can also
make reusable Ul components with React. There are several open-source systems, such
as Angular, that make developing front-end web applications easier, however, React has

competitive benefits over other frameworks such as:

* React is relatively easy to use thanks to its component-based design, well-defined

109

lifecycle, and use of only plain JavaScript.

React is simple to comprehend for anyone with a basic understanding of program-
ming, whereas Angular and Ember are described as 'Domain-specific Languages,’

meaning that they are harder to learn. You only need a basic understanding of CSS

e —_ 4|_m
ﬁ:(aﬂh

wem,,,

=
[[

E - Exe

==

=

package.json

Figure 5.6: Design of Web-Application structure

110

and HTML to “React”. HTML is a markup language that may be used to generate
both static and dynamic web pages and apps. CSS is a style sheet language that

controls how documents produced in a markup language are displayed.

* The Virtual Document Object Module (DOM), which represents the document
structure, style and content, is used by React to keep track of the values of each
component’s state. When the state of a component changes, React compares the
current DOM state to the new DOM state. After that, it determines the most cost-

effective method of updating the DOM.

* When datais updated, React’s simple programming approach allows it to alter state

automatically. This takes place in the memory; thus, it is quick.

* React’s library is likewise quite small. It's only about 6 kilobytes in size. This is a

fraction of the size of its competitors.

Inside the "Front End"” folder, we have multiple folders and files that make up the fron-

tend of the project such as:

* Platform Cards:

Historical_analysis.jsx: contains an exported function that defines a media
card along with its dimension properties, colors, font details and button actions for

the historical page.

Predictions.jsz: contains an exported function that defines a media card
along with its dimension properties, colors, font details and button actions for the
predictions page.

Whatif.jsz: contains an exported function that defines a media card along
with its dimension properties, colors, font details and button actions for the Whatif

page.

1

* Misc:

Routes.js: contains a list of items for the navigation bar with each item de-
scribed with its respective id, label, path, icon, active icon and component. The id
describes the items order on the navigation bar. Label gives a name for the item
on the navigation bar. Path defines the item's route. lcon presents the item'’s im-
age on the navigation bar while inactive (unclicked), while the active icon presents
the item'’s image on the navigation bar while active (clicked). Component links the

actual child page to the item.

Styles.js: includes styling of the different pages with alignment, width, height,
margins, padding, colors, position, etc. For example, setting ‘flex’ as a display prop-
erty allows for automatic adjustment of elements within a webpage upon stretching

or shrinking a webpage.

Navigation.js: contains a drawer element that displays menu items and link
them to their respective routes upon clicking. The navigation panel can also be
minimized and maximized easily with a click, to allow users a wider display of page

content.
Menultem.js: returns a list of menu items mapped to their respective icons
with an icon appearing based on the user’s choice or click.
* Parent Page:

Header.jsx: contains a static bar at the very top of the page that is visible
during all website interactions and navigations. A home button is added so that

users can easily navigate to the home page at any time.

Footer.jsx: contains a static bar at the very bottom of the page that is visible

only on the home page providing information about the website developers.
Historical_analysis.js: Contains a summary description for each of the child

12

pages within historical analysis (parent page) along with a button that routes to the
clicked menu item page once clicked. The page also contains a navigation bar that

can easily switch the user from one child page to another within the history page.

Predictions.js: Contains a summary description for each of the child pages
within predictions (parent page) along with a button that routes to the clicked menu
item page once clicked. The page also contains a navigation bar that can easily

switch the user from one child page to another within the predictions page.

W hatif.js: Contains a summary description for each of the child pages within
Whatif (parent page) along with a button that routes to the clicked menu item page
once clicked. The page also contains a navigation bar that can easily switch the user

from one child page to another within the Whatif page.

Fused_config.json: json file describing the properties of the rendered map
with information such as: attributes to display, filters to use, styling of points, data

type, map state and map style.
Fused_dash.js: returns the navigation bar along with the map from Fused,,ap.js

Fused_map.js: returns a map function that fetches data from the backend
database and dispatches it to the map layer. Customized reducers are then used to

control the map.

CV (Journey)... similar structure to Fused Layers folder with naming relevant

to the current folder.

CV (Trips) ... similar structure to Fused Layers folder with naming relevant to

the current folder.

CV(Roads) ... similar structure to Fused Layers folder with naming relevant to

the current folder.

13

Weather ... similar structure to Fused Layers folder with naming relevant to

the current folder.

FEvents ... similar structure to Fused Layers folder with naming relevant to the

current folder.

Hooks:

Speech.js: contains a list of commands that can be heard by the web-app
user. The commands are translated to window methods and queries to the backend
database. For example: user can say “open history page” and that will activate an

open method within the window to route (/history)

Index.js: Contains the ReactDom that renders the React elements to the web
page

Index.css: Stylng of the main home page with margins, padding, positions and

colors.

App.js: Contains two main components: speech and routes. They are both
linked on this page so that speech is always activated throughout different pages.

Routes provide the path for all parent and child pages.

Package.json: Collection of all the libraries and packages imported in this

project along with their version number.

5.3.5 Frontend Development

The server-side of the application is also known as the backend. SQLite is used for data

processing, handled by the backend components. The data is manipulated and validated

in the backend stores in response to the requests that users send are handled. The major-

ity of requests "fetch” the data that the user has requested. SQLite is a relational database

management system that runs without a server. It is a zero-configuration, in-memory

14

open-source library that does not require installation. It is also convenient because it's
only 500kb in size, far smaller than other database management systems. The following

are some of the benefits of utilizing SQLite as an application file format:

* For tables, SQLite employs dynamic types. It indicates that any value, regardless of

data type, can be stored in any column.

* SQLite allows several database files to be accessed at the same time using a single
database connection. This adds several useful functionalities, such as connecting

tables across databases or copying data between databases with a single query.
* SQLite can create in-memory databases that are extremely quick to work with.

Inside the "Back End" folder, we have multiple folders and files that make up the back-

end of the project such as:

* to database:

CV _journey.py: After connecting to the created SQLite database, a CV_jour-
ney table is created with the table fields mirroring the CSV file columns. Datatype
for each field is also defined in this step. The CSV file is then read line by line and

each column value is inserted into the created table.

CV _trip.py ... similar structure to C'V _journey.py file with naming relevant

to the current folder.

CV _roads.py ... similar structure to CV _journey.py file with naming relevant

to the current folder.

Incidents.py ... similar structure to CV _journey.py file with naming relevant

to the current folder.

Weather.py ... similar structure to CV _journey.py file with naming relevant

to the current folder.

15

* Data.db
CV_journey_table
CV _trip_table
CV _roads_table
Incidents_table
Weather_table

Index.js: Here we connect the created SQLite database and then use Express
APl to send the data from each of the created tables to a unique route. Each layer
in the created map on the front end demands a specific structuring of data to be

sent.

5.3.6 Application Programming Interface

Finally, to connect the frontend and backend components, Express server is used
to create controllers, routes and server. Controllers are server-side routines that
process all requests sent to specific APl endpoints (i.e, when you use the retrieve
endpoint in the React app to get all the traffic flow on a specific data from the map
layer, one of these functions will generate the response). Routes will be the next
quick and straightforward step after controllers. The Express library will then be
used to develop the router for all APl endpoints, such as retrieving traffic flow on all

days, routes with highest congestion index, incidents causing highest delays, etc.

116

5.4 Performance Evaluation

5.4.1 Query Speeds and User-Friendliness

The queries performed on the platform use six main datasets as presented in Ta-
ble 5.1 with information about the number of rows and query response times. The
output of each query is a JavaScript Object Notation (JSON) formatted data that is
loaded from a comma-delimited (CSV) file containing all the information requested
by the user. The displayed times are the maximum query times for all the rows
within the dataset.

Table 5.1: Query response time for data tables

Dataset Rows Count Query Time (sec)
Incidents 191,075 2
Weather 227140 2
Connected Vehicles (point) 3,163,946 5
Connected Vehicles (arc) 919,413 3
Connected Vehicles (line) 9,854,555 8
Connected Vehicles (journey) 9,854,555 8

In addition, the platform enables interactive user-friendly operations from users.
Users can select or use voice to filter locations of interest from the chart by zooming
in, zooming out, or using a circular filter. Different time periods can also be selected
using the accompanying charts as explained in the following sections. The following

characteristics contribute towards making our platform user-friendly:

- Clear logic and navigation for broad topics only, where users arriving at the
platform for the first time can easily navigate around without the need for any

guesswork.

- Responsive and compatible design, where the application can function prop-

erly on different screen sizes (desktop, tablets, phones) with a range of browsers.

17

- Easily digestible content with most important information offered first.

- Clickable links have a consistent clickable look so that users can easily be di-

rected to home or exit pages.

- Accessible using voice commands than can respond back to the user with

helpful commands that can help direct the user around the platform.

5.5 Web-App Pages and Features

Starting at the first page, web-app visitors are first welcomed with the home page
as presented in the Figure 5.7. The Navigation bar is then presented along all parent
and children pages or routes. A visual of the navigation bar is displayed on the right

(non-active and active icons).

To manage the state and data flow of the CV dataset, we use Kepler.gl. Kepler, a
React component, is a web-based application for visual exploration of large-scale
geolocation data sets that is data agnostic and high-performance. This web app
uses Mapbox GL and deck.gl to render millions of points representing thousands of
trips and conduct spatial aggregations on the fly. Layers are used as building blocks
in kepler.gl to generate interactive maps, with customizable layer generation and

data (e.g., fares, ETA, and timestamps) encoded to visual channels (e.g., circle size,

Fused layers Fused layers

CV (journey) CV (journey)

cv (trip) CV (trip)

xX B ¥4

vV (Road) CV (Road)
Weather (point) Weather (point)

Weather (hexagon) Weather (hexagon)

Events (point)

»

Events (point)

BEOGGXD P ®

Events (hexagon)

»

Events (hexagon)

Figure 5.7: Screenshot of Web-App: Home Page (left) and Navigation Bar (Right)

18

arc color, and circle color) with scaling functions (e.g., linear, quantile, and quan-
tize). A point layer, for example, can be used to plot event and place locations; an
arc layer can be used to visualize origin-destination correlations; a hexbin or grid
layer can be used to aggregate a collection of points to show its distribution; and a
polygon layer can be used to visualize a choropleth map showing aggregate statis-
tics of geographic regions. Beyond the usual 2D x and y cartographic plane, we use
the Geographic JavaScript Object Notation (GeoJSON) format discussed earlier to
add Line-string geometry along with a timestamp for each point; a third dimension
to encode data in an isometric perspective view that displays the movement of ve-
hicle from one point to another. A user can more rapidly spot abnormalities in an
aggregate map when actual movement of vehicle is displayed, as demonstrated in

Figure 5.8.

In addition to standard metric-based filtering, we add Brushing properties (Fig-
ure 5.9) to allow users to highlight arcs and points that originate within a particular
radius of where the mouse is now located (hovered) over the map. This feature is

particularly useful for visualizing origin-destination correlations in order to better

PEOGQEXD ¥ ®

BroFM

Figure 5.8: CV journey's from point to point along their routes

19

understand how different locations are connected.

We developed the current web-app from a single page app to a robust geo-analytics
and visualization platform. It creates an all-in-one geographic data exploration and
visualization environment, and can be used to fuel advanced geospatial analytics.
The speed, deep insights and geo-analytical capabilities of the toolbox allows us to
achieve powerful and quick data analysis for CV historical data and predictions and

perform road predictions as displayed in Figure 5.10.

5.6 Strategy Canvas

To understand how our developed platform compares to common relational database
systems, we use the blue ocean strategy. [116] introduced the phrases “red ocean”
and “blue ocean” to represent the market universe in their influential book “Blue
Ocean Strategy”. Allthe existing industries make up the known space or “red oceans”.

Industry oceans and the game's rules of competition are well known. Traditional

Inieesciive Trafic Anslysis Dashboaid

BEEQGHRED®

Figure 5.9: Layers can be rendered using subtractive blending (left) and additive blending
(right)

120

players strive to outperform their rivals in order to snag a bigger piece of the mar-
ket. Profits and growth are decreased as the market becomes more crowded which
fuels fierce competition; thus, the name “red ocean”. In contrast, “blue oceans”
represent all sectors that do not yet exist and have an untapped market space. De-
mand is created rather than contested. Competition is unimportant since the rules
of the game are still being established. An analogy used to depict the greater and
deeper potential to be discovered in untapped market space is a “blue ocean”. In
terms of lucrative growth, a blue ocean is large and deep. We use the same concept
to higlight the value of our application as presented in Figure 5.11, with the strategy
canvas labeled in terms of costs and capabilities for our developed platform (blue)
and the traditionally used platform such as Oracle (Red). A score out of 10 was
given for each characteristic and so a higher score reflects a higher value. Our plat-
form utilizes open-source language and software tools, so the cost of development
is much more affordable. However, integration of such open-source demands effort

and technical knowledge from the developer’s side. The usage of CPUs for querying

©

BBEGQEXDD

Figure 5.10: Roads colored by speed from CV speeds

121

data for both platforms is reflected with a tied score for cloud costs. The location
of the platform’s deployment largely affects the administration’s cost. A relational
database service like Oracle costs substantially more if the server is built internally.
In terms of automation, many procedures on our platform are automated, meaning
that with new unseen data, the app can quickly update to the changes. For Ora-
cle, however, an administrator needs to monitor the changes, rewrite queries and
in turn increase the workload. In terms of capabilities, our platform offers much
more than just interactive visualizations of 2GB Data (Oracle) where we can per-
form that on large amounts of data seamlessly with no delays on the front-end. The
platform developed also allows for geospatial analysis and working with GeoJSON
files, essentially offering predictive analytics. Lastly, we offer speech navigation and

queries for easier browsing.

5.7 Summary

A fully functional, interactive Web-App has been designed for storing, retrieving,
fusing and visualizing numerous massive transportation datasets. The develop-

ment of the application was done utilizing the latest developments in the science of

Strategy Canvas

10 1 10 10 10 10 10 10 10
g e ’ 8
3 6 5
a4
2
0 -2 © & ©
. A A A A N
3 2 2 S & S o S 2 s i S
& N & o &° 8 & 0 & & \So*\ (a\$0 &
O %) §) & N o o <
2 &O&‘ & o® & @ R o & <@ AR
R N & @ & R S s &
@ < & S O R
& < & @ S
Q & Q¢
&
&
&
Categories

Developed_Platform Oracle

Figure 5.11: Strategy canvas (value curve) for the developed platform and Oracle

122

big data. The developed web-app allows for a lightning-fast analysis and visualiza-
tion of the data. To create the application, a modular design structure was adopted
for the front and back ends. A user navigating through the front end submits re-
quests through various clicks or voice commands that are then sent to the back end
to fetch the data. The main goal of designing a fast and interactive platform is to
minimize the latency between front and back ends which eventually minimizes the

amount of time spent by the user on the application and provides quicker insights.

123

Chapter 6

Conclusion

In this dissertation a solution to control traffic congestions was developed by de-
livering an interactive web application that performs faster prediction with higher
accuracy data. That was made possible by accomplishing four designed objectives.
First, we proposed a GC-GRU based neural network traffic forecasting model and
compared various traffic forecasting techniques for a small dataset of few routes.
After that, we conducted a comparison analysis between the suggested model and
state-of-the-art models like HA, LSTM, and Transformers. A comparison of the
model results show that the suggested GC-GRU is a challenging rival to cutting-
edge traffic forecasting techniques. The developed architecture has the following

advantages:

- Model performance on the provided test data ranked second with a MAPE of
3.16 which is very close to Transformer’s performance of 3.12.
- It's worth noting that our model not only had the fastest inference time, but

also had a training time that is six times faster than Transformer.

Connected vehicle data offers a wide array of opportunities for transportation sys-

124

tems and operations management. This technology makes use of vehicle-to-everything
(V2X) communications to address roadway mobility and safety concerns, such as
travel time and near-accident occurrence. Agencies interested in integrating this
data with existing data sources should understand the added benefits and limita-
tions of the technology. In this dissertation, we compared CV data to traditionally
used probe data to extract the benefits it can offer in accurately detecting incident

and congestion events. The key contributions that were found are as follows:

- Both CV and probe data indicated a strong correlation between speed on the
freeway. The observed difference is that the CV data captures the peak hours

better than the probe data.

- The bias on freeways was found to be significantly less than the bias on ar-
terials. This can be explained by the fact that most probe data do not cover

enough arterials, resulting in large biases.

- For the jam-stand-still-traffic condition, it is observed that the CV data de-
tected the freeway congestion about 3-minutes on average prior to the probe

data.
- Also, CV data detected more traffic incidents on the freeway than probe data.
- Similarly, the CV data detected more incidents on the arterial than probe data.

- It was observed that the influence of probe penetration rate is insignificant, if

an incident leads to jammed or heavy traffic.
- The study's findings indicate that the higher the penetration rate, the lower

the speed bias.

In addition, we developed larger scale models that can handle the volume of CV
data and learn not only the temporal but also the spatial features that may exist.

The key contributions and findings are summarized below:

125

- We investigated how the RAPIDS framework and Dask CUDA may be used to
accelerate big CV data pipelines on GPU and managed the complete proce-
dure at 70 times faster speed, reducing the computation time from 41 hours

to 25 minutes.

= |n addition, the RAPIDS and Dask architecture made the source codes con-
siderably easier by condensing most computations to a single line of code,
except for the initial library imports and cluster setup routines. The original

CPU code, however, required numerous lines of code (about 20 for each task).

- To test the applicability of the proposed UNet model, the comparison to HA
statistical method and ConvLSTM saw an average improvement of 65 percent
and 15 percent, respectively. The image snippets from each prediction model
to the actual image showed that image textures were more similar in UNet

than the benchmark models used.

- UNet's dominance in performing image predictions was also evident in multi-
step forecasting, where the increase in errors was relatively minimal over longer

prediction spans.

To accomplish the last objective, we developed an interactive visual analytics web
application that enables fast speech queries, visualization, interaction, and analysis
of the big CV data (historical and anticipated) in the browser (front end). The web
application leverages Central processing units (CPUs) to enable computationally
intensive tasks like data reduction, aggregation, and filtering to be carried out with

user input from the front end.

The presented work, however, comes with a few limitations and recommendations
for future work. While the average penetration rate of CVs in the study is around
8%, it was observed that CVs on freeways contribute more to that number than CVs

on arterials. One way to tackle this issue can be by performing simulation on the

126

roads with fewer CVs to ensure a consistent average and more reliable results. The
traffic events data used to locate congestions and incidents is reported by drivers
on the road and so their location might not be very accurate. To accomodate for
that, we filtered the most severe events by type with the highest number of votes
by drivers. A possible extension to improve its reliability can involve comparing it

to police reports, to better understand the bias such data can generate.

The prediction models trained in this dissertation were focused on the study area
of Saint Louis city in the state of Missouri, but can be scaled for other geogrpahical
areas of interest by applying transfer learning. This allows for the use of a smaller
dataset than the one we used for training the current model. Another possible ex-
tension for the platform features can be the use of hand gestures (vision) to navi-
gate along with the speech queries. The additional feature can allow drivers to nav-
igate the application in more than one method without having to touch the screen

while driving.

Finally, when analyzing the predicted recurring congestion events through the de-
veloped platform its important to be cautious of the positive feedback loop when
collecting datainthe predicted locations since the higher number of detected events
can be due to the efforts focused on the source rather than an actual increase in the

number of events.

127

Bibliography

(1]

[2]

(3]

(4]

(5]

(6]

(7]

(8]

B. E. David Schrank and T. Lomax, “2019 urban mobility report,” 2019. —
page 1

D. Ni, J. Li, S. Andrews, and H. Wang, “A methodology to estimate capacity
impact due to connected vehicle technology,” International Journal of
Vehicular Technology, vol. 2012, 11 2012, — page 3

A. Olia, B. Abdulhai, H. Abdelgawad, and S. Razavi, "Assessing the
potential impacts of connected vehicles: Mobility, environmental and
safety perspectives,” Journal of Intelligent Transportation Systems Technology
Planning and Operations, vol. 20, 06 2015.

A. Olia, S. Razavi, B. Abdulhai, and H. Abdelgawad, “Traffic capacity
implications of automated vehicles mixed with regular vehicles,” Journal of
Intelligent Transportation Systems, vol. 22, no. 3, pp. 244-262, 2018.
[Online]. Available: https://doi.org/10.1080/15472450.2017.1404680
— page 3

J. V. Werf, S. E. Shladover, M. A. Miller, and N. Kourjanskaia, “Effects of
adaptive cruise control systems on highway traffic flow capacity,”
Transportation Research Record, vol. 1800, no. 1, pp. 78-84, 2002. [Online].
Available: https://doi.org/10.3141/1800-10 — page 3

C. Schulz, “Efficient local search on the gpu - investigations on the vehicle
routing problem,” J. Parallel Distributed Comput., vol. 73, pp. 14-31, 2013. —
page 5

Z.Horvath, R. A. P. Perdigdo, J. Waser, D. Cornel, A. Konev, and G. Bl6schl,
“Kepler shuffle for real-world flood simulations on gpus,” The International
Journal of High Performance Computing Applications, vol. 30, pp. 379 - 395,
2016. — page 5

A. R. Brodtkorb, T. R. Hagen, and M. L. Seetra, “Graphics processing unit
(gpu) programming strategies and trends in gpu computing,” J. Parallel
Distributed Comput., vol. 73, pp. 4-13, 2013.

128

https://doi.org/10.1080/15472450.2017.1404680
https://doi.org/10.3141/1800-10

[9]

(10]

(1]

[12]

[13]

[14]

[15]

(1e]

S. Lee and S. Park, “Performance analysis of big data etl process over
cpu-gpu heterogeneous architectures,” in 2021 I[EEE 37th International
Conference on Data Engineering Workshops (ICDEW), 2021, pp. 42-47. —
page 5

C.-T. Yang, C.-L. Huang, and C.-F. Lin, “Hybrid cuda, openmp, and mpi
parallel programming on multicore gpu clusters,” Computer Physics
Communications, vol. 182, no. 1, pp. 266-269, 2011, computer Physics
Communications Special Edition for Conference on Computational Physics
Kaohsiung, Taiwan, Dec 15-19, 2009. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0010465510002262 —
pages 5, 6

M. Garland, S. M. L. Grand, J. R. Nickolls, J. Anderson, J. Hardwick, S. A.
Morton, E. H. Phillips, Y. Zhang, and V. Volkov, “Parallel computing
experiences with cuda,” IEEE Micro, vol. 28, 2008. — pages 5, 6

P. Du, R. Weber, P. Luszczek, S. Tomov, G. D. Peterson, and J. Dongarra,
“From cuda to opencl: Towards a performance-portable solution for
multi-platform gpu programming,” Parallel Computing, vol. 38, no. 8, pp.
391-407,2012-08 2012. — page 6

Y. Zhang and Y. Jia, Parallelization of Implicit CCHE2D Model using CUDA
Programming Techniques, pp. 1777-1792. [Online]. Available:
https://ascelibrary.org/doi/abs/10.1061/9780784412947.175 — page 6

H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, “Spatiotemporal recurrent
convolutional networks for traffic prediction in transportation networks,”
Sensors, vol. 17, no. 7, 2017. [Online]. Available:
https://www.mdpi.com/1424-8220/17/7/1501 — pages 6, 64

B. Medina-Salgado, E. Sdnchez-DelaCruz, P. Pozos-Parra, and J. E. Sierra,
“Urban traffic flow prediction techniques: A review,” Sustainable Computing:
Informatics and Systems, vol. 35, p. 100739, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2210537922000725 —
pages 6, 36, 64

T. Han, K. Tang, and T. Oguchi, “Short-term travel speed prediction for
urban expressways using convolutional neural network and tensor
decomposition,” Transportation Research Procedia, vol. 48, pp. 962-974,
2020, recent Advances and Emerging Issues in Transport Research - An
Editorial Note for the Selected Proceedings of WCTR 2019 Mumbai.
[Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2352146520305421 —
pages 6, 64, 68

129

https://www.sciencedirect.com/science/article/pii/S0010465510002262
https://www.sciencedirect.com/science/article/pii/S0010465510002262
https://ascelibrary.org/doi/abs/10.1061/9780784412947.175
https://www.mdpi.com/1424-8220/17/7/1501
https://www.sciencedirect.com/science/article/pii/S2210537922000725
https://www.sciencedirect.com/science/article/pii/S2210537922000725
https://www.sciencedirect.com/science/article/pii/S2352146520305421
https://www.sciencedirect.com/science/article/pii/S2352146520305421

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. Wang, J. Zhang, W. Cao, J. Li, and Y. Zheng, "When will you arrive?
estimating travel time based on deep neural networks,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018. [Online].
Available: https://ojs.aaai.org/index.php/AAAl/article/view/11877 —
pages 6, 64

B. Pan, U. Demiryurek, and C. Shahabi, “Utilizing real-world transportation
data for accurate traffic prediction,” in 2012 IEEE 12th International
Conference on Data Mining, 2012, pp. 595-604. — pages 6, 63

B. Pan, U. Demiryurek, C. Shahabi, and C. Gupta, “Forecasting
spatiotemporal impact of traffic incidents on road networks,” in 2013 IEEE
13th International Conference on Data Mining, 2013, pp. 587-596.

A. PHUSITTRAKOOL, C. JEENANUNTA, and P. PRATHOMBUTR,
“Evaluation of network performance under provision of short predictive
traffic information,” vol. 13, p. 433-450, Jun. 2015. [Online]. Available:
https://wjst.wu.ac.th/index.php/wijst/article/view/1506 — pages 6, 63

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting,” in International Conference on
Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=SJIHXGWAZ — pages 8, 13,14, 65, 70

M. Lenzerini, "Data integration: A theoretical perspective,” 012002, pp.
233-246. — pages 9, 70

M. J. Islam, A. Sharma, and H. Rajan, “A cyberinfrastructure for bigdata
transportation engineering,” 04 2018. — page 9

Y. Adu-Gyamfi, “Gpu-enabled visual analytics framework for big
transportation datasets,” pp. 147-159, 12 2019. — page 9

M. R. Jabbarpour, H. Zarrabi, R. H. Khokhar, S. Shamshirband, and K.-K. R.
Choo, “Applications of computational intelligence in vehicle traffic
congestion problem: A survey,” Soft Computing, vol. 22, pp. 2299-2320,
2018. — page 12

J. F. Gilmore and N. Abe, “Neural network models for traffic control and
congestion prediction,” J. Intell. Transp. Syst., vol. 2, pp. 231-252,1995. —
page 12

H. Yao, P. Gao, J. Wang, P. Zhang, C. Jiang, and Z. Han, “Capsule network
assisted iot traffic classification mechanism for smart cities,” IEEE Internet
of Things Journal, vol. 6, no. 5, pp. 7515-7525, 2019. — page 12

130

https://ojs.aaai.org/index.php/AAAI/article/view/11877
https://wjst.wu.ac.th/index.php/wjst/article/view/1506
https://openreview.net/forum?id=SJiHXGWAZ

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Y. Li, D. Deng, U. Demiryurek, C. Shahabi, and S. Ravada, “Towards fast and
accurate solutions to vehicle routing in a large-scale and dynamic
environment,” vol. 9239, 08 2015, pp. 119-136. — page 12

M. Asghari, D. Deng, C. Shahabi, U. Demiryurek, and Y. Li, “Price-aware
real-time ride-sharing at scale: an auction-based approach,” 10 2016, pp.
1-10. — page 12

D. Shi, J. Ding, S. M. Errapotu, H. Yue, W. Xu, X. Zhou, and M. Pan, “Deep
${Q3% -network-based route scheduling for tnc vehicles with passengers’
location differential privacy,” IEEE Internet of Things Journal, vol. 6, pp.
7681-7692, 2019. — page 12

H. Su, L. Zhang, and S. Yu, “Short-term traffic flow prediction based on
incremental support vector regression,” Third International Conference on
Natural Computation (ICNC 2007), vol. 1, pp. 640-645, 2007. — page 13

Y. Xie, Y. Sun, and D. Chen, "Gaussian processes for short-term traffic
volume forecasting,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2165, pp. 69-78, 12 2010. — page 13

Y. Qi and S. Ishak, “A hidden markov model for short term prediction of
traffic conditions on freeways,” Transportation Research Part C-emerging
Technologies, vol. 43, pp. 95-111, 2014. — page 13

R. Wang, D. B. Work, and R. Sowers, “Multiple model particle filter for
traffic estimation and incident detection,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 12, pp. 3461-3470, 2016. — page 13

W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, “Discovering
spatio-temporal causal interactions in traffic data streams,” in Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD "11. New York, NY, USA: Association for
Computing Machinery, 2011, p. 1010-1018. [Online]. Available:
https://doi.org/10.1145/2020408.2020571 — page 13

P. Cai, Y. Wang, G. Lu, P. Chen, C. Ding, and J. Sun, “A spatiotemporal
correlative k-nearest neighbor model for short-term traffic multistep
forecasting,” Transportation Research Part C Emerging Technologies, vol. 62,
pp. 21-34, 01 2016. — page 13

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” 2014. [Online].
Available: https://arxiv.org/abs/1412.3555 — page 13

131

https://doi.org/10.1145/2020408.2020571
https://arxiv.org/abs/1412.3555

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735-1780, nov 1997. [Online]. Available:
https://doi.org/10.1162/neco0.1997.9.8.1735 — page 13

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778. — page 14

J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks for
citywide crowd flows prediction,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 31, no. 1, Feb. 2017. [Online]. Available:
https://ojs.aaai.org/index.php/AAAl/article/view/10735 — page 14

J. Zhang, Y. Zheng, J. Sun, and D. Qi, “Flow prediction in spatio-temporal
networks based on multitask deep learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 32, pp. 468-478, 2020. — page 14

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” 2016. [Online].
Available: https://arxiv.org/abs/1606.09375 — page 14

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016. [Online]. Available:
https://arxiv.org/abs/1609.02907 — page 14

B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks:
A deep learning framework for traffic forecasting,” in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
[JCAI-18. International Joint Conferences on Artificial Intelligence
Organization, 7 2018, pp. 3634-3640. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/505 — page 14

L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-gcn: A temporal graph convolutional network for traffic prediction,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 9, pp.
3848-3858, 2020. — pages 14,17

K. Sohn, “Forecasting road traffic speeds by considering area-wide
spatiotemporal dependencies based on a graph convolutional neural
network (gcn),” Transportation Research Part C Emerging Technologies, vol.
14, pp. 189-204, 02 2020. — page 14

R. Fu, Z. Zhang, and L. Li, “Using Istm and gru neural network methods for
traffic flow prediction,” 2076 31st Youth Academic Annual Conference of
Chinese Association of Automation (YAC), pp. 324-328, 2016. — pages
14,16

132

https://doi.org/10.1162/neco.1997.9.8.1735
https://ojs.aaai.org/index.php/AAAI/article/view/10735
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1609.02907
https://doi.org/10.24963/ijcai.2018/505

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

TRBAIAC, “traffic4cast data challenge.” [Online]. Available:
https://trbaiac.web.app/data — page 15

H. K. Nihan, N.L., “se of the box and jenkins time series technique in traffic
forecasting.” Transportation, vol. 9, pp. 125-143,1980. — page 16

S. Kumar and L. Vanajakshi, “Short-term traffic flow prediction using
seasonal arima model with limited input data,” European Transport Research
Review, vol. 7, 09 2015.

S.R. Chandra and H. Al-Deek, “Predictions of freeway traffic speeds and
volumes using vector autoregressive models,” Journal of Intelligent
Transportation Systems, vol. 13, no. 2, pp. 53-72, 2009. [Online]. Available:
https://doi.org/10.1080/15472450902858368 — page 16

M. Castro-Neto, Y.-S. Jeong, M. K. Jeong, and L. D. Han, “Online-svr for
short-term traffic flow prediction under typical and atypical traffic
conditions,” Expert Syst. Appl., vol. 36, pp. 6164-6173, 2009. — page 16

W.-C. Hong, Y. Dong, F. Zheng, and S.-Y. Wei, “Hybrid evolutionary
algorithms in a svr traffic flow forecasting model,” Applied Mathematics and
Computation, vol. 217, pp. 6733-6747, 04 2011.

M. T. Asif, J. Dauwels, C. Goh, A. Oran, E. Fathi, M. Xu, D. Mohan,

N. Mitrovic, and P. Jaillet, “"Spatiotemporal patterns in large-scale traffic
speed prediction,” IEEE Transactions on ITS, vol. 15, pp. 1-11, 01 2013. — page
16

H. Chang, Y. Lee, B. Yoon, and S. Baek, “Dynamic near-term traffic flow
prediction: System-oriented approach based on past experiences,”
Intelligent Transport Systems, IET, vol. 6, pp. 292-305, 09 2012. — page 16

Z.Zhu, B. Peng, C. Xiong, and L. Zhang, “Short-term traffic flow prediction
with linear conditional gaussian bayesian network,” Journal of Advanced
Transportation, vol. 50, no. 6, pp. 1111-1123, 2016. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/atr.1392 — page 16

Q. Ye, S. Wong, and W. Szeto, “Short-term traffic speed forecasting based
on data recorded at irregular intervals,” in 13th International IEEE Conference
on Intelligent Transportation Systems, 2010, pp. 1541-1546. — page 16

J. Lint, S. Hoogendoorn, and H. van Zuylen, "Accurate travel time prediction
with state-space neural networks under missing data,” Transportation
Research Part C: Emerging Technologies, vol. 13, p. 347-369, 10 2005.

133

https://trbaiac.web.app/data
https://doi.org/10.1080/15472450902858368
https://onlinelibrary.wiley.com/doi/abs/10.1002/atr.1392

[59] X.Ma, H.Yu, Y. Wang, and Y. Wang, “Large-scale transportation network
congestion evolution prediction using deep learning theory,” PLOS ONE,
vol. 10, no. 3, pp. 1-17, 03 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0119044

[60] J. Tang, F. Liu, Y. Zou, W. Zhang, and Y. Wang, “"An improved fuzzy neural
network for traffic speed prediction considering periodic characteristic,”
IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 9, pp.
2340-2350, 2017. — page 16

[61] A. Abdelraouf, M. Abdel-Aty, and Y. Wu, “Using vision transformers for
spatial-context-aware rain and road surface condition detection on
freeways,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 10, pp. 18 546-18 556, 2022. — page 16

[62] Z.Cui, R.Ke, Z. Pu, and Y. Wang, “Deep bidirectional and unidirectional
Istm recurrent neural network for network-wide traffic speed prediction,”
2018. [Online]. Available: https://arxiv.org/abs/1801.02143 — page 16

[63] Y. Wu and H. Tan, “Short-term traffic flow forecasting with
spatial-temporal correlation in a hybrid deep learning framework,” 2016.
[Online]. Available: https://arxiv.org/abs/1612.01022 — page 16

[64] Y.Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.01926 — page 16

[65] R.Ke, W. Li, Z. Cui, and Y. Wang, “Two-stream multi-channel convolutional
neural network for multi-lane traffic speed prediction considering traffic
volume impact,” Transportation Research Record: Journal of the Transportation
Research Board, vol. 2674, p. 036119812091105, 03 2020. — page 16

[66] C.Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention
network for traffic prediction,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 01, pp. 1234-1241, Apr. 2020. [Online].
Available: https://ojs.aaai.org/index.php/AAAl/article/view/5477 —
pages 16, 68, 71

[67] Z.Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, "Graph wavenet for deep
spatial-temporal graph modeling,” 2019. [Online]. Available:
https://arxiv.org/abs/1906.00121 — page 16

[68] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, "Attention based
spatial-temporal graph convolutional networks for traffic flow forecasting,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. O1,

134

https://doi.org/10.1371/journal.pone.0119044
https://arxiv.org/abs/1801.02143
https://arxiv.org/abs/1612.01022
https://arxiv.org/abs/1707.01926
https://ojs.aaai.org/index.php/AAAI/article/view/5477
https://arxiv.org/abs/1906.00121

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

pp. 922-929, Jul. 2019. [Online]. Available:
https://ojs.aaai.org/index.php/AAAl/article/view/3881 — page 17

Z. Cui, M. Zhu, S. Wang, P. Wang, Y. Zhou, Q. Cao, C. Kopca, and Y. Wang,
“Traffic performance score for measuring the impact of covid-19 on urban
mobility,” 2020. [Online]. Available: https://arxiv.org/abs/2007.00648
—» pages 26, 27

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” 2016. [Online]. Available:
https://arxiv.org/abs/1605.08695 — page 28

Scikit-learn, “Tuning hyperparameters of an estimator.” [Online]. Available:
https://scikit-learn.org/stable/modules/grid_search.html — page 28

L. Ge, H. Li, J. Liu, and A. Zhou, “Temporal graph convolutional networks for
traffic speed prediction considering external factors,” in 2019 20th IEEE
International Conference on Mobile Data Management (MDM). Los
Alamitos, CA, USA: IEEE Computer Society, jun 2019, pp. 234-242.
[Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/MDM.2019.00-52 —
pages 36, 65

S. Fang, Q. Zhang, G. Meng, S. Xiang, and C. Pan, “Gstnet: Global
spatial-temporal network for traffic flow prediction,” in Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, 7
2019, pp. 2286-2293. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/317 — pages 36, 65

J.J. Q. Yu and J. Gu, “Real-time traffic speed estimation with graph
convolutional generative autoencoder,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 10, pp. 3940-3951, 2019. — pages
36, 66

Z.Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, and S. He, “Dynamic
spatial-temporal graph convolutional neural networks for traffic
forecasting,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 01, pp. 890-897, Jul. 2019. [Online]. Available:
https://ojs.aaai.org/index.php/AAAl/article/view/3877 — page 36

C. Chen, K. Li, S. G. Teo, X. Zou, K. Wang, J. Wang, and Z. Zeng, “Gated
residual recurrent graph neural networks for traffic prediction,” Proceedings

135

https://ojs.aaai.org/index.php/AAAI/article/view/3881
https://arxiv.org/abs/2007.00648
https://arxiv.org/abs/1605.08695
https://scikit-learn.org/stable/modules/grid_search.html
https://doi.ieeecomputersociety.org/10.1109/MDM.2019.00-52
https://doi.org/10.24963/ijcai.2019/317
https://ojs.aaai.org/index.php/AAAI/article/view/3877

[77]

[78]

[79]

[80]

[81]

[82]

[83]

of the AAAI Conference on Artificial Intelligence, vol. 33, no. O1, pp. 485-492,
Jul. 2019. [Online]. Available:
https://ojs.aaai.org/index.php/AAAl/article/view/3821 — pages 37, 68

J.Li, Z. Han, H. Cheng, J. Su, P. Wang, J. Zhang, and L. Pan, “Predicting path
failure in time-evolving graphs,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019, A. Teredesai, V. Kumar, Y. Li,

R. Rosales, E. Terzi, and G. Karypis, Eds. ACM, 2019, pp. 1279-1289.
[Online]. Available: https://doi.org/10.1145/3292500.3330847 — page
37

Z.Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “"Graph wavenet for deep
spatial-temporal graph modeling,” in Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, 7
2019, pp. 1907-1913. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/264 — pages 37, 54, 68

"Using big gps trajectory data analytics for vehicle miles traveled
estimation,” Transportation Research Part C: Emerging Technologies, vol. 103,
pp. 298-307, 2019. — page 38

J. M. Waddell, S. M. Remias, J. N. Kirsch, and T. Trepanier, “Utilizing
low-ping frequency vehicle trajectory data to characterize delay at traffic
signals,” Journal of Transportation Engineering, Part A: Systems, vol. 146,
no. 8, p. 04020069, 2020. [Online]. Available:
https://ascelibrary.org/doi/abs/10.1061/JTEPBS.0000382 — page 38

S. Khadka, P. T. Li, and Q. Wang, “Developing novel performance measures
for traffic congestion management and operational planning based on
connected vehicle data,” Journal of Urban Planning and Development, vol.
148, no. 2, p. 04022016, 2022. — page 38

J.-N. Meier, A. Kailas, O. Abuchaar, M. Abubakr, R. Adla, M. Ali, G. Bitar,

R. Deering, U. Ibrahim, P. Kelkar, V. V. Kumar, E. Moradi-Pari, J. Parikh,

S. Rajab, M. Sakakida, and M. Yamamoto, “On augmenting adaptive cruise
control systems with vehicular communication for smoother automated
following,” Transportation Research Record, vol. 2672, no. 22, pp. 67-77,
2018. [Online]. Available: https://doi.org/10.1177/0361198118796375 —
page 38

M. M. Mekker, Y.-J. Lin, M. K. |. Elbahnasawy, T. S. A. Shamseldin, H. Li, A. F.
Habib, and D. M. Bullock, “Application of lidar and connected vehicle data
to evaluate the impact of work zone geometry on freeway traffic

136

https://ojs.aaai.org/index.php/AAAI/article/view/3821
https://doi.org/10.1145/3292500.3330847
https://doi.org/10.24963/ijcai.2019/264
https://ascelibrary.org/doi/abs/10.1061/JTEPBS.0000382
https://doi.org/10.1177/0361198118796375

[84]

[85]

[86]

[87]

[88]

[89]

[90]
[91]

[92]

[93]

[94]

operations,” Transportation Research Record, vol. 2672, no. 16, pp. 1-13, 2018.
[Online]. Available: https://doi.org/10.1177/0361198118758050 — page
38

H. Li, T. Platte, J. Mathew, W. B. Smith, E. Saldivar-Carranza, and D. M.
Bullock, “Using connected vehicle data to reassess dilemma zone
performance of heavy vehicles,” Transportation Research Record, vol. 2674,
no. 5, pp. 305-314, 2020. [Online]. Available:
https://doi.org/10.1177/0361198120914606 — page 38

S. Pongnumkul, N. Kamsiriphiman, J. Poolsawas, and W. Amornwat,
“Congestiongrid: A temporal visualization of road segment congestion
level data,” in 2013 13th International Symposium on Communications and
Information Technologies (ISCIT), 2013, pp. 589-591. — pages 39, 101, 102

H. M. L. H. M. J. Saldivar-Carranza, E.D. and D. Bullock, “Longitudinal
performance assessment of traffic signal system impacted by long-term
interstate construction diversion using connected vehicle data.” Journal of
Transportation Technologies, vol. 11, pp. 644-659, 2021. — page 39

L. H. Saldivar-Carranza, E.D. and D. Bull-ock, “Diverging diamond
interchange performance measures using connected vehicle data.” Journal
of Transportation Technologies, vol. 11, pp. 628-643, 2021. — page 39

A. Sharma, V. Ahsani, and S. S. Rawat, “Evaluation of opportunities and
challenges of using inrix data for real-time performance monitoring and
historical trend assessment,” 2017. — page 39

N. R. E. Laboratory, “Nrel examines u.s. transportation patterns during
covid-19 pandemic.” — page 42

Otonomo, “The promise of connected vehicle data.” — page 42

A.V.R.S. Sharma, Anuj, "Evaluation of opportunities and challenges of
using inrix data for real-time performance monitoring and historical trend
assessment,” 2017. — page 47

J. D. Adler, J. Horner, J. Dyer, A. Toppen, L. Burgess, and G. Hatcher,
“Estimate benefits of crowdsourced data from social media.” 2014. — page
50

A.D. C.B.e.a. Vallejos, S., “Mining social networks to detect traffic
incidents.” vol. 23, 2021, p. 115-134. — pages 51, 59

M. Amin-Naseri, P. Chakraborty, A. Sharma, S. B. Gilbert, and M. Hong,
“Evaluating the reliability, coverage, and added value of crowdsourced

137

https://doi.org/10.1177/0361198118758050
https://doi.org/10.1177/0361198120914606

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

traffic incident reports from waze,” Transportation Research Record, vol.
2672, no. 43, pp. 34-43, 2018. [Online]. Available:
https://doi.org/10.1177/0361198118790619 — page 51

S. Santos, C. Davis Jr, and R. Smarzaro, “Integration of data sources on
traffic accidents,” 11 2016, pp. 192-203. — page 51

J. Patnaik, S. I.-J. Chien, and A. K. Bladikas, “Estimation of bus arrival times
using apc data,” The Journal of Public Transportation, vol. 7, pp. 1-20, 2004.
— page 68

Z.Zhang, M. Li, X. Lin, Y. Wang, and F. He, “Multistep speed prediction on
traffic networks: A deep learning approach considering spatio-temporal
dependencies,” Transportation Research Part C: Emerging Technologies, vol.
105, pp. 297-322, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X18315389 —
pages 68, 95

X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu, “Spatiotemporal
multi-graph convolution network for ride-hailing demand forecasting,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. O1,
pp. 3656-3663, Jul. 2019. [Online]. Available:
https://ojs.aaai.org/index.php/AAAl/article/view/4247 — pages 68, 95

M. Elhenawy and H. Chen, “Dynamic travel time prediction using data
clustering and genetic programming,” Transportation Research Part C:
Emerging Technologies, vol. 42, p. 82-98, 05 2014. — page 69

B. Yu, W. H. Lam, and M. L. Tam, “Bus arrival time prediction at bus stop
with multiple routes,” Transportation Research Part C: Emerging Technologies,
vol. 19, no. 6, pp. 1157-1170, 2011. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X11000155 —
page 70

F. Sun, Y. Pan, J. White, and A. Dubey, “Real-time and predictive analytics
for smart public transportation decision support system,” 05 2016. —
page 70

C. Bai, Z.-R. Peng, Q.-C. Lu, and D. J. Sun, “"Dynamic bus travel time
prediction models on road with multiple bus routes,” Computational
intelligence and neuroscience, vol. 2015, p. 432389, 07 2015. — page 70

S. Shekhar, S. Pradhan, F. Sun, A. Dubey, and A. Gokhale, “"Empowering the
next generation city-scale smart systems,” in Proceedings of the 2015 IEEE
22nd International Conference on High Performance Computing Workshops

138

https://doi.org/10.1177/0361198118790619
https://www.sciencedirect.com/science/article/pii/S0968090X18315389
https://www.sciencedirect.com/science/article/pii/S0968090X18315389
https://ojs.aaai.org/index.php/AAAI/article/view/4247
https://www.sciencedirect.com/science/article/pii/S0968090X11000155
https://www.sciencedirect.com/science/article/pii/S0968090X11000155

[104]

[105]

[106]

[107]

[108]

[109]

[110]

(1]

[112]

(HIiPCW), ser. HIPCW "15. USA: IEEE Computer Society, 2015, p. 64. —
page 70

J.Sun, J. Zhang, Q. Li, X. Yi, Y. Liang, and Y. Zheng, “Predicting citywide
crowd flows in irregular regions using multi-view graph convolutional
networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 34,
no. 5, pp. 2348-2359, may 2022. — page 70

Z.Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, and S. He, “Dynamic
spatial-temporal graph convolutional neural networks for traffic
forecasting.” AAAI Press, 2019. [Online]. Available:
https://doi.org/10.1609/aaai.v33i01.3301890

B. Yu, H. Yin, and Z. Zhu, “St-unet: A spatio-temporal u-network for
graph-structured time series modeling,” 2019. [Online]. Available:
https://arxiv.org/abs/1903.05631 — page 70

S. Choi, “Utilizing unet for the future traffic map prediction task traffic4cast
challenge 2020,” 2020. [Online]. Available:
https://arxiv.org/abs/2012.00125 — page 70

Q. Zhang, C.Yin, Y. Chen, and F. Su, "“Igcrrn: Improved graph convolution
res-recurrent network for spatio-temporal dependence capturing and
traffic flow prediction,” Engineering Applications of Artificial Intelligence, vol.
14, p. 105179, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0952197622002822 —
page 70

J. Hu, C. Guo, B. Yang, and C. S. Jensen, “Stochastic weight completion for
road networks using graph convolutional networks,” 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pp. 1274-1285, 2019. —
page 70

F. Zhou, L. Li, K. Zhang, and G. Trajcevski, “Urban flow prediction with
spatial-temporal neural odes,” Transportation Research Part C: Emerging
Technologies, vol. 124, p. 102912, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X2030810X —
page 71

J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated
attention networks for learning on large and spatiotemporal graphs,” 2018.
[Online]. Available: https://arxiv.org/abs/1803.07294 — page 71

J. Ye, J. Zhao, and K. Ye, “Multi-stgcnet: A graph convolution based
spatial-temporal framework for subway passenger flow forecasting,” 2020

139

https://doi.org/10.1609/aaai.v33i01.3301890
https://arxiv.org/abs/1903.05631
https://arxiv.org/abs/2012.00125
https://www.sciencedirect.com/science/article/pii/S0952197622002822
https://www.sciencedirect.com/science/article/pii/S0952197622002822
https://www.sciencedirect.com/science/article/pii/S0968090X2030810X
https://www.sciencedirect.com/science/article/pii/S0968090X2030810X
https://arxiv.org/abs/1803.07294

[113]

[114]

[115]

[116]

[(17]

[118]

[(19]

[120]

[121]

[122]

International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2020. —
page 71

N.-E. E. Faouzi, H. Leung, and A. Kurian, “"Data fusion in intelligent
transportation systems: Progress and challenges - a survey,” Information
Fusion, vol. 12, no. 1, pp. 4-10, 2011, special Issue on Intelligent
Transportation Systems. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1566253510000643 —
page 71

Y. Wu, H. Tan, L. Qin, B. Ran, and Z. Jiang, “A hybrid deep learning based
traffic flow prediction method and its understanding,” Transportation
Research Part C: Emerging Technologies, vol. 90, pp. 166-180, 2018. [Online].
Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X18302651 —
page 71

X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory
neural network for traffic speed prediction using remote microwave sensor
data,” Transportation Research Part C: Emerging Technologies, vol. 54, pp.
187-197, 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X15000935 —
pages 89, 95

Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with
big data: A deep learning approach,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 2, pp. 865-873, 2015. — page 95

M. J. Islam, A. Sharma, and H. Rajan, “A cyberinfrastructure for bigdata
transportation engineering,” 04 2018. — page 98

Y. Adu-Gyamfi, “Gpu-enabled visual analytics framework for big
transportation datasets,” pp. 147-159, 12 2019. — page 98

A. Waibel and C. Fugen, “Spoken language translation,” IEEE Signal
Processing Magazine, vol. 25, no. 3, pp. 70-79, 2008. — page 99

L. Besacier, E. Barnard, A. Karpov, and T. Schultz, “Automatic speech
recognition for under-resourced languages: A survey,” Speech
Communication, vol. 56, p. 85-100, 01 2014. — page 99

S. Kumar, A. Kumar, P. Mitra, and G. Sundaram, “System and methods for
converting speech to sqgl,” 08 2013. — page 99

S. Jamoussi, K. Smaili, and J.-P. Haton, “From speech to sql queries : a
speech understanding system,” 07 2005. — page 100

140

https://www.sciencedirect.com/science/article/pii/S1566253510000643
https://www.sciencedirect.com/science/article/pii/S1566253510000643
https://www.sciencedirect.com/science/article/pii/S0968090X18302651
https://www.sciencedirect.com/science/article/pii/S0968090X18302651
https://www.sciencedirect.com/science/article/pii/S0968090X15000935
https://www.sciencedirect.com/science/article/pii/S0968090X15000935

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger, “Soda:
Generating sql for business users,” Proc. VLDB Endow., vol. 5, no. 10, p.
932-943, jun 2012. [Online]. Available:
https://doi.org/10.14778/2336664.2336667 — page 100

H. Piringer, M. Buchetics, and R. Benedik, “Alvis: Situation awareness in the
surveillance of road tunnels,” in 2012 IEEE Conference on Visual Analytics
Science and Technology (VAST), 2012, pp. 153-162. — page 100

C.-T. Lu, A. Boedihardjo, and J. Zheng, “Aitvs: Advanced interactive traffic
visualization system,” 05 2006, pp. 167 - 167. — page 101

S. Shekhar, C. Lu, R. Liu, and C. Zhou, “Cubeview: a system for traffic data
visualization,” in Proceedings. The IEEE 5th International Conference on
Intelligent Transportation Systems, 2002, pp. 674-678. — page 101

M. L. Pack, “Wide-area, web-based mobility analysis using probe data,” in
2012 15th International IEEE Conference on Intelligent Transportation Systems,
2012, pp. 1682-1686. — page 101

J. Yoon, B. Noble, and M. Liu, “Surface street traffic estimation,” 06 2007,
pp. 220-232. — page 101

A. C. Diker and E. Nasibov, “Estimation of traffic congestion level via
fn-dbscan algorithm by using gps data,” in 2012 IV International Conference
"Problems of Cybernetics and Informatics” (PCI), 2012, pp. 1-4. — page 103

Y. Zhang, S. Wang, B. Chen, and J. Cao, "Gcgan: Generative adversarial
nets with graph cnn for network-scale traffic prediction,” 07 2019, pp. 1-8.
— page 103

Z.Wang, M. Lu, X. Yuan, J. Zhang, and H. van de Wetering, “Visual traffic
jam analysis based on trajectory data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, pp. 2159-2168, 2013. — page 103

N. Willems, H. v. d. Wetering, and J. J. v. Wijk, “Visualization of Vessel
Movements,” Computer Graphics Forum, 2009. — page 103

M. L. Pack, K. Wongsuphasawat, M. VanDaniker, and D. Filippova,
“lce-visual analytics for transportation incident datasets,” in 2009 IEEE
International Conference on Information Reuse Integration, 2009, pp.
200-205. — page 103

A. Khotanzad and E. Zink, “Color paper map segmentation using
eigenvector line-fitting,” in Proceeding of Southwest Symposium on Image
Analysis and Interpretation, 1996, pp. 190-194. — page 103

141

https://doi.org/10.14778/2336664.2336667

[135] A. Anwar, T. Nagel, and C. Ratti, “Traffic origins: A simple visualization
technique to support traffic incident analysis,” in 2014 IEEE Pacific
Visualization Symposium, 2014, pp. 316-319. — page 104

[136] R.S.R. Package. [Online]. Available:
https://www.npmjs.com/package/react-speech-recognition — page 105

142

https://www.npmjs.com/package/react-speech-recognition

Appendix A

Publications

1. M.Shoman, A. Aboah, Y. Adu-Gyamfi, “Deep Learning Framework for Predict-
ing Bus Delays on Multiple Routes Using Heterogenous Datasets,” Journal of

Big Data Analytics in Transportation, vol. 2, pp. 275-290, 2020.

2. M. Shoman, A. Aboah, V. Mandal, S. Davami, Y. Adu-Gyamfi, A. Sharma, “A
Vision-based System for Traffic Anomaly Detection using Deep Learning and
Decision Trees,” Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, pp. 4207-4212, 2021.

3. M. Shoman, M. Amo-Boateng, Y. Adu-Gyamfi, , “Multi-purpose, Multi-Step
Deep Learning Framework for Network-Level Traffic Flow Prediction,” Advances

in Data Science and Adaptive Analysis, pp. 2250, 2022.

4. M. Shoman, A. Aboah, V. Mandal, S. Davami, Y. Adu-Gyamfi, A. Sharma, “A
Region-Based Deep Learning Approach to Automated Retail Checkout,” Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pp. 3210-3215, 2022.

5. M. Amo-Boateng, M. Shoman, Y. Adu-Gyamfi, , “Accelerating Statewide Con-

143

nected Vehicles Big (Sensor Fusion) Data ETL Pipelines on GPUs,” Transporta-

tion Research Board , 2023.

6. M. Shoman, A. Aboah, A. Daud, Y. Adu-Gyamfi, “GC-GRU-N for Traffic Fore-

casting using Loop Detector Data” [submitted]

144

Vita

Maged Shoman's research interests include intelligent transportation systems, deep
learning, computer vision and data science. He recieved the B.Sc. degree in Civil
Engineering from the American University of Sharjah (AUS), Sharjah, UAE in 2015,
and the M.Sc. degree in Environmental Engineering from the Technical University
of Munich (TUM), Munich, Germany, in 2019. As a graduate teaching and re-
search assistant, Maged was responsible for conducting state-of-the-art research
and publishing his findings in high-impact journals and conference proceedings.
During his tenure at MU, Maged recieved the 2020 CEE Fellowship and 2021 CEE
Outstanding PhD Student Award.

145

	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Lay Summary
	Abstract
	1 Introduction and overview
	1.1 Background
	1.2 Connected Vehicles Data
	1.3 Big Data Processing
	1.4 Traffic Forecasting
	1.5 Web-based Visual Analytics
	1.6 Dissertation Objectives

	2 GC-GRU Deep Learning Architecture for Tabular Data Predictions
	2.1 Introduction
	2.2 Related Work
	2.3 Data
	2.3.1 Training Data
	2.3.2 Testing Data

	2.4 Methodology
	2.4.1 GC-GRU Architecture
	2.4.2 GC for Spatial Relationships
	2.4.3 GRU for Temporal Relationships

	2.5 Data Preprocessing
	2.6 Models Evaluation
	2.7 Models Setup
	2.7.1 GC-GRU Setup
	2.7.2 Transformer Model for Traffic Forecasting
	2.7.3 LSTM Model for sequence-to-sequence Traffic Forecasting

	2.8 Results
	2.8.1 GC-GRU for Traffic Forecasting
	2.8.2 Spatial Analysis of Trained Models
	2.8.3 Temporal Analysis of Trained Models

	2.9 Summary

	3 Comparative Analysis of Connected Vehicles and Probe Data.
	3.1 Introduction
	3.2 Related Work
	3.3 Methodology
	3.3.1 Connected Vehicles Data
	3.3.2 Probe Data
	3.3.3 Events Data

	3.4 Data Conflation
	3.5 Multiscale Data Analysis
	3.5.1 Short-Term, Medium Term and Long-Term Speed Variation
	3.5.2 Connected Vehicles vs Probe Data – Speed Bias, Congestions and Incidents
	3.5.3 Speed Bias Comparison
	3.5.4 Congestion Detection
	3.5.5 Incident Detection

	3.6 Summary

	4 Multi-Purpose, Multi-Step Deep Learning Framework for Network-Level Traffic Flow Prediction
	4.1 Introduction
	4.2 Related Work
	4.3 Problem Formulation and Overview
	4.4 Input Data Structuring
	4.4.1 Multi-Dimensional Arrays (MDA)
	4.4.2 Incidents and Weather Events
	4.4.3 Processing Pipeline
	4.4.4 Comparison of CPU versus RAPIDs GPU Source Code
	4.4.5 Performance Evaluation of the Running Times
	4.4.6 UNet Model
	4.4.7 ConvLSTM Model
	4.4.8 Historical Average (HA) Model

	4.5 Model Training
	4.6 Model Testing
	4.6.1 Recursive multi-step forecast
	4.6.2 Losses and metrics of trained model results
	4.6.3 Extracted images comparison
	4.6.4 Influence of forecasting horizon

	4.7 Additional experiments
	4.8 Summary

	5 Interactive Web Platform Powered by Speech Queries
	5.1 Introduction
	5.2 Related Work
	5.3 Methodology
	5.3.1 Speech to SQL Queries
	5.3.2 User Perspective
	5.3.3 Development and Design Perspective
	5.3.4 Frontend Development
	5.3.5 Frontend Development
	5.3.6 Application Programming Interface

	5.4 Performance Evaluation
	5.4.1 Query Speeds and User-Friendliness

	5.5 Web-App Pages and Features
	5.6 Strategy Canvas
	5.7 Summary

	6 Conclusion
	Bibliography
	A Publications
	Vita

