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ABSTRACT

EVALUATION OF GENERATIVE MODELS FOR PREDICTING MICROSTRUCTURE
GEOMETRIES IN LASER POWDER BED FUSION ADDITIVE MANUFACTURING

Andy Ramlatchan

Old Dominion University, 2022
Director: Dr. Yaohang Li

In-situ process monitoring for metals additive manufacturing is paramount to the successful
build of an object for application in extreme or high stress environments. In selective laser melting
additive manufacturing, the process by which a laser melts metal powder during the build will
dictate the internal microstructure of that object once the metal cools and solidifies. The difficulty
lies in that obtaining enough variety of data to quantify the internal microstructures for the
evaluation of its physical properties is problematic, as the laser passes at high speeds over powder
grains at a micrometer scale. Imaging the process in-situ is complex and cost-prohibitive.
However, generative modes can provide new artificially generated data. Generative adversarial
networks synthesize new computationally derived data through a process that learns the underlying
features corresponding to the different laser process parameters in a generator network, then
improves upon those artificial renderings by evaluating through the discriminator network. While
this technique was effective at delivering high-quality images, modifications to the network
through conditions showed improved capabilities at creating these new images. Using multiple
evaluation metrics, it has been shown that generative models can be used to create new data for
various laser process parameter combinations, thereby allowing a more comprehensive evaluation

of ideal laser conditions for any particular build.



The outputs of both generative adversarial networks were compared to results obtained
using recommender systems and variational autoencoders. The recommender system approach
utilized a matrix completion framework whereby the missing data was computationally
approximated, thereby allowing the model to make predictions, or recommendations, on what
microstructure object characteristics would be produced. The variational autoencoder model used
a deep learning framework to also try and predict the output, leveraging the generative capabilities
with a goal similar to the adversarial networks, albeit in a different fashion. However, while
informative, neither of these approaches matched the accuracy of the output of either of the
generative adversarial networks when compared to holdout datasets. Overall, the conditional
adversarial network proved superior in generating new data from experimentally collected x-ray

images, which can be implemented into many other applications of image representation.
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CHAPTER 1

INTRODUCTION

1.1  Problem Background

Additive manufacturing is a field within materials science research that has seen
tremendous growth over the years due to its advantages over traditional metallurgical techniques
for aerospace applications. However, these advantages also come with some disadvantages that
are inherent to the process. Some of these include the manifestation of defects in the material
microstructure, which are directly caused by the mechanism of using a laser to melt metal powder
at extremely high temperatures. This is the case with a technique known as laser powder bed fusion
—where a laser is used to melt and fuse metal powder in a specified pattern to build an object. And
it is during that process of the laser passing over the material that causes defects to form in-situ.
Although research is ongoing into methods to characterize the structures built by the additive
process, there currently exists very little work done on examining the fusion process in-situ — to
examine the process exactly when those defects are generated, and to therefore examine how those
defects affect the material microstructure during the build process. The resultant microstructure
has known effects on the quality of the build, yet the nature of the defect generating process that
affects that microstructure still has many open questions. This is mostly due to limitations in
collecting this data, at the scale and speed necessary to adequately capture the build process.

The lack of experimental data to evaluate the in-situ process in laser powder bed fusion
additive manufacturing can be alleviated by exploring machine learning methods that can
approximate and even generate data representations. The focus of this work is to develop a
methodology that can be generalized to learn from the limited data available, to interpolate from

it, and ultimately develop new data computationally that can inform research into the



microstructure quality at the time of the build. This effort will therefore lead to process
characterization that does not currently exist.

The process of certifying additively manufactured aerospace parts for use in service is
costly in both time and money. For laser powder bed fusion, computational modeling can alleviate
some expensive experiments, but these simulations must have experimental validation, best
performed by comparing the cross-sectional view of the solidified melt pool to the solidus isotherm
predicted by the model. However, melt pool shapes are dynamic, and multiple micrographs are
needed to ensure a model is properly calibrated. Automatic extraction of melt pools is needed, and
machine learning provides a solution.

The goal of this work was to generate new expressions of material microstructures that
were not, and cannot be experimentally produced. Initially, numerical data was explored, where
combinations of laser parameters that produced known measurements of microstructure objects as
identified during a series of computer vision work was modeled. This effort provided a means for
determining the optimal process parameters with respect to the size and shape of the microstructure
physical features. Next, two deep learning approaches were developed using generative models.
The first focused on generating new computationally derived images for microstructures at settings
that were not experimentally performed and for which no data was collected. This provided an
ability to examine novel microstructures with a wider range of physical features and geometries
beyond the limited data available. Next, an alternate approach was developed which focused
specifically on generating new images of microstructures with defects. While the data that does
exists for in-situ processes are limited, data that depicts the defect generating process is even

sparser. Therefore, the development of a capability to generate new defect structures, with respect



to the previously examined laser parameter settings provided a new data driven approach to
computationally model the additive manufacturing process.
1.2 Major Contributions

The use of generative models for data creation has been explored in other use cases,
however not for image processing problems where images contain very small gradient differences
between one feature of interest and another. There also exists very little research into how to
modify the general form of these models to accept more inputs, to correspond to the changing
image representations that occur with changing experimental conditions. For an agency such as
NASA who wishes to use generative models to create artificially rendered systems — the ability to
alter those renderings based on differing conditions is essential. In this work, in order to create
new representations of material microstructure images, it is not enough to train a model based
solely on the images that were experimentally created. In order for the new data to be useful for
process certification and thermal model validation, there should be a way to create new images
based on altering the experimental conditions that would have led to those new data. This is in
stark contrast to some of the general use-cases for generative adversarial networks, where the user
creates new artificial human faces, or in the case of NASA extraplanetary research where these
models are used to render hypothetical images of new planetary environments.

To compare generative modeling capabilities, two different image based approaches were
explored: the previously mentioned generative adversarial network, and the variational
autoencoder. While both of these network architectures can produce new images, the underlying
mechanisms by which those new images are generated are fundamentally different. From there,

altering the general network architectures to include additional inputs over the images are included,



with results that indicate those novel networks achieve stronger performance for both categories
of generative deep learning models.

Following the deep learning methodologies, this work provides a new method for
generating new data from image data in the form of the non-image based area of machine learning
known as recommender systems. These systems input data in a two-dimensional matrix format
and provides recommendations of new geometries, which therefore are comparable to the image
outputs from the generative models. And as these approaches do not utilize the computationally
taxing deep learning frameworks, their implementation can be applied easier in many cases. The
final results are then comparable to the outputs of the generative models, thereby providing
researchers a new consideration when it comes to generating new hypothetical data.

This work introduces the use of a Hausdorff distance for evaluating the output of a GAN
and VAE and comparing those results to one another. In addition to model comparison, there is a
presentation of the following advantages of using the Hausdorff distance over exclusively using
intersection over union, or loU, which is a commonly used metric for image representation tasks.
These advantages include considerations for the accuracy of an edge metric for the segmentation,
interpretability to a user not versed in machine learning, and the propensity to identify outliers in
performance beyond loU.

1.3  Dissertation Organization

This work is organized as follows. Initially the additive manufacturing process will be
examined throughout the literature review for technical details as well as the underlying
thermophysics that governs the internal microstructure formation. In that chapter, the literature is
reviewed for deep learning for image classification, deep learning for generative models, and the

background on recommender systems. The methodology begins by describing the work for



organizing, cleaning, and managing experimentally derived data where a limited amount of image
data that was collected was disseminated using computer vision techniques such as pattern
recognition and image segmentation. Next, those data were analyzed to understand the complex
geometries involved in microstructure characterization, which included understanding defect
generation and time resolved geometric evaluation. Upon understanding how microstructures can
be quantifiably evaluated, the first generative modeling approach is presented using generative
adversarial networks, followed by the second approach using variational autoencoders. The next
chapter then discusses the implementation of recommender systems based on matrix completion

methodologies. Finally, the conclusion is presented where there is a discussion on using machine
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Fig. 1. A flow chart depicting research process



learning to artificially create new data for desired preconditions, where data does not exist for those
preconditions. This sequence is depicted in Fig. 1 below. The work described here was performed
at NASA Langley Research Center as part of a larger effort in understanding process

characterization for the Aeronautics Research Mission Directorate.



CHAPTER 2

LITERATURE REVIEW

2.1  Overview of Metals Additive Manufacturing

Recent advances in metals additive manufacturing (AM) technologies, known more
informally as “3-D printing” have allowed superalloys to be developed into complex objects in
methods that were previously unavailable. Custom design objects can be tailored by the end user
and become available for use after just a few hours. In the healthcare sector, this technology can
be especially advantageous for surgeons to be able to make custom tools and have it available for
almost immediate use. Work in this area has been progressing such that there are now many kinds
of metal based additive manufacturing in use in the healthcare sector [1]. The objects not only have
the desired configurations, but also can be built using complex superalloy metals. The fabrication
of components using these materials are especially desirable in the aerospace industry as these
objects are constantly subjected to extreme conditions when integrated into vehicular applications
that may be involved in extreme air-flight, possibly including space flight. For instance, the NASA
Aerospace Research Mission Directorate (ARMD) is heavily involved with AM within
computational material science research as this technology has allowed metal components to be
fabricated in a quicker, and more cost-effective manner than traditional metallurgical processes.
This directorate has within its scope the desire to develop technologies for supersonic flight, as
well as spacecraft for Moon and Mars exploration missions in the Artemis program. Materials
science research is a core component of NASA’s aerospace research mission, which is directly
involved with developing structures for space missions. It is especially true in the subfield of
additive manufacturing where new complex structures are in constant demand [2]. This is further

reinforced under NASA’s Transformational Tools and Technology (TTT) initiative, for



“understanding and development of new types of strong and lightweight materials that are
important for aviation” [3], which falls within ARMD. As described by the agency, this project
seeks to “develop state-of-the-art computational and experimental tools and technology” that are
vital to “NASA’s ability to advance the prediction of future aircraft performance,” and it also
“explores technologies that are broadly critical to advancing ARMD strategic outcomes, such as
the understanding of new types of strong and lightweight materials, innovative controls techniques,
and experimental methods” [4].

Superalloys have traditionally been processed in numerous ways, usually involving
metallurgical techniques such as casts and dies, and melting the metal and pouring the liquid
material into the required shapes. These objects can then be subjected to machining, which can
help shape the superalloy into the desired geometric configuration. However, these techniques can
be difficult with some materials that have high tensile strength, or have a set of physical properties
that cause it to harden during the machining process. For instance, Inconel-718 (IN718) is a nickel
based superalloy that is commonly used for engines, which run at high temperatures, due to its
high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing
environments [5]. While this set of characteristics makes IN718 a desirable material for such
aerospace uses, manipulating and fabricating from it is a costly and time consuming process.
output for the complex objects required [6]. Additionally the complexity of developing often
cannot be scaled upwards for a high production

Additive manufacturing was established in its earliest forms in the 1980’s, and have now
evolved into a variety of tools and techniques [6]. AM is defined by the American Society for
Testing and Materials (ASTM) as the process of joining materials to make parts from 3D model

data, usually layer upon layer, as opposed to subtractive manufacturing and formative



manufacturing methodologies [7]. Based on this definition that compares AM to subtractive
manufacturing, AM has the potential to reduce waste, reduce lead time and cost, and allow the
fabrication of complex objects with many intricate design features. For instance, the object shown
in Fig. 2 would be impossible to create through any technique other than AM. This object, a rocket
nozzle developed by NASA Marshall Space Flight Center, has more than 200 channels built into
its wall for regenerative cooling of the nozzle in the extreme environments where this object will
be subjected [8]. Developing those small intricate channels would not be possible using a
subtractive method. Additionally, a subtractive method would need to start the fabrication with a
large solid stock material, which would be cut away to form the desired structure. These cut away
portions would be waste; a circumstance that AM does not create.

Additive manufacturing has the ability to achieve lower cost in part development due to
net-shape or near net-shape capabilities where an object is built almost exactly as developed. An
entire complex part can be built at once, rather than many smaller parts being built and later
assembled. Therefore, industries that have a need for complex custom components have begun
evaluating AM for their fabrication needs [9]. Since the time and expense of assembling many
parts can be mitigated through AM, cost savings scales tremendously when many of the same
components need to be built. Cost savings can be even greater when fabricating parts using
superalloys, which is often the case for aerospace components. While IN718 is difficult to cut,
form, and machine, it is suitable for fabrication through AM processes. Thus, AM can lead to a
new way to develop components with superalloy metals, which have certain properties necessary

for the physics of flight and intense atmospheric conditions, to be used in aerospace vehicles.



Fig. 2. 3-D printed rocket nozzle made from copper material
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2.2 Laser Powder Bed Fusion

Additive manufacturing for metals can be broadly split into two categories of techniques,
solid state AM and fusion based AM. The difference is based on the temperatures used to achieve
the additive process. Solid state AM does not reach temperatures above the material’s melting
point, while fusion based AM does cause the material to melt [10]. While solid state AM has
become an emerging technology and may offer advantages over fusion based techniques due to
the energy requirement being lower — fusion based techniques are the standard in industry.
One of the most commonly used methods for metals AM, a fusion based technique, is known as
laser powder bed fusion (LPBF), which uses a layer by layer approach [11]. A diagram of the
LPBF process can be seen in Fig. 3. Initially, a layer of a metal powder is spread over a rigid build
plate. This metal powder, the substrate, sits beneath a laser which when active has a high enough
intensity to melt the individual metal powder particles and thereby cause them to fuse to one
another. The laser will move in a route that was predetermined based on a computer aided design
(CAD), to outline the desired shape with respect to the layer in progress [12]. For instance, if a
solid cube were to be built, a layer in the build process will require the laser to move in a pattern
than outlines and fills in a square. Once the area of that square has been completely traced by the
laser’s movement, that layer will be completed and fusion of the next layer will commence. This
begins by the build plate being lowered a slight increment. Then a powder spreader will push a
new layer of cool, unaltered metal substrate from a powder stock compartment where the metal
substrate is stored, over the lowered build plate. At this point the top of the substrate is horizontally
even with the powder stock that sits adjacent to the build plate, with that new layer of metal powder
covering the previously fused square shape. The laser now commences to trace the square shape

again, fusing the metal particles to one another, and to the layer below. After a layer is fused,



12

another mechanism sweeps off excess material into a waste compartment (where the powder can
later be sifted and recovered). If a more complicated shape were to be built, each layer may not be
exactly the same, as with the cube example which would consist of many squares sitting atop one
another consecutively. The layer depth, that is, the height that the powder bed drops after a layer
is built, can be predetermined by the CAD, and set to a desired specification at any desired interval

at any portion of the build. This allows structures to be built with intricate details.

Laser source

High speed Thermal

High speed

camera High imaging
camera
speed camera
camera
Powder Laser line
spreader ;
profilometer Laser beam Spectrometer

(after powder spread)

| I

S e e

Powder stock

Object in
development

e —————— -

- — = =

Fig. 3. LPBF process setup
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2.3 Material Microstructures

The LPBF process requires many input parameters, each of which will affect the build
quality. Some of the main considerations include the laser intensity or power, the laser velocity,
the layer thickness, the laser spot size, hatch spacing (the distance the laser traces two adjacent
lines in the build pattern) and the build atmosphere among others. In this section we will explore
the main parameters that effect the build quality in terms of the microstructure of the material,
which will consist of a variety of physical characteristics in the micrometer scale. As the physical
characteristics of the material can affect its physical properties, evaluating the process parameters
for builds is paramount to certifying AM parts for their use in real-world functions.

One way of combining multiple parameters is to use a metric known as laser energy
density, which mathematically combines the laser power, scan speed, hatch spacing, and layer

thickness into a single parameter E [13]. This can be seen in the equation:

where E is the laser energy density in units of JJmm3, P is the laser power in watts, v is the laser
scan speed in millimeters/second, h is the hatch spacing between adjacent laser line tracks in
millimeters, and t is the thickness between vertical layers. In this expression, the hatch spacing
value for h can be replaced with the laser spot size. Using the laser energy density, which expresses
the energy density delivered per unit volume of powder, many studies have shown that relative
energy density affects the structure of the material during the build [14]. For instance, micro-
hardness increases as the linear energy increases. And as energy density increases, the physical
properties of wear resistance and oxidation resistance increases. This shows that laser energy
density, which is a function of many of the underlying build parameters, plays a clear role in the

overall quality of the build in terms of the physical characteristics and properties of that build.
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2.4 Microstructure Defects

The LPBF process has known qualities in terms of the microstructure of IN718 when that
material is used. IN718 commonly exhibits a columnar dendritic pattern in its microstructure
where these columns tend to extend through multiple layers of the build [15]. The laser speed can
determine how far apart these columns are, as well as how deep they penetrate into the subsequent
layers. And while these qualities have been examined previously, there is still a lack of a capability
to predict geometries, and an additional unknown quality comes from defects that are formed from
the AM process.

While the AM process is relatively quick and scales well when there are many objects to
be built, there are some inherent challenges unique to LPBF AM compared to traditional die and
casting methods. These challenges can involve defects which effect the material microstructure —
which is responsible for the physical qualities of that component. For instance, certain defects that
are introduced in the AM process can lead to a lower fatigue profile of that object, which can
impact its lifespan, and therefore limit its usability in adoption into an aircraft [16]. Some of the
main considerations are described here:

e Too high of a laser power setting that causes the metal powder to instantaneously
evaporate into a gas, creating a bubble in the solid structure (known as a keyholing
defect)

e Too low of a laser power setting that can cause the particles to not correctly form the
required shape (known as a lack of fusion defect)

e Too much heat buildup from the laser in corners or crevices of complex shapes that can
cause too much of the metal powder to melt or not fuse properly

e The laser moving too fast, not giving the material enough time to properly fuse
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e The laser moving too slowly, causing additional heat buildup

During the AM process, the area directly beneath the laser turns to a gas, also known as
the vapor depression or vapor cavity. Meanwhile the area immediately surrounding that turns to a
liquid, known as the melt pool (see Fig. 4). These features will solidify and form the material
microstructure [17], with those aforementioned defects present in that internal structure.
Computational fluid dynamics can provide some insight into how these regions will behave
theoretically, such as the Marangoni-Gibbs effect (which describes the motion of two fluid bodies
with a gradient with surface tension in between), buoyant forces (which describe the upward force
by a fluid where it opposes an immersed object or other fluid of differing density), recoil force
(which describes a fluid’s ability to revert back to its previous position once an external force is
removed), vapor dynamic force (which describes the forces of the molecules in a fluid during a
phase change), and hydraulic pressure (which describes the pressure that a fluid exerts in all
directions against the outer walls of a vessel) [18]. These factors, along with other physics-based
models, can inform vapor depression and melt pool geometries; however, there are limitations in
the ability to validate those models without extensive high-performance computational processing
— often a resource prohibitive effort. This presents a major limitation in understanding the
performance, lifespan, fatigue potential, and physical features of an AM build [16].
2.5  Physics Validation for Thermal Modeling

In the LPBF process, the liquid melt pool is governed by five major forces: Marangoni
force, recoil pressure, vapor dynamic force, buoyance force, and the hydraulic pressure. Each of
these influences the size and shape of the melt pool during the build, which therefore determines

the solidified structure once the material cools [18]. The underlying thermal physics of these forces
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can be described through physics-based modeling, however, validating these models for the LPBF

builds requires extensive data which is not fully available.

Liquid
melt pool

Solid
substrate

Figure 4. Dynamic x-ray image of in-situ LPBF process

The first force, the Marangoni force, describes the flow from an area of a higher
temperature to an area of a lower temperature in a material that has a negative temperature
coefficient of surface tension [19]. This can affect two bodies, such as the melt pool and the solid
substrate, and determines how the inner surface of the melt pool moves along with the surface of
the substrate with respect to the boundary in between those two bodies. The next force, the recoil
pressure, describes a force that exerts an inward pressure that is directionally normal to the surface

[20]. This effect impacts the melt pool geometry based on the activity of the vapor depression,
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formed at the site of the laser during the build. The vapor dynamic force describes the force through
friction at the boundary between the liquid melt pool and the gaseous vapor depression [21]. As
the vapor depression - the area that instantaneously evaporates — moves, it effects the flow of the
liquid melt pool and the boundary between those two bodies has a friction similar to the force of
friction between any other body moving against another. The buoyance force describes buoyancy,
in this case, the force that drives the liquid melt pool along a density gradient [22]. The density
gradient here is determined by the immersion of the melt pool within the solid material, and that
liquid’s ability to move along the upward thrust of that fluid as it floats within and above the
substrate. Finally, the hydraulic pressure describes the energy that is exchanged by hydrostatic
pressure. This force influences the liquid body based on the force it exerts on the outward
boundaries around it [23].

The extent of the Marangoni force is relevant in the melt pool as this region is dominated
by the thermal gradient in the material caused by the laser and the resultant cooling. The liquid
moves from the areas of higher temperature to lower temperature, which therefore means that the
liquid is moving away from the highest intensity area, the boundary of the melt pool and the vapor
depression — which itself is the area closest to the heat source, the laser [24]. What then transpires
is that while the liquid areas ahead of the material moves forward, the area behind the laser moves
backward, creating a cyclical pattern of motion. Then, when the flows reach their respective edges
of the melt pool, they will flow downwards, and the effect of the hydraulic pressure will influence
those flows to return back to the area closest to the laser heat. The first flow that originally started
ahead of the laser, moves in a clockwise direction, while the liquid behind the laser moves in a

counterclockwise direction [24].
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The above described forces that govern the motion of the melt pool, which are associated
with the heat and therefore the kinetic energy of the system, can be described mathematically. This
takes into consideration the extent of the damping of the flow of the liquid, which is influenced by

the Marangoni force. This can be expressed by Weber number (We) as:

We = 22L @)

g

where p is the liquid density, v is the velocity of the liquid flow, L is the length, and o is the surface
tension [25]. As seen in this expression, among the multiple variables involved, the larger the
length of the material, the greater the Weber number will be. Depending on how high this value
is, for both the leading area and the trailing area separately, it can be determined whether or not
these two regions will dampen out and create smoother areas along the melt pool surface rather
than ripples or waves in the material [14].

In addition to the effects described above, heat convection must also be included, based on
the effects of thermal energy on liquid motion. This has significance for the area ahead of the laser
intensity, the forward region of the melt pool, according to heat transfer theory [26]. The relative
effect of heat convection over the effect of heat conduction can be calculated as the Péclet number
(Pe), which itself is the product of the Reynolds number (ReL) and Prandtl number (Pr), and is

expressed as:

Pe=ReL*Pr=p7vL*ﬂ=L—v 3

a a
where L is the length, v is the velocity of the liquid motion, and « is the thermal diffusivity. Note
that in both equations above, the value of L is determined by the diameter of the melt pool.
Discussed above are some of the major factors that influence the melt pool in the LPBF
build, which is associated with the vapor depression. The liquid thermodynamics discussed

influence the motion of these bodies, which upon cooling, will determine the internal structure
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based on the location of the boundaries of these bodies when they cool. The flow pattern therefore
directly impacts the internal microstructure of the final build, which determines its strength among
other physical qualities. While there are vast amounts of images for each build there is a limitation
on the variety of the data available. Measurements of the size of the vapor depression, and melt
pool, provides the L value above. Yet, this measurement is only available when a human manually
examines an image taken post-processing, which only gives a value at one specific instant in time.
Additionally, the manual measurement is a laborious task.
2.6 Deep Learning with Convolutional Neural Networks

An analysis of the types of microstructures should begin with understanding the types of
vapor depression geometries that influence those microstructures. If provided an abundant set of
image data similar to the image in Fig. 2.3, image classification could be employed to better
characterize the various in-situ objects, particularly the size and shape of the vapor depression.
Within the field of machine learning, one particular algorithm that has been developed and has
been able to advance computer vision capabilities is the convolutional neural network (CNN).
CNNs are a class of deep learning, that is, artificial neural networks with an input layer, an output
layer, and many hidden layers [27]. The approach is to take an input image, learn features from it,
assign importance through weights and biases, and identify different objects and features in the
image or across multiple images. As the name implies, the hidden layers perform a convolution
operation on the input data, which mathematically is a sliding dot product. Traditionally, CNNs
have a more complex network architecture compared to the multilayered perceptron model of
artificial neural networks [28]. Multilayered perceptrons generally are fully connected networks,
which means that each neuron or node in a single layer is connected to all of the nodes in the next

layer, and so on [29]. However, a drawback to this integration of every node to every node is that
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it can cause model overfitting, which refers to a situation where the output of a model matches the
input data too closely and therefore cannot make additional predictions reliably from future data.
While regularization is a technique that can incorporate a loss function and add weights
accordingly to limit over-fitting — CNNs resolve this by learning from patterns in the data by
partitioning the data into smaller and simpler sets, from which it can extrapolate to larger and more
complex patterns [30]. The method of learning and the mathematics behind CNNs allow them to
function on image data with little pre-processing, unlike other pattern recognition or image
segmentation approaches where data processing can be manually taxing.

The CNN architecture is designed such that many layers are essentially stacked to
transform an input to an output through a differentiable function. As there are many layers in a
CNN, hence being commonly categorized into the group of machine learning called deep learning,
these different layers can have different effects on the learning itself. The main operation of the
CNN is the convolution that occurs within the network’s hidden layers [28]. The first convolution
layer takes the input data, an image, and applies a kernel or filter over that image. The kernel is
defined by a predetermined length and width, which therefore gives it a square shape known as
the receptive field — or, how much area that this kernel covers on the input. The kernel moves
across the pixels of the input image, which are read by the convolutional layer in a tensor of shape
equal to the number of images multiplied by the image heights and image widths. The kernel passes
along the input image with a predetermined stride, which signifies how many pixels the kernel will
move at a time. Thus, if the stride is set to 2, the kernel will move two pixels at a time. This can
cause overlapping, where some pixels are involved in one stage of the convolution with the kernel
at one location followed by also being incorporated into the next area of pixels to be read when

the kernel moves. The kernel moves to the right of the image at the defined stride until it has passed
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through the full width of the image. At this point it then moves to the beginning at the far left of
the image in the next row of pixels and moves to the right again with the same stride value.
Repeating this maneuver, the kernel will eventually scan every pixel/area of the image. During the
forward pass of the kernel over the input image, a 2-dimensional feature map is created where the
network learns specific features at each location in the image [31]. This allows it to learn what
features are most important at each area, and therefore allows the model to learn the relevance of
spatial positions of values or features in the input.

Each node in the convolutional layer processes data for its receptive field, which contrasts
slightly with other feed forward artificial neural networks [27]. While the function that is applied
to the input data is determined by weight and biases in both CNNs and other feed forward
networks, in a CNN many nodes can share the same filter and therefore can share the same weights
and biases. A single weight and a single bias factor will be used for many receptive fields that
share that filter, instead of each receptive field having to calculate its own bias and weight factor.
If not processed this way, since each pixel would represent an individual variable, an image could
yield thousands or even millions of variables to be processed [32]. For instance, if an image of one
megapixel were used as an input, there would be one million variables and therefore weights to be
applied to the model. However, the convolution operation described above makes this simpler by
reducing the number of parameters and applying the same shared weight, allowing the network to
be deeper (i.e., have more hidden layers) with far fewer learning parameters. This helps the CNN
both reduce the images into forms that are easy to process without losing significant features in
the underlying data, and also be able to make reliable predictions that can be scaled to large datasets
with many images [33]. The first convolutional layer will generally learn the most important or

most generally applicable features in the image — such as object edges. Subsequent layers then
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essentially learn more details such as the orientation of edges from one area of an object to another.
Through more and more layers the model can learn more specific features such as pixel gradients
at certain locations until finally the model can have enough information to eventually make
predictions from those features [34].

Convolutional neural networks also involve layers known as pooling layers which reduce
the size and dimensionality of a layer prior to the next convolution layer. Using pooling layers in
CNNs helps the model to learn the rough location of features relative to other features of
importance. The pooling layer reduces the overall size of the input data fed at that layer which
helps reduce the computation resources, and also helps to reduce model overfitting [32]. This
operation reduces the dimensions by combining the outputs of node clusters into a single new
node, which can be done both locally (in small segments), or globally (to every node in that layer).
Max pooling is commonly used, where the maximum value from a group of neurons is used as the
input for the next node in the subsequent layer. Alternately, average pooling can also be used where
the average value from a group of nodes is used as the input value for the new node in the next
layer. However, max pooling performs as a better noise reduction mechanism since it takes the
highest value in the region it scanned and discards the other values. Since a noise value would be
included in the average, average pooling merely reduces or suppresses noise while max pooling
can eliminate it [30].

Similar to multilayered perceptrons where every layer is fully connected, this operation is
involved in the CNN architecture, albeit at a smaller scale since not every layer is fully connected.
Fully connected layers can be implemented, where for that layer, all nodes are connected to all
nodes in the next layer. Therefore, in a fully connected layer, the receptive field is the entire

previous layer.
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The CNN’s classification mechanism whereby the CNN makes a prediction for a class or
label is accomplished through a Softmax function [28]:

eZi

0(2); = Sl (4)

where a(z); is the output class probability, N is the number of potential classes, and z is the input
vector. This function computes the exponential value from the input such that is can normalize the
data into a set of probabilistic distributions with values that will sum to 1, that is, YN p; = 1. The
individual probabilities, p; will be between 0 and 1. This allows the network to make predictions
for multiple possible classes rather than a binary classification scheme in which there will only be
two possible classes.

Convolutional neural networks have been used in many industries to perform some sort of
image recognition task, among many other uses. For instance, in the healthcare field CNNs have
been used to detect certain forms of cancer, with precision rivaling that of qualified medical health
providers [35]. They can not only detect the presence of a tumor from medical imaging scans, but
also classify it by type. They are also one of the main functions for self-driving cars that must
process a continuous feed of images through real time video recording in order to autonomously
drive a vehicle through situations with potentially hundreds of objects to recognize at any given
time [36]. Other uses for CNNs can include virtually any application where there is more data than
is feasible for a human to process manually, with the goal of identifying, categorizing, or otherwise
gaining some kind of understanding from that large data set.

2.7 In-Situ Characterization Challenges

Without a thorough way to evaluate the internal structure of those AM builds, while also

considering the characteristics of the defects embedded in the structure, these components will not

be suitable for application into aerospace systems [12]. Material microstructures can be evaluated
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using microscopy tools, but this can only be done after the build. There has been limited research
into how the process is affecting, or generating, the microstructure of the material while the build
is in process. This is mainly due to practical limitations in any potential experimental setup. For
instance, in order to examine the LPBF process in-situ, an imaging device would have to monitor
the build in real time, capturing the motion of the laser moving at high speeds (across a surface in
a scale of centimeters at a velocity scale of meters per second), and at very small distance scales
(in the micrometer range). Data can be collected in this fashion, using advanced imaging
techniques, but the cost is prohibitive and therefore it is not feasible to routinely collect this data,
nor is it feasible to build a large enough library of various in-situ builds for every possible
combination of process parameters. Additionally, many of the manifestations of microstructures
and defects from the AM process is material dependent, and therefore a catalogue of images for
builds would also have to include many different materials to be useful. This presents a major
challenge for materials science research into AM. The lack of data for defect characterization
prevents a thorough understanding of the effects of laser settings on a build.
2.8 Missing Data for Process Characterization

The proposed research will begin by examining the problem of gaps in the data in the
experimental datasets. There were 35 experimental builds from which in-situ data was collected.
While this yielded a large volume of image data, this is not an adequate sample size of process
parameters to determine optimal build settings in the LPBF process. Research is ongoing into the
desired vapor depression and melt pool sizes that yield builds with the optimal fatigue and lifespan
profiles, and the data collected does not give enough insight to make that determination. For
instance, at a laser intensity of 350 watts and a velocity of 0.2 meters per second, it can clearly be

seen that the vapor depression forms bulbous regions in its bottom tail area, which in turn leads to
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keyhole defects. Yet at the same intensity, 350 watts, but at a velocity slightly higher at 0.4 meters
per second, it can clearly be seen that the vapor depression remains stable and leaves behind no
defects (see Fig. 5). As described previously, it is infeasible to run experiments for every interval
between 0.2 and 0.4 meters per second at 350 watts. To then be able to collect data for every power

setting further compounds the problem. Therefore, this results in a missing data problem.

Fig. 5. In-situ defect generation

2.9  Matrix Completion Overview

Matrix completion can be used to approximate or generate lost or missing data. This can
be done in conjunction with computational approaches for taking past events and making
recommendations via computational algorithms. These techniques, known as recommendation or
recommender systems (a sub-field of machine learning) have attracted a lot of attention in both
research and practice, since they are able to narrow complex, difficult decisions into a few
recommendations, which makes this approach particularly attractive in e-commerce applications
where a retailer or service provider seeks to match potential items to its users [37]. The following

discussion will focus on a commercial use-case, particularly matching users to items, but can be
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generalized to other applications. While the most common application might be recommending
items for people to purchase, the recommender system has been used in other domains such as
bioinformatics [38], systems modeling [39], and engineering [40] among many others.

Generally, recommendation systems are a subset of the information filtering systems,
whose goal is to predict the rating a user would give to an item of commodity. The
recommendations are typically made through either content-based filtering or collaborative
filtering approaches. The content-based filtering approaches utilize a set of discrete features
characterizing a commodity and build a user profile indicating the items this user likes in the past.
Then, items with similar properties as those the user likes in the past are recommended. Instead of
using item features and user profiles, the collaborative filtering approaches produce
recommendations based on a user as well as the other users’ past behaviors. The fundamental
assumption under collaborative filtering is that if the users share similar ratings in the past on the
same set of items, then they will likely rate the other items similarly. Content-based filtering and
collaborative filtering can be combined to build hybrid recommendation systems, which often
demonstrate better recommendation precision than pure recommendation approaches [41].

Typically, a collaborative filtering scenario in recommendation system can be modeled as
a matrix completion problem. Given a list of m users {u,, u,, ..., u,,} and n items {iy, i, ..., i, },
the preferences of users toward items can be represented as an incomplete m X n matrix A, where
each entry either represents a certain rating or is unknown. The ratings in A can be explicit
indications, such as scores given by the users in scale 1-5 or ordinal favorability (e.g., strongly
agree, agree, neutral, disagree, strongly disagree). These ratings can also be implicit indications,
e.g., item purchases, website/store visits, or link click-throughs. It is generally assumed that no

more than one rating can be given by a user for a specific item. As a result, recommendations can
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be made by filling out the unknown entries and then ranking them according to the predicted
values.

Denoting A as the complete set of N entries in A with known ratings, the general matrix
completion problem is defined as finding a matrix R such that

Ryi = Ay, ®)

for all entries (u,i) € A. In addition, we denote A as the complement set to A and P,(A) as an
orthogonal projector onto A which is an m X n matrix with the known elements of A preserved
and the unknown elements as 0 [42]. However, since the number of known entries is less than the
overall number of entries, there exist infinitely many solutions. Nevertheless, it is commonly
believed that there exist only a few factors as latent factors [43] influencing how much a user likes
an item. For example, studies show that the attributes of actor/actress, director, and decade
contribute most to a user’s preference to a movie. These relatively small number of influence
factors compared to the total number of users or items in the rating matrix A provides a guiding
framework to fill in the missing values and to select the correct complete matrix. This corresponds
to the low-rank assumption in matrix completion, i.e., the rating matrix A is low rank or
approximately low rank. The low-rank assumption in matrix completion also agrees with the well-
known Occam’s razor principle in machine learning, whose goal is to find the “simplest” complete
matrix X that is consistent with the known ratings in A.

The fundamental assumption is that there exists a low-dimensional representation,
although probably unknown, of users and items, which can be taken advantage to model user-item
association accurately. Such low-dimensional representation is often characterized by a low-rank

matrix. We also study models employing various regularization methods and incorporating various



28

constraints in the completed matrix. Denoting u as the average rating among all known ratings in

the rating matrix A, the baseline model [44] fills out a missing element R,; by
Ryy=u+by+b, (6)

where b, and b; represent the observed deviations of user u and item i from p, respectively. The

training parameters b,, and b; can be estimated by solving the following least squares problem
min|[Py(R) = Pa(AIF + A(Zu bu” + Zc b, Y
where A is the regularization parameter. The first term [|P4(R) — PA(A)IF = X wiea(Rui — Aui)?

attempts to minimize the training error while the second term A(X, b,> + ¥; b;*) serves as the
regularizing term to avoid overfitting by penalizing the magnitude of b,, and b;.

The fundamental idea of the SVD model is to decompose the rating matrix A into a user
feature matrix, a singular value matrix, and an item feature matrix of low-rank [45]. Starting from
a normalized matrix A,,,» by filling out the missing elements with preliminary, simple
predictions, the SVD model carries out a Singular Value Decomposition (SVD) operation on
A, orm SUCh that

Anorm = U2VT, (8)
where X'is a diagonal matrix with descendently sorted singular values deposited in its diagonal

entries and the columns of U and V contains the corresponding left and right singular vectors,
1 1

respectively. Truncating the diagonal matrix X'to a top-r rank 2., then U,. 2,2 and X,2Vj. represent

1

the latent factor vectors for users and items, respectively. The dot product of the uth row of U, 2,2

and the ith row of 2,2V, yields the prediction of the rating that the the uth user will give to the ith

item.
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The matrix factorization model is a generalization of the SVD model, which intends to find

a low-rank matrix factorization to approximate A. Assuming an r-dimensional vector x,, associated
with each user u measuring the latent factors of u has in items and an r-dimensional vector y;
associated with each item i representing the latent factors of i, the matrix factorization model uses
the dot product y;”x,, to capture the correlation between user u and item i. The predicted rating
then becomes

Rui = yi" xy. 9)
Assuming the columns of X and Y contains all x,, and y; vectors, respectively, the goal of matrix
completion is to estimate:

R=YTX. (10)
The parameters to be learned are the user feature vectors x,, and the item feature vectors y;, which
can be done by minimizing the Frobenius norm error as follows:

r;li}{l”PA(R) — P (A) I3 (11)

In order to avoid overfitting the observed user-item ratings, the regularized matrix
factorization method uses I2-norm to regularize the learning parameters by penalizing their
magnitudes. Based on the matrix factorization model this can be done by minimizing the

regularized 12 norm error of x,, and y; in addition to the Frobenious norm error term as follows:
r;linIPA(R) = PA(DIIF + 2, Cillyill? + Zullx 7)), (12)

where 4, is a constant controlling the extent of regularization.

A more sophisticated 12-regularized matrix factorization model can be built on top of the
baseline model by considering the user deviation b,, and the item deviation b;. Then, each predicted
rating R,,; in R then becomes:

Rul’ =u + bu + bi + yl-Txu. (13)
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The parameters to be learned become b, b;, x,, and y;, which can be done by minimizing the

regularized 12 norm error as follows:
. ~ 2
min [[P4(R) = Po(A) | +22 Bwea(dd + B + lyill® + ), (14)

where A, is the regularization parameter. Due to fact that there are more training parameters, this
model often yields prediction accuracy improvement.

Upon achieving a completed matrix, this procedure can be incorporated into the
recommender system, such as by using the Alternative Least Square (ALS) algorithm which is
designed for the 12-regularized matrix factorization model. However, due to the term y;7x,, for
calculating R,,;, the objective function is non-convex and optimizing it is NP-hard. Nevertheless,
if x,, can be fixed by treating its variables as constants and then the minimization objective
becomes a convex function of y; [43]. Alternately, y; can then be fixed by treating its variables as
constants and then the objective becomes a convex function of x,,. Therefore, in ALS, when one
is fixed, the other is calculated, and this process will repeat until convergence is reached. This

derivation process for the user vectors x,, for all u can be expressed as:
x, U0 = YO (YOy O 4 4, Ir)_lxum (15)
and similarly, the process for calculating the item vectors y; for all i is:
y, 0D = xO' (X(j) x0T 4+ 2, Ir)_lyi(j) (16)
where [, is an r X r identity matrix.
Computationally, the ALS algorithm is desirable due to its scalability to large datasets. The
process of using two loss functions alternatively allows it to run its computation in parallel. For

some datasets where the combination of users and items can reach into the billions, using an

optimization technique such as stochastic gradient descent would not be feasible. Rather, through
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ALS re-computing the user-factors and item-factors, each step is guaranteed to lower the value of
the cost function [46]. Outside of the e-commerce applications previously noted, recommender
systems have been employed for computational drug repositioning research; an approach to take
advantage of known drugs to identify new treatments [38]. This work modeled the drug
repositioning problem as a recommendation system to discover new disease indications for drugs.
The related data sources and validated information of drugs and diseases were integrated to
construct a heterogeneous drug-disease interaction network. Then, the heterogeneous network was
represented as a large adjacency matrix where the unknown drug-disease associations were
presented as blank entries. Finally, the recommender system algorithm was used to complete the
drug-disease adjacency matrix with predicted scores for unknown drug-disease pairs.

The results of this work described above suggests that the recommender system approach
can be applied to the experimental datasets to numerically recommend, or predict, new vapor
depression geometries for depth, width, area, or any other physical measurement — based on the
laser process parameters.

2.10 Variational Autoencoders Theory

While the recommender system can yield numerical results for vapor depression
geometries for process parameter settings not experimentally performed — generative modeling
has also been shown to yield new image based representations from experimental data. An
alternate approach to computational modeling based on latent feature derivations is to use a deep
learning approach known as autoencoders. As previously discussed, the recommender system is
adept at finding the latent features in a dataset by which future predictions can be made. Whether
its product features that influence a consumer’s buying habits, or the underlying latent features

that impact a LPBF build — which will correspond to the underlying thermophysics discussed in
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Section 2.4. Autoencoders take a different approach to learning however, which will be explored
in this section. The ultimate goal will be to use a specific type of autoencoder, the Variational
Autoencoder (VAE) as a generative model to not only predict vapor depression geometries, but
generate new vapor depression expressions visually in new images [27].

Autoencoders can broadly be categorized into a few types. Traditional autoencoders are
relatively simple neural networks (based on their architecture), with the exception that there are
two major segments, the encoder and the decoder. In CNNSs, the convolution step takes in an image;
for example a rank 3 tensor of size 300 x 300 x 3 for the dimensions of the image and the 3 color
channels. It then converts this to a much more compact, denser representation, such as a rank 1
tensor of size 1000. This resultant dense representation is then used by the fully connected layer
to make a classification for the image based on the features learned throughout the previous hidden
layers. Similarly, the autoencoder takes in an input and produces a smaller, denser representation
[47]. This is the goal of the encoder portion of the network, the original data is encoded in this
smaller representation (similar to compression). The encoder and the decoder can be expressed as:

0:X - F a7

p:F - X (18)
where the encoder function, 8 maps the original data, X to a latent space F, and the decoder
function ¢, maps the latent space F to the output (see Fig. 6). In this regard, the output is expressed
as the same as the input as the goal is to reconstruct the original input after non-linear
compressions. The encoding portion of the network can be represented similarly to a basic neural
net’s activation function such as:

z= oc(Wx+b) (19)
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and the decoder portion of the network can be expressed similarly, just with different weights and
biases being used [48]:

x'= o' (W'x+b) (20)
The loss function is going to be used to train the autoencoder neural network through
backpropagation similar to standard neural networks [27]:

L(x,x") = |lx =xX'|I?=|lx — o’ W'(c (Wx + b)) + b'||? (21)
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dimensional
representation of input

Fig. 6. Basic autoencoder network
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While CNNs make classification predictions from the dense representations, autoencoders
use a portion of the network called the decoder to attempt to reconstruct the original data, its input.
When the network fails to appropriately reconstruct the original data, this is known as
reconstruction loss, for which mean squared error or cross entropy between the output and the
input is calculated. The network is then penalized for deviations from the output to the input. As
the encoding layer (i.e., the output of the hidden layer in the middle of the network) has less
information than the original input data, the encoder must have discarded irrelevant information
and learned relevant information such that the decoder can learn to take that encoding and properly
reconstruct the original data. This could come in the form of an image reconstruction if the original
input was an image. Thus, the aim of the autoencoder network is to find an optimal solution
whereby the most minimal amount of information is used to encode the image such that it can be
reformed on the other end of the network as close to the original image as possible.

The standard autoencoder can be a useful tool for data denoising, as noisy elements would
likely not be reconstructed by the decoder. Other applications for experimental data are somewhat
limited. An improvement upon this standard model comes in the form of the Variational
Autoencoder (VAE), which are a class of autoencoders that improve upon the model’s ability to
sample from a latent feature space and can then be used to generate new representations of the
input data from that latent feature space. The standard autoencoder neural network is capable of
compressing images and reconstructing them effectively, but has weaknesses in terms of what
reconstructions are capable of being produced from the latent space. For instance, when images
are encoded, there would likely be clusters in a feature space representing objects that were

encoded of similar type. But if there are gaps in the latent space then the network does not know



35

what image representations would look like at that location in the latent space, similar to a neural
network not having training data for a certain type of observation [28].

VAEs are said to have a continuous latent feature space, from which random sampling can
produce variations of the encoded input data [49]. Its output from the encoder is not just a vector
of size n, rather it produces outputs of two vectors of size n, a vector of means, and a vector of
standard deviations. Together these factors, u and o are essentially the parameters of a new vector
representation of random variables that have the length of n, with the ith element being the mean
and standard deviation of the ith random variable which is sampled in order to receive the encoding
that was manipulated by the decoder. The mean vector represents a central point in the latent space
where the sample should be taken around in that latent space [27]. Meanwhile the standard deviation
vector represents the area, a circular region around that central point in the latent space. Encodings
can then be generated by the network anywhere inside this region of space defined by the mean and
standard deviation vectors, thus the decoder learns the features not from a single point (as might be
the case in the standard autoencoder), rather it learns from all the nearby points in that space. As a
result, the decoder is then able to decode encodings that vary, not just specific encodings, as it has
been able to learn from a range of variations of the encoding of an input.

In general, the goal for the encodings is to have them be as close together as possible while
still being distinct enough to tell them apart from the groupings in another region. Having this
amount of close distinction is what allows for the model to construct new samples. This is
accomplished by incorporating information theory, to quantify how much information is in the data,

or entropy, which is expressed as [50]:

H= —Y¥p(x;) *logp(x) (22)
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The entropy helps to understand how much information is contained in the data, but this can be
further modified to also quantify how much information is lost when an observed distribution is
substituted for a parameterized approximation. Essentially, the goal is to measure the divergence
between two probability distributions. The calculation for entropy can be modified to calculate the

relative entropy, also known as the Kullback-Leibler (KL) divergence [51]:

Dir, pllq) = 2t P(X) * log% (23)

where the KL divergence is the expectation of the log difference between the probability of data in
the original distribution with the approximating distribution. For instance, if p(x;) = q(x;) then the
ratio of the two values is always equal to 1, and the log(1) = 0. Therefore, the goal of the VAE here
is to minimize the image loss while simultaneously minimizing DKL(N(M(I), a(I))|| N(0,1)).
The KL loss is effective at creating a latent space where the encodings will be packed in a
dense region, randomly, near the center of the latent space. However, using just the KL loss will be
problematic for the decoder because it cannot decode anything meaningful from sampling in this
region. This is overcome by optimizing both the KL loss and the reconstruction loss together, which
thus results in a latent space that maintains the similarity of the encodings locally through the
clustering, and globally at the same time through the dense packing near the latent space origin [51].
In a VAE the values for 1« and o can come from a wide range of values; there are no limits
on what these vectors can be. This allows the encoder to compute a value for x that may be very
different for different clusters of observations in the latent space. Values that vary greatly can
represent clusters far apart, yet the value of & can be minimized such that the encodings do not very
greatly from the same. This lowered uncertainty for the decoder operation is what helps it to
accurately reconstruct the training data [52]. The clustering formed by the reconstruction loss and

the dense packing formed by the KL loss results in distinct areas that the decoder can successfully
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decode. If a new sample is to be taken halfway between two samples, the algorithm finds the
difference between their mean vectors, adds half of that to the original, and then decodes.

Prior work with VAES suggest that these models can learn the latent features of images to
then predict new images, or otherwise depict complex structures. While no work currently exists in
developing VAEs for material science research, there has been research into applying this model
towards structures such as molecular structures [53]. Given the ability of these models to learn latent
features, and the likelihood that such latent features are governing the dynamic representations of
the vapor depression geometries — VAE should be capable of computationally predicting new
geometries that were not experimentally derived.

2.11  Generative Adversarial Networks Theory

The Generative Adversarial Network (GAN) is a class of generative models that can
produce a new output, similar to the VAE model, albeit in a much different fashion. As described
in the previous sections, VAES are generative models that encode input data with a regularization
component such that the hidden representations are normalized. The decoder function then samples
from the latent feature space and constructs a new image. A GAN essentially consists of two neural
networks that are both accomplishing different objectives, with the overall goal to be to produce
valid new images different from those upon which the GAN was trained [47]. The two components
of a GAN are the discriminator, D(x) and the generator, G(x). The generator network works to
generate new images while the discriminator works to judge whether or not the images produced
by the generator are valid for the label assigned. Thus, the generator models the distribution of
classes while the discriminator learns the boundary between those classes [54]. The images
generated by the generator are completely artificial, and through the learning process and the

discriminator accepting or rejecting those images, the generator can make better outputs that more
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closely match the desired label. This implies two simultaneous feedback loops for both portions
of the network: one for the discriminator and the known labels for images and one for the generator

and the discriminator itself (see Fig. 7).

Prediction on Real
or Fake

Real Images

Noise vector Fake Images

Fig. 7. GAN algorithm example

The generator begins by sampling from random noise (z) from a distribution, which it then
uses to make images [55]. The generator output is taken as input by the discriminator which has
been trained to differentiate real from fake images as a binary classification problem. The
discriminator then delivers its own output in terms of the probability that the input is real, such as

D(x) = 1 if it is real and if it is fake then D(x) = 0. The generator tries to minimize while the
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discriminator tries to maximize loss, resulting in the following minimax loss function with the
value function V(G,D):
mingmaxpV (D, G) = Ex[log (D(x))] + E,[log (1 — D(G(2)))] (24)
where D(X) is the discriminator’s probability that the generator’s output X is real, Ex is the expected
value over all real data observations, G(z) is the generator’s output when given noise z, D(G(2)) is
the discriminator’s estimate of the probability that a fake instance is real, and E; is the expected
value over all random inputs to the generator [55]. The above formula is partially derived from the
cross-entropy between two probability distributions; here evaluating the difference between the
real and generated distributions. In that function, the generator does not have a direct effect on the
log(D(x)) term, rather, it is trying to minimize the log(1 — D(G(z)) term. Therefore, when the value
of D(G(2)) is high then D will assume that G(z) is the same as x, which makes 1-D(G(z)) a low
value. Alternately, the discriminator tries to maximize the terms D(X) and (1-D(G(z))). This will
result in an optimal state for D as P(x) = 0.5 as this is a binary classification operation [27]. Yet,
ultimately the generator should be trained such that its outputs taken as input by the discriminator
will not be able to differentiate x and z.
The purpose of the minimax function serves for the discriminator to maximize the objective,
V, while the generator minimizes it. As such, both of these functions are learned by an alternating
gradient descent. An iteration of the gradient descent on the discriminator will use the real and
generated images produced by fixing the generator function. Then the discriminator will be fixed
and the generator will be trained to generate an output to deliver to the discriminator in hopes that
it will be accepted as appropriately valid [56]. This alternating approach works similarly to the
approach described in Section 2.9 for recommender systems, albeit with a much different goal.

Here, optimizing the minimax function by iterating between the discriminator, D, and the generator,
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G, will be an attempt to achieve better and better quality images from the generator until the
discriminator cannot tell the difference between its output and the initial training data. The
pseudocode for this operation is as follows [54]:

for number of training iterations do:

for k steps do:
sample minibatch of m noise samples {z\9......., zZ™} from noise prior p(z)
sample minibatch of m examples{x\,......, xX™} from data generating

distribution p(x)

update the discriminator by ascending its gradient:
Vgg% ym, [logD (x®) +1log (1—D (G(z(”)))]
end for

sample minibatch of m noise samples {z9......., zZ™} from noise prior p(z)

update the generator by ascending its gradient:

Vo, — X1, [log (1= D (6(z9)))]
end for
While there currently exists no research into developing GANs for material science, or
microstructures at all, as it has been noted previously that there is a lack in adapting machine
learning in general to these areas — GANs have been used sparingly in other domains with
promising results. For instance, in medical science research to generate new images of blood cells
— to then have enough data to train classification models to predict cell types [57]. In this work,
the underlying problem was a lack of image data, a problem similar to the experimental data
discussed throughout this work. Having a computational methodology that can generate new data

representations, in this case, new images, was shown to be advantageous towards then having
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enough data to properly train an image recognition model. For the LPBF data, a similar approach
will be presented in subsequent sections where GANs can be developed to generate new vapor
depression generations, similar to the output of the VAEs albeit through a different learning
mechanism.

2.12 CGAN Theory

The Conditional GAN is a modification to the standard generative adversarial network
where both the generator and discriminator are prepared, or conditioned, during training with some
kind of additional information [58]. For a conditioning label y, the generator uses the noise vector
z and the label y to create an artificial observation:

G(z,y) = x* (25)
Meanwhile the discriminator will take in as an input the real observations with the labels x and v,
and the artificial observations with the labels that were used to generate those observations, x*|y
and y [59]. The discriminator can then attempt to learn both the real data and the labels, and output
a probability value based on its calculation on whether the label-pair is a real, and appropriately
mated label-pair. Likewise, its output will attempt to determine whether the observation is either
a fake observation or an incorrectly matched label-observation pair [60]. Fig. 8 shows the network
modifications for both the generator and discriminator to the general form of the GAN network
architecture.

Including this new input parameter helps the CGAN to potentially have two advantages
over the general form of the GAN. First, the model should have an improvement in performance
as it learns the correct labels for which to generate images. Second, the model has the ability for
targeted data generation, that is, producing specific images of interest. This is because the GAN

creates images from the latent space which it has mapped, however, interpreting the association
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between the points in that latent space and the resultant images is difficult to accomplish.
Generating a specific type of image, that is, an image for a given label is therefore difficult in the
GAN model. The CGAN however, can overcome this limitation based on its conditional inputs.
The fundamental component of the Conditional GAN is that the added information helps
the model to match images to labels during training, and the generator can then use that learned
label-image pair to generate new images that correspond to a particular label. This approach can
therefore allow for more informed images to be generated, that is, images that are created with a
particular end-goal output in mind. For the work described later, that purpose will include the
ability to generate new images that correspond to LPBF process parameters — to generate new

images based specifically on the inputs to the model for those parameters.

@\ Generator |————» @

@/ Network

@ " @\
Discriminator [——» @

@/ Network

Fig. 8. CGAN modifications to input values
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2.13  Additional Applications of Generative Models

The previous section described a potentially advanced modification to the GAN
architecture such that images can be created for a specific purpose, to show generate images that
correspond to desired labels. Outputs of GAN described in the literature show promising results
for being able to generate new images based on larges sets of training data. For instance, human
faces, for which random generations are made after the system learned from thousands of samples.
Refinements for these purposes can include hyper realistically generated images, which can be
accomplished by such models as BigGAN [61], and StyleGAN [62]. Both of these
implementations were shown to produce photo-quality images in their generated outputs. In the
case of BigGAN, the system replies on the application of a orthogonal regularization in the
generator network, which allows the network to alleviate the variance in the generator’s output
and thereby make better quality images. For StyleGAN, which is based on a Progressive GAN and
a neural style transfer design, the output at each layer during training passes through what’s known
as a style latent vector. Yet while these implementations do deliver high quality results, just like
with the general GAN, it is very difficult to control the output of the generators to create something
with specific desired attributes.

One method that has been shown to deliver images based on a predetermined
characterization is the text-to-image GAN [63]. These methods, typically employing a StackGAN
can generate images based on a text input description. Thus, if a text string contained a statement
such as “red bird on a tree”, the generator would attempt to create an image to match that
description. The architectures are described as stacked because they network consists of stacks of
images along with texts and image pairs. The underlying mechanism is actually the conditional

GANs mechanism, albeit with many more potential labels based on what amounts to a text
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dictionary for training. Therefore, these methods show the most similarity to the work that will be
described throughout this dissertation, in regards to developing a GAN architecture to take in as
input laser processing parameters and output images that should fit those parameters.

While not utilizing a text string as in the StackGAN, the goal is to be able to tell the model
to generate an image under the characteristics that govern the different types of vapor depression
geometries, based on the laser parameters for the builds that are expressed in the experimental
training data. Work in the field is limited in developing and applying generative models for specific
classes of images.

Literature is sparse even on real-world examples of text-to-image applications.
Historically, many of the implementations of GANSs are purposeful at creating new images, but
rarely if ever are these images used for scientific purposes, such as model validation. One of the
few examples of work such as this resides at NASA, for an undertaking whereby researchers
attempted to use a GAN to generate galaxy images [64]. This work was novel in its attempt to
create new images, and while successful in their aims, this work again focuses on creating random
environments. That is, the researchers did not attempt to use the generative model to create galaxies
under specific conditions. And likewise, while the images created give the users new
interpretations of how galaxies may look, that work was not used to validate physics-based models.
Similarly, in medical imaging synthesis GANs have been employed with encouraging results for
generating hypothetical expressions of organs [65]. However, again, this work was not aimed at
generating specific organs with specific conditions. Therefore, the development of a novel
application of generative models for creating images under specific criteria can be of extreme value
to the global machine learning community as the work to be described in later chapters will follow

that mission. Furthermore, generative models will be compared to one another, while also
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including the outputs of semi-supervised learning approaches in the recommender systems to also
produce a generator-like output. It will be shown that the GAN is not the only way to produce a
valid and accurate output. In fact, a GAN may not even be the best way to produce a generated

output, in some circumstances.
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CHAPTER 3

MACHINE LEARNING METHODOLOGY

3.1  Data Collection through Ultra-High Speed Imaging

This chapter discussed the data used for this work, as well as the steps for data preparation.
With the exception of Chapters 6 and 8, these methodologies apply to all image-driven work to be
discussed. The data and data preparation for Chapters 6 and 8 are discussed separately in those
sections, as the work described there had specific aims that required additional data beyond the
overall dataset.

The data used for this work was collected from a LPBF experimental build using IN718
that was conducted in Argonne National Laboratory’s Advanced Photon Source Synchrotron. This
large scale imaging facility captured ultra-high speed (50,000 frames per second) x-ray images of
the internal cross sectional area of the LPBF process, at a micrometer scale. This process, known
as dynamic x-ray radiography (or DXR) can allow an experimenter to clearly see features of
interest in the footage, as the laser (also clearly visible) passes over the metal substrate layer by
layer to create the build (see Fig. 4 on page 13). The experimental setup involved the x-ray
detection system to be aimed at the powder bed at a 90 degree angle, relative to the direction of
the laser movement. For the experiments in which this dataset under evaluation was collected, the
laser moved in a single direction. This single track set of experiments developed simple structures,
which can serve as a standard before later building complex shapes for production worthy objects.
The metal substrate area was approximately 30 millimeters long, 5 millimeters tall, and 500
micrometers wide. The powder layer (which sits on top of the metal substrate and) was between
50 and 100 micrometers tall. After a layer is fused by the passing of the laser, the LPBF system

sweeps a new layer of powder over the substrate on the build platform to commence the next
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layer’s fusion. The laser spot size was approximately 50 micrometers wide, which provided ample
space on either side of the laser for the material underneath to melt or vaporize and ultimately fuse
in all three dimensions.

A single dataset shows one pass of the laser over the material. The speed of the laser, and
therefore the amount of frames where the laser is visible in the field of view, is dependent on the
process parameter settings — experimenters have a wide range of laser velocity settings from which
they can use. In general, experimental settings for the laser speed range from 0.2 meters per second
to 1.4 meters per second. At the scale of the DXR capture ability, the field of view for the laser
movement is capable of roughly 2000 images, or frames, separated at 0.01024 seconds apart. As a
single build can have thousands of layers in total, these 2000 images that can be captured for each
track can easily yield total datasets with hundreds of thousands of images which creates a big data
problem. Yet while the volume of data collected on a single build can be large — there is a lack of
variety in the data, which presents another problem. Each build, which can take many hours to
complete, depending on the size and complexity of the build, must be conducted while in the
Advanced Synchrotron facility. The entire LPBF system must be physically moved to the
synchrotron’s location, and kept there for the duration of the experimental builds. The cost of this
procedure, combined with the time required to produce each build, makes it extremely difficult to
collect the appropriate in-situ data. Additionally, the time and resources required to procure time
at Argonne National Laboratory can take many months or even years due to the high international
demand for the facility for purposes across all domains of science.

The work described below constitutes data collected from 35 experiments where the laser
power and laser velocity were adjusted (see Fig. 9). Each of these builds used IN718 and were all

conducted using a fresh stock of powder material.



Experiment Laser |Laser Velocity

Power (W) (m/s)
1 150 0.2
2 150 0.4
3 150 086
4 150 0.8
5 150 1.0
6 150 1.2
7 150 1.4
8 200 0.2
9 200 0.4
10 200 06
11 200 0.8
12 200 1.0
13 200 1.2
14 200 14
15 250 0.2
16 250 0.4
17 250 0.6
18 250 0.8
19 250 1.0
20 250 1.2
21 250 1.4
22 350 0.2
23 350 0.4
24 350 06
25 350 0.8
26 350 1.0
27 350 1.2
28 350 1.4
29 400 0.2
30 400 0.4
31 400 0.6
32 400 0.8
33 400 1.0
34 400 1.2
35 400 14

Fig. 9. Process parameter combinations experimentally produced

48
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3.2  Computer Vision to Learn Vapor Depression Geometries

Raw data from the DXR output was initially in the form of a video file, which depicted the
in-situ LPBF process in grayscale. The laser is shown moving across the field of view from left to
right as it passes over the substrate material in a cross sectional view. From this, the gaseous vapor
depression can clearly be seen generated under the laser, and moving left to right across the field
of view along with the laser. While this video provides rich imagery of the process, there were
some issues with using the raw data for analysis. First, the laser melting process produced small
metal particles to be ejected from the surface. Where this ejected material leaves the surface and
where it lands could have an effect on measurements taken of the vapor depression as
computational techniques might include those objects with the vapor depression depending on how
close they appear [66]. Additionally, the vapor depression causes a wave to form on the top surface
of the metal, which can distort measurements of the vapor depression’s width and depth as the
wave fluctuates at a rate faster than the laser moves in the video.

The characteristics of the vapor depression can fluctuate depending on the experimental
laser parameter settings. At a slower laser speed the heat intensity from the laser can build up and
cause both a larger vapor depression and a bulbous cavity that will solidify and trap the gaseous
material, thereby causing keyholing defect. This can also happen if the laser is moving faster, but
at a higher intensity where that heat can build up beneath the surface of the material. While it is
not yet known what combination of settings will yield an optimal final product (optimal defined
as having a predetermined fatigue profile), it is generally accepted that the presence of more defects
will lead to a weaker build [16]. Additionally, a long and narrow penetrating vapor depression,

even one that does not cause defects, can still have a deleterious effect on the material
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microstructure as the solidified structure will have an internal texture that reflects deep and narrow
striations.

As described previously, the amount of data for a single build can be large. Therefore,
taking measurements of the vapor depression geometries must be automated as human led
manipulation and examination of every frame would not be feasible. Pattern recognition
techniques can accomplish this, but not without several steps of data cleansing to ensure that only
the object/area of interest is targeted by the chosen algorithm. The first step in preprocessing the
raw data was to isolate everything in the images except the vapor depression. This would allow
measurements to be taken of that vapor depression without allowing any erroneous calculations
made where ejected particles, excess surface material, or any other non-relevant region/object
being included in the subsequent calculations for that vapor depression. An effective technique for
this task was to use foreground extraction and background reduction. In this process, the
background of the image is identified as the areas not constantly changing, which reflects
movement in the foreground. The images are essentially compared frame to frame to see which
pixels are changing the most dynamically, and close together, which therefore implies that those
pixels represent an object that is moving. Thus, every area of an image, and therefore the video as
awhole, can be categorized into two regions, the foreground and the background. For this analysis,
a Gaussian based approach was used, known as Mixture of Gaussians (MOG). In this method in
particular, a mixture of k Gaussians distributions are used to make a model for each image pixel
[67]. The different distributions then represent each of the different image pixel values, which in
turn represent the pixel color and intensity. The weight of each one of the distributions used in the

models is proportional to the amount of time each pixel stays at the same value for color and
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intensity. When the weight values of a pixel distribution are low, that pixel is classified as a
foreground pixel.

The results of the background subtraction approach created a defined foreground based on
the vapor depression, which was then applied to a thresholding technique to binarize the image
into 2 pixel values for black and white (see Fig. 10). Adaptive thresholding was used where the
threshold value, the value that determines if a pixel should be converted to black or white, is
adjusted throughout the image. This technique is effective over other techniques because of its
ability to be generalized better to large datasets, or a variety of similar datasets [67]. For instance,
in some images there could be more light and therefore a different contrast, even if the image is
capturing the same general image. Adaptive thresholding can overcome such limitations where a
single threshold value is applied to all pixels in all images [68]. This method functions by finding
the local threshold value in certain areas, or neighborhoods in the image (see Fig. 11). The intensity
values at each neighborhood are statistically examined to determine a value for that region. The
statistical measures to identify the threshold value of that neighborhood T, can be the mean value
where T can be the mean, the median, or the mean of the range of the values where T = (max value
+ min value) / 2. A filter (or block) for the neighborhood size of 5, 7, and 9 was tested, with results
that did not yield a statistically significant difference in the final results. This was likely due in
part to the lack of objects in the image as a result of the background reduction approach previously
applied. The vapor depression was highlighted in white in each frame of the video. However, every
other pixel was not automatically turned to black as those previously discussed particles in motion
were also highlighted in white due to the adaptive threshold approach. Therefore, cropping was
applied to all frames in the video which served to both reduce the size of the overall dataset and to

ensure that areas above the vapor depression on the surface of the material were not considered in



Fig. 10. Background subtraction on DXR image
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Fig. 11. Non-local means denoising
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calculations on the vapor depression geometries. The specific area to be cropped off was the area
above the substrate layer, which was easily determined visually as the area above the top pixels in
the white highlighted vapor depression region.

The frames in the video were left with pixel noise, or small distributions of pixels of white
in the black background or black in the white foreground, which could lead to a higher rate of error
in subsequent calculations of pixel values. Therefore, a denoising approach was applied known as
non-local means denoising. This is an algorithm commonly used in image processing where the
mean value of all pixels in the image is calculated and weighted based on how statistically similar
those pixels are to a target pixel. This approach is in contrast to local means denoising where
regions or neighborhoods are used, in a fashion similar to the adaptive thresholding technique [69].
While a localized pixel approach was appropriate for thresholding the values, in this dataset where
the result was only one object of interest in the vapor depression, a localized approach would be
computationally more resource intensive than taking the mean of the entire image. Finally, an
image contouring approach was used where the location of each pixel on the boundary of the white
foreground and the black background was used, thus providing the perimeter of the vapor
depression in each frame. This combined data manipulation approach allowed the analysis to
commence on the measurements of the vapor depression for each frame.

3.3  Deep Learning for Microstructure Defect Detection

Multiple deep learning models were developed to test the ability of deep learning networks
to learn the latent features of vapor depression and melt pool geometries based on images collected
from the DXR technology during the build process. The objectives of this work were multifold:

1. Determine feasibility of the multilayered artificial neural network approach to learning

prior to the development of deep learning based generative models
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2. Determine whether a deep learning framework is capable of disseminating image based
objects based on class of geometry
3. Determine if a deep learning framework is capable of learning to identify images that
contain defects, which itself is indicative of the type of geometry
Prior to developing a deep learning architecture using variational autoencoders and
generative adversarial networks, it was necessary to ascertain whether or not these techniques are
even feasible, if an artificial neural network is able to model from these data. The complexities of
the generative models necessitate a baseline using models that while still complex in their
architecture, have easier to interpret outputs. Yet these models also have practical applications for
this work. The ability to predict the class of a vapor depression geometry leads into the ability to
predict both the resultant material microstructure after cooling and has the potential to inform and
predict defect generation as certain geometries are more likely to induce defects than others. The
four types of geometries or classes for the convolutional neural network (CNN) to learn were:
conduction keyholing, penetration with defects, penetration with no defects, and no keyholing.
Upon establishing the CNN’s ability to learn the different geometries, an additional model was
developed to identify defects from the images. This has the potential to inform researchers
specifically at the time and location where these defects occur, which is a non-trivial task given
the vast amount of data, and images collected for each build. Human identification of defect
generation from the tens of thousands of images would not be feasible, which is a direct benefit of
using a machine learning approach for data mining.
3.4 Recommender Systems Based on Matrix Completion for Depression Geometries
The missing data problem for characterization of LPBF microstructures can be mitigated

through the use of the recommender system with matrix completion. The in-situ experimental data
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was obtained from 35 builds that provide vapor depression images, which as discussed in section
3.2, can be used to obtain physical measurements of the vapor depression’s size and shape.
However, this data is not enough to provide researchers a framework for knowing optimal build
settings to induce a vapor depression at the appropriate depth, width, and area to sufficiently
penetrate the substrate material yet prevent the buildup of keyholing defects during the build. For
instance, data was collected for a build with the laser set at 350 watts and 0.2 meters per second,
which depicted an unstable vapor depression that constantly collapses and forms defects. Yet at
the same intensity but a slightly faster velocity of 0.4 meters per second, the vapor depression is
stable with no defects, but the overall depth of that vapor depression is shallower in comparison.
This shows there somewhere between 0.2 and 0.4 meters per second there is an optimal speed that
is deep, but not too deep where the vapor depression loses its stability.

The data from all 35 experimental builds can be analyzed frame by frame to produce a
dataset of its geometric properties at each 0.01024 second time interval during the build (matching
the frame capture rate from the DXR sensor). At 514 frames per experimental build (where the
vapor depression is in the field of view), this dataset would have 17,990 rows, or observations of
vapor depressions. From this data, a matrix can be constructed where instead of users and items
represented in the rows and columns, the laser power and laser velocity could be represented. And
in place of user ratings for an item to populate the values in the matrix, the measured value for the
depth of the vapor depression could be used. As data was collected at velocity settings of 0.2, 0.4,
0.6, 0.8, 1.0, 1.2, and 1.4 meters per second, this matrix would have 7 columns. From this, new
empty columns could be created between each measure interval, which would notionally represent
0.3,0.5,0.7,0.9, 1.1, and 1.3 meters per second. In this new matrix of 13 columns, there would be

enough missing data that this could be characterized as a sparse matrix. Upon performing the
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matrix completion methodology discussed previously, these values could potentially be
approximated, which would represent vapor depression measurements that were not
experimentally collected. The completed matrix could then be used by the recommender system
to make recommendations, or predictions, on what combination of power and velocity should be
used to achieve a vapor depression at a specified depth.

Using the recommender system approach, data can be approximated to mathematically
recreate vapor depression geometries that were not experimentally derived. Additionally, it could
provide a computational approach to determine optimal process parameters that could lead to
industry certification of laser power bed fusion additive manufacturing components. Since new
experiments at the Advanced Photon Synchrotron are not able to be performed, having a
computational method to achieve new vapor depression measurements entirely using machine
learning approaches would be of great benefit to this subfield of materials science research, which
can be applied to any different material suitable to LPBF AM. While this methodology would
provide a wealth of numerical data for LPBF process characterization, the following sections will
describe how deep learning can also be used to derive new data, albeit image data to supplement
the raw DXR images experimentally collected from the limited experimental runs captured at the
Argonne National Laboratory.

3.5  Variational Autoencoders to Generate New Vapor Depression Images

Sampling from the latent space using VAE should generate new images based on the
features encoded and decoded by the model. Unlike the standard form of the autoencoder which
returns the input image, the VAE utilizes the encoder to produce a distribution over the entire latent
space rather than a single point by incorporating the reconstruction loss and the regularizing nature

of the KL loss [53]. This allows sampling in that space that can generate new images. For instance,
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to generate a new image based on a region in the latent space in between two different samples,
with the expectation that the new image will be an expression of some mixed-hybrid image of those
two different samples — the procedure will be to find the difference between the mean vector from
those two samples, add half of the difference to the original, then decode the result.

The generative ability of the VAE will be used to generate new images of vapor depressions
based on experimental parameters that were not experimentally conducted. Data was captured for
builds with a laser velocity setting at 0.2, 0.4, 0.6, 0.8, 0.9, 1.0, 1.2, and 1.4 meters per second. The
velocity settings in those gaps, such as for 0.3, 0.5, 0.7, 0.9, 1.1, and 1.3 therefore yield unknown
vapor depression geometries. As discussed in previous sections, there is a narrow range of velocity
values for which a major change can occur in the vapor depression geometry. We have seen that at
0.2 meters per second there are vapor depression shapes that induce defects forming, while at 0.4
meters per second there are none (at 350 watts). Therefore between 0.2 and 0.4 there should be a
velocity setting value that will yield an optimal vapor depression that is deep yet stable and not
defect inducing. Sampling from images in the latent space between 0.2 and 0.4 will help provide
information into what vapor depression geometries in that gap would look like. The VAE will find
the encoded vapor depressions at 0.2 meters per second and 0.4 meters per second, obtain their
encoded vectors, compute their difference, and decode it as described in the previous section to
computationally produce an image of a vapor depression at 0.3 meters per second.

By developing a VAE model that encodes images at 0.2, 0.4, 0.6, 0.8,0.9, 1.0, 1.2, and 1.4
meters per second, and sampling halfway between them, this work will achieve images of the vapor
depression that will represent experimental runs at 0.3, 0.5, 0.7, 0.9, 1.1, and 1.3 meters per second.
This will be repeated for each laser intensity setting, such as 150, 200, 250, 350, and 400 watts. The

result will be a dataset of new images for 30 different combinations of laser parameters that were
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not, and will not be experimentally produced. From these images, materials science researchers can
have almost double the information produced experimentally to visually identify and quantifiably
measure and verify, the appropriate laser settings to produce vapor depressions at the desired depth,
width, area, and convex hull area for optimal build quality.

3.6 GAN to Generate New Keyhole Defect Representative Images

The fundamental idea of a GAN is to have what are essentially two CNNs working in
conjunction. One, known as the generator, generates new data. Meanwhile, another, known as the
discriminator, evaluates the output of the generator to determine if the image created appropriately
captured the features necessary to be classified in the appropriate category [57]. This technique is
effective due to the combined nature of these algorithms. As described previously, the CNN is a
discriminative algorithm; if trained with images of a certain class, it can learn the features of those
images and predict future images into the appropriate class. This makes the use of a GAN
appropriate to explore as a CNN was previously evaluated for its ability to effectively learn the
features of vapor depressions. Given the effectiveness of the CNN at appropriately learning the
features of the vapor depression geometries, the discriminator will be just as affective at learning
those features and determining if an output from a generator is real or false. Likewise the generator
should be able to iteratively craft a better output to achieve an accurate representation of the
training data.

The following work involved developing a GAN that was trained on vapor depression
images which were generated under known process parameters that led to the generation of defects
— to then produce additional images of defect generating depressions. It has been established that
a deep and narrow vapor depression can sufficiently penetrate the substrate material deep enough

to fuse the material adequately. But when this happens, sometimes the vapor depression geometry
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leaves behind portions of the material where gas is trapped and the defect forms in the
microstructure. Materials can be tested post-processing using a variety of stress-based techniques
to determine if a certain amount of porosity is acceptable, given the tradeoff between vapor
depressions that are deep enough to melt the material and the likelihood that that deepness will
cause defects to generate.

From the in-situ data for the 35 experimental builds, only 8 of those builds had data that
depicted vapor depressions that left keyhole defects. While the size and location of those defects
vary somewhat, there is not enough data to make conclusive determinations on the quantity of
pores that are acceptable in a build. Therefore, the use of a GAN will generate additional
representations of vapor depressions with defects. For each experiment that yielded defects, the
GAN will be trained on those images and then the generation of new data of novel microstructures
will then be used to create a porosity profile for each of those 8 experimental configurations. These
will result in 8 sets of new microstructure images. The vapor depression in these images will then
be measured in terms of depth, width, area, and convex hull area to examine if there is a significant
difference in the sizes and distribution of those defects, in a manner supplementing the work
discussed in previous sections.

The use of the GAN will contribute to ongoing research into process parameter
characterization by producing more images that could not be experimentally derived. Similarly,
the lack of data (only 8 experiments that depict defects) represents a missing data problem as there
is not enough data to adequately evaluate the dispersion of defects in these builds. As demonstrated
in the previous section describing the theory behind the GAN algorithm, this approach is a valid

technique for generating new images. Therefore, it is an appropriate technique to apply to this lack
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of image data problem, thereby providing a new methodology for computational materials science
research in porosity profiling.

Modifications are possible to the general form of the GAN network architecture such that
performance and accuracy can be improved upon [70]. By incorporating a continuous feature
representation into the training, the model can potentially learn the distributional relationships of
that feature with regard to the underlying principals governing that representation. For instance,
the previously described thermodynamics and physics that inform the fluid nature of the gaseous
vapor depression and the liquid melt pool formations. While the laser intensity for each build is
relatively constant, the heat at the surface of the build is changing over time, due to buildup in
energy as the laser moves across an area. The heat intensity is recorded in the thermal sensors in
the LPBF experimental setup, and therefore provides a means of engineering a new feature to
describe heat per unit area. Generating by incorporating this continuous representation would also
have a direct impact on LPBF applications as complex builds will be a constant focus; to create
objects that can be utilized in aerospace projects. As described previously, the heat buildup in the
corners and crevices of these builds as the process develops from layer to layer can have a
deleterious effect on the microstructural stability. Thus, involving a feature representation for the
thermal variations in the build can improve the GAN’s ability to accurately model and generate
those new microstructure representations.

This body of work represents an advancement in the field of computer science by
developing a first of its kind evaluation of multiple machine learning frameworks for image
characterization, including by methods typically not employed for image-based learning tasks,
such as the recommender system approach. These recommender system algorithms have

historically been researched for incorporation into commercial systems but historically have not
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been evaluated for image prediction tasks, nor for prescribing potential image characteristics,
thereby demonstrating some generative capabilities. Their development here improves upon the
body of knowledge around how recommender systems can be adapted for image processing;
computationally deriving object boundaries and making predictions on future object boundaries in
hypothetical images for uncollected experimental data.

Further this work seeks to improve upon the state-of-the-art in generative models by
developing a methodology for incorporating a continuous feature representation into the training
such that the model can potentially learn the distributional relationships of that feature with regard
to the underlying principals governing that representation. While work exists in this regard in
conditional GAN, the process that will be developed here will use thermophysics based equations
to characterize and predict fluid properties that are encoded in the deep learning framework as
latent features. Additionally, the work described in this dissertation demonstrates an attempt to
train a generative model in and end-to-end fashion which can be generalized to many other image
representation, generation, and restoration problems in the machine learning subfield of computer

vision.



62

CHAPTER 4

DEEP LEARNING FOR GEOMETRY CLASSIFICATION

4.1  CNN for Vapor Depression Characterization

While advancements have been made in studying the vapor depression of LPBF builds
using advanced imagery, there has been no research into the application of deep learning to these
datasets. This could aid researchers in two ways: 1) to reduce the manual labor required to examine
all images in a large dataset where thousands or potentially millions of images could be taken, and
2) allow researchers to have a comprehensive catalogue of expected vapor depression geometries
based on the 35 combinations of build parameters previously used. A convolutional neural network
(CNN) was developed and utilized in order to learn the features of the DXR images and to make
predictions from the thousands of input images from the 35 different experiments to determine the
general shape of the vapor depression. The data was manually curated whereby images that depict
the following vapor depression shapes were labeled: conduction keyholing (2560 images),
penetration keyholing with defects (2750), penetration keyholing with no defects (3480), and no
keyholing (3060). Fig. 12 provides examples for each class. The inclusion of a class for penetration
with defects was to allow for the model to determine the likelihood for keyholing defects to be left
behind. The data was then divided into a training set at 80% of the data and a testing set at 20% of
the data.

The objective was to see if this deep learning approach can accurately classify the type of
keyholing based on learning from input images of each class. This model could be used to
accurately label future image datasets without manual inspection or curation, to determine what
type of keyholing would be present in a future build with different build parameters. While it

would be infeasible to collect DXR data in-situ for every future build, having the results of this
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model could serve as a ground truth for establishing future experimental build parameters.
Additionally, if the model is able to accurately identify a defect in an image, this can be
interpolated to all layers in a build to then give a porosity profile for that build whereby the
aggregated defects are quantified.
4.2  Geometry Classification Results

An outline of the CNN model architecture is shown in Fig. 13. The rectified linear unit
(ReLU) function was used as the activation function, as this is the most commonly used activation
function in deep learning with numerous research studies showing this activation function achieves
faster training and better performance over other approaches [71]. This function also avoids
saturation, where an activation function can squeeze the input — meaning they have upper and
lower bounds that compress the neural response into a bounded set of values. For instance, the
TanH activation function compresses the values to a range of -1 and 1. ReLU avoids saturation by
providing a non-linear function with no limit. Applied to each pixel in the input image, the function
returns a value of O if a negative value is provided as input and returns the actual value if a non-
negative value is used as an input. As such, this expression can be mathematically described as:

f(x) = max (0, x) (26)

This gives it the qualities of a linear function for values greater than 0, yet acts as a non-linear
function for negative values at the same time. While somewhat simple in its approach, it is effective
at handling non-linearity in the underlying data.

The CNN was able to correctly label images from the testing set 92% of the time for the 4

classes of vapor depressions, with a true positive rate of 93%, false negative rate at 7%, true
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negative rate at 90%, and false positive rate at 10% (see Table 1). This implied that there was
enough information learned from the geometries of the vapor depression and size of the vapor
depression to accurately determine how the vapor depression would act given the experimental
settings of the laser (the process parameters) as well as determine whether or not that combination
of settings will induce keyholing defects in the substrate material. The model was then used for a
training set containing only three classes of vapor depression geometries; removing the penetration
with defects class. This resulted in an overall accuracy of 97% for the predictions with a true
positive rate at 98%, false negative rate at 2%, true negative rate at 93%, and false negative rate at
7%. While this smaller set of labeled classes does not predict the presence of defects in a build, it
does imply that the number of input images in the training set was sufficient for the model to
correctly learn the features in the images of each class. A summary of model performance can be
seen in Fig. 14. This model could be advantageous to use for determining if the laser settings were
sufficient to penetrate the substrate with enough depth to create a deep enough melt pool to fuse
the metal powder particles. Ultimately, the results from both models showed that deep learning is
successful in identifying the features in an experimental build from the LPBF process and
characterize its in-situ process in a manner that has never been applied previously.
4.3  CNN for Defect Detection

In this portion of the work, the CNN approach was used to evaluate images for defect
detection. Here the previously discussed model was used in addition to pre-trained models, thereby
using transfer learning on images of builds made by LPBF. Four models based on NASNetMobile
[72] and DenseNet121 [73], and the custom designed CNN were trained and evaluated, and further

comparison was conducted. The objective was to demonstrate that CNN models can be feasible
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tools for LPBF process monitoring and to provide an automated and rapid classification of images,
which display challenging defects in shape and size.

NASNet architectures are based on the neural architecture search (NAS) framework [74].
NAS is performed to find the best architecture based on a smaller dataset (CIFAR-10) and then
transfer the learned architecture to a larger dataset (ImageNet). In the NASNet search space, the
convolutional networks are comprised of convolutional layers or cells, which possess identical
structure but different weights. Once the best cell structure is found using the CIFAR-10 dataset,
several copies of that cell are stacked to build the convolutional architecture that can be applied to

the larger ImageNet dataset. Searching for a cell is computationally more affordable than searching
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for a complete network architecture and the best cell found with one dataset can generalize to other
datasets.

A dense convolutional network (DenseNet) is comprised of dense blocks connected by
transition layers. Each dense block has several dense layers and the feature map of each layer is
concatenated to the feature maps of the preceding layers [73]. A dense layer performs batch
normalization rectified linear unit (ReLU) activation, convolution, and concatenation [75]. A
transition layer performs batch normalization, ReL. U activation, convolution, and average pooling
[76]. The predictions layer, which is a fully connected layer, is connected by global average
pooling. The equation below shows the H. function whose output x_ in the L™ layer is the
concatenation of the outputs (concatenated feature maps from preceding layers: [Xo, X1, ..., Xt-1])
of the previous dense layers 0, 1, ..., L-1 [77]:

x;, = Hy([x0, %1, ., x.]) (27)
4.4  Transfer learning

Transfer learning is a technique that allows transferability of knowledge to a modified
neural network. It relies on weights learned from other datasets to train the deep neural network
with a different dataset. A mathematical definition for transfer learning was described in [78] and
is also formulated here with the same notation and definitions for consistency. A domain D consists
of X, which is a feature space of all data instances, and P (X), which is a marginal distribution of
the data used during the learning (training) process, such that X is a sample (X < X), where x; €
X is the i data instance (feature input), - D = {X, P(X)}. A task T consists of a label (or class)
space Y, where y; € Y is the i™ output or label, and an objective predictive function £(.) that
learns during the training process and can be expressed as f (x) = P(Y|X), such that {x;, y;} is the

training data, -~ 7 = {, f(.)}. During testing, f(.) can be used to predict the label of a new data
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instance in X. Now, let us define a source domain D, where (xs,, ¥s,) € Ds, such that x5, € X A
¥s; € Ys, and a target domain Dy, where (xr, yr,) € Dr, such that x;, € X Ayr, € Yr. The

source task is J5 and the target task is J7. Therefore, transfer learning can be defined as [78]:
(Ds, T5) enables knowledge transferability to (D, 77) by improving the learning process of the
target prediction function f;(.), where Dg # Dy V T5 # T7.

Transfer learning accelerates the training of neural networks and allows adaptability to
other classification cases. In the TensorFlow Keras API [79], different deep neural network models
have been implemented that can be initialized with weights learned using the ImageNet dataset.
For example, by replacing the top layer of a base model (e.g., DenseNet) that has been trained with
ImageNet is possible to add a new classifier layer for the new output labels and only train the
added layer with the new input data. Further fine-tuning can be achieved by enabling the model
entirely or partially for training.

TensorFlow was used to build the models based on NASNetMobile and DenseNet121
using transfer learning [80]. The weights on ImageNet were loaded on the base models. Transfer
learning was applied by replacing the top layer of NASNetMobile with a new classification layer
that implements the softmax function with two outputs for binary classification.

For the models based on NASNetMobile and DenseNet121, batch renormalization was
enabled in the added classification layer to overcome some shortcomings of batch normalization
with mini-batches [81]. In this work, a batch size of 64 was used for the NASNETMobile and
DenseNet121 based models and a batch size of 16 for the custom CNN model. The training dataset
had 4352 images, the validation dataset had 640 images, and the test dataset had 640 images. All

images were divided equally into two categories (defect and non-defect).
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4.5  Defect Detection Evaluation

The two models based on NASNetMobile were trained and validated after replacing the
top layer in the base model. The optimizer used was Adam with a learning rate of 0.0001 and
AMSGrad enabled. For model training, the batch normalization layers in the base models were set
to work in inference mode. Two blocks and a classification layer were added to the base model to
implement NASNetMobile-A. Each block included batch normalization (with renormalization),
dropout, and a fully connected layer (ReLU activation). The top layer was a two-output fully
connected layer with softmax activation. The new layers were enabled for training whereas the
layers of the base models were frozen. For NASNetMobile-B, the top layer of the base model was
replaced with a two-output top layer with softmax activation. The entire network was set to
trainable but still maintaining their batch normalization layers in inference mode. After testing, the
accuracy achieved with NASNetMobile-A was 0.9359 and NASNetMobile-B was 0.9719. The
confusion matrix for NASNetMobile-B is shown in Fig. 15.

Two models based on DenseNet121 were next implemented. The top layer of the base
model was replaced with new layers and a new classification layer. The Adam optimizer was used
with a learning rate of 0.0001 and AMSGrad enabled. This is a variant to the Adam optimizer that
uses the maximum of past squared gradients to update the parameters, rather than using the
exponential moving average, thereby achieving convergence, where the Adam optimizer alone
may often fail to achieve. During fine-tuning, the conv5 dense block, which is the last dense block
in the DenseNet121 model, was enabled alongside the added layers, and the model was retrained.
In the case of DenseNetl21-A, two blocks were added and each block included batch
normalization (with renormalization), dropout, and a fully connected layer (ReLU activation). The

top layer was a two-output fully connected layer, with softmax activation, for binary classification.
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For the first time training, the added layers were trained whereas the base model was frozen, and
its batch normalization layers were set to inference mode. After fine-tuning and testing,
DenseNet121-A achieved an accuracy of 0.9875. For DenseNet121-B, the top layer of the base
model was replaced with the following layers: a fully connected layer (ReLU activation), dropout,
and a two-output fully connected layer with softmax activation. Similar to DenseNet121-A,
initially the base model was frozen and the added layers were trained. After fine-tuning and testing,
DenseNet121-B achieved an accuracy of 0.9641. The best performance after testing between the
two DenseNet based models was of DenseNet121-A, whose confusion matrix is shown in Fig. 16.
As described previously, the custom CNN model was trained in its entirety using the Adam
optimizer, with a learning rate of 0.001 and AMSGrad enabled. After testing, the accuracy

achieved was 0.9766. Fig. 17 shows the confusion matrix for the custom CNN model.
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Fig. 15. Confusion matrix for NASNetMobile-B after testing
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Fig. 18 shows the receiver operating characteristic (ROC) curves for all the models
implemented in this section. The black dashed line represents the random assignment case. Owing
to the characteristics of the ROC curves and the fact that the base rates of true positives and true
negatives are equal, the area under the ROC curve and the accuracy are numerically equal.

DenseNet121-A exhibited the best results.
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Fig. 18. Graph of the ROC curves for the DL models implemented and tested
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Table 2 summarizes the performances of the implemented models showing the accuracy,
precision, recall, and F-1 score. With the employed test dataset, all of the deep learning models
were able to identify correctly the non-defect label, i.e., no false positives. Therefore, the precision

was equal to 1.0 for each of these.

TABLE 2
CNN Performance Summary
MODEL ACCURACY PRECISION RECALL F-1 SCORE
NASNetMobile-A 0.9359 1.000 0.8719 0.9316
NASNetMobile-B 0.9719 1.000 0.9438 0.9711
DenseNet121-A 0.9875 1.000 0.9750 0.9873
DenseNet121-B 0.9641 1.000 0.9281 0.9627
Custom CNN 0.9766 1.000 0.9531 0.9760

4.6 CNN Summary

This chapter provided an overview of several CNN models to evaluate if deep learning
methodologies are appropriate for the data at hand. As discussed, the CNN is capable of correctly
classifying images from the DXR data to determine what type of vapor depression geometry is
captured in each image. Further, the CNN is capable of detecting the presence of defects in the
images, thereby establishing that the models are capable of learning not only the features that
constitute the vapor depression objects, but other objects in the images as well. This indicates that
these deep learning methods are a valid approach for further investigation of LPBF images from a
machine learning standpoint. As has been discussed in the literature review, many generative
models are complex adaptations to the CNN model utilized in this chapter, in the algorithmic

processes that converge on a solution. These results therefore justified further investigation into
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more complex deep learning architectures, not just for data classification, but for data generation
as well.

Following the results of data generation, presented in later chapters, revisiting this work
with transfer learning could find additional benefits. It was established throughout the literature of
the CNN that model performance tends to improve with more training data. Therefore, having
more images of the in-situ process could allow investigators to perform even more finely tuned
transfer learning or deep learning methodologies to detect the presence of defects. While such a
system cannot be deployed in real-time for future builds due to the complexity of the DXR imaging
process, it is possible to match those builds that create the most defects and suggest which
combinations of parameters are most likely to induce those defects. The work presented here in
this chapter can therefore serve as a precursor to a more thorough investigation, in conjunction

with the results to be discussed in later chapters on generating new data.
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CHAPTER 5

COMPUTATIONAL GEOMETRIC ANALYSIS

5.1  Convex Hull Geometries

The shape of the gaseous vapor depression gives insight into how it will solidify, thereby
impacting the microstructure of the material. For defects to occur in the material, the vapor
depression should have a rounded shape such that the top portion can close off and thereby result
in an enclosed void after the laser has passed that region and the material cools. This can easily be
visualized by inspection of the vapor depression movement through the material; there are
instances where the bottommost area of that depression forms a bulbous shape, which after several
frames seems to break off and is left behind (see Fig. 2.4). This activity strongly suggests there is
a link between the shapes of the vapor depression at any given time, and the likelihood that a defect
will occur in the next few hundredths of a second.

Understanding the geometry of the vapor depression is integral into understanding the
characteristics of the final material. But just analyzing the size may not be conclusive enough to
generate expectations on those properties. For instance, the vapor depression could be wide and
shallow, known as conduction keyholing, or deep but narrow, known as penetration keyholing.
These are essentially opposite representations yet have the same area. Additionally, while
penetration keyholing is more likely to have an effect on the material properties as it leaves behind
deep striations in the material, as previously noted the exact shape that penetration takes is relevant.

While drawing conclusions from the area of the vapor depression could give insight, there
can be other methodologies that might be more impactful on the analysis, such as examining the
convex hull area of the vapor depression at any given time. The convex hull of an object is defined

as the set of points that enclose all of the points in a given set of points [82]. The name convex



76

implies that this shape will have no regions bent inwards, as would be expected if only the
outermost points in a set were used to outline its shape. For the vapor depression geometries, this
would yield a shape that encompassed a region larger than the vapor depression itself. The area of
the region enclosed by the convex hull should be larger than the geometric area of the vapor
depression — if that vapor depression had a geometry where a portion of it was larger and more
bulbous in nature than the rest of the depression (see Fig. 19). Since the vapor depression only has
one area (near the bottom) that when shaped into a round bulb will break off to form a defect - a
larger convex hull area would be indicative of this effect.

For the vapor depression analyses, the convex hull was calculated for every frame in the
dataset. This technique was applied to the dataset previously manipulated, to yield a set of convex
hull measurements for the vapor depression in every frame. The number of outermost points that
were used to determine the convex hull was also derived. Additionally, the area of the convex hull
in each frame was calculated to compare against the geometric area. The feasibility of this
approach was also analyzed, by looking at how the convex hull algorithm converges to a solution,
for each frame — and how taxing that computation would be for each frame individually. This is
additionally relevant as these shapes are complex polygons, where a single pixel can potentially
form an edge and therefore impact the computational complexity of this approach.

5.2  Convex Hull Computational Approach

The general problem to be solved by the convex hull calculation can be summarized by, if
given a set of points on a two-dimensional plane, how can the points be connected such that they
would not form a concave angle? In the case of this analysis, the points necessary for consideration

were the boundary points, all of the points that constituted the perimeter of the vapor depression.
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Fig. 19. Original image, geometric area in green, and convex hull area in blue

While there are many algorithms that can be used to solve this problem, with varying results and
computation time, one such approach that has been firmly established as an efficient technique is
known as the Jarvis March, or otherwise known as the “gift wrapping algorithm” [83]. It has this
name as it is similar to how gift wrapping paper is wrapped around an object, in this case a set of
predetermined points. Its performance has been documented as being favorable for datasets where
the number of points is small, or the number of points that constitute the convex hull is expected
to be small in comparison to the total number of points [83]. The algorithm begins by selecting a
starting point p, which will be the minimum value on the x-coordinate, which is done in p — O(n)
where p is the initial point. The total number of points that are selected as pivot points, or h, are
then determined against all available points, n. The point p then becomes a pivot point from which
in a counterclockwise direction the next point is located by checking the orientation of the other
points from point p. The point that has the largest angle is the point that is the most
counterclockwise from p, which is done in O(n). After comparing against all points, this point
becomes the new point p, therefore again is p — O(n). This computation is completed in O(nh) time

complexity. The pseudocode for this algorithm can be demonstrated as [83]:
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convex hull algorithm (S)
# S = set of points
# P = set of points which form the convex hull.
# 1 = final size of the set of points
Xmost = minimum X coordinate point
i:=0
repeat
P[i] := xmost
endpoint := S[0]  // initial endpoint for next pivot point possibility
for j from 0 to |S| do:
/I endpoint == xmost is rare case and is only when j == 1 no endpoint
has not yet been set for the loop
if (endpoint == xmost) or (S[j] is on left of line from PJi] to
endpoint) then
endpoint :=S[j] //ifthereisa larger left turn, change
endpoint
=i+l
Xmost = endpoint
until endpoint = P[0]  // continued until returning to first point
The algorithm essentially runs with two loops comparing the chosen point to all of the other
points in the set, S. One loop checks every point in S while another repeats this for each point on
the convex hull. This is why the complexity time is O(nh) as it is dependent on both the number

of nand h. This is also why it is generally faster than other approaches to convex hull computations
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that can be done in O(n log n) such as Graham’s algorithm, when the number of vertices, or h, is
smaller than the log of n [84].
5.3  Convex Hull Results and Analysis

The application of the convex hull algorithm to a single frame in the dataset took 0.000998
seconds on a system with a 7" generation Pentium i5 CPU processor at 2.60 GHz. For all frames
in a single dataset, 2,000 images, this took 1.996 seconds.

On average, there were 13 points that were found as vertices for the convex hull. While the
average number of hull vertices was 13, the average number of points in total was 522. Therefore,
the h value in these calculations were significantly smaller than the n value, thereby supporting the
Jarvis algorithm approach. From these 13 points, the area of the resultant polygon’s convex hull
was calculated, which took 0.000997 seconds for a single frame. A summary of the processing
time is depicted in Table 3. The second column of the table shows the calculation time applied to
every frame in a single experimental run. The final column is an approximation based on a

hypothetical build with 1,000 layers/datasets.

TABLE 3
Calculations for Convex Hull
Calculation Single Image 2000 Images 1000 Datasets
1 Dataset 1 Complete Build
Convex Hull Points 0.000998 sec 1.996 sec 33 min 16 sec
Convex Hull Area 0.000997 sec 1.994 sec 33 min 14 sec
Total for Points and Area 0.001995 sec 3.990 sec 1 hr 6 min 30 sec

Geometric Area 0.000999 sec 1.998 sec 33 min 18 sec
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Fig. 20. Convex hull areas versus geometric areas

As shown in the table, the combined approach of finding the convex hull vertices and then
calculating the area of that region takes approximately twice as long as calculating the area of the
vapor depression. The calculation for the geometric area is relatively simple in comparison as it is
simply the total pixels in the vapor depression, multiplied by the conversion of pixel size to
micrometers, which was 1 pixel = 1.932 micrometers. Overall, the convex hull areas were larger
than the geometric areas, and in many cases significantly more (see Fig. 20). From these results,
the average area of the convex hull was 3,099 um?. Meanwhile the average geometric area was
2,429 um?, a statistically significant difference. The average percent difference among all frames

was 19.24%, and the median percent difference among all frames was 16.11%.
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Those frames in which the percent difference between the geometric area and the convex
hull area was greater than 20% were subsequently extracted from the original dataset for
inspection. Observing each of these frames in the dataset confirms that the vapor depression had a
large bulbous region near the bottom. Furthermore, for all of those frames with a percent difference
value greater than 20%, the analysis showed that within 2 to 4 frames later the percent difference
fell to a range of 0.05 to 0.10 percent difference in all but 5 of the frames under inspection. This
further indicates that when the vapor depression develops that large bulbous geometry, that area
will break off and form a defect. The convex hull calculations indicate when that is likely to occur,
as its area will be significantly higher than the area of the vapor depression at that point in time.
This data also shows that defect formation happens quickly, as these frames are taken 0.01024
seconds apart, which therefore suggests that the vapor depression can create a defect in 0.01024 to
0.04096 seconds.

5.4  Voronoi Diagram with Clustering

After examining all frames in the dataset with regards to the size of the vapor depression,
the next analysis focused on finding a method to classify different vapor depressions from the
dataset into groups such that those that are most likely to lead to defects can be categorized. A
combined approach was taken where an unsupervised machine learning approach known as K-
Means clustering was applied to all measurements of the convex hull area with regards to time
through the experimental run. Subsequently, the cluster regions were used to create a \Voronoi
Diagram based on the centroid points of those clusters in a Euclidean space. This combined
approach helped to develop a new data label for each vapor depression in the dataset where the

largest could be quantifiably grouped separately. The goal of this approach was to help identify
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the combination of settings that yielded the largest measurements, which could be grouped
together as a category.

Unsupervised machine learning is an approach where inferences are made from patterns
within the data without referencing an outcome [85]. These algorithms collectively can provide
insight into large datasets where those patterns may previously be unknown, thus providing a
valuable tool to use for exploratory data analysis, or EDA [86]. One technique in particular that
can aid in EDA is clustering, where observations from the dataset can be grouped, or clustered,
based on some criteria [87]. This grouping can then be used as an additional feature for more
targeted analytical approaches [88]. The K-means clustering algorithm is one method that can be
useful for grouping all observations using continuous variables from the dataset [89]. K-means
iterates between two steps. Initially in the data assignment step, there is a centroid point established
which defines the center of each cluster. Every data point is then categorized into one of the clusters
based on the Euclidean distance to its nearest centroid point [90]. This can be demonstrated by:

argmin dist(c;, x)? (28)

cieC
where:
dist is the Euclidean distance, or L. distance
ci is the collection of centroids in set C
X is each data point
In the second step, each centroid is recomputed by taking the mean of all data points

assigned to that centroid’s cluster:

Ci = ﬁle-e Sixi (29)

where:

Si is the set of data point assignments for each i cluster centroid
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The Voronoi approach is to partition a plane, where polygons are generated by those
partitions such that each polygon contains one generating point and every other point within its
boundaries are closer to that generating point than any other [82]. In this case the plane was the
Euclidean plane with the results of the clustering analysis plotted, into such regions where the
center of the cluster was the generating point for the VVoronoi regions. In the Euclidean plane, the

distance between two points p and q are determined by:

dist(®,q) = J(px — 9:)* + (by — 4y)? (30)
where:
px is the x coordinate of the first point
py is the y coordinate of the first point
gx is the x coordinate of the second point
gx is the x coordinate of the second point
The Voronoi diagram will then be computed such that the subdivision of the plane P will be into
n number of regions where a point g is found in the same region as p; if and only if dist(qg,pi) <
dist(q,p;) for each pj e P with j # 1.
5.5  Voronoi Computational Approach
The calculation of Voronoi regions can be efficiently produced using Fortune’s algorithm,
which is a sweep line algorithm, that “sweeps” a surface in a two dimensional Euclidian plane
[91]. The Fortune approach combines two lines, a sweep line that is a straight line moving left to
right across the plane, and a beach line which is curved like a series of parabolas that move to the
left of the sweep line across the plane. While the points that the sweep line has passed points to its
left which have been incorporated into the VVoronoi diagram, the beach line divides that area based

on the information currently known into its subsequent regions. The beach line function can occur
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regardless of the information not known, that is, the points to the right of the sweep line that have
not yet been passed. This is possible because the parabolic nature of a line can have the properties
of having a set of points equidistant from any point left of the sweep line to the sweep line itself.
The beach line is therefore the boundary between those resultant parabolas that define that
equidistant space. Therefore, as the sweep line progresses through the plane, the beach line will
form vertices at points where those lines and the sweep line parabolas cross, resulting in the edges
of the Voronoi diagram [91]. As the algorithm progresses, it uses a binary search tree to record the
properties of the beach line in memory. This allows fast lookup and insertion or deletion of new
items into the memory structure, as constant information is being received through the line
sweeping [92]. As new points are integrated, the insertion and deletion of parabolic lines to the left
of the sweep line can be ordered such that the x-coordinate of their location is the reference point
from which they can be identified. The algorithm then continues adding or removing parabolic
structures until the model converges once the entire plane has been swept.

The application of Fortune’s algorithm computes in O(n log n) time as there are O(n) events
to consider as features of the VVoronoi diagram, and it takes O(log n) time to process each of these
events. Each of these events requires the binary search tree functions of recalling, removing, or
adding information. Therefore, this results in the total run time of the algorithm as O(n log n) time
[91]. A proof of this follows [93]:

Theorem: For n>3 sites, the VVoronoi diagram contains at most 2n—5 vertices and 3n—6 edges.

Proof:

1. For points that lay on the line, this is always true. For points that do not lay on the line,
let V = number of vertices in VVoronoi diagram, E = number of edges, and N = number of

inner faces which is also equal to the number of points
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2. From Euler's formula: V — E + N = 2. Due to the possibility that the VVoronoi diagram
contains infinite edges, let's create a new vertex to represent infinity and connect all of
the edges to it such that is becomes a planar graph: (V+1)-E+N=2.

3. In the Voronoi diagram we know that every vertex has a degree at least 3. An edge is
between two vertices, so that equates to 3 * [(V + 1) < 2 * E]. Algebraically, this
transforms into less than or equal to 2n — 5 vertices and less than or equal to 3n — 6 edges.

5.6  Voronoi Diagram with Clustering Results and Analysis

The application of the K-means algorithm for the convex hull measurements for every
frame in the dataset took 0.1560 seconds on the same system with a 7" generation Pentium i5 CPU
processor at 2.60 GHz. To determine the optimal number of clusters, k, to model the data, Bayesian
Inference Criterion (BIC) was used, as it has shown to be an effective technique by using the
information criteria values [94]. This resulted in 6 clusters being chosen as the optimal number of
clusters for the observations in this dataset. The centroid of the 6 clusters was then determined,
which was then used to construct a VVoronoi diagram of these points, of which the values were then
normalized, and overlayed on which was a plot of the convex hull area on the y axis with the time
on the x axis. Based on the 6 points to be evaluated, the generation of the VVoronoi diagram was
completed in 0.0603 seconds. Thus, the total combined time for this evaluation on the dataset took
0.2163 seconds to complete.

As shown in the resultant plot (see Fig. 21), the observations from the dataset, which was
each recorded vapor depression, can be grouped into 6 classes based on the convex hull geometries.
As this value has been previously shown to be illustrative in determining whether or not a vapor
depression will generate a defect in the material, having this evaluation measure to group the

recorded geometries can be an additional tool to understand how and when these defects may
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occur. The Voronoi diagram serves as both a visual inspection tool, one that can be quickly
generated for each experimental build, which can then be read to determine what percentage of the
build was likely to have defects based on how many frames (with a known time separation
between) had displayed a geometry likely to form such a defect. Additionally, cluster and region
assignment for each measured geometry can provide an additional data label that could be used
for future purposes, such as training a predictive model to learn and predict what cluster (and

therefore likelihood) a vapor depression geometry may have for generating a defect in the material.
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CHAPTER 6

TIME-RESOLVED GEOMETRIC QUANTIFICATION

6.1  Thermal Effects on Morphology

As a laser melts the surface of a material, it is possible that too much laser energy can be
absorbed and the surface temperature becomes high enough to vaporize the material. This often
occurs in LPBF because of tightly focused laser beams used, which leads to a complex interplay
of multiple physical phenomena, such as recoil pressure and Marangoni convection [95]. All of
these phenomena can cause a vapor depression, or keyhole, that depresses the surface of the liquid
metal. The resulting morphologies of these vapor cavities vary widely with process conditions,
i.e., different combinations of laser scan power, speed, and beam diameter at the metal surface
[96]. More specifically, high power, low speed, and a small spot size promote deep and narrow
keyholes.

During keyhole-mode laser melting, the occurrence of a deep and narrow keyhole and its
turbulent fluctuations can cause the formation of porosity, which constitutes as a subsurface defect
and degrades the mechanical properties, such as the fatigue life, in additively manufactured
components [96]. Keyhole fluctuation can also generate spatter which can fall back down on the
surface of the powder bed and contribute to defect formation [97]. These realities motivate the
necessity of a sophisticated time-resolved quantification technique for capturing keyhole geometry
under different process conditions to investigate the variation in keyhole morphologies and
determine correlations between the quantified keyhole geometric features and the process
parameters.

With the development of real-time synchrotron observation, i.e., high-speed X-ray

imaging, which reveals the density contrast between solid material and a vapor cavity, it can be
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possible to track the dynamic evolution of the keyhole geometry with high spatio-temporal
resolution [97]. To measure geometric features, such as depth, width, and front wall angle, of a
keyhole from high-speed X-ray images, computer vision techniques were employed. The
application of computer vision techniques in materials science has been rapidly expanding because
of their advantages for quantifying digital images. The quantification of microstructural images
through computer vision enables numerical feature extraction so that the resulting data can be used
for analysis and characterization of microstructures [98]. Similarly, it is also possible to leverage
computer vision to extract quantitative information from the high-speed X-ray visualizations for
analysis and characterization of keyhole dynamics.

This chapter presents a pipeline that carries out an image processing routine followed by
geometric feature extraction to obtain time-resolved geometric information of a moving keyhole.
Statistical methods are applied, such as Spearman’s rank-order correlations followed by
agglomerative hierarchical clustering to correlate keyhole geometric features with the process
parameters. The emphasis of this chapter is on the methodology behind the proposed image
processing pipeline that performs geometric feature extraction from pixelated data. Thus, the main
point of the data analysis is to demonstrate the practicality of semi-automatic extraction of keyhole
data as well as how analysis of the resulting data may lead to new insights.

6.2  Advanced Image Processing for Feature Extraction

Before extracting the geometric features from a series of x-ray images, it is necessary to
obtain a well defined digitized boundary around each keyhole. To this end, it was necessary to
develop a novel image processing pipeline which is documented in this section. An overview of

the image processing path is depicted as a flow chart in Fig. 22.
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Fig. 22. A flow chart illustrating the image processing pipeline

The operation begins by importing a series of raw x-ray images as 8 bit gray-scaled images. A
single representative image from an x-ray experiment performed on titanium alloy Ti64 with
power at 426 W, velocity 1.2 m/s, and beam diameter 65 pum is shown in Fig. 23a and will be used
in subsequent sections. In some of the high-speed x-ray imaging experiments, the top surface of
the sample can appear slightly tilted if the top and bottom of the sample are not completely parallel.
Ensuring the sample is parallel to the frame and removing the pixels above the top surface
improves the preservation and segmentation of the top of the keyhole. Because this can impact the
subsequent image processing steps and skew the geometric data of the keyhole, a rigid (Euclidean)
transformation was employed to mitigate this issue. The red line in Fig. 23a runs parallel to the
initial sample surface at the beginning of the experiment and serves as the reference line for
cropping and transformation. The rigid transformed image in Fig. 23b was rotated and translated

about this red line while preserving the rigidity of the sample [99], ensuring that the top surface of
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the sample was parallel with the frame of the image. After performing the transformation, a
calculation was performed followed by storing the transformation angle of each experiment to
correct the front wall angle that is measured in the proceeding feature extraction. In addition to the
transformation, cropping was used to remove any unnecessary area (i.e., any part of the image
above the sample surface). Whenever the aforementioned “overlap band” hindered the described
image processing steps, it was cropped at a level up to 5 pixels beyond the top of the sample surface
to remove this artifact. This is especially important for resolving the top portion of the keyhole;
thus, it became an important aspect of the cropping that the depth of the keyhole measured in the
subsequent geometric feature extraction process was correctly calculated. Fig. 23b displays the

result of both the rigid transformation and cropping process applied to the raw image.

Fig. 23. a) Gray-scaled raw image of LPBF with red line indicating reference level,
b) The same image after transformation and cropping
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Following the cropping and transformation, the images underwent a sequence of de-noising
and normalization steps to enhance the quality and contrast of the keyhole. To quantify each
enhancement, both a histogram and a cumulative distribution function (CDF) were generated of
the pixel values for each processing step as shown in Fig. 24. In the raw x-ray image, as shown in
Fig. 24a and b, it can be observed that the pixel values were clustered, which made it difficult to
segment the keyhole from the image. The first step to achieving a well-defined keyhole was to
remove the experimental noise which is apparent in Fig. 24a. Typically, a simple background
division step was used for this purpose where each image in the series was divided by the first
image; however, when applied to the sequence of x-ray images, this rudimentary method proved
inadequate. This was because the background divided images possessed low noise at the beginning
of the series, but as the laser travelled across the sample, the experimental noise increased in
intensity, perhaps because of thermal expansion of the sample and interactions between the sample
and the enclosing holder.

To alleviate the increase in noise with each image, a local background division process was
enacted. This algorithm divided a given image, i, by an image that appeared earlier in the series by
some certain distance, i — x , with x being a hyperparameter to be calibrated. This effectively kept
the experimental noise at a consistent level across the entire series of images, which greatly
benefits the subsequent processing. Any cropped pixel location beyond the surface of the sample
was stored so that the following step used integers. Fig. 24c and d shows the resulting image of
the local background division and its pixel intensity histogram. Here, there are two keyholes in
each image: the leading keyhole from the original image and trailing keyhole from the image used
for the division step. This new methodology for instrument denoising in time-resolved image

sequences necessitated that a second keyhole appeared which came from the frame that was x
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behind the frame of interest, n. For the remainder of the analysis, only the leading keyhole (which
is brighter than the trailing keyhole) was considered for segmentation. This is because, in some
cases, pores generated behind the leading keyhole can collapse into the trailing keyhole region
thereby hindering the subsequent image processing steps and the geometric feature extraction.
Note that setting an optimal value for x during this step was crucial to avoid overlap of the two
keyholes, which entangles the shapes of both keyholes and interferes with segmentation. After
systematically evaluating many values for x, typically, setting x = 50 provided the best balance
between preventing any interference between the keyholes as well as minimizing the image noise.

Although the image in Fig. 24c depicts a well defined keyhole, the local background
division still has outlier pixel intensities, which could explain why the CDF has a much larger
pixel range in Fig. 24d than in 24b. To resolve this issue, it was necessary to introduce a clipping
step to the processing routine. Here, the goal was to remove any outliers and also enhance the
contrast by clipping the levels of intensities to a chosen range. The minimum and maximum values
were each set to a chosen percentile of the histogram of pixel values which increased the robustness
of this routine for each image in the series. This interval edge is another hyperparameter that can
be fine-tuned for different experiments, but it was usually set to the 10th and 99th percentile,
respectively. Values greater or smaller than the set interval were clipped to the edges of the interval
through an array clipping process [100]. This step eliminated the remainder of the outlying pixels
that were unrepresentative of the information contained in the image and resulted in a smaller CDF
pixel range as observed when comparing Fig. 24d and 24f.

After going through the previous image processing steps, the pixel values were mostly
confined to a range that varied among each frame within the experiment. To address this

inconsistency, the pixel values in each frame were normalized by re-scaling with the maximum
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and minimum values of the respective frame. This step increased the distance in intensities
between the keyhole and its surroundings since the re-scaling stretched the range of values to the
end values, i.e., 0 and 255 [101]. The resulting image and its pixel intensity histogram of this step
are shown in Fig. 24g and h, where it is apparent that the CDF spans the whole range of the x-axis.
Next, we performed adaptive histogram equalization [102] to further enhance the local contrast
around the keyhole, as shown in Fig. 24i and 24j. This function equalizes an image locally by
dividing the image into small tiles which avoids excessive amplification of noise and enhances
edge definition. Although the localized tile-wise nature of this step only made subtle changes to
the histogram according to Fig. 24j, performing this routine tended to increase the repeatability of
determining a suitable threshold value that outlined the keyhole for the entire image sequence.
After the adaptive histogram equalization, a simple global binary thresholding method was
employed on the image to assign any pixel with a value less than the threshold value to zero, and
all other pixels to 255. As shown in Fig. 25a, there was too much noise in the image after the initial
thresholding step. Thus, a sequence of de-noising steps was performed to remove noisy pixels in
the binarized image. To begin, this used an opening morphological operation, which consists of
pixel erosion followed by dilation as shown in Fig. 25b. By using a predefined kernel, a single
anchor point, size, and shape were dictated for the whole stack of images. The erosion operator
then computed the minimum pixel value overlapped by the kernel when it scanned across the
image and replaced the image pixel under the anchor point with that minimum value; while the
dilation operator did the opposite [101]. After this, any remaining open holes in the keyhole were
removed by using a hole filling command from OpenCV, which produced Fig. 25c. For further

de-noising, a median blur operation was used. In this operation, the predefined square, which can
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be any size, was scanned over the image with each pixel being replaced by the median value in the
square neighborhood surrounding the center pixel.

As seen in Fig. 25d, the majority of the small speckles of noise from Fig. 25c were cleaned
with this last de-noising step. The final stage in the methodology was developed automatically
detect nonzero object in the image, which was the keyhole itself, as shown by the outcome in Fig.
25e. This was achieved by using an algorithm based on a function from the OpenCV library that
detects all nonzero objects in the image, sorts them by number of pixels, and selects the largest
object. After all of the aforementioned processing steps were complete, the finalized images were
ready for geometric feature extraction.

6.3  Geometric Feature Extraction

After successful image segmentation, geometric feature extraction was performed on each
image from the array of x-ray images. The key utility of this process was making use of the contour
function from OpenCV to identify the object, i.e., the keyhole, in the segmented image. Once a
feature was identified, it was characterized by using quantitative metrics based on its geometry.
The primary geometric features that were extracted consist of the width, depth, and front wall
angle, which are regarded as the key attributes for understanding keyholes [103]. Additional
geometric features, such as area and perimeter, were also considered for this analysis. Fig. 26
presents the extracted geometric features of each frame from the same series of images as the
experiment shown in the previous figures.

The keyhole depth at each frame was calculated by taking the difference between the

maximum and minimum pixel positions perpendicular to the top surface of the sample. The depth
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Fig. 25. The final image from Figure 6.3i (a) after global binary thresholding; (b) after
morphological opening transformation; (c) after filling holes in the keyhole; (d) after median blur;
(e) after picking up the largest object

Fig. 26. The final image from Figure 6.4e after the geometric feature extraction process with the
target features of the keyhole shown with colored lines
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also took into account the additional distance applied to the cropping process to remove the
“overlap band” artifact, which was set in the image processing step. For the width, four locations
were considered regularly spaced about the keyhole depth indicated by the red lines in Fig. 26.
The first, second, third, and fourth red lines correspond, respectively, to the width at the top,
quarter, halfway, and three-quarter distance of the keyhole depth. Here, it was assumed that the
width at the top of the keyhole in the processed image was the same as the width at the keyhole
entrance. This was because any additional cropping to remove the “overlap band”, which was
limited to a maximum of 5 pixels, will have an insignificant effect on the width at or around the
keyhole entrance. The resulting aspect ratio of the keyhole was defined as the ratio of the keyhole
depth to the width at the top of the keyhole. In addition, the four red lines used to define the various
keyhole widths in Fig. 26 also constituted four different regions within the keyhole to define
separate keyhole areas. These areas consisted of one complete keyhole area and three partial areas.
The three partial areas corresponded to the areas bounded by the top of the keyhole to the quarter,
halfway, and three-quarter length of the keyhole depth. We included the various subdivided
keyhole widths and areas to capture more detail on the location dependent fluctuations of the
keyhole. Moreover, the front wall angle, shown in green in Fig. 26, was calculated based on the
angle that formed from the rightmost pixel at the very top of the keyhole and the rightmost pixel
at the three-quarter depth of the keyhole. Lastly, the perimeter of the keyhole was simply retrieved
from the contour of the keyhole without further modification.

Since the geometric features are collected for each frame of the series, we are able to
quantify the trends that occur with time for each feature. An additional way to investigate the
transient nature of keyholes is to numerically differentiate the feature of interest. This method for

quantifying of the fluctuation rate was calculated using the equation below for each extracted



98

geometric feature and allowed data analysis to take place on both static and dynamic geometric
features.
Fluctuation Rate = Feature[i""] / Feature[(i — 1)™] (31)

6.4  Nonparametric Data Analysis

To elucidate the correlations that may exist between the processing parameters and the
extracted keyhole features, two statistical methods were employed. The first method was
Spearman’s rank-order correlation coefficient, rs, which is a nonparametric method and measures
the rank correlation between two variables based on the equation:

6 D?
nnz-1)

re=1- (32)

In this equation, D; indicates the difference between the ranks (x; vs yi) for the ith observation, and
n is the number of observations. The rs value ranges from —1.0 to +1.0, where values close to —1.0
or +1.0 indicate a strong relationship and values close to O indicate no relationship. A positive
value indicates that the increase in one variable is related to the increase in the other variable, while
a negative value implies that the increase in one variable is associated with the decrease in the
other variable, i.e., the two variables are anti-correlated. The second method used for data analysis
wa agglomerative hierarchical clustering coupled with visualization using a dendrogram [104]. As
a bottom-up approach, all observations are present as their individual clusters at the start, while
clustering happens gradually as it moves up the hierarchy by merging a pair of clusters at each step
based on the (dis)similarities between sets of observations. In this chapter, the focus is on using
average group clustering, which calculates the (dis)similarity, dea(G,H), between the two groups

based on:

dor(G.H) = 5= Tie Tuen du (33)
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Here, dii denotes the dissimilarity between element i from group G and element i’ from group H,
where Ng and Nn represent the number of observations in corresponding groups. A cluster merged
earlier implied that a pair of clusters were more similar in comparison with others formed later in
the hierarchy, where entire hierarchical clustering can be graphically visualized with the aid of a
dendrogram.
6.5  Keyhole Segmentation

In order to demonstrate the robustness of the image processing technique built for keyhole
segmentation, the code was employed on four different high-speed x-ray experiments representing
strongly differing keyholes shapes, as shown in Fig. 27a, 27c, 27e, and 27g. The corresponding
processed images of those x-ray images are presented in Fig. 27b, 27d, 27f, and 27h. These
segmented images show that the various keyhole shapes were well-preserved after undergoing the
aforementioned image processing. Hence, this verified the correct operation of the keyhole
segmentation code and its ability to accurately capture the keyhole shape over a wide range of
processing parameters. To validate the robustness of the geometric feature extraction, manual
measurements were taken of the width and depth in the raw image from each of the four different
keyholes in Fig. 27a, 27c, 27e, and 279, and compared with the width and depth measured by the
process described above. This provided confirmation that the values from both the manual and
automatic measurements provided a match. The outcome values from the following geometric
feature extraction process are trustworthy since the structures of the keyholes are successfully
segmented. This method allowed for a keyholing segmentation methodology that did not rely on

the large datasets necessary for segmentation with deep learning.
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6.6 Time-Resolved Geometric Features

The static and dynamic geometric features obtained from the same experiment shown in
Fig. 23, 24, 25 and 26 are plotted in Fig. 27 and 28, respectively. Fig. 27 plots each static geometric
feature value versus the corresponding frame number along with a dashed and dotted line
representing the mean and twice the standard deviation, respectively. These reveal the time-
dependent nature of each geometric feature during laser processing along with a quantitative
measure of the variance indicated by the 2o value. Likewise, the calculated fluctuation rate of each

geometric feature for the same experiment is in Fig. 29. These plots show occasional spikes that

may be correlated with a processing defect such as pore formation or spatter ejection.

Fig. 27. Gray-scaled raw images from laser melting experiments performed on Ti64 with (a) a
power of 197 W, velocity of 0.6 m/s, and beam diameter of 65 _m ; (b) after image processing of
(@); (c) a power of 426 W, velocity of 0.9 m/s, and beam diameter of 65 m ; (d) after image
processing of (¢); (e) a power of 426 W, velocity of 1.2 m/s, and beam diameter of 65 _m ; (f) after
image processing of (e); (g) a power of 426 W, velocity of 0.6 m/s, and beam diameter of 65 _m ;
(h) after image processing of (g)
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6.7 Spearman’s Correlation

To map correlations between the extracted geometric features with different process
parameters, it was necessary to apply the Spearman’s correlation on the obtained data, i.e., the
mean value of each static geometric feature. In addition to the typical processing parameters, such
as power (P), velocity (V), and beam diameter (D), several combinations of these parameters, such
as energy density (PVD?(w4)) and power density (P/D?(w4)), were also added to the analysis. The
process parameters used for all 14 x-ray imaging experiments are given in Table 4. The results are
presented in Table 5, where values more/less than +/— 0.85 are highlighted in bold.
It is apparent that there is a strong positive dependency between depth and front wall angle with
any combination of parameters that include P/V, regardless of whether the spot size (D) is included
or not. However, the aspect ratio (depth divided by the top width) only had a high correlation
(0.87) with P/V and not any of the parameters that include spot size (D). The keyhole area and
perimeter both showed strong positive dependency with laser power (P). Lastly, the velocity (V)
was the only parameter that had a moderate impact on the keyhole width, with all other parameters
having poor correlation. Furthermore, the addition of feature PAVD highlights strong positive
dependency with depth, which agrees with the work conducted by Gan et al. [105] where they
found that keyhole depth scales linearly with PAVD. It should be noted that the size of the dataset
only consisted of 14 x-ray imaging experiments, so the trends observed are indicative rather than
definitive. Furthermore, the number of geometric features of the keyhole in each frame can be
expanded to find more meaningful relationships between the variables. Despite the small data
quantity, the potential for a comprehensive quantitative analysis based on this novel image

processing and feature tracking method is evident from the initial results.
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Fig. 28. Time-resolved plots depicting the static features for the keyhole (a) depth; (b) top width;
(c) aspect ratio of the depth over the top width; (d) whole-body area; (e) perimeter; (f) front wall
angle. The x-axis represents the frame number which were captured every 20 ps
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Fig. 29. Time-resolved plots depicting the dynamic features for the keyhole (a) depth; (b) top
width; (c) aspect ratio of the depth over the top width; (d) whole-body area; (e) perimeter; (f)
front wall angle. The x-axis represents the frame number which were captured every 20 us



TABLE 4
The Process Parameters of the 14 Samples

Sample P(W) V (m/s) D (um)
Sample 1 426 1200 74
Sample 2 139 400 74
Sample 3 540 1200 74
Sample 4 311 800 74
Sample 5 426 700 65
Sample 6 426 900 65
Sample 7 426 1200 65
Sample 8 426 600 65
Sample 9 426 800 65
Sample 10 197 700 65
Sample 11 197 900 65
Sample 12 197 500 65
Sample 13 197 600 65
Sample 14 197 800 65

TABLE 5
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Spearman’s Rank-Order Correlation Coefficients Between Measured and Derived Variables

Metric P V D P/D¥n/4) P/ND¥m/4) PIND PIN  D¥m/4) VID¥m/4) PAVD
Depth 0.706 -0.051 -0.196 0.817 0.974 0.987 0.975 -0.196 -0.035 0.930
Top Width 0.209 0.721 0.235 -0.025 -0.464 -0.450 -0.495 0.25 0.721 -0.178
Y3 Width 0.340 0.801 0.275 0.117 -0.367 -0.341 -0.363 0.275 0.767 -0.037
Y Width 0.560 0.865 0.318 0.426 -0.064 -0.002 -0.011 0.314 0.809 0.253
Y5 Width 0.717 0.554 -0.118 0.766 0.498 0.512 0.453 -0.118 0.561 0.626
Front Angle 0.600 -0.171 -0.274 0.748 0.982 0.974 0.931 -0.275 -0.137 0.868
Aspect Ratio  0.281 -0.510 -0.078 0.440 0.824 0.846 0.867 -0.078 -0.519 0.631
Perimeter 0.849 0.316 -0.235 0.858 0.771 0.767 0.691 -0.235 0.393 0.886
Area 0.938 0.469 0.000 0.886 0.714 0.763 0.713 0.000 0.450 0.900
Y4 Area 0.856 0.296 -0.1961 0.955 0.850 0.877 0.847 -0.196 0.320 0.947
Y% Area 0.839 0.296 -0.1961 0.950 0.850 0.877 0.845 -0.196 0.305 0.930
Y4 Area 0.764 0.134 -0.235 0.900 0.925 0.934 0.893 -0.235 0.153 0.921
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6.8  Agglomerative Hierarchical Clustering

In addition, to visualizing the results in Table 5, agglomerative hierarchical clustering was
applied on the Spearman correlation coefficients. Here, a 22x22 correlation matrix (12 measured
features, 10 processing parameters with their derivatives) became the input to hierarchical
clustering, where an individual column or row represents dependency of a single parameter on the
rest of the variables. This governs the relative position of the variables on a dendrogram as a
function of their dependency with all the variables, not just one. A dendrogram (Fig. 30) visualizes
the calculated dissimilarities, where a shorter distance (x-axis, i.e., moving from right to left)
implies more similarity, resulting in a cluster forming sooner [106]. For instance, in Fig. 30, the
depth is more related to P/VD than P/V, which is also conveyed by the Spearman rank-order
correlation in Table 5. On the other hand, the position of beam diameter highlights that it is not
correlated with keyhole geometry features. Here, because of visualization, the interpretation of
data is quick and often provides useful insights. To summarize Fig. 30, (1) the light blue cluster
captures width dependence on velocity and depth; (2) next, the top green cluster captures the area
dependency on power density; (3) similarly, the next sub green cluster captures the depth and front
wall angle dependence on the P/V ratio and their variations; (4) followed by, the perimeter and
area dependency on power; and (5) the aspect ratio’s weak dependence on the P/V ratio.
6.9  Summary of Geometric Feature Tracking

The quantitative outcome values from the keyhole geometric feature tracking method and
the following data analysis enabled discovery of trends between the process parameters and the
keyhole geometric features. Separately, referring to the binary correlations in Table 5, both

keyhole depth and front wall angle are inversely proportional to laser scan velocity [103].
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The calculated trends shown in Table 5 agree with those discovered by Cunningham et al. [104]
where they propose that front wall angle depends on laser power density over laser scan speed.
However, Table 5 does not show a strong correlation between power density, (P/D?(w4)), and front
wall angle. When compared to previous work by Gan et al. [105], the current study showed that
depth is more strongly correlated with P/VD than with PAVD. One thing to note is that work used
the absorbed power in the material which they were able to estimate using absorptivity simulations,
rather than the raw laser power, which is what is used in this work. This discrepancy will most

likely increase the correlation to the PAVD combined parameter.

|: 1/4 Width
Top Width

1/2 Width
V/D3(n/4)
V(mm/s)
D?(n/4)
SpotSize(mm)
1/2 Area
1/4 Area
3/4 Area
P/D(n/4)
P/sqrt(VD)

Depth

P/VD

P/V

Front Wall Angle

P/VD*(/4)
—_|

[]

Area
P(W)
Perimeter
3/4 Width

Aspect Ratio

T v T v T
1.0 0.8 0.6 0.4 0.2 0.0
Dissimilarity

Fig. 30. A dendrogram showing the calculated dissimilarities between the extracted keyhole
geometric features and processing conditions for 14 laser melting experiments on Ti64
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These results indicate that uncharted trends between process parameters and keyhole
geometric features or correlations among keyhole geometric features can be discovered through
this proposed method. In particular, this methodology may be able to link the occurrence between
geometric fluctuations of the keyhole and localized events such as a pore pinching off at the bottom
of the keyhole. In addition, since the laser absorptivity is highly dependent on keyhole geometry
[107], this method may be effective for quantifying the changes in the laser absorptivity throughout
the fluctuations of the keyhole so that a direct correlation between keyhole geometry and laser
energy absorptance can be revealed experimentally.

The following conclusions can be drawn based from this chapter. 1.) A novel image
processing routine was developed to quickly and accurately segment keyholes regardless of their
morphology. The method relies on noise removal, histogram normalization, and morphological
transformations and was developed to be effective on a variety materials/ experiments with
minimal changes. In this way, the method is material agnostic because of its focus on the
manipulation of pixel intensity distributions in order to preserve keyhole shapes and facilitate
thresholding. 2.) Feature extraction was employed in order to measure and quantify a variety of
geometric descriptors of the keyhole throughout its evolution. Because these descriptors are solely
a function of geometry, several new features were added to the data collection. Feature tracking of
a fully segmented keyhole across many frames offers a more complete understanding of the highly
transient nature of keyholing thanks to its comprehensiveness. 3.) Twelve different geometric
features were tracked for numerous frames in 14 different experiments resulting in a large data set
relative to previous manual analysis. Preliminary data analytics was applied with two different
statistical tools to discover relationships between the process parameters and geometric features of

keyholes. While strong correlations were discovered in the analysis, more data should be collected
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over a wider range of process parameters and material systems to increase confidence in the
observed trends. 4.) The manipulation of the proposed image processing pipeline followed by
feature extraction is the salient point of this chapter. Thus, the presented method for quantifying
the keyhole geometry from in situ x-ray videography can be used as an input to a wide variety of
data analysis methods to discover meaningful relationships between the variables. Furthermore,
the power of this pipeline is that one can add additional user-defined geometric descriptors by

manipulating the targets of extraction which adds to its versatility.
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CHAPTER 7

IMAGE SYNTHESIS USING GAN AND CGAN

7.1 Image Generation Opportunities

As has been discussed, the effort of LPBF process characterization and subsequently part
certification faces a shortfall in the amount of data available for which to thoroughly understand
these processes. The DXR image capturing methodology has been extremely beneficial for
providing data in-situ, at a high resolution where inspection of the build quality microstructures
can be conducted. The ultra-fast speed of the imaging provides a large dataset to investigate, too
large for human inspection in a reasonable timeframe. The advancements of artificial neural
networks which can process thousands of images quickly has turned this issue into an opportunity,
as these machine learning approaches can also mine that data for patterns that would be otherwise
imperceptible to humans — even if there was enough time and manpower for a visual inspection of
all of the images. But while the volume of data is substantial, the variety of that data is lacking.
The limited number of experimental builds under which the DXR apparatus captured imaging was
limited. There is a need for more data, both in terms of new combinations of process parameter
combinations, and for new images of those parameter combinations that were collected. These
additional data can help inform and validate thermal models for the resultant physical
characteristics of the build objects, as they relate to the size and dimensions of those microstructure
objects visible in the DXR data.

The lack of experimental data to evaluate the in-situ process in LPBF additive
manufacturing can be alleviated by exploring machine learning methods that can approximate and
even generate data representations. In order to adequately characterize an LPBF build in terms of

quality, there must be a comprehensive understanding of the nature of the defects induced during
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the manufacturing process. At the scales involved for these defects (in terms of micrometers),
humans alone cannot evaluate those defects without some advanced imaging techniques. The focus
of this work was therefore to develop a machine learning paradigm that can be generalized to learn
from the limited data available, to interpolate from it, and ultimately develop new data
computationally that can inform research into the microstructure quality at the time of the build.
This involved the usage of a class of generative models known as the conditional generative
adversarial network, or CGAN — a modified system architecture from the more general GAN
approach. For this work, the goal was to use the generative model to create visual approximations
of microstructures for combinations of process parameters that were not experimentally produced
under the DXR imaging.
7.2  GAN Modeling

An initial GAN was developed that utilized a generator with one hidden layer, which took
as an input z, and yielded a 28x28x1 pixel sized image. The hidden layer used the Leaky Rectified
Linear Unit (ReLU) activation function. Unlike the standard ReLU function which would map a
negative input to a 0, Leaky ReLU allows for a small positive gradient. Meanwhile, the output
layer of the network utilized the tanh activation function, which was used to scale the output values
in arange of -1 to 1, which has been shown to produce crisper images in relation to results obtained
from other activation functions [108]. The discriminator network was developed with a two layer
neural network, with 128 hidden units and again, the Leaky RelLU activation function. Binary
cross-entropy was used for the loss function during model training, which was minimized by
measuring the difference between computer probabilities and actual probabilities (which had two

possible outcomes for classes for predictions matching the labels). Optimization was achieved
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using the Adam optimization algorithm, an advanced gradient descent optimizer based on adaptive
moment estimation, which itself is a method of stochastic optimization [109].

For consistency and balance in the data, 2,000 images were used for each class — that is, each
combination of laser velocities (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 meters per second) and laser
intensities (150, 200, 250, 300, 350, and 400 Watts).

7.3  CGAN Modeling

Modifications are possible to the general form of the GAN network architecture such that
performance and accuracy can be improved upon [110]. The use of the GAN to generate vapor
depression and melt pool geometries can be supplemented by incorporating the process parameter
values into the artificial learning process. The Conditional GAN is particularly well suited to learn
not only from the image training data, but incorporate numerical inputs in the form of y into the
generator network, as described previously. In this method, values were inputted, where v could
be 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 for the training data as these were the velocity values that
were experimentally performed (in meters per second). Likewise, values of laser intensity were
inputted, where p (or power in Watts) could be 150, 200, 250, 300, 350, and 400.

Using the previously programmed GAN, modifications were made to incorporate the new
input requirements, where embedding and an elemental multiplication step was used to combine
the random noise vector z, and the numerical input labels, y, into a joint representation. This
happens by taking in the y value as an integer value, and turn it into a vector of size equal to the
length of the random noise vector using the function in Keras called Embedding layer. From here
the embedding layer was combined with the noise vector, as mentioned above, using the Keras
Multiply layer, which Keras uses to multiply the corresponding entries of two-equal length vectors

together to create one single vector that is the product of those original two [111]. This is then fed



111

into the generator network, from which a new image is generated. The overall step by step
framework of the network is listed below. As previously noted, this was coded in Keras and is
based on, with several modifications, a CGAN used for image generation [111].
e Development of the input layer
e Development of a transposed convolution layer, which transforms the input from a
7X7x256 into a 14x14x128 tensor
e Application of batch normalization
e Application of the Leaky ReLU activation
e Development of another transposed convolution layer, which now transforms the input
from a 14x14x128 into a 14x14x64 tensor
e Another application of batch normalization
e Another application of the Leaky ReL U activation
e Development of a third transposed convolution layer, which transforms the input from a
14x14x64 into a 28x28x1 tensor
e Development of output layer with the tanh activation function
e Input of random noise vector z
e Input of conditioning label as an integer
e Label embedding step to turn labels into dense vectors
e Flattening step to embed 3d tensor into 2d tensor
e Calculation of the element-wise product of the vectors z and the label embeddings

e Output which generates an image for the given label
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Fig. 31. GAN layers
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The discriminator network is also similar to that of the general GAN with a couple of
exceptions, also involving how its input is received. For the discriminator, the input is a three-
dimensional image rather than the flat vector that the generator receives as its input (see Fig. 31).
Just like the generator network, the discriminator uses the Keras Embedding layer call to
accomplish this. It takes a label, in the form of an integer, and uses that Embedding to transform
the label into a dense vector of size 28x28x1 = 784, which is the length of the flattened input image
[111]. The label embeddings then must be reshaped into the image dimensions, which was
28x28x1. From here, the label was reshaped by being concatenated onto the corresponding image,
which created a joint representation with the appropriate shape of 28x28x2. That last digit 2
represents the embedding on top of the image. Finally, that concatenated image-pair is fed into the
neural network of the discriminator, which is made to take as input the 28x28x2 shape that it
receives. The overall step by step framework of the network is listed below. Like the generator,
this framework was based on, with some modifications, a CGAN used for image generation [111].

e Convolutional layer to transform input from 28x28x2 into 14x14x64 tensor
e Leaky ReLU activation

e Convolutional layer to transform input from 14x14x64 into 7x7x64 tensor
e Batch normalization

e Leaky RelLU activation

e Convolutional layer to transform input from 7x7x64 into 3x3x128 tensor

e Batch normalization

o Leaky ReLU

e Output layer with the sigmoid activation function

e Input image is received and label
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e Label embedding turns labels into dense vectors into tensor with size 28x28x1

e Flattening of 3d tensor from the image into 2d tensor of size 28x28x1

e Reshaping of label embeddings to match the dimensions of the input image

e Concatenation of label-pair

e OQutput classification of the image-label pair

By incorporating a continuous feature representation into the training, the model can

potentially learn the distributional relationships of that feature with regard to the underlying
principals governing that representation. For instance, the thermodynamics and physics that inform
the fluid nature of the gaseous vapor depression and the liquid melt pool formations. While the
laser intensity for each build is relatively constant, the heat at the surface of the build is changing
over time, due to buildup in energy as the laser moves across an area. Changing the laser intensity
or velocity across the build surface will therefore have a direct impact on the physical features of
the in-situ build. Generating by incorporating this continuous representation would also have a
direct impact on LPBF applications as complex builds will be a constant focus; to create objects
that can be utilized in aerospace projects. As described previously, the heat buildup in the corners
and crevices of these builds as the process develops from layer to layer can have a deleterious
effect on the microstructural stability. Thus, involving a feature representation for the thermal
variations in the build can improve the CGAN’s ability to accurately model and generate those
new microstructure representations. As with the GAN model, 2,000 images were used for each
class — that is, each combination of laser velocities (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 meters per
second) and laser intensities (150, 200, 250, 350, and 400 Watts). The next section will describe

the images that were produced as a result of building this model.
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7.4  Generated Image Analysis

Outputs from both the GAN and CGAN were analyzed to determine how closely these
models were able generate new data to depict the LPBF process, focusing on the vapor depression
area from the heat affected zone (HAZ). There was a GAN model run with identical parameters
for each collection of training data at each laser velocity setting (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4
meters per second) for each power setting. Fig. 32 shows a visual example of model outputs, where
the training data included only images collected experimentally at 400 Watts. Likewise modeling
with the CGAN was performed similarly, with the exception of the inclusion of the aforementioned
y values. For the 400W collection of data, a random sample of 15 images were inspected from the
real data, the GAN output, and the CGAN output. Contouring using OpenCV in Python allowed
for calculations of the pixel area for each image, which is depicted in Fig. 33. The outer boundary
of each vapor depression was established, within which the area of the object could be calculated
by a count of the pixels within that boundary.

A visual inspection of the images produced by both the GAN and the CGAN was also
conducted, to determine if human observers could detect the differences between those generated
images. Calculations of the area alone could be uninformative in that the areas of the generated
images could still be similar to the real data while also providing objects with extremely divergent
shapes. However, this turned out to not be the case as the images sampled all resembled the
characteristics of an appropriately shaped vapor depression from an LPBF build in-situ. This
qualitative test helped to accept the data output from the models prior to more rigorous quantitative

evaluations to determine the statistical properties of those data.
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Fig. 32. Real image (left), GAN generated image (center), and CGAN generated image (right)

Images generated were also generally noise free. Despite the denoising steps described in
Chapter 3, many of the training data images still retained random individual white pixels in the
images. Yet the output images from the GAN and CGAN had noticeably less pixel noise at a visual
inspection. This suggested that the models’ capabilities for mapping latent features did not include
noise as a feature. The models therefore learned the relevant information from the images, and
were able to disregard such irrelevant information from training.

7.5  Train on Synthetic Test on Real

Testing the performance of the GAN and the CGAN over 1,000 epochs started with a novel
methodology where a supervised learning task can be defined on the domain of the training data
[112]. The generated images of the entire HAZ were considered, which depicted the vapor
depression areas and the melt pool areas from the build plate. This procedure uses the output of
the GAN to train a secondary model, which is also tested on a hold-out portion of the original data
— known as Train on Synthetic Test on Real (TSTR). The appeal of this method of evaluation is
that it helps to demonstrate the ability of the synthetically derived data from the two GANSs to be
used in real-world applications where there may be many features in the training data upon which

the synthetic observations are made.
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(center), and CGAN generated (bottom)
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A random forest classifier, a supervised machine learning classification model, was used
to determine whether a given image was real or synthetic. The performance of that classifier, when
trained with the original data and then trained with the synthetic data, was used to provide the area
under the precision-recall curve (AUPRC) and area under the receiver operating characteristic
curve (AUROC). These values show how well the classifier was able to correctly identify a real
image as being real. That same classifier is then utilized to determine if an artificial image
generated by the GAN and CGAN were “real”, which is to say, did the classifier conclude that an
artificially created image was so close to a real image that it was indistinguishable. These metrics

are provided in Table 6.

TABLE 6
AUPRC and AUROC from TSTR

GAN CGAN

AUPRC
REAL 0.8135 0.8677
TSTR 0.7569 0.7901

AUROC
REAL 0.7745 0.7925
TSTR 0.6155 0.6678

7.6 Intersection Over Union

Intersection over Union (loU) is a commonly used procedure for many image processing
tasks. Two images, or objects, when evaluated against one another, will be evaluated on how much
common overlap there is among those two images (Fig. 34) [113]. The goal is to quantitatively

evaluate the overlap between two images, to see how much they differ. In this case, the two images
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used were a real observation and the artificially generated observations from the GAN and CGAN

(see Fig. 35). The calculation for the loU is:

ToU = (Area of Intersection of Two Objects) (34)

(Area of Union of Two Objects)

This can also be expressed as:

__ (AnB)

IoU = ao5)

(35)

loU evaluates the number of pixels that are correctly attributed to a particular class and is
defined by the equation above. The number of pixels that overlap between the ground-truth mask
and the predicted mask is denoted by A N B (intersection), and the number of pixels that are
occupied by at least one mask is denoted by A U B (union).

The average 10U score for 100 generated images that were compared against real images
was calculated and presented in Table 7. This provided a quantitative method for examining how
much the artificial images produced by both generative networks had in common with the real
images.

7.7 Hausdorff Distance

The Hausdorff distance (HD) is another quantitative metric used for evaluating the
closeness of two images. It is a non-linear operator, which measures the amount of non-matching
in two different sets of points [114]. Essentially, the HD is looking at how much each point on one
image set lies near some point on another image (Fig. 36). The uniqueness of this approach is that
the goal is to evaluate closeness of a point and many points in the second image, that is, it is not
looking for an exact corresponding point in both images. This makes the algorithm more robust to
deviations in points in the images, as proximity is more important than an exact location.
Additionally, the metric is particularly useful when boundaries are more important than the area

which is the case when evaluating the outlines of the HAZ in the build dataset of images.
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Calculation of the HD is derived from finding the distance between two points, a and b, in

this case, in a Euclidean space [115]:
d(a,b) = |la—Dbl|
The distance between point a and a set of points B is given by:

d(a,B) = mind(a,b) = min|la - b]|

(x1,y1)

Object 1 (x3,y3)

(x2,y2)

Object 2

(x4,y4)

Fig. 34. Intersection over Union approach for overlap

_ Predicted
- Ground Truth

Fig. 35. loU overlap of predicted (red) and ground truth (blue) images

(35)

(36)
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The directed distance between a set of points A and a set of points B, referred to as h(A,B), then
becomes:

h(A,B) = max d(a,B) = maxmin d(a,b) = maxmin |b — al (37)

So that the Hausdorff distance can be calculated by:
H(A,B) = max(h(A, B),h(B, A)) (38)

For segmentation of vapor depressions, all pixels in the training images and in the
generated images that comprise that object of interest on the edge of the predicted mask will be
paired to the nearest neighbor of the ground-truth mask and vice-versa. Out of these nearest
neighbor pairs, the pair with the largest distance between them— i.e., the greatest mismatch
between the ground-truth mask and the predicted mask—make up the Hausdorff points, with the
HD being the distance between those nearest neighbors.

A summary of the results for 100 images generated by the GAN and CGAN that were
compared against ground truth images is presented in Table 7. As this metric looked for the largest
distance between two sets of nearest neighbors, the units in the metric were in number of pixels.
7.8  Maximum Mean Discrepancy

The goal of a generative model, in this case the GAN or the CGAN, is to learn the
underlying features that make up the distribution of the data, so that it can take from that
distribution the means with which to represent that data. If this distribution is learned
appropriately, the artificial representations that the generator produces will closely match what the
real data shows; the better it learns the distribution, the better it is able to make new images.
Therefore, evaluations of the output from the GAN and CGAN should include a metric that directly
evaluates the discrepancy in the distribution of the data. For this reason, Maximum Mean

Discrepancy (MMD) is ideal, which quantifiably judges whether two data sets — in this case the
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real data and the generated data — were generated by the same distribution [116]. It is a statistical

test that uses a kernel-based approach for evaluating the sameness of the distributions [117].

Fig. 36: HD between two points located by the end of the arrows

TABLE 7
loU and HD Measurements
[e]V] HD
GAN 0.9345 120
CGAN 0.9562 95

Formally, MMD can be defined as a probability metric to calculate the distance difference

between feature means [118]. If given a set of variables X, a feature map ¢ is then generated over
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that set which maps X to another space, F such that #(X) € F. The feature means can be calculated
by taking the probability measure P on X, which is a set of variables, and generating a feature map

that takes ¢(X) and maps it to every other coordinate of ¢(X) in this fashion:

o (6(X)) = [E[p(XD], ... [E[p(X)]]" (39)
While the inner product of the feature means of X~ P and Y ~ Q is expressed as the kernel

function:
{p (X)), 1o (0 (M), = Epo[{(¢(X)), (9(1)) ] = Ep o[k (X, Y)] (40)
From this, the MMD can be obtained for X and Y to calculate the distance between the feature

means of X and Y:

MMD?(P,Q) = llup — tpol, (41)
From which equation the above is used to make the expression:
MMD?(P,Q) = Ep[k(X,X)] — 2Epo[k(X, V)] + Eq[k(Y,Y)] (42)
In order to properly define the kernel function, previous work has shown success using a radial
basis function (RBF), using the Frobenius norm between vectors [119]:
K(x,y) = exp (—llx — yll 2/ (20%)) (43)
Using the MMD metric to evaluate the real data and the GAN generated data yielded a
value of 0.33, with a sample of that distribution depicted in Fig. 37. The calculation for the real
data and the CGAN data, which yielded an MMD value of 0.18 is likewise depicted.
7.9  Avoidance of Model Overfitting
During the training procedure, it is possible for the GAN to essentially learn to completely
memorize the data during training, and simply reproduce that memorization in its output [120].
The MMD method of evaluation has the benefit in that it can be used to evaluate model overfitting,

that is, learning to match the real data distribution too exactly. To determine overfitting, a null
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hypothesis was constructed, that the MMD between the generated data and the experimental data
is at most as large as the MMD between the generated data and the holdout training data. Thus, a
MMD three sample test was constructed whereby X represented the generated samples, Y
represented the test set, and Z represented the training set [121]. These sets were identified as such
under the logic that if the MMD between X and Y is less than or close to the MMD between X and
Z, that would indicate that there was as much closeness to the real data from the generated data,
thereby indicating the existence of data memorization. The expectation for the hypothesis is that
MMD(synthetic, test) < MMD(synthetic, train) will be false. This is essentially a test for a null
hypothesis that the model has not memorized the training data, and if that can be rejected [110].
Upon running this test for the GAN generated data, the average p-values were 0.27, and for the
CGAN generated data the average p-values were 0.33. This indicates that the null hypothesis
should not be rejected, that the MMD between the synthetic set and the test set is at most as great
as the MMD value between the synthetic set and the training set. The artificially generated samples
did not look more identical to the real data than they did to the test set, which indicated that neither
the GAN nor the CGAN was an overfit model.

Using MMD alone cannot guarantee avoidance of overfitting as this method may not be
sensitive enough to differences in the distributions [122]. However, the visualization shown in Fig.
37 from a sample distribution does indicate that there is a difference between the distribution of
the real data and those generated by the two GAN models. Those distributions for the GAN and
CGAN distributions are similar to one another, yet both have distribution patterns different from
the real data, as measured and quantified. The test therefore verifies that the model was not

overfitting the data, and that the generated images are in fact unique.
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Fig. 37. Sample distributions in comparison of the real data along with both the GAN (top) and
CGAN (below) generated data

7.10 GAN results with RMSE
Testing of both GAN models also used the root mean squared error (RMSE). This was

chosen as a metric for evaluation as it provides a quantitative measure of the difference between
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the predicted values and the real values, based on absolute difference. This therefore considers
predictions that are both above and below the true value. Additionally, it is an average of the total
amount of error, as opposed to the absolute average error. As vapor depression characteristics can
vary widely, even when all parameters are held the same, evaluating the magnitude of the error
was more appropriate than measures that evaluate based on average error where extreme values
would not be penalized as highly — which is of interest in this case where large error, that is

predictions very far off from the real values, are particularly of interest. RMSE can be calculated

by:

RMSE = \/% NP (P — 1))? (44)
where (f;; — 1;;)* is the differences between the predicted value and the actual value, squared,
and n is the total number of observations.

The RMSE values have the same value as that of the original data. In order to interpret the
predictions, another metric was used in conjunction, the Scatter Index (SI). The SlI value provides
insight into the RMSE, the performance of the predictions, in a ratio that helps determining how
far off that error actually is from the real data. SI is a normalized measurement of the error in a
system, where lower values generally indicate better performance in comparison to larger numbers
[123]. It is calculated by dividing the RMSE by the mean of the observations, and multiplying by
100 to achieve a percentage score. Thus, SI presents RMSE with respect to the mean value of the

observations in the data. It can be expressed as:

s] = RMSE (45)

X

The results from these measures are presented in Table 8 for the GAN model and Table 9
for the CGAN model. Here, the RMSE was calculated for all images produced for each class of

velocity setting. The RMSE and subsequently the SI were higher for area and convex hull area,
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than they are for depth and width. Overall, generated data at the 0.2 and 0.6 m/s velocity setting
images resulted in a lower RMSE and Sl value. This is likely due to the narrower range of physical
fluctuations for those builds as well as the amount of data available. RMSE and Sl values for the
width and depth were lower, which was also likely due to the more limited range in experimental
values obtained for these metrics. The vapor depression depth and width did not have as much
overall variation as the area and convex hull, which consider the overall size and shape rather than
a single dimension.

Overall, the RMSE and Sl results indicate the same trend as has been discussed with the
previous evaluation methods, that is, that the results obtained for the CGAN were more favorable
to the GAN. While many of the generated images for the GAN model seemed to be close to their
original counterpart, with many Sl values below 20.0, the CGAN consistently outperformed the
general GAN in terms of the quality of the images produced when compared to the experimental
data upon which these generated images were based. This metric of uncertainty quantification for
the results of the GAN and CGAN output thereby helps to validate the usefulness of these
approaches, especially for the CGAN, in developing images to represent data at lower velocities.
This is already the ideal scenario, as the experimental data already suggested that velocities at the
lower ranges induce deeper vapor depressions, rather than no vapor depression at all for the higher
velocities. The penetration of the vapor depression through the material is necessary to ensure
proper fusion of substrate particles, for a proper solidification and resultant microstructure.

7.11 Effectiveness of Generated Images

The output images for each network were near indistinguishable from the real,

experimental data (examples of which were shown in Fig. 31). At a visual inspection these

generated images seemed to match the data that was collected experimentally. It has been shown
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TABLE 8
GAN Evaluation with RMSE and SI Metrics
Test Area C.H. Depth Width
Parameter RMSE SlI RMSE Sl RMSE SI RMSE Sl
0.2m/s 299.11 28.08 417.70  30.61 28.63 2941 2239 16.74
0.4m/s 426.98 30.47 448.90 49.46 4397 5724 2528 53.77
0.6m/s 261.13 27.66 330.45 24.51 3219 5805 2120 23.20
0.8m/s 44395 103.3 538.76 119.5 55.77 1887 7152 1309
1.0m/s 312.15 302.8 309.43 3015 78.04 199.0 4653 68.72
TABLE 9
CGAN Evaluation with RMSE and S| Metrics
Test Area C.H. Depth Width
Parameter RMSE SI RMSE SI RMSE Sl RMSE Sl
0.2m/s 279.05 18.52 301.53 19.01 2789 1285 2222 11.82
0.4m/s 31521 20.21 39751 22.63 39.34 1955 3859 17.83
0.6m/s 250.63 19.64 291.07 23.89 25.03 15.84 18.78  13.86
0.8m/s 405.12 50.25 518.88 68.27 63.78 4569  76.60 29.35
1.0m/s 360.15 75.96 375.89 94.35 7146 1051  66.32  49.55

that the model was not overfitting, thus these images could reliably be used as approximations of
actual DXR data for LPBF builds.

As shown in Fig. 33 previously, the output from the GAN had a much narrower range of
variation in the pixel area of the objects generated, when compared to both the real data and the
CGAN. This would imply that while the GAN was not overfitting in its model, it was still learning
a more limited distribution in the training data, such that its output images were very similar for

each velocity setting group of images. For instance, for images taken at a laser velocity setting of
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0.4 meters per second, the GAN created images that ranged in pixel area of 3,120 to 3,562 pixels.
Meanwhile, for that velocity in the experimentally captured images (the real, training data), the
pixel area range was 1,947 to 3,122 pixels and for the CGAN it was 2,130 to 3,523. This indicates
that the conditional input for v led the model to better map the distribution of features for the
training data, to better create images that approximated the range of object characteristics better
than the standard GAN, which did not have that additional condition.

The linear trend lines for the area distributions also showed more similarity in the CGAN
images compared to the real images, with a slope closer to the real data when compared to the
trend line slope for the GAN image areas. Although that factor in itself does not indicate similarity
alone as the range for each velocity setting group of images could still fluctuate greatly yet over
the entire dataset average out to create a trend line with a similar slope to the real data.
Nevertheless, for the random samples taken of images collected - the data show that the CGAN
was able to create images that more closely matched the dynamic range of vapor depression sizes
from the experimental builds.

The novel TSTR method further explored the closeness of the images produced by both
generative models in comparison to the real data. This analysis also quantifiably validates the
assertion that the CGAN was able to make more realistic images compared to the GAN model. As
shown in Table 7, the CGAN observations consistently resembled the real data more often than
the general GAN. These results suggest the CGAN was capable of generating artificial
observations that were close enough to the real data that it could then be used to train another
classifier to identify those observations to a degree very close to its own performance on

classifying the real data.
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The loU analysis and the HD analysis both suggest the same observation in terms of the
data generated. While the metrics were similar, the CGAN did outperform the general GAN in
terms of generating images that more closely matched the real data, or ground truth. Similar to the
previous evaluation metrics, the CGAN consistently provided a lower HD score than the GAN.
The distance of a set of points along the boundary of an object in a sampled image produced by
the CGAN will generally have a smaller distance to the points along the boundary of a real image
— compared to a sampled image from the GAN output, thereby indicating its performance in
developing images that more closely matched the ground truth data was superior to the general
GAN.

Further examination of the data generated by both networks using the MMD method
justified the assertation that the models are appropriately learning the distribution of features in
the underlying training data. In general, the lower the MMD, the more evidence there is that the
distributions are the same [124]. As the objects in the dataset vary as the experimental parameters
used to generate that data varied — both the GAN and the CGAN were able to pick up on those
different expressions. And this was established while also evaluating the potential for model
overfitting, a common concern in many machine learning frameworks. Indeed, it was established
using the three sample MMD approach that the feature map developed in the generated datasets
were significantly different from that of the real data. This speaks to the ability of these complex
networks to learn effectively from the training data.

7.12  New Process Parameter Generation Results

Given the results from the outputs of the GAN and the CGAN, where the CGAN model

resulted in images that were quantifiably closer to a comparison set of real images, the CGAN was

used to create new artificial images of vapor depression geometries based on process parameter
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combinations that were not conducted experimentally. This would result in data which could not
be compared to original data, as these generated images were based on new inputs. Thus, the
CGAN was also preferred as this was the model that allowed differing numerical inputs in
combination to the training images. The previous results demonstrate that the model is able to learn
how the vapor depression shape fluctuates with the new parameters.

The original data was collected at laser velocity settings that were spaced 0.2 increments
apart, for a total of seven different settings: 0.2m/s, 0.4m/s, 0.6m/s, 0.8m/s, 1.0m/s, 1.2 m/s, and
1.4 m/s. Additionally, there were a total of five laser intensity settings that were also involved, set
at 50 Watt increments: 150W, 200W, 250W, 350W, and 400W. Due to equipment failure during
the experimental builds, there were no data captured for builds at 300W, and therefore the resulting
data omits this experiment. The combination of the laser velocity settings and the intensity settings
therefore produced a total of 35 different experimental combinations of those two parameters, from
which data was collected and used for this data-driven experiment.

As there were more velocity settings than intensity settings, it was those values which were
the focus of the data generation initiative. Additionally, the data show that the vapor depression
metrics (i.e., depth, width, geometric area, and convex hull area) increase linearly with regards to
velocity, while holding the intensity constant. That is, at 150W there is a steady increase in the
metrics. The data show that when the next intensity is used, say at 200W, the vapor depression
metrics drop at the lower velocity of 0.2 m/s compared to the 1.4 m/s of the previous intensity of
150W. Essentially, at each intensity setting the vapor depression starts smaller and grows bigger
as the velocity is increased — until some point is reached where it begins to decrease again. It is
however worth noting that the size does not continue to increase for each velocity. Instead, at 1.2

and 1.4m/s — there is a drop off to a zero reading for the metrics as the vapor depression generated
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at a near-zero depth which was not enough to be measured. This was described thoroughly in
previous chapters as the thermal intensity was not strong enough for the evaporation of metal to
accumulate due to the laser moving too fast over the build plate. For some combinations of
intensity and velocity, there were not data collected at 1.0 m/s either — which was the case at 150W,
200W, and 250W. At those intensities, the power was again not strong enough to cause the heat
buildup necessary, until it got to 350W. Given the zero or near-zero vapor depressions at some
combinations, the new data to be generated by the CGAN would only be produced at intensity and
velocity segments in between intervals for which data was actually captured. Using this
requirement, new data was generated at increments in between the velocity settings originally
produced, to include: 0.3m/s, 0.5m/s, 07.m/s, and 0.9m/s. This would help to achieve vapor
depressions which could be visually compared to a dataset experimentally captured just above,
and just below that new data — in terms of the parameters used to express those geometries.

The new combinations of parameters that was used to create artificial data with the CGAN
were therefore: 150W and 0.3m/s, 200W and 0.3 m/s, 200 W and 0.3 m/s, 200W and 0.5m/s, 250W
and 0.3m/s, 250W and 0.5m/s, 250W and 0.7m/s, 350W and 0.3m/s, 350W and 0.5m/s, 350W and
0.7m/s, 350W and 0.9m/s, 400W and 0.7m/s, and 400W and 0.9m/s. It should be noted that at
intensity setting 350W, the vapor depressions were captured experimentally at five different laser
velocity settings, produced more geometries than any other laser intensity. It is possible that 400W
also produces this result, but at 400W and 0.4m/s there was no vapor depression detected. Since
data was collected depicting a vapor depression at the level below for 0.2m/s and the level above
at 0.6m/s for that intensity — it is likely that the lack of a vapor depression at 0.4m/s is the fault of
data compromise, possible due to sensor malfunction during that experiment. As discussed in

Chapter 4, the convex hull geometry could be more informative than the geometric area in terms
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of which vapor depressions are more likely to cause defects. In general, this value is higher than
the geometric area — but the pattern shown in the data for geometric area and convex hull area
match in terms of increases and decreases over the range of velocity settings. The new generated
data by the CGAN are included in bold. Here, the averages of the CGAN produced images were
taken for 2,000 images, which therefore matched the number of images used to calculate the
average values for each metric from the experimental data.

The new data that was generated fell within the bounds of the experimental data above and
below in terms of the laser velocity as expected. The model learned the distribution of features that
constituted the vapor depression objects in the images with regards to the input values, or labels,
for those velocity settings and therefore was able to reproduce that distribution in the resultant
images, even with the new inputs for those new velocities. However, it is worth noting that while
0.5m/s is equidistantly between 0.4m/s and 0.6m/s — the generated images at that velocity (and all
of the others) did not produce geometries that were exactly in between the geometries measured
at 0.4 and 0.6m/s. This indicated that the model did not simply take an average of the geometries
from the data above and below to produce the new images. As the actual experimental data did
generally provide a curve-like distribution of areas that increased to a point and then decreased as
the velocity increased — these values were not a perfect distribution for those distribution of values.
And therefore, the model did not learn to generate the new data along a perfect curve. Rather it
appeared to have learned the latent features in the data that influenced the rise and fall in those
metrics. This is especially true with the depth measurement, as the experimental data for that metric
fluctuated more than the other metrics. Depth can be described as the most dynamically changing
property of a vapor depression — likely due to the penetration of the laser into the material directly

beneath the surface of the material on the build plate where the laser strikes. Table 10 depicts a
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summary of the original data, which gives an average value for all images of vapor depressions
taken at each of the 35 experiments — as well as the newly generated data. The metrics depicted
are depth, width, geometric area, and convex hull area.

7.13  Generative Output Summary

This work represents an application of advanced generative modeling to a computational
materials science problem where the lack of experimental data prohibits the understanding of the
LPBF process. By using the images available, extrapolating the latent features and their
distributions across the image-based data, these generative models can supplement the
experimental data with entirely new synthetic data. While a GAN can reliably deliver new
representations of DXR images, the further contribution of the CGAN improves upon the closeness
of the artificial data to the original real data. Incorporating additional inputs to the generator in the
form of laser velocity and laser power works to incorporate the underlying mechanisms by which
those factors influence the build’s structures during the build process. These approaches have
shown to match the real-world data so closely that another image matching supervised learning
model does not differentiate among the real data and the new artificial data. This provides an
inexpensive method for developing more data that could then be used for training future predictive
models’ expectations of microstructure feature characteristics.

Given the results of the CGAN, that model was chosen as the generator for additional data,
for image representations of vapor depressions at process parameter combinations what were not
experimentally conducted and for which no real data exists. The new data was therefore
representative of notional experiments, that is, experiments that were not conducted but for which
the generated data could be representative of what the data would have looked like if that

experiment actually had occurred. The basis for accepting these new images as valid comes from
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TABLE 10

Average Values for Vapor Depression Geometries by CGAN
P v DEPTH WIDTH G. AREA C.H. AREA
150 0.2 63.06 38.22 492.46 502.32
150 0.3 25.24 36.51 510.12 452.65
150 0.4 9.52 25.63 57.49 69.52
150 0.6 0.00 0.00 0.00 0.00
150 0.8 0.00 0.00 0.00 0.00
150 1.0 0.00 0.00 0.00 0.00
150 12 0.00 0.00 0.00 0.00
150 14 0.00 0.00 0.00 0.00
200 0.2 14.95 42.86 148.38 175.84
200 0.3 30.45 45.56 210.51 203.54
200 0.4 39.69 32.03 339.50 452.52
200 0.5 41.62 48.56 581.12 628.23
200 0.6 54.95 68.87 743.68 856.23
200 0.8 0.00 0.00 0.00 0.00
200 1.0 0.00 0.00 0.00 0.00
200 1.2 0.00 0.00 0.00 0.00
200 14 0.00 0.00 0.00 0.00
250 0.2 45.65 42.78 475.28 489.51
250 0.3 74.21 41.12 1023.62 995.00
250 0.4 109.51 77.06 1299.75 1532.23
250 0.5 84.63 83.21 1002.42 892.21
250 0.6 34.33 81.19 532.50 635.72
250 0.7 12.32 32.20 201.11 451.95
250 0.8 9.66 26.08 57.56 58.21
250 1.0 0.00 0.00 0.00 0.00
250 12 0.00 0.00 0.00 0.00
350 0.2 87.77 54.47 2803.14 2925.91
350 0.3 184.21 65.21 2754.12 2784.78
350 0.4 202.41 76.58 2410.46 2665.32
350 0.5 124.62 94.65 2789.21 2741.24
350 0.6 106.44 134.49 2715.03 2987.55
350 0.7 78.1 145.15 1562.23 1842.32
350 0.8 53.96 112.09 1043.80 1222.54
350 0.9 36.51 118.21 598.22 991.84
350 1.0 16.13 61.28 185.11 211.74
350 12 0.00 0.00 0.00 0.00
350 1.4 0.00 0.00 0.00 0.00
400 0.2 262.73 86.93 4270.17 4676.23
400 0.4 0.00 0.00 0.00 0.00
400 0.6 139.92 119.54 2852.02 2962.46
400 0.7 74.01 112.63 1908.65 2003.82
400 0.8 42.56 110.81 842.34 952.95
400 0.9 36.87 95.52 697.65 752.62
400 1.0 16.17 58.32 189.31 195.62
400 1.2 0.00 0.00 0.00 0.00
400 1.4 0.00 0.00 0.00 0.00
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the validity of the same model’s performance on images for which there could be a quantitative
evaluation on the results — the ground truth that exists from the experimental data. And while the
new generated images do not have the same ground truth, since there was no experimental build
at those combinations of settings, they do follow the same patterns and trends observed when
evaluating the real data.

It can also be concluded based on the work in this chapter that the dataset size was adequate
enough for the two generative models to train and learn. Limited data is a practical issue in many
experimental settings, and in the next chapter, the problem of limited data is explored in more
detail. However, for the generation of new artificial DXR-like images for LPBF process
parameters of laser intensity and laser velocity — the 2,000 images per each experiment (70,000 in
total) was enough. From that data, the model was able to learn the underlying features that
determine a vapor depression size and shape, with regards to those parameters of intensity and
velocity.

Limitations exist in using generative models to create representations based on desired
inputs for classes. The original use of the CGAN was to provide images that pertain to a specific
object. The input classes however were not a continuous numerical variable. There were not
infinitely many kinds of objects from which the training data supplied to the model. In the case of
this work, a continuous variable is being used. While the laser parameters held a limited number
of values, it could and should be possible to make predictions for an unlimited number of power
inputs. For example, 325W, or 325.6W, or 325.65W, etc. When using this model to make
predictions beyond the intervals tested and documented above, the model failed to provide
anything meaningful. The MMD evaluation for 350W and 0.3m/s showed a distribution that was

statistically insignificantly different from 350W and 0.35m/s. This could be either due to a failure
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in the model to learn the intricacies of the features that represent the vapor depression geometries,
or that there is no meaningful difference in those expressions. While the differences in vapor
depression geometries may be minimal, future materials (besides IN718) could be of interest,
where there may be more features in the images for learning.

Better generative output from continuous variables has been explored recently [125]. In
that recent work, scalar conditions were used, described as regression labels. That work showed
early results, but did have some limitations that prevented adoption for the DXR modeling. The
results of using the CcGAN, or Continuous Conditional Generative Adversarial Network failed to
converge. This was likely due to the errors bounds on the discriminator losses. Potentially having
more data could alleviate this issue, however, as has been noted that is a logistical issue which can
not be resolved.

The results from these approaches provided a wealth of new data that can be used to
accomplish two further goals. First, the additional data produced to supplement the experimental
data can help validate the thermophysics models discussed in Chapter 2. Second, the generation of
the images for the new combinations of parameters can be used to determine new geometries.
Those can in turn be used in those same models discussed in Chapter 2 to derive expectations on
the motion of the melt pool, using the diameters that are obtained from the new images. These help
to incorporate the physical properties of melt pool dynamics, the thermodynamics, that govern its
motion into the machine learning output that was discussed in this chapter. Therefore, the benefits
of these generative models will be of value for thermal modeling of melt pool behavior and

solidification.



138

CHAPTER 8

GAN WITH LIMITED DATA FOR MELT POOL IMAGE SEGMENTATION

8.1 Melt Pool Dynamics

This chapter focuses on applying machine learning to limited datasets. In particular,
datasets of the melt pool area, which is a challenging region to capture in image-based data due to
the narrow gradient of pixel values encompassing the melt pool compared to the relatively similar
pixel values of the surrounding area. Therefore, training data for image based learning is limited,
as the DXR process does not capture the melt pool region in dense materials like IN718, or another
material of interest to the aerospace community, titanium alloy Ti-6Al-4V. The goal of this chapter
is therefore 1) to evaluate the potential to capture this difficult region autonomously from limited
data, and 2) to evaluate the ability of the GAN to effectively learn how to model melt pool
boundaries — given the accuracy and performance of the GAN in the previous chapter.

For laser powder-bed fusion processes, part of certification involves thermal modeling of
the printing process. An accurate model can help to predict thermal conditions within melt pools,
and to therefore prevent the flaws caused by temperature gradients such as delamination of layers
or cooling based microstructural changes [126]. For these models to be valid, they must be
compared to as-printed parts. The simplest test to calibrate is to perform a single-bead, powderless
scan on the build-plate and to compare a cross-sectional view of the solidified microstructure to
that predicted by the thermal model. The melt pool, the portion of the material at a temperature
above the solidus, has a distinct microstructure as compared to the build-plate. This allows a cross
section of the microstructure to be compared to the solidus isotherm predicted by the model. For
Ti-6Al-4V, a properly calibrated model should predict an isotherm of 1605°C (the solidus

temperature) with contours that match the melt pool of the printed single-track [127]. However, as
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discussed previously, the shape of the melt pool is a dynamic phenomenon that is little understood
despite a multitude of ideas [128]. A single micrograph is therefore not enough to say a model is
properly calibrated; multiple micrographs of the same laser power and velocity parameters are
needed to have a statistical representation of melt pool qualities. There is need for a way to
automate the extraction of melt pool contours from cross-sections of single-track LPBF samples.

Computer vision applications offer a solution, giving a high-throughput method to extract
melt pool contours, width, and depth. The process of classifying each pixel within an image—
here, as either part of the melt pool or background— is considered as an image semantic
segmentation problem. The difficulty is that the algorithm often needs a large set of data to train a
model. The expense of performing experiments in many fields of materials science, not just AM,
limits the data available to train these models. There is therefore motivation to evaluate different
algorithms to determine which can perform best on a limited data set.

The goal of this chapter was to develop a machine learning method to capture the melt pool
boundary, leveraging the limited data available from micrographs taken post-processing — that is,
after the LPBF build has completed. To accomplish this, a GAN was developed in order to test its
ability to generate new images based on a limited training set. Given the limited amount of data
available, evaluation of the model including also using a particular convolutional neural network,
CNN, that has shown results in learning object features from small datasets [129]. Convolutional
neural networks, specifically using the U-Net architecture are often utilized for semantic
segmentation tasks [130]. Meanwhile GAN provides an alternative to the pixel-level classification
technique of the U-Net. Therefore, using this model architecture here presents a contrast to the

GAN model, while also potentially accomplishing the goal for melt pool identification.
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8.2  Micrograph Dataset

The dataset consisted of optical micrographs of cross-sectioned single scan tracks,
manufactured by laser powder-bed fusion on a bare Ti6-4Al-V substrate. The resultant build was
then cross-sectioned for evaluation under light microscopy, from which images were taken of the
build area. The dataset was comprised of 57 images from two sources, one with 42 color images
and one with 15 grayscale images. Within the combined set, 8 images depicted keyholing, 7 lack-
of-fusion, and 4 balling with the remainder being in the conduction regime. Masks, binary images
denoting the melt pool region, were created in Adobe Photoshop so that the melt pool was filled
with white pixels with all else black. Given the small size of the dataset, a leave-one-out validation
approach was taken, with 12 images for the test set, and 36 for the training set.
8.3  Pix2Pix and U-Net for Image Translation

The GAN utilized in this chapter is based off of the Pix2Pix GAN originally developed
[131]. This was developed to perform style transfer of images, such as changing sketch into a
realistic image of a purse or inputting a photograph captured during the day and generating a view
of the scene at night. This capability made the pix2pix network particularly well suited for the
problem at hand because image translation requires the model to thoroughly learn object features,
in order to properly reproduce new images. In this case, the object of interest is the melt pool and
its surrounding boundary. Unlike simpler implementations of GANs, this model uses
convolutional layers for the generator and the discriminator networks — thereby utilizing batch
normalization within the hidden layers.

The generator model takes in images as inputs, but uses a different source of randomness.
Instead of sampling from a point in a latent space, the randomness comes from having dropout

layers that occurs during training. Overall, the model architecture involves having the generator
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taking in an image as an input and down-sampling it over several layers (similar to the variational
autoencoder mechanism), until it reaches a bottleneck layer, where the representation is now up-
sampled over and over for several layers until an output image is produced [131]. The utilization
of this mechanism is very similar to the U-Net described later, with the exception that the GAN
output product is different from the image classification of the U-Net.

Meanwhile, the discriminator network, working in tandem, takes in an image from the
training data as well as an image produced from the generator to predict the likelihood that the
generated sample came from the training dataset — much like the traditional GAN scheme. The
difference here is that the Pix2Pix uses a unique network architecture to accomplish this, known
as PatchGAN [132]. This is a CNN that classifies images based on looking at portions of an image,
or patches rather than the entire image. In this fashion, the model classifies if those individual
patches are real or fake, rather than that overall image. The output then becomes a single feature
map of what has been determined to be real versus fake predictions which can be averaged to give
a single score [133].

Additional modifications to the traditional GAN include slowing down the discriminator’s
learning process, as the above described network architecture allows the discriminator to learn
much faster than the generator. The generator’s training occurs using both the adversarial loss for
the discriminator model and the mean absolute pixel difference between the generated image
translation and the expectation from the training image. These losses are then combined into what
is known as a composite loss function —which constantly updates the generator model [133]. While
the adversarial loss determines whether the generator has successfully produced a valid image
based on the training data, the mean absolute difference loss helps the generator to create images

that are passable as new translations of the training data image, thereby accomplishing the picture
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to picture objective referenced in the name of the Pix2Pix model name. The two types of losses
together can be controlled by a hyperparameter lambda value. For instance, when set to 10, that
indicates that the mean absolute difference is 10 times more important to the model than the
adversarial loss to the generator [132].

The Pix2Pix model framework improves upon the general GAN model by using a
conditional-image input, which provides larger output images compared to other GAN models. In
addition to training images, these images are also paired with labels, whereby the model learns a
label-pair to improve the image translation capabilities. For this work, the model was modified to
have a batch size of 6 for training, a batch size of 9 for validation, and to train on single channel
images rather than 3 channel color images in addition to the preprocessing steps mentioned below.

The U-Net approach was originally developed by Ronneberger et al. for use in biomedical
image segmentation [134]. It is a typical CNN, or deep neural network, albeit with a modification.
It also allows down-sampling to a bottleneck layer, then up-sampling to the output image.
However, during the up-sampling layers, there are a large amount of feature channels, which
allows the model to pass on locally important information, or contextual information, as it goes
from larger to larger resolution layers [135]. The down-sampling operations are convolutional
layers, with each layer followed by a ReLLU and a max pooling operation. The objective is to reduce
the spatial information from the image while maximizing the feature information picked up from
the image through those layers. The symmetry between the down-sampling layers and the up-
sampling layers gives the network architecture a u-like shape, hence the name U-Net.

For this work, notable deviations from the source include using 16 filters instead of 64,
changing hyperparameters such as learning rate, adjusting the early stopping epoch, and adding

the preprocessing steps that follow. The preprocessing steps of the two methods differed slightly
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as each was chosen to maximize the performance of the particular approach. The GAN approach
was processed with contrast limited adaptive histogram equalization (CLAHE). The U-Net
approach performed global histogram equalization before performing CLAHE. Both models
converted images to 256 x 256 and a single channel (black and white), and all training images
were horizontally flipped, doubling the size of the training data.
The models were evaluated on the test set and compared by two metrics: Intersection over

Union, (loU) and Hausdorff distance (HD). Many semantic segmentation algorithms use metrics
that evaluate the area of pixels correctly identified in similar fashion to loU. While useful for
model performance during training, loU was not the best metric for evaluating performance after
training because each pixel is given equal weight. loU is best described as an area metric, but a
more accurate way would be to utilize an edge metric. The desired outcome of this work was to
have accurate representations of the melt pool contours, and a metric was needed to evaluate the
error of edge locations, hence the inclusion of the HD evaluation.
8.4  Pix2Pix and U-Net Performance Evaluation

As seen in Fig. , there are two optical micrographs from the test set (Image 2 and Image 6),
their respective ground-truth masks, and the comparison mask of both models. Each comparison
mask is comprised of the generated mask from a single model overlaid onto the ground-truth mask
of the same image. Purple areas denote pixels of intersection, whereas blue denotes pixels where
only the ground-truth mask was present, and red denotes pixels where only the generated mask
was present. The orange and blue dots correspond to the end points of the HD, with orange
denoting the point on the ground-truth mask and blue denoting the point on the predicted mask.
For Image 2 (Fig. 38a-d), both algorithms predicted a melt pool that had large overlap with the

ground-truth mask. The generated areas matched well with the ground-truth, although neither
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algorithm predicted the top left ‘corner’. For Image 6, a melt pool exhibiting keyholing, neither
model generated a mask that visually matched the ground-truth mask. This is likely due to the
training set only containing one keyhole melt pool. While the melt pool predicted by the GAN
(Fig. h) showed a better match to the ground-truth mask than the U-Net. The U-Net falsely
predicted a region separate from the melt pool; these predicted areas distinct from the true melt
pool are referred to as artifacts within this discussion. The GAN did not predict this false positive,
though it did predict an excess on the left side of the melt pool, and both models predicted a filled
region rather than a cleft in top center. Melt pools in the conduction regime were well-represented
in the training set, and most masks generated from those melt pools closely matched the ground-
truth masks, but due to the lack of training data, the masks generated from melt pools outside the

conduction regime did not match as well visually.

GAN Output

Real Ground Truth Mask U-net Output

Image 2

Image 6

Fig. 38. Qualitative comparison of two melt pool types: within the conduction regime (a-d) and
keyholing (e-h). Parts a and e are the input micrographs, image 2 and image 6 respectively. Parts
b and f are the ground-truth masks. Parts ¢ and g are comparison masks from the U-Net algorithm.
Parts d and h are comparison masks from the GAN algorithm. Orange points denote the Hausdorff
point on the ground-truth masks; blue points denote the Hausdorff point on the generated masks.
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Predictions of the two models are quantitatively compared by loU and Hausdorff distance
in Table , with the metrics for each image within the test set shown in Fig. 39. Though masks
generated by models were visually similar, the U-Net approach performed better according to both
loU (the area metric) and Hausdorff distance (the edge metric). Masks generated by the U-Net
resulted in loU values greater than 90% for 9 out of 12 test images. For masks generated by the
GAN, only 6 out of the 12 produced loU values above 90%. Furthermore, all predictions by the
U-Net resulted in an loU over 84%, and masks generated by the U-Net outperformed those

generated by the GAN in 9 out of 12 images by both loU and Hausdorff distance.

Table 11
Average Metrics with 95% Confidence Interval as Evaluated on All Test Set Images
10U HD
GAN 89+5.1 32+23
U-Net 93+3.2 16 + 15

The U-Net outperformed the GAN for segmentation of single-track melt pool images in
most cases. This is not unexpected: in the case of segmenting text from scanned documents, the
two methods have been compared showing the U-Net approach out-performing the GAN in that
case as well [136]. While the two cases have notable differences— the use of error metrics specific
to text segmentation, the availability of a larger dataset (136 images), and a different
implementation of the U-Net— the U-Net performed better than the GAN by most metrics [136].

This too is not unexpected: the U-Net approach was developed specifically for pixel-by-pixel
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classification [134], but the Pix2Pix GAN was developed for the broader application of style

transfer, though it has been utilized to produce segmentation masks [137].

a. 10 . 150
0.9 5125
[0}
© 100
0.8 S
3 m GAN 2 75 mmm GAN
0.7 s Unet B U-net
S 50
3
O'6| T 25 ‘
0.5 0 llllll-lll IIIII--- = |
12345678 9101112 12345678 9101112
Image ID Image ID

Fig. 39. Quantitative metrics on individual test images. a) loU b) HD in pixels

The exceptions for this case, when evaluating with the loU, is image 6 as seen in Figure
39a above. Here, the loU was slightly higher for the U-Net result than the GAN result. An
inspection of this image does show more overlap in the GAN output compared to the U-Net output.
When comparing the results for the HD, the GAN result generally had a higher score, with the
same exception, image 6. Here, the U-Net again scored higher. This is due to this particular image
having a wider boundary around the real image when overlayed with the generated image from the
U-Net. While the U-Net was usually able to create a better approximation of the image boundary,
for image 6 this was not the case. Nevertheless, it was generally a more reliable model output as

seen from the remaining image tests.
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The GAN, while a powerful tool, is of greater complexity than is needed for this
application, and that complexity creates difficulties for the training process. Not only was training
of the GAN slower than the U-Net but obtaining a converged model with the former was non-
trivial. A GAN produces its most realistic images when both the generator and the discriminator
updates change little between each update in training weights. This problem is inherent to the two
network architectures of the GAN because updating the weights of one could reverse an
improvement in the other [138]. While the GAN could produce reasonable results without
convergence, achieving consistent convergence was the most reliable way to obtain quality
generated masks. However, this stability was hard to achieve with the small training set available.
The larger batch size of 6 (as compared to 1 in the source) helped to achieve convergence with the
present dataset, but bigger batch sizes are not guaranteed to improve convergence.

With the U-Net approach identified as the preferred approach for the objective described
at the opening of this chapter, the remainder of the discussion will be on use and benefits of the
HD, as this metric has not previously been used to evaluate additive manufacturing computer
vision models in literature. Fig. 40 plots the loU value against the Hausdorff distance, one point
for each generated mask for both models. Though there is correlation of a decrease in HD with an
increasing loU value, a linear regression of all points resulted in an R? value of only 0.68,
supporting the use of HD due to the inherent differences between the two. Because of the high area
to edge ratio of these melt pools, high loU values can be achieved despite edges not matching
closely with the ground-truth and vice-versa. The best example of this is the mask of image 1
generated by the U-Net which had an 10U of 85% and a Hausdorff distance of 11 pixels.

Hausdorff distance also provides unique advantages unavailable with loU. Because HD is

a maximum, it only gives information about the worst mismatch of the generated mask,



148

irrespective of how other points in the generated mask relate to the ground-truth. For an end-user
extracting melt pool contours, this can help to flag outlier images. HD is beneficial here as the
extracted contour is only as useful to thermal model validation as its least accurate part. In Fig.
38b, any generated mask that had HD above 30 pixels was seen to have an artifact; those below
30 pixels correctly predicted one melt pool per image. For a small data set, the HD could be utilized

to identify trends that will allow evaluators to build a more robust training set.
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Fig. 40. Correlation of HD to loU

Utilizing a metric based on a maximum has inherent disadvantages, however. When a model
was performing poorly, for example including multiple artifacts, the HD would give little
indication whether the generated image was completely inaccurate or just had a single artifact. The

metric’s sensitivity to artifacting also limits use as a loss function during training.
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8.5  Summary of Pix2Pix Analysis

For the single-track melt pool micrographs of additively manufactured Ti-6Al-4V, a GAN
approach was proven to be able to segment melt pools from optical micrographs. However, the U-
Net algorithm (a pixel-wise approach) generally outperformed a GAN (a generative approach) in
both loU and Hausdorff distance. The results of these tests for image 6 was seen as an exception,
and can be attributed to the U-Net segmentation not completely learning an indentation in the real
image and therefore creating a slightly wider outer edge for the object than there should have been.
Hausdorff distance was introduced to evaluate the accuracy of generated melt pool boundaries
specifically due to interpretability, sensitivity to the largest error, and being an edge metric.
However, Hausdorff distance should be utilized in tandem with loU. For the small dataset of 57
images, the U-Net approach was able to achieve an loU of over 80% for all test images and over
90% for 9 out of 12 test images. The GAN achieved an loU of over 80% 11 out of 12 test images
and over 90% for 6 out of 12 test images.

While the previous chapter demonstrated the ability of the GAN and the CGAN to make
valid new images, this chapter discusses some limitations. Those limitations are primarily due to
the limited amount of data presented here. The task of identification of melt pool boundaries is a
significant problem, and having a valid way to accomplish that is highly desirable for process
certification endeavors. Nevertheless, while the GAN was unable to learn from this small dataset
to reproduce images with a reliable melt pool boundary — the CNN U-Net did show more promise

in accomplishing this task for classification purposes.
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CHAPTER 9

IMAGE SYNTHESIS USING VAE

9.1  Variational Autoencoder Implementation

A variational autoencoder (VAE) model was developed and implemented based on the
literature that suggested the autoencoder model is a capable generative model in many
circumstances, discussed in section 2.10. The fundamental mechanisms that govern the process of
sampling from the latent space and thereby collecting a new representation of data, in this case,
image data was discussed in that section. Of particular interest is the statistical underpinning of
this approach, where the VAE is essentially a deep learning based probabilistic model, or deep
Gaussian model. For instance, in a statistical Gaussian model, it can generally be assumed that
there is a distribution of observed variables which are associated with corresponding latent
variables. And those latent variables are drawn from a prior density p(z) and are associated with
the data observations based on a likelihood, which can be expressed as ps(x|z). This is the case for
a type of deep learning class of models known as Deep Latent Gaussian models (DLGMs) — where
the observed variable is governed by a hierarchy of latent variables, and the latent variables at
each level of the hierarchy are Gaussian a priori [139]. Overall, this implies that the VAE is not
explicitly a generative model per se, rather it is a DLGM that has generative abilities as a
consequence. This stands in contrast to the GAN whose output is a generated observation.

In this work, sampling from the latent space encoded by the VAE was used to generate
new examples of vapor depression images, similar to the goal of Chapter 7 with the GANs. The
training images again consisted of 2,000 images based on experimental combinations of laser
velocities (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 meters per second) and laser intensities (150, 200,

250, 300, 350, and 400 Watts). The VAE model was initially trained with each intensity set of
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experiments separately. That is, the first VAE was run with all images from 150W — which
included all five velocity settings for a total of 10,000 images. A second model was trained on only
200W data, then 250W, and so on. The idea was to test the model’s ability to learn the distribution
of features across each velocity first, and evaluate the results. Should those results be favorable,
then a new model trained on all images together would be used.

The model was again created in Python using Keras. The training images were all initially
resized into 28x28 images, then flattened to be a vector of size 784. A description of the steps
developed in the code for developing and running the VAE model are as follows:

e Creation of an input layer

e Creation of intermediate layer

e Application of ReLU activation function

e Development and definition of latent feature space

e Definition of the log variance of the latent space

e Deployment of sampling function to learn mean and variance

e Linkage of the input to decoder from latent space

e Map latent space to intermediate dimension

e Define loss function from binary cross entropy and KL divergence

e Sample from latent space to obtain new image representation

For the decoder, the input comes from sampling from the latent space, based on learning
the mean and the variance of the distribution. Then, at the image output or generation step, a
sampling function based on learning those values is fed through the decoder to get to the model
output. Unlike the GAN where there is a loss function for the discriminator and the generator as

each network functions separately, the loss function for the VAE works differently as the network
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architecture is structured differently. Here there is one loss function, although it is a combination
of two factors: binary cross entropy and the KL divergence (discussed in section 2.10). Essentially,
there is a comparison from each image in greyscale for the pixel value to the value encoded and
reconstructed. The model was optimized using the Adam optimization algorithm.
9.2  Effectiveness of VAE Generated Images

At a visual inspection, the images produced did not show variation among the laser
velocities, as would be expected. The images in general had very little difference, despite the
training images showing clear variations among the different velocities. This is noteworthy as this
particular model does not learn the labels for the images. In an ideal scenario, the model would
have learned how the features changed across each class of image, without needing to know the
label. Fig. 41 shows an example of images from the model — with the first row of images being
actual images for each velocity at 350W, and the second row showing images taken from the VAE
for each velocity at 350W. These results show how the model in general produced vapor depression

images that were roughly the same, which was not an ideal outcome.

Fig. 41. Images from real dataset at 350W (top) at 0.2, 0.4, 0.6, 0.8, and 1.0 m/s, with images
generated by VAE (bottom) from that training data
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A gquantitative test was performed to look at the average area of the images produced
compared to the average area from the real examples. It was shown that the average area was not
comparable to the actual average area — even when each class of velocity images were compared
individually (see Table 12). No class of images (0.2, 0.4, 0.6, 0.8, or 1.0 m/s) had an average area
that was statistically similar to the average area produced by the VAE. Additionally, as the images
shown in Fig. 41 make clear, the VAE output were all similar. The variance across the images
from the VAE were much smaller than the overall variance for the real dataset. The model had
poor performance from a basic evaluation.

Upon visual inspection, the output images were rejected based on the closeness of the
similarity to one another, and the lack of closeness to any of the training images. Therefore,
additional testing on the effectiveness of these images were not necessary as they could clearly not
be used for quantification of vapor depression geometries or validation of the thermophysics of
the LPBF process.

The results here suggest that the VAE was unable to perform as a generative model. The
likely reason for this is the mechanism by which the VAE samples from its latent space. The VAE
uses a Gaussian distribution to map the features from the images upon which it has been trained.
By definition of a Gaussian distribution, 99.7% of the probability distribution will collected within
three standard deviations from the mean. Likewise, when sampling, the VAE will tend to sample
from that middle area, or closer to the top of the Gaussian curve — which can be thought of as a
safe middle ground upon which to sample [111]. This leaves out the complexities of the features

from the images when selecting, thereby generating images that look similar in this case.
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TABLE 12
Average Area of Real Images Compared to VAE Images at 350W

Velocity Real VAE

0.2 m/s 2803.14 294551
0.4 m/s 2410.46 3025.36
0.6 m/s 2715.03 2935.87
0.8 m/s 1043.80 2889.16
1.0 m/s 185.110 2976.94

9.3  Conditional VAE Implementation

The VAE has a limitation in terms of image generation not unlike the GAN in that it is
difficult to generate a specific image from a specific class when there are many classes. In the case
of this work, there were five classes: the five different velocity settings. The general VAE model
has the encoder Q(z|X) and the decoder P(X|z), where the encoder models the latent variable z
based on X, regardless of any class of X [111]. Likewise, the decoder models X based on the latent
variable z, regardless of any class or label. As this produces images that may not exactly correspond
to a particular class, a modification to the overall scheme can be made where both the encoder and
the decoder are conditioned to a new variable, c. For the encoder, the model is now Q(z|X,c) and
for the decoder it is now P(X,c|z). The distribution of data then becomes conditioned based on the
overall lower bound of the variational objective which has then become:
logP(X|c) — Dg.[Q(zX, O)||P(z|X, c)] = E[logP(X|z,c)] — Dk [Q(z|X, O)[IP(z|c)]  (46)
where the latent variable is now distributed by P(z|c) and for every possible value of c, there is a
P(z) [140].

Modifications to the VAE previously discussed included incorporating the conditional

variable c. In this case, this conditional variable represented the class labels for the velocity
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variable, which was a categorical input. It therefore had to be one-hot encoded for the model to
receive as an input. This new vector was then concatenated with the encoder and decoder network.
From there, the new CVAE model was run and images from the class of interest was then extracted
by using the corresponding one-hot encoded value.
9.4  Conditional VAE Results

The CVAE model produced images that at a visual inspection were an improvement over
the general VAE performance. The vapor depression sizes in the images appear to shift in size
appropriately, following the trends seen in the real data (Fig. 42). However, while the images
appear to be an improvement over those from the VAE, they did not match up with the real data
enough to be considered interchangeable with the images from the real set. As seen in Fig. 42, the
object shrinks as the velocity increases, from 0.2 to 1.0 m/s — as seen in the real data. However,
those decreases are not as dramatic as they should be. This indicates that the features encoded in

the latent space are still not representative to the impact that the velocity has on the geometries.

Fig. 42. Images from real dataset at 350W (top) at 0.2, 0.4, 0.6, 0.8, and 1.0 m/s, with images
generated by CVAE (bottom) from each class
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A quantitative analysis of the CVAE results included measuring samples from the
generated data with the Intersection over Union (loU) and Hausdorff distance (HD), the
background of which were described in Sections 7.6 and 7.7 respectively. Table 13 shows the
results of these measurements, with values that were significantly above the values that would be
expected, and higher than those produced by the CGAN in Chapter 7. The values indicate the
relatively poor job the CVAE did in creating new images, in that they did not match well with the

original data in both cases.

TABLE 13

loU and HD of CVAE Generated Images
Velocity 10U HD
0.2 m/s 0.7013 205
0.4 m/s 0.6203 378
0.6 m/s 0.3127 951
0.8 m/s 0.1798 1350
1.0 m/s 0.0210 2034

The addition of the input label did help with the goal of producing new images, but the
output was not comparable to the generative capabilities of the GAN models. Given these results,
it was determined that attempting to generate new images to represent new velocity parameters
should not be performed, as the images produced for those known velocity parameters failed to
adequately capture the real area distributions. Future work in the area of autoencoders could
include using the results from the CGAN to supplement the image datasets. These additional data
could potentially include the VAE training, thereby helping to better map the features from the

objects in the latent space. Some success has been found in merging the two models together, the
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GAN and the VAE, known as the Adversarial Generative Autoencoder, or VAEGAN [141].
However, these models would still be limited in their ability to produce specific images for a
particular label, as there is not a conditioning aspect to the model training and image generation.
The results here, as well as from Chapter 7 demonstrate that model conditioning is necessary for
the successful creation of new images for specific combinations of process parameter variables.
9.5  VAE results with RMSE

The RMSE and Sl evaluation metrics were applied to the VAE and CVAE results, in a
similar fashion to how those were used to evaluate the uncertainty of the GAN and CGAN model
predictions. The results for the VAE model are shown in Table 14 and the results for the CVAE
model are shown in Table 15. For the VAE and CVAE models, a similar result was found where

the CVAE model outperformed the VAE model, just like how the CGAN outperformed the GAN.

TABLE 14
VAE Evaluation with RMSE and SI Metrics

Test Area C.H. Depth Width
Parameter RMSE SI RMSE SI RMSE SI RMSE SI
0.2m/s 562.64 78.91 754.85 101.6 133.8  105.3 183.6  98.65
0.4m/s 542.61 132.2 964.68 285.6 167.3  206.6 128.7 174.6
0.6m/s 781.21 145.6 930.85 245.6 158.2  265.3 97.16 1514
0.8m/s 894.12 354.8 996.72 3495 118.0 378.6 1759  453.6

1.0m/s 1238.7 513.6 689.50 456.6 96.96  456.9 135.0 5125
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TABLE 15
CVAE Evaluation with RMSE and SI Metrics

Test Area C.H. Depth Width
Parameter RMSE SlI RMSE Sl RMSE Sl RMSE Sl
0.2m/s 469.12 73.43 573.28 75.51 12359 43.03  37.68 48.82
0.4m/s 446.57 90.15 552.43 107.0 107.52 107.7 79.06  79.56
0.6m/s 693.88 61.35 590.95 36.12 136.28 46.69 8584  86.58
0.8m/s 814.64 147.6 912.86 231.3 23150 232.1 167.29 167.4
1.0m/s 1149.2 431.2 535.11 415.4 41598 416.1 109.82 110.7

Overall, these results further emphasize how the autoencoder learning mechanism does not
compete in this problem set for delivering generated images that can be relied upon, to supplement
the experimental data. While the GAN model discussed in Chapter 7 was inferior to the CGAN
model discussed in that same chapter, even that lower performing GAN was superior to the better
of the two autoencoder models, the CVAE. This was consistent across all evaluation metrics
discussed in this chapter. Deep learning has provided a method for generating new data — several
in fact, as described here in Chapter 9 and previously in Chapter 7. The computational learning
mechanism involved with multiple hidden layers in the deep learning paradigm, along with the
convolution and other operations, has shown that it is possible to artificially create new data. While
some methods work better than others, it has been shown that there is at least more than one way
to approach this problem of limited data. As both of these deep learning methods were image
based, the next chapter provides an approach to non-image based generative modeling. In that
chapter the recommender system will be used to generate, or recommend, new geometries, which
can then be evaluated for its accuracy and compared to the aforementioned image based

approaches.
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CHAPTER 10

RECOMMENDER SYSTEMS FOR MICROSTRUCTURE GENERATION

10.1  Alternating Least Squares

Recommender systems provide a non-deep learning approach to modeling the DXR data
and making predictions on future potential geometries. While not typically considered a generative
model — as discussed in Section 2.9, recommender systems when using the underlying matrix
completion approaches, can be used to make predictions based on unknown factors. For instance,
when a new user enters an e-commerce environment, and the system strives to make predictions,
or recommendations, on what that new user may favor. Using this approach, recommender systems
can be structured such that the user is a particular process parameter, and the recommendation is
the geometry measurement for that “user”, thereby delivering a new measurement despite there
being no training data available for that “user”. Section 2.9 reviewed one of the most commonly
used recommender systems, based on the Alternating Least Squares (ALS) algorithm, which is
explored here.

The task of generating or approximating missing data can be accomplished through matrix
completion. Oftentimes these computational techniques are incorporated with various additional
algorithms to leverage the results to make predictions, or recommendations, for an output given a
system of inputs. Known as recommender or recommendation systems, these approaches have
obvious benefits to the retail industry, but can also be applied to many other domains as well [37].
Nevertheless, one of the most common use cases involves making movie recommendations for
users of an online streaming service, Netflix.com. This example is due to the advancement of the
recommender system inspired in part by the Netflix challenge where the company sought help

from researchers to develop and apply a more optimal system for making movie suggestions to its
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users [142]. Section 2.9 discussed the theory behind the ALS approach, which was employed to
make predictions on the following characteristics: area, convex hull area, depth, and width of the
vapor depression.

The data was prepared by forming into an m x n matrix where all data from all 35
experiments were collated into a single dataset. During the data collection process, 35 experiments
were conducted, where 2,000 images were taken from each. Using the previously described image
contouring approach, and the measurements of area, depth, width, and the convex hull area for
each frame — a full dataset was constructed using the aggregated measurements of all experimental
runs. A matrix was then created where the velocity of the laser at each time interval populated
columns and the laser intensity setting for each time interval represented the rows. The values
populating the matrix were the area that was measured for each combination of laser velocity and
intensity — for every time interval. Therefore, the final matrix contained the measured area for
every image that was experimentally collected, in a 70,000 by 70,000 matrix. However, as there
was no measured activity for experiments where the laser velocity was set to 1.2 and 1.4 meters
per second, data for those experiments were excluded. This resulted in a final matrix of 50,000 by
50,000. This procedure was then repeated to create matrices for vapor depression depths, widths,
areas, and convex hull areas. Similar to all previous work, all steps and calculations were
conducted using Python, with Numpy.

The ALS model works by solving for the user vector and the item vector. For this work,
the user vector, Xy, is the parameter of the laser intensity. Meanwhile, the item vector, yi is the
second parameter, the laser velocity. As discussed in Section 2.9, the recovered matrix R,; is
difficult to fully compute as the objective function in non-convex. However, the ALS approach

works by fixing the variables as constants and then solving for one, with respect to the other. The



161

problem then becomes a minimization problem, to minimize the now convex function of yi.
Holding this item vector constant while taking the derivative of the loss function with respect to

the user vector results in this expression:

oL _
dxy -

20 (i - %" * YD) vt 2 exy] (47)
which reduces to:
0=-(r,-x, " YT)Y + A,x,"

followed by:
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and finally,

x, =7, Y (YTY + A1) 1 (48)
This is then repeated, except this time for the item vectors:
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To test the ability of this approach to generate new measurements of vapor depression area
(followed by convex hull area, depth, and width separately), the dataset was prepared such that all
measured values for columns with velocity at 0.2m/s were removed. The ALS approach then
attempted to calculate the values that would fall into a column for 0.2m/s, which was then repeated
2,000 times so that there would now be a number of predictions equal to the number of
observations in the original dataset — for each combination of 0.2m/s and each power setting of

150w, 200W, 250W, 350W and 450W. This was repeated for each velocity setting. The output
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was a set of predictions for vapor depression areas for a chosen velocity setting. These predictions
could then be compared against the original data, which was held out from the model.
10.2  ALS results with RMSE

Similar to previous chapters for evaluating GAN and VAE model performance, testing of
the ALS approach used the root mean squared error (RMSE). This was chosen as a metric for
evaluation as it provides a quantitative measure of the difference between the predicted values and
the real values, based on absolute difference. The results from these measures are presented in
Table 16. Here, the resultant predictions from removing all data for experiments run at 0.2m/s (and
all other velocities subsequently) are shown. Predictions for each geometric characteristic is then
presented, for which the model was run separately for each. Beginning with the area matrix, this
model treated the power setting as the user and velocity as the item. For instance, for user 350W,
the system is making recommendations on an area measurement for item 0.2m/s. Initially, the
system has information on that user, 350W in the sense of other items it is associated with, such
as 0.4, 0.6, 0.8, and 1.0 m/s. In this sense, the new item, 0.2m/s, is roughly the same as a new item
added to an online marketplace, upon which a recommender system makes predictions for users
on whether or not they will want that new item based on ranks given to other items. Therefore, this
represents the cold-start problem, where a new item is introduced and the system must make a
recommendation for it.

As seen in Table 16, the RMSE and subsequently the Sl are higher for area and convex
hull area, than they are for depth and width. The smaller range in those values helped the
recommender system to better learn their distribution. Also noteworthy is the quality of the
predictions were higher for the lower velocities of 0.2, 0.4, and 0.6 m/s. This is due to the volume

of data available at those velocity settings, whereas for 0.8 and 1.0 m/s there were runs where no



163

vapor depression was detected. Overall, the results show that the ALS approach was able to make
recommendations on area measurements for the process parameter combinations, yet the
performance for many of these is still lacking. This is likely due to the lack of “users” for the
system, having only five. As discussed previously, collaborative filtering scenarios expect many
users in order to properly gauge behavior. Due to the overall high RMSE and SI values, an
additional attempt at another recommender system was considered, developed, and discussed in

the next section.

TABLE 16
ALS Results of Parameter Tested by Removal from Dataset

Test Area C.H. Depth Width
Parameter RMSE SI RMSE SI RMSE SlI RMSE SI
0.2m/s 397.33 30.15  456.7 32.78 3753 3958  19.92 3755
0.4m/s 430.18 5237  469.7 52.62 4588 6352 2364 55.93
0.6m/s 41957 3066 3746 2356 41.91 6243 5128 6345
0.8m/s 506.37 130.3 8427  167.7 4942 2327 7041 1414
1.0m/s 297.18 3969  287.0 3626 88.83 3357 3549 1483

10.3  Accelerated Proximal Gradient

The above results of the ALS approach suggested than the data may have not provided
enough information to the model to make accurate predictions. For instance, data at 400W did
have signal noise present as there were zero readings for those experiments, likely due to sensor
or equipment failure. Thus, an alternate approach was explored and performed.

In applications for real world data, approaches for matrix completion can be pursued

whereby instead of applying regularization on a decomposed matrix [143], we instead apply
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regularization on the nuclear norm (also known as the trace norm) of the recovered matrix R. In
this fashion we focus on that nuclear norm, which is the sum of the singular values in matrix R.
The goal of this regularization approach is to find a solution that effectively balances the
minimization of the approximation of the error in the known entries as well as the nuclear norm of

matrix R, such as
minZ [1P4(R) = P4 (A7 + A4[IRIL., (50)

where A, is the regularization parameter controlling the extent of the nuclear norm. It is important
to note that this is a convex model for completing matrix A.

In the low-dimensional state, and therefore as a low-rank matrix, the matrix completion
problem can be formulated as a matrix rank optimization problem such that

mRin Rank(R),s.t.

Ry = Ay, (W, i) € A (51)
where Rank(R) denotes the rank of matrix R. While it is not feasible to find the exact solution of
the recovered matrix as this problem is known to be NP-hard [44], there are ways to leverage the
low-rank matrix approximation to yield results that can come close to an optimal solution, which
is the general goal of several computational algorithms (which can then even be utilized by
recommender systems as described previously). For instance, the rank optimization problem can
be reconstrued as a nuclear norm optimization problem [46] by working to minimize the sum of

the singular values in the recovered matrix R. This can be demonstrated as
min[[R]l.,

s.t. Rui = Aul'i (u, l) € A. (52)
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Where |[|. ||, denotes the nuclear norm. In this approach, the solution obtained by optimizing the
nuclear norm is equivalent to the one by the rank minimization model [144].

In a real-world application where datasets contain noise, the above approach for
minimizing the nuclear norm can be reformatted as follows:

mRinIIRII*,

s.t. |Ry; — Ayl <6, (w,i) € A, ®3)
where § is the tolerance parameter to relax the R,,; = A,;, (u, i) € A condition. This allows for the
flexibility in the model to arrive at a solution where the missing entries due to noise, or some other
data integrity issue, can be successfully approximated in a computationally non-taxing method.
Further, when the observed values of the matrix are randomly sampled, matrix R can be recovered
using only a small portion of the original data and achieve this with a high probability of accuracy
using the nuclear norm regularization [145].

Upon achieving a completed approximation for the matrix whereby the noise is
computationally resolved, predictions can be made from the input data by further incorporating
into an algorithmic model. While methods exist based on the regularization approach applied to
the underlying data, utilizing the nuclear norm regularization can be accomplished by the proximal
gradient algorithm. One such approach uses the proximal gradient algorithm, which has been
shown to be capable of solving closed convex optimization problems [38]. However, past
approaches have been computationally slow to converge on a solution, which has led to recent
attempts to improve the approach. Accelerated Proximal Gradient (APG) is an algorithm

developed precisely for this reason [144], which converges in O(1/Ve) iterations to solve the
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nuclear norm minimization model. For this approach, for a known Y, a quadratic approximation
of % IP,(R) — P,(A)||% at Y is given such that:

1 1 1

SIIPACR) = PADIIE = S I1PA(Y) = PA(DIIE + (Pa(Y) = P4(A),R=Y) + —IIR = YII},  (54)

where T > 0 is a proximal parameter. Substituting the quadratic approximation into the previously

examined equation for matrix regularization, the minimization model then becomes:
. 1 2
min A,zlRI. +3 ||R = (¥ = 7(Pa(¥) - PA(A)))”F (55)

Then, APG generates (RY), YD, tU+1) in the following iterative fashion:
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2

As utilizing the nuclear norm regularization approach for matrix completion has the benefit
of being able to handle noisy data, it has clear advantages for experimentally derived data where
noise is present. Further, applying that methodology into APG can therefore yield practical
predictions on future events or conditions from the underlying data.

10.4  APG results and analysis

To compare the results of the APG approach with the ALS approach, the same evaluation
metrics were used. Table 17 shows the RMSE and Sl for each result of using this approach.
Overall, these metrics were an improvement compared to those obtained from the ALS based
systems. Similar trends are seen here, where RMSE and Sl are higher for the area and convex hull
recommendations while significantly lower for the depth and width recommendations. Again,

recommendations for the higher velocity parameters of 0.8 and 1.0 m/s were significantly higher,
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which was also due to the sparsity of the data for those. As the overall RMSE values were lower
for this exploration, it is possible that could be due to the inherent benefit of the APG approach in
that it can handle noise reduction better, as described in the literature. Given the dataset has
portions of missing or zero values, in addition to aberrant measurements likely due to noise, this

approach was better suited for modeling the system.

TABLE 17
APG Results of Parameter Tested by Removal from Dataset

Test Area C.H. Depth Width
Parameter RMSE SI RMSE SI RMSE SlI RMSE SI
0.2m/s 2543 1929 3826 27.46 2395 2525  22.64 4267
0.4m/s 231.2 2815 4510 5053 2003 2773 4521 107.0
0.6m/s 4251 3106 5216 32.80 3221 4798 5212 6450
0.8m/s 6549 1685 9275 184.6 55.72 2624  78.10  156.8
1.0m/s 251.0 3352 3628 458.2 7516 2841 7112 297.3

This approach produced Sl values near or under 25% for multiple instances, which is an
improvement over those achieved under the ALS approach. This therefore suggests that the APG
approach is more suitable for use in data generation, or making predictions on entirely new items,
or new velocity settings that were not experimentally captured. This exploration is discussed in
the Section 10.6.

10.5 Noise reduction with ALS and APG

One way to determine if the APG method outperformed ALS would be to evaluate each

approach on a noisy dataset. This would help show how each handles those aberrant observations,

and therefore help substantiate the notion that noise in the data is why one model outperformed
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the other. The matrix creation process included all images experimentally obtained. Therefore,
they included observations where the previously described noise elements were present. These
values were identified as those for which there was no accurate measurement obtained as the vapor
depression shape was missing or mostly obscured from that frame. For the matrix of vapor
depression areas, these noise values represented 9% of the values. For the vapor depression depth
matrix they were 11%, for width 8%, and for the convex hull matrix they were 9% of the values.
As matrix completion is the underlying mechanism by which both of these recommender systems
are based, the ability to successfully complete a noisy matrix suggests advantages for one system
over another. This has relevance as there is a high likelihood of noise to be present in any
experimental dataset.

In order to test the performance of the APG and ALS systems for noise reduction, each
dataset was scrubbed of all missing data, by removing any column and row with a missing value.
This effectively removed that frame or observed vapor depression image at that particular time
instance from the data. Upon creating a matrix with only known values for area measurements, the
phenomenon of missing data was simulated by applying Gaussian noise to artificially mask 10%
of that known data, thereby approximating the amount of missing data. Each system was then
applied to this new dataset, and the resultant values were obtained and evaluated based on the
known data that was intentionally masked. This was done for both the ALS recommender system
and the APG recommender system. After results were obtained, another 10% of the known data
was masked and the models were run again. This was repeated to obtain results for missing data
at increments of 10 up to 50% missing. The RMSE and Sl values for these predictions are shown

in Table 18.
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Both models were able to approximate the missing data, with both having an SI near or
under 20% for the small amount of missing data at 10% lost. This initial increment best describes
the experimental dataset’s missing values for each metric, as described above. The focus of this
model was the area matrix, which had 9% of its data missing in the original dataset. From there,
performance decreased for both approaches as more and more data was missing from the matrix.
Yet APG was still able to recover 20% of the missing data with an S| at 23%. Overall, the RMSE
and Sl values were lower for the APG model, as expected. And as any dataset collected
experimentally is likely to have some amount of data quality consideration, this technique is
effective, which can be applied to systems with both stochastic and deterministic noise [42]. This
suggests that approach is better suited for experimental datasets with small data integrity issues,

both for recapturing lost data, and for making predictions with that data.

TABLE 18

ALS and APG Results with Induced Noise
Noise Level ALS APG
Induced RMSE SI RMSE SI
10% 506.47 20.96 355.75 14.73
20% 651.92 26.98 562.32 23.28
30% 981.63 40.63 998.87 41.35
40% 3354.8 138.9 1874.3 77.58
50% 5598.2 231.7 4526.0 187.34

10.6  APG for data generation

Based on the results of the APG recommender system in comparison to the ALS, the former

was used to make new predictions of geometries that were not experimentally derived. That is,
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create new measurements, or new data, for combinations of process parameters that were not, and
cannot, be physically measured. The goal of this work is to provide another metric to evaluate new
geometries, using the learning mechanisms based on the matrix completion methods discussed in
this chapter. This is in contrast to the deep learning based methods discussed in previous chapters.
Using the matrix factorization approach, this new data generation could be accomplished without
the need for image processing. This thereby removes the task of image pro-processing, and
contouring, thus reducing the overall complexity of the workflow.

As was done with the CGAN discussed in Chapter 7, the new combinations of parameters
that were used to create new data were: 150W and 0.3m/s, 200W and 0.3 m/s, 200 W and 0.3 m/s,
200W and 0.5m/s, 250W and 0.3m/s, 250W and 0.5m/s, 250W and 0.7m/s, 350W and 0.3m/s,
350W and 0.5m/s, 350W and 0.7m/s, 350W and 0.9m/s, 400W and 0.7m/s, and 400W and 0.9m/s.
Table 19 depicts a summary of the original data, which gives an average value for all images of
vapor depressions taken at each of the 35 experiments. The metrics depicted are depth, width,
geometric area, and convex hull area. The new generated data by the APG system are included in
bold. Here, the averages of APG produced measurements were taken for 2,000 observations, which
therefore matched the number of images used to calculate the average values for each metric from
the experimental data.

Overall, the model produced new measurements that followed the pattern of the
distributions for the rise and fall of each characteristic method, with only two individual
exceptions. The greatest fluctuations were for the 400W experiments, which again could be due to
the missing data for the 0.4m/s run. In the matrix factorization mechanics, those zero values are
considered and could have skewed some of these results. The results of model training with the

known values, discussed in section 10.3 show that the depth and width measurements are more
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reliable in terms of predictions. The RMSE and Sl scores were considerably higher for area and
convex hull in comparison. Therefore, these results show that the results for depth and width are
also more reliable, with the artificial experiments displayed for 0.3, 0.5, 0.7, and 0.9 m/s. These
values in particular are also those that can serve as inputs for the equations discussed in section
2.5, for thermodynamic model comparison and validation.

10.7 Recommender system summary

The work described in this chapter describes two separate recommender system approaches
for modeling data collected experimentally. These systems, which are a type of machine learning,
are generally used for predicting user behavior. In their most common applications, recommender
systems are used to make recommendations (hence their name) for users and items. When a new
item is introduced, the system can attempt to include it in its recommendations based on past user
behavior when held in comparison quantitatively to other users’ behaviors. This scenario, known
as collaborative filtering, is one of the foundational principals of the recommender system. The
recommendations are based upon a matrix of values which represent numerical rankings for user-
item combinations.

In the case of the LPBF process, the laser intensity is modeled as the user and the laser
velocity is modeled as the items. The dataset is arranged such that the area measurements
corresponding to that intensity and velocity is populated in the data matrix — in the place of user-
item numerical rankings. The goal then becomes for the recommender system to make
recommendations, or predictions for the area measurements, and subsequently convex hull area,
depth, and width of the vapor depression. However, prior to introducing a new untested velocity
setting into the system, which is similar to a new item being added to the system, the performance

of the model should be tested on a held out portion of the data. Therefore, known values were
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withheld from the matrix such that the system could be used to attempt to reproduce that withheld
data.

The two recommender systems evaluated were the Alternating Least Square, ALS, and
Accelerated Proximal Gradient, APG, based approaches. The latter of which consistently
outperformed the former, thereby suggesting its stronger likelihood for modeling and making
predictions from the LPBF data. The APG approach was then chosen to make new predictions. In
this fashion the recommender system was used to generate new data — new measurements. While
the model was able to accomplish this task, the results from the holdout evaluations for known
data suggest that the APG approach works best for depth and width measurements, as opposed to
those characteristics that have more variability and a larger range of values — the geometric area
and convex hull area of the vapor depressions. The results shown here suggest that recommender
systems can best be used for modeling those parameters as the underlying matrix decomposition
approaches were better able to encode those values and the latent features therein.

Limitations in these approaches exist. First, the data must be arranged in a two dimensional
matrix format, which thereby only allows two dimensions of data for analysis. Manipulating the
data into an appropriate format does take effort, as the build sensors do not output data in this
format automatically. While the work described here focuses only on two dimensions, laser power
and laser velocity, in Chapter 2 it was discussed how there are many more process parameters that
influence microstructure quality. Should we want to generate structure geometries to also factor in
hatch spacing, laser spot size, and layer thickness — these additional dimensions of data would
require different methodologies. The solution to this problem would likely involve higher

dimensional tensor factorization and completion methods. These techniques are similar to the goals
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TABLE 19

Average Values for Vapor Depression Geometries by APG
P V DEPTH WIDTH G. AREA C.H. AREA
150 0.2 63.06 38.22 492.46 502.32
150 0.3 38.94 24,65 844.12 214.14
150 0.4 9.52 25.63 57.49 69.52
150 0.6 0.00 0.00 0.00 0.00
150 0.8 0.00 0.00 0.00 0.00
150 1.0 0.00 0.00 0.00 0.00
150 1.2 0.00 0.00 0.00 0.00
150 1.4 0.00 0.00 0.00 0.00
200 0.2 14.95 42.86 148.38 175.84
200 0.3 8.881 67.81 278.12 298.59
200 0.4 39.69 32.03 339.50 452.52
200 0.5 43.68 35.71 654.45 600.84
200 0.6 54.95 68.87 743.68 856.23
200 0.8 0.00 0.00 0.00 0.00
200 1.0 0.00 0.00 0.00 0.00
200 1.2 0.00 0.00 0.00 0.00
200 1.4 0.00 0.00 0.00 0.00
250 0.2 45,65 4278 475.28 489.51
250 0.3 100.85 45,62 874.78 1001.69
250 0.4 109.51 77.06 1299.75 1532.23
250 0.5 105.45 98.24 1155.63 901.85
250 0.6 34.33 81.19 532.50 635.72
250 0.7 24.62 88.32 412.56 678.51
250 0.8 9.66 26.08 57.56 58.21
250 1.0 0.00 0.00 0.00 0.00
250 1.2 0.00 0.00 0.00 0.00
350 0.2 87.77 54.47 2803.14 2925.91
350 0.3 303.89 75.01 2363.95 2602.89
350 0.4 202.41 76.58 2410.46 2665.32
350 0.5 125.26 152.31 3052.98 2543.51
350 0.6 106.44 134.49 2715.03 2987.55
350 0.7 98.62 89.65 1795.88 2649.13
350 0.8 53.96 112.09 1043.80 1222.54
350 0.9 55.45 205.36 945.27 836.94
350 1.0 16.13 61.28 185.11 211.74
350 1.2 0.00 0.00 0.00 0.00
350 1.4 0.00 0.00 0.00 0.00
400 0.2 262.73 86.93 4270.17 4676.23
400 0.4 0.00 0.00 0.00 0.00
400 0.6 139.92 119.54 2852.02 2962.46
400 0.7 203.51 354.51 2656.62 2862.69
400 0.8 42,56 110.81 842.34 952.95
400 0.9 58.42 99.87 752.93 808.44
400 1.0 16.17 58.32 189.31 195.62
400 1.2 0.00 0.00 0.00 0.00
400 1.4 0.00 0.00 0.00 0.00
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of the matrix completion work described in this chapter; however, they can accommodate high
dimensional datasets. It should be noted that there are very little results in the literature that
demonstrates success in tensor completion; these techniques are still very much in their infancy
compared to other areas of machine learning. Future work could therefore explore tensor

completion by nuclear norm minimization, which theoretically should yield desirable results.
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CHAPTER 11

COMPARISON OF GENERATIVE MODELS

While observations of the original 35 experimental combinations were used for drawing
insight, the potential to have additional data for experimental combinations that were not produced
would be invaluable for additional thermophysics model validation. Generative models were
therefore developed and evaluated for this purpose, with the goal of increasing the variety of the
data collected through computational processes for artificial data generation. Two generative
adversarial networks were developed. The difference between the two being that one model had a
conditional aspect to it, that is, an additional component was used for model training in the form
of a numerical variable for an input. This is in addition to the image based data used for training,
which is the sole input for the general network. Using the laser intensity and laser velocity as
numerical inputs allowed the network to create more accurate images, as evaluated by a variety of
metrics to include the intersection over union, Hausdorff distance, root mean squared error, and
normalized root mean squared error also known as the scatter index. In all four of these metrics,
the conditional model outperformed the general model, and produced images that were
indistinguishable by human inspection from the original experimentally derived images. Based on
these results, new data was generated for new combinations of laser process parameters, which
increased the total available data by nearly 50% using the conditional model. The additional data
was therefore capable of adding additional validation for process characterization.

Next, a comparable deep learning based method for data generation was developed, using
variational autoencoders and conditional variational autoencoders. The conditional aspect worked
similarly to that of the generative adversarial network, however model training commenced

differently. The results of both of the VAE models were poor compared to those of the GAN
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models, for all of the evaluation metrics. Although the conditional autoencoder proved superior to
the general variational autoencoder, its output was still low in comparison to either of the
generative adversarial networks. New data could potentially be derived from these models, but
given the superior performance of the previous approaches, the autoencoder was not used for
artificial data generation. However, even the better performing CVAE trailed the performance of
both the GAN model and the CGAN. By comparison, the GAN had three tests where the Sl value
was under 30. The lowest SI value was 36.12, as seen for the CVAE’s output at the 0.6m/s
parameter for convex hull area. And while this only occurs once for the CVAE output, it occurs
for three out of four of the geometric measures for the GAN at 0.6 m/s (area at 27.66, convex hull
at 24.51, and width at 23.20).

A third approach for data generation was then developed, where instead of using image-
based approaches, a purely numerical approach was used. To accomplish this, the dimensions and
measured characteristics of the vapor depressions were encoded in a matrix format, where matrix
completion was then performed with two recommendation systems employed to recommend, or
generate, new measurements. The alternating least squares and the accelerated proximal gradient
algorithms were used to generate new measurements. The latter of which was shown to produce
more accurate values for geometric measurements of area, convex hull area, depth, and width of
the vapor depressions. While not an image-based process and therefore not able to be evaluated by
some of the previous methods, the root mean squared error and the standard index could still be
calculated for the output of the models. Therefore, a direct comparison could be made to the deep
learning based frameworks. Overall, these models were successful in generating new data, with

results in between those of the generative adversarial networks and the variational autoencoders.
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A summary of the results for the area calculations with the CGAN, CVAE, and APG
models are show in Table 20. Here, the superior of the two models for each technique — the
generative adversarial network, variational autoencoder, and recommender system based models
were chosen for comparison. While the GAN did provide superior results to the CVAE, as seen in
Tables 8 and 15 — the CVAE was included Table 20 to depict the disparity in the results for the
better autoencoder methodology. The goal of Table 20 therefore being to show how the better
output from each of the 3 learning methodologies differed. While the CGAN performed the best,
the recommender system based on APG performed second best, with results that closely matched
the GAN in Table 8. As shown above, the APG model had two tests where the SI was close to 30.
These results suggest that the matrix decomposition approach and nuclear norm minimization
operation can learn the latent features in the image data comparatively well to the deep learning

convolutional approach employed by the GAN.

TABLE 20
Comparison of Generative Results for Area Calculations
Test Parameter CGAN CVAE APG
RMSE SI RMSE SI RMSE _SI
0.2m/s 279.05 1852  469.12 73.43 254.3  19.29
0.4m/s 31521 2021 44657 90.15 231.2  28.15
0.6m/s 250.63 19.64  693.88 61.35 4251  31.06
0.8m/s 405.12 50.25  814.64 147.6 654.9  168.5

1.0m/s 360.15 75.96 1149.2 431.2 251.0 335.2




178

Using a recommender system approach has the benefit of not needing to directly process
all of the images in the dataset, as the input data is numerical. While work still needed to be done
to extract the numerical measurements from the image data, once done, the computational
complexity of deriving actionable intelligence from these data becomes computationally less
taxing compared to the resource intensive convolutional approach. That makes this an ideal
technique for future use in image datasets, as the numerical data can also be used for other
modeling and forecasting purposes. Additionally, the recommender system approach has the
benefit of being able to make many generative outputs at the same time. As was discussed
extensively, the incomplete matrix for a new user, and therefore a new laser speed setting for which
no data was obtained, can be computed. This allows the recommender system approach to produce
measurements for all laser intensity combinations at one time, unlike the conditional GAN where
the y inputs are manipulated one at a time for each combination of parameters. Recommender

systems can therefore be faster computationally, and more efficient for computing these outputs.
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CHAPTER 12

CONCLUSION AND FUTURE WORK

Manufacturing using advanced complex materials, such as metal superalloys is a discipline
of major interest to the aerospace industry, among many others. The advantages of developing
structures for these materials using additive manufacturing have shown many advantages in the
ability to create new custom made parts, quickly and relatively cheaply compared to historical
methods. However, in order to move such a system to high yield production, there must be a
thorough and comprehensive evaluation criteria on the outcome of that manufacturing process —
the quality of the final build. As yet, there is no certification standard for parts made using additive
manufacturing systems, which includes the industry leading technology of laser powder bed fusion
additive manufacturing. Therefore, ongoing research into way to qualify and quantify the quality
of the build process is ongoing throughout government, academia, and industry.

While challenges exist in finding a novel methodology to certify additive manufactured
components, one advantage is that these systems can be configured to collect massive amounts of
data in an experimental setting. For instance, high speed imaging of the build process, which can
provide image-based data from the build in-situ, which allows developers to see how the quality
of the material is affected by the actual build parameters — to include the characteristics of the laser
which is the heat source for the fusion of the metal particles in the additive manufacturing process.
These data can then be used to validate the theoretical framework, the expected values for certain
physical characteristics and phenomena as informed by thermophysics and fluid dynamics models.
Such characteristics include the behavior of the liquid bodies, which are created by the laser heat
which melts the metal substrate powder in a near instantaneous fashion as the laser moves over the

material. This area, the liquid melt pool, solidifies to form the final internal microstructure of the
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material. And its shape and solidification pattern have a direct impact on the physical quality of
the material, which includes any defects in the material. In addition to the liquid melt pool, there
is the gaseous body known as the vapor depression, which is the metal area directly beneath the
laser that instantaneously evaporates into a gas -of which the melt pool surrounds.

Collecting data during the build using dynamic x-ray radiography provides tens of
thousands of images for each build, nearly one hundred thousand images for a single object built
in an experimental setting. Using this technique, data was collected for a variety of builds using
different combinations of build process parameters - namely the laser velocity and the laser
intensity. The laser velocity determines heat buildup or how the material cools as it moves over
the material. Slower velocities lead to deeper vapor depressions and larger melt pools as the
material is under the heat source for longer times, compared to when the laser is moving quicker
and there is less time for the material to evaporate or liquify. Similarly, the laser intensity which
determines how strong the heat source will be, will also determine the size and shape of the vapor
depression and melt pool. The dynamic x-ray radiography provides an easy to examine
visualization of each of these areas for each of the experimental builds, where it can clearly be
seen how the size and shape of those two bodies change depending on the experimental settings.

While the amount of data collected was vast, that in itself creates a two-fold problem
limiting its usefulness for product evaluation. First, the volume of data did not mean that there was
a variety of data. The 35 experiments provided a large amount of data, but there were many
combinations of laser process parameters that were not conducted, and therefore no data exists for
the characteristics of materials for these hypothetical combinations. Second, the large amount of

data makes a visual inspection an impossible task. In order to mitigate these challenges in data
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evaluation, machine learning applications were developed to leverage the computational ability of
advanced algorithmic mechanisms to learn from these data and make quantifiable determinations.

The outcomes of the machine learning employed were as follows. First, using image based
image classification techniques for deep learning, the quality of builds was evaluated to determine
the presence, or lack thereof, of defects in the various experimental builds. This also included a
thorough computational geometry evaluation of the gaseous vapor depression which is responsible
for the most common types of defects as gas is trapped and left behind in the solidified structure.
Geometric feature tracking allowed for a link to be developed in a quantitative fashion for the
vapor depression and the melt pool. It was shown that it is possible to predict the presence of
defects, and therefore predict which combinations of process parameters will lead to defects —
before those defects even occur. The underlying features that constitute the vapor depressions can
be learned by their representation in the feature map created by the convolutional processes from
the deep learning mechanisms. These results also provided direct validation for some of the
underlying thermophysics models, thereby justifying that those models are appropriate
mechanisms for process certification.

Further this work improves upon the state-of-the-art in generative models by developing a
methodology for incorporating a continuous feature representation into the training such that the
model can potentially learn the distributional relationships of that feature with regard to the
underlying principals governing that representation. While work exists in this regard in conditional
generative adversarial networks, the process developed here used thermophysics based equations
to characterize and predict fluid properties that are encoded in the deep learning framework as

latent features. Additionally, the work described here trained a generative model in an end-to-end
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fashion which can be generalized to many other image representation, generation, and restoration
problems in the machine learning subfield of computer vision.

Future work in generating artificial data for LPBF investigations could include evaluating
utilizing the CGAN with datasets for various materials, in addition to images collected for IN-718
builds. This additional component will be conditioned by incorporating another input value for the
CGAN to learn to distinguish images from those builds using other superalloy materials, such as
the titanium allow Ti64, or the Nickel based superalloy CMSX-4. Additionally, future work will
incorporate the LPBF laser spot size, as this process parameter is also highly influential in the heat
absorption in the substrate material during the build process.

The work performed here contribute to the computational science breadth of knowledge in
image generation by the development of the multiple generative models for image generation with
a unique series of characteristics. While a materials science problem set was explored in this work,
the methods developed here could be applied to other areas, such as biological sciences where x-
ray image capture is also used. Generating new data could therefore be used to demonstrate
hypothetical manifestations of certain organismal components, including cancer tumor genesis
among many other use cases. Furthermore, the time resolved geometric sequencing approaches
that were then fed into the matrix decomposition architecture and recommender system could be
applied to many other image-based problems where additional data could prove useful. The
recommender system operates in a fundamentally different way than deep learning, with
advantages to include lower computational complexity and therefore possibly easier model
convergence. This has benefits for users who might not have the computational resources for the
deep learning framework, especially if more complex and higher resolution images are required.

The recommender system framework developed here can be conducted regardless of the resolution
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or size of the images, both of which have major impacts on the complexity of a deep learning
implementation.

Finally, this work had a direct benefit to government and industry research as NASA
Langley Research Center has utilized the outputs of the data here to contribute to the larger body
of work around additive manufacturing process certification. Following that acceptance, this work
has been presented to researchers throughout the agency who research and develop machine
learning and artificial intelligence for the multitude of problems faced by NASA as it works to
accomplish its mission. Future work will continue to apply these image based and non-image based
generative modeling techniques to better understand problems faced throughout industry. While
additive manufacturing was the focus of this work, these techniques can be applied to other
domains within materials science to include non-destructive evaluation, where CT scan data can
provide other image-based datasets for investigation. Ultimately, the development of GAN and
CGAN for aerospace applications will allow for more artificial renderings of hypothetical

constructions.
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CHAPTER 13
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