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ABSTRACT 
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In-situ process monitoring for metals additive manufacturing is paramount to the successful 

build of an object for application in extreme or high stress environments. In selective laser melting 

additive manufacturing, the process by which a laser melts metal powder during the build will 

dictate the internal microstructure of that object once the metal cools and solidifies. The difficulty 

lies in that obtaining enough variety of data to quantify the internal microstructures for the 

evaluation of its physical properties is problematic, as the laser passes at high speeds over powder 

grains at a micrometer scale. Imaging the process in-situ is complex and cost-prohibitive. 

However, generative modes can provide new artificially generated data. Generative adversarial 

networks synthesize new computationally derived data through a process that learns the underlying 

features corresponding to the different laser process parameters in a generator network, then 

improves upon those artificial renderings by evaluating through the discriminator network. While 

this technique was effective at delivering high-quality images, modifications to the network 

through conditions showed improved capabilities at creating these new images. Using multiple 

evaluation metrics, it has been shown that generative models can be used to create new data for 

various laser process parameter combinations, thereby allowing a more comprehensive evaluation 

of ideal laser conditions for any particular build. 



The outputs of both generative adversarial networks were compared to results obtained 

using recommender systems and variational autoencoders. The recommender system approach 

utilized a matrix completion framework whereby the missing data was computationally 

approximated, thereby allowing the model to make predictions, or recommendations, on what 

microstructure object characteristics would be produced. The variational autoencoder model used 

a deep learning framework to also try and predict the output, leveraging the generative capabilities 

with a goal similar to the adversarial networks, albeit in a different fashion. However, while 

informative, neither of these approaches matched the accuracy of the output of either of the 

generative adversarial networks when compared to holdout datasets. Overall, the conditional 

adversarial network proved superior in generating new data from experimentally collected x-ray 

images, which can be implemented into many other applications of image representation. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Problem Background 

 

Additive manufacturing is a field within materials science research that has seen 

tremendous growth over the years due to its advantages over traditional metallurgical techniques 

for aerospace applications. However, these advantages also come with some disadvantages that 

are inherent to the process. Some of these include the manifestation of defects in the material 

microstructure, which are directly caused by the mechanism of using a laser to melt metal powder 

at extremely high temperatures. This is the case with a technique known as laser powder bed fusion 

– where a laser is used to melt and fuse metal powder in a specified pattern to build an object. And 

it is during that process of the laser passing over the material that causes defects to form in-situ. 

Although research is ongoing into methods to characterize the structures built by the additive 

process, there currently exists very little work done on examining the fusion process in-situ – to 

examine the process exactly when those defects are generated, and to therefore examine how those 

defects affect the material microstructure during the build process. The resultant microstructure 

has known effects on the quality of the build, yet the nature of the defect generating process that 

affects that microstructure still has many open questions. This is mostly due to limitations in 

collecting this data, at the scale and speed necessary to adequately capture the build process. 

 The lack of experimental data to evaluate the in-situ process in laser powder bed fusion 

additive manufacturing can be alleviated by exploring machine learning methods that can 

approximate and even generate data representations. The focus of this work is to develop a 

methodology that can be generalized to learn from the limited data available, to interpolate from 

it, and ultimately develop new data computationally that can inform research into the 
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microstructure quality at the time of the build. This effort will therefore lead to process 

characterization that does not currently exist. 

The process of certifying additively manufactured aerospace parts for use in service is 

costly in both time and money. For laser powder bed fusion, computational modeling can alleviate 

some expensive experiments, but these simulations must have experimental validation, best 

performed by comparing the cross-sectional view of the solidified melt pool to the solidus isotherm 

predicted by the model. However, melt pool shapes are dynamic, and multiple micrographs are 

needed to ensure a model is properly calibrated. Automatic extraction of melt pools is needed, and 

machine learning provides a solution.  

The goal of this work was to generate new expressions of material microstructures that 

were not, and cannot be experimentally produced. Initially, numerical data was explored, where 

combinations of laser parameters that produced known measurements of microstructure objects as 

identified during a series of computer vision work was modeled. This effort provided a means for 

determining the optimal process parameters with respect to the size and shape of the microstructure 

physical features. Next, two deep learning approaches were developed using generative models. 

The first focused on generating new computationally derived images for microstructures at settings 

that were not experimentally performed and for which no data was collected. This provided an 

ability to examine novel microstructures with a wider range of physical features and geometries 

beyond the limited data available. Next, an alternate approach was developed which focused 

specifically on generating new images of microstructures with defects. While the data that does 

exists for in-situ processes are limited, data that depicts the defect generating process is even 

sparser. Therefore, the development of a capability to generate new defect structures, with respect 
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to the previously examined laser parameter settings provided a new data driven approach to 

computationally model the additive manufacturing process. 

1.2 Major Contributions 

The use of generative models for data creation has been explored in other use cases, 

however not for image processing problems where images contain very small gradient differences 

between one feature of interest and another. There also exists very little research into how to 

modify the general form of these models to accept more inputs, to correspond to the changing 

image representations that occur with changing experimental conditions. For an agency such as 

NASA who wishes to use generative models to create artificially rendered systems – the ability to 

alter those renderings based on differing conditions is essential. In this work, in order to create 

new representations of material microstructure images, it is not enough to train a model based 

solely on the images that were experimentally created. In order for the new data to be useful for 

process certification and thermal model validation, there should be a way to create new images 

based on altering the experimental conditions that would have led to those new data. This is in 

stark contrast to some of the general use-cases for generative adversarial networks, where the user 

creates new artificial human faces, or in the case of NASA extraplanetary research where these 

models are used to render hypothetical images of new planetary environments.  

To compare generative modeling capabilities, two different image based approaches were 

explored: the previously mentioned generative adversarial network, and the variational 

autoencoder. While both of these network architectures can produce new images, the underlying 

mechanisms by which those new images are generated are fundamentally different. From there, 

altering the general network architectures to include additional inputs over the images are included, 
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with results that indicate those novel networks achieve stronger performance for both categories 

of generative deep learning models. 

Following the deep learning methodologies, this work provides a new method for 

generating new data from image data in the form of the non-image based area of machine learning 

known as recommender systems. These systems input data in a two-dimensional matrix format 

and provides recommendations of new geometries, which therefore are comparable to the image 

outputs from the generative models. And as these approaches do not utilize the computationally 

taxing deep learning frameworks, their implementation can be applied easier in many cases. The 

final results are then comparable to the outputs of the generative models, thereby providing 

researchers a new consideration when it comes to generating new hypothetical data. 

This work introduces the use of a Hausdorff distance for evaluating the output of a GAN 

and VAE and comparing those results to one another. In addition to model comparison, there is a 

presentation of the following advantages of using the Hausdorff distance over exclusively using 

intersection over union, or IoU, which is a commonly used metric for image representation tasks. 

These advantages include considerations for the accuracy of an edge metric for the segmentation, 

interpretability to a user not versed in machine learning, and the propensity to identify outliers in 

performance beyond IoU. 

1.3 Dissertation Organization 

This work is organized as follows. Initially the additive manufacturing process will be 

examined throughout the literature review for technical details as well as the underlying 

thermophysics that governs the internal microstructure formation. In that chapter, the literature is 

reviewed for deep learning for image classification, deep learning for generative models, and the 

background on recommender systems. The methodology begins by describing the work for 
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organizing, cleaning, and managing experimentally derived data where a limited amount of image 

data that was collected was disseminated using computer vision techniques such as pattern 

recognition and image segmentation. Next, those data were analyzed to understand the complex 

geometries involved in microstructure characterization, which included understanding defect 

generation and time resolved geometric evaluation. Upon understanding how microstructures can 

be quantifiably evaluated, the first generative modeling approach is presented using generative 

adversarial networks, followed by the second approach using variational autoencoders. The next 

chapter then discusses the implementation of recommender systems based on matrix completion 

methodologies. Finally, the conclusion is presented where there is a discussion on using machine  

 

 

 

 

 

Fig. 1. A flow chart depicting research process 
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learning to artificially create new data for desired preconditions, where data does not exist for those 

preconditions. This sequence is depicted in Fig. 1 below. The work described here was performed 

at NASA Langley Research Center as part of a larger effort in understanding process 

characterization for the Aeronautics Research Mission Directorate. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Overview of Metals Additive Manufacturing 

Recent advances in metals additive manufacturing (AM) technologies, known more 

informally as “3-D printing” have allowed superalloys to be developed into complex objects in 

methods that were previously unavailable. Custom design objects can be tailored by the end user 

and become available for use after just a few hours. In the healthcare sector, this technology can 

be especially advantageous for surgeons to be able to make custom tools and have it available for 

almost immediate use. Work in this area has been progressing such that there are now many kinds 

of metal based additive manufacturing in use in the healthcare sector [1]. The objects not only have 

the desired configurations, but also can be built using complex superalloy metals. The fabrication 

of components using these materials are especially desirable in the aerospace industry as these 

objects are constantly subjected to extreme conditions when integrated into vehicular applications 

that may be involved in extreme air-flight, possibly including space flight. For instance, the NASA 

Aerospace Research Mission Directorate (ARMD) is heavily involved with AM within 

computational material science research as this technology has allowed metal components to be 

fabricated in a quicker, and more cost-effective manner than traditional metallurgical processes. 

This directorate has within its scope the desire to develop technologies for supersonic flight, as 

well as spacecraft for Moon and Mars exploration missions in the Artemis program. Materials 

science research is a core component of NASA’s aerospace research mission, which is directly 

involved with developing structures for space missions. It is especially true in the subfield of 

additive manufacturing where new complex structures are in constant demand [2]. This is further 

reinforced under NASA’s Transformational Tools and Technology (TTT) initiative, for 
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“understanding and development of new types of strong and lightweight materials that are 

important for aviation” [3], which falls within ARMD. As described by the agency, this project 

seeks to “develop state-of-the-art computational and experimental tools and technology” that are 

vital to “NASA’s ability to advance the prediction of future aircraft performance,” and it also 

“explores technologies that are broadly critical to advancing ARMD strategic outcomes, such as 

the understanding of new types of strong and lightweight materials, innovative controls techniques, 

and experimental methods” [4].   

Superalloys have traditionally been processed in numerous ways, usually involving 

metallurgical techniques such as casts and dies, and melting the metal and pouring the liquid 

material into the required shapes. These objects can then be subjected to machining, which can 

help shape the superalloy into the desired geometric configuration. However, these techniques can 

be difficult with some materials that have high tensile strength, or have a set of physical properties 

that cause it to harden during the machining process. For instance, Inconel-718 (IN718) is a nickel 

based superalloy that is commonly used for engines, which run at high temperatures, due to its 

high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing 

environments [5]. While this set of characteristics makes IN718 a desirable material for such 

aerospace uses, manipulating and fabricating from it is a costly and time consuming process. 

output for the complex objects required [6]. Additionally the complexity of developing often 

cannot be scaled upwards for a high production  

Additive manufacturing was established in its earliest forms in the 1980’s, and have now 

evolved into a variety of tools and techniques [6]. AM is defined by the American Society for 

Testing and Materials (ASTM) as the process of joining materials to make parts from 3D model 

data, usually layer upon layer, as opposed to subtractive manufacturing and formative 
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manufacturing methodologies [7]. Based on this definition that compares AM to subtractive 

manufacturing, AM has the potential to reduce waste, reduce lead time and cost, and allow the 

fabrication of complex objects with many intricate design features. For instance, the object shown 

in Fig. 2 would be impossible to create through any technique other than AM. This object, a rocket 

nozzle developed by NASA Marshall Space Flight Center, has more than 200 channels built into 

its wall for regenerative cooling of the nozzle in the extreme environments where this object will 

be subjected [8]. Developing those small intricate channels would not be possible using a 

subtractive method. Additionally, a subtractive method would need to start the fabrication with a 

large solid stock material, which would be cut away to form the desired structure. These cut away 

portions would be waste; a circumstance that AM does not create.  

Additive manufacturing has the ability to achieve lower cost in part development due to 

net-shape or near net-shape capabilities where an object is built almost exactly as developed. An 

entire complex part can be built at once, rather than many smaller parts being built and later 

assembled. Therefore, industries that have a need for complex custom components have begun 

evaluating AM for their fabrication needs [9]. Since the time and expense of assembling many 

parts can be mitigated through AM, cost savings scales tremendously when many of the same 

components need to be built. Cost savings can be even greater when fabricating parts using 

superalloys, which is often the case for aerospace components. While IN718 is difficult to cut, 

form, and machine, it is suitable for fabrication through AM processes. Thus, AM can lead to a 

new way to develop components with superalloy metals, which have certain properties necessary 

for the physics of flight and intense atmospheric conditions, to be used in aerospace vehicles.  
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Fig. 2. 3-D printed rocket nozzle made from copper material 
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2.2  Laser Powder Bed Fusion 

Additive manufacturing for metals can be broadly split into two categories of techniques, 

solid state AM and fusion based AM. The difference is based on the temperatures used to achieve 

the additive process. Solid state AM does not reach temperatures above the material’s melting 

point, while fusion based AM does cause the material to melt [10]. While solid state AM has 

become an emerging technology and may offer advantages over fusion based techniques due to 

the energy requirement being lower – fusion based techniques are the standard in industry.  

One of the most commonly used methods for metals AM, a fusion based technique, is known as 

laser powder bed fusion (LPBF), which uses a layer by layer approach [11]. A diagram of the 

LPBF process can be seen in Fig. 3.  Initially, a layer of a metal powder is spread over a rigid build 

plate. This metal powder, the substrate, sits beneath a laser which when active has a high enough 

intensity to melt the individual metal powder particles and thereby cause them to fuse to one 

another. The laser will move in a route that was predetermined based on a computer aided design 

(CAD), to outline the desired shape with respect to the layer in progress [12]. For instance, if a 

solid cube were to be built, a layer in the build process will require the laser to move in a pattern 

than outlines and fills in a square. Once the area of that square has been completely traced by the 

laser’s movement, that layer will be completed and fusion of the next layer will commence. This 

begins by the build plate being lowered a slight increment. Then a powder spreader will push a 

new layer of cool, unaltered metal substrate from a powder stock compartment where the metal 

substrate is stored, over the lowered build plate. At this point the top of the substrate is horizontally 

even with the powder stock that sits adjacent to the build plate, with that new layer of metal powder 

covering the previously fused square shape. The laser now commences to trace the square shape 

again, fusing the metal particles to one another, and to the layer below. After a layer is fused, 
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another mechanism sweeps off excess material into a waste compartment (where the powder can 

later be sifted and recovered). If a more complicated shape were to be built, each layer may not be 

exactly the same, as with the cube example which would consist of many squares sitting atop one 

another consecutively. The layer depth, that is, the height that the powder bed drops after a layer 

is built, can be predetermined by the CAD, and set to a desired specification at any desired interval 

at any portion of the build. This allows structures to be built with intricate details.  

 

 

 

Fig. 3. LPBF process setup 
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2.3 Material Microstructures 

 The LPBF process requires many input parameters, each of which will affect the build 

quality. Some of the main considerations include the laser intensity or power, the laser velocity, 

the layer thickness, the laser spot size, hatch spacing (the distance the laser traces two adjacent 

lines in the build pattern) and the build atmosphere among others. In this section we will explore 

the main parameters that effect the build quality in terms of the microstructure of the material, 

which will consist of a variety of physical characteristics in the micrometer scale. As the physical 

characteristics of the material can affect its physical properties, evaluating the process parameters 

for builds is paramount to certifying AM parts for their use in real-world functions.  

 One way of combining multiple parameters is to use a metric known as laser energy 

density, which mathematically combines the laser power, scan speed, hatch spacing, and layer 

thickness into a single parameter E [13]. This can be seen in the equation: 

      𝐸 =
𝑃

𝑣ℎ𝑡
            (1) 

where E is the laser energy density in units of J/mm3, P is the laser power in watts, v is the laser 

scan speed in millimeters/second, h is the hatch spacing between adjacent laser line tracks in 

millimeters, and t is the thickness between vertical layers. In this expression, the hatch spacing 

value for h can be replaced with the laser spot size. Using the laser energy density, which expresses 

the energy density delivered per unit volume of powder, many studies have shown that relative 

energy density affects the structure of the material during the build [14]. For instance, micro-

hardness increases as the linear energy increases. And as energy density increases, the physical 

properties of wear resistance and oxidation resistance increases. This shows that laser energy 

density, which is a function of many of the underlying build parameters, plays a clear role in the 

overall quality of the build in terms of the physical characteristics and properties of that build.  
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2.4  Microstructure Defects 

The LPBF process has known qualities in terms of the microstructure of IN718 when that 

material is used. IN718 commonly exhibits a columnar dendritic pattern in its microstructure 

where these columns tend to extend through multiple layers of the build [15]. The laser speed can 

determine how far apart these columns are, as well as how deep they penetrate into the subsequent 

layers. And while these qualities have been examined previously, there is still a lack of a capability 

to predict geometries, and an additional unknown quality comes from defects that are formed from 

the AM process. 

While the AM process is relatively quick and scales well when there are many objects to 

be built, there are some inherent challenges unique to LPBF AM compared to traditional die and 

casting methods. These challenges can involve defects which effect the material microstructure – 

which is responsible for the physical qualities of that component. For instance, certain defects that 

are introduced in the AM process can lead to a lower fatigue profile of that object, which can 

impact its lifespan, and therefore limit its usability in adoption into an aircraft [16]. Some of the 

main considerations are described here: 

• Too high of a laser power setting that causes the metal powder to instantaneously 

evaporate into a gas, creating a bubble in the solid structure (known as a keyholing 

defect) 

• Too low of a laser power setting that can cause the particles to not correctly form the 

required shape (known as a lack of fusion defect) 

• Too much heat buildup from the laser in corners or crevices of complex shapes that can 

cause too much of the metal powder to melt or not fuse properly 

• The laser moving too fast, not giving the material enough time to properly fuse 
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• The laser moving too slowly, causing additional heat buildup 

During the AM process, the area directly beneath the laser turns to a gas, also known as 

the vapor depression or vapor cavity. Meanwhile the area immediately surrounding that turns to a 

liquid, known as the melt pool (see Fig. 4). These features will solidify and form the material 

microstructure [17], with those aforementioned defects present in that internal structure. 

Computational fluid dynamics can provide some insight into how these regions will behave 

theoretically, such as the Marangoni-Gibbs effect (which describes the motion of two fluid bodies 

with a gradient with surface tension in between), buoyant forces (which describe the upward force 

by a fluid where it opposes an immersed object or other fluid of differing density), recoil force 

(which describes a fluid’s ability to revert back to its previous position once an external force is 

removed), vapor dynamic force (which describes the forces of the molecules in a fluid during a 

phase change), and hydraulic pressure (which describes the pressure that a fluid exerts in all 

directions against the outer walls of a vessel) [18]. These factors, along with other physics-based 

models, can inform vapor depression and melt pool geometries; however, there are limitations in 

the ability to validate those models without extensive high-performance computational processing 

– often a resource prohibitive effort. This presents a major limitation in understanding the 

performance, lifespan, fatigue potential, and physical features of an AM build [16].  

2.5 Physics Validation for Thermal Modeling 

In the LPBF process, the liquid melt pool is governed by five major forces: Marangoni 

force, recoil pressure, vapor dynamic force, buoyance force, and the hydraulic pressure. Each of 

these influences the size and shape of the melt pool during the build, which therefore determines 

the solidified structure once the material cools [18]. The underlying thermal physics of these forces 
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can be described through physics-based modeling, however, validating these models for the LPBF 

builds requires extensive data which is not fully available.  

 

 

 

 
Figure 4. Dynamic x-ray image of in-situ LPBF process 

 

 

 

The first force, the Marangoni force, describes the flow from an area of a higher 

temperature to an area of a lower temperature in a material that has a negative temperature 

coefficient of surface tension [19]. This can affect two bodies, such as the melt pool and the solid 

substrate, and determines how the inner surface of the melt pool moves along with the surface of 

the substrate with respect to the boundary in between those two bodies. The next force, the recoil 

pressure, describes a force that exerts an inward pressure that is directionally normal to the surface 

[20]. This effect impacts the melt pool geometry based on the activity of the vapor depression, 
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formed at the site of the laser during the build. The vapor dynamic force describes the force through 

friction at the boundary between the liquid melt pool and the gaseous vapor depression [21]. As 

the vapor depression - the area that instantaneously evaporates – moves, it effects the flow of the 

liquid melt pool and the boundary between those two bodies has a friction similar to the force of 

friction between any other body moving against another. The buoyance force describes buoyancy, 

in this case, the force that drives the liquid melt pool along a density gradient [22]. The density 

gradient here is determined by the immersion of the melt pool within the solid material, and that 

liquid’s ability to move along the upward thrust of that fluid as it floats within and above the 

substrate. Finally, the hydraulic pressure describes the energy that is exchanged by hydrostatic 

pressure. This force influences the liquid body based on the force it exerts on the outward 

boundaries around it [23]. 

 The extent of the Marangoni force is relevant in the melt pool as this region is dominated 

by the thermal gradient in the material caused by the laser and the resultant cooling. The liquid 

moves from the areas of higher temperature to lower temperature, which therefore means that the 

liquid is moving away from the highest intensity area, the boundary of the melt pool and the vapor 

depression – which itself is the area closest to the heat source, the laser [24]. What then transpires 

is that while the liquid areas ahead of the material moves forward, the area behind the laser moves 

backward, creating a cyclical pattern of motion. Then, when the flows reach their respective edges 

of the melt pool, they will flow downwards, and the effect of the hydraulic pressure will influence 

those flows to return back to the area closest to the laser heat. The first flow that originally started 

ahead of the laser, moves in a clockwise direction, while the liquid behind the laser moves in a 

counterclockwise direction [24]. 
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 The above described forces that govern the motion of the melt pool, which are associated 

with the heat and therefore the kinetic energy of the system, can be described mathematically. This 

takes into consideration the extent of the damping of the flow of the liquid, which is influenced by 

the Marangoni force. This can be expressed by Weber number (We) as: 

𝑊𝑒 =  
𝜌𝑣2𝐿

𝜎
       (2) 

where 𝜌 is the liquid density, v is the velocity of the liquid flow, L is the length, and 𝜎 is the surface 

tension [25]. As seen in this expression, among the multiple variables involved, the larger the 

length of the material, the greater the Weber number will be. Depending on how high this value 

is, for both the leading area and the trailing area separately, it can be determined whether or not 

these two regions will dampen out and create smoother areas along the melt pool surface rather 

than ripples or waves in the material [14]. 

 In addition to the effects described above, heat convection must also be included, based on 

the effects of thermal energy on liquid motion. This has significance for the area ahead of the laser 

intensity, the forward region of the melt pool, according to heat transfer theory [26]. The relative 

effect of heat convection over the effect of heat conduction can be calculated as the Péclet number 

(Pe), which itself is the product of the Reynolds number (ReL) and Prandtl number (Pr), and is 

expressed as: 

𝑃𝑒 =  𝑅𝑒𝐿 ∗ 𝑃𝑟 =  
𝜌𝑣𝐿

𝜇
∗  

𝑐𝑝𝜇

𝛼
=  

𝐿𝑣

𝛼
           (3) 

where L is the length, v is the velocity of the liquid motion, and 𝛼 is the thermal diffusivity. Note 

that in both equations above, the value of L is determined by the diameter of the melt pool. 

 Discussed above are some of the major factors that influence the melt pool in the LPBF 

build, which is associated with the vapor depression. The liquid thermodynamics discussed 

influence the motion of these bodies, which upon cooling, will determine the internal structure 
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based on the location of the boundaries of these bodies when they cool. The flow pattern therefore 

directly impacts the internal microstructure of the final build, which determines its strength among 

other physical qualities. While there are vast amounts of images for each build there is a limitation 

on the variety of the data available. Measurements of the size of the vapor depression, and melt 

pool, provides the L value above. Yet, this measurement is only available when a human manually 

examines an image taken post-processing, which only gives a value at one specific instant in time. 

Additionally, the manual measurement is a laborious task. 

2.6  Deep Learning with Convolutional Neural Networks  

 An analysis of the types of microstructures should begin with understanding the types of 

vapor depression geometries that influence those microstructures. If provided an abundant set of 

image data similar to the image in Fig. 2.3, image classification could be employed to better 

characterize the various in-situ objects, particularly the size and shape of the vapor depression. 

Within the field of machine learning, one particular algorithm that has been developed and has 

been able to advance computer vision capabilities is the convolutional neural network (CNN). 

CNNs are a class of deep learning, that is, artificial neural networks with an input layer, an output 

layer, and many hidden layers [27]. The approach is to take an input image, learn features from it, 

assign importance through weights and biases, and identify different objects and features in the 

image or across multiple images.  As the name implies, the hidden layers perform a convolution 

operation on the input data, which mathematically is a sliding dot product. Traditionally, CNNs 

have a more complex network architecture compared to the multilayered perceptron model of 

artificial neural networks [28]. Multilayered perceptrons generally are fully connected networks, 

which means that each neuron or node in a single layer is connected to all of the nodes in the next 

layer, and so on [29]. However, a drawback to this integration of every node to every node is that 



20 
 

it can cause model overfitting, which refers to a situation where the output of a model matches the 

input data too closely and therefore cannot make additional predictions reliably from future data. 

While regularization is a technique that can incorporate a loss function and add weights 

accordingly to limit over-fitting – CNNs resolve this by learning from patterns in the data by 

partitioning the data into smaller and simpler sets, from which it can extrapolate to larger and more 

complex patterns [30]. The method of learning and the mathematics behind CNNs allow them to 

function on image data with little pre-processing, unlike other pattern recognition or image 

segmentation approaches where data processing can be manually taxing. 

 The CNN architecture is designed such that many layers are essentially stacked to 

transform an input to an output through a differentiable function. As there are many layers in a 

CNN, hence being commonly categorized into the group of machine learning called deep learning, 

these different layers can have different effects on the learning itself. The main operation of the 

CNN is the convolution that occurs within the network’s hidden layers [28]. The first convolution 

layer takes the input data, an image, and applies a kernel or filter over that image. The kernel is 

defined by a predetermined length and width, which therefore gives it a square shape known as 

the receptive field – or, how much area that this kernel covers on the input. The kernel moves 

across the pixels of the input image, which are read by the convolutional layer in a tensor of shape 

equal to the number of images multiplied by the image heights and image widths. The kernel passes 

along the input image with a predetermined stride, which signifies how many pixels the kernel will 

move at a time. Thus, if the stride is set to 2, the kernel will move two pixels at a time. This can 

cause overlapping, where some pixels are involved in one stage of the convolution with the kernel 

at one location followed by also being incorporated into the next area of pixels to be read when 

the kernel moves. The kernel moves to the right of the image at the defined stride until it has passed 
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through the full width of the image. At this point it then moves to the beginning at the far left of 

the image in the next row of pixels and moves to the right again with the same stride value. 

Repeating this maneuver, the kernel will eventually scan every pixel/area of the image. During the 

forward pass of the kernel over the input image, a 2-dimensional feature map is created where the 

network learns specific features at each location in the image [31]. This allows it to learn what 

features are most important at each area, and therefore allows the model to learn the relevance of 

spatial positions of values or features in the input.  

Each node in the convolutional layer processes data for its receptive field, which contrasts 

slightly with other feed forward artificial neural networks [27]. While the function that is applied 

to the input data is determined by weight and biases in both CNNs and other feed forward 

networks, in a CNN many nodes can share the same filter and therefore can share the same weights 

and biases. A single weight and a single bias factor will be used for many receptive fields that 

share that filter, instead of each receptive field having to calculate its own bias and weight factor. 

If not processed this way, since each pixel would represent an individual variable, an image could 

yield thousands or even millions of variables to be processed [32]. For instance, if an image of one 

megapixel were used as an input, there would be one million variables and therefore weights to be 

applied to the model. However, the convolution operation described above makes this simpler by 

reducing the number of parameters and applying the same shared weight, allowing the network to 

be deeper (i.e., have more hidden layers) with far fewer learning parameters. This helps the CNN 

both reduce the images into forms that are easy to process without losing significant features in 

the underlying data, and also be able to make reliable predictions that can be scaled to large datasets 

with many images [33]. The first convolutional layer will generally learn the most important or 

most generally applicable features in the image – such as object edges. Subsequent layers then 
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essentially learn more details such as the orientation of edges from one area of an object to another. 

Through more and more layers the model can learn more specific features such as pixel gradients 

at certain locations until finally the model can have enough information to eventually make 

predictions from those features [34]. 

 Convolutional neural networks also involve layers known as pooling layers which reduce 

the size and dimensionality of a layer prior to the next convolution layer. Using pooling layers in 

CNNs helps the model to learn the rough location of features relative to other features of 

importance. The pooling layer reduces the overall size of the input data fed at that layer which 

helps reduce the computation resources, and also helps to reduce model overfitting [32]. This 

operation reduces the dimensions by combining the outputs of node clusters into a single new 

node, which can be done both locally (in small segments), or globally (to every node in that layer). 

Max pooling is commonly used, where the maximum value from a group of neurons is used as the 

input for the next node in the subsequent layer. Alternately, average pooling can also be used where 

the average value from a group of nodes is used as the input value for the new node in the next 

layer. However, max pooling performs as a better noise reduction mechanism since it takes the 

highest value in the region it scanned and discards the other values. Since a noise value would be 

included in the average, average pooling merely reduces or suppresses noise while max pooling 

can eliminate it [30].  

 Similar to multilayered perceptrons where every layer is fully connected, this operation is 

involved in the CNN architecture, albeit at a smaller scale since not every layer is fully connected. 

Fully connected layers can be implemented, where for that layer, all nodes are connected to all 

nodes in the next layer. Therefore, in a fully connected layer, the receptive field is the entire 

previous layer.  
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The CNN’s classification mechanism whereby the CNN makes a prediction for a class or 

label is accomplished through a Softmax function [28]: 

𝜎(𝑧)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑁

𝑗=1

            (4) 

where 𝜎(𝑧)𝑖 is the output class probability, N is the number of potential classes, and z is the input 

vector. This function computes the exponential value from the input such that is can normalize the 

data into a set of probabilistic distributions with values that will sum to 1, that is, ∑ 𝑝𝑖
𝑁
𝑖 = 1. The 

individual probabilities, 𝑝𝑖 will be between 0 and 1. This allows the network to make predictions 

for multiple possible classes rather than a binary classification scheme in which there will only be 

two possible classes.  

 Convolutional neural networks have been used in many industries to perform some sort of 

image recognition task, among many other uses. For instance, in the healthcare field CNNs have 

been used to detect certain forms of cancer, with precision rivaling that of qualified medical health 

providers [35]. They can not only detect the presence of a tumor from medical imaging scans, but 

also classify it by type. They are also one of the main functions for self-driving cars that must 

process a continuous feed of images through real time video recording in order to autonomously 

drive a vehicle through situations with potentially hundreds of objects to recognize at any given 

time [36]. Other uses for CNNs can include virtually any application where there is more data than 

is feasible for a human to process manually, with the goal of identifying, categorizing, or otherwise 

gaining some kind of understanding from that large data set. 

2.7  In-Situ Characterization Challenges 

Without a thorough way to evaluate the internal structure of those AM builds, while also 

considering the characteristics of the defects embedded in the structure, these components will not 

be suitable for application into aerospace systems [12]. Material microstructures can be evaluated 
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using microscopy tools, but this can only be done after the build. There has been limited research 

into how the process is affecting, or generating, the microstructure of the material while the build 

is in process. This is mainly due to practical limitations in any potential experimental setup. For 

instance, in order to examine the LPBF process in-situ, an imaging device would have to monitor 

the build in real time, capturing the motion of the laser moving at high speeds (across a surface in 

a scale of centimeters at a velocity scale of meters per second), and at very small distance scales 

(in the micrometer range). Data can be collected in this fashion, using advanced imaging 

techniques, but the cost is prohibitive and therefore it is not feasible to routinely collect this data, 

nor is it feasible to build a large enough library of various in-situ builds for every possible 

combination of process parameters. Additionally, many of the manifestations of microstructures 

and defects from the AM process is material dependent, and therefore a catalogue of images for 

builds would also have to include many different materials to be useful. This presents a major 

challenge for materials science research into AM. The lack of data for defect characterization 

prevents a thorough understanding of the effects of laser settings on a build. 

2.8  Missing Data for Process Characterization 

 The proposed research will begin by examining the problem of gaps in the data in the 

experimental datasets. There were 35 experimental builds from which in-situ data was collected. 

While this yielded a large volume of image data, this is not an adequate sample size of process 

parameters to determine optimal build settings in the LPBF process. Research is ongoing into the 

desired vapor depression and melt pool sizes that yield builds with the optimal fatigue and lifespan 

profiles, and the data collected does not give enough insight to make that determination. For 

instance, at a laser intensity of 350 watts and a velocity of 0.2 meters per second, it can clearly be 

seen that the vapor depression forms bulbous regions in its bottom tail area, which in turn leads to 
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keyhole defects. Yet at the same intensity, 350 watts, but at a velocity slightly higher at 0.4 meters 

per second, it can clearly be seen that the vapor depression remains stable and leaves behind no 

defects (see Fig. 5). As described previously, it is infeasible to run experiments for every interval 

between 0.2 and 0.4 meters per second at 350 watts. To then be able to collect data for every power 

setting further compounds the problem. Therefore, this results in a missing data problem. 

 

 

 

 
Fig. 5. In-situ defect generation 

 

 

 

2.9  Matrix Completion Overview 

Matrix completion can be used to approximate or generate lost or missing data. This can 

be done in conjunction with computational approaches for taking past events and making 

recommendations via computational algorithms. These techniques, known as recommendation or 

recommender systems (a sub-field of machine learning) have attracted a lot of attention in both 

research and practice, since they are able to narrow complex, difficult decisions into a few 

recommendations, which makes this approach particularly attractive in e-commerce applications 

where a retailer or service provider seeks to match potential items to its users [37]. The following 

discussion will focus on a commercial use-case, particularly matching users to items, but can be 
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generalized to other applications. While the most common application might be recommending 

items for people to purchase, the recommender system has been used in other domains such as 

bioinformatics [38], systems modeling [39], and engineering [40] among many others. 

Generally, recommendation systems are a subset of the information filtering systems, 

whose goal is to predict the rating a user would give to an item of commodity. The 

recommendations are typically made through either content-based filtering or collaborative 

filtering approaches. The content-based filtering approaches utilize a set of discrete features 

characterizing a commodity and build a user profile indicating the items this user likes in the past. 

Then, items with similar properties as those the user likes in the past are recommended. Instead of 

using item features and user profiles, the collaborative filtering approaches produce 

recommendations based on a user as well as the other users’ past behaviors. The fundamental 

assumption under collaborative filtering is that if the users share similar ratings in the past on the 

same set of items, then they will likely rate the other items similarly. Content-based filtering and 

collaborative filtering can be combined to build hybrid recommendation systems, which often 

demonstrate better recommendation precision than pure recommendation approaches [41]. 

Typically, a collaborative filtering scenario in recommendation system can be modeled as 

a matrix completion problem. Given a list of 𝑚 users {𝑢1, 𝑢2, … , 𝑢𝑚} and 𝑛 items {𝑖1, 𝑖2, … , 𝑖𝑛}, 

the preferences of users toward items can be represented as an incomplete 𝑚 × 𝑛 matrix 𝐴, where 

each entry either represents a certain rating or is unknown. The ratings in 𝐴 can be explicit 

indications, such as scores given by the users in scale 1-5 or ordinal favorability (e.g., strongly 

agree, agree, neutral, disagree, strongly disagree). These ratings can also be implicit indications, 

e.g., item purchases, website/store visits, or link click-throughs. It is generally assumed that no 

more than one rating can be given by a user for a specific item. As a result, recommendations can 
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be made by filling out the unknown entries and then ranking them according to the predicted 

values. 

Denoting 𝛬 as the complete set of 𝑁 entries in 𝐴 with known ratings, the general matrix 

completion problem is defined as finding a matrix 𝑅 such that  

𝑅𝑢𝑖 = 𝐴𝑢𝑖,             (5) 

for all entries (𝑢, 𝑖) ∈ 𝛬. In addition, we denote 𝛬̅ as the complement set to 𝛬 and 𝑃𝛬(𝐴) as an 

orthogonal projector onto 𝛬 which is an 𝑚 × 𝑛 matrix with the known elements of 𝐴 preserved 

and the unknown elements as 0 [42]. However, since the number of known entries is less than the 

overall number of entries, there exist infinitely many solutions. Nevertheless, it is commonly 

believed that there exist only a few factors as latent factors [43] influencing how much a user likes 

an item. For example, studies show that the attributes of actor/actress, director, and decade 

contribute most to a user’s preference to a movie. These relatively small number of influence 

factors compared to the total number of users or items in the rating matrix 𝐴 provides a guiding 

framework to fill in the missing values and to select the correct complete matrix. This corresponds 

to the low-rank assumption in matrix completion, i.e., the rating matrix 𝐴 is low rank or 

approximately low rank. The low-rank assumption in matrix completion also agrees with the well-

known Occam’s razor principle in machine learning, whose goal is to find the “simplest” complete 

matrix 𝑋 that is consistent with the known ratings in 𝐴. 

The fundamental assumption is that there exists a low-dimensional representation, 

although probably unknown, of users and items, which can be taken advantage to model user-item 

association accurately. Such low-dimensional representation is often characterized by a low-rank 

matrix. We also study models employing various regularization methods and incorporating various 



28 
 

constraints in the completed matrix. Denoting 𝜇 as the average rating among all known ratings in 

the rating matrix 𝐴, the baseline model [44] fills out a missing element  𝑅𝑢𝑖 by 

𝑅𝑢𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖 ,            (6) 

where  𝑏𝑢 and 𝑏𝑖 represent the observed deviations of user 𝑢 and item 𝑖 from 𝜇, respectively. The 

training parameters 𝑏𝑢 and 𝑏𝑖 can be estimated by solving the following least squares problem 

min
𝑏

‖𝑃𝛬(𝑅) − 𝑃𝛬(𝐴)‖𝐹
2 + 𝜆(∑ 𝑏𝑢

2
𝑢 + ∑ 𝑏𝑖

2
𝑐 ),          (7) 

where 𝜆 is the regularization parameter. The first term ‖𝑃𝛬(𝑅) − 𝑃𝛬(𝐴)‖𝐹
2 = ∑ (𝑅𝑢𝑖 − 𝐴𝑢𝑖)2

(𝑢,𝑖)∈𝛬  

attempts to minimize the training error while the second term 𝜆(∑ 𝑏𝑢
2

𝑢 + ∑ 𝑏𝑖
2

𝑖 ) serves as the 

regularizing term to avoid overfitting by penalizing the magnitude of 𝑏𝑢 and 𝑏𝑖. 

The fundamental idea of the SVD model is to decompose the rating matrix 𝐴 into a user 

feature matrix, a singular value matrix, and an item feature matrix of low-rank [45]. Starting from 

a normalized matrix 𝐴𝑛𝑜𝑟𝑚 by filling out the missing elements with preliminary, simple 

predictions, the SVD model carries out a Singular Value Decomposition (SVD) operation on 

𝐴𝑛𝑜𝑟𝑚 such that 

𝐴𝑛𝑜𝑟𝑚 = 𝑈𝑉𝑇 ,            (8) 

where  is a diagonal matrix with descendently sorted singular values deposited in its diagonal 

entries and the columns of  𝑈 and 𝑉 contains the corresponding left and right singular vectors, 

respectively. Truncating the diagonal matrix  to a top-𝑟 rank 𝑟, then 𝑈𝑟𝑟

1

2 and 𝑟

1

2𝑉𝑟 represent 

the latent factor vectors for users and items, respectively. The dot product of the 𝑢th row of 𝑈𝑟𝑟

1

2 

and the 𝑖th row of 𝑟

1

2𝑉𝑟 yields the prediction of the rating that the the 𝑢th user will give to the 𝑖th 

item.  
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The matrix factorization model is a generalization of the SVD model, which intends to find 

a low-rank matrix factorization to approximate 𝐴. Assuming an 𝑟-dimensional vector 𝑥𝑢 associated 

with each user 𝑢 measuring the latent factors of 𝑢 has in items and an 𝑟-dimensional vector 𝑦𝑖 

associated with each item 𝑖 representing the latent factors of 𝑖, the matrix factorization model uses 

the dot product 𝑦𝑖
𝑇𝑥𝑢 to capture the correlation between user 𝑢 and item 𝑖. The predicted rating 

then becomes  

𝑅𝑢𝑖 = 𝑦𝑖
𝑇𝑥𝑢.             (9) 

Assuming the columns of 𝑋 and 𝑌 contains all 𝑥𝑢 and 𝑦𝑖 vectors, respectively, the goal of matrix 

completion is to estimate: 

𝑅 = 𝑌𝑇𝑋.           (10) 

The parameters to be learned are the user feature vectors 𝑥𝑢 and the item feature vectors 𝑦𝑖, which 

can be done by minimizing the Frobenius norm error as follows: 

min
 𝑥∗,𝑦∗

‖𝑃𝛬(𝑅) − 𝑃𝛬(𝐴)‖𝐹
2 .          (11) 

In order to avoid overfitting the observed user-item ratings, the regularized matrix 

factorization method uses l2-norm to regularize the learning parameters by penalizing their 

magnitudes. Based on the matrix factorization model this can be done by minimizing the 

regularized l2 norm error of 𝑥𝑢 and 𝑦𝑖 in addition to the Frobenious norm error term as follows: 

min
 𝑥∗,𝑦∗

‖𝑃𝛬(𝑅) − 𝑃𝛬(𝐴)‖𝐹
2 + 𝜆1(∑ ‖𝑦𝑖‖

2 + ∑ ‖𝑥𝑢‖2
𝑢 )𝑖 ),       (12) 

where 𝜆1 is a constant controlling the extent of regularization. 

A more sophisticated l2-regularized matrix factorization model can be built on top of the 

baseline model by considering the user deviation 𝑏𝑢 and the item deviation 𝑏𝑖. Then, each predicted 

rating �̂�𝑢𝑖 in �̂� then becomes:  

�̂�𝑢𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖 + 𝑦𝑖
𝑇𝑥𝑢.          (13) 
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The parameters to be learned become 𝑏𝑢, 𝑏𝑖, 𝑥𝑢, and 𝑦𝑖, which can be done by minimizing the 

regularized l2 norm error as follows: 

min
𝑏∗,𝑥∗,𝑦∗

‖𝑃𝛬(�̂�) − 𝑃𝛬(𝐴)‖
𝐹

2
+𝜆2 ∑ (𝑏𝑢

2 + 𝑏𝑖
2 + ‖𝑦𝑖‖

2 + ‖𝑥𝑢‖2)(𝑢,𝑖)∈𝛬 ,       (14) 

where 𝜆2 is the regularization parameter. Due to fact that there are more training parameters, this 

model often yields prediction accuracy improvement. 

Upon achieving a completed matrix, this procedure can be incorporated into the 

recommender system, such as by using the Alternative Least Square (ALS) algorithm which is 

designed for the l2-regularized matrix factorization model. However, due to the term 𝑦𝑖
𝑇𝑥𝑢 for 

calculating 𝑅𝑢𝑖, the objective function is non-convex and optimizing it is NP-hard. Nevertheless, 

if 𝑥𝑢 can be fixed by treating its variables as constants and then the minimization objective 

becomes a convex function of 𝑦𝑖 [43]. Alternately, 𝑦𝑖 can then be fixed by treating its variables as 

constants and then the objective becomes a convex function of 𝑥𝑢. Therefore, in ALS, when one 

is fixed, the other is calculated, and this process will repeat until convergence is reached. This 

derivation process for the user vectors 𝑥𝑢 for all 𝑢 can be expressed as: 

𝑥𝑢
(𝑗+1) =  𝑌(𝑗)𝑇

(𝑌(𝑗)𝑌(𝑗)𝑇
+ 𝜆1𝐼𝑟)

−1

𝑥𝑢
(𝑗)              (15) 

and similarly, the process for calculating the item vectors 𝑦𝑖 for all 𝑖 is: 

𝑦𝑖
(𝑗+1) =  𝑋(𝑗)𝑇

(𝑋(𝑗)𝑋(𝑗)𝑇
+  𝜆1𝐼𝑟)

−1

𝑦𝑖
(𝑗)         (16) 

where 𝐼𝑟 is an 𝑟 × 𝑟 identity matrix.  

 Computationally, the ALS algorithm is desirable due to its scalability to large datasets. The 

process of using two loss functions alternatively allows it to run its computation in parallel. For 

some datasets where the combination of users and items can reach into the billions, using an 

optimization technique such as stochastic gradient descent would not be feasible. Rather, through 
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ALS re-computing the user-factors and item-factors, each step is guaranteed to lower the value of 

the cost function [46].  Outside of the e-commerce applications previously noted, recommender 

systems have been employed for computational drug repositioning research; an approach to take 

advantage of known drugs to identify new treatments [38]. This work modeled the drug 

repositioning problem as a recommendation system to discover new disease indications for drugs. 

The related data sources and validated information of drugs and diseases were integrated to 

construct a heterogeneous drug-disease interaction network. Then, the heterogeneous network was 

represented as a large adjacency matrix where the unknown drug-disease associations were 

presented as blank entries. Finally, the recommender system algorithm was used to complete the 

drug-disease adjacency matrix with predicted scores for unknown drug-disease pairs.  

The results of this work described above suggests that the recommender system approach 

can be applied to the experimental datasets to numerically recommend, or predict, new vapor 

depression geometries for depth, width, area, or any other physical measurement – based on the 

laser process parameters.  

2.10  Variational Autoencoders Theory 

While the recommender system can yield numerical results for vapor depression 

geometries for process parameter settings not experimentally performed – generative modeling 

has also been shown to yield new image based representations from experimental data. An 

alternate approach to computational modeling based on latent feature derivations is to use a deep 

learning approach known as autoencoders. As previously discussed, the recommender system is 

adept at finding the latent features in a dataset by which future predictions can be made. Whether 

its product features that influence a consumer’s buying habits, or the underlying latent features 

that impact a LPBF build – which will correspond to the underlying thermophysics discussed in 
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Section 2.4. Autoencoders take a different approach to learning however, which will be explored 

in this section. The ultimate goal will be to use a specific type of autoencoder, the Variational 

Autoencoder (VAE) as a generative model to not only predict vapor depression geometries, but 

generate new vapor depression expressions visually in new images [27]. 

 Autoencoders can broadly be categorized into a few types. Traditional autoencoders are 

relatively simple neural networks (based on their architecture), with the exception that there are 

two major segments, the encoder and the decoder. In CNNs, the convolution step takes in an image; 

for example a rank 3 tensor of size 300 x 300 x 3 for the dimensions of the image and the 3 color 

channels. It then converts this to a much more compact, denser representation, such as a rank 1 

tensor of size 1000. This resultant dense representation is then used by the fully connected layer 

to make a classification for the image based on the features learned throughout the previous hidden 

layers. Similarly, the autoencoder takes in an input and produces a smaller, denser representation 

[47]. This is the goal of the encoder portion of the network, the original data is encoded in this 

smaller representation (similar to compression). The encoder and the decoder can be expressed as: 

     𝜃 ∶ 𝑋 → 𝐹           (17) 

     𝜑 ∶ 𝐹 → 𝑋           (18) 

where the encoder function, 𝜃 maps the original data, 𝑋 to a latent space 𝐹, and the decoder 

function 𝜑, maps the latent space 𝐹 to the output (see Fig. 6). In this regard, the output is expressed 

as the same as the input as the goal is to reconstruct the original input after non-linear 

compressions. The encoding portion of the network can be represented similarly to a basic neural 

net’s activation function such as: 

     𝑧 =  𝜎(𝑊𝑥 + 𝑏)          (19) 
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and the decoder portion of the network can be expressed similarly, just with different weights and 

biases being used [48]:  

𝑥′ =  𝜎′(𝑊′𝑥 + 𝑏′)          (20)  

The loss function is going to be used to train the autoencoder neural network through 

backpropagation similar to standard neural networks [27]: 

   𝐿(𝑥, 𝑥′) =  ‖𝑥 −𝑥′‖2 = ‖𝑥 − 𝜎′(𝑊′(𝜎 (𝑊𝑥 + 𝑏)) + 𝑏′‖2               (21) 

 

 

 

 

Fig. 6. Basic autoencoder network 
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While CNNs make classification predictions from the dense representations, autoencoders 

use a portion of the network called the decoder to attempt to reconstruct the original data, its input. 

When the network fails to appropriately reconstruct the original data, this is known as 

reconstruction loss, for which mean squared error or cross entropy between the output and the 

input is calculated. The network is then penalized for deviations from the output to the input. As 

the encoding layer (i.e., the output of the hidden layer in the middle of the network) has less 

information than the original input data, the encoder must have discarded irrelevant information 

and learned relevant information such that the decoder can learn to take that encoding and properly 

reconstruct the original data. This could come in the form of an image reconstruction if the original 

input was an image. Thus, the aim of the autoencoder network is to find an optimal solution 

whereby the most minimal amount of information is used to encode the image such that it can be 

reformed on the other end of the network as close to the original image as possible.  

 The standard autoencoder can be a useful tool for data denoising, as noisy elements would 

likely not be reconstructed by the decoder. Other applications for experimental data are somewhat 

limited. An improvement upon this standard model comes in the form of the Variational 

Autoencoder (VAE), which are a class of autoencoders that improve upon the model’s ability to 

sample from a latent feature space and can then be used to generate new representations of the 

input data from that latent feature space. The standard autoencoder neural network is capable of 

compressing images and reconstructing them effectively, but has weaknesses in terms of what 

reconstructions are capable of being produced from the latent space. For instance, when images 

are encoded, there would likely be clusters in a feature space representing objects that were 

encoded of similar type. But if there are gaps in the latent space then the network does not know 
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what image representations would look like at that location in the latent space, similar to a neural 

network not having training data for a certain type of observation [28].   

VAEs are said to have a continuous latent feature space, from which random sampling can 

produce variations of the encoded input data [49]. Its output from the encoder is not just a vector 

of size n, rather it produces outputs of two vectors of size n, a vector of means, and a vector of 

standard deviations. Together these factors, μ and σ are essentially the parameters of a new vector 

representation of random variables that have the length of n, with the ith element being the mean 

and standard deviation of the ith random variable which is sampled in order to receive the encoding 

that was manipulated by the decoder. The mean vector represents a central point in the latent space 

where the sample should be taken around in that latent space [27]. Meanwhile the standard deviation 

vector represents the area, a circular region around that central point in the latent space. Encodings 

can then be generated by the network anywhere inside this region of space defined by the mean and 

standard deviation vectors, thus the decoder learns the features not from a single point (as might be 

the case in the standard autoencoder), rather it learns from all the nearby points in that space. As a 

result, the decoder is then able to decode encodings that vary, not just specific encodings, as it has 

been able to learn from a range of variations of the encoding of an input.  

In general, the goal for the encodings is to have them be as close together as possible while 

still being distinct enough to tell them apart from the groupings in another region. Having this 

amount of close distinction is what allows for the model to construct new samples. This is 

accomplished by incorporating information theory, to quantify how much information is in the data, 

or entropy, which is expressed as [50]: 

   𝐻 =  − ∑ 𝑝(𝑥𝑖) ∗ log 𝑝(𝑁
𝑖=1 𝑥𝑖)         (22) 
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The entropy helps to understand how much information is contained in the data, but this can be 

further modified to also quantify how much information is lost when an observed distribution is 

substituted for a parameterized approximation. Essentially, the goal is to measure the divergence 

between two probability distributions. The calculation for entropy can be modified to calculate the 

relative entropy, also known as the Kullback-Leibler (KL) divergence [51]: 

    𝐷𝐾𝐿 (𝑝||𝑞) = ∑ 𝑝(𝑥𝑖) ∗ log
𝑝(𝑥𝑖)

𝑞(𝑥𝑖)

𝑁
𝑖=1          (23) 

where the KL divergence is the expectation of the log difference between the probability of data in 

the original distribution with the approximating distribution. For instance, if p(𝑥𝑖) = q(𝑥𝑖) then the 

ratio of the two values is always equal to 1, and the log(1) = 0. Therefore, the goal of the VAE here 

is to minimize the image loss while simultaneously minimizing 𝐷𝐾𝐿(𝑁(𝜇(𝐼), 𝜎(𝐼))|| 𝑁(0,1)).  

 The KL loss is effective at creating a latent space where the encodings will be packed in a 

dense region, randomly, near the center of the latent space. However, using just the KL loss will be 

problematic for the decoder because it cannot decode anything meaningful from sampling in this 

region. This is overcome by optimizing both the KL loss and the reconstruction loss together, which 

thus results in a latent space that maintains the similarity of the encodings locally through the 

clustering, and globally at the same time through the dense packing near the latent space origin [51].  

In a VAE the values for μ and σ can come from a wide range of values; there are no limits 

on what these vectors can be. This allows the encoder to compute a value for μ that may be very 

different for different clusters of observations in the latent space. Values that vary greatly can 

represent clusters far apart, yet the value of σ can be minimized such that the encodings do not very 

greatly from the same. This lowered uncertainty for the decoder operation is what helps it to 

accurately reconstruct the training data [52]. The clustering formed by the reconstruction loss and 

the dense packing formed by the KL loss results in distinct areas that the decoder can successfully 



37 
 

decode. If a new sample is to be taken halfway between two samples, the algorithm finds the 

difference between their mean vectors, adds half of that to the original, and then decodes.  

Prior work with VAEs suggest that these models can learn the latent features of images to 

then predict new images, or otherwise depict complex structures. While no work currently exists in 

developing VAEs for material science research, there has been research into applying this model 

towards structures such as molecular structures [53]. Given the ability of these models to learn latent 

features, and the likelihood that such latent features are governing the dynamic representations of 

the vapor depression geometries – VAE should be capable of computationally predicting new 

geometries that were not experimentally derived. 

2.11  Generative Adversarial Networks Theory 

The Generative Adversarial Network (GAN) is a class of generative models that can 

produce a new output, similar to the VAE model, albeit in a much different fashion. As described 

in the previous sections, VAEs are generative models that encode input data with a regularization 

component such that the hidden representations are normalized. The decoder function then samples 

from the latent feature space and constructs a new image. A GAN essentially consists of two neural 

networks that are both accomplishing different objectives, with the overall goal to be to produce 

valid new images different from those upon which the GAN was trained [47]. The two components 

of a GAN are the discriminator, D(x) and the generator, G(x). The generator network works to 

generate new images while the discriminator works to judge whether or not the images produced 

by the generator are valid for the label assigned. Thus, the generator models the distribution of 

classes while the discriminator learns the boundary between those classes [54]. The images 

generated by the generator are completely artificial, and through the learning process and the 

discriminator accepting or rejecting those images, the generator can make better outputs that more 
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closely match the desired label. This implies two simultaneous feedback loops for both portions 

of the network: one for the discriminator and the known labels for images and one for the generator 

and the discriminator itself (see Fig. 7).  

 

 

 

Fig. 7. GAN algorithm example  

 

 

 

The generator begins by sampling from random noise (z) from a distribution, which it then 

uses to make images [55]. The generator output is taken as input by the discriminator which has 

been trained to differentiate real from fake images as a binary classification problem. The 

discriminator then delivers its own output in terms of the probability that the input is real, such as 

D(x) = 1 if it is real and if it is fake then D(x) = 0. The generator tries to minimize while the 
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discriminator tries to maximize loss, resulting in the following minimax loss function with the 

value function V(G,D): 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥[log (𝐷(𝑥))] +  𝐸𝑧[log (1 − 𝐷(𝐺(𝑧)))]        (24) 

where D(x) is the discriminator’s probability that the generator’s output x is real, Ex is the expected 

value over all real data observations, G(z) is the generator’s output when given noise z, D(G(z)) is 

the discriminator’s estimate of the probability that a fake instance is real, and Ez is the expected 

value over all random inputs to the generator [55]. The above formula is partially derived from the 

cross-entropy between two probability distributions; here evaluating the difference between the 

real and generated distributions. In that function, the generator does not have a direct effect on the 

log(D(x)) term, rather, it is trying to minimize the log(1 – D(G(z)) term. Therefore, when the value 

of D(G(z)) is high then D will assume that G(z) is the same as x, which makes 1-D(G(z)) a low 

value. Alternately, the discriminator tries to maximize the terms D(X) and (1-D(G(z))). This will 

result in an optimal state for D as P(x) = 0.5 as this is a binary classification operation [27]. Yet, 

ultimately the generator should be trained such that its outputs taken as input by the discriminator 

will not be able to differentiate x and z.  

 The purpose of the minimax function serves for the discriminator to maximize the objective, 

V, while the generator minimizes it. As such, both of these functions are learned by an alternating 

gradient descent. An iteration of the gradient descent on the discriminator will use the real and 

generated images produced by fixing the generator function. Then the discriminator will be fixed 

and the generator will be trained to generate an output to deliver to the discriminator in hopes that 

it will be accepted as appropriately valid [56]. This alternating approach works similarly to the 

approach described in Section 2.9 for recommender systems, albeit with a much different goal. 

Here, optimizing the minimax function by iterating between the discriminator, D, and the generator, 
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G, will be an attempt to achieve better and better quality images from the generator until the 

discriminator cannot tell the difference between its output and the initial training data. The 

pseudocode for this operation is as follows [54]: 

 for number of training iterations do: 

  for k steps do: 

   sample minibatch of m noise samples {z(1),……, z(m)} from noise prior p(z) 

   sample minibatch of m examples{x(1),……, x(m)} from data generating  

distribution p(x) 

   update the discriminator by ascending its gradient: 

    ∇𝜃𝑔

1

𝑚
 ∑ [log 𝐷 (𝑥(𝑖)) + log (1 − 𝐷 (𝐺(𝑧(𝑖))))]𝑚

𝑖=1  

   end for 

   sample minibatch of m noise samples {z(1),……, z(m)} from noise prior p(z) 

   update the generator by ascending its gradient: 

    ∇𝜃𝑔

1

𝑚
 ∑ [log (1 − 𝐷 (𝐺(𝑧(𝑖))))]𝑚

𝑖=1  

  end for 

 While there currently exists no research into developing GANs for material science, or 

microstructures at all, as it has been noted previously that there is a lack in adapting machine 

learning in general to these areas – GANs have been used sparingly in other domains with 

promising results. For instance, in medical science research to generate new images of blood cells 

– to then have enough data to train classification models to predict cell types [57]. In this work, 

the underlying problem was a lack of image data, a problem similar to the experimental data 

discussed throughout this work. Having a computational methodology that can generate new data 

representations, in this case, new images, was shown to be advantageous towards then having 
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enough data to properly train an image recognition model. For the LPBF data, a similar approach 

will be presented in subsequent sections where GANs can be developed to generate new vapor 

depression generations, similar to the output of the VAEs albeit through a different learning 

mechanism. 

2.12  CGAN Theory 

 The Conditional GAN is a modification to the standard generative adversarial network 

where both the generator and discriminator are prepared, or conditioned, during training with some 

kind of additional information [58]. For a conditioning label y, the generator uses the noise vector 

z and the label y to create an artificial observation: 

      𝐺(𝑧, 𝑦) = 𝑥∗|𝑦           (25) 

Meanwhile the discriminator will take in as an input the real observations with the labels x and y, 

and the artificial observations with the labels that were used to generate those observations, x*|y 

and y [59]. The discriminator can then attempt to learn both the real data and the labels, and output 

a probability value based on its calculation on whether the label-pair is a real, and appropriately 

mated label-pair. Likewise, its output will attempt to determine whether the observation is either 

a fake observation or an incorrectly matched label-observation pair [60]. Fig. 8 shows the network 

modifications for both the generator and discriminator to the general form of the GAN network 

architecture.  

  Including this new input parameter helps the CGAN to potentially have two advantages 

over the general form of the GAN. First, the model should have an improvement in performance 

as it learns the correct labels for which to generate images. Second, the model has the ability for 

targeted data generation, that is, producing specific images of interest. This is because the GAN 

creates images from the latent space which it has mapped, however, interpreting the association 
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between the points in that latent space and the resultant images is difficult to accomplish. 

Generating a specific type of image, that is, an image for a given label is therefore difficult in the 

GAN model. The CGAN however, can overcome this limitation based on its conditional inputs. 

  The fundamental component of the Conditional GAN is that the added information helps 

the model to match images to labels during training, and the generator can then use that learned 

label-image pair to generate new images that correspond to a particular label. This approach can 

therefore allow for more informed images to be generated, that is, images that are created with a 

particular end-goal output in mind. For the work described later, that purpose will include the 

ability to generate new images that correspond to LPBF process parameters – to generate new 

images based specifically on the inputs to the model for those parameters.  

 

 

 

 

Fig. 8. CGAN modifications to input values 

Generator

Network

z

y

x*|y

or

Discriminator

Network

x

y

x*|y

σ



43 
 

2.13  Additional Applications of Generative Models 

 The previous section described a potentially advanced modification to the GAN 

architecture such that images can be created for a specific purpose, to show generate images that 

correspond to desired labels. Outputs of GAN described in the literature show promising results 

for being able to generate new images based on larges sets of training data. For instance, human 

faces, for which random generations are made after the system learned from thousands of samples. 

Refinements for these purposes can include hyper realistically generated images, which can be 

accomplished by such models as BigGAN [61], and StyleGAN [62]. Both of these 

implementations were shown to produce photo-quality images in their generated outputs. In the 

case of BigGAN, the system replies on the application of a orthogonal regularization in the 

generator network, which allows the network to alleviate the variance in the generator’s output 

and thereby make better quality images. For StyleGAN, which is based on a Progressive GAN and 

a neural style transfer design, the output at each layer during training passes through what’s known 

as a style latent vector. Yet while these implementations do deliver high quality results, just like 

with the general GAN, it is very difficult to control the output of the generators to create something 

with specific desired attributes.  

 One method that has been shown to deliver images based on a predetermined 

characterization is the text-to-image GAN [63]. These methods, typically employing a StackGAN 

can generate images based on a text input description. Thus, if a text string contained a statement 

such as “red bird on a tree”, the generator would attempt to create an image to match that 

description. The architectures are described as stacked because they network consists of stacks of 

images along with texts and image pairs. The underlying mechanism is actually the conditional 

GANs mechanism, albeit with many more potential labels based on what amounts to a text 
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dictionary for training. Therefore, these methods show the most similarity to the work that will be 

described throughout this dissertation, in regards to developing a GAN architecture to take in as 

input laser processing parameters and output images that should fit those parameters.  

While not utilizing a text string as in the StackGAN, the goal is to be able to tell the model 

to generate an image under the characteristics that govern the different types of vapor depression 

geometries, based on the laser parameters for the builds that are expressed in the experimental 

training data. Work in the field is limited in developing and applying generative models for specific 

classes of images.  

Literature is sparse even on real-world examples of text-to-image applications. 

Historically, many of the implementations of GANs are purposeful at creating new images, but 

rarely if ever are these images used for scientific purposes, such as model validation. One of the 

few examples of work such as this resides at NASA, for an undertaking whereby researchers 

attempted to use a GAN to generate galaxy images [64]. This work was novel in its attempt to 

create new images, and while successful in their aims, this work again focuses on creating random 

environments. That is, the researchers did not attempt to use the generative model to create galaxies 

under specific conditions. And likewise, while the images created give the users new 

interpretations of how galaxies may look, that work was not used to validate physics-based models. 

Similarly, in medical imaging synthesis GANs have been employed with encouraging results for 

generating hypothetical expressions of organs [65]. However, again, this work was not aimed at 

generating specific organs with specific conditions. Therefore, the development of a novel 

application of generative models for creating images under specific criteria can be of extreme value 

to the global machine learning community as the work to be described in later chapters will follow 

that mission. Furthermore, generative models will be compared to one another, while also 
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including the outputs of semi-supervised learning approaches in the recommender systems to also 

produce a generator-like output. It will be shown that the GAN is not the only way to produce a 

valid and accurate output. In fact, a GAN may not even be the best way to produce a generated 

output, in some circumstances. 
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CHAPTER 3 

MACHINE LEARNING METHODOLOGY 

 

 

3.1  Data Collection through Ultra-High Speed Imaging 

 

 This chapter discussed the data used for this work, as well as the steps for data preparation. 

With the exception of Chapters 6 and 8, these methodologies apply to all image-driven work to be 

discussed. The data and data preparation for Chapters 6 and 8 are discussed separately in those 

sections, as the work described there had specific aims that required additional data beyond the 

overall dataset. 

The data used for this work was collected from a LPBF experimental build using IN718 

that was conducted in Argonne National Laboratory’s Advanced Photon Source Synchrotron. This 

large scale imaging facility captured ultra-high speed (50,000 frames per second) x-ray images of 

the internal cross sectional area of the LPBF process, at a micrometer scale. This process, known 

as dynamic x-ray radiography (or DXR) can allow an experimenter to clearly see features of 

interest in the footage, as the laser (also clearly visible) passes over the metal substrate layer by 

layer to create the build (see Fig. 4 on page 13). The experimental setup involved the x-ray 

detection system to be aimed at the powder bed at a 90 degree angle, relative to the direction of 

the laser movement. For the experiments in which this dataset under evaluation was collected, the 

laser moved in a single direction. This single track set of experiments developed simple structures, 

which can serve as a standard before later building complex shapes for production worthy objects. 

The metal substrate area was approximately 30 millimeters long, 5 millimeters tall, and 500 

micrometers wide. The powder layer (which sits on top of the metal substrate and) was between 

50 and 100 micrometers tall. After a layer is fused by the passing of the laser, the LPBF system 

sweeps a new layer of powder over the substrate on the build platform to commence the next 
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layer’s fusion. The laser spot size was approximately 50 micrometers wide, which provided ample 

space on either side of the laser for the material underneath to melt or vaporize and ultimately fuse 

in all three dimensions. 

A single dataset shows one pass of the laser over the material. The speed of the laser, and 

therefore the amount of frames where the laser is visible in the field of view, is dependent on the 

process parameter settings – experimenters have a wide range of laser velocity settings from which 

they can use. In general, experimental settings for the laser speed range from 0.2 meters per second 

to 1.4 meters per second. At the scale of the DXR capture ability, the field of view for the laser 

movement is capable of roughly 2000 images, or frames, separated at 0.01024 seconds apart. As a 

single build can have thousands of layers in total, these 2000 images that can be captured for each 

track can easily yield total datasets with hundreds of thousands of images which creates a big data 

problem. Yet while the volume of data collected on a single build can be large – there is a lack of 

variety in the data, which presents another problem. Each build, which can take many hours to 

complete, depending on the size and complexity of the build, must be conducted while in the 

Advanced Synchrotron facility. The entire LPBF system must be physically moved to the 

synchrotron’s location, and kept there for the duration of the experimental builds. The cost of this 

procedure, combined with the time required to produce each build, makes it extremely difficult to 

collect the appropriate in-situ data. Additionally, the time and resources required to procure time 

at Argonne National Laboratory can take many months or even years due to the high international 

demand for the facility for purposes across all domains of science. 

The work described below constitutes data collected from 35 experiments where the laser 

power and laser velocity were adjusted (see Fig. 9). Each of these builds used IN718 and were all 

conducted using a fresh stock of powder material.  
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Fig. 9. Process parameter combinations experimentally produced 
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3.2 Computer Vision to Learn Vapor Depression Geometries  

Raw data from the DXR output was initially in the form of a video file, which depicted the 

in-situ LPBF process in grayscale. The laser is shown moving across the field of view from left to 

right as it passes over the substrate material in a cross sectional view. From this, the gaseous vapor 

depression can clearly be seen generated under the laser, and moving left to right across the field 

of view along with the laser. While this video provides rich imagery of the process, there were 

some issues with using the raw data for analysis. First, the laser melting process produced small 

metal particles to be ejected from the surface. Where this ejected material leaves the surface and 

where it lands could have an effect on measurements taken of the vapor depression as 

computational techniques might include those objects with the vapor depression depending on how 

close they appear [66]. Additionally, the vapor depression causes a wave to form on the top surface 

of the metal, which can distort measurements of the vapor depression’s width and depth as the 

wave fluctuates at a rate faster than the laser moves in the video.  

The characteristics of the vapor depression can fluctuate depending on the experimental 

laser parameter settings. At a slower laser speed the heat intensity from the laser can build up and 

cause both a larger vapor depression and a bulbous cavity that will solidify and trap the gaseous 

material, thereby causing keyholing defect. This can also happen if the laser is moving faster, but 

at a higher intensity where that heat can build up beneath the surface of the material. While it is 

not yet known what combination of settings will yield an optimal final product (optimal defined 

as having a predetermined fatigue profile), it is generally accepted that the presence of more defects 

will lead to a weaker build [16]. Additionally, a long and narrow penetrating vapor depression, 

even one that does not cause defects, can still have a deleterious effect on the material 
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microstructure as the solidified structure will have an internal texture that reflects deep and narrow 

striations.  

As described previously, the amount of data for a single build can be large. Therefore, 

taking measurements of the vapor depression geometries must be automated as human led 

manipulation and examination of every frame would not be feasible. Pattern recognition 

techniques can accomplish this, but not without several steps of data cleansing to ensure that only 

the object/area of interest is targeted by the chosen algorithm. The first step in preprocessing the 

raw data was to isolate everything in the images except the vapor depression. This would allow 

measurements to be taken of that vapor depression without allowing any erroneous calculations 

made where ejected particles, excess surface material, or any other non-relevant region/object 

being included in the subsequent calculations for that vapor depression. An effective technique for 

this task was to use foreground extraction and background reduction. In this process, the 

background of the image is identified as the areas not constantly changing, which reflects 

movement in the foreground. The images are essentially compared frame to frame to see which 

pixels are changing the most dynamically, and close together, which therefore implies that those 

pixels represent an object that is moving. Thus, every area of an image, and therefore the video as 

a whole, can be categorized into two regions, the foreground and the background. For this analysis, 

a Gaussian based approach was used, known as Mixture of Gaussians (MOG). In this method in 

particular, a mixture of k Gaussians distributions are used to make a model for each image pixel 

[67]. The different distributions then represent each of the different image pixel values, which in 

turn represent the pixel color and intensity. The weight of each one of the distributions used in the 

models is proportional to the amount of time each pixel stays at the same value for color and 
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intensity. When the weight values of a pixel distribution are low, that pixel is classified as a 

foreground pixel.  

The results of the background subtraction approach created a defined foreground based on 

the vapor depression, which was then applied to a thresholding technique to binarize the image 

into 2 pixel values for black and white (see Fig. 10). Adaptive thresholding was used where the 

threshold value, the value that determines if a pixel should be converted to black or white, is 

adjusted throughout the image. This technique is effective over other techniques because of its 

ability to be generalized better to large datasets, or a variety of similar datasets [67]. For instance, 

in some images there could be more light and therefore a different contrast, even if the image is 

capturing the same general image. Adaptive thresholding can overcome such limitations where a 

single threshold value is applied to all pixels in all images [68]. This method functions by finding 

the local threshold value in certain areas, or neighborhoods in the image (see Fig. 11). The intensity 

values at each neighborhood are statistically examined to determine a value for that region. The 

statistical measures to identify the threshold value of that neighborhood T, can be the mean value 

where T can be the mean, the median, or the mean of the range of the values where T = (max value 

+ min value) / 2. A filter (or block) for the neighborhood size of 5, 7, and 9 was tested, with results 

that did not yield a statistically significant difference in the final results. This was likely due in 

part to the lack of objects in the image as a result of the background reduction approach previously 

applied. The vapor depression was highlighted in white in each frame of the video. However, every 

other pixel was not automatically turned to black as those previously discussed particles in motion 

were also highlighted in white due to the adaptive threshold approach. Therefore, cropping was 

applied to all frames in the video which served to both reduce the size of the overall dataset and to 

ensure that areas above the vapor depression on the surface of the material were not considered in  
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Fig. 10. Background subtraction on DXR image 

 

 

 

 

 

Fig. 11. Non-local means denoising 
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calculations on the vapor depression geometries. The specific area to be cropped off was the area 

above the substrate layer, which was easily determined visually as the area above the top pixels in 

the white highlighted vapor depression region.  

The frames in the video were left with pixel noise, or small distributions of pixels of white 

in the black background or black in the white foreground, which could lead to a higher rate of error 

in subsequent calculations of pixel values. Therefore, a denoising approach was applied known as 

non-local means denoising. This is an algorithm commonly used in image processing where the 

mean value of all pixels in the image is calculated and weighted based on how statistically similar 

those pixels are to a target pixel. This approach is in contrast to local means denoising where 

regions or neighborhoods are used, in a fashion similar to the adaptive thresholding technique [69]. 

While a localized pixel approach was appropriate for thresholding the values, in this dataset where 

the result was only one object of interest in the vapor depression, a localized approach would be 

computationally more resource intensive than taking the mean of the entire image. Finally, an 

image contouring approach was used where the location of each pixel on the boundary of the white 

foreground and the black background was used, thus providing the perimeter of the vapor 

depression in each frame. This combined data manipulation approach allowed the analysis to 

commence on the measurements of the vapor depression for each frame.  

3.3  Deep Learning for Microstructure Defect Detection 

 Multiple deep learning models were developed to test the ability of deep learning networks 

to learn the latent features of vapor depression and melt pool geometries based on images collected 

from the DXR technology during the build process. The objectives of this work were multifold: 

1. Determine feasibility of the multilayered artificial neural network approach to learning 

prior to the development of deep learning based generative models 
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2. Determine whether a deep learning framework is capable of disseminating image based 

objects based on class of geometry 

3. Determine if a deep learning framework is capable of learning to identify images that 

contain defects, which itself is indicative of the type of geometry 

Prior to developing a deep learning architecture using variational autoencoders and 

generative adversarial networks, it was necessary to ascertain whether or not these techniques are 

even feasible, if an artificial neural network is able to model from these data. The complexities of 

the generative models necessitate a baseline using models that while still complex in their 

architecture, have easier to interpret outputs. Yet these models also have practical applications for 

this work. The ability to predict the class of a vapor depression geometry leads into the ability to 

predict both the resultant material microstructure after cooling and has the potential to inform and 

predict defect generation as certain geometries are more likely to induce defects than others. The 

four types of geometries or classes for the convolutional neural network (CNN) to learn were: 

conduction keyholing, penetration with defects, penetration with no defects, and no keyholing. 

Upon establishing the CNN’s ability to learn the different geometries, an additional model was 

developed to identify defects from the images. This has the potential to inform researchers 

specifically at the time and location where these defects occur, which is a non-trivial task given 

the vast amount of data, and images collected for each build. Human identification of defect 

generation from the tens of thousands of images would not be feasible, which is a direct benefit of 

using a machine learning approach for data mining. 

3.4  Recommender Systems Based on Matrix Completion for Depression Geometries 

 The missing data problem for characterization of LPBF microstructures can be mitigated 

through the use of the recommender system with matrix completion. The in-situ experimental data 
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was obtained from 35 builds that provide vapor depression images, which as discussed in section 

3.2, can be used to obtain physical measurements of the vapor depression’s size and shape. 

However, this data is not enough to provide researchers a framework for knowing optimal build 

settings to induce a vapor depression at the appropriate depth, width, and area to sufficiently 

penetrate the substrate material yet prevent the buildup of keyholing defects during the build. For 

instance, data was collected for a build with the laser set at 350 watts and 0.2 meters per second, 

which depicted an unstable vapor depression that constantly collapses and forms defects. Yet at 

the same intensity but a slightly faster velocity of 0.4 meters per second, the vapor depression is 

stable with no defects, but the overall depth of that vapor depression is shallower in comparison. 

This shows there somewhere between 0.2 and 0.4 meters per second there is an optimal speed that 

is deep, but not too deep where the vapor depression loses its stability. 

 The data from all 35 experimental builds can be analyzed frame by frame to produce a 

dataset of its geometric properties at each 0.01024 second time interval during the build (matching 

the frame capture rate from the DXR sensor). At 514 frames per experimental build (where the 

vapor depression is in the field of view), this dataset would have 17,990 rows, or observations of 

vapor depressions. From this data, a matrix can be constructed where instead of users and items 

represented in the rows and columns, the laser power and laser velocity could be represented. And 

in place of user ratings for an item to populate the values in the matrix, the measured value for the 

depth of the vapor depression could be used. As data was collected at velocity settings of 0.2, 0.4, 

0.6, 0.8, 1.0, 1.2, and 1.4 meters per second, this matrix would have 7 columns. From this, new 

empty columns could be created between each measure interval, which would notionally represent 

0.3, 0.5, 0.7, 0.9, 1.1, and 1.3 meters per second. In this new matrix of 13 columns, there would be 

enough missing data that this could be characterized as a sparse matrix. Upon performing the 
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matrix completion methodology discussed previously, these values could potentially be 

approximated, which would represent vapor depression measurements that were not 

experimentally collected. The completed matrix could then be used by the recommender system 

to make recommendations, or predictions, on what combination of power and velocity should be 

used to achieve a vapor depression at a specified depth.  

 Using the recommender system approach, data can be approximated to mathematically 

recreate vapor depression geometries that were not experimentally derived. Additionally, it could 

provide a computational approach to determine optimal process parameters that could lead to 

industry certification of laser power bed fusion additive manufacturing components. Since new 

experiments at the Advanced Photon Synchrotron are not able to be performed, having a 

computational method to achieve new vapor depression measurements entirely using machine 

learning approaches would be of great benefit to this subfield of materials science research, which 

can be applied to any different material suitable to LPBF AM. While this methodology would 

provide a wealth of numerical data for LPBF process characterization, the following sections will 

describe how deep learning can also be used to derive new data, albeit image data to supplement 

the raw DXR images experimentally collected from the limited experimental runs captured at the 

Argonne National Laboratory. 

3.5  Variational Autoencoders to Generate New Vapor Depression Images 

 Sampling from the latent space using VAE should generate new images based on the 

features encoded and decoded by the model. Unlike the standard form of the autoencoder which 

returns the input image, the VAE utilizes the encoder to produce a distribution over the entire latent 

space rather than a single point by incorporating the reconstruction loss and the regularizing nature 

of the KL loss [53]. This allows sampling in that space that can generate new images. For instance, 
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to generate a new image based on a region in the latent space in between two different samples, 

with the expectation that the new image will be an expression of some mixed-hybrid image of those 

two different samples – the procedure will be to find the difference between the mean vector from 

those two samples, add half of the difference to the original, then decode the result.  

 The generative ability of the VAE will be used to generate new images of vapor depressions 

based on experimental parameters that were not experimentally conducted. Data was captured for 

builds with a laser velocity setting at 0.2, 0.4, 0.6, 0.8, 0.9, 1.0, 1.2, and 1.4 meters per second. The 

velocity settings in those gaps, such as for 0.3, 0.5, 0.7, 0.9, 1.1, and 1.3 therefore yield unknown 

vapor depression geometries. As discussed in previous sections, there is a narrow range of velocity 

values for which a major change can occur in the vapor depression geometry. We have seen that at 

0.2 meters per second there are vapor depression shapes that induce defects forming, while at 0.4 

meters per second there are none (at 350 watts). Therefore between 0.2 and 0.4 there should be a 

velocity setting value that will yield an optimal vapor depression that is deep yet stable and not 

defect inducing. Sampling from images in the latent space between 0.2 and 0.4 will help provide 

information into what vapor depression geometries in that gap would look like. The VAE will find 

the encoded vapor depressions at 0.2 meters per second and 0.4 meters per second, obtain their 

encoded vectors, compute their difference, and decode it as described in the previous section to 

computationally produce an image of a vapor depression at 0.3 meters per second. 

 By developing a VAE model that encodes images at 0.2, 0.4, 0.6, 0.8, 0.9, 1.0, 1.2, and 1.4 

meters per second, and sampling halfway between them, this work will achieve images of the vapor 

depression that will represent experimental runs at 0.3, 0.5, 0.7, 0.9, 1.1, and 1.3 meters per second. 

This will be repeated for each laser intensity setting, such as 150, 200, 250, 350, and 400 watts. The 

result will be a dataset of new images for 30 different combinations of laser parameters that were 
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not, and will not be experimentally produced. From these images, materials science researchers can 

have almost double the information produced experimentally to visually identify and quantifiably 

measure and verify, the appropriate laser settings to produce vapor depressions at the desired depth, 

width, area, and convex hull area for optimal build quality. 

3.6  GAN to Generate New Keyhole Defect Representative Images 

The fundamental idea of a GAN is to have what are essentially two CNNs working in 

conjunction. One, known as the generator, generates new data. Meanwhile, another, known as the 

discriminator, evaluates the output of the generator to determine if the image created appropriately 

captured the features necessary to be classified in the appropriate category [57]. This technique is 

effective due to the combined nature of these algorithms. As described previously, the CNN is a 

discriminative algorithm; if trained with images of a certain class, it can learn the features of those 

images and predict future images into the appropriate class. This makes the use of a GAN 

appropriate to explore as a CNN was previously evaluated for its ability to effectively learn the 

features of vapor depressions. Given the effectiveness of the CNN at appropriately learning the 

features of the vapor depression geometries, the discriminator will be just as affective at learning 

those features and determining if an output from a generator is real or false. Likewise the generator 

should be able to iteratively craft a better output to achieve an accurate representation of the 

training data.  

The following work involved developing a GAN that was trained on vapor depression 

images which were generated under known process parameters that led to the generation of defects 

– to then produce additional images of defect generating depressions. It has been established that 

a deep and narrow vapor depression can sufficiently penetrate the substrate material deep enough 

to fuse the material adequately. But when this happens, sometimes the vapor depression geometry 
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leaves behind portions of the material where gas is trapped and the defect forms in the 

microstructure. Materials can be tested post-processing using a variety of stress-based techniques 

to determine if a certain amount of porosity is acceptable, given the tradeoff between vapor 

depressions that are deep enough to melt the material and the likelihood that that deepness will 

cause defects to generate.  

  From the in-situ data for the 35 experimental builds, only 8 of those builds had data that 

depicted vapor depressions that left keyhole defects. While the size and location of those defects 

vary somewhat, there is not enough data to make conclusive determinations on the quantity of 

pores that are acceptable in a build. Therefore, the use of a GAN will generate additional 

representations of vapor depressions with defects. For each experiment that yielded defects, the 

GAN will be trained on those images and then the generation of new data of novel microstructures 

will then be used to create a porosity profile for each of those 8 experimental configurations. These 

will result in 8 sets of new microstructure images. The vapor depression in these images will then 

be measured in terms of depth, width, area, and convex hull area to examine if there is a significant 

difference in the sizes and distribution of those defects, in a manner supplementing the work 

discussed in previous sections.  

 The use of the GAN will contribute to ongoing research into process parameter 

characterization by producing more images that could not be experimentally derived. Similarly, 

the lack of data (only 8 experiments that depict defects) represents a missing data problem as there 

is not enough data to adequately evaluate the dispersion of defects in these builds. As demonstrated 

in the previous section describing the theory behind the GAN algorithm, this approach is a valid 

technique for generating new images. Therefore, it is an appropriate technique to apply to this lack 
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of image data problem, thereby providing a new methodology for computational materials science 

research in porosity profiling.  

 Modifications are possible to the general form of the GAN network architecture such that 

performance and accuracy can be improved upon [70]. By incorporating a continuous feature 

representation into the training, the model can potentially learn the distributional relationships of 

that feature with regard to the underlying principals governing that representation. For instance, 

the previously described thermodynamics and physics that inform the fluid nature of the gaseous 

vapor depression and the liquid melt pool formations. While the laser intensity for each build is 

relatively constant, the heat at the surface of the build is changing over time, due to buildup in 

energy as the laser moves across an area. The heat intensity is recorded in the thermal sensors in 

the LPBF experimental setup, and therefore provides a means of engineering a new feature to 

describe heat per unit area. Generating by incorporating this continuous representation would also 

have a direct impact on LPBF applications as complex builds will be a constant focus; to create 

objects that can be utilized in aerospace projects. As described previously, the heat buildup in the 

corners and crevices of these builds as the process develops from layer to layer can have a 

deleterious effect on the microstructural stability. Thus, involving a feature representation for the 

thermal variations in the build can improve the GAN’s ability to accurately model and generate 

those new microstructure representations.  

This body of work represents an advancement in the field of computer science by 

developing a first of its kind evaluation of multiple machine learning frameworks for image 

characterization, including by methods typically not employed for image-based learning tasks, 

such as the recommender system approach. These recommender system algorithms have 

historically been researched for incorporation into commercial systems but historically have not 
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been evaluated for image prediction tasks, nor for prescribing potential image characteristics, 

thereby demonstrating some generative capabilities. Their development here improves upon the 

body of knowledge around how recommender systems can be adapted for image processing; 

computationally deriving object boundaries and making predictions on future object boundaries in 

hypothetical images for uncollected experimental data. 

Further this work seeks to improve upon the state-of-the-art in generative models by 

developing a methodology for incorporating a continuous feature representation into the training 

such that the model can potentially learn the distributional relationships of that feature with regard 

to the underlying principals governing that representation. While work exists in this regard in 

conditional GAN, the process that will be developed here will use thermophysics based equations 

to characterize and predict fluid properties that are encoded in the deep learning framework as 

latent features. Additionally, the work described in this dissertation demonstrates an attempt to 

train a generative model in and end-to-end fashion which can be generalized to many other image 

representation, generation, and restoration problems in the machine learning subfield of computer 

vision. 
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CHAPTER 4 

 

 DEEP LEARNING FOR GEOMETRY CLASSIFICATION 

 

 

4.1 CNN for Vapor Depression Characterization 

 

While advancements have been made in studying the vapor depression of LPBF builds 

using advanced imagery, there has been no research into the application of deep learning to these 

datasets. This could aid researchers in two ways: 1) to reduce the manual labor required to examine 

all images in a large dataset where thousands or potentially millions of images could be taken, and 

2) allow researchers to have a comprehensive catalogue of expected vapor depression geometries 

based on the 35 combinations of build parameters previously used. A convolutional neural network 

(CNN) was developed and utilized in order to learn the features of the DXR images and to make 

predictions from the thousands of input images from the 35 different experiments to determine the 

general shape of the vapor depression. The data was manually curated whereby images that depict 

the following vapor depression shapes were labeled: conduction keyholing (2560 images), 

penetration keyholing with defects (2750), penetration keyholing with no defects (3480), and no 

keyholing (3060). Fig. 12 provides examples for each class. The inclusion of a class for penetration 

with defects was to allow for the model to determine the likelihood for keyholing defects to be left 

behind. The data was then divided into a training set at 80% of the data and a testing set at 20% of 

the data. 

The objective was to see if this deep learning approach can accurately classify the type of 

keyholing based on learning from input images of each class. This model could be used to 

accurately label future image datasets without manual inspection or curation, to determine what 

type of keyholing would be present in a future build with different build parameters. While it 

would be infeasible to collect DXR data in-situ for every future build, having the results of this 
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model could serve as a ground truth for establishing future experimental build parameters. 

Additionally, if the model is able to accurately identify a defect in an image, this can be 

interpolated to all layers in a build to then give a porosity profile for that build whereby the 

aggregated defects are quantified. 

4.2 Geometry Classification Results 

 An outline of the CNN model architecture is shown in Fig. 13. The rectified linear unit 

(ReLU) function was used as the activation function, as this is the most commonly used activation 

function in deep learning with numerous research studies showing this activation function achieves 

faster training and better performance over other approaches [71]. This function also avoids 

saturation, where an activation function can squeeze the input – meaning they have upper and 

lower bounds that compress the neural response into a bounded set of values. For instance, the 

TanH activation function compresses the values to a range of -1 and 1. ReLU avoids saturation by 

providing a non-linear function with no limit. Applied to each pixel in the input image, the function 

returns a value of 0 if a negative value is provided as input and returns the actual value if a non-

negative value is used as an input. As such, this expression can be mathematically described as: 

𝑓(𝑥) = max (0, 𝑥)          (26) 

This gives it the qualities of a linear function for values greater than 0, yet acts as a non-linear 

function for negative values at the same time. While somewhat simple in its approach, it is effective 

at handling non-linearity in the underlying data. 

The CNN was able to correctly label images from the testing set 92% of the time for the 4 

classes of vapor depressions, with a true positive rate of 93%, false negative rate at 7%, true  
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TABLE 1 

 CNN Performance Summary 

 Accuracy 

Overall 97.21 

True Positive 97.83 

False Negative 2.24 

True Negative 93.41 

False Positive 6.64 

 

Fig. 12. Keyholing classes 

Fig. 13. CNN model 

architecture 
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negative rate at 90%, and false positive rate at 10% (see Table 1). This implied that there was 

enough information learned from the geometries of the vapor depression and size of the vapor 

depression to accurately determine how the vapor depression would act given the experimental  

settings of the laser (the process parameters) as well as determine whether or not that combination 

of settings will induce keyholing defects in the substrate material. The model was then used for a 

training set containing only three classes of vapor depression geometries; removing the penetration 

with defects class. This resulted in an overall accuracy of 97% for the predictions with a true 

positive rate at 98%, false negative rate at 2%, true negative rate at 93%, and false negative rate at 

7%. While this smaller set of labeled classes does not predict the presence of defects in a build, it 

does imply that the number of input images in the training set was sufficient for the model to 

correctly learn the features in the images of each class. A summary of model performance can be 

seen in Fig. 14. This model could be advantageous to use for determining if the laser settings were 

sufficient to penetrate the substrate with enough depth to create a deep enough melt pool to fuse 

the metal powder particles. Ultimately, the results from both models showed that deep learning is 

successful in identifying the features in an experimental build from the LPBF process and 

characterize its in-situ process in a manner that has never been applied previously. 

4.3 CNN for Defect Detection 

In this portion of the work, the CNN approach was used to evaluate images for defect 

detection. Here the previously discussed model was used in addition to pre-trained models, thereby 

using transfer learning on images of builds made by LPBF. Four models based on NASNetMobile 

[72] and DenseNet121 [73], and the custom designed CNN were trained and evaluated, and further 

comparison was conducted. The objective was to demonstrate that CNN models can be feasible  
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Fig. 14. CNN model performance over training cycles 

 

 

 

tools for LPBF process monitoring and to provide an automated and rapid classification of images, 

which display challenging defects in shape and size. 

NASNet architectures are based on the neural architecture search (NAS) framework [74]. 

NAS is performed to find the best architecture based on a smaller dataset (CIFAR-10) and then 

transfer the learned architecture to a larger dataset (ImageNet). In the NASNet search space, the 

convolutional networks are comprised of convolutional layers or cells, which possess identical 

structure but different weights. Once the best cell structure is found using the CIFAR-10 dataset, 

several copies of that cell are stacked to build the convolutional architecture that can be applied to 

the larger ImageNet dataset. Searching for a cell is computationally more affordable than searching 
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for a complete network architecture and the best cell found with one dataset can generalize to other 

datasets.    

A dense convolutional network (DenseNet) is comprised of dense blocks connected by 

transition layers. Each dense block has several dense layers and the feature map of each layer is 

concatenated to the feature maps of the preceding layers [73]. A dense layer performs batch 

normalization rectified linear unit (ReLU) activation, convolution, and concatenation [75]. A 

transition layer performs batch normalization, ReLU activation, convolution, and average pooling 

[76]. The predictions layer, which is a fully connected layer, is connected by global average 

pooling. The equation below shows the HL function whose output xL in the Lth layer is the 

concatenation of the outputs (concatenated feature maps from preceding layers: [x0, x1, …, xL-1]) 

of the previous dense layers 0, 1, …, L-1 [77]: 

𝑥𝐿 = 𝐻𝐿([𝑥0, 𝑥1, … , 𝑥𝐿])                 (27) 

4.4 Transfer learning 

Transfer learning is a technique that allows transferability of knowledge to a modified 

neural network. It relies on weights learned from other datasets to train the deep neural network 

with a different dataset. A mathematical definition for transfer learning was described in [78] and 

is also formulated here with the same notation and definitions for consistency. A domain 𝒟 consists 

of 𝒳, which is a feature space of all data instances, and 𝑃(𝑋), which is a marginal distribution of 

the data used during the learning (training) process, such that 𝑋 is a sample (𝑋 ⊂ 𝒳), where 𝑥𝑖 ∈

𝑋 is the ith data instance (feature input), ∴ 𝒟 = {𝒳, 𝑃(𝑋)}. A task 𝒯 consists of a label (or class) 

space 𝒴, where 𝑦𝑖 ∈ 𝒴 is the ith output or label, and an objective predictive function 𝑓(. ) that 

learns during the training process and can be expressed as 𝑓(𝑥) = 𝑃(𝒴|𝑋), such that {𝑥𝑖, 𝑦𝑖} is the 

training data, ∴ 𝒯 = {𝒴, 𝑓(. )}. During testing, 𝑓(. ) can be used to predict the label of a new data 
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instance in 𝒳. Now, let us define a source domain 𝒟𝑆, where (𝑥𝑆𝑖
, 𝑦𝑆𝑖

) ∈ 𝒟𝑆, such that 𝑥𝑆𝑖
∈ 𝒳𝑆 ∧

𝑦𝑆𝑖
∈ 𝒴𝑆, and a target domain 𝒟𝑇, where (𝑥𝑇𝑖

, 𝑦𝑇𝑖
) ∈ 𝒟𝑇, such that 𝑥𝑇𝑖

∈ 𝒳𝑇 ∧ 𝑦𝑇𝑖
∈ 𝒴𝑇. The 

source task is 𝒯𝑆 and the target task is 𝒯𝑇. Therefore, transfer learning can be defined as [78]: 

(𝒟𝑆, 𝒯𝑆) enables knowledge transferability to (𝒟𝑇 , 𝒯𝑇) by improving the learning process of the 

target prediction function 𝑓𝑇(. ), where 𝒟𝑆 ≠ 𝒟𝑇 ∨ 𝒯𝑆 ≠ 𝒯𝑇. 

Transfer learning accelerates the training of neural networks and allows adaptability to 

other classification cases. In the TensorFlow Keras API [79], different deep neural network models 

have been implemented that can be initialized with weights learned using the ImageNet dataset. 

For example, by replacing the top layer of a base model (e.g., DenseNet) that has been trained with 

ImageNet is possible to add a new classifier layer for the new output labels and only train the 

added layer with the new input data. Further fine-tuning can be achieved by enabling the model 

entirely or partially for training.  

TensorFlow was used to build the models based on NASNetMobile and DenseNet121 

using transfer learning [80]. The weights on ImageNet were loaded on the base models. Transfer 

learning was applied by replacing the top layer of NASNetMobile with a new classification layer 

that implements the softmax function with two outputs for binary classification. 

For the models based on NASNetMobile and DenseNet121, batch renormalization was 

enabled in the added classification layer to overcome some shortcomings of batch normalization 

with mini-batches [81]. In this work, a batch size of 64 was used for the NASNETMobile and 

DenseNet121 based models and a batch size of 16 for the custom CNN model. The training dataset 

had 4352 images, the validation dataset had 640 images, and the test dataset had 640 images. All 

images were divided equally into two categories (defect and non-defect).  
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4.5 Defect Detection Evaluation 

The two models based on NASNetMobile were trained and validated after replacing the 

top layer in the base model. The optimizer used was Adam with a learning rate of 0.0001 and 

AMSGrad enabled. For model training, the batch normalization layers in the base models were set 

to work in inference mode. Two blocks and a classification layer were added to the base model to 

implement NASNetMobile-A. Each block included batch normalization (with renormalization), 

dropout, and a fully connected layer (ReLU activation). The top layer was a two-output fully 

connected layer with softmax activation. The new layers were enabled for training whereas the 

layers of the base models were frozen. For NASNetMobile-B, the top layer of the base model was 

replaced with a two-output top layer with softmax activation. The entire network was set to 

trainable but still maintaining their batch normalization layers in inference mode. After testing, the 

accuracy achieved with NASNetMobile-A was 0.9359 and NASNetMobile-B was 0.9719. The 

confusion matrix for NASNetMobile-B is shown in Fig. 15. 

Two models based on DenseNet121 were next implemented. The top layer of the base 

model was replaced with new layers and a new classification layer. The Adam optimizer was used 

with a learning rate of 0.0001 and AMSGrad enabled. This is a variant to the Adam optimizer that 

uses the maximum of past squared gradients to update the parameters, rather than using the 

exponential moving average, thereby achieving convergence, where the Adam optimizer alone 

may often fail to achieve. During fine-tuning, the conv5 dense block, which is the last dense block 

in the DenseNet121 model, was enabled alongside the added layers, and the model was retrained. 

In the case of DenseNet121-A, two blocks were added and each block included batch 

normalization (with renormalization), dropout, and a fully connected layer (ReLU activation). The 

top layer was a two-output fully connected layer, with softmax activation, for binary classification. 
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For the first time training, the added layers were trained whereas the base model was frozen, and 

its batch normalization layers were set to inference mode. After fine-tuning and testing, 

DenseNet121-A achieved an accuracy of 0.9875. For DenseNet121-B, the top layer of the base 

model was replaced with the following layers: a fully connected layer (ReLU activation), dropout, 

and a two-output fully connected layer with softmax activation. Similar to DenseNet121-A, 

initially the base model was frozen and the added layers were trained. After fine-tuning and testing, 

DenseNet121-B achieved an accuracy of 0.9641. The best performance after testing between the 

two DenseNet based models was of DenseNet121-A, whose confusion matrix is shown in Fig. 16. 

As described previously, the custom CNN model was trained in its entirety using the Adam 

optimizer, with a learning rate of 0.001 and AMSGrad enabled. After testing, the accuracy 

achieved was 0.9766. Fig. 17 shows the confusion matrix for the custom CNN model. 

 

 

 

 

Fig. 15. Confusion matrix for NASNetMobile-B after testing 
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Fig. 16. Confusion matrix for DenseNet121-A after testing 

 

 

 

 

Fig. 17. Confusion matrix for the custom CNN model after testing 
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Fig. 18 shows the receiver operating characteristic (ROC) curves for all the models 

implemented in this section. The black dashed line represents the random assignment case. Owing 

to the characteristics of the ROC curves and the fact that the base rates of true positives and true 

negatives are equal, the area under the ROC curve and the accuracy are numerically equal. 

DenseNet121-A exhibited the best results.  

 

 

 

 

Fig. 18. Graph of the ROC curves for the DL models implemented and tested 
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Table 2 summarizes the performances of the implemented models showing the accuracy, 

precision, recall, and F-1 score. With the employed test dataset, all of the deep learning models 

were able to identify correctly the non-defect label, i.e., no false positives. Therefore, the precision 

was equal to 1.0 for each of these. 

 

 

TABLE 2 

CNN Performance Summary 

MODEL ACCURACY PRECISION RECALL F-1 SCORE 

NASNetMobile-A 0.9359 1.000 0.8719 0.9316 

NASNetMobile-B 0.9719 1.000 0.9438 0.9711 

DenseNet121-A 0.9875 1.000 0.9750 0.9873 

DenseNet121-B 0.9641 1.000 0.9281 0.9627 

Custom CNN 0.9766 1.000 0.9531 0.9760 

 

 

 

4.6 CNN Summary 

 This chapter provided an overview of several CNN models to evaluate if deep learning 

methodologies are appropriate for the data at hand. As discussed, the CNN is capable of correctly 

classifying images from the DXR data to determine what type of vapor depression geometry is 

captured in each image. Further, the CNN is capable of detecting the presence of defects in the 

images, thereby establishing that the models are capable of learning not only the features that 

constitute the vapor depression objects, but other objects in the images as well. This indicates that 

these deep learning methods are a valid approach for further investigation of LPBF images from a 

machine learning standpoint. As has been discussed in the literature review, many generative 

models are complex adaptations to the CNN model utilized in this chapter, in the algorithmic 

processes that converge on a solution. These results therefore justified further investigation into 
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more complex deep learning architectures, not just for data classification, but for data generation 

as well.  

 Following the results of data generation, presented in later chapters, revisiting this work 

with transfer learning could find additional benefits. It was established throughout the literature of 

the CNN that model performance tends to improve with more training data. Therefore, having 

more images of the in-situ process could allow investigators to perform even more finely tuned 

transfer learning or deep learning methodologies to detect the presence of defects. While such a 

system cannot be deployed in real-time for future builds due to the complexity of the DXR imaging 

process, it is possible to match those builds that create the most defects and suggest which 

combinations of parameters are most likely to induce those defects. The work presented here in 

this chapter can therefore serve as a precursor to a more thorough investigation, in conjunction 

with the results to be discussed in later chapters on generating new data. 
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CHAPTER 5 

 

COMPUTATIONAL GEOMETRIC ANALYSIS 

 

 

5.1  Convex Hull Geometries 

 

 The shape of the gaseous vapor depression gives insight into how it will solidify, thereby 

impacting the microstructure of the material. For defects to occur in the material, the vapor 

depression should have a rounded shape such that the top portion can close off and thereby result 

in an enclosed void after the laser has passed that region and the material cools. This can easily be 

visualized by inspection of the vapor depression movement through the material; there are 

instances where the bottommost area of that depression forms a bulbous shape, which after several 

frames seems to break off and is left behind (see Fig. 2.4). This activity strongly suggests there is 

a link between the shapes of the vapor depression at any given time, and the likelihood that a defect 

will occur in the next few hundredths of a second. 

 Understanding the geometry of the vapor depression is integral into understanding the 

characteristics of the final material. But just analyzing the size may not be conclusive enough to 

generate expectations on those properties. For instance, the vapor depression could be wide and 

shallow, known as conduction keyholing, or deep but narrow, known as penetration keyholing. 

These are essentially opposite representations yet have the same area. Additionally, while 

penetration keyholing is more likely to have an effect on the material properties as it leaves behind 

deep striations in the material, as previously noted the exact shape that penetration takes is relevant.  

While drawing conclusions from the area of the vapor depression could give insight, there 

can be other methodologies that might be more impactful on the analysis, such as examining the 

convex hull area of the vapor depression at any given time. The convex hull of an object is defined 

as the set of points that enclose all of the points in a given set of points [82]. The name convex 
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implies that this shape will have no regions bent inwards, as would be expected if only the 

outermost points in a set were used to outline its shape. For the vapor depression geometries, this 

would yield a shape that encompassed a region larger than the vapor depression itself. The area of 

the region enclosed by the convex hull should be larger than the geometric area of the vapor 

depression – if that vapor depression had a geometry where a portion of it was larger and more 

bulbous in nature than the rest of the depression (see Fig. 19). Since the vapor depression only has 

one area (near the bottom) that when shaped into a round bulb will break off to form a defect - a 

larger convex hull area would be indicative of this effect.   

For the vapor depression analyses, the convex hull was calculated for every frame in the 

dataset. This technique was applied to the dataset previously manipulated, to yield a set of convex 

hull measurements for the vapor depression in every frame. The number of outermost points that 

were used to determine the convex hull was also derived. Additionally, the area of the convex hull 

in each frame was calculated to compare against the geometric area. The feasibility of this 

approach was also analyzed, by looking at how the convex hull algorithm converges to a solution, 

for each frame – and how taxing that computation would be for each frame individually. This is 

additionally relevant as these shapes are complex polygons, where a single pixel can potentially 

form an edge and therefore impact the computational complexity of this approach. 

5.2  Convex Hull Computational Approach 

 The general problem to be solved by the convex hull calculation can be summarized by, if 

given a set of points on a two-dimensional plane, how can the points be connected such that they 

would not form a concave angle? In the case of this analysis, the points necessary for consideration 

were the boundary points, all of the points that constituted the perimeter of the vapor depression.  
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Fig. 19. Original image, geometric area in green, and convex hull area in blue 

 

 

 

While there are many algorithms that can be used to solve this problem, with varying results and 

computation time, one such approach that has been firmly established as an efficient technique is 

known as the Jarvis March, or otherwise known as the “gift wrapping algorithm” [83]. It has this 

name as it is similar to how gift wrapping paper is wrapped around an object, in this case a set of 

predetermined points. Its performance has been documented as being favorable for datasets where 

the number of points is small, or the number of points that constitute the convex hull is expected 

to be small in comparison to the total number of points [83]. The algorithm begins by selecting a 

starting point p, which will be the minimum value on the x-coordinate, which is done in p – O(n) 

where p is the initial point. The total number of points that are selected as pivot points, or h, are 

then determined against all available points, n. The point p then becomes a pivot point from which 

in a counterclockwise direction the next point is located by checking the orientation of the other 

points from point p. The point that has the largest angle is the point that is the most 

counterclockwise from p, which is done in O(n). After comparing against all points, this point 

becomes the new point p, therefore again is p – O(n). This computation is completed in O(nh) time 

complexity. The pseudocode for this algorithm can be demonstrated as [83]: 



78 
 

convex hull algorithm (S)  

# S = set of points 

# P = set of points which form the convex hull.  

# I = final size of the set of points  

xmost = minimum x coordinate point 

     i := 0 

     repeat 

          P[i] := xmost 

          endpoint := S[0]      // initial endpoint for next pivot point possibility 

          for j from 0 to |S| do: 

// endpoint == xmost is rare case and is only when j == 1 no endpoint  

has not yet been set for the loop 

              if (endpoint == xmost) or (S[j] is on left of line from P[i] to  

endpoint) then 

endpoint := S[j]   // if there is a larger left turn, change  

endpoint 

          i := i + 1 

          xmost = endpoint 

     until endpoint = P[0]      // continued until returning to first point 

 The algorithm essentially runs with two loops comparing the chosen point to all of the other 

points in the set, S. One loop checks every point in S while another repeats this for each point on 

the convex hull. This is why the complexity time is O(nh) as it is dependent on both the number 

of n and h. This is also why it is generally faster than other approaches to convex hull computations 
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that can be done in O(n log n) such as Graham’s algorithm, when the number of vertices, or h, is 

smaller than the log of n [84]. 

5.3  Convex Hull Results and Analysis 

The application of the convex hull algorithm to a single frame in the dataset took 0.000998 

seconds on a system with a 7th generation Pentium i5 CPU processor at 2.60 GHz. For all frames 

in a single dataset, 2,000 images, this took 1.996 seconds.  

On average, there were 13 points that were found as vertices for the convex hull. While the 

average number of hull vertices was 13, the average number of points in total was 522. Therefore, 

the h value in these calculations were significantly smaller than the n value, thereby supporting the 

Jarvis algorithm approach. From these 13 points, the area of the resultant polygon’s convex hull 

was calculated, which took 0.000997 seconds for a single frame. A summary of the processing 

time is depicted in Table 3. The second column of the table shows the calculation time applied to 

every frame in a single experimental run. The final column is an approximation based on a 

hypothetical build with 1,000 layers/datasets.  

 

 

TABLE 3 

Calculations for Convex Hull 

Calculation Single Image 2000 Images 

1 Dataset 

1000 Datasets 

1 Complete Build 

Convex Hull Points 0.000998 sec 1.996 sec 33 min 16 sec 

Convex Hull Area 0.000997 sec 1.994 sec 33 min 14 sec 

Total for Points and Area 0.001995 sec 3.990 sec 1 hr 6 min 30 sec 

Geometric Area 0.000999 sec 1.998 sec 33 min 18 sec 
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Fig. 20. Convex hull areas versus geometric areas 

 

 

 

As shown in the table, the combined approach of finding the convex hull vertices and then 

calculating the area of that region takes approximately twice as long as calculating the area of the 

vapor depression. The calculation for the geometric area is relatively simple in comparison as it is  

simply the total pixels in the vapor depression, multiplied by the conversion of pixel size to 

micrometers, which was 1 pixel = 1.932 micrometers. Overall, the convex hull areas were larger 

than the geometric areas, and in many cases significantly more (see Fig. 20). From these results, 

the average area of the convex hull was 3,099 μm2. Meanwhile the average geometric area was 

2,429 μm2, a statistically significant difference. The average percent difference among all frames 

was 19.24%, and the median percent difference among all frames was 16.11%.  
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Those frames in which the percent difference between the geometric area and the convex 

hull area was greater than 20% were subsequently extracted from the original dataset for 

inspection. Observing each of these frames in the dataset confirms that the vapor depression had a 

large bulbous region near the bottom. Furthermore, for all of those frames with a percent difference 

value greater than 20%, the analysis showed that within 2 to 4 frames later the percent difference 

fell to a range of 0.05 to 0.10 percent difference in all but 5 of the frames under inspection. This 

further indicates that when the vapor depression develops that large bulbous geometry, that area 

will break off and form a defect. The convex hull calculations indicate when that is likely to occur, 

as its area will be significantly higher than the area of the vapor depression at that point in time. 

This data also shows that defect formation happens quickly, as these frames are taken 0.01024 

seconds apart, which therefore suggests that the vapor depression can create a defect in 0.01024 to 

0.04096 seconds. 

5.4  Voronoi Diagram with Clustering 

 After examining all frames in the dataset with regards to the size of the vapor depression, 

the next analysis focused on finding a method to classify different vapor depressions from the 

dataset into groups such that those that are most likely to lead to defects can be categorized. A 

combined approach was taken where an unsupervised machine learning approach known as K-

Means clustering was applied to all measurements of the convex hull area with regards to time 

through the experimental run. Subsequently, the cluster regions were used to create a Voronoi 

Diagram based on the centroid points of those clusters in a Euclidean space. This combined 

approach helped to develop a new data label for each vapor depression in the dataset where the 

largest could be quantifiably grouped separately. The goal of this approach was to help identify 
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the combination of settings that yielded the largest measurements, which could be grouped 

together as a category. 

  Unsupervised machine learning is an approach where inferences are made from patterns 

within the data without referencing an outcome [85]. These algorithms collectively can provide 

insight into large datasets where those patterns may previously be unknown, thus providing a 

valuable tool to use for exploratory data analysis, or EDA [86]. One technique in particular that 

can aid in EDA is clustering, where observations from the dataset can be grouped, or clustered, 

based on some criteria [87]. This grouping can then be used as an additional feature for more 

targeted analytical approaches [88]. The K-means clustering algorithm is one method that can be 

useful for grouping all observations using continuous variables from the dataset [89]. K-means 

iterates between two steps. Initially in the data assignment step, there is a centroid point established 

which defines the center of each cluster. Every data point is then categorized into one of the clusters 

based on the Euclidean distance to its nearest centroid point [90]. This can be demonstrated by: 

argmin
𝑐𝑖 𝜖 𝐶

𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑥)2           (28) 

where: 

dist is the Euclidean distance, or L2 distance 

ci is the collection of centroids in set C 

x is each data point 

In the second step, each centroid is recomputed by taking the mean of all data points 

assigned to that centroid’s cluster: 

𝑐𝑖 =  
1

|𝑆𝑖|
∑ 𝑥𝑖 𝜖  𝑆𝑖

𝑥𝑖          (29) 

where: 

Si is the set of data point assignments for each ith cluster centroid 
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 The Voronoi approach is to partition a plane, where polygons are generated by those 

partitions such that each polygon contains one generating point and every other point within its 

boundaries are closer to that generating point than any other [82]. In this case the plane was the 

Euclidean plane with the results of the clustering analysis plotted, into such regions where the 

center of the cluster was the generating point for the Voronoi regions. In the Euclidean plane, the 

distance between two points p and q are determined by: 

𝑑𝑖𝑠𝑡(𝑝, 𝑞) =  √(𝑝𝑥 −  𝑞𝑥)2 + (𝑝𝑦 −  𝑞𝑦)2        (30) 

where: 

px is the x coordinate of the first point 

py is the y coordinate of the first point 

qx is the x coordinate of the second point 

qx is the x coordinate of the second point 

The Voronoi diagram will then be computed such that the subdivision of the plane P will be into 

n number of regions where a point q is found in the same region as pi if and only if dist(q,pi) < 

dist(q,pj) for each pj ϵ P with j ≠ 1. 

5.5  Voronoi Computational Approach 

 The calculation of Voronoi regions can be efficiently produced using Fortune’s algorithm, 

which is a sweep line algorithm, that “sweeps” a surface in a two dimensional Euclidian plane 

[91]. The Fortune approach combines two lines, a sweep line that is a straight line moving left to 

right across the plane, and a beach line which is curved like a series of parabolas that move to the 

left of the sweep line across the plane. While the points that the sweep line has passed points to its 

left which have been incorporated into the Voronoi diagram, the beach line divides that area based 

on the information currently known into its subsequent regions. The beach line function can occur 
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regardless of the information not known, that is, the points to the right of the sweep line that have 

not yet been passed. This is possible because the parabolic nature of a line can have the properties 

of having a set of points equidistant from any point left of the sweep line to the sweep line itself. 

The beach line is therefore the boundary between those resultant parabolas that define that 

equidistant space. Therefore, as the sweep line progresses through the plane, the beach line will 

form vertices at points where those lines and the sweep line parabolas cross, resulting in the edges 

of the Voronoi diagram [91]. As the algorithm progresses, it uses a binary search tree to record the 

properties of the beach line in memory. This allows fast lookup and insertion or deletion of new 

items into the memory structure, as constant information is being received through the line 

sweeping [92]. As new points are integrated, the insertion and deletion of parabolic lines to the left 

of the sweep line can be ordered such that the x-coordinate of their location is the reference point 

from which they can be identified. The algorithm then continues adding or removing parabolic 

structures until the model converges once the entire plane has been swept. 

 The application of Fortune’s algorithm computes in O(n log n) time as there are O(n) events 

to consider as features of the Voronoi diagram, and it takes O(log n) time to process each of these 

events. Each of these events requires the binary search tree functions of recalling, removing, or 

adding information. Therefore, this results in the total run time of the algorithm as O(n log n) time 

[91].  A proof of this follows [93]: 

Theorem: For n≥3 sites, the Voronoi diagram contains at most 2n−5 vertices and 3n−6 edges. 

Proof: 

1. For points that lay on the line, this is always true. For points that do not lay on the line, 

let V = number of vertices in Voronoi diagram, E = number of edges, and N = number of 

inner faces which is also equal to the number of points  
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2. From Euler's formula: V – E + N = 2. Due to the possibility that the Voronoi diagram 

contains infinite edges, let's create a new vertex to represent infinity and connect all of 

the edges to it such that is becomes a planar graph: (V + 1 ) – E + N = 2.  

3. In the Voronoi diagram we know that every vertex has a degree at least 3. An edge is 

between two vertices, so that equates to 3 ∗ [(V + 1 ) ≤ 2 * E]. Algebraically, this 

transforms into less than or equal to 2n – 5 vertices and less than or equal to 3n – 6 edges. 

5.6  Voronoi Diagram with Clustering Results and Analysis 

The application of the K-means algorithm for the convex hull measurements for every 

frame in the dataset took 0.1560 seconds on the same system with a 7th generation Pentium i5 CPU 

processor at 2.60 GHz. To determine the optimal number of clusters, k, to model the data, Bayesian 

Inference Criterion (BIC) was used, as it has shown to be an effective technique by using the 

information criteria values [94]. This resulted in 6 clusters being chosen as the optimal number of 

clusters for the observations in this dataset. The centroid of the 6 clusters was then determined, 

which was then used to construct a Voronoi diagram of these points, of which the values were then 

normalized, and overlayed on which was a plot of the convex hull area on the y axis with the time 

on the x axis. Based on the 6 points to be evaluated, the generation of the Voronoi diagram was 

completed in 0.0603 seconds. Thus, the total combined time for this evaluation on the dataset took 

0.2163 seconds to complete.  

As shown in the resultant plot (see Fig. 21), the observations from the dataset, which was 

each recorded vapor depression, can be grouped into 6 classes based on the convex hull geometries. 

As this value has been previously shown to be illustrative in determining whether or not a vapor 

depression will generate a defect in the material, having this evaluation measure to group the 

recorded geometries can be an additional tool to understand how and when these defects may 
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occur. The Voronoi diagram serves as both a visual inspection tool, one that can be quickly 

generated for each experimental build, which can then be read to determine what percentage of the 

build was likely to have defects based on how many frames (with a known time separation 

between) had displayed a geometry likely to form such a defect. Additionally, cluster and region 

assignment for each measured geometry can provide an additional data label that could be used 

for future purposes, such as training a predictive model to learn and predict what cluster (and 

therefore likelihood) a vapor depression geometry may have for generating a defect in the material. 

 

 

 

 

 

 

Fig. 21. Convex hull areas clustered against time 
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CHAPTER 6 

 

TIME-RESOLVED GEOMETRIC QUANTIFICATION 

 

 

6.1 Thermal Effects on Morphology 

 

As a laser melts the surface of a material, it is possible that too much laser energy can be 

absorbed and the surface temperature becomes high enough to vaporize the material. This often 

occurs in LPBF because of tightly focused laser beams used, which leads to a complex interplay 

of multiple physical phenomena, such as recoil pressure and Marangoni convection [95]. All of 

these phenomena can cause a vapor depression, or keyhole, that depresses the surface of the liquid 

metal. The resulting morphologies of these vapor cavities vary widely with process conditions, 

i.e., different combinations of laser scan power, speed, and beam diameter at the metal surface 

[96]. More specifically, high power, low speed, and a small spot size promote deep and narrow 

keyholes. 

During keyhole-mode laser melting, the occurrence of a deep and narrow keyhole and its 

turbulent fluctuations can cause the formation of porosity, which constitutes as a subsurface defect 

and degrades the mechanical properties, such as the fatigue life, in additively manufactured 

components [96]. Keyhole fluctuation can also generate spatter which can fall back down on the 

surface of the powder bed and contribute to defect formation [97]. These realities motivate the 

necessity of a sophisticated time-resolved quantification technique for capturing keyhole geometry 

under different process conditions to investigate the variation in keyhole morphologies and 

determine correlations between the quantified keyhole geometric features and the process 

parameters.  

With the development of real-time synchrotron observation, i.e., high-speed X-ray 

imaging, which reveals the density contrast between solid material and a vapor cavity, it can be 
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possible to track the dynamic evolution of the keyhole geometry with high spatio-temporal 

resolution [97]. To measure geometric features, such as depth, width, and front wall angle, of a 

keyhole from high-speed X-ray images, computer vision techniques were employed. The 

application of computer vision techniques in materials science has been rapidly expanding because 

of their advantages for quantifying digital images. The quantification of microstructural images 

through computer vision enables numerical feature extraction so that the resulting data can be used 

for analysis and characterization of microstructures [98]. Similarly, it is also possible to leverage 

computer vision to extract quantitative information from the high-speed X-ray visualizations for 

analysis and characterization of keyhole dynamics. 

This chapter presents a pipeline that carries out an image processing routine followed by 

geometric feature extraction to obtain time-resolved geometric information of a moving keyhole. 

Statistical methods are applied, such as Spearman’s rank-order correlations followed by 

agglomerative hierarchical clustering to correlate keyhole geometric features with the process 

parameters. The emphasis of this chapter is on the methodology behind the proposed image 

processing pipeline that performs geometric feature extraction from pixelated data. Thus, the main 

point of the data analysis is to demonstrate the practicality of semi-automatic extraction of keyhole 

data as well as how analysis of the resulting data may lead to new insights. 

6.2 Advanced Image Processing for Feature Extraction 

Before extracting the geometric features from a series of x-ray images, it is necessary to 

obtain a well defined digitized boundary around each keyhole. To this end, it was necessary to 

develop a novel image processing pipeline which is documented in this section. An overview of 

the image processing path is depicted as a flow chart in Fig. 22.  
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Fig. 22. A flow chart illustrating the image processing pipeline 

 

 

 

The operation begins by importing a series of raw x-ray images as 8 bit gray-scaled images. A 

single representative image from an x-ray experiment performed on titanium alloy Ti64 with 

power at 426 W, velocity 1.2 m/s, and beam diameter 65 µm is shown in Fig. 23a and will be used 

in subsequent sections. In some of the high-speed x-ray imaging experiments, the top surface of 

the sample can appear slightly tilted if the top and bottom of the sample are not completely parallel. 

Ensuring the sample is parallel to the frame and removing the pixels above the top surface 

improves the preservation and segmentation of the top of the keyhole. Because this can impact the 

subsequent image processing steps and skew the geometric data of the keyhole, a rigid (Euclidean) 

transformation was employed to mitigate this issue. The red line in Fig. 23a runs parallel to the 

initial sample surface at the beginning of the experiment and serves as the reference line for 

cropping and transformation. The rigid transformed image in Fig. 23b was rotated and translated 

about this red line while preserving the rigidity of the sample [99], ensuring that the top surface of 
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the sample was parallel with the frame of the image. After performing the transformation, a 

calculation was performed followed by storing the transformation angle of each experiment to 

correct the front wall angle that is measured in the proceeding feature extraction. In addition to the 

transformation, cropping was used to remove any unnecessary area (i.e., any part of the image 

above the sample surface). Whenever the aforementioned “overlap band” hindered the described 

image processing steps, it was cropped at a level up to 5 pixels beyond the top of the sample surface 

to remove this artifact. This is especially important for resolving the top portion of the keyhole; 

thus, it became an important aspect of the cropping that the depth of the keyhole measured in the 

subsequent geometric feature extraction process was correctly calculated. Fig. 23b displays the 

result of both the rigid transformation and cropping process applied to the raw image. 

 

 

 

 

Fig. 23. a) Gray-scaled raw image of LPBF with red line indicating reference level,  

b) The same image after transformation and cropping 
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Following the cropping and transformation, the images underwent a sequence of de-noising 

and normalization steps to enhance the quality and contrast of the keyhole. To quantify each 

enhancement, both a histogram and a cumulative distribution function (CDF) were generated of 

the pixel values for each processing step as shown in Fig. 24. In the raw x-ray image, as shown in 

Fig. 24a and b, it can be observed that the pixel values were clustered, which made it difficult to 

segment the keyhole from the image. The first step to achieving a well-defined keyhole was to 

remove the experimental noise which is apparent in Fig. 24a. Typically, a simple background 

division step was used for this purpose where each image in the series was divided by the first 

image; however, when applied to the sequence of x-ray images, this rudimentary method proved 

inadequate. This was because the background divided images possessed low noise at the beginning 

of the series, but as the laser travelled across the sample, the experimental noise increased in 

intensity, perhaps because of thermal expansion of the sample and interactions between the sample 

and the enclosing holder. 

To alleviate the increase in noise with each image, a local background division process was 

enacted. This algorithm divided a given image, i, by an image that appeared earlier in the series by 

some certain distance, i − x , with x being a hyperparameter to be calibrated. This effectively kept 

the experimental noise at a consistent level across the entire series of images, which greatly 

benefits the subsequent processing. Any cropped pixel location beyond the surface of the sample 

was stored so that the following step used integers. Fig. 24c and d shows the resulting image of 

the local background division and its pixel intensity histogram. Here, there are two keyholes in 

each image: the leading keyhole from the  original image and trailing keyhole from the image used 

for the division step. This new methodology for instrument denoising in time-resolved image 

sequences necessitated that a second keyhole appeared which came from the frame that was x  
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Fig. 24. (a) The final image from Figure 23b after rigid transformation and cropping; (b) with the 

resultant pixel intensity histogram and CDF from (a); (c) after local background division; (d) with 

the resultant pixel intensity histogram and CDF from (c); (e) after clipping; (f) with the resultant 

pixel intensity histogram and CDF from (e); (g) after normalization; (h) with the resultant pixel 

intensity histogram and CDF from (g); (i) after adaptive histogram equalization; (j) with the 

resultant pixel intensity histogram and CDF from (i) 
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behind the frame of interest, n. For the remainder of the analysis, only the leading keyhole (which 

is brighter than the trailing keyhole) was considered for segmentation. This is because, in some 

cases, pores generated behind the leading keyhole can collapse into the trailing keyhole region 

thereby hindering the subsequent image processing steps and the geometric feature extraction. 

Note that setting an optimal value for x during this step was crucial to avoid overlap of the two 

keyholes, which entangles the shapes of both keyholes and interferes with segmentation. After 

systematically evaluating many values for x, typically, setting x = 50 provided the best balance 

between preventing any interference between the keyholes as well as minimizing the image noise. 

Although the image in Fig. 24c depicts a well defined keyhole, the local background 

division still has outlier pixel intensities, which could explain why the CDF has a much larger 

pixel range in Fig. 24d than in 24b. To resolve this issue, it was necessary to introduce a clipping 

step to the processing routine. Here, the goal was to remove any outliers and also enhance the 

contrast by clipping the levels of intensities to a chosen range. The minimum and maximum values 

were each set to a chosen percentile of the histogram of pixel values which increased the robustness 

of this routine for each image in the series. This interval edge is another hyperparameter that can 

be fine-tuned for different experiments, but it was usually set to the 10th and 99th percentile, 

respectively. Values greater or smaller than the set interval were clipped to the edges of the interval 

through an array clipping process [100]. This step eliminated the remainder of the outlying pixels 

that were unrepresentative of the information contained in the image and resulted in a smaller CDF 

pixel range as observed when comparing Fig. 24d and 24f. 

After going through the previous image processing steps, the pixel values were mostly 

confined to a range that varied among each frame within the experiment. To address this 

inconsistency, the pixel values in each frame were normalized by re-scaling with the maximum 
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and minimum values of the respective frame. This step increased the distance in intensities 

between the keyhole and its surroundings since the re-scaling stretched the range of values to the 

end values, i.e., 0 and 255 [101]. The resulting image and its pixel intensity histogram of this step 

are shown in Fig. 24g and h, where it is apparent that the CDF spans the whole range of the x-axis. 

Next, we performed adaptive histogram equalization [102] to further enhance the local contrast 

around the keyhole, as shown in Fig. 24i and 24j. This function equalizes an image locally by 

dividing the image into small tiles which avoids excessive amplification of noise and enhances 

edge definition. Although the localized tile-wise nature of this step only made subtle changes to 

the histogram according to Fig. 24j, performing this routine tended to increase the repeatability of 

determining a suitable threshold value that outlined the keyhole for the entire image sequence. 

After the adaptive histogram equalization, a simple global binary thresholding method was 

employed on the image to assign any pixel with a value less than the threshold value to zero, and 

all other pixels to 255. As shown in Fig. 25a, there was too much noise in the image after the initial 

thresholding step. Thus, a sequence of de-noising steps was performed to remove noisy pixels in 

the binarized image. To begin, this used an opening morphological operation, which consists of 

pixel erosion followed by dilation as shown in Fig. 25b. By using a predefined kernel, a single 

anchor point, size, and shape were dictated for the whole stack of images. The erosion operator 

then computed the minimum pixel value overlapped by the kernel when it scanned across the 

image and replaced the image pixel under the anchor point with that minimum value; while the 

dilation operator did the opposite [101]. After this, any remaining open holes in the keyhole were 

removed by using a hole filling command from OpenCV, which produced Fig. 25c. For further 

de-noising, a median blur operation was used. In this operation, the predefined square, which can 
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be any size, was scanned over the image with each pixel being replaced by the median value in the 

square neighborhood surrounding the center pixel.  

As seen in Fig. 25d, the majority of the small speckles of noise from Fig. 25c were cleaned 

with this last de-noising step. The final stage in the methodology was developed automatically 

detect nonzero object in the image, which was the keyhole itself, as shown by the outcome in Fig. 

25e. This was achieved by using an algorithm based on a function from the OpenCV library that 

detects all nonzero objects in the image, sorts them by number of pixels, and selects the largest 

object. After all of the aforementioned processing steps were complete, the finalized images were 

ready for geometric feature extraction. 

6.3 Geometric Feature Extraction 

After successful image segmentation, geometric feature extraction was performed on each 

image from the array of x-ray images. The key utility of this process was making use of the contour 

function from OpenCV to identify the object, i.e., the keyhole, in the segmented image. Once a 

feature was identified, it was characterized by using quantitative metrics based on its geometry. 

The primary geometric features that were extracted consist of the width, depth, and front wall 

angle, which are regarded as the key attributes for understanding keyholes [103]. Additional 

geometric features, such as area and perimeter, were also considered for this analysis. Fig. 26 

presents the extracted geometric features of each frame from the same series of images as the 

experiment shown in the previous figures. 

The keyhole depth at each frame was calculated by taking the difference between the 

maximum and minimum pixel positions perpendicular to the top surface of the sample. The depth  
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Fig. 25. The final image from Figure 6.3i (a) after global binary thresholding; (b) after 

morphological opening transformation; (c) after filling holes in the keyhole; (d) after median blur; 

(e) after picking up the largest object 

 

 

 

 

Fig. 26. The final image from Figure 6.4e after the geometric feature extraction process with the 

target features of the keyhole shown with colored lines 
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also took into account the additional distance applied to the cropping process to remove the 

“overlap band” artifact, which was set in the image processing step. For the width, four locations 

were considered regularly spaced about the keyhole depth indicated by the red lines in Fig. 26. 

The first, second, third, and fourth red lines correspond, respectively, to the width at the top, 

quarter, halfway, and three-quarter distance of the keyhole depth. Here, it was assumed that the 

width at the top of the keyhole in the processed image was the same as the width at the keyhole 

entrance. This was because any additional cropping to remove the “overlap band”, which was 

limited to a maximum of 5 pixels, will have an insignificant effect on the width at or around the 

keyhole entrance. The resulting aspect ratio of the keyhole was defined as the ratio of the keyhole 

depth to the width at the top of the keyhole. In addition, the four red lines used to define the various 

keyhole widths in Fig. 26 also constituted four different regions within the keyhole to define 

separate keyhole areas. These areas consisted of one complete keyhole area and three partial areas. 

The three partial areas corresponded to the areas bounded by the top of the keyhole to the quarter, 

halfway, and three-quarter length of the keyhole depth. We included the various subdivided 

keyhole widths and areas to capture more detail on the location dependent fluctuations of the 

keyhole. Moreover, the front wall angle, shown in green in Fig. 26, was calculated based on the 

angle that formed from the rightmost pixel at the very top of the keyhole and the rightmost pixel 

at the three-quarter depth of the keyhole. Lastly, the perimeter of the keyhole was simply retrieved 

from the contour of the keyhole without further modification. 

Since the geometric features are collected for each frame of the series, we are able to 

quantify the trends that occur with time for each feature. An additional way to investigate the 

transient nature of keyholes is to numerically differentiate the feature of interest. This method for 

quantifying of the fluctuation rate was calculated using the equation below for each extracted 
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geometric feature and allowed data analysis to take place on both static and dynamic geometric 

features. 

   Fluctuation Rate = Feature[ith] / Feature[(i – 1)th]        (31) 

6.4 Nonparametric Data Analysis  

To elucidate the correlations that may exist between the processing parameters and the 

extracted keyhole features, two statistical methods were employed. The first method was 

Spearman’s rank-order correlation coefficient, rs, which is a nonparametric method and measures 

the rank correlation between two variables based on the equation: 

𝑟𝑠 = 1 −  
6 ∑ 𝐷𝑖

2

𝑛(𝑛2−1)
          (32) 

In this equation, Di indicates the difference between the ranks (xi vs yi) for the ith observation, and 

n is the number of observations. The rs value ranges from −1.0 to +1.0, where values close to −1.0 

or +1.0 indicate a strong relationship and values close to 0 indicate no relationship. A positive 

value indicates that the increase in one variable is related to the increase in the other variable, while 

a negative value implies that the increase in one variable is associated with the decrease in the 

other variable, i.e., the two variables are anti-correlated. The second method used for data analysis 

wa agglomerative hierarchical clustering coupled with visualization using a dendrogram [104]. As 

a bottom-up approach, all observations are present as their individual clusters at the start, while 

clustering happens gradually as it moves up the hierarchy by merging a pair of clusters at each step 

based on the (dis)similarities between sets of observations. In this chapter, the focus is on using 

average group clustering, which calculates the (dis)similarity, dGA(G,H), between the two groups 

based on: 

dGA(G,H) = 
1

𝑁𝐺𝑁𝐻
 ∑ ∑ 𝑑𝑖𝑖′𝑖′∈𝐻𝑖∈𝐺              (33) 
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Here, dii denotes the dissimilarity between element i from group G and element i’ from group H, 

where NG and NH represent the number of observations in corresponding groups. A cluster merged 

earlier implied that a pair of clusters were more similar in comparison with others formed later in 

the hierarchy, where entire hierarchical clustering can be graphically visualized with the aid of a 

dendrogram. 

6.5 Keyhole Segmentation 

In order to demonstrate the robustness of the image processing technique built for keyhole 

segmentation, the code was employed on four different high-speed x-ray experiments representing 

strongly differing keyholes shapes, as shown in Fig. 27a, 27c, 27e, and 27g. The corresponding 

processed images of those x-ray images are presented in Fig. 27b, 27d, 27f, and 27h. These 

segmented images show that the various keyhole shapes were well-preserved after undergoing the 

aforementioned image processing. Hence, this verified the correct operation of the keyhole 

segmentation code and its ability to accurately capture the keyhole shape over a wide range of 

processing parameters. To validate the robustness of the geometric feature extraction, manual 

measurements were taken of the width and depth in the raw image from each of the four different 

keyholes in Fig. 27a, 27c, 27e, and 27g, and compared with the width and depth measured by the 

process described above. This provided confirmation that the values from both the manual and 

automatic measurements provided a match. The outcome values from the following geometric 

feature extraction process are trustworthy since the structures of the keyholes are successfully 

segmented. This method allowed for a keyholing segmentation methodology that did not rely on 

the large datasets necessary for segmentation with deep learning. 
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6.6 Time‑Resolved Geometric Features 

The static and dynamic geometric features obtained from the same experiment shown in 

Fig. 23, 24, 25 and 26 are plotted in Fig. 27 and 28, respectively. Fig. 27 plots each static geometric 

feature value versus the corresponding frame number along with a dashed and dotted line 

representing the mean and twice the standard deviation, respectively. These reveal the time-

dependent nature of each geometric feature during laser processing along with a quantitative 

measure of the variance indicated by the 2σ value. Likewise, the calculated fluctuation rate of each 

geometric feature for the same experiment is in Fig. 29. These plots show occasional spikes that 

may be correlated with a processing defect such as pore formation or spatter ejection.  

 

 

 

Fig. 27. Gray-scaled raw images from laser melting experiments performed on Ti64 with (a) a 

power of 197 W, velocity of 0.6 m/s, and beam diameter of 65 _m ; (b) after image processing of 

(a); (c) a power of 426 W, velocity of 0.9 m/s, and beam diameter of 65 _m ; (d) after image 

processing of (c); (e) a power of 426 W, velocity of 1.2 m/s, and beam diameter of 65 _m ; (f) after 

image processing of (e); (g) a power of 426 W, velocity of 0.6 m/s, and beam diameter of 65 _m ; 

(h) after image processing of (g) 
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6.7 Spearman’s Correlation 

To map correlations between the extracted geometric features with different process 

parameters, it was necessary to apply the Spearman’s correlation on the obtained data, i.e., the 

mean value of each static geometric feature. In addition to the typical processing parameters, such 

as power (P), velocity (V), and beam diameter (D), several combinations of these parameters, such 

as energy density (P∕VD2(π∕4)) and power density (P∕D2(π∕4)), were also added to the analysis. The 

process parameters used for all 14 x-ray imaging experiments are given in Table 4. The results are 

presented in Table 5, where values more/less than +/− 0.85 are highlighted in bold.   

It is apparent that there is a strong positive dependency between depth and front wall angle with 

any combination of parameters that include P/V, regardless of whether the spot size (D) is included 

or not. However, the aspect ratio (depth divided by the top width) only had a high correlation 

(0.87) with P/V and not any of the parameters that include spot size (D). The keyhole area and 

perimeter both showed strong positive dependency with laser power (P). Lastly, the velocity (V) 

was the only parameter that had a moderate impact on the keyhole width, with all other parameters 

having poor correlation. Furthermore, the addition of feature P∕√VD highlights strong positive 

dependency with depth, which agrees with the work conducted by Gan et al. [105] where they 

found that keyhole depth scales linearly with P∕√VD. It should be noted that the size of the dataset 

only consisted of 14 x-ray imaging experiments, so the trends observed are indicative rather than 

definitive. Furthermore, the number of geometric features of the keyhole in each frame can be 

expanded to find more meaningful relationships between the variables. Despite the small data 

quantity, the potential for a comprehensive quantitative analysis based on this novel image 

processing and feature tracking method is evident from the initial results. 
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Fig. 28. Time-resolved plots depicting the static features for the keyhole (a) depth; (b) top width; 

(c) aspect ratio of the depth over the top width; (d) whole-body area; (e) perimeter; (f) front wall 

angle. The x-axis represents the frame number which were captured every 20 µs 
 

 

 

 

 

 

 

Fig. 29. Time-resolved plots depicting the dynamic features for the keyhole (a) depth; (b) top 

width; (c) aspect ratio of the depth over the top width; (d) whole-body area; (e) perimeter; (f) 

front wall angle. The x-axis represents the frame number which were captured every 20 µs 
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TABLE 4 

The Process Parameters of the 14 Samples 

Sample P(W) V (m/s) D (µm) 

Sample 1 426 1200 74 

Sample 2 139 400 74 

Sample 3 540 1200 74 

Sample 4 311 800 74 

Sample 5 426 700 65 

Sample 6 426 900 65 

Sample 7 426 1200 65 

Sample 8 426 600 65 

Sample 9 426 800 65 

Sample 10 197 700 65 

Sample 11 197 900 65 

Sample 12 197 500 65 

Sample 13 197 600 65 

Sample 14 197 800 65 

 

 

 

 

TABLE 5 

Spearman’s Rank-Order Correlation Coefficients Between Measured and Derived Variables 

Metric P V  D  P/D2(π/4) P/VD2(π/4) P/VD P/V D2(π/4) V/D2(π/4) P/√VD 

Depth 0.706 -0.051 -0.196 0.817 0.974 0.987 0.975 -0.196 -0.035 0.930 

Top Width 0.209 0.721 0.235 -0.025 -0.464 -0.450 -0.495 0.25 0.721 -0.178 

¼ Width 0.340 0.801 0.275 0.117 -0.367 -0.341 -0.363 0.275 0.767 -0.037 

½ Width 0.560 0.865 0.318 0.426 -0.064 -0.002 -0.011 0.314 0.809 0.253 

¾ Width 0.717 0.554 -0.118 0.766 0.498 0.512 0.453 -0.118 0.561 0.626 

Front Angle 0.600 -0.171 -0.274 0.748 0.982 0.974 0.931 -0.275 -0.137 0.868 

Aspect Ratio 0.281 -0.510 -0.078 0.440 0.824 0.846 0.867 -0.078 -0.519 0.631 

Perimeter 0.849 0.316 -0.235 0.858 0.771 0.767 0.691 -0.235 0.393 0.886 

Area 0.938 0.469 0.000 0.886 0.714 0.763 0.713 0.000 0.450 0.900 

¼ Area 0.856 0.296 -0.1961 0.955 0.850 0.877 0.847 -0.196 0.320 0.947 

½ Area 0.839 0.296 -0.1961 0.950 0.850 0.877 0.845 -0.196 0.305 0.930 

¾ Area 0.764 0.134 -0.235 0.900 0.925 0.934 0.893 -0.235 0.153 0.921 
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6.8 Agglomerative Hierarchical Clustering 

In addition, to visualizing the results in Table 5, agglomerative hierarchical clustering was 

applied on the Spearman correlation coefficients. Here, a 22x22 correlation matrix (12 measured 

features, 10 processing parameters with their derivatives) became the input to hierarchical 

clustering, where an individual column or row represents dependency of a single parameter on the 

rest of the variables. This governs the relative position of the variables on a dendrogram as a 

function of their dependency with all the variables, not just one. A dendrogram (Fig. 30) visualizes 

the calculated dissimilarities, where a shorter distance (x-axis, i.e., moving from right to left) 

implies more similarity, resulting in a cluster forming sooner [106]. For instance, in Fig. 30, the 

depth is more related to P/VD than P/V, which is also conveyed by the Spearman rank-order 

correlation in Table 5. On the other hand, the position of beam diameter highlights that it is not 

correlated with keyhole geometry features. Here, because of visualization, the interpretation of 

data is quick and often provides useful insights. To summarize Fig. 30, (1) the light blue cluster 

captures width dependence on velocity and depth; (2) next, the top green cluster captures the area 

dependency on power density; (3) similarly, the next sub green cluster captures the depth and front 

wall angle dependence on the P/V ratio and their variations; (4) followed by, the perimeter and 

area dependency on power; and (5) the aspect ratio’s weak dependence on the P/V ratio. 

6.9 Summary of Geometric Feature Tracking 

The quantitative outcome values from the keyhole geometric feature tracking method and 

the following data analysis enabled discovery of trends between the process parameters and the 

keyhole geometric features. Separately, referring to the binary correlations in Table 5, both 

keyhole depth and front wall angle are inversely proportional to laser scan velocity [103]. 
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The calculated trends shown in Table 5 agree with those discovered by Cunningham et al. [104] 

where they propose that front wall angle depends on laser power density over laser scan speed. 

However, Table 5 does not show a strong correlation between power density, (P∕D2(π∕4)), and front 

wall angle. When compared to previous work by Gan et al. [105], the current study showed that 

depth is more strongly correlated with P/VD than with P∕√VD. One thing to note is that work used 

the absorbed power in the material which they were able to estimate using absorptivity simulations, 

rather than the raw laser power, which is what is used in this work. This discrepancy will most 

likely increase the correlation to the P∕√VD combined parameter. 

 

 

 

 

Fig. 30. A dendrogram showing the calculated dissimilarities between the extracted keyhole 

geometric features and processing conditions for 14 laser melting experiments on Ti64 
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These results indicate that uncharted trends between process parameters and keyhole 

geometric features or correlations among keyhole geometric features can be discovered through 

this proposed method. In particular, this methodology may be able to link the occurrence between 

geometric fluctuations of the keyhole and localized events such as a pore pinching off at the bottom 

of the keyhole. In addition, since the laser absorptivity is highly dependent on keyhole geometry 

[107], this method may be effective for quantifying the changes in the laser absorptivity throughout 

the fluctuations of the keyhole so that a direct correlation between keyhole geometry and laser 

energy absorptance can be revealed experimentally. 

The following conclusions can be drawn based from this chapter. 1.) A novel image 

processing routine was developed to quickly and accurately segment keyholes regardless of their 

morphology. The method relies on noise removal, histogram normalization, and morphological 

transformations and was developed to be effective on a variety materials/ experiments with 

minimal changes. In this way, the method is material agnostic because of its focus on the 

manipulation of pixel intensity distributions in order to preserve keyhole shapes and facilitate 

thresholding. 2.) Feature extraction was employed in order to measure and quantify a variety of 

geometric descriptors of the keyhole throughout its evolution. Because these descriptors are solely 

a function of geometry, several new features were added to the data collection. Feature tracking of 

a fully segmented keyhole across many frames offers a more complete understanding of the highly 

transient nature of keyholing thanks to its comprehensiveness. 3.) Twelve different geometric 

features were tracked for numerous frames in 14 different experiments resulting in a large data set 

relative to previous manual analysis. Preliminary data analytics was applied with two different 

statistical tools to discover relationships between the process parameters and geometric features of 

keyholes. While strong correlations were discovered in the analysis, more data should be collected 
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over a wider range of process parameters and material systems to increase confidence in the 

observed trends. 4.) The manipulation of the proposed image processing pipeline followed by 

feature extraction is the salient point of this chapter. Thus, the presented method for quantifying 

the keyhole geometry from in situ x-ray videography can be used as an input to a wide variety of 

data analysis methods to discover meaningful relationships between the variables. Furthermore, 

the power of this pipeline is that one can add additional user-defined geometric descriptors by 

manipulating the targets of extraction which adds to its versatility. 
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CHAPTER 7 

 

IMAGE SYNTHESIS USING GAN AND CGAN 

 

 

7.1 Image Generation Opportunities 

 

As has been discussed, the effort of LPBF process characterization and subsequently part 

certification faces a shortfall in the amount of data available for which to thoroughly understand 

these processes. The DXR image capturing methodology has been extremely beneficial for 

providing data in-situ, at a high resolution where inspection of the build quality microstructures 

can be conducted. The ultra-fast speed of the imaging provides a large dataset to investigate, too 

large for human inspection in a reasonable timeframe. The advancements of artificial neural 

networks which can process thousands of images quickly has turned this issue into an opportunity, 

as these machine learning approaches can also mine that data for patterns that would be otherwise 

imperceptible to humans – even if there was enough time and manpower for a visual inspection of 

all of the images. But while the volume of data is substantial, the variety of that data is lacking. 

The limited number of experimental builds under which the DXR apparatus captured imaging was 

limited. There is a need for more data, both in terms of new combinations of process parameter 

combinations, and for new images of those parameter combinations that were collected. These 

additional data can help inform and validate thermal models for the resultant physical 

characteristics of the build objects, as they relate to the size and dimensions of those microstructure 

objects visible in the DXR data. 

The lack of experimental data to evaluate the in-situ process in LPBF additive 

manufacturing can be alleviated by exploring machine learning methods that can approximate and 

even generate data representations. In order to adequately characterize an LPBF build in terms of 

quality, there must be a comprehensive understanding of the nature of the defects induced during 



109 
 

the manufacturing process. At the scales involved for these defects (in terms of micrometers), 

humans alone cannot evaluate those defects without some advanced imaging techniques. The focus 

of this work was therefore to develop a machine learning paradigm that can be generalized to learn 

from the limited data available, to interpolate from it, and ultimately develop new data 

computationally that can inform research into the microstructure quality at the time of the build. 

This involved the usage of a class of generative models known as the conditional generative 

adversarial network, or CGAN – a modified system architecture from the more general GAN 

approach. For this work, the goal was to use the generative model to create visual approximations 

of microstructures for combinations of process parameters that were not experimentally produced 

under the DXR imaging.  

7.2 GAN Modeling 

An initial GAN was developed that utilized a generator with one hidden layer, which took 

as an input z, and yielded a 28x28x1 pixel sized image. The hidden layer used the Leaky Rectified 

Linear Unit (ReLU) activation function. Unlike the standard ReLU function which would map a 

negative input to a 0, Leaky ReLU allows for a small positive gradient. Meanwhile, the output 

layer of the network utilized the tanh activation function, which was used to scale the output values 

in a range of -1 to 1, which has been shown to produce crisper images in relation to results obtained 

from other activation functions [108]. The discriminator network was developed with a two layer 

neural network, with 128 hidden units and again, the Leaky ReLU activation function. Binary 

cross-entropy was used for the loss function during model training, which was minimized by 

measuring the difference between computer probabilities and actual probabilities (which had two 

possible outcomes for classes for predictions matching the labels). Optimization was achieved 
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using the Adam optimization algorithm, an advanced gradient descent optimizer based on adaptive 

moment estimation, which itself is a method of stochastic optimization [109].  

 For consistency and balance in the data, 2,000 images were used for each class – that is, each 

combination of laser velocities (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 meters per second) and laser 

intensities (150, 200, 250, 300, 350, and 400 Watts). 

7.3 CGAN Modeling 

Modifications are possible to the general form of the GAN network architecture such that 

performance and accuracy can be improved upon [110]. The use of the GAN to generate vapor 

depression and melt pool geometries can be supplemented by incorporating the process parameter 

values into the artificial learning process. The Conditional GAN is particularly well suited to learn 

not only from the image training data, but incorporate numerical inputs in the form of y into the 

generator network, as described previously. In this method, values were inputted, where v could 

be 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 for the training data as these were the velocity values that 

were experimentally performed (in meters per second). Likewise, values of laser intensity were 

inputted, where p (or power in Watts) could be 150, 200, 250, 300, 350, and 400.  

Using the previously programmed GAN, modifications were made to incorporate the new 

input requirements, where embedding and an elemental multiplication step was used to combine 

the random noise vector z, and the numerical input labels, y, into a joint representation. This 

happens by taking in the y value as an integer value, and turn it into a vector of size equal to the 

length of the random noise vector using the function in Keras called Embedding layer. From here 

the embedding layer was combined with the noise vector, as mentioned above, using the Keras 

Multiply layer, which Keras uses to multiply the corresponding entries of two-equal length vectors 

together to create one single vector that is the product of those original two [111]. This is then fed 
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into the generator network, from which a new image is generated. The overall step by step 

framework of the network is listed below. As previously noted, this was coded in Keras and is 

based on, with several modifications, a CGAN used for image generation [111]. 

• Development of the input layer 

• Development of a transposed convolution layer, which transforms the input from a 

7x7x256 into a 14x14x128 tensor 

• Application of batch normalization 

• Application of the Leaky ReLU activation 

• Development of another transposed convolution layer, which now transforms the input 

from a 14x14x128 into a 14x14x64 tensor 

• Another application of batch normalization 

• Another application of the Leaky ReLU activation 

• Development of a third transposed convolution layer, which transforms the input from a 

14x14x64 into a 28x28x1 tensor 

• Development of output layer with the tanh activation function 

• Input of random noise vector z 

• Input of conditioning label as an integer 

• Label embedding step to turn labels into dense vectors 

• Flattening step to embed 3d tensor into 2d tensor 

• Calculation of the element-wise product of the vectors z and the label embeddings 

• Output which generates an image for the given label    
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Fig. 31. GAN layers 

 

 



113 
 

The discriminator network is also similar to that of the general GAN with a couple of 

exceptions, also involving how its input is received. For the discriminator, the input is a three-

dimensional image rather than the flat vector that the generator receives as its input (see Fig. 31). 

Just like the generator network, the discriminator uses the Keras Embedding layer call to 

accomplish this. It takes a label, in the form of an integer, and uses that Embedding to transform 

the label into a dense vector of size 28x28x1 = 784, which is the length of the flattened input image 

[111]. The label embeddings then must be reshaped into the image dimensions, which was 

28x28x1. From here, the label was reshaped by being concatenated onto the corresponding image, 

which created a joint representation with the appropriate shape of 28x28x2. That last digit 2 

represents the embedding on top of the image. Finally, that concatenated image-pair is fed into the 

neural network of the discriminator, which is made to take as input the 28x28x2 shape that it 

receives. The overall step by step framework of the network is listed below. Like the generator, 

this framework was based on, with some modifications, a CGAN used for image generation [111]. 

• Convolutional layer to transform input from 28x28x2 into 14x14x64 tensor 

• Leaky ReLU activation 

• Convolutional layer to transform input from 14x14x64 into 7x7x64 tensor 

• Batch normalization 

• Leaky ReLU activation 

• Convolutional layer to transform input from 7x7x64 into 3x3x128 tensor 

• Batch normalization 

• Leaky ReLU 

• Output layer with the sigmoid activation function 

• Input image is received and label 
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• Label embedding turns labels into dense vectors into tensor with size 28x28x1 

• Flattening of 3d tensor from the image into 2d tensor of size 28x28x1 

• Reshaping of label embeddings to match the dimensions of the input image 

• Concatenation of label-pair 

• Output classification of the image-label pair 

By incorporating a continuous feature representation into the training, the model can 

potentially learn the distributional relationships of that feature with regard to the underlying 

principals governing that representation. For instance, the thermodynamics and physics that inform 

the fluid nature of the gaseous vapor depression and the liquid melt pool formations. While the 

laser intensity for each build is relatively constant, the heat at the surface of the build is changing 

over time, due to buildup in energy as the laser moves across an area. Changing the laser intensity 

or velocity across the build surface will therefore have a direct impact on the physical features of 

the in-situ build. Generating by incorporating this continuous representation would also have a 

direct impact on LPBF applications as complex builds will be a constant focus; to create objects 

that can be utilized in aerospace projects. As described previously, the heat buildup in the corners 

and crevices of these builds as the process develops from layer to layer can have a deleterious 

effect on the microstructural stability. Thus, involving a feature representation for the thermal 

variations in the build can improve the CGAN’s ability to accurately model and generate those 

new microstructure representations. As with the GAN model, 2,000 images were used for each 

class – that is, each combination of laser velocities (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 meters per 

second) and laser intensities (150, 200, 250, 350, and 400 Watts). The next section will describe 

the images that were produced as a result of building this model. 
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7.4 Generated Image Analysis 

Outputs from both the GAN and CGAN were analyzed to determine how closely these 

models were able generate new data to depict the LPBF process, focusing on the vapor depression 

area from the heat affected zone (HAZ). There was a GAN model run with identical parameters 

for each collection of training data at each laser velocity setting (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 

meters per second) for each power setting. Fig. 32 shows a visual example of model outputs, where 

the training data included only images collected experimentally at 400 Watts. Likewise modeling 

with the CGAN was performed similarly, with the exception of the inclusion of the aforementioned 

y values. For the 400W collection of data, a random sample of 15 images were inspected from the 

real data, the GAN output, and the CGAN output. Contouring using OpenCV in Python allowed 

for calculations of the pixel area for each image, which is depicted in Fig. 33. The outer boundary 

of each vapor depression was established, within which the area of the object could be calculated 

by a count of the pixels within that boundary.  

A visual inspection of the images produced by both the GAN and the CGAN was also 

conducted, to determine if human observers could detect the differences between those generated 

images. Calculations of the area alone could be uninformative in that the areas of the generated 

images could still be similar to the real data while also providing objects with extremely divergent 

shapes. However, this turned out to not be the case as the images sampled all resembled the 

characteristics of an appropriately shaped vapor depression from an LPBF build in-situ. This 

qualitative test helped to accept the data output from the models prior to more rigorous quantitative 

evaluations to determine the statistical properties of those data.  
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Fig. 32. Real image (left), GAN generated image (center), and CGAN generated image (right) 

                     

 

 

 

Images generated were also generally noise free. Despite the denoising steps described in 

Chapter 3, many of the training data images still retained random individual white pixels in the 

images. Yet the output images from the GAN and CGAN had noticeably less pixel noise at a visual 

inspection. This suggested that the models’ capabilities for mapping latent features did not include 

noise as a feature. The models therefore learned the relevant information from the images, and 

were able to disregard such irrelevant information from training. 

7.5 Train on Synthetic Test on Real 

Testing the performance of the GAN and the CGAN over 1,000 epochs started with a novel 

methodology where a supervised learning task can be defined on the domain of the training data 

[112]. The generated images of the entire HAZ were considered, which depicted the vapor 

depression areas and the melt pool areas from the build plate. This procedure uses the output of 

the GAN to train a secondary model, which is also tested on a hold-out portion of the original data 

– known as Train on Synthetic Test on Real (TSTR). The appeal of this method of evaluation is 

that it helps to demonstrate the ability of the synthetically derived data from the two GANs to be 

used in real-world applications where there may be many features in the training data upon which 

the synthetic observations are made.  
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Fig. 33. Area measurements of vapor depression images for real data (top), GAN generated data 

(center), and CGAN generated (bottom) 
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  A random forest classifier, a supervised machine learning classification model, was used 

to determine whether a given image was real or synthetic. The performance of that classifier, when 

trained with the original data and then trained with the synthetic data, was used to provide the area 

under the precision-recall curve (AUPRC) and area under the receiver operating characteristic 

curve (AUROC). These values show how well the classifier was able to correctly identify a real 

image as being real. That same classifier is then utilized to determine if an artificial image 

generated by the GAN and CGAN were “real”, which is to say, did the classifier conclude that an 

artificially created image was so close to a real image that it was indistinguishable. These metrics 

are provided in Table 6. 

 

 

TABLE 6 

AUPRC and AUROC from TSTR 

 GAN CGAN 

AUPRC   

REAL  0.8135 0.8677 

TSTR 0.7569 0.7901 

AUROC   

REAL 0.7745 0.7925 

TSTR 0.6155 0.6678 

 

 

 

7.6 Intersection Over Union 

Intersection over Union (IoU) is a commonly used procedure for many image processing 

tasks. Two images, or objects, when evaluated against one another, will be evaluated on how much 

common overlap there is among those two images (Fig. 34) [113]. The goal is to quantitatively 

evaluate the overlap between two images, to see how much they differ. In this case, the two images 
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used were a real observation and the artificially generated observations from the GAN and CGAN 

(see Fig. 35). The calculation for the IoU is: 

𝐼𝑜𝑈 =
(𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑤𝑜 𝑂𝑏𝑗𝑒𝑐𝑡𝑠)

(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑇𝑤𝑜 𝑂𝑏𝑗𝑒𝑐𝑡𝑠)
         (34) 

This can also be expressed as: 

𝐼𝑜𝑈 =
(𝐴∩𝐵)

(𝐴∪𝐵)
                  (35) 

IoU evaluates the number of pixels that are correctly attributed to a particular class and is 

defined by the equation above. The number of pixels that overlap between the ground-truth mask 

and the predicted mask is denoted by 𝐴 ∩ 𝐵 (intersection), and the number of pixels that are 

occupied by at least one mask is denoted by 𝐴 ∪ 𝐵 (union).    

The average IOU score for 100 generated images that were compared against real images 

was calculated and presented in Table 7. This provided a quantitative method for examining how 

much the artificial images produced by both generative networks had in common with the real 

images. 

7.7 Hausdorff Distance 

The Hausdorff distance (HD) is another quantitative metric used for evaluating the 

closeness of two images. It is a non-linear operator, which measures the amount of non-matching 

in two different sets of points [114]. Essentially, the HD is looking at how much each point on one 

image set lies near some point on another image (Fig. 36). The uniqueness of this approach is that 

the goal is to evaluate closeness of a point and many points in the second image, that is, it is not 

looking for an exact corresponding point in both images. This makes the algorithm more robust to 

deviations in points in the images, as proximity is more important than an exact location. 

Additionally, the metric is particularly useful when boundaries are more important than the area 

which is the case when evaluating the outlines of the HAZ in the build dataset of images.  
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Calculation of the HD is derived from finding the distance between two points, a and b, in 

this case, in a Euclidean space [115]: 

    𝑑(𝑎, 𝑏) =  ‖𝑎 − 𝑏‖                 (35) 

The distance between point a and a set of points B is given by: 

   𝑑(𝑎, 𝐵) = min
𝑏∈𝐵

𝑑(𝑎, 𝑏) = min
𝑏∈𝐵

‖𝑎 − 𝑏‖           (36)  

 

 

 

Fig. 34. Intersection over Union approach for overlap 

 

 

 

Fig. 35. IoU overlap of predicted (red) and ground truth (blue)  images 
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The directed distance between a set of points A and a set of points B, referred to as h(A,B), then 

becomes: 

 ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

𝑑(𝑎, 𝐵) = maxmin
𝑎∈𝐴 𝑏∈𝐵

𝑑(𝑎, 𝑏) = maxmin
𝑎∈𝐴 𝑏∈𝐵

 ‖𝑏 − 𝑎‖        (37) 

So that the Hausdorff distance can be calculated by: 

   𝐻(𝐴, 𝐵) = 𝑚𝑎𝑥(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴))         (38) 

For segmentation of vapor depressions, all pixels in the training images and in the 

generated images that comprise that object of interest on the edge of the predicted mask will be 

paired to the nearest neighbor of the ground-truth mask and vice-versa. Out of these nearest 

neighbor pairs, the pair with the largest distance between them— i.e., the greatest mismatch 

between the ground-truth mask and the predicted mask—make up the Hausdorff points, with the 

HD being the distance between those nearest neighbors. 

A summary of the results for 100 images generated by the GAN and CGAN that were 

compared against ground truth images is presented in Table 7. As this metric looked for the largest 

distance between two sets of nearest neighbors, the units in the metric were in number of pixels.  

7.8 Maximum Mean Discrepancy 

  The goal of a generative model, in this case the GAN or the CGAN, is to learn the 

underlying features that make up the distribution of the data, so that it can take from that 

distribution the means with which to represent that data. If this distribution is learned 

appropriately, the artificial representations that the generator produces will closely match what the 

real data shows; the better it learns the distribution, the better it is able to make new images. 

Therefore, evaluations of the output from the GAN and CGAN should include a metric that directly 

evaluates the discrepancy in the distribution of the data. For this reason, Maximum Mean 

Discrepancy (MMD) is ideal, which quantifiably judges whether two data sets – in this case the 
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real data and the generated data – were generated by the same distribution [116]. It is a statistical 

test that uses a kernel-based approach for evaluating the sameness of the distributions [117].  

 

 

 

 

   Fig. 36: HD between two points located by the end of the arrows 

 

 

 

TABLE 7 

IoU and HD Measurements 

 IOU HD 

GAN 0.9345 120 

CGAN 0.9562 95 

 

 

 

Formally, MMD can be defined as a probability metric to calculate the distance difference 

between feature means [118]. If given a set of variables X, a feature map ϕ is then generated over 

a

b
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that set which maps X to another space, F such that ϕ(X) ϵ F. The feature means can be calculated 

by taking the probability measure P on X, which is a set of variables, and generating a feature map 

that takes ϕ(X) and maps it to every other coordinate of ϕ(X) in this fashion: 

   𝜇𝜌(𝜙(𝑋)) = [E[𝜙(𝑋1)], … . [E[𝜙(𝑋𝑛)]]𝑇             (39) 

While the inner product of the feature means of X~ P and Y ~ Q is expressed as the kernel 

function: 

 ⟨𝜇𝑃(𝜙(𝑋)), 𝜇𝑄(𝜙(𝑌))⟩
𝐹

= 𝐸𝑃,𝑄[⟨(𝜙(𝑋)), (𝜙(𝑌))⟩
𝐹

] = 𝐸𝑃,𝑄[𝑘(𝑋, 𝑌)]      (40) 

From this, the MMD can be obtained for X and Y to calculate the distance between the feature 

means of X and Y: 

    𝑀𝑀𝐷2(𝑃, 𝑄) =  ‖𝜇𝑃 − 𝜇𝑃𝑄‖
𝐹

2
                    (41)              

From which equation the above is used to make the expression: 

 𝑀𝑀𝐷2(𝑃, 𝑄) =  𝐸𝑃[𝑘(𝑋, 𝑋)] − 2𝐸𝑃,𝑄[𝑘(𝑋, 𝑌)] +  𝐸𝑄[𝑘(𝑌, 𝑌)]        (42) 

In order to properly define the kernel function, previous work has shown success using a radial 

basis function (RBF), using the Frobenius norm between vectors [119]: 

   𝐾(𝑥, 𝑦) = exp (−‖𝑥 − 𝑦‖ 2/ (2𝜎2))         (43)     

Using the MMD metric to evaluate the real data and the GAN generated data yielded a 

value of 0.33, with a sample of that distribution depicted in Fig. 37. The calculation for the real 

data and the CGAN data, which yielded an MMD value of 0.18 is likewise depicted.  

7.9 Avoidance of Model Overfitting 

During the training procedure, it is possible for the GAN to essentially learn to completely 

memorize the data during training, and simply reproduce that memorization in its output [120]. 

The MMD method of evaluation has the benefit in that it can be used to evaluate model overfitting, 

that is, learning to match the real data distribution too exactly. To determine overfitting, a null 
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hypothesis was constructed, that the MMD between the generated data and the experimental data 

is at most as large as the MMD between the generated data and the holdout training data. Thus, a 

MMD three sample test was constructed whereby X represented the generated samples, Y 

represented the test set, and Z represented the training set [121]. These sets were identified as such 

under the logic that if the MMD between X and Y is less than or close to the MMD between X and 

Z, that would indicate that there was as much closeness to the real data from the generated data, 

thereby indicating the existence of data memorization. The expectation for the hypothesis is that 

MMD(synthetic, test) ≤ MMD(synthetic, train) will be false. This is essentially a test for a null 

hypothesis that the model has not memorized the training data, and if that can be rejected [110]. 

Upon running this test for the GAN generated data, the average p-values were 0.27, and for the 

CGAN generated data the average p-values were 0.33. This indicates that the null hypothesis 

should not be rejected, that the MMD between the synthetic set and the test set is at most as great 

as the MMD value between the synthetic set and the training set. The artificially generated samples 

did not look more identical to the real data than they did to the test set, which indicated that neither 

the GAN nor the CGAN was an overfit model. 

Using MMD alone cannot guarantee avoidance of overfitting as this method may not be 

sensitive enough to differences in the distributions [122]. However, the visualization shown in Fig. 

37 from a sample distribution does indicate that there is a difference between the distribution of 

the real data and those generated by the two GAN models. Those distributions for the GAN and 

CGAN distributions are similar to one another, yet both have distribution patterns different from 

the real data, as measured and quantified. The test therefore verifies that the model was not 

overfitting the data, and that the generated images are in fact unique. 

 



125 
 

 

Fig. 37. Sample distributions in comparison of the real data along with both the GAN (top) and 

CGAN (below) generated data  
 

 

 

 

 

 

  

7.10 GAN results with RMSE 

Testing of both GAN models also used the root mean squared error (RMSE). This was 

chosen as a metric for evaluation as it provides a quantitative measure of the difference between 
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the predicted values and the real values, based on absolute difference. This therefore considers 

predictions that are both above and below the true value. Additionally, it is an average of the total 

amount of error, as opposed to the absolute average error. As vapor depression characteristics can 

vary widely, even when all parameters are held the same, evaluating the magnitude of the error 

was more appropriate than measures that evaluate based on average error where extreme values 

would not be penalized as highly – which is of interest in this case where large error, that is 

predictions very far off from the real values, are particularly of interest. RMSE can be calculated 

by: 

𝑅𝑀𝑆𝐸 =  √
1

2
 ∑ (�̂�𝑖𝑗 −  𝑟𝑖𝑗)2𝑛

𝑖=1               (44) 

where (�̂�𝑖𝑗 −  𝑟𝑖𝑗)2 is the differences between the predicted value and the actual value, squared, 

and n is the total number of observations.  

 The RMSE values have the same value as that of the original data. In order to interpret the 

predictions, another metric was used in conjunction, the Scatter Index (SI). The SI value provides 

insight into the RMSE, the performance of the predictions, in a ratio that helps determining how 

far off that error actually is from the real data. SI is a normalized measurement of the error in a 

system, where lower values generally indicate better performance in comparison to larger numbers 

[123]. It is calculated by dividing the RMSE by the mean of the observations, and multiplying by 

100 to achieve a percentage score. Thus, SI presents RMSE with respect to the mean value of the 

observations in the data. It can be expressed as: 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

�̅�
           (45) 

 The results from these measures are presented in Table 8 for the GAN model and Table 9 

for the CGAN model. Here, the RMSE was calculated for all images produced for each class of 

velocity setting. The RMSE and subsequently the SI were higher for area and convex hull area, 
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than they are for depth and width. Overall, generated data at the 0.2 and 0.6 m/s velocity setting 

images resulted in a lower RMSE and SI value. This is likely due to the narrower range of physical 

fluctuations for those builds as well as the amount of data available. RMSE and SI values for the 

width and depth were lower, which was also likely due to the more limited range in experimental 

values obtained for these metrics. The vapor depression depth and width did not have as much 

overall variation as the area and convex hull, which consider the overall size and shape rather than 

a single dimension. 

Overall, the RMSE and SI results indicate the same trend as has been discussed with the 

previous evaluation methods, that is, that the results obtained for the CGAN were more favorable 

to the GAN. While many of the generated images for the GAN model seemed to be close to their 

original counterpart, with many SI values below 20.0, the CGAN consistently outperformed the 

general GAN in terms of the quality of the images produced when compared to the experimental 

data upon which these generated images were based. This metric of uncertainty quantification for 

the results of the GAN and CGAN output thereby helps to validate the usefulness of these 

approaches, especially for the CGAN, in developing images to represent data at lower velocities. 

This is already the ideal scenario, as the experimental data already suggested that velocities at the 

lower ranges induce deeper vapor depressions, rather than no vapor depression at all for the higher 

velocities. The penetration of the vapor depression through the material is necessary to ensure 

proper fusion of substrate particles, for a proper solidification and resultant microstructure. 

7.11 Effectiveness of Generated Images 

The output images for each network were near indistinguishable from the real, 

experimental data (examples of which were shown in Fig. 31). At a visual inspection these 

generated images seemed to match the data that was collected experimentally. It has been shown 
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TABLE 8 

GAN Evaluation with RMSE and SI Metrics 

Test 

Parameter 

Area 

RMSE     SI 

C.H. 

RMSE     SI 

Depth 

RMSE 

 

SI 

Width 

RMSE 

 

SI 

0.2m/s 299.11 28.08 417.70 30.61 28.63 29.41 22.39 16.74 

0.4m/s 426.98 30.47 448.90 49.46 43.97 57.24 25.28 53.77 

0.6m/s 261.13 27.66 330.45 24.51 32.19 58.05 21.20 23.20 

0.8m/s 443.95 103.3 538.76 119.5 55.77 188.7 71.52 130.9 

1.0m/s 312.15 302.8 309.43 301.5 78.04 199.0 46.53 68.72 

  

 

 

TABLE 9 

CGAN Evaluation with RMSE and SI Metrics 

Test 

Parameter 

Area 

RMSE     SI 

C.H. 

RMSE     SI 

Depth 

RMSE 

 

SI 

Width 

RMSE 

 

SI 

0.2m/s 279.05 18.52 301.53 19.01 27.89 12.85 22.22 11.82 

0.4m/s 315.21 20.21 397.51 22.63 39.34 19.55 38.59 17.83 

0.6m/s 250.63 19.64 291.07 23.89 25.03 15.84 18.78 13.86 

0.8m/s 405.12 50.25 518.88 68.27 63.78 45.69 76.60 29.35 

1.0m/s 360.15 75.96 375.89 94.35 71.46 105.1 66.32 49.55 

 

 

 

 

that the model was not overfitting, thus these images could reliably be used as approximations of 

actual DXR data for LPBF builds.  

As shown in Fig. 33 previously, the output from the GAN had a much narrower range of 

variation in the pixel area of the objects generated, when compared to both the real data and the 

CGAN. This would imply that while the GAN was not overfitting in its model, it was still learning 

a more limited distribution in the training data, such that its output images were very similar for 

each velocity setting group of images. For instance, for images taken at a laser velocity setting of 
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0.4 meters per second, the GAN created images that ranged in pixel area of 3,120 to 3,562 pixels. 

Meanwhile, for that velocity in the experimentally captured images (the real, training data), the 

pixel area range was 1,947 to 3,122 pixels and for the CGAN it was 2,130 to 3,523. This indicates 

that the conditional input for v led the model to better map the distribution of features for the 

training data, to better create images that approximated the range of object characteristics better 

than the standard GAN, which did not have that additional condition.  

The linear trend lines for the area distributions also showed more similarity in the CGAN 

images compared to the real images, with a slope closer to the real data when compared to the 

trend line slope for the GAN image areas. Although that factor in itself does not indicate similarity 

alone as the range for each velocity setting group of images could still fluctuate greatly yet over 

the entire dataset average out to create a trend line with a similar slope to the real data. 

Nevertheless, for the random samples taken of images collected - the data show that the CGAN 

was able to create images that more closely matched the dynamic range of vapor depression sizes 

from the experimental builds. 

The novel TSTR method further explored the closeness of the images produced by both 

generative models in comparison to the real data. This analysis also quantifiably validates the 

assertion that the CGAN was able to make more realistic images compared to the GAN model. As 

shown in Table 7, the CGAN observations consistently resembled the real data more often than 

the general GAN. These results suggest the CGAN was capable of generating artificial 

observations that were close enough to the real data that it could then be used to train another 

classifier to identify those observations to a degree very close to its own performance on 

classifying the real data.  
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The IoU analysis and the HD analysis both suggest the same observation in terms of the 

data generated. While the metrics were similar, the CGAN did outperform the general GAN in 

terms of generating images that more closely matched the real data, or ground truth. Similar to the 

previous evaluation metrics, the CGAN consistently provided a lower HD score than the GAN. 

The distance of a set of points along the boundary of an object in a sampled image produced by 

the CGAN will generally have a smaller distance to the points along the boundary of a real image 

– compared to a sampled image from the GAN output, thereby indicating its performance in 

developing images that more closely matched the ground truth data was superior to the general 

GAN. 

Further examination of the data generated by both networks using the MMD method 

justified the assertation that the models are appropriately learning the distribution of features in 

the underlying training data. In general, the lower the MMD, the more evidence there is that the 

distributions are the same [124]. As the objects in the dataset vary as the experimental parameters 

used to generate that data varied – both the GAN and the CGAN were able to pick up on those 

different expressions. And this was established while also evaluating the potential for model 

overfitting, a common concern in many machine learning frameworks. Indeed, it was established 

using the three sample MMD approach that the feature map developed in the generated datasets 

were significantly different from that of the real data. This speaks to the ability of these complex 

networks to learn effectively from the training data.  

7.12 New Process Parameter Generation Results 

  Given the results from the outputs of the GAN and the CGAN, where the CGAN model 

resulted in images that were quantifiably closer to a comparison set of real images, the CGAN was 

used to create new artificial images of vapor depression geometries based on process parameter 
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combinations that were not conducted experimentally. This would result in data which could not 

be compared to original data, as these generated images were based on new inputs. Thus, the 

CGAN was also preferred as this was the model that allowed differing numerical inputs in 

combination to the training images. The previous results demonstrate that the model is able to learn 

how the vapor depression shape fluctuates with the new parameters.  

  The original data was collected at laser velocity settings that were spaced 0.2 increments 

apart, for a total of seven different settings: 0.2m/s, 0.4m/s, 0.6m/s, 0.8m/s, 1.0m/s, 1.2 m/s, and 

1.4 m/s. Additionally, there were a total of five laser intensity settings that were also involved, set 

at 50 Watt increments: 150W, 200W, 250W, 350W, and 400W. Due to equipment failure during 

the experimental builds, there were no data captured for builds at 300W, and therefore the resulting 

data omits this experiment. The combination of the laser velocity settings and the intensity settings 

therefore produced a total of 35 different experimental combinations of those two parameters, from 

which data was collected and used for this data-driven experiment.  

  As there were more velocity settings than intensity settings, it was those values which were 

the focus of the data generation initiative. Additionally, the data show that the vapor depression 

metrics (i.e., depth, width, geometric area, and convex hull area) increase linearly with regards to 

velocity, while holding the intensity constant. That is, at 150W there is a steady increase in the 

metrics. The data show that when the next intensity is used, say at 200W, the vapor depression 

metrics drop at the lower velocity of 0.2 m/s compared to the 1.4 m/s of the previous intensity of 

150W. Essentially, at each intensity setting the vapor depression starts smaller and grows bigger 

as the velocity is increased – until some point is reached where it begins to decrease again. It is 

however worth noting that the size does not continue to increase for each velocity. Instead, at 1.2 

and 1.4m/s – there is a drop off to a zero reading for the metrics as the vapor depression generated 
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at a near-zero depth which was not enough to be measured. This was described thoroughly in 

previous chapters as the thermal intensity was not strong enough for the evaporation of metal to 

accumulate due to the laser moving too fast over the build plate. For some combinations of 

intensity and velocity, there were not data collected at 1.0 m/s either – which was the case at 150W, 

200W, and 250W. At those intensities, the power was again not strong enough to cause the heat 

buildup necessary, until it got to 350W. Given the zero or near-zero vapor depressions at some 

combinations, the new data to be generated by the CGAN would only be produced at intensity and 

velocity segments in between intervals for which data was actually captured. Using this 

requirement, new data was generated at increments in between the velocity settings originally 

produced, to include: 0.3m/s, 0.5m/s, 07.m/s, and 0.9m/s. This would help to achieve vapor 

depressions which could be visually compared to a dataset experimentally captured just above, 

and just below that new data – in terms of the parameters used to express those geometries.  

  The new combinations of parameters that was used to create artificial data with the CGAN 

were therefore: 150W and 0.3m/s, 200W and 0.3 m/s, 200 W and 0.3 m/s, 200W and 0.5m/s, 250W 

and 0.3m/s, 250W and 0.5m/s, 250W and 0.7m/s, 350W and 0.3m/s, 350W and 0.5m/s, 350W and 

0.7m/s, 350W and 0.9m/s, 400W and 0.7m/s, and 400W and 0.9m/s. It should be noted that at 

intensity setting 350W, the vapor depressions were captured experimentally at five different laser 

velocity settings, produced more geometries than any other laser intensity. It is possible that 400W 

also produces this result, but at 400W and 0.4m/s there was no vapor depression detected. Since 

data was collected depicting a vapor depression at the level below for 0.2m/s and the level above 

at 0.6m/s for that intensity – it is likely that the lack of a vapor depression at 0.4m/s is the fault of 

data compromise, possible due to sensor malfunction during that experiment. As discussed in 

Chapter 4, the convex hull geometry could be more informative than the geometric area in terms 
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of which vapor depressions are more likely to cause defects. In general, this value is higher than 

the geometric area – but the pattern shown in the data for geometric area and convex hull area 

match in terms of increases and decreases over the range of velocity settings. The new generated 

data by the CGAN are included in bold. Here, the averages of the CGAN produced images were 

taken for 2,000 images, which therefore matched the number of images used to calculate the 

average values for each metric from the experimental data. 

  The new data that was generated fell within the bounds of the experimental data above and 

below in terms of the laser velocity as expected. The model learned the distribution of features that 

constituted the vapor depression objects in the images with regards to the input values, or labels, 

for those velocity settings and therefore was able to reproduce that distribution in the resultant 

images, even with the new inputs for those new velocities. However, it is worth noting that while 

0.5m/s is equidistantly between 0.4m/s and 0.6m/s – the generated images at that velocity (and all 

of the others) did not produce geometries that were exactly in between the geometries measured 

at 0.4 and 0.6m/s. This indicated that the model did not simply take an average of the geometries 

from the data above and below to produce the new images. As the actual experimental data did 

generally provide a curve-like distribution of areas that increased to a point and then decreased as 

the velocity increased – these values were not a perfect distribution for those distribution of values. 

And therefore, the model did not learn to generate the new data along a perfect curve. Rather it 

appeared to have learned the latent features in the data that influenced the rise and fall in those 

metrics. This is especially true with the depth measurement, as the experimental data for that metric 

fluctuated more than the other metrics. Depth can be described as the most dynamically changing 

property of a vapor depression – likely due to the penetration of the laser into the material directly 

beneath the surface of the material on the build plate where the laser strikes.  Table 10 depicts a 
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summary of the original data, which gives an average value for all images of vapor depressions 

taken at each of the 35 experiments – as well as the newly generated data. The metrics depicted 

are depth, width, geometric area, and convex hull area. 

7.13 Generative Output Summary 

  This work represents an application of advanced generative modeling to a computational 

materials science problem where the lack of experimental data prohibits the understanding of the 

LPBF process. By using the images available, extrapolating the latent features and their 

distributions across the image-based data, these generative models can supplement the 

experimental data with entirely new synthetic data. While a GAN can reliably deliver new 

representations of DXR images, the further contribution of the CGAN improves upon the closeness 

of the artificial data to the original real data. Incorporating additional inputs to the generator in the 

form of laser velocity and laser power works to incorporate the underlying mechanisms by which 

those factors influence the build’s structures during the build process. These approaches have 

shown to match the real-world data so closely that another image matching supervised learning 

model does not differentiate among the real data and the new artificial data. This provides an 

inexpensive method for developing more data that could then be used for training future predictive 

models’ expectations of microstructure feature characteristics. 

  Given the results of the CGAN, that model was chosen as the generator for additional data, 

for image representations of vapor depressions at process parameter combinations what were not 

experimentally conducted and for which no real data exists. The new data was therefore 

representative of notional experiments, that is, experiments that were not conducted but for which 

the generated data could be representative of what the data would have looked like if that 

experiment actually had occurred. The basis for accepting these new images as valid comes from 
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TABLE 10 

Average Values for Vapor Depression Geometries by CGAN 

P V DEPTH WIDTH G. AREA C.H. AREA 

150 0.2 63.06 38.22 492.46 502.32 

150 0.3 25.24 36.51 510.12 452.65 

150 0.4 9.52 25.63 57.49 69.52 

150 0.6 0.00 0.00 0.00 0.00 

150 0.8 0.00 0.00 0.00 0.00 

150 1.0 0.00 0.00 0.00 0.00 

150 1.2 0.00 0.00 0.00 0.00 

150 1.4 0.00 0.00 0.00 0.00 

200 0.2 14.95 42.86 148.38 175.84 

200 0.3 30.45 45.56 210.51 203.54 

200 0.4 39.69 32.03 339.50 452.52 

200 0.5 41.62 48.56 581.12 628.23 

200 0.6 54.95 68.87 743.68 856.23 

200 0.8 0.00 0.00 0.00 0.00 

200 1.0 0.00 0.00 0.00 0.00 

200 1.2 0.00 0.00 0.00 0.00 

200 1.4 0.00 0.00 0.00 0.00 

250 0.2 45.65 42.78 475.28 489.51 

250 0.3 74.21 41.12 1023.62 995.00 

250 0.4 109.51 77.06 1299.75 1532.23 

250 0.5 84.63 83.21 1002.42 892.21 

250 0.6 34.33 81.19 532.50 635.72 

250 0.7 12.32 32.20 201.11 451.95 

250 0.8 9.66 26.08 57.56 58.21 

250 1.0 0.00 0.00 0.00 0.00 

250 1.2 0.00 0.00 0.00 0.00 

350 0.2 87.77 54.47 2803.14 2925.91 

350 0.3 184.21 65.21 2754.12 2784.78 

350 0.4 202.41 76.58 2410.46 2665.32 

350 0.5 124.62 94.65 2789.21 2741.24 

350 0.6 106.44 134.49 2715.03 2987.55 

350 0.7 78.1 145.15 1562.23 1842.32 

350 0.8 53.96 112.09 1043.80 1222.54 

350 0.9 36.51 118.21 598.22 991.84 

350 1.0 16.13 61.28 185.11 211.74 

350 1.2 0.00 0.00 0.00 0.00 

350 1.4 0.00 0.00 0.00 0.00 

400 0.2 262.73 86.93 4270.17 4676.23 

400 0.4 0.00 0.00 0.00 0.00 

400 0.6 139.92 119.54 2852.02 2962.46 

400 0.7 74.01 112.63 1908.65 2003.82 

400 0.8 42.56 110.81 842.34 952.95 

400 0.9 36.87 95.52 697.65 752.62 

400 1.0 16.17 58.32 189.31 195.62 

400 1.2 0.00 0.00 0.00 0.00 

400 1.4 0.00 0.00 0.00 0.00 
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the validity of the same model’s performance on images for which there could be a quantitative 

evaluation on the results – the ground truth that exists from the experimental data. And while the 

new generated images do not have the same ground truth, since there was no experimental build 

at those combinations of settings, they do follow the same patterns and trends observed when 

evaluating the real data.  

It can also be concluded based on the work in this chapter that the dataset size was adequate 

enough for the two generative models to train and learn. Limited data is a practical issue in many 

experimental settings, and in the next chapter, the problem of limited data is explored in more 

detail. However, for the generation of new artificial DXR-like images for LPBF process 

parameters of laser intensity and laser velocity – the 2,000 images per each experiment (70,000 in 

total) was enough. From that data, the model was able to learn the underlying features that 

determine a vapor depression size and shape, with regards to those parameters of intensity and 

velocity. 

Limitations exist in using generative models to create representations based on desired 

inputs for classes. The original use of the CGAN was to provide images that pertain to a specific 

object. The input classes however were not a continuous numerical variable. There were not 

infinitely many kinds of objects from which the training data supplied to the model. In the case of 

this work, a continuous variable is being used. While the laser parameters held a limited number 

of values, it could and should be possible to make predictions for an unlimited number of power 

inputs. For example, 325W, or 325.6W, or 325.65W, etc. When using this model to make 

predictions beyond the intervals tested and documented above, the model failed to provide 

anything meaningful. The MMD evaluation for 350W and 0.3m/s showed a distribution that was 

statistically insignificantly different from 350W and 0.35m/s. This could be either due to a failure 
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in the model to learn the intricacies of the features that represent the vapor depression geometries, 

or that there is no meaningful difference in those expressions. While the differences in vapor 

depression geometries may be minimal, future materials (besides IN718) could be of interest, 

where there may be more features in the images for learning.  

Better generative output from continuous variables has been explored recently [125]. In 

that recent work, scalar conditions were used, described as regression labels. That work showed 

early results, but did have some limitations that prevented adoption for the DXR modeling. The 

results of using the CcGAN, or Continuous Conditional Generative Adversarial Network failed to 

converge. This was likely due to the errors bounds on the discriminator losses. Potentially having 

more data could alleviate this issue, however, as has been noted that is a logistical issue which can 

not be resolved.  

The results from these approaches provided a wealth of new data that can be used to 

accomplish two further goals. First, the additional data produced to supplement the experimental 

data can help validate the thermophysics models discussed in Chapter 2. Second, the generation of 

the images for the new combinations of parameters can be used to determine new geometries. 

Those can in turn be used in those same models discussed in Chapter 2 to derive expectations on 

the motion of the melt pool, using the diameters that are obtained from the new images. These help 

to incorporate the physical properties of melt pool dynamics, the thermodynamics, that govern its 

motion into the machine learning output that was discussed in this chapter. Therefore, the benefits 

of these generative models will be of value for thermal modeling of melt pool behavior and 

solidification. 
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CHAPTER 8 

 

GAN WITH LIMITED DATA FOR MELT POOL IMAGE SEGMENTATION 

 

 

8.1  Melt Pool Dynamics 

 

This chapter focuses on applying machine learning to limited datasets. In particular, 

datasets of the melt pool area, which is a challenging region to capture in image-based data due to 

the narrow gradient of pixel values encompassing the melt pool compared to the relatively similar 

pixel values of the surrounding area. Therefore, training data for image based learning is limited, 

as the DXR process does not capture the melt pool region in dense materials like IN718, or another 

material of interest to the aerospace community, titanium alloy Ti-6Al-4V. The goal of this chapter 

is therefore 1) to evaluate the potential to capture this difficult region autonomously from limited 

data, and 2) to evaluate the ability of the GAN to effectively learn how to model melt pool 

boundaries – given the accuracy and performance of the GAN in the previous chapter. 

For laser powder-bed fusion processes, part of certification involves thermal modeling of 

the printing process. An accurate model can help to predict thermal conditions within melt pools, 

and to therefore prevent the flaws caused by temperature gradients such as delamination of layers 

or cooling based microstructural changes [126]. For these models to be valid, they must be 

compared to as-printed parts. The simplest test to calibrate is to perform a single-bead, powderless 

scan on the build-plate and to compare a cross-sectional view of the solidified microstructure to 

that predicted by the thermal model. The melt pool, the portion of the material at a temperature 

above the solidus, has a distinct microstructure as compared to the build-plate. This allows a cross 

section of the microstructure to be compared to the solidus isotherm predicted by the model. For 

Ti-6Al-4V, a properly calibrated model should predict an isotherm of 1605°C (the solidus 

temperature) with contours that match the melt pool of the printed single-track [127]. However, as 
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discussed previously, the shape of the melt pool is a dynamic phenomenon that is little understood 

despite a multitude of ideas [128]. A single micrograph is therefore not enough to say a model is 

properly calibrated; multiple micrographs of the same laser power and velocity parameters are 

needed to have a statistical representation of melt pool qualities. There is need for a way to 

automate the extraction of melt pool contours from cross-sections of single-track LPBF samples.  

Computer vision applications offer a solution, giving a high-throughput method to extract 

melt pool contours, width, and depth. The process of classifying each pixel within an image— 

here, as either part of the melt pool or background— is considered as an image semantic 

segmentation problem. The difficulty is that the algorithm often needs a large set of data to train a 

model. The expense of performing experiments in many fields of materials science, not just AM, 

limits the data available to train these models. There is therefore motivation to evaluate different 

algorithms to determine which can perform best on a limited data set.  

 The goal of this chapter was to develop a machine learning method to capture the melt pool 

boundary, leveraging the limited data available from micrographs taken post-processing – that is, 

after the LPBF build has completed. To accomplish this, a GAN was developed in order to test its 

ability to generate new images based on a limited training set. Given the limited amount of data 

available, evaluation of the model including also using a particular convolutional neural network, 

CNN, that has shown results in learning object features from small datasets [129]. Convolutional 

neural networks, specifically using the U-Net architecture are often utilized for semantic 

segmentation tasks [130]. Meanwhile GAN provides an alternative to the pixel-level classification 

technique of the U-Net. Therefore, using this model architecture here presents a contrast to the 

GAN model, while also potentially accomplishing the goal for melt pool identification.  
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8.2  Micrograph Dataset 

The dataset consisted of optical micrographs of cross-sectioned single scan tracks, 

manufactured by laser powder-bed fusion on a bare Ti6-4Al-V substrate. The resultant build was 

then cross-sectioned for evaluation under light microscopy, from which images were taken of the 

build area. The dataset was comprised of 57 images from two sources, one with 42 color images 

and one with 15 grayscale images. Within the combined set, 8 images depicted keyholing, 7 lack-

of-fusion, and 4 balling with the remainder being in the conduction regime. Masks, binary images 

denoting the melt pool region, were created in Adobe Photoshop so that the melt pool was filled 

with white pixels with all else black. Given the small size of the dataset, a leave-one-out validation 

approach was taken, with 12 images for the test set, and 36 for the training set.  

8.3  Pix2Pix and U-Net for Image Translation 

The GAN utilized in this chapter is based off of the Pix2Pix GAN originally developed 

[131]. This was developed to perform style transfer of images, such as changing sketch into a 

realistic image of a purse or inputting a photograph captured during the day and generating a view 

of the scene at night. This capability made the pix2pix network particularly well suited for the 

problem at hand because image translation requires the model to thoroughly learn object features, 

in order to properly reproduce new images. In this case, the object of interest is the melt pool and 

its surrounding boundary. Unlike simpler implementations of GANs, this model uses 

convolutional layers for the generator and the discriminator networks – thereby utilizing batch 

normalization within the hidden layers.  

The generator model takes in images as inputs, but uses a different source of randomness. 

Instead of sampling from a point in a latent space, the randomness comes from having dropout 

layers that occurs during training. Overall, the model architecture involves having the generator 
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taking in an image as an input and down-sampling it over several layers (similar to the variational 

autoencoder mechanism), until it reaches a bottleneck layer, where the representation is now up-

sampled over and over for several layers until an output image is produced [131]. The utilization 

of this mechanism is very similar to the U-Net described later, with the exception that the GAN 

output product is different from the image classification of the U-Net. 

Meanwhile, the discriminator network, working in tandem, takes in an image from the 

training data as well as an image produced from the generator to predict the likelihood that the 

generated sample came from the training dataset – much like the traditional GAN scheme. The 

difference here is that the Pix2Pix uses a unique network architecture to accomplish this, known 

as PatchGAN [132]. This is a CNN that classifies images based on looking at portions of an image, 

or patches rather than the entire image. In this fashion, the model classifies if those individual 

patches are real or fake, rather than that overall image. The output then becomes a single feature 

map of what has been determined to be real versus fake predictions which can be averaged to give 

a single score [133].  

Additional modifications to the traditional GAN include slowing down the discriminator’s 

learning process, as the above described network architecture allows the discriminator to learn 

much faster than the generator. The generator’s training occurs using both the adversarial loss for 

the discriminator model and the mean absolute pixel difference between the generated image 

translation and the expectation from the training image. These losses are then combined into what 

is known as a composite loss function – which constantly updates the generator model [133]. While 

the adversarial loss determines whether the generator has successfully produced a valid image 

based on the training data, the mean absolute difference loss helps the generator to create images 

that are passable as new translations of the training data image, thereby accomplishing the picture 
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to picture objective referenced in the name of the Pix2Pix model name. The two types of losses 

together can be controlled by a hyperparameter lambda value. For instance, when set to 10, that 

indicates that the mean absolute difference is 10 times more important to the model than the 

adversarial loss to the generator [132]. 

The Pix2Pix model framework improves upon the general GAN model by using a 

conditional-image input, which provides larger output images compared to other GAN models. In 

addition to training images, these images are also paired with labels, whereby the model learns a 

label-pair to improve the image translation capabilities. For this work, the model was modified to 

have a batch size of 6 for training, a batch size of 9 for validation, and to train on single channel 

images rather than 3 channel color images in addition to the preprocessing steps mentioned below.  

The U-Net approach was originally developed by Ronneberger et al. for use in biomedical 

image segmentation [134]. It is a typical CNN, or deep neural network, albeit with a modification. 

It also allows down-sampling to a bottleneck layer, then up-sampling to the output image. 

However, during the up-sampling layers, there are a large amount of feature channels, which 

allows the model to pass on locally important information, or contextual information, as it goes 

from larger to larger resolution layers [135]. The down-sampling operations are convolutional 

layers, with each layer followed by a ReLU and a max pooling operation. The objective is to reduce 

the spatial information from the image while maximizing the feature information picked up from 

the image through those layers. The symmetry between the down-sampling layers and the up-

sampling layers gives the network architecture a u-like shape, hence the name U-Net.  

For this work, notable deviations from the source include using 16 filters instead of 64, 

changing hyperparameters such as learning rate, adjusting the early stopping epoch, and adding 

the preprocessing steps that follow. The preprocessing steps of the two methods differed slightly 
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as each was chosen to maximize the performance of the particular approach. The GAN approach 

was processed with contrast limited adaptive histogram equalization (CLAHE). The U-Net 

approach performed global histogram equalization before performing CLAHE. Both models 

converted images to 256 x 256 and a single channel (black and white), and all training images 

were horizontally flipped, doubling the size of the training data.  

The models were evaluated on the test set and compared by two metrics: Intersection over 

Union, (IoU) and Hausdorff distance (HD). Many semantic segmentation algorithms use metrics 

that evaluate the area of pixels correctly identified in similar fashion to IoU. While useful for 

model performance during training, IoU was not the best metric for evaluating performance after 

training because each pixel is given equal weight. IoU is best described as an area metric, but a 

more accurate way would be to utilize an edge metric. The desired outcome of this work was to 

have accurate representations of the melt pool contours, and a metric was needed to evaluate the 

error of edge locations, hence the inclusion of the HD evaluation.  

8.4  Pix2Pix and U-Net Performance Evaluation 

As seen in Fig. , there are two optical micrographs from the test set (Image 2 and Image 6), 

their respective ground-truth masks, and the comparison mask of both models. Each comparison 

mask is comprised of the generated mask from a single model overlaid onto the ground-truth mask 

of the same image. Purple areas denote pixels of intersection, whereas blue denotes pixels where 

only the ground-truth mask was present, and red denotes pixels where only the generated mask 

was present. The orange and blue dots correspond to the end points of the HD, with orange 

denoting the point on the ground-truth mask and blue denoting the point on the predicted mask. 

For Image 2 (Fig. 38a-d), both algorithms predicted a melt pool that had large overlap with the 

ground-truth mask. The generated areas matched well with the ground-truth, although neither 
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algorithm predicted the top left ‘corner’. For Image 6, a melt pool exhibiting keyholing, neither 

model generated a mask that visually matched the ground-truth mask. This is likely due to the 

training set only containing one keyhole melt pool. While the melt pool predicted by the GAN 

(Fig. h) showed a better match to the ground-truth mask than the U-Net. The U-Net falsely 

predicted a region separate from the melt pool; these predicted areas distinct from the true melt 

pool are referred to as artifacts within this discussion. The GAN did not predict this false positive, 

though it did predict an excess on the left side of the melt pool, and both models predicted a filled 

region rather than a cleft in top center. Melt pools in the conduction regime were well-represented 

in the training set, and most masks generated from those melt pools closely matched the ground-

truth masks, but due to the lack of training data, the masks generated from melt pools outside the 

conduction regime did not match as well visually.  

 

 

 

Fig. 38. Qualitative comparison of two melt pool types: within the conduction regime (a-d) and 

keyholing (e-h). Parts a and e are the input micrographs, image 2 and image 6 respectively. Parts 

b and f are the ground-truth masks. Parts c and g are comparison masks from the U-Net algorithm. 

Parts d and h are comparison masks from the GAN algorithm. Orange points denote the Hausdorff 

point on the ground-truth masks; blue points denote the Hausdorff point on the generated masks. 
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Predictions of the two models are quantitatively compared by IoU and Hausdorff distance 

in Table , with the metrics for each image within the test set shown in Fig. 39. Though masks 

generated by models were visually similar, the U-Net approach performed better according to both 

IoU (the area metric) and Hausdorff distance (the edge metric). Masks generated by the U-Net 

resulted in IoU values greater than 90% for 9 out of 12 test images. For masks generated by the 

GAN, only 6 out of the 12 produced IoU values above 90%. Furthermore, all predictions by the 

U-Net resulted in an IoU over 84%, and masks generated by the U-Net outperformed those 

generated by the GAN in 9 out of 12 images by both IoU and Hausdorff distance. 

 

 

Table 11  

Average Metrics with 95% Confidence Interval as Evaluated on All Test Set Images 

 IOU  HD 

GAN 89 ± 5.1  32 ± 23 

U-Net 93 ± 3.2  16 ± 15 

 

 

 

The U-Net outperformed the GAN for segmentation of single-track melt pool images in 

most cases. This is not unexpected: in the case of segmenting text from scanned documents, the 

two methods have been compared showing the U-Net approach out-performing the GAN in that 

case as well [136]. While the two cases have notable differences— the use of error metrics specific 

to text segmentation, the availability of a larger dataset (136 images), and a different 

implementation of the U-Net— the U-Net performed better than the GAN by most metrics [136]. 

This too is not unexpected: the U-Net approach was developed specifically for pixel-by-pixel 
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classification [134], but the Pix2Pix GAN was developed for the broader application of style 

transfer, though it has been utilized to produce segmentation masks [137].  

 

 

 

 

Fig. 39. Quantitative metrics on individual test images. a) IoU b) HD in pixels 

 

 

The exceptions for this case, when evaluating with the IoU, is image 6 as seen in Figure 

39a above. Here, the IoU was slightly higher for the U-Net result than the GAN result. An 

inspection of this image does show more overlap in the GAN output compared to the U-Net output. 

When comparing the results for the HD, the GAN result generally had a higher score, with the 

same exception, image 6. Here, the U-Net again scored higher. This is due to this particular image 

having a wider boundary around the real image when overlayed with the generated image from the 

U-Net. While the U-Net was usually able to create a better approximation of the image boundary, 

for image 6 this was not the case. Nevertheless, it was generally a more reliable model output as 

seen from the remaining image tests. 
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The GAN, while a powerful tool, is of greater complexity than is needed for this 

application, and that complexity creates difficulties for the training process. Not only was training 

of the GAN slower than the U-Net but obtaining a converged model with the former was non-

trivial. A GAN produces its most realistic images when both the generator and the discriminator 

updates change little between each update in training weights. This problem is inherent to the two 

network architectures of the GAN because updating the weights of one could reverse an 

improvement in the other [138]. While the GAN could produce reasonable results without 

convergence, achieving consistent convergence was the most reliable way to obtain quality 

generated masks. However, this stability was hard to achieve with the small training set available. 

The larger batch size of 6 (as compared to 1 in the source) helped to achieve convergence with the 

present dataset, but bigger batch sizes are not guaranteed to improve convergence.  

With the U-Net approach identified as the preferred approach for the objective described 

at the opening of this chapter, the remainder of the discussion will be on use and benefits of the 

HD, as this metric has not previously been used to evaluate additive manufacturing computer 

vision models in literature. Fig. 40 plots the IoU value against the Hausdorff distance, one point 

for each generated mask for both models. Though there is correlation of a decrease in HD with an 

increasing IoU value, a linear regression of all points resulted in an R2 value of only 0.68, 

supporting the use of HD due to the inherent differences between the two. Because of the high area 

to edge ratio of these melt pools, high IoU values can be achieved despite edges not matching 

closely with the ground-truth and vice-versa. The best example of this is the mask of image 1 

generated by the U-Net which had an IOU of 85% and a Hausdorff distance of 11 pixels.  

Hausdorff distance also provides unique advantages unavailable with IoU. Because HD is 

a maximum, it only gives information about the worst mismatch of the generated mask, 
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irrespective of how other points in the generated mask relate to the ground-truth. For an end-user 

extracting melt pool contours, this can help to flag outlier images. HD is beneficial here as the 

extracted contour is only as useful to thermal model validation as its least accurate part. In Fig. 

38b, any generated mask that had HD above 30 pixels was seen to have an artifact; those below 

30 pixels correctly predicted one melt pool per image. For a small data set, the HD could be utilized 

to identify trends that will allow evaluators to build a more robust training set.  

 

 

 

 

Fig. 40. Correlation of HD to IoU 

 

 

 

Utilizing a metric based on a maximum has inherent disadvantages, however. When a model 

was performing poorly, for example including multiple artifacts, the HD would give little 

indication whether the generated image was completely inaccurate or just had a single artifact. The 

metric’s sensitivity to artifacting also limits use as a loss function during training.  
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8.5  Summary of Pix2Pix Analysis 

For the single-track melt pool micrographs of additively manufactured Ti-6Al-4V, a GAN 

approach was proven to be able to segment melt pools from optical micrographs. However, the U-

Net algorithm (a pixel-wise approach) generally outperformed a GAN (a generative approach) in 

both IoU and Hausdorff distance. The results of these tests for image 6 was seen as an exception, 

and can be attributed to the U-Net segmentation not completely learning an indentation in the real 

image and therefore creating a slightly wider outer edge for the object than there should have been. 

Hausdorff distance was introduced to evaluate the accuracy of generated melt pool boundaries 

specifically due to interpretability, sensitivity to the largest error, and being an edge metric. 

However, Hausdorff distance should be utilized in tandem with IoU. For the small dataset of 57 

images, the U-Net approach was able to achieve an IoU of over 80% for all test images and over 

90% for 9 out of 12 test images. The GAN achieved an IoU of over 80% 11 out of 12 test images 

and over 90% for 6 out of 12 test images. 

While the previous chapter demonstrated the ability of the GAN and the CGAN to make 

valid new images, this chapter discusses some limitations. Those limitations are primarily due to 

the limited amount of data presented here. The task of identification of melt pool boundaries is a 

significant problem, and having a valid way to accomplish that is highly desirable for process 

certification endeavors. Nevertheless, while the GAN was unable to learn from this small dataset 

to reproduce images with a reliable melt pool boundary – the CNN U-Net did show more promise 

in accomplishing this task for classification purposes.  
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CHAPTER 9 

 

IMAGE SYNTHESIS USING VAE 

 

 

9.1 Variational Autoencoder Implementation 

 

A variational autoencoder (VAE) model was developed and implemented based on the 

literature that suggested the autoencoder model is a capable generative model in many 

circumstances, discussed in section 2.10. The fundamental mechanisms that govern the process of 

sampling from the latent space and thereby collecting a new representation of data, in this case, 

image data was discussed in that section. Of particular interest is the statistical underpinning of 

this approach, where the VAE is essentially a deep learning based probabilistic model, or deep 

Gaussian model. For instance, in a statistical Gaussian model, it can generally be assumed that 

there is a distribution of observed variables which are associated with corresponding latent 

variables. And those latent variables are drawn from a prior density p(z) and are associated with 

the data observations based on a likelihood, which can be expressed as pθ(x|z). This is the case for 

a type of deep learning class of models known as Deep Latent Gaussian models (DLGMs) – where 

the observed variable is governed by a hierarchy of latent variables, and the latent variables at 

each level of the hierarchy are Gaussian a priori [139]. Overall, this implies that the VAE is not 

explicitly a generative model per se, rather it is a DLGM that has generative abilities as a 

consequence. This stands in contrast to the GAN whose output is a generated observation. 

In this work, sampling from the latent space encoded by the VAE was used to generate 

new examples of vapor depression images, similar to the goal of Chapter 7 with the GANs. The 

training images again consisted of 2,000 images based on experimental combinations of laser 

velocities (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 meters per second) and laser intensities (150, 200, 

250, 300, 350, and 400 Watts). The VAE model was initially trained with each intensity set of 
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experiments separately. That is, the first VAE was run with all images from 150W – which 

included all five velocity settings for a total of 10,000 images. A second model was trained on only 

200W data, then 250W, and so on. The idea was to test the model’s ability to learn the distribution 

of features across each velocity first, and evaluate the results. Should those results be favorable, 

then a new model trained on all images together would be used.  

The model was again created in Python using Keras. The training images were all initially 

resized into 28x28 images, then flattened to be a vector of size 784. A description of the steps 

developed in the code for developing and running the VAE model are as follows: 

• Creation of an input layer 

• Creation of intermediate layer  

• Application of ReLU activation function 

• Development and definition of latent feature space 

• Definition of the log variance of the latent space 

• Deployment of sampling function to learn mean and variance  

• Linkage of the input to decoder from latent space 

• Map latent space to intermediate dimension 

• Define loss function from binary cross entropy and KL divergence 

• Sample from latent space to obtain new image representation 

For the decoder, the input comes from sampling from the latent space, based on learning 

the mean and the variance of the distribution. Then, at the image output or generation step, a 

sampling function based on learning those values is fed through the decoder to get to the model 

output. Unlike the GAN where there is a loss function for the discriminator and the generator as 

each network functions separately, the loss function for the VAE works differently as the network 
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architecture is structured differently. Here there is one loss function, although it is a combination 

of two factors: binary cross entropy and the KL divergence (discussed in section 2.10). Essentially, 

there is a comparison from each image in greyscale for the pixel value to the value encoded and 

reconstructed. The model was optimized using the Adam optimization algorithm. 

9.2  Effectiveness of VAE Generated Images  

 At a visual inspection, the images produced did not show variation among the laser 

velocities, as would be expected. The images in general had very little difference, despite the 

training images showing clear variations among the different velocities. This is noteworthy as this 

particular model does not learn the labels for the images. In an ideal scenario, the model would 

have learned how the features changed across each class of image, without needing to know the 

label. Fig. 41 shows an example of images from the model – with the first row of images being 

actual images for each velocity at 350W, and the second row showing images taken from the VAE 

for each velocity at 350W. These results show how the model in general produced vapor depression 

images that were roughly the same, which was not an ideal outcome. 

 

 

 

Fig. 41. Images from real dataset at 350W (top) at 0.2, 0.4, 0.6, 0.8, and 1.0 m/s, with images 

generated by VAE (bottom) from that training data 
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 A quantitative test was performed to look at the average area of the images produced 

compared to the average area from the real examples. It was shown that the average area was not 

comparable to the actual average area – even when each class of velocity images were compared 

individually (see Table 12). No class of images (0.2, 0.4, 0.6, 0.8, or 1.0 m/s) had an average area 

that was statistically similar to the average area produced by the VAE. Additionally, as the images 

shown in Fig. 41 make clear, the VAE output were all similar. The variance across the images 

from the VAE were much smaller than the overall variance for the real dataset. The model had 

poor performance from a basic evaluation.  

 Upon visual inspection, the output images were rejected based on the closeness of the 

similarity to one another, and the lack of closeness to any of the training images. Therefore, 

additional testing on the effectiveness of these images were not necessary as they could clearly not 

be used for quantification of vapor depression geometries or validation of the thermophysics of 

the LPBF process.  

 The results here suggest that the VAE was unable to perform as a generative model. The 

likely reason for this is the mechanism by which the VAE samples from its latent space. The VAE 

uses a Gaussian distribution to map the features from the images upon which it has been trained. 

By definition of a Gaussian distribution, 99.7% of the probability distribution will collected within 

three standard deviations from the mean. Likewise, when sampling, the VAE will tend to sample 

from that middle area, or closer to the top of the Gaussian curve – which can be thought of as a 

safe middle ground upon which to sample [111]. This leaves out the complexities of the features 

from the images when selecting, thereby generating images that look similar in this case.  
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TABLE 12 

Average Area of Real Images Compared to VAE Images at 350W 

Velocity Real VAE 

0.2 m/s 2803.14 2945.51 

0.4 m/s 2410.46 3025.36 

0.6 m/s 2715.03 2935.87 

0.8 m/s 1043.80 2889.16 

1.0 m/s 185.110 2976.94 

 

 

 

9.3 Conditional VAE Implementation 

  The VAE has a limitation in terms of image generation not unlike the GAN in that it is 

difficult to generate a specific image from a specific class when there are many classes. In the case 

of this work, there were five classes: the five different velocity settings. The general VAE model 

has the encoder Q(z|X) and the decoder P(X|z), where the encoder models the latent variable z 

based on X, regardless of any class of X [111]. Likewise, the decoder models X based on the latent 

variable z, regardless of any class or label. As this produces images that may not exactly correspond 

to a particular class, a modification to the overall scheme can be made where both the encoder and 

the decoder are conditioned to a new variable, c. For the encoder, the model is now Q(z|X,c) and 

for the decoder it is now P(X,c|z). The distribution of data then becomes conditioned based on the 

overall lower bound of the variational objective which has then become: 

𝑙𝑜𝑔𝑃(𝑋|𝑐) −  𝐷𝐾𝐿[𝑄(𝑧|𝑋, 𝑐)||𝑃(𝑧|𝑋, 𝑐)] = 𝐸[𝑙𝑜𝑔𝑃(𝑋|𝑧, 𝑐)] −  𝐷𝐾𝐿[𝑄(𝑧|𝑋, 𝐶)||𝑃(𝑧|𝑐)]      (46) 

where the latent variable is now distributed by P(z|c) and for every possible value of c, there is a 

P(z) [140]. 

  Modifications to the VAE previously discussed included incorporating the conditional 

variable c. In this case, this conditional variable represented the class labels for the velocity 
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variable, which was a categorical input. It therefore had to be one-hot encoded for the model to 

receive as an input. This new vector was then concatenated with the encoder and decoder network. 

From there, the new CVAE model was run and images from the class of interest was then extracted 

by using the corresponding one-hot encoded value. 

9.4 Conditional VAE Results 

  The CVAE model produced images that at a visual inspection were an improvement over 

the general VAE performance. The vapor depression sizes in the images appear to shift in size 

appropriately, following the trends seen in the real data (Fig. 42). However, while the images 

appear to be an improvement over those from the VAE, they did not match up with the real data 

enough to be considered interchangeable with the images from the real set. As seen in Fig. 42, the 

object shrinks as the velocity increases, from 0.2 to 1.0 m/s – as seen in the real data. However, 

those decreases are not as dramatic as they should be. This indicates that the features encoded in 

the latent space are still not representative to the impact that the velocity has on the geometries.  

 

 

 

 

Fig. 42. Images from real dataset at 350W (top) at 0.2, 0.4, 0.6, 0.8, and 1.0 m/s, with images 

generated by CVAE (bottom) from each class 
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  A quantitative analysis of the CVAE results included measuring samples from the 

generated data with the Intersection over Union (IoU) and Hausdorff distance (HD), the 

background of which were described in Sections 7.6 and 7.7 respectively. Table 13 shows the 

results of these measurements, with values that were significantly above the values that would be 

expected, and higher than those produced by the CGAN in Chapter 7. The values indicate the 

relatively poor job the CVAE did in creating new images, in that they did not match well with the 

original data in both cases.  

 

 

TABLE 13 

IoU and HD of CVAE Generated Images 

Velocity IOU HD 

0.2 m/s 0.7013 205 

0.4 m/s 0.6203 378 

0.6 m/s 0.3127 951 

0.8 m/s 0.1798 1350 

1.0 m/s 0.0210 2034 

 

 

 

The addition of the input label did help with the goal of producing new images, but the 

output was not comparable to the generative capabilities of the GAN models. Given these results, 

it was determined that attempting to generate new images to represent new velocity parameters 

should not be performed, as the images produced for those known velocity parameters failed to 

adequately capture the real area distributions. Future work in the area of autoencoders could 

include using the results from the CGAN to supplement the image datasets. These additional data 

could potentially include the VAE training, thereby helping to better map the features from the 

objects in the latent space. Some success has been found in merging the two models together, the 
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GAN and the VAE, known as the Adversarial Generative Autoencoder, or VAEGAN [141]. 

However, these models would still be limited in their ability to produce specific images for a 

particular label, as there is not a conditioning aspect to the model training and image generation. 

The results here, as well as from Chapter 7 demonstrate that model conditioning is necessary for 

the successful creation of new images for specific combinations of process parameter variables. 

9.5 VAE results with RMSE 

 The RMSE and SI evaluation metrics were applied to the VAE and CVAE results, in a 

similar fashion to how those were used to evaluate the uncertainty of the GAN and CGAN model 

predictions. The results for the VAE model are shown in Table 14 and the results for the CVAE 

model are shown in Table 15. For the VAE and CVAE models, a similar result was found where 

the CVAE model outperformed the VAE model, just like how the CGAN outperformed the GAN.  

 

 

TABLE 14 

VAE Evaluation with RMSE and SI Metrics 

Test 

Parameter 

Area 

RMSE     SI 

C.H. 

RMSE     SI 

Depth 

RMSE 

 

SI 

Width 

RMSE 

 

SI 

0.2m/s 562.64 78.91 754.85 101.6 133.8 105.3 183.6 98.65 

0.4m/s 542.61 132.2 964.68 285.6 167.3 206.6 128.7 174.6 

0.6m/s 781.21 145.6 930.85 245.6 158.2 265.3 97.16 151.4 

0.8m/s 894.12 354.8 996.72 349.5 118.0 378.6 175.9 453.6 

1.0m/s 1238.7 513.6 689.50 456.6 96.96 456.9 135.0 512.5 
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TABLE 15 

CVAE Evaluation with RMSE and SI Metrics 

Test 

Parameter 

Area 

RMSE     SI 

C.H. 

RMSE     SI 

Depth 

RMSE 

 

SI 

Width 

RMSE 

 

SI 

0.2m/s 469.12 73.43 573.28 75.51 123.59 43.03 37.68 48.82 

0.4m/s 446.57 90.15 552.43 107.0 107.52 107.7 79.06 79.56 

0.6m/s 693.88 61.35 590.95 36.12 136.28 46.69 85.84 86.58 

0.8m/s 814.64 147.6 912.86 231.3 231.50 232.1 167.29 167.4 

1.0m/s 1149.2 431.2 535.11 415.4 415.98 416.1 109.82 110.7 

  

 

 

Overall, these results further emphasize how the autoencoder learning mechanism does not 

compete in this problem set for delivering generated images that can be relied upon, to supplement 

the experimental data. While the GAN model discussed in Chapter 7 was inferior to the CGAN 

model discussed in that same chapter, even that lower performing GAN was superior to the better 

of the two autoencoder models, the CVAE. This was consistent across all evaluation metrics 

discussed in this chapter. Deep learning has provided a method for generating new data – several 

in fact, as described here in Chapter 9 and previously in Chapter 7. The computational learning 

mechanism involved with multiple hidden layers in the deep learning paradigm, along with the 

convolution and other operations, has shown that it is possible to artificially create new data. While 

some methods work better than others, it has been shown that there is at least more than one way 

to approach this problem of limited data. As both of these deep learning methods were image 

based, the next chapter provides an approach to non-image based generative modeling. In that 

chapter the recommender system will be used to generate, or recommend, new geometries, which 

can then be evaluated for its accuracy and compared to the aforementioned image based 

approaches. 
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CHAPTER 10 

 

RECOMMENDER SYSTEMS FOR MICROSTRUCTURE GENERATION 

 

 

10.1 Alternating Least Squares  

 

 Recommender systems provide a non-deep learning approach to modeling the DXR data 

and making predictions on future potential geometries. While not typically considered a generative 

model – as discussed in Section 2.9, recommender systems when using the underlying matrix 

completion approaches, can be used to make predictions based on unknown factors. For instance, 

when a new user enters an e-commerce environment, and the system strives to make predictions, 

or recommendations, on what that new user may favor. Using this approach, recommender systems 

can be structured such that the user is a particular process parameter, and the recommendation is 

the geometry measurement for that “user”, thereby delivering a new measurement despite there 

being no training data available for that “user”. Section 2.9 reviewed one of the most commonly 

used recommender systems, based on the Alternating Least Squares (ALS) algorithm, which is 

explored here. 

The task of generating or approximating missing data can be accomplished through matrix 

completion. Oftentimes these computational techniques are incorporated with various additional 

algorithms to leverage the results to make predictions, or recommendations, for an output given a 

system of inputs. Known as recommender or recommendation systems, these approaches have 

obvious benefits to the retail industry, but can also be applied to many other domains as well [37]. 

Nevertheless, one of the most common use cases involves making movie recommendations for 

users of an online streaming service, Netflix.com. This example is due to the advancement of the 

recommender system inspired in part by the Netflix challenge where the company sought help 

from researchers to develop and apply a more optimal system for making movie suggestions to its 
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users [142]. Section 2.9 discussed the theory behind the ALS approach, which was employed to 

make predictions on the following characteristics: area, convex hull area, depth, and width of the 

vapor depression.  

The data was prepared by forming into an m x n matrix where all data from all 35 

experiments were collated into a single dataset. During the data collection process, 35 experiments 

were conducted, where 2,000 images were taken from each. Using the previously described image 

contouring approach, and the measurements of area, depth, width, and the convex hull area for 

each frame – a full dataset was constructed using the aggregated measurements of all experimental 

runs. A matrix was then created where the velocity of the laser at each time interval populated 

columns and the laser intensity setting for each time interval represented the rows. The values 

populating the matrix were the area that was measured for each combination of laser velocity and 

intensity – for every time interval. Therefore, the final matrix contained the measured area for 

every image that was experimentally collected, in a 70,000 by 70,000 matrix. However, as there 

was no measured activity for experiments where the laser velocity was set to 1.2 and 1.4 meters 

per second, data for those experiments were excluded. This resulted in a final matrix of 50,000 by 

50,000. This procedure was then repeated to create matrices for vapor depression depths, widths, 

areas, and convex hull areas. Similar to all previous work, all steps and calculations were 

conducted using Python, with Numpy.  

  The ALS model works by solving for the user vector and the item vector. For this work, 

the user vector, xu, is the parameter of the laser intensity. Meanwhile, the item vector, yi is the 

second parameter, the laser velocity. As discussed in Section 2.9, the recovered matrix 𝑅𝑢𝑖 is 

difficult to fully compute as the objective function in non-convex. However, the ALS approach 

works by fixing the variables as constants and then solving for one, with respect to the other. The 
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problem then becomes a minimization problem, to minimize the now convex function of yi. 

Holding this item vector constant while taking the derivative of the loss function with respect to 

the user vector results in this expression: 

𝜕𝐿

𝜕𝑥𝑢
 =  -2∑ (𝑖  𝑟𝑢𝑖 - 𝑥𝑢

T  * 𝑦𝑖) 𝑦𝑖
T + 2 𝜆𝑥𝑥𝑢

T       (47) 

which reduces to: 

0 = -(𝑟𝑢 - 𝑥𝑢
T 𝑌𝑇)Y + 𝜆𝑥𝑥𝑢

T 

followed by: 

𝑥𝑢
T (𝑌𝑇Y + 𝜆𝑥I) = 𝑟𝑢 Y 

and finally,  

𝑥𝑢
T = 𝑟𝑢 Y (𝑌𝑇Y + 𝜆𝑥I) -1         (48) 

This is then repeated, except this time for the item vectors: 

𝜕𝐿

𝜕𝑦𝑖
 =  -2∑ (𝑖  𝑟𝑢𝑖 - 𝑦𝑖

T  * 𝑥𝑢) 𝑥𝑢
T + 2 𝜆𝑥𝑦𝑖

T 

0 = -(𝑟𝑖 - 𝑦𝑖
T 𝑋𝑇)X + 𝜆𝑥𝑦𝑖

T 

𝑦𝑖
T (𝑋𝑇𝑋 + 𝜆𝑥I) = 𝑟𝑖 X 

𝑦𝑖
T = 𝑟𝑖 X(𝑋𝑇X + 𝜆𝑥I) -1         (49)  

 To test the ability of this approach to generate new measurements of vapor depression area 

(followed by convex hull area, depth, and width separately), the dataset was prepared such that all 

measured values for columns with velocity at 0.2m/s were removed. The ALS approach then 

attempted to calculate the values that would fall into a column for 0.2m/s, which was then repeated 

2,000 times so that there would now be a number of predictions equal to the number of 

observations in the original dataset – for each combination of 0.2m/s and each power setting of 

150W, 200W, 250W, 350W and 450W. This was repeated for each velocity setting. The output 
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was a set of predictions for vapor depression areas for a chosen velocity setting. These predictions 

could then be compared against the original data, which was held out from the model. 

10.2 ALS results with RMSE 

 Similar to previous chapters for evaluating GAN and VAE model performance, testing of 

the ALS approach used the root mean squared error (RMSE). This was chosen as a metric for 

evaluation as it provides a quantitative measure of the difference between the predicted values and 

the real values, based on absolute difference. The results from these measures are presented in 

Table 16. Here, the resultant predictions from removing all data for experiments run at 0.2m/s (and 

all other velocities subsequently) are shown. Predictions for each geometric characteristic is then 

presented, for which the model was run separately for each. Beginning with the area matrix, this 

model treated the power setting as the user and velocity as the item. For instance, for user 350W, 

the system is making recommendations on an area measurement for item 0.2m/s. Initially, the 

system has information on that user, 350W in the sense of other items it is associated with, such 

as 0.4, 0.6, 0.8, and 1.0 m/s. In this sense, the new item, 0.2m/s, is roughly the same as a new item 

added to an online marketplace, upon which a recommender system makes predictions for users 

on whether or not they will want that new item based on ranks given to other items. Therefore, this 

represents the cold-start problem, where a new item is introduced and the system must make a 

recommendation for it. 

As seen in Table 16, the RMSE and subsequently the SI are higher for area and convex 

hull area, than they are for depth and width. The smaller range in those values helped the 

recommender system to better learn their distribution. Also noteworthy is the quality of the 

predictions were higher for the lower velocities of 0.2, 0.4, and 0.6 m/s. This is due to the volume 

of data available at those velocity settings, whereas for 0.8 and 1.0 m/s there were runs where no 
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vapor depression was detected. Overall, the results show that the ALS approach was able to make 

recommendations on area measurements for the process parameter combinations, yet the 

performance for many of these is still lacking. This is likely due to the lack of “users” for the 

system, having only five. As discussed previously, collaborative filtering scenarios expect many 

users in order to properly gauge behavior. Due to the overall high RMSE and SI values, an 

additional attempt at another recommender system was considered, developed, and discussed in 

the next section. 

 

 

TABLE 16 

ALS Results of Parameter Tested by Removal from Dataset 

Test 

Parameter 

Area 

RMSE     SI 

C.H. 

RMSE     SI 

Depth 

RMSE 

 

SI 

Width 

RMSE 

 

SI 

0.2m/s 397.33 30.15 456.7 32.78 37.53 39.58 19.92 37.55 

0.4m/s 430.18 52.37 469.7 52.62 45.88 63.52 23.64 55.93 

0.6m/s 419.57 30.66 374.6 23.56 41.91 62.43 51.28 63.45 

0.8m/s 506.37 130.3 842.7 167.7 49.42 232.7 70.41 141.4 

1.0m/s 297.18 396.9 287.0 362.6 88.83 335.7 35.49 148.3 

  

 

 

10.3 Accelerated Proximal Gradient 

The above results of the ALS approach suggested than the data may have not provided 

enough information to the model to make accurate predictions. For instance, data at 400W did 

have signal noise present as there were zero readings for those experiments, likely due to sensor 

or equipment failure. Thus, an alternate approach was explored and performed. 

In applications for real world data, approaches for matrix completion can be pursued 

whereby instead of applying regularization on a decomposed matrix [143], we instead apply 
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regularization on the nuclear norm (also known as the trace norm) of the recovered matrix R. In 

this fashion we focus on that nuclear norm, which is the sum of the singular values in matrix R. 

The goal of this regularization approach is to find a solution that effectively balances the 

minimization of the approximation of the error in the known entries as well as the nuclear norm of 

matrix R, such as 

min
𝑅

1

2
‖𝑃𝛬(𝑅) − 𝑃𝛬(𝐴)‖𝐹

2 + 𝜆1‖𝑅‖∗,         (50) 

where 𝜆1 is the regularization parameter controlling the extent of the nuclear norm. It is important 

to note that this is a convex model for completing matrix 𝐴. 

In the low-dimensional state, and therefore as a low-rank matrix, the matrix completion 

problem can be formulated as a matrix rank optimization problem such that 

min
𝑅

𝑅𝑎𝑛𝑘(𝑅) , 𝑠. 𝑡.   

𝑅𝑢𝑖 = 𝐴𝑢𝑖, (𝑢, 𝑖) ∈ 𝛬.          (51)  

where Rank(R) denotes the rank of matrix R. While it is not feasible to find the exact solution of 

the recovered matrix as this problem is known to be NP-hard [44], there are ways to leverage the 

low-rank matrix approximation to yield results that can come close to an optimal solution, which 

is the general goal of several computational algorithms (which can then even be utilized by 

recommender systems as described previously). For instance, the rank optimization problem can 

be reconstrued as a nuclear norm optimization problem [46] by working to minimize the sum of 

the singular values in the recovered matrix R. This can be demonstrated as 

min
𝑅

‖𝑅‖∗ , 

𝑠. 𝑡.  𝑅𝑢𝑖 = 𝐴𝑢𝑖 , (𝑢, 𝑖) ∈ 𝛬. 

     

(52) 
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Where ‖. ‖∗ denotes the nuclear norm. In this approach, the solution obtained by optimizing the 

nuclear norm is equivalent to the one by the rank minimization model [144]. 

 In a real-world application where datasets contain noise, the above approach for 

minimizing the nuclear norm can be reformatted as follows: 

min
𝑅

‖𝑅‖∗ , 

𝑠. 𝑡.  |𝑅𝑢𝑖 − 𝐴𝑢𝑖| < 𝛿, (𝑢, 𝑖) ∈ 𝛬, 

 

(53) 

where 𝛿 is the tolerance parameter to relax the 𝑅𝑢𝑖 = 𝐴𝑢𝑖 , (𝑢, 𝑖) ∈ 𝛬 condition. This allows for the 

flexibility in the model to arrive at a solution where the missing entries due to noise, or some other 

data integrity issue, can be successfully approximated in a computationally non-taxing method. 

Further, when the observed values of the matrix are randomly sampled, matrix R can be recovered 

using only a small portion of the original data and achieve this with a high probability of accuracy 

using the nuclear norm regularization [145]. 

Upon achieving a completed approximation for the matrix whereby the noise is 

computationally resolved, predictions can be made from the input data by further incorporating 

into an algorithmic model. While methods exist based on the regularization approach applied to 

the underlying data, utilizing the nuclear norm regularization can be accomplished by the proximal 

gradient algorithm. One such approach uses the proximal gradient algorithm, which has been 

shown to be capable of solving closed convex optimization problems [38]. However, past 

approaches have been computationally slow to converge on a solution, which has led to recent 

attempts to improve the approach. Accelerated Proximal Gradient (APG) is an algorithm 

developed precisely for this reason [144], which converges in O(1/√ϵ) iterations to solve the 
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nuclear norm minimization model. For this approach, for a known 𝑌, a quadratic approximation 

of  
1

2
‖𝑃𝛬(𝑅) − 𝑃𝛬(𝐴)‖𝐹

2  at 𝑌 is given such that:  

1

2
‖𝑃𝛬(𝑅) − 𝑃𝛬(𝐴)‖𝐹

2 ≈
1

2
‖𝑃𝛬(𝑌) − 𝑃𝛬(𝐴)‖𝐹

2 + 〈𝑃𝛬(𝑌) − 𝑃𝛬(𝐴), 𝑅 − 𝑌〉 +
1

2𝜏
‖𝑅 − 𝑌‖𝐹

2 ,      (54) 

where 𝜏 > 0 is a proximal parameter. Substituting the quadratic approximation into the previously 

examined equation for matrix regularization, the minimization model then becomes: 

𝑚𝑖𝑛  𝜆1𝜏‖𝑅‖∗ +
1

2
‖𝑅 − (𝑌 − 𝜏(𝑃𝛬(𝑌) − 𝑃𝛬(𝐴)))‖

𝐹

2

       (55) 

Then, APG generates (𝑅(𝑗), 𝑌(𝑗), 𝑡(𝑗+1)) in the following iterative fashion: 

𝑌(𝑗) ← 𝑅(𝑗) +
𝑡(𝑗−1) − 1

𝑡(𝑗)
(𝑅(𝑗) − 𝑅(𝑗−1)) 

𝑅(𝑗) ← 𝐷𝜆6𝜏 (𝑌(𝑗) − 𝜏 (𝑃𝛬(𝑌(𝑗)) − 𝑃𝛬(𝐴))) 

𝑡(𝑗+1) ←
1+√1+4(𝑡(𝑗))2

2
          (56) 

As utilizing the nuclear norm regularization approach for matrix completion has the benefit 

of being able to handle noisy data, it has clear advantages for experimentally derived data where 

noise is present. Further, applying that methodology into APG can therefore yield practical 

predictions on future events or conditions from the underlying data.  

10.4 APG results and analysis 

 To compare the results of the APG approach with the ALS approach, the same evaluation 

metrics were used. Table 17 shows the RMSE and SI for each result of using this approach. 

Overall, these metrics were an improvement compared to those obtained from the ALS based 

systems. Similar trends are seen here, where RMSE and SI are higher for the area and convex hull 

recommendations while significantly lower for the depth and width recommendations. Again, 

recommendations for the higher velocity parameters of 0.8 and 1.0 m/s were significantly higher, 
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which was also due to the sparsity of the data for those. As the overall RMSE values were lower 

for this exploration, it is possible that could be due to the inherent benefit of the APG approach in 

that it can handle noise reduction better, as described in the literature. Given the dataset has 

portions of missing or zero values, in addition to aberrant measurements likely due to noise, this 

approach was better suited for modeling the system.  

 

 

TABLE 17 

APG Results of Parameter Tested by Removal from Dataset 

Test 

Parameter 

Area 

RMSE     SI 

C.H. 

RMSE     SI 

Depth 

RMSE 

 

SI 

Width 

RMSE 

 

SI 

0.2m/s 254.3 19.29 382.6 27.46 23.95 25.25 22.64 42.67 

0.4m/s 231.2 28.15 451.0 50.53 20.03 27.73 45.21 107.0 

0.6m/s 425.1 31.06 521.6 32.80 32.21 47.98 52.12 64.50 

0.8m/s 654.9 168.5 927.5 184.6 55.72 262.4 78.10 156.8 

1.0m/s 251.0 335.2 362.8 458.2 75.16 284.1 71.12 297.3 

  

 

 

This approach produced SI values near or under 25% for multiple instances, which is an 

improvement over those achieved under the ALS approach. This therefore suggests that the APG 

approach is more suitable for use in data generation, or making predictions on entirely new items, 

or new velocity settings that were not experimentally captured. This exploration is discussed in 

the Section 10.6. 

10.5 Noise reduction with ALS and APG 

One way to determine if the APG method outperformed ALS would be to evaluate each 

approach on a noisy dataset. This would help show how each handles those aberrant observations, 

and therefore help substantiate the notion that noise in the data is why one model outperformed 
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the other. The matrix creation process included all images experimentally obtained. Therefore, 

they included observations where the previously described noise elements were present. These 

values were identified as those for which there was no accurate measurement obtained as the vapor 

depression shape was missing or mostly obscured from that frame. For the matrix of vapor 

depression areas, these noise values represented 9% of the values. For the vapor depression depth 

matrix they were 11%, for width 8%, and for the convex hull matrix they were 9% of the values. 

As matrix completion is the underlying mechanism by which both of these recommender systems 

are based, the ability to successfully complete a noisy matrix suggests advantages for one system 

over another. This has relevance as there is a high likelihood of noise to be present in any 

experimental dataset.  

In order to test the performance of the APG and ALS systems for noise reduction, each 

dataset was scrubbed of all missing data, by removing any column and row with a missing value. 

This effectively removed that frame or observed vapor depression image at that particular time 

instance from the data. Upon creating a matrix with only known values for area measurements, the 

phenomenon of missing data was simulated by applying Gaussian noise to artificially mask 10% 

of that known data, thereby approximating the amount of missing data. Each system was then 

applied to this new dataset, and the resultant values were obtained and evaluated based on the 

known data that was intentionally masked. This was done for both the ALS recommender system 

and the APG recommender system. After results were obtained, another 10% of the known data 

was masked and the models were run again. This was repeated to obtain results for missing data 

at increments of 10 up to 50% missing. The RMSE and SI values for these predictions are shown 

in Table 18. 
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Both models were able to approximate the missing data, with both having an SI near or 

under 20% for the small amount of missing data at 10% lost. This initial increment best describes 

the experimental dataset’s missing values for each metric, as described above. The focus of this 

model was the area matrix, which had 9% of its data missing in the original dataset. From there, 

performance decreased for both approaches as more and more data was missing from the matrix. 

Yet APG was still able to recover 20% of the missing data with an SI at 23%. Overall, the RMSE 

and SI values were lower for the APG model, as expected. And as any dataset collected 

experimentally is likely to have some amount of data quality consideration, this technique is 

effective, which can be applied to systems with both stochastic and deterministic noise [42]. This 

suggests that approach is better suited for experimental datasets with small data integrity issues, 

both for recapturing lost data, and for making predictions with that data.  

 

 

TABLE 18 

ALS and APG Results with Induced Noise 

Noise Level 

Induced 

ALS 

RMSE     SI 

APG 

RMSE     SI 

10% 506.47 20.96 355.75 14.73 

20% 651.92 26.98 562.32 23.28 

30% 981.63 40.63 998.87 41.35 

40% 3354.8 138.9 1874.3 77.58 

50% 5598.2 231.7 4526.0 187.34 

 

 

 

10.6 APG for data generation  

 Based on the results of the APG recommender system in comparison to the ALS, the former 

was used to make new predictions of geometries that were not experimentally derived. That is, 



170 
 

create new measurements, or new data, for combinations of process parameters that were not, and 

cannot, be physically measured. The goal of this work is to provide another metric to evaluate new 

geometries, using the learning mechanisms based on the matrix completion methods discussed in 

this chapter. This is in contrast to the deep learning based methods discussed in previous chapters. 

Using the matrix factorization approach, this new data generation could be accomplished without 

the need for image processing. This thereby removes the task of image pro-processing, and 

contouring, thus reducing the overall complexity of the workflow. 

  As was done with the CGAN discussed in Chapter 7, the new combinations of parameters 

that were used to create new data were: 150W and 0.3m/s, 200W and 0.3 m/s, 200 W and 0.3 m/s, 

200W and 0.5m/s, 250W and 0.3m/s, 250W and 0.5m/s, 250W and 0.7m/s, 350W and 0.3m/s, 

350W and 0.5m/s, 350W and 0.7m/s, 350W and 0.9m/s, 400W and 0.7m/s, and 400W and 0.9m/s. 

Table 19 depicts a summary of the original data, which gives an average value for all images of 

vapor depressions taken at each of the 35 experiments. The metrics depicted are depth, width, 

geometric area, and convex hull area. The new generated data by the APG system are included in 

bold. Here, the averages of APG produced measurements were taken for 2,000 observations, which 

therefore matched the number of images used to calculate the average values for each metric from 

the experimental data. 

  Overall, the model produced new measurements that followed the pattern of the 

distributions for the rise and fall of each characteristic method, with only two individual 

exceptions. The greatest fluctuations were for the 400W experiments, which again could be due to 

the missing data for the 0.4m/s run. In the matrix factorization mechanics, those zero values are 

considered and could have skewed some of these results. The results of model training with the 

known values, discussed in section 10.3 show that the depth and width measurements are more 
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reliable in terms of predictions. The RMSE and SI scores were considerably higher for area and 

convex hull in comparison. Therefore, these results show that the results for depth and width are 

also more reliable, with the artificial experiments displayed for 0.3, 0.5, 0.7, and 0.9 m/s. These 

values in particular are also those that can serve as inputs for the equations discussed in section 

2.5, for thermodynamic model comparison and validation. 

10.7 Recommender system summary 

  The work described in this chapter describes two separate recommender system approaches 

for modeling data collected experimentally. These systems, which are a type of machine learning, 

are generally used for predicting user behavior. In their most common applications, recommender 

systems are used to make recommendations (hence their name) for users and items. When a new 

item is introduced, the system can attempt to include it in its recommendations based on past user 

behavior when held in comparison quantitatively to other users’ behaviors. This scenario, known 

as collaborative filtering, is one of the foundational principals of the recommender system. The 

recommendations are based upon a matrix of values which represent numerical rankings for user-

item combinations. 

In the case of the LPBF process, the laser intensity is modeled as the user and the laser 

velocity is modeled as the items. The dataset is arranged such that the area measurements 

corresponding to that intensity and velocity is populated in the data matrix – in the place of user-

item numerical rankings. The goal then becomes for the recommender system to make 

recommendations, or predictions for the area measurements, and subsequently convex hull area, 

depth, and width of the vapor depression. However, prior to introducing a new untested velocity 

setting into the system, which is similar to a new item being added to the system, the performance 

of the model should be tested on a held out portion of the data. Therefore, known values were 
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withheld from the matrix such that the system could be used to attempt to reproduce that withheld 

data.  

The two recommender systems evaluated were the Alternating Least Square, ALS, and 

Accelerated Proximal Gradient, APG, based approaches. The latter of which consistently 

outperformed the former, thereby suggesting its stronger likelihood for modeling and making 

predictions from the LPBF data. The APG approach was then chosen to make new predictions. In 

this fashion the recommender system was used to generate new data – new measurements. While 

the model was able to accomplish this task, the results from the holdout evaluations for known 

data suggest that the APG approach works best for depth and width measurements, as opposed to 

those characteristics that have more variability and a larger range of values – the geometric area 

and convex hull area of the vapor depressions. The results shown here suggest that recommender 

systems can best be used for modeling those parameters as the underlying matrix decomposition 

approaches were better able to encode those values and the latent features therein.  

Limitations in these approaches exist. First, the data must be arranged in a two dimensional 

matrix format, which thereby only allows two dimensions of data for analysis. Manipulating the 

data into an appropriate format does take effort, as the build sensors do not output data in this 

format automatically. While the work described here focuses only on two dimensions, laser power 

and laser velocity, in Chapter 2 it was discussed how there are many more process parameters that 

influence microstructure quality. Should we want to generate structure geometries to also factor in 

hatch spacing, laser spot size, and layer thickness – these additional dimensions of data would 

require different methodologies. The solution to this problem would likely involve higher 

dimensional tensor factorization and completion methods. These techniques are similar to the goals 
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TABLE 19 

Average Values for Vapor Depression Geometries by APG 

P V DEPTH WIDTH G. AREA C.H. AREA 

150 0.2 63.06 38.22 492.46 502.32 

150 0.3 38.94 24.65 844.12 214.14 

150 0.4 9.52 25.63 57.49 69.52 

150 0.6 0.00 0.00 0.00 0.00 

150 0.8 0.00 0.00 0.00 0.00 

150 1.0 0.00 0.00 0.00 0.00 

150 1.2 0.00 0.00 0.00 0.00 

150 1.4 0.00 0.00 0.00 0.00 

200 0.2 14.95 42.86 148.38 175.84 

200 0.3 8.881 67.81 278.12 298.59 

200 0.4 39.69 32.03 339.50 452.52 

200 0.5 43.68 35.71 654.45 600.84 

200 0.6 54.95 68.87 743.68 856.23 

200 0.8 0.00 0.00 0.00 0.00 

200 1.0 0.00 0.00 0.00 0.00 

200 1.2 0.00 0.00 0.00 0.00 

200 1.4 0.00 0.00 0.00 0.00 

250 0.2 45.65 42.78 475.28 489.51 

250 0.3 100.85 45.62 874.78 1001.69 

250 0.4 109.51 77.06 1299.75 1532.23 

250 0.5 105.45 98.24 1155.63 901.85 

250 0.6 34.33 81.19 532.50 635.72 

250 0.7 24.62 88.32 412.56 678.51 

250 0.8 9.66 26.08 57.56 58.21 

250 1.0 0.00 0.00 0.00 0.00 

250 1.2 0.00 0.00 0.00 0.00 

350 0.2 87.77 54.47 2803.14 2925.91 

350 0.3 303.89 75.01 2363.95 2602.89 

350 0.4 202.41 76.58 2410.46 2665.32 

350 0.5 125.26 152.31 3052.98 2543.51 

350 0.6 106.44 134.49 2715.03 2987.55 

350 0.7 98.62 89.65 1795.88 2649.13 

350 0.8 53.96 112.09 1043.80 1222.54 

350 0.9 55.45 205.36 945.27 836.94 

350 1.0 16.13 61.28 185.11 211.74 

350 1.2 0.00 0.00 0.00 0.00 

350 1.4 0.00 0.00 0.00 0.00 

400 0.2 262.73 86.93 4270.17 4676.23 

400 0.4 0.00 0.00 0.00 0.00 

400 0.6 139.92 119.54 2852.02 2962.46 

400 0.7 203.51 354.51 2656.62 2862.69 

400 0.8 42.56 110.81 842.34 952.95 

400 0.9 58.42 99.87 752.93 808.44 

400 1.0 16.17 58.32 189.31 195.62 

400 1.2 0.00 0.00 0.00 0.00 

400 1.4 0.00 0.00 0.00 0.00 
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of the matrix completion work described in this chapter; however, they can accommodate high 

dimensional datasets. It should be noted that there are very little results in the literature that 

demonstrates success in tensor completion; these techniques are still very much in their infancy 

compared to other areas of machine learning. Future work could therefore explore tensor 

completion by nuclear norm minimization, which theoretically should yield desirable results.  
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CHAPTER 11 

 

COMPARISON OF GENERATIVE MODELS 

 

 

While observations of the original 35 experimental combinations were used for drawing 

insight, the potential to have additional data for experimental combinations that were not produced 

would be invaluable for additional thermophysics model validation. Generative models were 

therefore developed and evaluated for this purpose, with the goal of increasing the variety of the 

data collected through computational processes for artificial data generation. Two generative 

adversarial networks were developed. The difference between the two being that one model had a 

conditional aspect to it, that is, an additional component was used for model training in the form 

of a numerical variable for an input. This is in addition to the image based data used for training, 

which is the sole input for the general network. Using the laser intensity and laser velocity as 

numerical inputs allowed the network to create more accurate images, as evaluated by a variety of 

metrics to include the intersection over union, Hausdorff distance, root mean squared error, and 

normalized root mean squared error also known as the scatter index. In all four of these metrics, 

the conditional model outperformed the general model, and produced images that were 

indistinguishable by human inspection from the original experimentally derived images. Based on 

these results, new data was generated for new combinations of laser process parameters, which 

increased the total available data by nearly 50% using the conditional model. The additional data 

was therefore capable of adding additional validation for process characterization.  

 Next, a comparable deep learning based method for data generation was developed, using 

variational autoencoders and conditional variational autoencoders. The conditional aspect worked 

similarly to that of the generative adversarial network, however model training commenced 

differently. The results of both of the VAE models were poor compared to those of the GAN 
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models, for all of the evaluation metrics. Although the conditional autoencoder proved superior to 

the general variational autoencoder, its output was still low in comparison to either of the 

generative adversarial networks. New data could potentially be derived from these models, but 

given the superior performance of the previous approaches, the autoencoder was not used for 

artificial data generation. However, even the better performing CVAE trailed the performance of 

both the GAN model and the CGAN. By comparison, the GAN had three tests where the SI value 

was under 30. The lowest SI value was 36.12, as seen for the CVAE’s output at the 0.6m/s 

parameter for convex hull area. And while this only occurs once for the CVAE output, it occurs 

for three out of four of the geometric measures for the GAN at 0.6 m/s (area at 27.66, convex hull 

at 24.51, and width at 23.20).  

 A third approach for data generation was then developed, where instead of using image-

based approaches, a purely numerical approach was used. To accomplish this, the dimensions and 

measured characteristics of the vapor depressions were encoded in a matrix format, where matrix 

completion was then performed with two recommendation systems employed to recommend, or 

generate, new measurements. The alternating least squares and the accelerated proximal gradient 

algorithms were used to generate new measurements. The latter of which was shown to produce 

more accurate values for geometric measurements of area, convex hull area, depth, and width of 

the vapor depressions. While not an image-based process and therefore not able to be evaluated by 

some of the previous methods, the root mean squared error and the standard index could still be 

calculated for the output of the models. Therefore, a direct comparison could be made to the deep 

learning based frameworks. Overall, these models were successful in generating new data, with 

results in between those of the generative adversarial networks and the variational autoencoders.  
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 A summary of the results for the area calculations with the CGAN, CVAE, and APG 

models are show in Table 20. Here, the superior of the two models for each technique – the 

generative adversarial network, variational autoencoder, and recommender system based models 

were chosen for comparison. While the GAN did provide superior results to the CVAE, as seen in 

Tables 8 and 15 – the CVAE was included Table 20 to depict the disparity in the results for the 

better autoencoder methodology. The goal of Table 20 therefore being to show how the better 

output from each of the 3 learning methodologies differed. While the CGAN performed the best, 

the recommender system based on APG performed second best, with results that closely matched 

the GAN in Table 8. As shown above, the APG model had two tests where the SI was close to 30. 

These results suggest that the matrix decomposition approach and nuclear norm minimization 

operation can learn the latent features in the image data comparatively well to the deep learning 

convolutional approach employed by the GAN. 

  

 

TABLE 20 

Comparison of Generative Results for Area Calculations 

Test Parameter CGAN 

RMSE     SI 

CVAE 

RMSE     SI 

APG 

RMSE 

 

SI 

0.2m/s 279.05 18.52 469.12 73.43 254.3 19.29 

0.4m/s 315.21 20.21 446.57 90.15 231.2 28.15 

0.6m/s 250.63 19.64 693.88 61.35 425.1 31.06 

0.8m/s 405.12 50.25 814.64 147.6 654.9 168.5 

1.0m/s 360.15 75.96 1149.2 431.2 251.0 335.2 
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Using a recommender system approach has the benefit of not needing to directly process 

all of the images in the dataset, as the input data is numerical. While work still needed to be done 

to extract the numerical measurements from the image data, once done, the computational 

complexity of deriving actionable intelligence from these data becomes computationally less 

taxing compared to the resource intensive convolutional approach. That makes this an ideal 

technique for future use in image datasets, as the numerical data can also be used for other 

modeling and forecasting purposes. Additionally, the recommender system approach has the 

benefit of being able to make many generative outputs at the same time. As was discussed 

extensively, the incomplete matrix for a new user, and therefore a new laser speed setting for which 

no data was obtained, can be computed. This allows the recommender system approach to produce 

measurements for all laser intensity combinations at one time, unlike the conditional GAN where 

the y inputs are manipulated one at a time for each combination of parameters. Recommender 

systems can therefore be faster computationally, and more efficient for computing these outputs. 
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CHAPTER 12 

 

CONCLUSION AND FUTURE WORK 

 

 

 Manufacturing using advanced complex materials, such as metal superalloys is a discipline 

of major interest to the aerospace industry, among many others. The advantages of developing 

structures for these materials using additive manufacturing have shown many advantages in the 

ability to create new custom made parts, quickly and relatively cheaply compared to historical 

methods. However, in order to move such a system to high yield production, there must be a 

thorough and comprehensive evaluation criteria on the outcome of that manufacturing process – 

the quality of the final build. As yet, there is no certification standard for parts made using additive 

manufacturing systems, which includes the industry leading technology of laser powder bed fusion 

additive manufacturing. Therefore, ongoing research into way to qualify and quantify the quality 

of the build process is ongoing throughout government, academia, and industry.  

 While challenges exist in finding a novel methodology to certify additive manufactured 

components, one advantage is that these systems can be configured to collect massive amounts of 

data in an experimental setting. For instance, high speed imaging of the build process, which can 

provide image-based data from the build in-situ, which allows developers to see how the quality 

of the material is affected by the actual build parameters – to include the characteristics of the laser 

which is the heat source for the fusion of the metal particles in the additive manufacturing process. 

These data can then be used to validate the theoretical framework, the expected values for certain 

physical characteristics and phenomena as informed by thermophysics and fluid dynamics models. 

Such characteristics include the behavior of the liquid bodies, which are created by the laser heat 

which melts the metal substrate powder in a near instantaneous fashion as the laser moves over the 

material. This area, the liquid melt pool, solidifies to form the final internal microstructure of the 
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material. And its shape and solidification pattern have a direct impact on the physical quality of 

the material, which includes any defects in the material. In addition to the liquid melt pool, there 

is the gaseous body known as the vapor depression, which is the metal area directly beneath the 

laser that instantaneously evaporates into a gas -of which the melt pool surrounds.  

 Collecting data during the build using dynamic x-ray radiography provides tens of 

thousands of images for each build, nearly one hundred thousand images for a single object built 

in an experimental setting. Using this technique, data was collected for a variety of builds using 

different combinations of build process parameters - namely the laser velocity and the laser 

intensity. The laser velocity determines heat buildup or how the material cools as it moves over 

the material. Slower velocities lead to deeper vapor depressions and larger melt pools as the 

material is under the heat source for longer times, compared to when the laser is moving quicker 

and there is less time for the material to evaporate or liquify. Similarly, the laser intensity which 

determines how strong the heat source will be, will also determine the size and shape of the vapor 

depression and melt pool. The dynamic x-ray radiography provides an easy to examine 

visualization of each of these areas for each of the experimental builds, where it can clearly be 

seen how the size and shape of those two bodies change depending on the experimental settings. 

 While the amount of data collected was vast, that in itself creates a two-fold problem 

limiting its usefulness for product evaluation. First, the volume of data did not mean that there was 

a variety of data. The 35 experiments provided a large amount of data, but there were many 

combinations of laser process parameters that were not conducted, and therefore no data exists for 

the characteristics of materials for these hypothetical combinations. Second, the large amount of 

data makes a visual inspection an impossible task. In order to mitigate these challenges in data 
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evaluation, machine learning applications were developed to leverage the computational ability of 

advanced algorithmic mechanisms to learn from these data and make quantifiable determinations. 

 The outcomes of the machine learning employed were as follows. First, using image based 

image classification techniques for deep learning, the quality of builds was evaluated to determine 

the presence, or lack thereof, of defects in the various experimental builds. This also included a 

thorough computational geometry evaluation of the gaseous vapor depression which is responsible 

for the most common types of defects as gas is trapped and left behind in the solidified structure. 

Geometric feature tracking allowed for a link to be developed in a quantitative fashion for the 

vapor depression and the melt pool. It was shown that it is possible to predict the presence of 

defects, and therefore predict which combinations of process parameters will lead to defects – 

before those defects even occur. The underlying features that constitute the vapor depressions can 

be learned by their representation in the feature map created by the convolutional processes from 

the deep learning mechanisms. These results also provided direct validation for some of the 

underlying thermophysics models, thereby justifying that those models are appropriate 

mechanisms for process certification.  

Further this work improves upon the state-of-the-art in generative models by developing a 

methodology for incorporating a continuous feature representation into the training such that the 

model can potentially learn the distributional relationships of that feature with regard to the 

underlying principals governing that representation. While work exists in this regard in conditional 

generative adversarial networks, the process developed here used thermophysics based equations 

to characterize and predict fluid properties that are encoded in the deep learning framework as 

latent features. Additionally, the work described here trained a generative model in an end-to-end 
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fashion which can be generalized to many other image representation, generation, and restoration 

problems in the machine learning subfield of computer vision. 

Future work in generating artificial data for LPBF investigations could include evaluating 

utilizing the CGAN with datasets for various materials, in addition to images collected for IN-718 

builds. This additional component will be conditioned by incorporating another input value for the 

CGAN to learn to distinguish images from those builds using other superalloy materials, such as 

the titanium allow Ti64, or the Nickel based superalloy CMSX-4. Additionally, future work will 

incorporate the LPBF laser spot size, as this process parameter is also highly influential in the heat 

absorption in the substrate material during the build process.  

 The work performed here contribute to the computational science breadth of knowledge in 

image generation by the development of the multiple generative models for image generation with 

a unique series of characteristics. While a materials science problem set was explored in this work, 

the methods developed here could be applied to other areas, such as biological sciences where x-

ray image capture is also used. Generating new data could therefore be used to demonstrate 

hypothetical manifestations of certain organismal components, including cancer tumor genesis 

among many other use cases. Furthermore, the time resolved geometric sequencing approaches 

that were then fed into the matrix decomposition architecture and recommender system could be 

applied to many other image-based problems where additional data could prove useful. The 

recommender system operates in a fundamentally different way than deep learning, with 

advantages to include lower computational complexity and therefore possibly easier model 

convergence. This has benefits for users who might not have the computational resources for the 

deep learning framework, especially if more complex and higher resolution images are required. 

The recommender system framework developed here can be conducted regardless of the resolution 
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or size of the images, both of which have major impacts on the complexity of a deep learning 

implementation.  

 Finally, this work had a direct benefit to government and industry research as NASA 

Langley Research Center has utilized the outputs of the data here to contribute to the larger body 

of work around additive manufacturing process certification. Following that acceptance, this work 

has been presented to researchers throughout the agency who research and develop machine 

learning and artificial intelligence for the multitude of problems faced by NASA as it works to 

accomplish its mission. Future work will continue to apply these image based and non-image based 

generative modeling techniques to better understand problems faced throughout industry. While 

additive manufacturing was the focus of this work, these techniques can be applied to other 

domains within materials science to include non-destructive evaluation, where CT scan data can 

provide other image-based datasets for investigation. Ultimately, the development of GAN and 

CGAN for aerospace applications will allow for more artificial renderings of hypothetical 

constructions. 
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CHAPTER 13 

 

PUBLICATIONS 

 

 

1. “Time-resolved geometric feature tracking elucidates laser-induced keyhole dynamics,” 

Integrating Materials and Manufacturing Innovation, vol. 10, pp. 677-688. 

2. “Image synthesis using conditional GANs for selective laser melting additive 

manufacturing,” submitted to 2022 IEEE International Joint Conference on Neural 

Networks. 

3. “A comparison of generative adversarial networks to convolutional neural networks for 

single track melt pool segmentation as evaluated by Hausdorff distance,” submitted to 

Additive Manufacturing Letters. 

4. "Understanding the Keyhole Dynamics in Laser Welding with Computer Vision and Data 

Analytics Applied to Time-resolved X-ray Imaging," accepted by 6th World Congress on 

Integrated Computational Materials Engineering. 

5. “Convolutional Neural Networks for Image Classification in Metal Selective Laser Melting 

Additive Manufacturing,” accepted by First World Congress on Artificial Intelligence in 

Materials and Manufacturing. 

6. “Understanding the Keyhole Dynamics in Laser Processing Using Time-Resolved X-ray 

Imaging Coupled With Computer Vision and Data Analytics.” To be published in 

conference proceedings for TMS 2021, Symposium: Data Science and Analytics for 

Materials Imaging and Quantification. March 2021. 
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