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Abstract

In order to overcome the famous von Neumann bottleneck, FPGAs employ a dataflow
model that processes data through a pipeline of operator modules, akin to an assembly
line for computation. This approach, which resembles how an assembly line stream-
lines logistics, is highly effective in utilising I/O resources. However, unbalanced
producer-consumer rates in these pipelines cause underperformance by idling parts
waiting for data. Furthermore, even if a pipeline is optimal for one target workflow,
it will still be unoptimised or, even worse - unable to execute another potential target
workflow. Creating a universally optimal pipeline ahead of time can become unattain-
able with data-dependent behaviour where the constraints and objectives change during
runtime.

FPGAs fit perfectly the dataflow model with their reconfigurable grid of resources.
This thesis proposes a middleware that utilises partial reconfiguration to enable dy-
namic adaptation of these resources at runtime in response to changing requirements.
On the one hand, with smart enough scheduling, at the very least, the system automati-
cally compiles static pipelines as domain-specific accelerators while avoiding reconfig-
uration costs. On the other hand, when the advantages of dynamically created pipelines
overcome the associated overhead costs, the system can improve performance.

This thesis examines how to operate and integrate a general-purpose system for
dataflow processing consisting of resource elastic modules, schedulers, input parsers,
and data and memory management. We implement and evaluate the system in data
analytics and image processing workloads. The results show that with large enough
datasets, the pipeline scheduling overhead and fragmentation costs are neglectable and
that reconfiguration can consistently outperform comparable static systems that do not
employ partial reconfiguration.
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Chapter 1

Introduction

Thesis statement: Reconfigurable hardware (HW) conducted by a software (SW) or-
chestration layer is the most appropriate to accelerate dynamic problems given an agile
utilisation of resources despite the seemingly large overheads of reconfiguration.

1.1 Motivation

Initial Turing-Complete machines were incredibly slow for modern general-purpose
requirements (e.g., the ENIAC from 1945 was clocked at 0.005MHz [91] while Win-
dows 11, released in 2021, requires at least a 1GHz processor/CPU [206]). In general,
we want as much compute work done as possible at any moment and start prioritis-
ing throughput given acceptable latency for increased performance. Therefore, the
technology industry has thrived on selling products (various CPU types or specialised
devices, from GPUs to ASICs) with continuously improving raw computational capa-
bilities, often measured in floating point operations per second (FLOPS).

Nowadays, the single-core CPU performance increase trends due to shrinking tran-
sistor sizes and increasing clock rates are mostly stagnating [297]. Meanwhile, mul-
ticore CPUs, simultaneous multithreading, and the “single instruction and multiple
data” (SIMD) instructions have driven the advertised FLOPS. Nevertheless, temper-
ature and power constraints and the communication requirements between the cores
and the system memory are becoming more complex with growing core counts and are
hitting performance. Consequently, with a steadily increasing demand for advanced
data analytics [286], there is a need for heterogeneous acceleration [303]1.

1Heterogeneous acceleration refers to the use of multiple types of computing HW, including FPGAs
this thesis focuses on, to leverage the strengths of each type of HW.
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Figure 1.1: With the Von Neumann architecture (or with the Harvard architecture), pro-
cessing elements get both data and instructions from memory which causes contention
over shared datapaths when trying to scale systems with more memory and processing
elements (optimised to an extent with caching).

The need for accelerators stems from the von Neumann bottleneck apparent in
modern CPUs due to the computational power of the processing elements (PEs) and
memory density advancing faster than the data transfer speeds [185]. This problem
is exacerbated when multiple processing elements share the same communication in-
frastructure and require instruction data, prevalent in multi-core CPUs, as shown in
Figure 1.1. We need to balance the resources (possible with customised HW) to avoid
being compute-bound or memory-bound by finding the most optimal resource al-
location using the roofline model in Figure 1.2. The following architectural design
principles in accelerators stem from the fact that data movement is expensive:

• Move compute closer to memory like with in-memory or near-memory process-
ing to improve memory bandwidth [349, 240].

• Pipeline processing elements to form a dataflow system to reuse data as much as
possible and improve the compute density of the problem [218].

Heterogeneous reconfigurable HW can follow these principles and thus is already
used to address the growing demand for faster data processing (due to the emergence of
big data) in large-scale computing solutions (e.g., a famous example of using FPGAs
is in the search engine Bing - Microsoft’s Catapult [45]). The energy efficiency of FP-
GAs [53] and their reconfigurability enables additional architectural optimisations after
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Figure 1.2: The roofline model divides performance by the time it spends on the fol-
lowing: 1) moving data around between memory and processing elements (PE), and
2) executing the required steps to finish the task with the given data.

the technological and algorithmic optimisations have been exhausted, with numerous
ways to integrate FPGAs into data centres [278] (including standalone use [2]). As a
result, CPU manufacturers Intel [121] and AMD [12] have acquired Altera and Xilinx
for billions of USD, respectively 2. While FPGA specialists expertly summarised the
fine details of using FPGAs in data centres (Bobda et al., [31]), they noted that the
missing piece for making FPGAs a commodity has been the scarcity of SW tools and
the immaturity of the whole SW stack. Nonetheless, FPGAs excel at dataflow pro-
cessing and techniques from the dataflow processing paradigm that can allow scaling

processing pipelines - which further flames the need for productive SW tools to handle
the increasing complexity and facilitate code reuse.

1.1.1 Static Dataflow

So far, the industry has been increasing the core count and maximising their use with
SIMD instructions as much as possible (e.g., with large counts of cores on GPUs [180])
to alleviate the von Neumann bottleneck. However, in applications that utilise the
dataflow processing model, such as machine learning (ML), the power consumption

2In this thesis former Altera’s and Xilinx’s products are referred to as Intel’s and AMD’s.
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Memory
Processing Element Processing Element Processing Element

Figure 1.3: Dataflow architecutre allows sharing data inherently, which, in turn, cir-
cumvents the von Neumann bottlenck.

of GPUs has become excessive [290]. As a result, heterogeneous hardware is be-
ing increasingly used to take advantage of the benefits of dataflow [264]. Therefore,
there has been a recent focus on exploring solutions based on ASIC (such as Google’s
TPU [130]) and automated design flows [221] that create embedded systems with the
dataflow architecture depicted in Figure 1.3, especially for DSP applications [346].
The main benefit of this architecture is that it avoids sending expensive instruction
data through contested paths which themselves become more expensive as they require
a more significant number of multiplexers (HW switches for choosing data destination)
when the number of directly connected processing units grows.

The pipelined execution (Figure 1.4) is one of the reasons why dataflow processing
is compelling, as all of the operator modules (processing elements) can work in par-
allel with minimised memory overheads even if there are direct dependencies between
the required operations, contrary to alternative parallel computing patterns [232]. The
system of modules is most efficient when all pipeline stages take the same amount
of time as all other stages to prevent faster modules from idling and waiting for new
data to arrive. Designing these balanced systems is more straightforward to accelerate
in applications with a stable and deterministic flow, like machine learning and video
processing [208, 70]. However, application domains that require more universality
to support a broader range of workloads with data-dependent conditions must use an
excessive number of operators with a “one fits all” static configuration to cover all
corner cases like, for instance, the relational database management system (RDBMS)
AxleDB [269]. An alternative to this overprovisioning is to accelerate only a sub-
set of possible operations (i.e., filtering and compression) and schedule the remaining
work on a CPU [79, 342] - which misses exploiting the advantages of deep pipelin-
ing available with dataflow processing. Nevertheless, with data-dependent conditions,
the following is certain: for increasingly dynamic problems, static pipelines become

inefficient or inoperable.
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Figure 1.4: If all of the steps in the pipeline take the same amount of time with balanced
producer-consumer rates, then data gets processed at a different module each cycle.

1.1.2 Dynamic Dataflow

We propose using reconfigurable HW to create pipelines online rather than offline,
analogous to optimal dataflow systems that are dynamically created for distributed
systems [112, 295, 272]. The dynamic approach allows adaptation to conditions and
requirements that become apparent only during runtime. A runtime middleware can
provide adaptive acceleration services with optimised resource allocation with a mod-
ular approach where the most optimal dataflow system is built on the fly out of the
available “lego blocks” in its module library. The modules must provide enough flexi-
bility in terms of resource, performance, and functionality tradeoffs for the middleware
to find the most optimal balance for all variable runtime requirements (with the limited
resources available on a single device). In order to balance all resource-performance-
reconfiguration costs transparently for a general extendible solution, the implemen-
tation details have to be virtualised with a resource-elastic module library consisting
of pre-synthesised accelerators3. The property resource elasticity allows changing the
resource allocation of a task transparently to the user, which is commonly used in dis-
tributed stream processing [64] and more recently proposed by Vaishnav for virtualis-
ing FPGA processing [301]. In this thesis, we use a more fine-grained resource-elastic
resource allocation required for dataflow systems while maintaining the additional ben-
efits of abstraction, multi-tenancy, resource management, and data isolation, connected
with FPGA virtualisation techniques [254].

3Synthesis is an HW design flow step analogous to SW compilation where the hardware description
language (HDL) code gets transformed to an optimised gate-level netlist - circuitry.
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1.2 Big Picture

Because of the lack of community-supported tools, reconfigurable HW is seldom used
in the industry as compared to more mature devices such as CPUs and GPUs. Further-
more, often in the industry, reconfigurable HW resembles an “updatable ASIC” as the
platform’s dynamic partial reconfigurability (DPR) capability is ignored as part of the
operation of a system. Therefore, most advancements improve static pipelines by mak-
ing them more efficient for smaller problem subsets or generalising static pipelines.
DPR allows changing parts of the logic of a circuit during runtime, but it has a high
cost as the reconfiguration process takes a substantial amount of time. Due to the per-
ceived high cost and minimal support from device vendors with tooling, there exists
no mature ecosystem to build systems that can manage DPR with optimisations that
can “hide” the costs.

There are two types of reconfigurable HW systems: 1) coarse-grain configurable
systems like CGRAs that trade their flexibility for more performance and faster recon-
figuration [182] and 2) fine-grain configurable systems like FPGAs that are flexible
enough to emulate any ASIC designs given enough resources [163]. These types share
the benefits of reconfigurable HW (energy efficiency and a high level of parallel com-
putational power) and the common disadvantages (complex to develop due to lacking
open-source community sharing knowledge and SW tooling). However, it can be chal-
lenging to scale CGRAs due to the lack of flexibility [246], and as FPGAs are widely
used in various complex applications in the industry [266, 85], this work will focus on
FPGAs for a more general purpose solution.

1.2.1 Productivity

Using reconfigurable HW (especially with DPR) is difficult as it requires experience to
perform better than highly mature CPU or GPU alternatives with a fast enough time-
to-market. The vendor tools are relatively slow (with long synthesis times compared
to compiling SW), and open-source tools had not shown improvements (in terms of
quality-of-results and CAD tool time) for large physical implementation problems [118].
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However, vendor tools are good at producing “Hello World”4 projects and using prepack-
aged IPs, while most other custom solutions outside the vendors’ vision are more com-
plicated (including DPR, where additional tools are required, like IMPRESS [339] and
many others discussed in the next Chapter).

FPGA design productivity can be improved by reducing long CAD tool times (es-
pecially apparent for large designs filling data centre FPGAs) and facilitating design
reuse in more ways. Recent HLS improvements have led to higher quality designs
while increasing developers’ productivity to address this problem [166]. Furthermore,
more tools have become available with reusable IPs from FPGA vendors, like the HLS
compilers in AMD-Xilinx’s Vitis and Intel’s Quartus. However, in this thesis, we
propose to improve productivity by reusing physically implemented modules (either
synthesised from low-level HDL code or high-level HLS) that provide the following
benefits both during design time and runtime:

• Every aspect of the system can be developed in isolation (given a set of common
interfaces and constraints).

• Fast integration of complex systems (orders of magnitudes faster than full mono-
lithic synthesis [328]).

• Bugs are more reproducible and easier to spot (important for handcrafted opti-
misations and to reduce CAD tool noise disruption).

• Tools often perform better when synthesising smaller designs (e.g., some tools
automatically partition designs [164]).

• Speed up design space exploration with module alternatives providing resource
and performance trade-offs (critical for resource-elastic systems).

• Enabling partial reconfiguration (ideal for dynamic time-variant compute prob-
lems where the functionality may change at runtime or where resource require-
ments exceed the device capacity).

• Enabling schedulers to manage the integration of the modules (allowing the fur-
ther abstraction of implementation details for design automation).

4The phrase “Hello world” is often used in programming introductions to print a line of text and is
a valuable way to test that the system works. Printing a line of text is complicated on configurable HW
due to the required low-level interaction with peripherals, and as such, “Hello world” projects here refer
to potentially complex systems, albeit still routine projects.
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Figure 1.5: The different parts of an ecosystem reusing physically implemented and
partially reconfigurable modules (in blue). The number of FPGAs, how the data is
routed, and the size of the modules are all flexible.

Our approach brings FPGAs closer to modern SW applications that pay an overhead
cost for an operating system to facilitate a shared ecosystem of reusable code where
library functions are linked together for various requirements. Various FPGA de-
sign workflows could benefit from reusing physically implemented modules, including
1) rapid prototyping, 2) component-based design, and 3) partial reconfiguration.

There are open-source FPGA tools to build frameworks for both designing stan-
dalone or embedded custom FPGAs [181, 150, 177] and designing partially recon-
figurable systems as surveyed by Vipin et al., [312] (e.g., [24, 28, 168]). For these
frameworks to be practical there are also open-source tools for synthesising HLS (as
surveyed in [54, 261]) and HDL (e.g., [277, 125]) designs while there are also tools
for manipulating the resulting bitstreams that configure the FPGAs [238, 46, 192].
Given all of these available approaches and tools summarised in by Tessier et al., [294]
we need to look at how to increase the productivity through an ecosystem that can
maintain and share reusable code required for various parts of the process of running
acceleration services on FPGAs.

1.2.2 Ecosystem

In our approach, we model the heterogeneous resources of an FPGA and determine
what kind of ingredients are required to build up an ecosystem (Figure 1.5) consisting
of 1) a runtime manager, 2) a static infrastructure managing the communication with
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the manager and the operation of the reconfigurable modules, 3) a library of modules,
and 4) a method to organise the acceleration tasks. These ingredients can be developed
independently and with flexible composition capabilities, which fosters the creation of
a community around a shared ecosystem of reusable building blocks

We propose such an ecosystem through the abstraction of resource allocation for
which we define constraints for modules in PR regions (areas where multiple PR mod-
ules may be configured) while connected by regular routing (also placed with PR)
constrained by the modules’ interfaces. We will introduce constraints that allow sim-
plifying the mapping problem to a one-dimensional placement problem (it can be ex-
tended to arbitrary 2D shapes and using multiple regions, but for the sake of brevity
in explaining the concept, we model it as a 1D problem, as shown in Figure 1.5).
We model the heterogeneous resource columns using symbols for any resource type
available in an FPGA fabric (as the types of resources appear in a regular pattern di-
viding them into columns for the 1D model or a grid for the 2D model). The corre-
sponding symbol strings form resource strings. The modules can be placed into a PR
region when the resource string of that module matches any of the substrings in the
PR region’s resource string. With this, placing modules becomes a string matching
problem. The HW library consists of multiple modules that compute an elementary
operation or some usually small functions while requiring various resource columns.
A module can have different implementations to allow trading performance or addi-
tional functionality for resources. Furthermore, modules may also compute partial
results, which allows combining them with other modules. We developed a runtime
system with a scheduler for automatically solving the dynamic placement problem.
The runtime system also sends control signals to the FPGA to operate and integrate
the reconfigurable modules.

To create such a general purpose (yet optimised) system capable of orchestrating
dynamic dataflow pipelines, we need to address all following parts of the system in
detail:

Operations: In order to accommodate a diverse set of conditions and constraints, the
system needs to support a pool of operations. Therefore, a module library fa-
cilitates the creation of a list of matching operations that can be mapped by
a higher-level client-side parser to execute the requested acceleration services.
The module library also contains the metadata about the resource requirements
and possible functionality/performance tradeoffs. For example, joining two data
streams requires a join-like operation.
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Dependencies: As stream processing dependencies and operation nodes can be mod-
elled as a dataflow graph, we have to support all possible topologies. There-
fore, any acceleration requests are mapped to an intermediate representation
(IR) graph containing operation nodes with input and output dependencies. For
example, a join operation requires multiple inputs while only having a single
output.

Constraints: All HW modules can have unique constraints about the incoming data or
their positioning on the device. These have to be handled transparently, for which
we have a generalised system where module-specific drivers (SW to manage the
HW) inform the system of any constraints. For example, to do a merge join, all
of the inputs must be sorted beforehand.

Data management: As acceleration services may use operations on various forms of
data, the input data has to be encoded in an acceptable format when placed on
the datapath. Consequently, as part of the static infrastructure on the FPGA, a
data mover has to be programmed to deliver data correctly on the wide data path
(agreed upon time and location - using corresponding offsets) to the processing
modules and retrieve the results. For example, for both table data containing
columns with different data types or pixel data from image files, an abstraction
layer is required to represent the supported encodings to the data mover and the
modules.

Scheduling: All the constraints, data dependencies, and limited resources require
solving a complex module scheduling problem. More complex streaming jobs
may require multiple runs5 with batch processing. Whether these batches are
substantial or fast micro-batches depends on the capabilities of the available HW
modules and the latency requirements of the accelerated application. For exam-
ple, complex data analytics acceleration requests containing multiple filtering,
joining, and sorting steps require dynamic scheduling in time and space.

Memory: In order to handle complicated topologies that span over multiple time-
multiplexed runs, we need a memory management subsystem that handles stor-
ing the inputs and outputs of different modules. Any batch of data stored in
RAM must be directly accessible by the data mover, and after the data has been

5With a run, we refer to a pass of data through the PR region, which may or may not have different
pipelines of modules configured. Occasionally, a large dataset must be partitioned for streaming through
the same pipeline with multiple passes (e.g., when sorting large problems)
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processed, that memory address has to get freed. For example, data writing
and reading require managing dirty memory regions, which can be done with a
filesystem-like approach.

High-level integration: Lastly, to make integration with larger-scale applications seam-
less, we must explore how to integrate the FPGA systems. This integration re-
quires application programming interfaces (APIs) which in streaming applica-
tions is often done with high-level queries in structured query language (SQL).
SQL queries in stream processing allow for real-time, continuous data analysis
(views of data snapshots) by providing the ability to perform complex operations
on bounded or unbounded data streams. Moreover, while enhancing the ease of
integration with other systems, the security of expanding the set of available
operators with third-party developers needs to be carefully considered.

1.2.3 Integration

The proposed approach can be applied in various scenarios, from static offline integra-
tion on a single FPGA to complex runtime systems managing FPGA networks with
multiple PR regions and concurrent tasks, as shown in Figure 1.6. The proposed sys-
tem can find the optimal resource allocation on large devices even without using DPR
when targeting a limited set of applications, provided that there are sufficient resources
available. The module library contains highly optimised HW designs with a set of
drivers that can move complex data types through a wide datapath with various control
signals, enabling our approach to alternatively provide a domain-specific compiler.

On the other hand, in more resource-constrained dynamic scenarios, our approach
can be used as capable middleware managing multiple simultaneous queries using
DPR to allocate more resources to performance-hungry operations (similar to Just-
in-Time6 compilers) Therefore, given that the implementation of our approach is op-
timised enough, this novel tool can be used extensively as, by default, the resulting
system will be as good as a comparable static system. If the performance benefits

6Just-in-Time (JIT) compilation is a process where source code is compiled into machine code during
runtime rather than offline beforehand. This compilation approach gives the added benefits of portability
and the option for additional optimisations and error checking, possible with information only attainable
during runtime. One of the most famous examples of this is Java, where for performance reasons, the
code is initially compiled to bytecode which then is compiled further to machine code during execution
and the possible optimisations to overcome the added overheads have been covered in literature, for
example by Ishizaki et al., [122]. Jain et al.,[124] also proposed JIT compilation on FPGAs with overlays
while compiling OpenCL.
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Figure 1.6: Our proposed methodology is centred around a middleware that parses and
schedules input acceleration service requests (any level of abstraction) from multiple
clients using substitutable system parts to provide either static bitstreams or dynami-
cally managed FPGAs. The platform can be extended to manage multiple FPGAs with
multiple PR regions and various ways to access data or configure the HW.

overshadow the costs of the dynamic approach, then the system can improve perfor-
mance transparently to the end-user (seemingly for free).

1.3 Scope and Contribution

The scope of this work can be broadly categorised into two main areas: 1) The in-
troduction of a design framework for creating middleware that orchestrates dynamic
dataflow acceleration, establishing the theoretical foundation, and 2) a practical imple-
mentation example to evaluate this overarching approach.

For the theoretical framework to be applicable, we make the following assumptions
about the system under design:
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• The system can access a pre-synthesised module library. This library can be
placed arbitrarily in the PR region, utilising pre-existing regular routing based
on the resource pattern matching detailed in Section 1.2.2.

• The system can access a static FPGA partition that contains partially reconfig-
urable regions, allowing for the loading of appropriate module bitstreams. Sub-
sequently, these regions and modules can be fed with data payloads (comprising
both operational and instruction data) and also return results.

Given these prerequisites, we can design a middleware that accepts a dataflow problem
described by a graph as input. The middleware then processes the graph to produce
a sequence of dataflow pipeline configurations. These configurations detail the list
of modules to be loaded, their respective locations, and the instructions required for
their correct initialisation. Furthermore, this middleware is tasked with executing these
pipelines to produce the final results.

This thesis then develops the scalable and maintainable middleware, called Orkhes-

traFPGAStream, to answer questions about the efficacy of the dynamic dataflow ap-
proach on FPGAs marking the aforementioned second main segment. For evaluating
the costs and benefits of using DPR to create a dataflow pipeline on the fly, we target
two applications: 1) image processing; and 2) online analytical processing (OLAP)
workloads of database management systems (DBMS). The example implementation,
crafted using the generic framework, is adept at processing both workloads (concur-
rently if necessary). This capability ensures the evaluation aligns with the theoretical
dynamic dataflow approach, rather than being influenced by problem-specific imple-
mentation nuances.

OrkhestraFPGAStream is built on top of related work that aligns with the previ-
ously highlighted assumptions of the framework. First, the underlying low-level HW
implementation for executing the required operations has been done with resource-
elastic modules developed by Kristiyan Manev for his PhD thesis [195]. These mod-
ules are integrated into a static system with floor planning, which incorporates regular
routing backbones derived from the ZUCL [241] work. The regular routing backbone
arrangement allows for flexible module placement, ensuring that interface locations
are adaptable. Lastly, loading bitstreams onto the FPGA and reading and writing the
memory-mapped registers and input and output data buffers has been done with a li-
brary called Cynq developed by Joseph Powell for the project FOS [305].
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1.3.1 Remaining Chapters

Background (Chapter 2): This background chapter examines the general dataflow
theory and what constraints must be met for practical use. Afterwards, the chap-
ter also reviews how to build DPR systems in practice. The chapter concludes
by looking at related work in building dynamic dataflow systems.

Runtime Management (Chapter 3): This chapter gives an overview of the general-
purpose approach to dynamic dataflow processing. Mainly, the chapter explains
the module and data placement problem in time and space. Consequently, we
will define the constraints and objectives of such a general-purpose resource-
elastic module scheduling problem.

Implementation & Evaluation (Chapter 4): The implementation and evaluation chap-
ter will cover the technical details of managing and operating dataflow pipeline
configurations for image processing and data analytics acceleration. With this,
we examine the efficacy of a heuristical approach to scheduling the PR mod-
ules. Then we benchmark OrkhestraFPGAStream and compare its performance
against comparable SW, static and dynamic alternatives’ performance.

Generalisation (Chapter 5): This chapter will highlight how to make the proposed
system generic and maintainable through an extendable module library with
modular drivers. Furthermore, the chapter will evaluate ways to create mod-
ule alternatives for trading between resource-performance-functionality benefits.
For industry and the community to adopt this approach, we also examine the po-
tential security risks and how to mitigate them.

Conclusion (Chapter 6): We conclude with the proposed methodology and its strong
and weak points. Then the thesis will conclude with potential use cases, includ-
ing open-source tools that can be used today due to work presented here.

1.3.2 Main Research Questions

1. How can a dynamic stream processing manager reuse physically implemented
FPGA designs transparently while using their resource elasticity optimally?

2. How to approach an NP-hard scheduling problem of placing different task ac-
celerators both in time and space with non-linear cost-performance relations?
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3. How do the dynamic FPGA acceleration results compare with static solutions?

(a) How significant is the penalty for using partial reconfiguration?

(b) How much can the scheduling time be traded for the quality of results?

For the first question we highlight the various theoretical related design aspects that
must be considered when designing a dynamic system that reuses previously physically
implemented designs in Chapter 3. Then Chapter 4 introduces an example system that
demonstrates how to address these design challenges in practice. Similarly, for the
second question, we outline all constraints and objectives of the scheduling problem in
Chapter 3 and evaluate an example implementation in Chapter 4.

Regarding the final question, we present various existing static solutions in Chap-
ter 2. We then compare an example system using the dynamic approach with the
static approach in Chapter 4. During this evaluation, we segment the runtime into dis-
tinct process durations. By comparing the relative durations of each process, we gain
insights into the penalty of partial reconfiguration and scheduling in relation to the
processing time of the loaded modules.

1.4 Publications

First author:

• Conference papers:

– Kaspar Mätas, Kristiyan Manev, Joseph Powell, and Dirk Koch. Auto-
mated Generation and Orchestration of Stream Processing Pipelines on
FPGAs. In International Conference on Field-Programmable Technol-

ogy (FPT) 2022

This work presents the results that show how a dynamic dataflow system
can have at least comparable performance with a static system while sur-
passing the performance with large enough data sets where the processing
acceleration overweighs the overhead costs. This work relates to the eval-
uation results that are presented in Chapter 4.

– Kaspar Mätas, Tuan Minh La, Khoa Dang Pham, and Dirk Koch. Power-
hammering through glitch amplification - attacks and mitigation. In IEEE

28th Annual International Symposium on Field-Programmable Custom Com-

puting Machines (FCCM) 2020



30 CHAPTER 1. INTRODUCTION

A short paper which presents an attack that uses glitches for fast signal
switching and to draw high amounts of power. As mitigation, a new virus
signature was added to the virus scanner capable of scanning FPGA bit-
streams. The attack method and the solution to defend against this when
using 3rd party designs is discussed in Chapter 5.

• Demo:

– Kaspar Mätas, Kristiyan Manev, Joseph Powell, and Dirk Koch. FPL
Demo: Runtime Stream Processing with Resource-Elastic Pipelines on FP-
GAs. In International Conference on Field-Programmable Logic and Ap-

plications (FPL) 2022

This work presents an interactable SQL interface with which analytical
queries can be executed on relational database tables in PostgreSQL while
transparently using FPGA acceleration with partially reconfigurable resource-
elastic pipelines. The example system, OrkhestraFPGAStream, demon-
strated in front of a live audience processing given SQL queries with the
FPGA, is discussed in Chapter 4.

• Workshop paper:

– Kaspar Mätas, Tuan Minh La, Nikola Grunchevski, Khoa Dang Pham,
and Dirk Koch. Invited tutorial: FPGA hardware security for datacenters
and beyond. In ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays (FPGA) 2020

This work presents various security attacks on data centre FPGA applica-
tions and how to mitigate them with a virus scanner scanning for multiple
malicious patterns in the bitstreams to be executed. The idea of splitting
the implemented design into a set of static and dynamic connections allows
for the identification of various patterns. These patterns can flag potential
security risks, as discussed in Chapter 5.

• PhD forum:

– Kaspar Mätas and Dirk Koch. Transparent Integration of a Dynamic
FPGA Database Acceleration System. In International Conference on Field-

Programmable Logic and Applications (FPL) 2020
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This work presents the idea that dynamic partial reconfiguration can be
used to create dataflow pipelines on the fly to answer the problem of meet-
ing acceleration requirements with conditions only known during runtime.
The initial idea of transparent SQL acceleration using DPR is presented
here in Chapter 4.

Involved as a collaborator:

• Journal:

– Tuan Minh La, Kaspar Mätas, Nikola Grunchevski, Khoa Dang Pham,
and Dirk Koch. FPGADefender: Virus Scanning for Multi-tenant FPGAs.
In ACM Transactions on Reconfigurable Technology and Systems (TRETS)

2020

This work concludes the potential attacks on FPGAs that can be detected
with the virus scanner. The mitigation provided by the virus scanner is
presented here in Chapter 5.

• Conference paper:

– Kristiyan Manev, Joseph Powell, Kaspar Mätas, and Dirk Koch. byte-
man: A Bitstream Manipulation Framework. In International Conference

on Field-Programmable Technology (FPT) 2022

This work presents a bitstream manipulation tool that can quickly change
a partially reconfigurable module location to be used in this thesis’s pro-
posed system with many supported FPGAs. The validity of the resulting
bitstreams was tested with our dynamic system as the library evaluated in
Chapter 4 is built with this tool.

• Demos:

– Joseph Powell, Kaspar Mätas, Kristiyan Manev, and Dirk Koch. FPL
Demo: FPGA Bitstream Virus Scanning. In International Conference on

Field-Programmable Logic and Applications (FPL) 2022

This work presents an updated version of the bitstream virus scanner ca-
pable of running on a larger variety of devices. This work demonstrates
the implementation improvements of the initial ideas where the ideas are
discussed in Chapter 5.
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– Tuan Minh La, Kaspar Mätas, Joseph Powell, Khoa Dang Pham, and Dirk
Koch. Demo: A Closer Look at Malicious Bitstreams. In International

Conference on Field-Programmable Logic and Applications (FPL) 2020

This work demonstrates a denial of service attack on an FPGA and how the
virus scanner can detect the attack while scanning the malicious bitstream.
The scanning process is elaborated upon in Chapter 5.

• PhD forum:

– Tuan Minh La, Kaspar Mätas, Khoa Dang Pham, and Dirk Koch. Secur-
ing FPGA Accelerators at the Electrical Level for Multi-tenant Platforms.
In International Conference on Field-Programmable Logic and Applica-

tions (FPL) 2020

This work presents the initial idea of what kind of undetectable attacks
are possible with malicious FPGA designs and how they could be detected
using a virus scanner. The attack surface that opens up when using third-
party modules is discussed in Chapter 5.



Chapter 2

Background

In this section, we introduce all the required background information about the theory
of dataflows. This is done in Section 2.1 which includes practical application examples.
We will look at FPGAs in more detail in Section 2.2 to better describe all of the related
work in Section 2.3.

2.1 Dataflow

Models of Computations (MoCs) provide an abstract view of how data processing is
organised. When designing a system from the ground up, evaluating and comparing
different MoCs helps observe and verify any inherent effects and limitations for the
targeted application [75] (e.g., the cellular automata MoC as used in Conway’s Game
of Life is suitable for simulating biological processes due to reduced memory require-
ments [143]). Rather than just looking at the Von-Neumann model amongst Turing-
complete MoCs, there is a large number of models with different characteristics (e.g.,
expressiveness, observability, compositionality and reconfigurability) from which the
most fitting one must be chosen [127]1. Mathematical frameworks have been pro-
posed to classify and evaluate different models (e.g., Tagged Signal Model is used to
characterise different operations on symbols [176]), and tools use these frameworks to
characterise MoCs (for simulation purposes) [115] as different MoCs in practice are of-
ten combined [37]. As a result of this formal analysis, processing network systems are

1Even non-Turing MoCs exhibit beneficial characteristics, as shown by the following examples. The
classification of different types of state spaces and processing times to be continuous or discrete [187]
helps define natural computational models that fit different types of interactions in robotics [71]. Alter-
natively, there are attempts to extend the model of Turing Machines [50] to help model data containment
models required for quantum computing [43].

33
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found to be fitting for embedded applications to ease the integration of independent
actors that work in parallel [175] and dataflow is a network MoC with coarse grain
parallelism that fits the local and persistent memory resources commonly available on
reconfigurable HW [17].

2.1.1 Definition

At its core, dataflow can be represented as a graph consisting of nodes that correspond
to individual operation steps and arcs that indicate the data flow between nodes. The
operations performed at each node have no side effects (no impact to other nodes) [137].

A generalised model for such distributed computations is Petri networks that sym-
bolise available tokens (data) in places between the operation nodes [270]. In corre-
sponding systems, first in, first out (FIFO) buffers are used for places where tokens
reside until they are needed by the next PEs acting as operation nodes. However,
these places can be shared between multiple transition nodes making the model non-
deterministic. The alternative stricter Kahn Processing model creates operation firing

rules (clearly defined and tracked point-to-point connections) to make the system deter-
ministic [133]. Nodes of the system only fire tokens forward when tokens are present
in their buffers. However, such systems may require unbounded buffer sizes, which
are difficult to emulate on practical systems without multi-level cache hierarchies and
hard-disk space [87], and as such, to avoid deadlocks, non-dynamic dataflows are used
with static global scheduling [174]. These synchronous dataflow models are often used
for static applications like digital signal processing (DSP) on embedded systems where
the a priori static scheduling determines how many tokens can be fired for each node
to work with bounded memory.

Dataflow systems need to consider both producer and consumer rates, taking into
account the possibility of non-deterministic workflows. With static scheduling, it is
possible to determine all potential rates beforehand. However, when dealing with non-
deterministic workflows, it is necessary to monitor runtime behaviour and adapt ac-
cordingly. Regardless of the speed at which an operator node produces output data
packets in comparison to the speed at which the consuming nodes accept them, the
system must ensure that no data is lost despite having limited buffers. There is a large
variety of dynamic dataflow models to handle this problem [36]. To avoid relying
on centralised flow control, Manev’s proposal for FPGA dataflow modules employs a
credit system that utilises a suitable MoC similar to integer dataflow (IDF) [40]. These
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credits use module-to-module signalling to coordinate the system (e.g., to convey in-
formation on the number of tokens that can be transmitted) [195]. However, to assure
liveliness (prevention of deadlocks where no nodes fire), the graphs representing the
dataflow execution plans must be directed acyclic graphs (DAG).

2.1.2 Examples

Dataflow MoCs can be used effectively in many applications that benefit both from
parallel processing and the loose coupling of different processing stages. For instance,
machine learning (ML) is an application field that fits the dataflow paradigm such that
there are many specialised dataflow frameworks for languages (like Tensorflow [1]),
for distributed computing (like Apache Spark MLlib [204] and Apache Mahout [14])
and for FPGAs (like FINN [30]).

Building these general-purpose dataflows is challenging as they must handle var-
ious infrastructure requirements such as out-of-order processing, system interfacing
(“plumbing”), fault tolerance, graph processing, various data format parsing, encod-
ing, and decoding. In this context, we will briefly overview the SW landscape of
stream processing tools.

Here, the landscape of stream processing tools is mature enough that the industry
has adopted numerous open-source tools, often from the Apache Software Foundation
(here, marked in italics). Apache provides a supportive community and a transparent
development process, allowing stream processing projects to become production-ready
and enable fast time-to-market [15]. The most relevant stream-processing open-source
tools under the Apache umbrella include:

• Spark: A Cluster computing system for large-scale data processing (one of the
most popular big data frameworks).

• Hadoop: A framework for distributed storage and processing of big data using
MapReduce (foundational algorithm for big data processing infrastructure).

• Flink: A scalable stream processing framework for both batch and real-time data
processing (with exactly-once processing guarantees).

• Beam: A unified programming model for both batch and stream data processing
pipelines (compatible with multiple execution engines).

• Kafka: A distributed, high-throughput publish-subscribe messaging system for
real-time data streaming (often used with other frameworks like Spark and Flink).
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• Storm: A distributed real-time computation system for processing real-time data
streams (with a more accessible programming model).

• Airflow: A platform for programmatically authoring, scheduling, and monitoring
workflows, including data pipeline workflows (a high-level monitoring frame-
work).

The stream processing tools can be integrated with other Apache frameworks that offer
data sources and sinks. Examples include Cassandra (for write-intensive operations)
and HBase (for read-intensive operations), which are NoSQL databases with column-
oriented data; Flume, a log data collection and analysis framework; and Pulsar, a
high-scale publish-subscribe messaging system. These frameworks can utilize data
storage formats such as Parquet, a general-purpose storage format, and Arrow, a high-
performance in-memory columnar format. Most importantly, they can be customised
further, such as adding stateful operations through APIs (e.g., Storm’s Trident API),
which provides support for window operations, stateful transformations, and aggre-
gations, as well as built-in fault tolerance and state recovery. As there is such a vast
degree of customisability with these open-source frameworks, other software stacks
aim to give a complete package like Google’s Dataflow [6] or Amazon’s Kinesis [76].

These tools and other similar ones are mainstays for big data applications [210,
226] showing that the dataflow MoC meets the ever-increasing demands of data pro-
cessing. Heterogeneous systems are well-suited for big data workloads, and there are
various approaches to integrating these systems with FPGAs. For example, Xekalaki
et al. [326] propose using TornadoVM with Flink for transparent acceleration. Tor-
nadoVM can virtualize heterogeneous hardware and manage high-level code execution
on FPGAs via API calls, although the FPGA use suffers from long synthesis times [81].
However, currently, there are no tools available for managing dynamic dataflows on
FPGAs, and therefore, we will examine two example applications that are suitable for
execution on FPGAs.

Image Processing

For image processing, most operations fit FPGA acceleration [101]; for example, there
are accelerators to encode image data (e.g., through trigonometric transforms [265]),
which also allows embedding covert data via steganography [132]. As such, there is a
rich set of dataflow frameworks specifically for image processing ([173, 35, 242, 131,
34]). Most image processing dataflows are deterministic and therefore are scheduled
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statically. There can be different consumer and producer rates when the dimensions
of the image or the pixel data encoding change, but these are usually derived before-
hand from the image sizes. There are even branching dataflow graph topologies when
different channels of the image data are processed in parallel, and later the results are
aggregated. As such, image processing is an ideal application to to be accelerated with
dataflow systems [141] and a good target for us to test generality given the various
consumer and producer rates and varying topologies.

Palumbo et al. proposed a multi-dataflow composer (MDC) tool which automat-
ically composes dataflow pipelines using any given HDL components in a module
library, which was tested with image processing workloads [228]. However, this tool
creates close-to-static dataflows as the different possible scenarios are executed by
a reconfiguration process which entails switching between different routing options
through non-programmable modules with MUX and LUT configurations which is only
possible with overprovisioning. Such an approach fails to effectively support dataflows
with data-dependent non-deterministic effects, for which we also look at supporting
database management systems (DBMS) with a runtime manager.

Database Management Systems

Dynamic dataflow systems are used in applications like IoT that need to make data-
dependent decisions [320]. In IoT systems, many moving parts produce and consume
related data in parallel, just like in data analytics operations in DBMS [93]. Addition-
ally, in streaming systems, user-friendly SQL queries create different windows (views)
of the datastream without specifying how this should be implemented, leaving room
for transparent optimisations [287]. As such, to reduce data redundancy and improve
application development productivity, automatic DBMS systems have been adopted by
the industry (already in the 1990s [94]) despite the difficulty of managing the complex-
ity of such dynamic systems [104] that can handle a large variety of relations [250].

Figure 2.1 shows a generic view of the back-end of a DBMS system with the fol-
lowing processing steps before a query gets executed:

1. At first, the parser translates the query into tokens with syntax parsing for identi-
fying keywords and checking for correct grammar, after which semantic parsing
extracts the intended meaning behind the request.

2. Then, the tokens are reorganised into internal intermediate representation (IR)
data structures so that the optimisers can process the tokens more efficiently.
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Parser
Query rewrite

Optimizer
Executor

SQL query

Figure 2.1: Any query gets processed in the steps shown in this figure. It is possible to
extend or switch different process elements to work on different computing platforms
(like FPGAs).

SELECT *
FROM t1, t2

WHERE t1.value < 100
AND t1.id = t2.id;

Seq Scan
t2

Index Scan
t1

Sort
t2.id

Filter
t1.value<100

Merge Join
t1.id = t2.id

Figure 2.2: One or multiple dedicated HW modules can accelerate these database
query plan nodes.

3. Finally, the optimiser selects the query plan (Figure 2.2) with the lowest cost for
the executor to execute it.

There are two types of processing DBMSs perform. These are: 1) online transac-
tional processing (OLTP) for frequent small-scale queries and 2) online analytical pro-
cessing (OLAP) workloads for large-scale data analysis. With analytical workloads,
the throughput is usually prioritised over latency and vice versa for online transac-
tional processing to enable fast data insertions and deletions. However, the various
industry standard benchmarks for different workloads (like TPC-C and TPC-E [48]
for random transactional workloads and TPC-H [33] or more difficult examples like
TPC-DS [247, 20] for analytical workloads) show that memory speed is the main bot-
tleneck. Consequently, different data storing schemes (column-oriented, row-oriented,
or a mix of the two) have been developed to improve data locality [4]. Storing table
data in column-store fashion improves OLAP performance as demonstrated with Mon-
etDB [119] and can be further improved with compression [350]. Compression can be
done row-wise [248] or column-wise [258] with different approaches for different data
types such as integer [113] and strings [310] while there are also approaches that allow
operating on compressed data without decompression [343].

Recently memory speeds have also been increasing due to the broader adoption
of solid-state drives, and with compression, memory has become more accessible to
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facilitate in-memory databases and near-memory computing, alleviating the memory
bottleneck [77]. Furthermore, DBMSs are starting to support more compute-intensive
operations like built-in machine learning SQL functions [224], making DBMS systems
more compute-hungry than ever. As a result, there is such a large variety of DBMSs,
including non-relational databases (for example, for faster and easier document access
and storage solutions) [55, 61, 63], such that surveys only list some examples from the
actively developing field [105].

Specialist DBMS systems are designed for specific use cases. For example, in
time series databases, fast data ingestion is prioritised, as is the case with systems
such as QuestDB and Graphite [157]. Tools like Grafana and Elasticsearch (often
used for data monitoring [27]) require standard interfaces for integration to effectively
use these DBMS systems (providing support for a large enough selection of DBMSs).
Standard interfaces like ODBC (Open Database Connectivity) and language-specific
APIs like JDBC for Java and ADO.NET for .NET serve this purpose (although there
is a performance cost when using these out-of-the-box [172]). Grafana leverages the
ODBC data source plugin to connect to relational databases, providing a standardised
interface for accessing and visualising data and enabling monitoring from multiple
sources within a single platform, with technical capabilities including executing SQL
queries, supporting a wide range of SQL operations, and creating custom SQL queries
for data retrieval. These options to specialise, while having various integration options,
lead to a rich and improved data processing world with a wide range of performance-
enhancing frameworks for the target application.

Performance optimisations: DBMSs either target energy efficiency with mobile
low-performance platforms [321] or performance with distributed database systems
(through DBMS protocols like ODBC) [225] that require dynamic management [260].
MonetDB has also demonstrated performance improvements with a dynamic modular
framework that interleaves optimisation and execution [32]. Therefore, the industry
isolates different operations with their unique requirements to fitting platforms through
higher-level DBMS (e.g., Presto in Facebook [276] or Spanner in Google [56]). How-
ever, the main contributor to these methodologies’ effectiveness is the vast amount of
work going into the query optimisers [169, 98]. In TPC-H, the most significant per-
formance improvements, up to 30×, come from bringing filtering operations forward
and flattening subqueries (while all other optimisation techniques have a combined
improvement factor of less than three) [72].
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CPU alternatives: After exhausting all of the CPU optimisation options in query
optimisation work, which have resulted in very efficient SIMD instruction usage by
the popular DBMSs [52], different GPU DBMSs are proposed for demonstrating ad-
ditional acceleration [39, 344]. However, the GPU-accelerated DBMSs are still not
flexible enough to present good enough performance speedups for larger adoption [53,
292, 49].

There are hundreds of SQL keywords in the SQL standard with varying function-
alities other than the common SELECT, FROM, and WHERE keywords, like the latest
JSON supporting operations [205]. FPGAs are used for accelerating the most compute-
heavy DBMS operations associated with these keywords (e.g., machine learning op-
erations in DoppioDB [7] or JSON filtering [100]) due to requiring less power while
having comparable performance indicators [252]. The next step has been to use re-
configurable HW for more general-purpose query acceleration, either with static or
dynamic solutions, while integrating with existing query optimisers [21] (like Apache
Calcite in ReProVide [216]).

Static solution example: Most related work on DBMS query acceleration has em-
ployed operator over-provisioning due to static solutions like Q100 [325] or AxleDB
on FPGAs [269] for serving varying runtime requirements. However, we can see that
the dynamic nature of general-purpose DBMS systems drives static solutions to be-
come inefficient or inapplicable. For instance, AMD supports an open-source database
acceleration library with FPGAs consisting of static pipelines. Nevertheless, these
pipelines cannot accelerate query 19 (Q19) from the industry standard benchmark
TPC-H, and as of version 2020.2, AMD has dropped the direct support of TPC-H
with its FPGA library for generalisation purposes [329]. The Q19 filtering consists
of 12 disjunctive normal form (DNF) clauses. Any generic static pipeline supporting
this query will require ample resources for this many filtering operations. However,
the same filtering hardware would be wasteful for any other TPC-H query, and most
queries use only a single DNF filtering clause. For instance, most other TPC-H queries
use a single filtering clause. Ergo, there is no cheap one-fits-all static configuration.

A dynamic stream processing system that can adapt to different queries is the best
approach to handle this complexity. Furthermore, such a dynamic system is more
maintainable, allowing for the addition of more modules over time. Nonetheless, in-
stead of focusing on building a rich library of modules adaptable to a wide array of
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queries, the middleware introduced here addresses an orthogonal challenge that re-
mains even with a comprehensive module library in place. This work lays the foun-
dation by offering the necessary abstraction layers that facilitate the extension of the
library without affecting existing accelerator modules and also ensures the seamless
orchestration of these layers and modules’ operations.

2.2 FPGAs

The topic of digital design falls outside the purview of this thesis, as there are ample
resources available for studying FPGA designs (e.g., Serrano’s “Introduction to FPGA
Design” [275]). This study instead examines a more holistic view of how FPGAs can
be integrated into larger systems.

FPGAs are integrated with a large variety of ways [31] (bump-in-the-wire, co-
processor, network-attached) as they can connect to other external accelerators or data
storage devices both directly or through a network. Nevertheless, the FPGA is almost
always controlled by a CPU [47, 318]. For an approach with a tighter integration, of-
ten an AXI2 interface is used in an MPSoC (like the AMD Zynq devices), dividing
the CPU and FPGA into the Processing System (PS) and Programmable Logic (PL),
respectively. Otherwise, a soft-core processor like the MicroBlaze can be added into
the FPGA PL area as it can also serve as a control unit responsible for scheduling
and reconfiguring the device [298] next to the other benefits of tighter integration like
direct access to shared memory [268, 58, 257]. Instead of using the processor “bare-
metal”, using an operating system like PetaLinux that contains the necessary Linux
kernels helps manage various communication protocols [283, 220, 227] without sig-
nificant overheads (while also enabling using hypervisors [9]). For example, the FPGA
Manager inside the Linux Kernel allows bitstreams to reconfigure the FPGA through
the PCAP [170].

Bitstreams contain data [238] to program the FPGA resources that can be parti-
tioned as shown in Figure 2.3. Digital circuits for FPGAs are designed with the help
of electronic design automation (EDA) tools. The latest devices have become more
heterogeneous given the large variety of hardened blocks available in the recent Versal

2The Advanced eXtensible Interface (AXI) is a standardised communication protocol commonly
utilised in FPGAs and Multi-Processor System-on-Chips (MPSoCs) to facilitate the transfer of data
between IP cores. The AXI protocol involves bus transactions between master and slave devices, with
each transaction consisting of an address phase and a data phase. Among multiple alternatives, due to
its scalability and high performance, it is an industry-standard protocol on ARM systems [244] and is
the default bus interface in the IP integration frameworks of the vendors AMD and Intel.
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Figure 2.3: FPGAs are laid out as a grid of resources connected by programmable
switch matrices for flexible routing.

FPGA family from AMD [82] to be more competitive against ASIC devices [162].
The synthesis process contains many steps (syntax parsing and translation, technology
mapping the gate level netlist, place & route), gradually refining the IR to create the
resulting bitstreams to program FPGAs optimally [277]. To make this process faster
and more optimal, there are many different approaches [57] (that can even include
ML [183] or approximate computing [271]). Nevertheless, synthesis is perilously slow
(hours or even days) [167], leading to slow development turnaround times and, even-
tually, predominantly static designs.

We will look at an approach that circumvents slow synthesis times to improve pro-
ductivity and flexibility. First, for many application domains where FPGAs are pre-
ferred over alternatives, the acceleration task could be modelled fully or at least par-
tially as a dataflow operation [309]. There are many approaches to making dataflow
programming a prioritised design concern for developers, including tools that extract
IR for creating dataflow elements [136] and tools that turn IR-like Petri Nets into re-
configurable systems [323]. There are numerous examples built with MaxJ [202], a
Java-based language where developers define dataflow graphs consisting of kernels
and communication channels consisting of FIFO queues that eventually get compiled
into optimised FPGA designs. Then, the virtualisation of all the different types of re-
sources can be done at different system-level granularities using different-sized design
blocks as demonstrated in by Zha et al. [341]. As a result, given a static system (e.g.,
Zucl [241]), the design blocks representing various dataflow processing pipeline stages
can be synthesised independently and combined during runtime with dynamic partial

reconfiguration, which is magnitudes faster than synthesising monolithic systems.
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Figure 2.4: Various partial designs can be used on an FPGA, given that they are built
into the confined region and have the required interface.

2.2.1 Dynamic Partial Reconfiguration

Dynamic partial reconfiguration is used in various applications [18] and is done with
loading bitstreams containing partial designs as shown in Figure 2.4. These dynamic
systems are built with different shells (static areas) and roles (partial designs) separated
by various interfaces and bounding boxes [149] to avoid any “leaks” or erroneous sig-
nals reaching the rest of the system during the reconfiguration process as summarised
by Vipin and Fahmy [312]. In the vendor workflow, the role is built incrementally on
top of an already synthesised shell, which is useful for verification and fast compila-
tion [231], but if there is an update to the shell, all of the dependent roles have to get
resynthesised. Maintaining an extensive module library is unattractive with frequent
updates to the static, and therefore tools like GoAhead create interfaces with “blocker
macros” to be able to decouple roles and shells [24], which is also required for isolated
designs [239]. This decoupling allows composing the whole system at the bitstream
level without ever exposing any IP and seeing the netlist of the modules [140]. How-
ever, it comes with an increased verification cost overhead as timing verifications and
floorplanning become challenging, which is why there are many proposals to automate
floorplanning [336, 255, 73, 222, 25, 211].

Nevertheless, given the decoupling between role and shell, we can directly connect
different independently synthesised partial modules, which has resulted in various ap-
proaches to floorplanning, as shown in Figure 2.5, that are implementable with current
tools [153]. The first three approaches have all modules directly attached to the static
system, while the last two approaches partition modules into smaller resource-elastic
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Figure 2.5: a) A common approach to designing PR systems is using PR islands where
modules are designed for each location. b) With PR slots, modules could be relocated
to other slots that have the same resource layout. c) With resource elasticity, larger
modules can gain additional performance due to reduced fragmentation. d) The same
resource elasticity can be used within a PR region, given direct module-to-module
interfacing capabilities. e) All previous approaches can also be used in a grid where
the interfaces between modules can be on all sides of a PR module.

PR slots within the PR region. As a result, module-to-module communication is re-
quired in approaches where there is no direct connection to the static system. As a
next step, even hierarchical partial reconfiguration that puts PR modules inside other
PR modules becomes a valid option for fine-grain changes like changing LUT func-
tionalities [145] or for optimising CAD tool times [328]. This flexibility is necessary
to increase the effective resource utilisation of the device by reducing PR module in-

ternal and external fragmentation, or in other words, limit resources becoming unused
due to PR module boundaries and the heterogeneity of the FPGA.

Reconfiguration Performance

Despite the added complexity of floorplanning and designing matching interfaces be-
tween partial modules and static shells, the main common hurdle for using partial
reconfiguration is the reconfiguration time [229]. A straightforward yet slow approach
for loading configuration data into the chip is to use the PCAP reconfiguration con-
troller through the FPGA Manager in the Linux Kernel (with which we achieved≈270
MB/s). PR is slow due to going through a complex chain of software layers with the
following steps:

1. The Linux kernel’s generic FPGA manager scans the “/lib/firmware” directory
for the bitstream file [296].

2. After detecting a new bitstream, the Xilinx Linux FPGA Manager driver takes
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over, allocating RAM and loading the bitstream into it [332].

3. The Xilinx Linux firmware interface sends a signal to the PMU (Power Manage-
ment Unit) Core Firmware, instructing it to execute the “fpga load” command
with the RAM address. The PMU Core Firmware is responsible for managing
power states of the SoC and the programmable logic.

4. The PMU Core Firmware has a board specific Xilinx driver, which picks up the
instruction, sets up the CSU (Configuration Security Unit) DMA with the RAM
address, and transfers the bitstream in memory directly into the FPGA [333].
The CSU DMA is a high-speed direct memory access engine that enables data
transfer between the system memory and programmable logic without involving
the CPU.

In addition, reconfiguring an FPGA risks introducing new security vulnerabilities and
potentially damaging (or even “bricking”) the device if the process is not performed
correctly. Validation of the new configuration bitstream and ensuring compatibility
with existing hardware and software are used to minimise the risk of damage. To this
end, a long chain of software processes is used to perform the reconfiguration process
in a secure environment, such as the ARM trusted zone on the ZCU102 FPGA where
the PMU firmware code is executed. This approach mitigates risks and ensure that the
reconfiguration process is appropriately managed.

However, this reconfiguration could also be done on the FPGA itself, and then more
lightweight OSs (e.g., FreeRTOS, a mature open-source OS alternative on embedded
systems [95]) could be used for increased performance. Kamaleldin et al., [135] tested
faster alternative approaches that also let the CPU work on other tasks during recon-
figuration at the cost of using PL resources like the ZyCAP [311]. Using the ICAP
has shown the highest reconfiguration speeds (even up to 2200 MB/s with older de-
vices [103]) when loading bitstreams directly from DRAM [41, 74, 240].

Bitstream Manipulation

Another problem is that designs are position-dependent, and having an extensive mod-
ule library can take too much space (one entire bitstream for AMD’s VU19P is 0.2
GB [331]). However, bitstream relocation and compression reduces the module li-
brary space and speed up the reconfiguration [26]. Tools in the GNU Binutils like
objcopy (e.g., for converting files from targeting one architecture to another through
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endianness swapping) and readelf (e.g., extracting a symbol table for debugging) help
read and manipulate binary code object files [80]; similarly, there are various tools for
manipulating bitstreams. They enable bitstream manipulation (e.g., modifying con-
figuration bit values for changing a frame’s position) [263, 238, 192, 46] and various
methods to compress and decompress bitstreams [253, 147, 161, 86] that can also be
done on the FPGA for increased performance [134] and even integrated with soft-core
CPUs for additional flexibility [117].

These tools help handle board-specific problems associated with relocating logic
in the fabric, such as dealing with new clock regions that may be in new Super Logic
Regions (SLRs). Given this progress in making partial reconfiguration more effective
and productive, the next step is to provide a layer of abstraction over the low-level
details and execute various operations transparently to the user as is done in general-
purpose processing.

2.2.2 Resource Elasticity

Resource elasticity (changing the resource allocation of a task transparently to the user)
with partial reconfiguration can be done after dividing the PL resources between dif-
ferent coarse-grain slots for a more straightforward approach where processes can be
allocated to take more or fewer acceleration slots (as is demonstrated with FOS [305]).
However, to allow direct module-to-module communications and to reduce fragmenta-
tion, we must use more fine-grain heterogeneous slots that provide a particular resource
type. The presynthesised modules then use a combination of these slots. One way to
define these regions filled with fine-grain slots is to use the fact that FPGA resources
are homogeneous vertically inside a clock region and heterogeneous horizontally. We
can confine modules into these resource columns with a bounding box like explained
by Koch [144], and then the column resource footprint defines the module’s placement
constraints. With pattern matching between the resource footprint of the modules and
the PR region, we have more fine-grain placement freedom as described by Grigore et
al. [92] to reduce fragmentation.

A module library with modules that have different resource footprints enables re-
source elasticity and resource/performance trade-offs with the following features:

• Module alternatives implement the same logical function but with a different
functional capacity (i.e., the maximum supported problem size or the maximum
number of operands or operations supported by a specific module). For instance,
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in Figure 2.6, the platform provides functional alternatives that match patterns of
different sizes for a regular expression function. The choice between alternatives
allows the runtime system to pick the optimal module for any given problem
(minimising resource usage without compromising effective throughput).

• Module composing of accelerators provides the same function as the individ-
ual modules to feature a greater aggregated functional capacity. For instance,
to serve a string matching request with 42 characters, we may use one match
module for 32 characters and another for 16 characters together (for reduced
overprovisioning or handling fragmentation as shown in Figure 2.7).

• Module variants implement a specific function but with different physical re-
source footprints (e.g., Figure 2.8 shows 3 module implementations for an arith-
metic function that: 1) uses once a DSP column in the left, 2) a DSP in the right,
and 3) uses logic only). Module variants allow for a tight module packing on
heterogeneous FPGA resources (i.e., the columns of logic, memory, and DSP
primitives) at the expense of multiple module bitstreams.

All these options with flexible routing between the modules enable resource-elastic
stream processing, which aims to maximise the utilisation of available resources for a
given runtime problem. Note that resource-elastic stream processing may use module
variants, module composing, and module alternatives arbitrarily together.

2.3 Related Work

Stream processing MoCs fit FPGAs. For instance, Maxeler’s MaxJ supports stream
processing accelerators with orders of magnitude speed-up over software variants (e.g.,
[215, 155, 84, 300]). Consequently, Vesper studied various previously mentioned
isolated parts required for a stream processing system such as having dedicated PR
regions within a static shell (like ZUCL [241]) that is designed with floorplanning
tools (with GoAhead [24]) that are to be used in conjunction with bitstream ma-
nipulation tools (like Bitman [238]). As a result, Vesper highlighted the benefits of
resource-elasticity and the complexity of permuter modules that can reformat a stream
in dataflow pipelines [308]. However, that work lacked a SW stack and a sufficient
number of HW modules to evaluate accelerating complex applications, as is the case
for most related work. Ergo, most stream processing systems are static, albeit with
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some notable exceptions like the following three systems demonstrating video process-
ing applications. Cattaneo et al., [44] swaps between statically compiled processing
pipelines, while Kritikakis et al., [159] additionally supports the stitching of relocat-
able accelerator bitstreams, but is constrained to Maxeler’s HW and MaxJ compilation.
However, these and similar older works like the self-adapting system proposed by Oet-
tken et al., [223] (which used the ReCoBus [148] tool for providing different sized
interfaces for dynamic modules) use older more homogenous boards from the Virtex
family, and more importantly lack SW integration capabilities.

In data analytics, many static compilers like Glacier [213] decompose the queries
into different operator modules. Then it is possible to automatically schedule and
compile queries to static pipelines (as is proposed by Müller et al. [212] and Sadoghi
et al. [267]) including the solution from Minhas et al. [207] that deliberately uses over-
provisioning to provide the flexibility to accelerate batched queries. In the following
paragraph, we look into why overprovisioning is prominent in related work targeting
dynamic stream processing applications and how it can be avoided.

Operations: Papaphilippou et al. [230] and Fang et al. [77] survey database acceler-
ation using FPGAs and confirm the dominance of static database acceleration systems
for queries known at design time. Therefore the industry provides many static FPGA
solutions from the HLS accelerators provided by the Vitis Libraries [329] to a more
limited subset of operations like (de)compression, join, and data filtering provided by
the systems developed by Netezza [79], Accelize/Xelera [327], and Swarm64 [293].
For more flexibility, alternative approaches provide complex programmable process-
ing elements [209] or even specialised CPU cores [110] defeating the purpose of using
specialised accelerators. Further specialised data analytics problems that FPGAs have
accelerated include operations for calculating the stochastic gradient descent and solv-
ing the skyline problem in doppioDB [280], accelerating the k-means algorithm [111],
or OLTP processes like insertion and indexing operations in the BionicDB [142]. More
extensive algorithms like linear regression can be broken down to atomic instructions
to be accelerated individually [189].

Integration: Hoozemans et al. [114] touches on the rest of the aspects of DBMS
acceleration missed by the other surveys, such as integration. For streaming pipelines,
first, the data blocks have to get fetched from memory using specialised DMA infras-
tructure proposed with Fletcher [237] and Ibex [324]. Then in big data and in-memory
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databases domains, various data encoding schemes exist for which FPGA conversion
acceleration has been proposed [234, 235] including specialised streaming encond-
ings [236]. Consequently, we see numerous module requirements and a vital engineer-
ing question for such rich libraries: how these modules can be used interchangeably in

a stream processing pipeline to avoid unnecessary overprovisioning.

Overlays: Overlays provide a layer of abstraction over the highly heterogeneous re-
sources on FPGAs to increase the productivity of developing solutions using the ex-
tensive customisability of FPGAs [284]. They can resemble virtual FPGAs, GPUs,
CPUs, CGRAs, or DSPs, that are more customised towards the targetted application
and can use time-multiplexing to switch between different configurations [179]. Time-
multiplexing alleviates the inherent overhead cost of such virtualisation amongst other
efforts [146]. Mbongue et al. [203] use application-specific dataflow overlays for better
performance, which are derived from compiled algorithms while stitching optimised
modules with RapidWright [171] (a tool allowing netlist manipulations for recent Xil-
inx FPGAs). However, instead of RapidWright, PR can be used to switch between
various modules and the overheads of overlays can be avoided.

PR infrastructure: ReProVide [217] uses PR accelerator “islands” to switch be-
tween different operator modules. Becker et al. [22] proposed an automated approach
to find the maximal number of such PR “islands” while minimising fragmentation.
From another perspective, Koester et al. [154] measured the popularity of resources
and placed modules such that the most popular regions are preserved in order to be
able to get overall more placement requests served. Finding different performance/re-
source tradeoffs for designs can be quickly done with HLS as demonstrated in [345].
Consequently, there have been runtime systems proposed a long time ago already that
use partial reconfiguration [313], and there also have been heuristics developed based
on the generalisation of the problem by Danne et al. [62]. Nevertheless, the required
crossbar connecting the wide datapaths between the PR “islands” and any memory or
control subsystem is expensive and causes congestion. Another less expensive option
is to allow direct streaming between exchangeable accelerators in PR regions as pro-
posed by Ziener et al. [348]. However, these dynamic stream processing systems with
direct connections [308, 195, 348] fail to propose a matching software stack [123].

Dynamic stream management: For GPUs, for example, the Ocelot/Hype platform
provides transparent integration, which helped to create the CoGaDB [38] optimiser
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as GPU programmability is more mature than for FPGAs. Following such a virtuali-
sation approach on FPGAs, Vaishnav et al. [304] showed better performance in FOS
(the FPGA Operating System) by using multiple adjacent regions combined with a
scheduler that can utilise several instances spanning over different regions depending
on the load and resources available. Meanwhile, DeHon et al. [66] developed SCORE
to schedule stream computations for reconfigurable execution with time multiplexing
in a hybrid architecture consisting of microprocessors and grids of reconfigurable re-
gions. However, as opposed to systems with direct module-to-module communications
([195, 348, 134, 338, 152, 148]), both [304] and [66] lack the fine-grain placement
freedom as defined by Grigore et al. [92] to reduce fragmentation. Combining the
time-multiplexed scheduling for stream computations from SCORE and the resource-
elastic scheduling from FOS while using fine-grain resource partitioning, our runtime
system can further optimise resource usage for a large variety of data-dependent prob-

lems only known at runtime.

Potential: There is an open question on what the system architecture using FPGAs
should look like for DBMS (and general stream processing) use cases. For instance,
Gustavo et al. [8] proposed Enzian with a 30 GB/s cache-coherent datapath between
the CPU and the FPGA, while both of them have access to DDR4 memory and PCIe
and Ethernet connections. This architectural layout allows experimenting with dif-
ferent designs like the Intel Xeon + FPGA system (proven to successfully accelerate
CNN workloads [51]), but it still has lower bandwidth with the main memory than
OpenCAPI-enabled FPGAs with Power9 CPUs from Nallatech [219]. With systems
like these, an in-memory DBMS speculatively could be accelerated with a through-
put of 100 GB/s using our system if scaled up correctly using techniques like those
proposed by Manev et al. [191, 194]

2.4 Chapter Conclusion

To conclude, we introduce a high-level discussion summarising the main points of
this chapter. First, in Section 2.1, we looked at the underlying theoretical Dataflow
MoC. We concluded that given a suitable set of dataflow operations and corresponding
modules, heterogeneous computing platforms can be naturally employed to optimise
memory usage, especially in dynamic dataflow systems. We further highlighted how
image processing and data analytic workflows suit the Dataflow MoC and how the
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optimisation aspects available on CPUs have been explored thoroughly, whereas the
field of using alternative computing platforms has not matured as much.

In order to explore the optimisation avenues offered by FPGAs, we delve into their
capabilities in Section 2.2. We can conclude that FPGAs can be used in a variety of
ways after highlighting that FPGAs can be used standalone or attached to a CPU, and
the PL can be used statically or modified with PR (through either PCAP or faster con-
figuration ports like the ICAP). When using the FPGA statically, commonly an exclu-
sive design is synthesised to the targeted problem, and when another input problem is
targeted a whole new design is synthesised, which suits workflows where the require-
ments rarely change. For more dynamic workflows, either more generic static designs
are used (introducing overprovisioning and therefore requiring larger devices), or mul-
tiple static designs are considered that are swapped with whole board reconfiguration
(introducing large reconfiguration times and increasing latency).

For use cases demanding even greater dynamism, we propose leveraging partial re-
configuration. Reconfiguring a smaller area of the device reduces the reconfiguration
penalty. However, the increased complexity of creating systems that use PR, creates
both operational and design-time constraints that are not present in the more static ap-
proaches. When partitioning the FPGA device into shell and role areas, HW engineers
face challenges such as congestion and fragmentation overheads. Furthermore any in-
terfacing also introduces overheads. As a result, there is a scale for how dynamic the
targeted problem is, which should match the scale of how fine-grain the partially re-
configurable areas are on the system under design that is optimised against the targeted
problem. These scales are analogous to mapping problems to their suitable computing
platforms that become more specialised in the order of CPUs, GPUs, CGRAs, FP-
GAs, and finally ASICs. Various optimisation methods are available on all levels on
the FPGA (from using static designs, overlays, PR islands, to using PR regions with
fine-grain slots). Consequently, this thesis investigates where the break even points
reside between using the fine-grain approach of daisy-chaining PR modules within a
PR region and reconfiguring the whole coarse-grain PR region in Chapter 4.

Lastly, in Section 2.3, we investigated the related work that leverages partial recon-
figuration. At a higher level, we conclude that no existing system simultaneously 1)
provides an abstraction layer similar to a software integration framework, and 2) is ca-
pable of scheduling and orchestrating multiple incoming requests while reconfiguring
a daisy-chained set of resource-elastic modules in PR regions on modern FPGA de-
vices, as outlined in DBMS-specific Table 2.1. Resource-elasticity can be gained with
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Table 2.1: Comparison of DBMS-specific related work on FPGA acceleration for core
data analytics operations. Few works utilize FPGA’s PR capabilities, and none offer
both SW DBMS integration and resource-elasticity.

Related Work Direct Module-to-
Module Interfacing

SW
Integration

Swappable
Modules

Resource-
Elasticity

doppioDB [280] × ✓ × ×
Ibex [324] × ✓ × ×

ReProVide [216] × ✓ ✓ ×
Wang et al., work [315] ✓ ✓ × ×

SQL2FPGA [184] ✓ ✓ × ×
Glacier [212] ✓ ✓ × ×
AxleDB [269] ✓ ✓ × ×

Manev’s work [195] ✓ × ✓ ✓

Ziener et al., work [348] ✓ ✓ ✓ ×

synthesised static pipelines, however in Table 2.1 runtime resource-elasticity (using
prebuilt solutions as introduced in Section 2.2.2) is provided only by Manev’s work.
The same conclusion can be reached outside the scope of DBMS acceleration systems.
In the DBMS-specific works, even if a SW integration approach is described and pro-
vided it is often not generalisable as it is DBMS specific. As a result, next we look
at the design challenges of creating such an abstraction layer and its subsystems for
OrkhestraFPGAStream in Chapter 3 (to tick all boxes in Table 2.1).
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Figure 2.6: Only the largest pattern matcher module with sufficiently large functional
capacity can execute the required operation on the incoming data packet.
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Chapter 3

Runtime Management

This chapter introduces all of the parts necessary to manage dynamic pipelines in
Section 3.1. After this, we will concentrate more on general data management and
scheduling in Sections 3.2 and 3.3 respectively.

3.1 System Overview

In distributed systems, complex systems monitor workloads and adapt the network-
ing and resource allocation to maximise performance. Likewise, to maximise resource
utilisation for a wide range of queries on a single device (and in the future on multi-
ple configurable devices), we need a runtime manager that monitors potentially non-
deterministic operations to choose and set up the ideal accelerator pipelines. Such a
system, as depicted in Figure 3.1, has an extensive degree of freedom to place any
operator accelerators spatially and even temporally, if required, on the FPGA. Ad-
ditionally, to further improve resource utilisation, the system uses resource elasticity
that results in significant complexity and requires studying viable ways to manage the
added complexity effectively.

As the scope of the system is general stream processing, the first step is to enable
various application-specific customisations by designing a modular system shown in
Figure 3.2. In general, such a system can be partitioned to the following subsystems:

• Memory management - To allocate and keep track of reads and writes to all
data blocks in the main memory.

• Data management - To encode or decode various data types in SW or HW,
which involves resolving conflicts when placing data on the datapath.

56
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Figure 3.1: Acceleration ecosystem reusing physically implemented modules. The
system must support various front-ends (e.g., DBMS) that handle parsing acceler-
ation requests and map the required operations to available modules. The runtime
system manages data and memory while scheduling requested operations and load-
ing bitstreams, fitting modules and routing blocks accordingly. Furthermore, to limit
reconfiguration, the modules are reusable and programmable for various use cases,
which requires a corresponding set of drivers.

• Scheduling - To find the optimal set of operator pipelines and minimise end-
to-end execution runtime while considering the limited set of resources that en-
forces scheduling both in time and space.

• Input parsing - To parse acceleration requests in any form and map them to
available modules.

• Execution management - To program and operate all of the HW modules in the
correct order.

Note that we could switch any of these parts during runtime when providing different
services or use pre-computed services for more static use cases. In this context, a
’service’ is a higher-level concept, decoupled from specific subsystems and modules. It
can be predefined or dynamically compiled during runtime, catering to both static and
dynamic environments. In our later evaluation, we primarily address module swapping,
leaving subsystem changes for discussion in Chapter 5.

Efficient management of different memory access patterns is crucial for minimising
I/O costs [214]. However optimising memory management subsystems is dependent
on the platform, and is out of the scope of this thesis as this has been explored by related
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Figure 3.2: A modular system is required to handle the large degree of freedom to
facilitate various optimisations for application-specific use cases. All system parts
shown in yellow can be exchanged for optimised scheduling, memory management, or
execution strategies that may fit different target applications or devices.

work (e.g., for AI, an application-specific context [109], and FPGAs, a device-specific
context [193]). Therefore we will look at how data can be managed on a wide datap-
ath, define the scheduling problem next in this chapter, and leave the implementation-
specific details of input parsing and execution to the following evaluation chapter.

3.2 Data Managing

Given their slow clock rates, FPGAs require wide datapaths to maintain high through-
put. In high-performance stream processing, automated management is necessary to
achieve transparent optimisation and exploit the wider datapaths. On-the-fly data man-
agement requires considering the following:

• Data encoding - How to support a variety of encoding approaches, both in terms
of data types and how to place them onto the datapath?
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• Large data packets - How to deal with large packets given limited HW re-
sources?

• Control signals - How does flow-control have to be managed?

3.2.1 Datapath Layout

The primary concern of data management is how the HW and SW interpret the data, as
it can be encoded in various ways - optionally with metadata and potentially in a com-
pressed format. Depending on the module library (just like with any other operations),
the (de)encoding and (de)compression can be done in HW or SW or even while using
both domains. The crux of the idea behind this choice is: depending on the modules

in the HW library, the scheduler must be able to reach optimal solutions in any way

possible. Therefore on the data management side of things, the resulting system has to
be able to describe data on a higher level abstraction while using different data types
to provide the required flexibility. These custom data types can be application specific,
like large blocks of pixel data, as is the case for image processing.

However, the datapath is not infinitely wide - whereas data packets can be (depend-
ing on the data type). Problems that cannot be resolved in space must be resolved in
time. Usually, given the ubiquitous I/O bottleneck, any practical processing elements
are likely to operate at a higher throughput than the arrival rate of new data. There-
fore, the system has some leeway to process data packets using multiple clock cycles
without sacrificing overall performance.

Chunks

Stream processing modules that can operate on larger data packets (contrary to on-
the-fly updating of smaller values) have to have buffer space in dataflow systems to
process batches of data packets that can arrive over multiple clock cycles. In order
to differentiate between multiple data packets and simply larger data packets arriving
one after another, Dennl et al., [68] coined the term chunks for a similar dataflow
system that is built on-the-fly with reconfigurable modules (however without resource
elasticity and an integrated runtime). A data packet consists of one or multiple chunks,
and modules are initialised with chunk counts to know how many clock cycles are
required to read the targeted packet with a given datapath width. If a module is only
required to process a small subset of a large packet, then enumerating each chunk is
required to target a specific offset on the datapath marked with the targeted chunk ID.
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Figure 3.3: The different positions are for selecting different wires on the wide databus,
and chunks help select correct data packets arriving at some specific clock cycles. The
control signals show which chunk and stream that data packet is from to allow out-of-
order data transfers. The channel IDs are for further substream indexing when virtual
streams are required within a stream.

Virtual channels and streams

The same is true for parallel streams. When multiple modules share the same datap-
ath but process independent streams, they must target specific streams while passing
through other streams unaltered. Therefore, streams must also be labelled with stream
IDs. All labelling data required to be sent each clock cycle require parallel wires on
the datapath as shown in Figure 3.3. To achieve additional optimisations in the HW
modules, an additional label is needed for indexing virtual streams within streams (par-
ticularly important for large merging operations [191]).

In conclusion, dataflow systems need a way to label data packets arriving at specific
clock cycles and also how the various data packets relate to each other with additional
stream and channel labels. This labelling allows the incoming service request to be
decoupled from the physical acceleration implementation details. The HW modules
do not need to have any conceptual knowledge about the type of work they are doing
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Figure 3.4: Data bursts received from memory get sequentially packed into buffers
inside the DMA module.

when they are only targeting data at certain offsets in the datastream labelled with
the correct ID labels. Likewise the incoming service request does not have to know
anything about the underlying HW constraints (e.g., how wide are the datapaths). It
is the middleware’s job to map the application specific requests to match the physical
constraints of the available accelerators with these labels to virtualise the data streams
and channels from the physical connections. The drivers paired with the modules in the
module library do this mapping. A module library example is introduced in the next
Chapter. Before looking at implementation details, we need to also understand 1) how
the data payload streams are laid out into packets transferred each clock cycle by the
physical data mover module; and 2) how the modules that receive these are initialised
and scheduled.

3.2.2 DMA Module

In order to rearrange data blocks from a linear stream to a wide datapath with the
required labels, the dataflow system requires an initial data mover module as shown
in Figure 3.4. This data mover module with direct memory access (DMA) requests
data from specific memory addresses to be written to free available buffer space while
streaming data to the modules in the datapath from other buffers already filled up. The
exact process is happening the other way around when writing results back to main
memory, where data arriving from the modules is written to free buffers while data
from filled-up buffers are being written to given memory addresses. Consequently, the
DMA module must be specifically configured to use optimal data burst sizes given data
packet size specifications to maximise performance against the given memory subsys-
tem and buffer sizes as shown in Figure 3.5. These configurations and buffer partition-
ing between different streams must consider the ongoing processes on the device that
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Figure 3.5: The DMA is configured to use optimal packet sizes and burst sizes to min-
imise data alignment issues (e.g., a stream of 3-word packets must be fit into buffer
without alignment issues). This configuration considers the available buffer sizes,
memory subsystems, and other potential systems interacting with the main memory
to optimise data flow. Consequently, it is possible to read and write to multiple buffers
transparently with data pre-fetching.

might affect the I/O performance.

In order to enable further HW module optimisations and to exploit the fact that all
modules have buffering capabilities - data can be placed on the datapath out of order

as shown in Figure 3.6. However, as the datapath has limited width, this out-of-order
placement entails placing words of data in the time and space domain. Figures 3.8
and 3.7 show this flexibility in data placement. Additionally, the ability to buffer and
place data allows data duplication, as shown in Figure 3.9.

It is again the job of the middleware to coordinate the data streaming between the
memory and available buffers. The datamover module itself also must have a corre-
sponding driver where the aforementioned labelling can be programmed into the data
mover module during its initialisation process to prepare for the subsequent streams to
be processed. In order to differentiate between transferring payload data and module
initialisation instruction data, there are control signals the modules must recognise, as
described next.

3.2.3 Control Data

The modules must have buffer space to also handle varying producer-consumer rates
in a dynamic dataflow system. There are various flow control signal wires parallel
to the primary data wires to keep the dataflow operational. In order to avoid buffer
overflows and deadlocks, the modules use a credit system where each module has a
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certain amount of credits that symbolise how much additional data they can request
from the previous modules to continue operating and getting additional credits. Manev
describes full details of this dynamic stream processing interface (DSPI) in his the-
sis [195].

Incidentally, this credit (token) system also supports prefetching. Once the credits
have been sent to request more data, the query processing can begin. We observed
in our case study that the DMA module had already prefetched data and started some
execution before the entire system was initialised. This early execution is possible due
to the self-scheduled flow control (like in a Kahn process network) that is transparent
to the runtime system as long as the sequential order of module initialisation follows
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the dependencies of the pipeline.

The decentralised approach is necessary to enable ad-hoc swapping out any neces-
sary modules with varying flow-altering characteristics. Contrary to the flow control
signals that the runtime system does not have to manage, there are initialisation signals
that the runtime system uses directly to notify the modules in an optimal order when
to start, after initialising the modules with the next operation parameters (to enable
data pre-fetching). Given the control and data wires, the system can send instructions
and instruction data to the modules to initialise or reprogram them (including the data
placement and enumeration inside the DMA). Swapping out modules is expensive, and
as many different streams, data formats, and constant operational values are used for
each operation, the modules must be flexible to limit the number of required module
alternatives.

With programmability, the system provides a significant degree of freedom and is
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enabled by the static system that routes memory-mapped data writes to correct mod-
ules. The added initialisation latency is compensated by increased throughput over
long-running operations. The concrete values written to these modules are determined
by their drivers, described in the implementation chapter.

As a culmination of this complex data management, we can see that the runtime
system becomes more vital for productivity as it handles the operational details au-
tomatically. Furthermore, often these operational details are tightly coupled to the
application-specific implementation of the system, which is intentionally virtualised
as part of this thesis as we will look at the drivers created for evaluation in the next
Chapter separately from the ideas introduced in this Chapter. Besides the operational
signals and the initialisation data calculations, the runtime system comprises a com-
plex scheduling problem with first finding the most optimal modules in the first place
to use this programmability effectively that we also have to investigate before delving
into the implementation.

3.3 Scheduling

Now that we have specified the datapath and flow control, the next step is to specify the
scheduling and module placement problem. After describing the problem in general
we will then define the general-purpose constraints and objectives.

3.3.1 Problem Description

Scheduling can have a range of objectives, often pursued simultaneously with varying
priorities. Common goals aim to either minimise makespan, tardiness, waiting time,
turnaround time, response time, context switching, or to maximise factors such as
throughput, workload distribution, reliability, adaptability, resource utilisation, energy
efficiency, and fairness. All of these are covered extensively in literature.

In this thesis, our focus is on a specific scheduling challenge that involves parallel
task scheduling. The primary objective is to minimise the makespan, which is simi-
lar to achieving minimal average latency and maximal average throughput. Minimal
makespan ensures a swift initiation of the next scheduling spin (phase) and the effi-
cient processing of requests in each data burst. This strategy is designed to address
the main memory throughput bottleneck while maintaining adaptability to evolving re-
quirements as new requests may be arriving during the execution of previous requests.
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Each batch of requests is scheduled during its respective scheduling spin and this sec-
tion will describe each spin. In the example scheduler we present in the next chapter,
these spins occur after each execution phase. More frequent scheduling spins are be-
yond the scope of this thesis. Furthermore, we do not currently consider prioritisation
(and having multiple scheduling queues) that would align our approach more with tra-
ditional CPU and OS schedulers. As a result, we do not consider resource starvation,
assuming tasks are, on average, processed faster than their queuing rate, and that the
scheduler does not have to decline any tasks that it supports with the given module
library.

In order to adapt to changing runtime requirements, we need to use resource elastic-
ity to optimise the resource allocation dynamically. Partitioning the available resources
to fine-grain slots allows us to build a resource elastic module library consisting of
multiple module bitstreams for each supported operation. As a side note, the more
fine-grain the slots, the more flexible the resulting system can be, as is demonstrated
by Koch et al., [148] with high-slot count systems. However, the additional flexibility
comes with increased complexity, and each additional module induces an additional
interface overhead. As is the case with the module library and its drivers, the imple-
mentation details of the example scheduler containing all concepts introduced here will
be discussed in the next chapter, while this section offers a theoretical overview of the
system.

As a reminder, each resource elastic module has multiple bitstreams for two rea-
sons. First, different variants provide multiple placement options given heterogenous
slots and their combined patterns. Second, different alternatives provide the ability
for the modules to take as many slots as required to have the necessary functional
capacity for any given workload demands (e.g., sorting more streams in a single run
with modules that take more slots).

Resource elastic stream processing

Resource elasticity excels in stream processing workloads as these require either: 1)
batch-processing with blocking operations due to limited buffering space, or 2) partial
execution due to limited logic resources. Blocking operations (e.g., sorting) require
looking at all input data packets before starting to output any resulting packets - requir-
ing partitioning the blocking operation into smaller subproblems where the results can
be later merged for the final aggregated (fully sorted) result. Similarly, other operations
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(e.g., filtering) may require a large number of computational steps (like filter compar-
isons) and, therefore, can be done partially with smaller atomic runs that process only
a subset of these required steps when there are not enough resources available. Later,
given enough runs (for executing all required comparisons in the requested expression)
- the total result is eventually computed.

We can process larger or smaller batches of data in a single run depending on if
a larger or smaller number of slots are dedicated to a module. For larger datasets or
more complex operations, multiple runs are required where the same dataset may be
streamed through the module multiple times, leading to drastically increased runtimes.
However, by having the capability to reconfigure and use more runs, the system can
guarantee that any query can be executed under resource constraints, given a sufficient
pool of HW modules. To differentiate streaming the same dataset multiple times as a
whole or with smaller partitions, we use the terms major and minor runs (not directly
correlated to size).

Major run: A major run consists of at least one or multiple minor runs where the
whole dataset gets streamed through the configured pipeline.

Minor run: A minor run streams a fractional amount of data in a single pass through
the modules.

In a hypothetical scenario, the module library includes merge sorting units that can
merge only two streams at a time into one sorted stream. Sorting four streams using
one of these units would require two major runs: the first major run would consist
of two minor runs, and the last major run, which produces the final sorted output,
would consist of one minor run. The scheduler’s first goal is to minimise the number
of major runs, and then second, minimise minor runs to reduce operational overheads
(initialisation costs), leading to better end-to-end performance - minimised makespan.

Therefore combinations of multiple physical modules can be used in parallel to act
as one larger logical module by programming them all to work on the same stream.
Such module composing enables processing larger batches of data and reducing the
number of required consecutive merging operations (when supported by the module).
By composing the two merge sorter units, that can sort only two streams at a time, the
new combination of modules sorts four streams at a time, and instead of 2 major runs
consisting of 3 minor runs, the whole task is finished with one major consisting of one
minor run. Given enough module variants, it is easier to minimise external fragmen-
tation - reduce the number of resources in the PR region not allocated to any module
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Figure 3.10: The scheduler partitions incoming requests #1 and #2 to multiple config-
urations and runs while mapping operations to corresponding modules. Consequently,
request #2 gets processed in parallel to #1 in the first configuration and the overall
makespan gets minimised.

due to not finding a suitable set of modules that collectively cover the whole PR region
without any overlaps. Composing smaller modules can also reduce this fragmentation
because they can be split up and even separated by placing other modules between
them due to all modules working on their designated streams. The scheduler’s job is
to select the best (or close to) fitting set of modules using any combination of different
module variants and alternatives while composing them when appropriate.

Optimisation targets

Nevertheless, when the incoming acceleration service requests become complex and
large enough (with parallel requests), re-initialisation (reprogramming modules) and
partial reconfiguration (swapping modules out), as shown in Figure 3.10, becomes
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viable or even necessary despite the steep initial cost. The incoming batch of requests
can be partitioned into multiple time-multiplexed runs - allocating more resources to
more modules for faster execution. If we denote the number of runs as I, the number
of elements (data count) in the data stream Dc, the size of each element Ds, the number
of different parallel streams in a run J and the I/O throughput v, then data streaming
time Ts is:

Ts =
I

∑
i=1

∑
Ji
j=1 Dsi j×Dci j

v
(3.1)

In other words, Ts is equal to the time it takes to stream Dci j×Dsi j elements through
the system at speed v in each run i (up to I runs in total), for each parallel stream j in
the run i. In this data streaming time evaluation, we assume that the execution time
is bottlenecked by the time it takes to stream input data and that the input and output
streaming overlap each other (which is more likely the case for large streams that we
target the system for).

Consequently, due to the constant I/O throughput and the modules likely operating
on the clock speed equal to the slowest module’s speed, the performance of the differ-
ent resource elastic pipeline configurations is determined by the utility of the modules.
The utility is defined by the amount of valuable work (data processed) a specific ac-
celeration pipeline delivers per I/O operation. Plans with less utility than required for
the given data loads require additional runs through the FPGA, streaming the same
data multiple times, while ideally streaming processing needs only one run through
the FPGA.

When to use partial reconfiguration?

PR can be used to switch out modules from different runs that can be used to increase
the overall utility or to adapt to new acceleration requests. However, the configuration
overhead scales with the FPGA resources to be reconfigured. Therefore, the system can
reprogram modules to meet new requirements and avoid reconfiguration if the module
is reused from the previous run. These optimisation opportunities are more likely
to arise when the scheduler has to schedule multiple batched requests simultaneously
with repeating operations, such that modules are in the correct location in multiple runs
without being swapped out with PR. Nevertheless, balancing placing modules in such
locations to enable programmability and minimising fragmentation and maximising
utility is a challenging scheduling problem.

It is necessary to remember that configuration speeds, initialisation speeds, I/O
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throughput, and module throughputs are different on different devices, yet our pro-
posed ecosystem enabled by this scheduler is device-agnostic. Therefore the scheduler
must be given all relevant system parameters beforehand, as we can see two relations:
1) with faster configuration speed, more configuration data can be used to increase
utility, 2) with faster I/O throughput speeds, more utility can be sacrificed to reduce
configuration times.

Assumptions

Before looking at the scheduling problem we define our assumptions about the initial-
isation costs and about the modules in our module library.

With more general-purpose module libraries (with choices between the different
levels of generality in addition to the resource-elasticity-induced choices) where the
initialisation times are significant enough, the initialisation cost also has to be explicitly
minimised by the scheduler. However, the initialisation cost is a mandatory cost in
each run that is much faster than reconfiguration (even more so when the modules
have limited programmability). Therefore, as we do not have general-purpose module
alternatives for the scheduler to choose from in our application-specific case studies,
the scheduler’s ability to consider initialisation costs is out of this thesis’s scope.

Furthermore, to simplify formally defining the placement problem, we assume all
modules to have the same clock speed. Additionally, they are constrained into rectan-
gular bounding boxes (multiple PR slots) covering the full height of the configurable
region. Each PR slot is a thin and tall (to facilitate wide datapaths) resource column
that can be characterised by the resources it occupies. Giving each slot a resource char-
acter allows interpreting the module placement problem as a string matching problem,
as module resource requirements can be represented as a pattern of required resource
columns. As the modules are prebuilt - finding correct placements on a particular
device can be done offline.

Let us also assume that the modules have input interfaces on the left and output in-
terfaces on the right and that adjacent modules can stream directly through prebuilt
routing paths. If the space next to a module is unoccupied, a routing block (or a
turnaround block to route the resulting data back towards the DMA) can be placed
instead to connect to modules farther away. Streams have identifiers for implementing
virtual channels that allows them to bypass modules if needed for implementing com-
plex topologies made up from various communication dependencies. The placement
problem thus uses a 1D model where modules are placed in one horizontal plane into a
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single configurable regions in a single run. This pragmatic model will be implemented
and evaluated in the next chapter as it is flexible enough to support arbitrarily complex
problems given the appropriate module library.

Scheduling problem’s overview

The rest of this section describes the spatial and temporal dependencies that must be
considered for the packing problem that placing modules on an FPGA represents. Any
runtime system optimising FPGA resource usage with dataflow operators in a con-
figurable region needs to consider the following main constraints and optimisation
objectives:

• Constraints:

– τ1: Ensure correct task execution

* All tasks must be executed correctly in the correct order according to
a partial ordering of the tasks.

* Each data packet (or even a smaller unit given appropriate module
support) must be fully processed in the previous task before starting
any subsequent tasks.

* Uncertain data loads from non-deterministic operations (i.e., how much
data passes filtering) must be accounted for full execution (which may
result in scheduling multiple times or placing enough modules to cover
the upper bound of the potential resulting data size).

– τ2: Ensure correct accelerator placement

* Each accelerator module must be placed in a location with a matching
resource string.

* Modules must also be in the correct order to execute the tasks in the
correct order.

* No two modules can overlap.

* Data formats between two consecutive modules working on the same
task or on two tasks with a shared edge must match.

* Modules must be placed within the correct distance of each other for
timing purposes.

• Objectives:



72 CHAPTER 3. RUNTIME MANAGEMENT

– ϕ1 - Minimize configuration cost.

– ϕ2 - Minimize streaming cost.

As a reminder, in order to make the following subsections more clear that describe
this packing problem, we use the following terms with the symbols in Table 3.1:

• Input service request - A request of some computational service on the pro-
vided data. Requests can contain multiple orthogonal and concurrent (batched)
subrequests - representing a DAG with multiple strongly connected components
(SCCs).

• Datastream - A stream of data flowing through the system consisting of multiple
data packets. Multiple datastreams can be used in the same request.

• Workload - The amount of work required to perform an abstract computational
job, such as counting or sorting. This amount is measured in terms of the number
of individual microtasks, which could involve comparing the fields of n data
elements, moving m data elements, or performing other operations.

• Task - An atomic job type (to be executed on a datastream) with workload values
that define the needed compute capacity. In other words, a task consists of a
single or multiple microtasks of given workload sizes.

• Operation - An input request can be defined with multiple high-level operations
(such as sorting) that can be translated to a combination of tasks (linear sorting
and merge sorting phases) on each datastream. In other words, a high-level
operation could consist of multiple low-level tasks.

• Resource column - A single character in a resource string mapping a certain
resource type (e.g. a “D” stands for a column of DSPs with the associated rout-
ing).

• Module - A module is a physically implemented hardware accelerator (part
of a larger design) providing processing or storage capabilities. The resource
columns used form the module’s resource string.

• Configurable region - A container where different modules can be placed simul-
taneously (called PR region in a system using partial reconfiguration). The re-
sources of a reconfigurable region are modelled as a string of resource columns.
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Table 3.1: In order to formulate the scheduling problem, we define the constraint and
objective functions with the elements introduced here.

Symbol Meaning in the here presented scheduling problem context

T The current set of tasks to be accelerated

t A particular task which is built from a vector of workloads sizes

Ω The current vector of PR modules executing the current set of tasks

W A vector of all possible workload types

w A particular workload size of a task

M A set of modules representing the current module library

m A particular module

E A vector of tuples for a particular module that define its functionality and capabilities

e A particular effect function tuple a module manipulates a particular workload with

ve An effect value of a module on a particular workload, corresponding to its capacity

fe A workload modifying function given the original workload value and the applied effect

⊕ A relation showing how a set of modules update all requested workloads

P A vector of priority values for each task

p A particular priority value for a task

l A location tuple defining where a specific module is physically located

ls A starting point index value for defining where a dedicated module area begins

le An ending point index value for defining where a dedicated module area ends

Φ An overlap verification function that returns the distance between any two modules

fp An order verification function for checking the correct execution order of two tasks

C A set of module adjacency constraint verification tuples

c A particularly indexed constraint tuple describing module placement constraints

fc A function for finding out an adjacency constraint verification value

vc A particular adjacency constraint verification value calculation constant

R A vector of reconfiguration costs of all modules in the module library

r A particular reconfiguration cost associated with a module in the module library

U A set of reconfiguration costs of all modules used in the current run

u A particular reconfiguration cost associated with a module in the current run

S A set of slots that can be used to calculate the routing configuration cost

D A set of data streams required to execute a specified task

d An index to a datastream whose size gets updated according to the modules

3.3.2 Motivating Example

Before formally defining the scheduling problem, we will present an example showcas-
ing why this is a challenging scheduling problem that also requires runtime monitoring.
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Table 3.2: The merge sort’s functional capacity notes how many sequences it can merge
into one. For each module it is listed how many CLB (M), DSP (D) and BRAM (B)
resources it needs.

Module Functional Resource

capacity footprint

Merge sort 32 MBDMDMM

Merge sort 64 BDMMBDMDMM

Merge sort 128 BDMMBDMDMMBD

As mentioned before, module composing increases utility and reduces external

fragmentation (i.e., fitting modules tightly together). However, larger monolithic mod-
ules have reduced internal fragmentation (e.g., maximising the use of available BRAMs
inside a module bounding box for sorting) due to tighter integration and better scaling
as they provide more utility per resource. To minimise reconfiguration costs, we must
examine the tradeoffs between using larger modules or multiple smaller ones. This
optimisation involves studying the relationship between the use of more resources and
the resulting increase in utility.

This mostly device-agnostic example (except for the module resource requirements
from our implementations) examines the utility-to-configuration cost ratio of one data
size-sensitive resource elastic module - the merge sorter. Table 3.2 shows the resource
footprints of the sorting modules (adapted from [191]) in our HW library. The number
of major runs of an E-way merge sorter to process X sequences is M = ⌈logEX⌉.
Consequently, the number of minor runs required is:

m =
M

∑
i=1

⌈
X
E i

⌉
or mmin =

⌈
X−1
E−1

⌉
(3.2)

mmin is the minimum number of minor runs if using an overlapping merger strategy
which fits better smaller datasets; however, it leads to a larger major run count in the
general case. The number of minor and major runs is crucial for cost modelling and
measuring utility for all resource elastic modules (e.g., filter modules).

Figure 3.11 shows examples where different sorter modules had been composed
for delivering a larger functional sorting capacity (the number of sequences merged per
single minor run). Figure 3.11 also shows a nonlinear relationship between resources

and utility in the merge sort example. More resources allow us to cut down the number
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Figure 3.11: Different modules are suitable for different scenarios, depending on the
data-dependent ratio of utility to resource cost. Module composing gives more freedom
in module placement and is more suited for increasing capacity despite larger resource
costs, while larger monolithic modules fit more resource-constrained scenarios.

of major runs (e.g., in two major runs with the same I/O cost, a 32-way sorter could
merge 1024 streams while a 32+64+128=224-way sorter could merge 50K streams
respectively).

However, in some applications, the sorting problem size is data-dependent. For
instance, we likely have filtering operations before sorting operations in database ac-
celeration problems - making the sorting problem size unknown beforehand. There is
no overall best strategy, so such a system requires runtime monitoring with a dynamic
scheduler that can adapt to find the best approach for each particular workload.

3.3.3 Constraints

In order to give a formal definition of this scheduling problem, we can start from a
basic placement problem definition as explained by Stoyan et al., [289] where we have
to place a set of tasks T from the input service request DAG into a configurable region
(container) building up a vector of modules Ω while optimising based on our objective
functions. However, before looking at the objective functions, we must understand
how to define the current configuration Ω and what constraints must be met to make it
valid after defining tasks and modules.
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an empty FPGA, resulting in the required workload equalling the sum of workloads
defined in T . After configuring a module m that executes the jobs defined by the tasks
in T , we have no remaining requirements.

Task and module definition

First, we look at tasks in T, representing a DAG with nodes and edges. Tasks are gen-
erated to serve a set of operations, where all workloads of a specific type (enumerated
until i) from the tasks in T are in the set W . That is, for each t ∈ T, t = (w0,w1, ...,wi)

and t has values for all wi ∈W : i = N where each w marks how much work (in terms
of problem size) has to be performed to execute t. For example, a simple counting task
has only the value w j > 0 (here: for the counting task, equal to one as we cannot know
how many data elements we want to count) where j is indexing the counting task while
all other w values are equal to 0.

Then second, we have to look at modules in our module library M. All tasks can
be fulfilled by different vectors of modules Ω scheduled to the configurable region,
which for now, we can assume is infinitely long. In addition to placement values and
constraints we will look at later this section, each physical module m ∈M contains a
set of effect pairs E = {e0,e1, ...,ei}, where ei ∈ E = ( fe,ve) given each i indexes both
the workload type w and necessary compute capacity in m. In the effect pairs model,
the value ve updates the workload value (how much compute capacity is required after
being processed by the module m) with the corresponding paired function fe such that
w′i ← fe(wi,ve). For example, modules can have a subtractive/additive effect on the
workload value (due to limited buffer sizes that necessitate more runs), while other
modules just set the value to 0 regardless of what workload value was set before for
the executed task (i.e., non-blocking, 1-in 1-out modules), for which fe information is
required. In other words, modules may only execute tasks up to a certain problem size,
defined by ve (e.g. an insertion sorter module).
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In order to define how each module works on a task, we can see each module
with its effect tuples set as a function modifying the task it is working on in the DAG.
Figuratively, t ′← m(t) means that when a module executes a task, it adds a new task
to the input DAG on the edges between this node and the subsequent nodes. For a
task to be fully executed, all microtasks must be completed by an arbitrary number of
modules m0 ◦m1 ◦ ...◦m j(t) = (0, ...,0), such that all workloads are equal to 0. A naive
assumption from the scheduler would be to make this stack as short as possible to find
the fastest execution time. In certain scenarios, a longer chain of modules may have
lower configuration costs due to module reuse and can allow allocating more modules
for other operations, resulting in faster execution times. However, this requires context
that will get defined in the following subsections for mathematically understanding the
scheduler’s objective of optimising module selection for all tasks in T .

Hence we can represent the scheduled modules Ω update the workloads of tasks
in T with the symbol Ω⊕ T (Figure 3.12), or in other words: define Ω as a vector
of module and task tuples ω = (m, t) such that Ω = ((m0, t0),(m1, t0),(m1, t1)), for
example. The whole set of tasks will finish processing if the sum of the workload
values of the modules is larger than the sum of workload values of the tasks as shown
in Equations 3.3 and 3.4. Intuitively, if there is a corresponding module set placed in
the configurable region for all tasks, then the total workload of all different work types
must be equal to 0 for the placement to be satisfying.

∀ti ∈ T∃Mti ∈Ω : Mti = (∀m(ω) : ω ∈Ω∧ t(ω) = ti)∧Mti(ti) = (0, ...,0) (3.3)

W ′ = (0, ...,0) =∅⇔W ′ = Ω⊕T (3.4)

W =∅ is true when the ∑
Jm
j=0 w j = 0. We define this first primary constraint func-

tion in Equation 3.5 abstracting the constraint in Equation 3.4 which means that given

a set of tasks and a set of placed modules, all workloads must be executed.

τ1(T,Ω) = 0 =⇒ W =∅ (3.5)

Partial order of tasks

Now the modules and the tasks in Ω must be arranged in the correct order. Execution
dependencies of tasks can define a partial order for the modules executing the work-
loads of these tasks. However, not all tasks are related; therefore, this provides some
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Figure 3.13: In 1), we see how a task order defines possible modules placement posi-
tions in relation to other modules. 2) shows how modules are prevented from overlap-
ping. We also see how the module placement data l is defined.

freedom in the scheduling (there is some mobility between the earliest possible module
placement slot and the latest possible slot) that can be used for optimisation. We can
create a vector of priority values Pt = (p1, p2, ..., pn) for each task t. Then we need
to order the tasks ti, i ∈ {1,2, ...,n} = In in the execution order for each priority value
pt j, j ∈ {1,2, ...,n} = Jm in each ti. In other words, to order tasks in space (and in
time), they have to obey the partial order constraint such that all priority values for a
task in position i are smaller than all corresponding priority values for tasks that are
executed later - formulated in the task ordering constraint in Equation 3.6.

∀t ∈ T ∧∀p ∈ Pt ∧ j ∈ Jm∧ i ∈ In | ti ≺ ti+1⇒ p ji ≤ p ji+1 (3.6)

The same partial ordering constraint must also be set on the modules processing
the tasks themselves (Figure 3.13.1). However, next, we also need to consider how
modules get placed physically next to each other in a configurable region Ω. As such,
each module m in Ω is also paired with location information tuple l(ls, le), which are
the starting and end position x coordinate values equal to the distance from the data
source (l value arrows in Figure 3.13.2). With the location parameters, we can make
sure all modules placed in the configurable region obey the task order. This results in
the physical module ordering constraint in Equation 3.7.

∀mi ∈Mti | ti ≺ ti+1⇒ li ≤ li+1 (3.7)
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Intuitively this partial ordering means that a module can start executing a task if all
of the preceding tasks are finished, and that it can only be placed after the modules that
finish processing the prerequisite tasks (in space but also in time if multiple runs are
required). Prerequisite tasks can be completed partially in stream processing pipelines,
and therefore data packets must be processed fully by the previous task.

Nevertheless, as a task can be executed with multiple modules, the modules of two
consecutive tasks cannot interleave. This constraint can be defined with the following
that must also be incorporated into τ1 (Equation 3.5) by returning a negative number
with incorrect ordering:

∀ω, ω̃ : ω < ω̃

∧EDGE(t(ω), t(ω̃)) = 1

∧¬∃ω′ > ω : t(ω′) = t(ω)

∧¬∃ω′′ < ω̃ : t(ω′′) = t(ω̃)

(3.8)

Placement of modules to a container with no overlaps

Next, the physical module placement has to be computed. The first constraint here is
where each module’s location’s resource string must match the module’s own resource
string (Equation 3.9). However, overlapping and the partial ordering of the modules
constraints also have to get defined.

∀ω ∈Ω : RESOURCES(l(ω)) = RESOURCES(m(ω)) (3.9)

We describe the overlapping of two modules A and B with their position and size
values (in our case encoded in the l(ls, le) tuple) with the phi-function Φ(lA, lB) that
returns a value 0 or larger if the objects A and B do not overlap (as used in [289]).
The overlap function could be extended by composing with another function fp that
validates any two sets of priorities Pt for task t such that the corresponding two modules
mA and mB in Ω work on tasks noted as tA and tB in the correct order. We define this
fp in Equation 3.10 to abstract the constraints in Equations 3.6 and 3.7.

fp(A,B) = N : fp(A,B)≥ 0⇒ A≺ B (3.10)

Consequently, the composition of precedence function fp and Φ from [289] can
express the validity of module placements such that fp(A,B) ◦Φ(A,B) ≥ 0 is true if
the partial order of the tasks is obeyed and the modules do not physically overlap. We
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define this second primary constraint function as a composition of Equation 3.10 with
the Φ function and the valid module positioning constraint in Equation 3.9 for defining
valid module placements in Equation 3.11.

τ2(T,Ω)≥ 0 (3.11)

Multi PR region module placement

Now we remove the assumption that we have unlimited resources as we need to find
a way to fit all modules into a limited configurable region to successfully process all
of the workloads of the desired tasks. This requirement means that with all pairs of
modules mA and mB in a possible set of modules M, we can define a potential problem
in Equation 3.12 if no combination of modules can meet all of the constraints given
finite configuration region boundaries.

¬∃M ∈Ω∧∀mA,mB ∈M.mA ̸= mB∧ fp(mA,mB)≥ 0∧Φ(mA,mB)≥ 0∧M⊕T =∅
(3.12)

This problem implies that for any set of modules in M to execute all tasks in set
T , the set of modules Ω must consist of modules in multiple configurable regions
as illustrated with Equation 3.13. When combining the available resources of systems
consisting of multiple regions, the individual resource strings can be joined with region
breaker symbols as explained by Grigore et al., [92].

Ω⊕T =∅⇒Ω = (Ω1,Ω2, ...,Ωn) (3.13)

Assuming all regions used have the same resources and hence length noted with
xmax we can split the infinite region configuration Ω into sub configurations (for differ-
ent regions the length value must be made into a vector based on the regions ordering).
However, with splitting Ω, we must ensure that no module is placed in the middle
of a split (configuring half a module in a run is not permitted) either by avoiding re-
gion breaker symbols in resource strings or with the Equation 3.14 that must also be
incorporated into τ2.

∀ω ∈Ω : INT (x/xmax) = INT ((x+SIZE(l(ω))/xmax) (3.14)

The additional regions can be either a different subsequent configurable region,
different FPGA, or the same region but in a different time slot through PR (becoming a
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PR region). Chaining of modules in different PR regions can be modelled with resource
strings using wildcarding, as shown by Grigore et al., in [92]. The regions and all of
the modules in the regions are also ordered to obey the tasks’ and modules’ partial
order - meaning we need to extend the partial ordering constraint with Equation 3.15.

∀mi ∈Ωi∧∀m j ∈Ω j : i < j⇒ fp(mi,m j)≥ 0 (3.15)

Module specific placement constraints

So far we know that constraints can be expressed with the partial order defining priority
values P over all of the PR regions in the set Ω as shown with Equation 3.15. However,
individual modules have additional placement constraints. These module adjacency
constraints can be summarized as follows:

• Modules may prohibit or require placing other certain modules directly (or within
some distance) before or after.

• Modules may prohibit or require their placement in a certain position (i.e., first
or last) in terms of partial ordering precedence values in the PR region Ωi.

To model the additional constraints between different modules, we introduce another
set of values C = {c1,c2, ...,cn} for each m. As each module consists of a set of effect
pairs defined in E and its position values with l as mentioned before, we can add an
additional set C into the construct where each ci ∈ C = ( fc,vc) (not to be mistaken
with the functions and values in E used in Equation 3.4). These values eventually are
summed up after being evaluated with their paired functions to ensure that all module-
specific constraints are in balance after their placement, as defined in Equation 3.16.

∀mi ∈Ωi∧∀ci ∈Cmi : Ci = ∑ fc(vc)⇔Ci = 0 (3.16)

In order to define these inter-module placement constraints in more detail, first,
for constraining placing modules within a certain distance from each other, we can
redefine the non-overlapping constraint to include a required parameter ε as shown in
the Equation 3.17.

∀ωi,ω j ∈Ω : i < j

∧εi j +START (l(ωi))+SIZE(l(ωi))≤ START (l(ω j))
(3.17)
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Second, to constrain placing modules into a certain relative position form other
modules or within a sub configuration requires considering the input and output datas-
tream formats. Matching datastream formats can be defined with d:

di j =

0, if mi cannot be followed by m j

1, otherwise
(3.18)

Using d allows us to constrain two consecutive modules to have the same data formats
(given that they share a datastream instead of just passing data through). For two
modules working on different tasks with an edge between them, the constraint d = 1
can be added to Equation 3.8. However, this is also true for two modules working on
the same task where we have to define a separate constraint with Equation 3.19.

∀ω, ω̃ ∈Ω : ω < ω̃∧ t(ω) = t(ω̃)

∧¬∃ω′ ∈Ω : ω < ω
′∧ω

′ < ω̃∧ t(ω′) = t(ω)

∧dm(ω),m(ω̃) = 1

(3.19)

Module capacity and tasks with unknown workloads

Lastly, we look at how the modules can change the task workload value with the func-
tions and values in Ei for each mi ∈M. In the case where any particular workload value
is empty (equal to 0 or empty set), the modules have to be able to generate a default
value. The default value can be one of the following:

1. A positive integer noting further work that other modules have to do.

2. A 0 value noting that the workload of that specific type has been exhausted

3. A negative integer possibly noting that using this module breaks the flow and
does not belong to a valid set of M for the set of tasks T .

Modules can have various combinations of these effect pairings. For example, basic
modules can have a single effect on the set of all required workload types (e.g., a
simple counter counts the data elements and sets the workload to 0). Meanwhile, more
complex combined modules can process multiple tasks with multiple workload types
at once (e.g., a composite module that sorts and counts simultaneously sets multiple
workloads to 0 regardless of whether the end-user request requires them or not).

How the remaining workload gets affected can be data-dependent for specific work
types. This data-dependent behaviour can add an unknown workload x to the workload
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while updating the workload with the corresponding effect function fe of the executing
module m. This unknown workload is data specific and is formulated in Equation 3.20

∀ei( fe,ve) ∈ Ei,Ei ⊂Mi : wi ∈ ti∧wi = fe(wi,ve)+ xi (3.20)

However, the unknown workload x can be bound such that it can still be over-
come by preemptively scheduling (during the scheduling stage before execution) more
modules to handle the unknown workloads. The scheduler will know the size of the
unknown workload (e.g. after a filtering operation) once the module m has finished ex-
ecuting with the rest of the modules in Ω. It is important to note that, given the option
to employ overprovisioning to cover these upper bounds, preemption during execution
would allow adapting the pipeline accordingly after scheduling, but these features must
be supported by the modules - which is missing in our case and hence not supported.
Therefore the scheduler will adapt to the new workload sizes while scheduling the next
run in the following scheduling spin (as examined in the next subsection).

Constraints – in conclusion

The module-specific placement constraints (Equation 3.16) and module capacity con-
straint definitions (Equation 3.20) give more freedom to use various composed (requir-
ing multiple modules to execute a task) and resource elastic modules (providing re-
source and performance or functionality tradeoffs). These two constraints are included
respectively in the two main constraint functions τ1 and τ2, which allow building dy-
namically reconfigurable dataflows in a way that has not been considered before (while
considering multiple PR regions as shown in Equation 3.15)

3.3.4 Objectives

With an understanding of the placement problem and defined constraints, the scheduler
must optimise the objective function. Intuitively, the fastest scenario would involve
fitting all modules into a single run and fully executing the requested tasks without re-
peated I/O operations. However, the objective is to execute the tasks as fast as possible,
which may entail reconfiguration steps, even if it is avoidable (e.g., if smaller modules
shared over multiple runs are faster than larger monolithic modules).
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Configuration cost

Each module in the module library has a specific cost (the time it takes to configure
the FPGA) for placing it. Therefore we model each m ∈M to have a specific reconfig-
uration cost r. These costs are collected to a list R = (r1,r2, ...,rn) of length n - equal
to the size of the module library M.Next, we can have a copy list U = (u1,u2, ...,un)

for new modules configured in a particular run where each value is initially zeroed but
then after scheduling each module mi ∈Ω, the value ui ∈U is set to be equal to ri ∈ R

as is shown in Equation 3.21.

∀i ∈ In.ui ∈U = ri ∈ R⇔ mi ∈Ω (3.21)

After placing all modules into the PR region Ω, we can sum all values in U together to
get a configuration cost function defined in Equation 3.22 with a set M to process tasks
T .

ϕ1(Ω(R,M)) =
n

∑
i=0

ui (3.22)

One of the objective functions to optimise is to find the PR region configuration(s)
Ωmin with a set of placed modules with minimal configuration cost. Ωmin is from
the set of all possible and valid PR region configurations Ωall that fulfil the required
workloads defined by the set of tasks T , as shown in Equation 3.23.

∀Ω ∈Ωall :


ϕ1(Ω)≥ ϕ1(Ωmin)

τ1(T,Ω) = 0

τ2(T,Ω)≥ 0

(3.23)

Reusing modules

We also need to mind the unoccupied slots within the PR region. These empty slots
still must have routing wires to keep the physical circuit complete at all times. If no
operator modules fit the unused slots, then special routing bitstreams (containing only
the datapath wiring, contrary to using modules in bypass mode) can be used instead
with a reconfiguration cost marked in R.

However, operator modules can also be reused for routing data and repeating work-
load types. First, in a scenario where the PR region Ωi already has a set of modules
Mi configured, each module m ∈ Mi can be used for routing because of the require-
ment (described at the beginning Section 3.3) to pass data streams through that are
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not flagged for the module m. Second, physically identical modules in Mi can be set
up differently with initialisation data written to memory-mapped registers to configure
the set of effects E and the datastream it is addressed to process. Therefore if Ωi ̸=∅,
then U is not always equal to all of the modules used in the PR region as not all points
covered by modules in Ωi have to be configured due to reused modules from previous
runs. The previous configuration and the next planned configuration of modules will
then be combined as shown in Figure 3.14.

We find the set of slots that need to be configured with routing bitstreams Srouting,
and the set of modules that must be reconfigured onto the board Ωnew given the set
of modules in Ωi already and the set of modules we want in Ωwant with the following
algorithm:

Algorithm 1 Finding set of slots Srouting and modules Ωnew in Ω to configure

Input: Ωi,Ωwant

Output: Ωnew,Srouting

1: Ωcommon←Ωi∩Ωwant

2: Ωrouting ←{∀m ∈Ωi∧∀mwant ∈Ωwant :
fc(m,mwant) = 0∧Φ(m,mwant)≥ 0}

3: Ωreuse ←Ωrouting∪Ωcommon

4: Ωnew ←Ωwant \Ωreuse

5: Sreuse ←
⋃
∀m(l(s,e)) ∈Ωreuse{s...e}

6: Si ←
⋃
∀m(l(s,e)) ∈Ωi{s...e}

7: Swant ←
⋃
∀m(l(s,e)) ∈Ωwant{s...e}

8: Sremove ← Si \Sreuse

9: Srouting ← Sremove \Swant

In other words, first, we have to find reusable modules, after which we can deter-
mine the slots which need to be configured with new operator and routing modules
to get the desired set of modules M configured to Ωi+1. Then U can be built from
Srouting∪Ωnew rather than from the modules in Ωwant . Therefore we have to extend the
configuration cost objective function in Equation 3.22 to take the previous configura-
tion of the PR region also into consideration as shown in Equation 3.24. Then these
costs are summed together for all runs in a plan to compare with other valid plans.

ϕ1(Ω(R,Mold,Mnew)) (3.24)
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Figure 3.14: By first finding which modules can be reused for execution or routing, we
only have to reconfigure columns needed for m4 and the additional routing column for
clearing resources from m3.

Additionally, to cut down on the cost of writing routing bitstreams, we can use a
single turnaround module instead of using multiple consecutive trailing slots on rout-
ing. Instead of adding multiple routing bitstreams or bypass modules to fill the PRR
region, a smaller bitstream can be used that routes the datapath back towards the DMA,
shrinking the used configuration region (albeit when overwriting this U-turn wiring in
subsequent runs the full length of the PRR region must be connected again or cut with
a U-turn in a different location). This optimisation requires finding the slot with the
largest index Slast covered by an operational module in Ωwant . Then with Slast , we
can reduce Srouting by replacing all regular routing bitstreams with a larger index with
a single turnaround routing block. However, this opportunity raises rarely with large
enough module libraries that minimise external fragmentation.

Streaming cost

The other optimisation objective to model is to minimise the time it takes to process
all the data necessary to execute the desired tasks. As defined earlier each task ti ∈ T

is a vector of workloads (w0,w1, ...,wn) such that ∀wi ∈ ti : wi ∈W . Workload w of a
workload type in W is an abstract value and does not necessarily represent the amount
of data required to finish the task. Moreover, the same data stream can be used to
complete the processing of multiple workload types. Meanwhile, multiple data sources
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Figure 3.15: Example how different modules are placed into two PR regions define
which (and how large) datastreams are streamed to them.

with different formats can also be required to finish a single task. As such, we need to
model different data amounts in the set Dall as required for all tasks in T where for each
ti = (Wi,Di) such that Di = (d1,d2, ...,dn). di ∈Di (one of the required datastreams for
task ti) is an index pointing to a value in Dall that gets updated after being streamed
through the modules Mi in PR region Ω j (Figure 3.15).

Let the time it takes to read, modify (with the modules in Ω), and write the data
in Dall be classified as the runtime ϕ2(Dall,Ω). Additionally, it takes time for a mod-
ule m ∈ Ω to process data. Moving data from one position in Ω to another also takes
time. We can model the time that it takes to move the data through the PR region(s) Ω

as ϕexecution(Dall,Ω). However, in practice, it takes substantially more time to stream
data to the FPGA in the first place. The time it takes to stream data to the PR re-
gion(s) is magnitudes larger than execution time given that already the physical dis-
tance between DDR and the FPGA is larger than the width of the FPGA and as such
ϕio(Dall,Ω)≫ ϕexecution(Dall,Ω). Given that the latency ϕexecution(Dall,Ω) is so small
for I/O bound processes, then we can assume that the process of streaming data to the
FPGA and streaming data from the FPGA is mostly overlapping and equal in magni-
tude on average. For compute bound problems the latency of the operators must be
considered as well. However, for the modules described in the next section, the execu-
tion latency is negligible, and thus the scheduler aims to optimise I/O costs, assuming
ϕ2(Dall,Ω)≈ ϕio(Dall,Ω).

To calculate the I/O time, we need the data amounts Di, that are streamed into
each PR region Ωi in all of the runs Ω with the PR region count being equal to In as
ϕio(Dall,Ω) = ∑

In
i=0 Di. The modules working on the data sources in each container

define the data cost for that particular stream, as all of the data does not necessarily
need to be streamed to every module. Consequently, the second primary objective
function is to find the set of PR regions Ωmin with the shortest streaming time with
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valid configurations, as shown in Equation 3.25.

∀Ω ∈Ωall :


ϕ2(Dall,Ω)≥ ϕ2(Dall,Ωmin)

τ1(T,Ω) = 0

τ2(T,Ω)≥ 0

(3.25)

3.3.5 Partial Scheduling vs Full Scheduling

When the modules produce resulting workloads with unknown amounts, there can be
an option to schedule more modules such that the module compute capacities are larger
than the unknown (but bounded) workloads (MW > ∑xi,∀xi ∈W ) for full scheduling.
There are cases when this is not possible, and then by ignoring the task fulfilment
constraint τ1, partial scheduling can be used as long as it is possible to finish processing
with subsequent module scheduling plans. In a system, where the scheduling process
and FPGA execution processes are parallel to additional input query parsing processes,
new independent tasks may be added ad-hoc to the set of tasks T that also must be
scheduled in the next scheduling spins, making partial scheduling more suitable.

Alternatively, there is a third option of using heuristics, such as scheduling no ad-
ditional modules with unknown workloads unless the worst-case scenario amount of
unknown workloads can be executed by additional modules that fit in the PR region
while using leftover resources - resources that are still available after scheduling ev-
erything else not involved with the unknown workloads.

3.4 Chapter Conclusion

This chapter introduced the parts required for runtime management for partially recon-
figurable pipelines on FPGAs. The following aspects have to be done automatically:
1) memory management, 2) data management, 3) scheduling, 4) input parsing, and 5)
execution management.

First, for the system to be flexible enough to work with any memory subsystems
and dataflow pipelines, we need a swappable data mover module. This data mover
module and the modules themselves must adhere to a standard interface where mod-
ules communicate through a token system (indicating available buffer space) to avoid
deadlocks in an acyclic execution sequence.

Second, the middleware parsing service requests and building the most optimal
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accelerator setups also handles execution management as the modules in the module
library provide enough flexibility to require scheduling data packets to be in a partic-
ular layout on the datapath. This way, the modules can be optimised to expect certain
words of data in a subset of all possible offsets while being flexible enough to be pro-
grammed for multiple closely related problems. As a result, we have a system capable
of adapting to various workloads with various set of module libraries - a necessary step
to build a larger ecosystem for code-sharing within the FPGA community.

However, this flexibility eventually results in a complicated scheduling problem.
The complexity rises even more with resource-elastic module properties defined in the
background chapter. Furthermore, given the non-linear relationship between resource
usage and performance, we need to examine the scheduling problem more in-depth as
traditional constraint solvers become non-optimal with such problems.

Therefore at the end of this chapter, we formally defined the two main constraints
of 1) fully executing all requested tasks and 2) placing accelerators correctly without
overlaps and breaking implementation-specific constraints. Then we defined the two
main objectives of 1) minimizing configuration cost by finding the cheapest set of
modules and routing blocks and 2) minimizing streaming cost by using modules that
reduce the required workloads the most. Both of these objectives combined allow the
scheduler to minimise the total makespan. Next, a system is presented that implements
optimised dataflow pipelines given these constraints.



Chapter 4

Implementation & Evaluation

First, this chapter explains implementation details for our targeted workloads in Sec-
tion 4.1. After that, we show how the system is capable of running a Sobel filtering
operation on any image in Section 4.2. Then in Section 4.3 we look at how resource
elastic dynamic pipelines compare with static pipelines and CPU alternatives while
executing SQL queries. This work resulted in our proof of concept platform, Orkhes-

traFPGAStream, that can manage both image processing and execute SQL queries and
is publicly available on GitHub [197].

This chapter discusses design factors and design decisions. The exact implementa-
tion details and documented code are available in the GitHub repository.

4.1 System Implementation

In order to implement our target workflows for image processing and data analytics,
we made design decisions to create general and modular subsystems. The following
paragraphs will introduce these subsystem implementations and provide context for
the evaluation presented later in this chapter.

Architectural layout: Fang et al. [77] discussed three ways of integrating an FPGA
with a software DBMS: 1) the FPGA has a copy of the main memory separately
on the device to alleviate the CPU bottleneck, 2) the FPGA is located between the
memory and the CPU to alleviate the I/O bottleneck (e.g., Netezza did compres-
sion and filtering operations in this manner [79]), and 3) a co-processor model,
where the FPGA and CPU share the main memory directly (e.g., the Xilinx Zynq
or Intel Stratix 10 SX chips have this layout). Our system can support any of

90
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these configurations - but for now, we use an UltraScale+ Zynq ZCU102, where
the ARM core and FPGA are tightly coupled while sharing DDR memory.1

Middleware environment: As the middleware interfaces with various clients (e.g.,
DBMS applications), instead of running the middleware “bare-metal”, we use
an official Ubuntu (20.04.3 LTS) environment [42] where we run our applica-
tion that uses Xilinx’s FPGA Manager inside the Linux Kernel to reconfigure
the FPGA through PCAP [42]. This official image already includes all of the
board setup configurations for the ZCU102 while still providing enough flexi-
bility for future changes to the system (e.g., architecture-wise changes or even
simply changing the DDR memory size that involves changing parameters in the
OS image and the first stage bootloader - FSBL). For reference, this Linux en-
vironment is built similarly to PetaLinux [330] that was used in FOS. The OS
image, booted from an SD card, contains the following:

1. An initial FPGA design (to avoid sending erroneous signals during the
start-up process).

2. Binaries for setting up the various stages of the boot process, trust zones on
the CPU, and the PMU (which sets voltages for all devices on the board)

3. The Linux kernel and the device tree to tell the kernel about the board it is
running on.

Using full Linux distributions on embedded systems has several advantages over
more lightweight or bare-metal approaches, such as better third-party SW and
HW support and, more importantly, increased security and networking tools
which enable the potential to expand this system to be a small part of a more
extensive distributed system in the future. There exist tutorials on the various
boot steps to bring up Linux on an embedded platform [128], as this provides a
unified yet flexible approach to running applications on different devices effec-
tively.

Acceleration service requests: In order to provide a similarly unified yet flexible ap-
proach to interfacing with various clients, our middleware maps any incoming
requests from client applications to an intermediate representation (IR). For data

1Even if the CPU and the FPGA have separate physical memories, resizable BAR techniques over
PCIe [5] can help devices access all available memory directly, which is gaining support with the latest
CPUs, and treat it as shared memory.
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Figure 4.1: Middleware FSM to execute queries given as a graph IR. Front-end parsers
(e.g., DBMS systems parsing SQL, as explained later in this chapter) locate dependen-
cies in received requests and then compile IR data structures that will be passed to the
scheduler. Then the best plan is fully executed before restarting the main loop.

analytics workflows, we parse the supported DBMS systems EXPLAIN2 com-
mand output given an SQL query, which will then be rewritten to obey con-
straints induced by the heterogeneous FPGA. This IR represents a dataflow graph
where the nodes (i.e., accelerator modules) are defined with the following infor-
mation:

• Operation - The scheduler has to be aware of operator types, FPGA re-
sources, and performance numbers.

• Operation parameters - Information about how operations are initialised
and how the input/output streams must be parsed and created.

• Node edges - The number of node connections (including streams that are
streamed to multiple nodes)

• Graph Input/Output - Additional information on data formats and how to
handle I/O data.

While parsing incoming requests, the system maps streams with appropriate
stream IDs and embeds the fine-grain data layout information into the IR.

Middleware states: The middleware operates in modular states, as depicted in Fig-
ure 4.1, which provides an overview of the middleware’s finite-state-machine
(FSM). The process begins by gathering and parsing input requests, initiating

2DBMS systems often use SQL, a declarative language, to describe what operation the DBMS must
perform on which data. The query planner determines the computational details of how these results
should be calculated. The details of this plan can be extracted using the typical EXPLAIN command in
the absence of tighter integration.
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Figure 4.2: Different modules use the same resource string that appears multiple times
in the PR region, enabling placing each of these modules into three different locations
concurrently (on the top left of the static system). Additional PR regions can be built
above the shown static system.

the next scheduling spin. Once all generated plans have been evaluated, the op-
timal one is selected, and the middleware proceeds to configure and initialise the
FPGA. Subsequently, data processing occurs using the new FPGA accelerator
pipelines until all planned runs are executed. It’s important to note that new re-
quests can be received at any point during this cycle. Therefore, the main loop
restarts by collecting new requests and the results from the previous execution
cycle, which in turn unblocks any leftover existing tasks. While this loop can be
modified or parallelised, for the purposes of this evaluation, the middleware op-
erates on a single thread to ensure the Linux system remains available for other
processes that generate and collect new incoming requests.

Manipulating the FPGA: Meanwhile, the CPU is connected to a static system with
multiple coarse-grain slots that are all memory-mapped to specific memory re-
gions3, similar to the ZUCL framework [241] (we built our system using a single
such slot in Figure 4.2, however this can be extended when using simultaneous
multi-PR region scheduling). FOS uses this framework (thus has been similarly
partitioned) and has added libraries which suit our use, first for enabling writ-
ing to memory-mapped registers inside these regions and second for using the
FPGA Manager for PR. The u-dma-buf [139] device driver helps with allocating
continuous memory blocks in the Linux user space that the DMA module can
access - for transferring large blocks of data from either CSV files (table data) or

3In more detail, each region has a corresponding AXI slave port that is mapped into the global
address space such that these coarse-grain slots can be accessed individually by the middleware using
the AXI master port.
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BMP files (pixel data). Therefore, we can write data to DDR memory from disk
using virtual pointers and then pass the corresponding physical pointers (mem-
ory addresses) for the allocated memory block to the DMA. The middleware
organizes these data blocks as a simple in-memory file system and keeps track
of the different streams’ seek pointers given to the DMA engine as required to
start executing on the FPGA after configuring the correct pipelines.

Partitioning FPGA resources: In order to configure the correct pipelines, the recon-
figurable region is physically partitioned into different atomic resource columns
(i.e., CLB, DSP, or BRAM columns, in our case). For our targeted UltraScale+
XCZU9EG, we define each resource column as 120 CLBs high (2 clock region
or 2 ZUCL slot heights) for providing a 512-bit wide datapath and two resource
blocks wide to include their shared switch matrix for routing. The smallest mod-
ule in our library (pixel converter) takes two resource columns and the largest one
(sorter) uses 14 columns, while the PR region consists of 31 resource columns.
The fine-grain partitioning allows us to model module placement requirements
through resource string matching without significant overheads. We omit us-
ing more fine-grain slots (when considering using smaller slots vertically) for
now as they would require additional checks against breaking the timing con-
straints of the modules when moving a module from the initial location where
it was built (synthesised) to the desired location, given that it has matching re-
sources. Bitstream relocation is possible with bitstream manipulation tools like
byteman [192] offline or online to limit the module library size, given a negligi-
ble PR latency tradeoff.

Modules: In order to keep such a system practical and flexible, it needs an extensive
module library (how it could be expanded is explained in the next chapter). For
each operation we support, the modules’ bitstreams are stored with information
about their possible placement locations, length and resource capacity. However,
to run the modules, drivers must be created to calculate the initialisation values
written to memory-mapped registers for each operation. The drivers also con-
vey module-specific constraint information to the scheduler and help set stream
IDs, and in the case of the DMA, also calculate the data layout and read sizes
according to various packet sizes to make the flow (shown in Figure 4.3) oper-
ational. Consequently, the following subsection describes the modules used in
our evaluation and their corresponding drivers.



4.1. SYSTEM IMPLEMENTATION 95

DMA Module A B B Module CSystem

Figure 4.3: Data flows from the DMA through the modules back to the DMA, which
communicates with the rest of the system.

Scheduling: All of this flexibility enables the scheduler to integrate the various mod-
ule options together. Nevertheless, as the module library size grows with resource-
elastic module alternatives and variants, the complexity of the scheduling prob-
lem rises exponentially, given the larger search space for finding valid module
combinations. Therefore, we use heuristics to limit the exponential growth of
the scheduling runtime. After introducing the module library and its drivers, we
examine the heuristics to determine their efficacy in managing this complexity
without adding significant computational costs or compromising quality. Our
findings from synthetic benchmark simulations are presented in Section 4.1.3.
Later, we conduct a comprehensive evaluation of the entire system on an FPGA,
as discussed in Sections 4.2 and 4.3.

4.1.1 Data Mover

The most important module in the module library and the heart of the system is the
data mover module, or as it is called in this thesis - the DMA module. The hardware
specifications and its functionality are described by Manev et al., [194]. The DMA
module is generally responsible for interconnecting the acceleration pipeline and stan-
dard AXI ports for memory access. However, besides address management, the DMA
module also provides, as previously discussed, the necessary means for data prefetch-
ing, placing, projection, and duplication as needed by the currently executed queries.

Nevertheless, to make it work automatically in a dynamic system, it needs a sup-
porting driver to guide the system (different DMA modules come with different charac-
teristics and, ergo, new drivers) and operate the modules. The module drivers’ primary
responsibility is compiling the query node parameters into initialisation data written
to the memory-mapped registers inside the modules. Each module has memory space
reserved for memory-mapped registers, and the drivers and the static system know the
address offsets of the different registers.
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The runtime system configures the DMA by allocating more or fewer buffers for
different streams (tables or images) with pointers to the data blocks in the main mem-
ory, after which it can start data prefetching. To explain it more in-depth, first, the
DMA input and output channels can independently read and write concurrent streams.
According to the initialisation order protocol (to utilise the self-scheduled flow con-
trol), these two channels have to be initialised in order, like any other module, which
means that the input controller gets initialised first and the output controller gets ini-
tialised last. Therefore second, the DMA driver calculates the DDR burst counts and
burst lengths to make them as large as possible without misalignment issues with the
given buffer sizes, datapath widths and data packet sizes. Packets that have non-
aligning sizes (when compared to the width of the datapath) get packed into bursts
that contain enough packets to make the whole burst fit into the buffer without align-
ment issues (the DMA gets initialised how to handle these bursts and given the number
of packets the DMA module handles the data amount pulled from RAM by itself).
Then last, the drivers will send the start signals to the DMA channels and all modules
in the pipeline that actively pull data and affect the data flow. After the input controller
in the DMA fetches data from RAM, the active modules with tokens (and the output
controller in the DMA for retrieving results start requesting more data from previous
pipeline stages when they have space in their buffers. Meanwhile, the system keeps
polling the busy flags for each stream through the driver logic to know when they
finish and how large the resulting outputs are, allowing each stream to be processed
independently and concurrently.

In order to enable the data formatting on the datapath, the DMA module features
a crossbar between the buffers and the reconfigurable stream processing modules to
reformat the data layout as needed. With one set of multiplexers, we can choose data
words (in our case, 4 bytes or 32 bits) to be placed into a temporary buffer for intra-
chunk placement (time-domain), which is then followed by another set of multiplexers,
with which we can do the final inter-chunk word placement (space-domain), as shown
in Figure 4.4. Therefore, as the DMA is initialised to use a set number of buffer
blocks for each stream, the crossbars choose data from one already full buffer, while
the DMA fills in other empty buffers with new data packets. This double-buffering
is synchronised by the module itself, while the middleware divides the buffer space
evenly between different concurrent streams. The same is happening concurrently in
the output channels for writing back results.

This buffer usage allows the runtime manager to configure these crossbars (one in
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Figure 4.4: The crossbar consists of multiple MUXs that choose the source chunk and
position each clock cycle allowing shuffling of data however necessary. Here, the term
chunk is used to refer to the “x” coordinate of the targeted word and position is used
to refer to the “y” coordinate, similar to the datapath, as when it comes to addressing
specific words, the buffer has the same width as the datapath. Figure 4.5 illustrates
how the high-level data sequencing requirements are broken down into these ’x’ and
’y’ coordinates.

each direction) with a sequence of multiplexer control settings derived from high-level
projection requirements and module constraints. As data words may be shuffled both
in time and space, we need the driver to translate the one-dimensional requirements
into two different sets of MUX initialisation values, as shown in Figure 4.5. The MUX
values for placing data words into correct chunks can be calculated by dividing the
datapath width by the current placement requirement value, and the datapath position
MUX value can be found similarly with the modulo function.

However, a temporary buffer holding only a single chunk of data is not enough to
enable complete data placement freedom. This setup runs into a problem when we need
to place two different words of data, initially from different chunks inside the buffer
but at the same offset (position) within their original chunks, into the same chunk on
the datapath, as shown in Figure 4.6. This clash can be detected when different initial
requirement values result in the same modulo-function outputs. In order to solve this,
more resources must be used on a larger DMA module or the system must adapt to
the added latency and solve the problem by placing the clashing words of data into
different chunks. Additional crossbar modules can be also used in the datapath before
a module if necessary to meet any strict data formatting formats. The same problem
can occur on the output side, but then the potential resulting gaps in the data can be
removed through either post-processing in the CPU or with consequent runs reshuffling
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the data.

The modules necessitate this shuffling of data; thus, the clash-solving has to be
coordinated with the other module drivers, which we will look at next.

4.1.2 Module Library

Each operation accelerator module has a driver coordinating with the scheduler to en-
sure that the data packets are organised such that the corresponding module knows
where to expect certain words while the format obeys all constraints. In this subsec-
tion, we will briefly look at the driver functionality of each module before looking at
the scheduler to better understand the currently supported workloads. In addition to
the active modules (these pull data through the pipeline and request for more, given
enough credits), our library of modules also contains modules that are passive (operate
on passing streams while not actively affecting the flow):

Filter: The filter module is a passive module, where a DNF boolean expression con-
veys the requirements set in the SQL query’s WHERE clause. The expressions
are divided first into comparison functions for calculating literal values with
given constant values and secondly evaluated into DNF clauses that combine
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data come from the same position but from different chunks within the buffer, then the
crossbar cannot route both of these words onto the datapath in the same chunk. This
issue can be resolved using more resources on additional buffers and crossbars or by
placing these words into different chunks and resolving the conflict in time.

the literal values (all literal values are ANDed within the clause, and the clause
values are ORed). The driver sets corresponding stream IDs for records with
either a positive match or a negative match (i.e., for splitting the input stream
into two resulting streams). The resulting stream consisting of negative matches
may be explicitly required by the query or when using filters in a resource-elastic
manner (when a single module may not have enough comparison units or enough
resources for the required number of clauses). When multiple filters act as a sin-
gle logical unit, records between the two streams can be reallocated to another
physical resource-elastic filter module. A negatively matching record is turned
into a positively matching record when a record matches another comparison in
another ORed clause and vice versa with a negative comparison value match in
an ANDed clause.

Join: An active module for joining two streams, acting as an inner join (equi-join)
operation. The current system only provides a single join module which com-
bines two sorted streams by the value in the first word. Additionally, the module
contains a small crossbar for shuffling words in time to merge the two streams.
Therefore the driver sets constraints to the scheduler that first, constrain the
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matching words on which the join operation is done to be in the specified posi-
tion, and second, the second input stream has to have some flexibility to shuffle
data words without losing important data - which may require duplicating data
beforehand to make the necessary space.

Linear sort: An active module for sorting smaller streams or starting to partially sort
larger ones. Different modules can make short sequences of sorted elements of
various lengths while sorting based on the value in the first word. As it is a stable
sort, a crossbar (either a separate crossbar module or the one inside the DMA)
must be used when sorting with multiple keys to reshuffle the values after sorting
with one key before sorting again with another key.

Merge sort: An active module for sorting more significant streams through multiple
partial runs. Multiple modules can cooperate to merge all sorted input streams
into one combined sorted stream. Both merge and linear sort module drivers have
to keep track of the size of these sequences to know how to mark the channel IDs
of these sequences and how many further sorting runs are required. In addition,
as the merge sort module has a variable size of buffer space, the driver has to
calculate how many records get fetched per read burst and how these fit into the
buffers on the CPU instead of these values being calculated in the module to save
module resources.

Addition/Subtraction: A passive module for arithmetic operations. As the constant
value can be added to the data value on the datapath, the requested result may
also consist of the given constant value after the data value on the datapath was
subtracted from it (meaning the module has to be able to calculate x−y and also
y− x). In addition, as we support adding or subtracting multiple decimal values
concurrently that are 64-bit values, the pairs of 32-bit words have to be aligned
correctly on the datapath - setting another constraint to the scheduler, which may
result in an additional shuffling of data in the DMA.

Multiplication: A passive module for multiplying multiple 64-bit values in the datap-
ath and writing the result back into the resulting stream. Handling 64-bit values
can add additional constraints to the data formatting on the datapath as the mul-
tiplier module does not spend additional resources for internal data shuffling.

Global aggregation sum: A module that can be both passive and active based on the
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requirements. An aggregation module that can delete a stream if required (ac-
tive module) and otherwise output the input stream unchanged (passive module).
Deleting the stream can make more space for other streams, albeit the stream
cannot be deleted when it is still an input of another module (while aggregation
is usually the final operation, the stream can be still used in a parallel query
if they share the same data). Either way, the aggregation value is read from a
memory-mapped register that must be manually zero-ed with the driver.

Black and white converter: An active module for image processing that converts
pixel data encoded in three colours to a single intensity value. This module
demonstrates the ability to convert data encoding schemes with modules.

Sobel: An active module for accelerating an operation that is used in edge detection,
where the sharp edges of the image are highlighted using a convolution window.
Here the driver checks image dimensions and passes them on to the module.

4.1.3 Scheduling Implementation

Now that we know all of the implementation-specific details for further context, we can
devise a practical approach to optimise our processing pipelines. Fundamentally, if we
can execute all of the operations in the correct order within a single run (all modules
fit into the PR region), the scheduling problem is straightforward - the combination of
modules with the most limited configuration cost is the most optimal. This remark is
accurate, assuming the modules operate at the same speed while the primary bottleneck
is memory throughput. As a result, we can use the simplified model for calculating the
streaming cost explained in Section 3.3.4.

Scheduling approach

In practice we cannot always fit all required operations into a single run. With limited
resources we commonly have to use time multiplexing while processing large datasets
(which may involve using PR as shown in Figure 4.7), which results in forcing the
scheduler to use various resource elastic modules. Therefore, this forms a non-linear
programming problem (NLP), given the multiple objective functions (albeit they can be
combined under the minimising overall execution time objective), numerous module
placement and task ordering constraints, and most significantly, the non-linear relation-
ship between resources and gained performance for larger and smaller modules. Such



102 CHAPTER 4. IMPLEMENTATION & EVALUATION

M
od

ul
e 

A

M
od

ul
e 

B

M
od

ul
e 

C

D
M

A

M
od

ul
e 

A

M
od

ul
e 

B

M
od

ul
e 

C

D
M

A

M
od

ul
e 

A

D
M

A

PR
 M

od
ul

e 
A

PR
 M

od
ul

e 
B

PR
 M

od
ul

e 
C

D
M

A

PR
 M

od
ul

e 
A

PR
 M

od
ul

e 
C

D
M

A

Query 1: A ➞ B ➞ C ➞ A

Query 2: C ➞ A

Static Dynamic

M
od

ul
e 

B

 M
od

ul
e 

C

PR
 M

od
ul

e 
A

Run 1

Run 2

Run 3 Input

Figure 4.7: Operators of two concurrent acceleration requests can be scheduled with
static and dynamic pipelines when multiple runs are required. Over-provisioning hurts
performance when the static system needs to use an additional run to finish processing,
and the cost of the additional I/O transactions is greater than the cost of PR required
for the dynamic approach.

an optimisation problem consisting of scheduling modules both in time and space with
functionality-performance-cost tradeoffs on different tasks with various dependencies
is classified as a resource-constrained project scheduling problem (RCPSP).

RCPSP type of problems appear in many fields, and finding appropriate optimal
scheduling approaches is a long-withstanding, decades-old, and active research field as
surveyed by Hartmann and Briskorn [106, 107]. As the modules can be reprogrammed,
this problem can be further generalised as an (Multi-Skilled RCPSP) MSRCPSP prob-
lem. Furthermore, as our tasks have partial-ordering constraints due to their depen-
dencies and we have a non-preemptive execution model (a run lasts until the modules
terminate execution), Blazewicz et al., [29] showed such MSRCPSP problems to be
NP-hard. Consequently, related research shows that there are no fast general-purpose
approaches to solve this problem [306, 274].

Other extensions of the RCPSP-type problems also apply to our scheduling prob-
lem and are similarly proven to be NP-hard. For example, another aspect of our
resource-elastic modules is that the tasks can be completed in different ways (modes)
that have different resource requirements and effectiveness levels which resembles a
multi-mode RCPSP (MRCPSP - not to be confused with multi-skilled problems) as
surveyed by Weglarz et al. [319]. These different project planning problem aspects
can be combined, as done by Maghsoudlou et al. [188] who investigated a multi-skill
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and a multi-mode problem. Similarly, our system can schedule multiple problems
(multiple queries or executing data analytics and image processing dataflows con-
currently) simultaneously. Consequently, related work shows how to combine multi-
project RCPSP-type problems with a multi-mode type problem [16].

We need real-time adaptive scheduling for these problems, primarily because of
resource requirement uncertainties, due to the data-dependent and non-deterministic
execution. For example, no universal scheduling algorithms fit this RCPSP-type prob-
lem, and thus Rahman et al., [256] used a real-time meta-heuristic4 approach based on
probability distributions from historical data. However, as we currently target ad-hoc
execution, we lack the necessary historical data and the optimal parameters to make a
similar meta-heuristic approach effective. Furthermore, when reformulating the prob-
lem as a linear integer programming problem by enumerating all possible module se-
lection combinations to decision boolean variables or when using non-trivial branch-
and-bound and plane cutting techniques to reduce the runtime the constraint solver
approaches are still too slow [60]. Consequently, most related work use heuristics to
varying degrees for real-time scheduling [108, 156, 233]. Nevertheless, the system
should be capable of adopting new scheduling strategies or algorithms when enough
historical data is gathered. However, determining which parameters to monitor and
how to formulate the problem to fit various meta-heuristic approaches falls outside the
scope of this project.

Enumeration

First, the scheduler must solve the feasibility problem by finding all suitable modules
for each node among the input requests and placing them in a valid order. This search
entails branching search paths at each choice between different nodes, modules, mod-
ule execution graph alternatives, module variants, and module placements (both in time
and space). Therefore, after completing the input parsing, the scheduler starts finding
suitable execution plans with a recursive (the recursion can be replaced with explicit

4Meta-heuristic approaches use learning to figure out optimal solutions from an existing history
of solutions, as opposed to heuristics that use a trial-and-error approach, as summarised by Singh et
al., [281]. Singh et al. also summarises most modern approaches, such as Ant or Bee colony algorithms,
that often mimic life-like behaviour that solve complex problems appearing in nature. Meta-heuristic
scheduling is a considerably thriving research field where different meta-heuristics and heuristics can
be combined for hybrid solutions to solve state-of-the-art scheduling problems. As neural network
workloads fit the dataflow model superbly with a plethora of effective FPGA accelerators, similar meta-
heuristic approaches, like genetic algorithms, also have numerous FPGA accelerator implementations
([307, 299]) including HLS implementations [10] and automatic generators [97].
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stack tracking) depth-first search algorithm shown in Algorithm 2:

Algorithm 2 Scheduling main recursive loop
Input: Lib,AvailNodes,G,D,CurRun,CurPlan,AllPlan,BlockedNodes

CurRun - Current run modules; CurPlan - Planned runs;

AllPlan - All valid plans; BlockedNodes - Cannot be executed;

Output: AllPlan

1: CurAvailNodes← AvailNodes−BlockedNodes

2: if CurAvailNodes ̸=∅ then
3: AvailModules←∅
4: for each N in CurAvailNodes do
5: AvailModules← AvailModules

+GetAvailableModules(G,N,Lib,CurRun)

6: end for
7: if AvailModules ̸=∅ then
8: for each M in AvailModules do
9: NewCurRun←CurRun+M

10: Update variables and call this function again

11: end for
12: end if
13: if CurRun ̸=∅ then
14: CurPlan←CurPlan+CurRun

15: NewCurRun←∅
16: Update variables and call this function again

17: end if
18: else
19: if CurRun ̸=∅ then
20: CurPlan←CurPlan+CurRun

21: end if
22: if CurPlan ̸=∅ then
23: AllPlan← AllPlan+CurPlan

24: end if
25: end if

The algorithm requires the following input:



4.1. SYSTEM IMPLEMENTATION 105

• A HW library that provides different module alternatives and variants. The li-
brary contains information about the locations, capacities, and sizes of the mod-
ules while mapping bitstreams to supported operations.

• A set of available nodes from which the scheduler can start the scheduling pro-
cess (the input nodes).

• The input service request defining a stream processing problem (modelled as a
graph). The input can contain multiple requests.

• The input data parameters that contain information about data sizes and data
characteristics (e.g., if a specific field will be used for sorting).

The main idea of the algorithm is to enumerate all valid plans consisting of vari-
ous runs (that, in turn, consist of different module pipelines at different positions that
their respective drivers have sanctioned). In more detail, all nodes that have their par-
ent (producer) nodes already scheduled or work on data streamed directly from the
DDR are marked available (the available nodes are marked in the beginning of Algo-
rithm 2). Then, in order to eventually examine all possible placements of modules in
time and space, all modules that fit the set of available nodes are recursively placed to
all positions in the current run (as shown in the for loop in lines 8-12 in Algorithm 2).
Alternatively a next run is started (lines 13-17) where the whole process repeats until
all nodes have been scheduled.

These different combinations of modules, organised into runs, create a set of pos-
sible global plans (which in Algorithm 2 is depicted as the output AllPlan that is pop-
ulated in lines 18-25). Multiple modules in potentially multiple different runs may
be required to execute an operation in one global plan, while only a single module
(e.g., a static combination of multiple relocatable modules) may be required in another
global plan. Therefore available nodes are updated separately in each recursive call
for all global plans generated within a single scheduling spin. This set of plans will
be evaluated in the subsequent cost evaluation state based on the given system-specific
data streaming throughput and configuration writing throughput speeds to determine
the fastest plan for execution. The configuration speed of each module is measured of-
fline to estimate configuration times. Execution time estimates are based on measured
streaming throughput, as it’s the bottleneck; module throughputs are sufficiently fast
to be omitted from calculations, as detailed in Section 3.3.4.

The rest of the inputs passed to Algorithm 2 are used to track the following in each
recursive call: 1) the modules placed in the current run, 2) scheduled runs in the current
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plan, 3) all plans generated so far, and 4) blocked nodes. The blocked nodes set is for
marking nodes that are available for execution as their dependencies are scheduled,
but the scheduler lacks information about how many resources should be allocated for
these nodes. For example, streaming operations can output more or fewer data records
than received, changing the data size unpredictably (e.g., filtering). Data-dependent
consumer nodes with resource-elastic modules that do not fit into the same run as their
producer nodes become blocked.5 Blocked nodes become unblocked after analysing
the intermediate data and updating the requirements, as in they can only be scheduled
in subsequent scheduling spins. Therefore, the execution of more complex jobs that
are split into multiple runs is possibly computed in multiple scheduling spins to adapt
to changing runtime conditions.

When multiple scheduling spins are needed, the approach explained above will no
longer generate a complete enumeration of all potential plans. With blocked nodes
the scheduler does not start speculating or enumerating all possible outcomes of how
it will become unblocked and instead will leave it to be scheduled in the next spin.
This incomplete solution-space search may result in situations where by choosing a
less optimal plan in initial scheduling spins a more optimal plan may become available
in later spins which we will discuss when evaluating this approach after discussing
available optimisations.

To conclude, if a fitting module in the module library exists for each node in the
input request, this algorithm will always find a feasible plan, which may include mul-
tiple runs through the FPGA. A SW fallback must be used if there is a missing module
implementation. While this enumeration problem will result in unpractical long exe-
cution times for online scheduling, it delivers the best solution and serves therefore as
a baseline for heuristics that trade scheduling execution time for scheduling quality.

Heuristics

With such a vast amount of branching options, the scheduling runtime is exponen-
tially growing with more complex requests to take a significant enough amount of time
such that it hampers the overall performance of the system, regardless of the speedup

5Blocking nodes can be avoided by deliberately accepting over-provisioning and using modules
large enough to cover the upper bound of the unknown workloads. The scheduler does this when there
are unused resources, and no other module can be placed. Then instead of wasting these resources on
routing, the resources can be allocated to the otherwise blocked node. If enough resources are allocated
to cover the upper bound, the node never gets blocked, and the scheduler continues placing subsequent
nodes.
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gained with the chosen plan. When interpreting the well-known Amdahl’s Law [13],
we know that most performance is gained by optimising execution steps that take the
longest, meaning we have to find the optimal balance between scheduling, execution,
and configuration. However, we can create heuristics that aggressively choose plans
with fewer major runs as they are the highest cost factor in performance with larger
dataset sizes. Consequently, these heuristics allow us to reduce the cost of scheduling
and execution, assuming the configuration time gains we can get through optimisa-
tion are smaller than the potential gains from optimising the other two aspects (given
that most related works use static systems). We will confirm this assumption through
experiments in Section 4.3.2.

However, first, we need to evaluate the effectiveness of the following heuristics
in making the scheduler sufficiently fast to adapt to new requirements during runtime
after a brief overview:

1. H1 - Stop continuing scheduling plans that use more runs than the current best.

2. H2 - Schedule modules first that already have producer nodes scheduled in the
current run to avoid additional I/O operations.

3. H3 - Schedule the smallest modules that can execute the required workloads.
When the workloads are too large for any single fitting module, use the biggest
modules possible with the leftover resources and process the operation with mul-
tiple modules or runs.

4. H4 - Schedule as many modules into the current run as possible before schedul-
ing modules into consecutive runs - minimising unused resources.

5. H5 - Schedule modules as close to the DMA as possible for dense module pack-
ing.

The main idea we design our heuristics with is to pack everything as tightly as possible
- as a consequence, we may miss opportunities to reuse modules over multiple runs as
we try to replace all unused modules without considering the possible subsequent runs.

As the heuristics cut branching decisions that are not likely optimal, our first heuris-
tic (H1) uses the branch-and-bound approach (as it is common in such scheduling prob-
lems [116]). We can cut down on our search space by calculating each option’s lower
bound of potential runs and comparing it to the current upper bound. Meanwhile, H2
is for minimising I/O costs by avoiding repeated streaming of parallel streams.
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In order to use H3, the first step is to find all modules that can complete the job
with one pass. This preprocessing step is to find modules in the HW library that can
support the problem size even in the worst-case scenarios, as shown in Algorithm 3.
As a result, the scheduler has a divided hardware library from which first it tries to find
the smallest modules that cover the expected workload amounts, or, if no such modules
fit the current run, then the largest possible module is used instead to do as much as
possible with the given resources for partial results. Consequently, the final stream is
calculated with fewer resources in the subsequent runs. Currently, algorithm 3 is reused
every time with potential runtime requirement changes during scheduling for more
accurate upper bounds. Alternatively, in the future, when there is enough historical
data, this could be tweaked

Algorithm 3 Scheduling pre-processing
Input: Lib,AvailNodes,G,D

Lib - HW module library; AvailNodes - available nodes;

G - input graph; D - stream data

1: MinACap← GetMinAvailableCapacity(Lib)

2: while AvailNodes ̸=∅ do
3: N← GetNextAvailNode(AvailNodes)

4: AvailNodes←U pdateAvailNodes(G,N)

5: MinRCap← GetMinReqCapacity(N,Lib,D)

6: FitModules← FindFits(MinRCap,N,Lib)

7: if FitModules ̸=∅ then
8: G← SetFitModules(G,N,FittingModules)

9: end if
10: WD← GetWorstCaseD(G,N,Lib,D,MinACap)

11: G←U pdateNextNodes(G,N,WD)

12: end while

Lastly, the heuristics H4 and H5 follow a greedy scheduling strategy of packing
modules as tightly as possible while avoiding leaving unused modules for routing and
potential reuse in later runs.

Outside of using heuristics, when the scheduler spots a set of conditions it has
solved before while finding available modules, it uses a dynamic programming ap-
proach and retrieves the previously chosen set of modules from memory instead of
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Figure 4.8: Benchmark generation finite-state-machine (FSM), where each state has a
chance to generate the corresponding node into the benchmark query set.

recalculating them. Therefore, we exchange increased memory usage for faster exe-
cution as the middleware is likely the only application on the CPU running with high
memory requirements. Additionally, we can minimise module library size when re-
quired and already have dedicated memory regions for the data blocks to leave more
memory for the scheduler. Furthermore, the additional memoisation overhead is neg-
ligible, given that long search paths also take substantial memory.

Synthethic benchmark for heuristics evaluation

To stress test our scheduling methods, we implemented a data analytics query gen-
erator that creates requests with various characteristics. As a result, we have a dy-
namic benchmark with ad-hoc requests that uses supported operations from the mod-
ule library, similar to the “SELECT FROM WHERE”-type SQL queries in the well-
established TPC-H benchmark. This approach can generate more complex queries
with more operations like in the more extensive TPC-DS benchmark. The queries
are generated with a Markov Chain-like FSM (similar to the unstructured aspects that
are generated for the queries in another data analytics benchmark BigBench [88]), as
shown in Figure 4.8. There is a chance with a parameterised probability that a corre-
sponding operation is added in each state to the generated query before transitioning
into the next state. Each numbered state transition takes place with the corresponding
conditions:

1. Commonly joins (and the prerequisite sorts) come after filters.

2. There is a chance to use an existing join (if there is an empty input) and stop.
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3. If a join gets generated then further filters are added (creating an arbitrary se-
quence of joins and filters).

4. After filters and joins come arithmetic operations.

5. There can be multiple arithmetic nodes.

6. After arithmetic nodes comes the aggregation operation.

7. Lastly the query is finalised.

These steps generate desired non-nested queries (nested queries can be simplified
in SW beforehand6) using modules with different characteristics. The modules we
have are for filtering, join, and sorting operations, which have data-dependent be-
haviour with different numbers of inputs and outputs, in addition to having both re-
source elastic modules and non-scaling modules.

In summary, the custom benchmark generator serves as a framework for validat-
ing the scheduler’s performance across a wide range of scenarios - allowing to change
and rapidly test the scheduler without targetting specific queries. The framework also
enables monitoring of the scheduler’s performance with varying data loads while pro-
viding insight (with automated performance illustration shown in the following subsec-
tion) about the system’s efficiency under different conditions. Moreover, the platform
created by the framework can be utilized to generate historical data for developing
meta-heuristic approaches or for training DNN models in future work.

The randomly generated test sets were used to evaluate our heuristics on an Ubuntu
(20.04.5 LTS) desktop machine with an Intel Core i7-4930K (22 nm) CPU with 64 GB
with 4 DDR3-1333 memory modules. While using different scheduling parameters
with query sets of varying complexity, we compared the resulting scheduler runtimes
and execution plan quality. As we will evaluate the system with TPC-H workloads
on a ZCU102 with an XCZU9EG chip (16 nm), we measured the configuration speed
for each bitstream available in our library. For reference, the FPGA Manager in the
Linux Kernel loads bitstreams through PCAP with a small constant overhead cost, and
as such, small bitstreams get configured with ≈115 MB/s and a larger module with
≈270 MB/s. To improve configuration speed, we use our DMA module’s maximum
streaming speed on the ZCU102, which we were also able to reach in practice, where

6When one query depends on the result of another, the scheduler realises this constraint and can
generate the prerequisite result before scheduling following queries. When multiple queries or multiple
operation nodes depend on another query, then if it is not possible to directly stream the resulting stream
to all required consumer nodes, the results get temporarily saved in memory for sharing.



4.1. SYSTEM IMPLEMENTATION 111

Table 4.1: Specification of generated queries for measuring scheduler’s performance
in Figure 4.9.

Data Set Parameter Average Std Dev Min Max
Query count 1.37 0.67 1.00 3.00

Avg node count per query 5.10 1.55 1.67 6.00
Avg table count per query 2.65 0.57 1.33 3.00

Avg table size 10041.17 3549.41 1466.00 19901.00

our AXI interfaces run with 300MHz clocks to achieve an aggregated 4.8 GB/s read
and 4.8 GB/s write throughput.

Quality of results

In order to measure the effectiveness of the heuristics presented earlier, we generated
queries with rows of 40 bytes of data (to stay comparable with row sizes in TPC-H
queries) and compared them with two additional scheduler configurations:

• H0 - Schedule without heuristics for most optimised plans.

• H6 - Schedule with all heuristics to reduce search space.

Figure 4.9 shows that our heuristics individually do not have a significant enough
impact on reducing the scheduling runtime, but as we add additional heuristics, the
runtime eventually gets reduced from seconds to less than a millisecond.7 These rela-
tively small runtimes are achieved with small datasets as we compare results from 434
runs where the scheduler ran to completion and scheduled, on average, six nodes in a
request with 3500 rows of data, with a minimal number of requests consisting of more
than 1 query, as seen in Table 4.1.

Nevertheless, when looking at the quality of the resulting execution plans in Ta-
ble 4.2, we see that the execution times were kept low as intended. The execution
time gets reduced from 0.43 milliseconds to 0.40 milliseconds at the cost of increas-
ing the configuration time from 17.9 milliseconds to 25.6 milliseconds with this small
dataset scenario. Consequently, we see that the tradeoff of using the heuristics is in-
creased configuration cost, which dominates the overall processing times with such

7Similarly to using multiple heuristics in our scheduling, in face recognition applications, the Viola-
Jones algorithm is a well-established approach used on low-power devices to detect faces through nu-
merous simple filters [314]. A single filter alone is not accurate enough to detect faces, but collectively
the accumulated effect is substantial and reliable enough to warrant use over more computationally
intensive machine learning models.
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Figure 4.9: Using heuristics, execution plans are generated faster yet maintain the
speed of plans from exhaustive searches. H6 prunes much of the search space com-
pared to H0. The drawback here with small datasets is longer configuration, but for
larger datasets, the overall makespan is unaffected as execution time dominates.

small datasets (as expected, but this is not an issue with larger datasets, which we will
look at next). As a side note, we also see that H5 configuration can find better query
plans than the exhaustive search can find because of a few exceptions when multiple
scheduling spins are required, where overall better performance is achieved by choos-
ing “worse” plans in the first spin that can enable finding overall faster query plans in
later scheduling spins. The exhaustive search does not try to predict unknown data load
amounts after scheduling non-deterministic modules and hence cannot remove the use
of multiple scheduling spins, where the second execution plan can be different based
on the previous plan.

Larger datasets runtime

In order to investigate scheduling times and execution times of more complicated re-
quests, we generated a new set of queries with parameters shown in Table 4.3 to show
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Table 4.2: Comparison of heuristics effects while scheduling with the dataset parame-
ters from Table 4.1.

Performance Parameter H0 H1 H2 H3 H4 H5 H6
Scheduling Runtime 0.0005 0.8776 0.0369 0.0067 0.2381 0.2403 0.9769

Plan Count 2.91 11051.38 195.36 55.14 1281.96 5362.28 11203.37
HW Configuration Time 0.0256 0.0177 0.0214 0.0209 0.0180 0.0188 0.0179

HW Execution Time 0.00040 0.00042 0.00046 0.00046 0.00043 0.00045 0.00043
HW Exec + PR Conf 0.0260 0.0182 0.0219 0.0214 0.0184 0.0192 0.0183

Table 4.3: Specification of generated queries for measuring scheduler’s performance
in Figure 4.10.

Data Set Parameter Average Std Dev Min Max
Query count 1.84 0.91 1.00 5.00

Avg node count per query 10.95 4.79 2.00 18.00
Avg table count per query 3.73 1.11 1.40 5.00

Avg table size 54860.63 12904.37 17746.25 91404.50

how parallelism, input size and operation count increase the complexity of the schedul-
ing task. We see that the scheduling runtime can still explode as only 78% of the 1202
queries generated are still fast to schedule (below half a second), as shown in Fig-
ure 4.10. However, because of both the freedom to execute parallel queries in any
order and the additional minor and major runs required with increased data set sizes,
there exist still a lot of suitable execution plans that have little difference in quality.
Furthermore, we can see a classical performance bimodal distribution featuring two
distinct peaks in the histogram of scheduling performances in Figure 4.10, where the
second peak could be attributed to cache misses.

Therefore, to handle these few exceptions consistently, the last way to prune the
search space is to limit the search time after finding the first valid plan. For the last
scheduling test, we created another set of 654 tasks that are sufficiently complex such
that for all of them, the scheduling process takes longer than 3 seconds, even with the
heuristics. These tasks, on average, have 20 nodes between three and a half parallel
queries with tables having 300 000 entries on average, as shown in Table 4.4. In Fig-
ure 4.11, we set different time limits to the schedulers with different heuristics and
see that giving more time to the scheduling process only provides diminishing returns.
Thanks to the heuristics, finding a set of initial plans with reasonable quality is fast,
and consequently, we can use a time limit to avoid looking at a more extensive set of
plans. Based on these evaluations, we have set a time limit for practical experiments
in the next section at 0.1 seconds for each scheduling spin, after which the best plan is
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Figure 4.10: Many factors can increase the complexity of finding the best execution
plan. Most prevalently, a high operation count implies higher parallelism and more
chances to have more merge sort and join operations.

Table 4.4: Specification of generated queries for measuring scheduler’s performance
in Figure 4.11.

Data Set Parameter Average Std Dev Min Max
Query count 3.50 1.41 1.00 10.00

Avg node count per query 7.04 3.94 2.17 24.00
Avg table count per query 2.81 0.87 1.50 6.00

Avg table size 300095.54 46815.38 159272.25 434203.17

chosen.



4.1. SYSTEM IMPLEMENTATION 115

1.0

1.1

1.2

1.3

1.4

Co
nf

ig
ur

at
io

n 
tim

e 
(s

) ×10 1

5.0

5.2

St
re

am
in

g 
tim

e 
(s

)

×10 2

1.6

1.8

Co
nf

ig
 +

 E
xe

c 
tim

e 
(s

) ×10 1

H6
H5
H4
H3
H2
H1
H0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Limit (s)

0.0

0.5

1.0

Pl
an

s c
on

sid
er

ed

×105

Scheduler's Quality with Time Limits

Figure 4.11: With requests still having substantial scheduling runtimes due to many
execution plans being found, we can limit the time spent on scheduling. The significant
runtime points to many equally good plans from which the scheduler should choose the
ones it happens to find first. Therefore, spending more time scheduling these problems
does not give substantially better quality plans.

Using fast heuristics to prune such vast search spaces is helpful for a general-
purpose approach that can be used even on low-performance CPUs (or even a soft-core
CPU) with the assumption that the data streaming times strongly dominate with large
dataset sizes. In the following evaluation, we confirm that the system is operational
(Section 4.2). Then in Section 4.3, we evaluate scheduling to examine the relative sizes
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Figure 4.12: Our system can process any image using the prerequisite black and white
converter and Sobel filter operations as long as the image’s width is a multiple of 64
(could always be padded accordingly).

of scheduling, configuration and execution times on the FPGA board with queries from
the TPC-H benchmark.

4.2 Image Processing Example

For our evaluation, we first check that the system works in practice and successfully
packs data into packets in a format dictated by our modules. Therefore, we use the
two image processing modules: the black and white converter module and the So-
bel module. These modules are for accelerating a two-step (daisy-chained) dataflow
edge-detection task with images of varying sizes, as demonstrated in Figure 4.12. A
basic implementation of OrkhestraFPGAStream tested the following implementation
details:

Running the middleware: First, the CPU on the Zynq XCZU9EG chip is a 64-bit
4-core ARM Cortex-A53 that can run at 1200MHz. This system successfully
boots up with Ubuntu 20.04.4 LTS for running our middleware and providing all
libraries that are common on desktop systems.

Successful memory blocks allocation and use: In order to share memory for read-
ing/writing input/output data between the CPU and FPGA, we allocated a large
memory area on our 2666 MHz 4GB DDR4 RAM through Linux’s Contigu-
ous Memory Allocator (CMA). Inside this area, new u-dma-buf devices allow
the creation of kernel-level memory blocks with a physical memory pointer (for
only the DMA module to access). Meanwhile, as mentioned before, these blocks
can also be accessed as user space memory blocks by the middleware, given that
it has retrieved the virtual pointers from the corresponding devices. However,
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due to reserved memory in the middle of the memory area for operating the MP-
SoC, we can only allocate a CMA memory area with a size of close to 2GB.
Inside this area, we built a filesystem with pointers to different data blocks held
in memory for streaming. For example, to only process one image, we can use
up to 2GB of memory - 1GB each for storing the input and output.

Initialising modules with data formatting requirements: The execution plan for a
two-step dataflow process is straightforward after creating two directly con-
nected nodes where the black and white converter node reads the image input,
and the Sobel operation node writes the final output. The Sobel operation node
has to contain the image size parameters for the driver to write these values into
the module during initialisation. As the black and white module expects the im-
age pixel data to be encoded as 3-byte RGB values, they enforce the images to
be at least 64 pixels wide to pack multiple rows of pixels onto the 512-bit wide
datapath without alignment issues (e.g., one row of pixels for a 64-pixel wide
image will get streamed in three clock cycles). The Sobel filter module operates
on data in which the brightness of each black and white pixel is represented as a
byte value. As a result, the execution plan needs to specify the number of bytes
required for each pixel in the image processing streams. This flexibility allows
the system to work with both image formats by telling the DMA how many clock
cycles it takes to stream a row of pixels. Consequently, the DMA gets initialised
to place data linearly onto the datapath while avoiding any data shuffling for the
data that arrives from the main memory.

Using PR modules: The Sobel module fits into three locations, and the black and
white converter module fits into six different locations while they have no resource-
elastic alternatives or variants, and collectively they fit the PRR 15 times without
any overlaps. We confirmed that the modules work in both placement scenarios:
1) they are as far from each other as possible (to test setup time violations), and
2) they are directly connected (to test hold-time violations). In larger systems,
placing buffers between two modules that are too far from each other might be
necessary to fix timing errors, but this is not required in our system, and in prac-
tical scenarios, there will likely be other modules placed between them.

Successful acceleration: Overall the flow was operating from reading 4k RGB input
frames to writing 4k black and white outputs into the main memory with 87 FPS.
However, we spend many resources on the DMA module to be able to shuffle
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data which is wasted in this case. Such a flexible system needs to provide more
value than the overheads of this increased flexibility to see any performance
benefits. Many related works come to this same conclusion and stop here and
start using ASICs or GPUs for acceleration instead, but we want to show that
with more dynamic flows, such a system can effectively exploit the benefits of
resource elasticity.

As the optimising of all of these modules and static setups is nuanced enough with
different tools and levels of constraints and code quality, drawing any conclusions on
the number of additional resources required for partially reconfigurable modules falls
out of scope for this thesis and, instead, we examine the middleware. Nevertheless,
the resource requirements of all modules and comparable static pipelines are listed in
Appendix A for reference. The static pipelines are constructed by synthesising the PR
modules together. They are constrained to use resources only within the PR region
and rely on the surrounding static shell for communication with the PS Arm Processor
and main memory. A more detailed comparison between the static pipelines and PR
modules will be presented in the next section.

In the next section, we will demonstrate the effectiveness of this approach on more
dynamic problems with a larger module library while providing resource-performance
trade-offs so that the scheduler can dynamically create optimised pipelines. Data an-
alytics is appropriately more dynamic, but additionally, we process the requests using
the same system with the same data structures as was used for the image processing
example to confirm the versatility of our approach (both types of requests could even
be processed in parallel) which is further examined next in Chapter 5.

4.3 TPC-H Evaluation

To study how different processes contribute to the overall runtime in dynamic stream
processing systems, we target queries from the TPC-H benchmark, which, as discussed
in Section 2.1.2, is grown to be the industry standard for benchmarking systems pro-
cessing data analytics. According to Boncz et al., [33], the TPC-H benchmark has
many challenges, which can be grouped into aggregation performance, join perfor-
mance, data access locality, expression calculation, correlated subqueries and parallel
execution. To understand the execution side of the resulting performance while run-
ning TPC-H queries, we first discuss data types, operations, tables and acquiring query
plans.
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First, the benchmark queries are built up using filtering, sorting, joining, aggrega-
tion, and arithmetic operations. However, as we lack modules capable of processing
substreams partitioned by a value within the original stream necessary for the GROUP
BY operation, we omit queries with these operations as related work covers the usage
of this operation in great detail already (e.g., Ibex [324]). Furthermore, we lack a reg-
ular expression parser as it does not offer any new interesting streaming characteristics
that the scheduler does not yet support and acts mainly like a filter, and as such, this
runtime parsing is also omitted in related works targeting TPC-H (e.g., Q100 [325]).
Outside of targetting the TPC-H workloads, numerous regular expression parsing ac-
celerator implementations exist, like in deep packet inspection algorithms [334] that,
for example, are used in network intrusion detection systems [285]. Nevertheless, we
can still use a filtering module to find pattern matches that target the beginning of the
string by either finding exact matches or by finding the suitable range of ASCII values
if we need to match strings whose length is not a multiple of 4 (size of a word in a
chunk). Lastly, the division operation is often done with a single literal value, and as
such, we leave the division operations for the CPU as a postprocessing step.

Therefore, to challenge our assumptions about the efficacy of using PR systems for
dynamic dataflow workloads like data analytics, we target queries 6, 14, and 19 (cre-
ated with an available TPC-H query generator [243]) shown in the following listings:

1 SELECT

2 SUM(l_extendedprice * l_discount) AS revenue

3 FROM

4 lineitem

5 WHERE

6 l_shipdate >= DATE ’1994-01-01’

7 AND l_shipdate < DATE ’1994-01-01’ + interval ’1’ year

8 AND l_discount BETWEEN.06 - 0.01

9 AND.06 + 0.01

10 AND l_quantity < 24;

Listing 4.1: TPC-H Q6

1 SELECT

2 100.00 * SUM(

3 CASE WHEN p_type LIKE ’PROMO%’ THEN l_extendedprice * (1 -

l_discount) ELSE 0 END

4 ) / SUM(

5 l_extendedprice * (1 - l_discount)

6 ) AS promo_revenue
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7 FROM

8 lineitem ,

9 part

10 WHERE

11 l_partkey = p_partkey

12 AND l_shipdate >= DATE ’1995-09-01’

13 AND l_shipdate < DATE ’1995-09-01’ + interval ’1’ month;

Listing 4.2: TPC-H Q14

1 SELECT

2 Sum(

3 l_extendedprice * (1 - l_discount)

4 ) AS revenue

5 FROM

6 lineitem ,

7 part

8 WHERE

9 (

10 p_partkey = l_partkey

11 AND p_brand = ’Brand#12’

12 AND p_container IN (

13 ’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’

14 )

15 AND l_quantity >= 1

16 AND l_quantity <= 1 + 10

17 AND p_size BETWEEN 1 AND 5

18 AND l_shipmode IN (’AIR’, ’AIR REG’)

19 AND l_shipinstruct = ’DELIVER IN PERSON’

20 )

21 OR (

22 p_partkey = l_partkey

23 AND p_brand = ’Brand#23’

24 AND p_container IN (

25 ’MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’

26 )

27 AND l_quantity >= 10

28 AND l_quantity <= 10 + 10

29 AND p_size BETWEEN 1 AND 10

30 AND l_shipmode IN (’AIR’, ’AIR REG’)

31 AND l_shipinstruct = ’DELIVER IN PERSON’

32 )

33 OR (
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Table 4.5: An example record from the lineitem table showing its data types and col-
umn values. (1/3)

Column name L ORDERKEY L PARTKEY L SUPPKEY L LINENUMBER L QUANTITY

Column type INTEGER INTEGER INTEGER INTEGER DECIMAL(15,2)

Example value 1 1552 93 1 17

34 p_partkey = l_partkey

35 AND p_brand = ’Brand#34’

36 AND p_container IN (

37 ’LG CASE’, ’LG BOX’, ’LG PACK’, ’LG PKG’

38 )

39 AND l_quantity >= 20

40 AND l_quantity <= 20 + 10

41 AND p_size BETWEEN 1 AND 15

42 AND l_shipmode IN (’AIR’, ’AIR REG’)

43 AND l_shipinstruct = ’DELIVER IN PERSON’

44 );

Listing 4.3: TPC-H Q19

All eight tables used in the TPC-H benchmark are in the 3rd normal form (which is
a database schema type where information duplication in tables is reduced by having
column values directly related to the primary value or key in that table). Our selected
queries only process two tables - lineitem and part table, which grow linearly with the
scale factor (SF) and have uniformly distributed data. The lineitem table is the biggest
one in the data set (∼70% of the whole dataset size), while the part table is roughly
2%. The tables consist of all the data types present in the benchmark: INTEGER,
DECIMAL(15,2), CHAR, DATE, and VARCHAR (as is shown in Tables 4.5 and 4.6).

We padded the values with whitespace for VARCHAR column types until the maxi-
mum length was filled. In future systems where such padding adds too much additional
data to each record, additional data encoding schemes have to get used. Furthermore,
all columns with string values were padded to have a length equal to a multiple of
4 bytes (where one character is encoded with 1 byte) to avoid alignment issues. This
padding could be reduced by combining different column values to have a fitting length
collectively, but again, this padding only had a negligible effect on the data size.

How many records are in each table is dictated by the scale-factor (SF) of the
generated benchmark test table set as shown in Table 4.7. The scale factor number
shows how many GB of data does the whole database contain.
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Table 4.5: An example record from the lineitem table showing its data types and col-
umn values. (2/3 Continued)

Column name L EXTENDEDPRICE L DISCOUNT L TAX L RETURNFLAG L LINESTATUS

Column type DECIMAL(15,2) DECIMAL(15,2) DECIMAL(15,2) CHAR(1) CHAR(1)

Example value 24710.35 0.04 0.02 N O

Table 4.5: An example record from the lineitem table showing its data types and col-
umn values. (3/3 Continued)

Column name L SHIPDATE L COMMITDATE L RECEIPTDATE L SHIPINSTRUCT L SHIPMODE L COMMENT

Column type DATE DATE DATE CHAR(25) CHAR(10) VARCHAR(44)

Example value 1996-03-13 1996-02-12 1996-03-22 DELIVER IN PERSON TRUCK egular courts above the

Table 4.6: An example record from the part table showing its data types and column
values. (1/2)

Column name P PARTKEY P NAME P MFGR P BRAND

Column type INTEGER VARCHAR(55) CHAR(25) CHAR(10)

Example value 1 goldenrod lavender spring chocolate lace Manufacturer#1 Brand#13

Table 4.6: An example record from the part table showing its data types and column
values. (2/2 Continued)

Column name P TYPE P SIZE P CONTAINER P RETAILPRICE P COMMENT

Column type VARCHAR(25) INTEGER CHAR(10) DECIMAL(15,2) VARCHAR(23)

Example value PROMO BURNISHED COPPER 7 JUMBO PKG 901.00 ly. slyly ironi

Table 4.7: For the TPC-H benchmark, the lineitem and part table sizes grow linearly
with the scale factor SF.

Table name SF 0.1 SF 1 SF 10
lineitem 600572 6001215 59986052

part 20000 200000 2000000

4.3.1 Parsing SQL

As most gains in performance are achieved with optimised query planning as discussed
in the background Section 2.1.2, the first step to running SQL queries is getting an IR
graph where the declarative SQL statement is transformed to a concrete set of oper-
ational steps by an established DBMS system beforehand. For example, for TPC-H
query 19 (Q19), three ways immediately stand out to complete the query when using
the same operator set as shown in Figure 4.13. Therefore currently, our middleware
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Figure 4.13: Potential query plans for the TPC-H query 19 using the merge join oper-
ator.

works with the one given while leaving any query optimising steps for preprocess-
ing. The middleware may only replace hash operations (like replacing hash joins with
merge joins due to module availability) or change the order of the input streams used
in join operations as an option to resolve data placement conflicts on the datapath.

We look at two established open-source DBMS examples in this thesis: 1) Post-
greSQL as one of the most popular general-purpose DBMS, and 2) Apache Trino (used
to be called PrestoSQL) as a distributed big data query engine specifically designed for
data analytics and querying data from memory nodes that another DBMS like Post-
greSQL may locally manage.

First, PostgreSQL provides the capability to extract the query plan by utilising
“query hooks,” which can be implemented through custom plugins that intercept and
modify both the query planning and execution processes. For example, these hooks
were successfully utilised by Sharygin et al., [279] to improve PostgreSQL’s perfor-
mance with dynamic online optimisations despite the overheads of this monitoring
(similar to what we want to achieve in HW). In detail, upon compiling and installing
a relevant extension, it can be loaded into the PostgreSQL server using the “CREATE
EXTENSION” command. As a result, we enable the automatic triggering of custom
functions during query planning, enabling us to extract the query plan.

Second, a similar mechanism is available in Apache Trino, allowing for the inter-
ception and modification of the query execution process. However, effectively exploit-
ing these features requires a comprehensive understanding of the underlying codebase
of the DBMS. For instance, in the case of PostgreSQL, the utilisation of these hooks
may necessitate the disabling of JIT compilation, along dealing with any following
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issues.

As an alternative to such interfacing with each new DBMS, a more universal ap-
proach is utilising ODBC driver connectors. However, in a prototype setup where the
DBMS system is installed on the same device, using ODBC and the associated net-
working overheads can be avoided. Hence, finally, we used a common way to obtain
the query plan from these DBMS systems (with or without ODBC), which is to use the
“EXPLAIN” command in combination with the desired query, as demonstrated in the
listings:

1 [

2 {

3 "Plan": {

4 "Node Type": "Aggregate",

5 "Output": [

6 "sum((lineitem.l_extendedprice

7 * (’1’::numeric - lineitem.l_discount)))"

8 ],

9 "Plans": [

10 {

11 "Node Type": "Merge Join",

12 "Merge Cond": "(lineitem.l_partkey = part.p_partkey)",

13 "Join Filter": "...",

14 "Plans": [

15 {

16 "Node Type": "Sort",

17 "Sort Key": [

18 "lineitem.l_partkey"

19 ],

20 "Plans": [

21 {

22 "Node Type": "Seq Scan",

23 "Relation Name": "lineitem",

24 "Filter": "((lineitem.l_shipmode = ANY (’{AIR ,\"

AIR REG\"}’::bpchar[])) AND (lineitem.l_shipinstruct = ’DELIVER

IN PERSON ’::bpchar) AND (((lineitem.l_quantity >= ’1’::numeric)

AND (lineitem.l_quantity <= ’11’::numeric)) OR ((lineitem.

l_quantity >= ’10’::numeric) AND (lineitem.l_quantity <= ’20’::

numeric)) OR ((lineitem.l_quantity >= ’20’::numeric) AND (

lineitem.l_quantity <= ’30’::numeric))))"

25 }

26 ]

27 },
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28 {

29 "Node Type": "Sort",

30 "Sort Key": [

31 "part.p_partkey"

32 ],

33 "Plans": [

34 {

35 "Node Type": "Seq Scan",

36 "Relation Name": "part",

37 "Filter": "..."

38 }

39 ]

40 }

41 ]

42 }

43 ]

44 }

45 }

46 ]

Listing 4.4: PostgreSQL EXPLAIN output

1 Output[revenue]

2 revenue := sum

3 HashAggregate(FINAL)

4 sum := sum(sum_5)

5 LocalExchange[SINGLE] ()

6 RemoteExchange[GATHER]

7 HashAggregate(PARTIAL)

8 sum_5 := sum(expr)

9 Project[]

10 expr := (extendedprice) * ((DOUBLE 1.0) - (discount))

11 InnerJoin[(""partkey"" = ""partkey_0"") AND ...]

12 [$hashvalue , $hashvalue_6]

13 ScanFilterProject[table = tpch:lineitem:sf1.0,

14 filterPredicate = ...]

15 $hashvalue := ...

16 LocalExchange[HASH][$hashvalue_6] (""partkey_0"")

17 RemoteExchange[REPLICATE]

18 ScanProject[table = tpch:part:sf1.0,

19 pushdownFilters = ...]

20 $hashvalue_8 := ...

Listing 4.5: Trino EXPLAIN output
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However, these plans need more information about where each column of data
should be placed on the datapath, and additional processing is required to extract
constant values used for initialising the modules, including converting the filter re-
quirements into DNF clauses. Therefore to know where each data should be placed
while accepting query plans from multiple potential DBMS systems, we created an
API where each function stores different relations between nodes and columns. Then
the flow involves giving an EXPLAIN command output to a DBMS-specific parser
that automatically calls the appropriate general-purpose API function, as shown in the
following hardcoded example Listings written in C++:

1 void Example::CreateQ19TPCH(SQLQueryCreator& sql_creator) {

2 auto lineitem_table =

3 CreateLineitemTable(&sql_creator , 6001215, "lineitem1.csv");

4 auto first_filter = sql_creator.RegisterFilter(lineitem_table);

5 ConfigureQ19FirstFilter(sql_creator , first_filter);

6 auto part_table =

7 CreatePartTable(&sql_creator , 200000, "part1.csv");

8 auto join = sql_creator.RegisterJoin(first_filter , "L_PARTKEY",

9 part_table , "P_PARTKEY");

10 auto second_filter = sql_creator.RegisterFilter(join);

11 ConfigureQ19SecondFilter(sql_creator , second_filter);

12 auto addition =

13 sql_creator.RegisterAddition(second_filter , "L_DISCOUNT",

14 true , 1);

15 auto multiplication = sql_creator.RegisterMultiplication(

16 addition , "L_EXTENDEDPRICE", "L_DISCOUNT", "TEMP_MUL");

17 sql_creator.RegisterAggregation(multiplication , "TEMP_MUL");

18 }

Listing 4.6: Building Q19 execution plan

1 auto Example::CreatePartTable(SQLQueryCreator* sql_creator ,

2 int row_count , std::string filename)

3 -> std::string {

4 std::vector <TableColumn > columns;

5 columns.emplace_back(ColumnDataType::kInteger , 1, "P_PARTKEY");

6 columns.emplace_back(ColumnDataType::kVarchar , 55, "P_NAME");

7 columns.emplace_back(ColumnDataType::kVarchar , 25, "P_MFGR");

8 columns.emplace_back(ColumnDataType::kVarchar , 10, "P_BRAND");

9 columns.emplace_back(ColumnDataType::kVarchar , 25, "P_TYPE");

10 columns.emplace_back(ColumnDataType::kInteger , 1, "P_SIZE");

11 columns.emplace_back(ColumnDataType::kVarchar , 10, "P_CONTAINER");
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12 columns.emplace_back(ColumnDataType::kDecimal , 1,"P_RETAILPRICE");

13 columns.emplace_back(ColumnDataType::kVarchar , 23, "P_COMMENT");

14 return sql_creator ->RegisterTable(filename , columns , row_count);

15 }

Listing 4.7: Building part table definition

1 void Example::ConfigureQ19FirstFilter(SQLQueryCreator& sql_creator ,

2 std::string& first_filter) {

3 auto quantity_big = sql_creator.AddDoubleComparison(

4 first_filter , "L_QUANTITY",

5 CompareFunctions::kLessThanOrEqual , 30.0);

6 auto quantity_small = sql_creator.AddDoubleComparison(

7 first_filter , "L_QUANTITY",

8 CompareFunctions::kGreaterThanOrEqual , 1.0);

9 auto ship_air_reg = sql_creator.AddStringComparison(

10 first_filter , "L_SHIPMODE",

11 CompareFunctions::kEqual , "AIR REG");

12 auto ship_air = sql_creator.AddStringComparison(

13 first_filter , "L_SHIPMODE",

14 CompareFunctions::kEqual , "AIR");

15 auto deliver_in_person = sql_creator.AddStringComparison(

16 first_filter , "L_SHIPINSTRUCT",

17 CompareFunctions::kEqual , "DELIVER IN PERSON");

18 auto shipmode = sql_creator.AddOr(first_filter ,

19 {ship_air , ship_air_reg});

20 sql_creator.AddAnd(first_filter , {shipmode , deliver_in_person ,

21 quantity_small , quantity_big});

22 }

Listing 4.8: Building initial filter requirements

As a result, we see that the system is provided with all the information regarding
the data types of columns and row counts of the tables and table files contained in the
table. Subsequently, after all the operation nodes and their dependencies have been
supplied, the middleware can efficiently allocate the columns to the specified offsets
as demanded by the modules (e.g., the column by which the stream is sorted must be
first). Any conflicts can be resolved in time through the use of additional chunks. The
Shunting Yard algorithm is utilized to process arithmetic and filtering boolean expres-
sions, producing the expressions in Reverse Polish notation (as explained by Krtolica
et al., [160]). This approach solves precedence problems and parses any nested opera-
tions, enabling to provide the middleware the necessary operating parameters.



128 CHAPTER 4. IMPLEMENTATION & EVALUATION

Table 4.8: Plans from PostgreSQL/Trino use CPU-centered optimisations. Neverthe-
less, when comparing against plans that we created manually, we see comparable per-
formance when executing with TPC-H query 19 at a scale factor of 1 on FPGAs.

PostgreSQL plan Pruned plan Additional projections plan

execution time execution time execution time

0.277 sec 0.280 sec 0.260 sec

Table 4.8 shows the runtimes of three different query plans when executing TPC-H
query 19. The plan generated by PostgreSQL (Trino gives the same plans) is close
to being the fastest, faster than the plan with a pruned query plan but slower than
the plan with additional projection operations. Although the part table filtering node
could potentially be removed (as shown in the comparison when executing the pruned
plan), the scheduler places it in the first scheduling spin, reducing data sizes early and
improving overall performance. Adding additional projection operations could also
improve performance (showing there is further optimisation space), but this requires
coordination with the scheduler, which is beyond the scope of this thesis. Therefore,
we use the query plans given by PostgreSQL for the rest of the evaluation.

4.3.2 Comparison with Static

In order to measure the difference between time spent on configuration, initialisation,
scheduling, execution, and any time spent on updating internal data structures between
execution runs outside of initialisation and scheduling, we did our measurements after
ten hot runs for end-to-end runtimes that exclude copying tables between the SD card
and the memory blocks in DDR. As discussed in Section 3.1, memory-aware schedul-
ing and building systems around it is a nuanced enough field that it deserves more
attention in its own right and is left out of the scope for this evaluation and, as such, an
in-memory system architecture model is assumed here (given the amount of memory
available nowadays). Furthermore, for any potential future deployment scenarios that
demand high performance, the integration with a DBMS will have to be tighter than
querying the EXPLAIN output as is explained in the previous Subsection 4.3.1, and as
such, optimising the performance of this preprocessing step was left out of the scope
of this evaluation, and the associated runtime is not considered.
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Accelerating Q19

As we previously already started looking at Q19, one of the benchmark’s most com-
plicated and dynamic queries, we first examine the runtimes associated with executing
this query against datasets generated with different SFs in Figure 4.14. What makes
Q19 dynamic is that it has a join that requires sorting where both streams are pre-
ceded and followed by a filter, and the resulting stream is then used for final arithmetic
operations - making the problem sizes unpredictable.

In order to see how the data-dependent filters affect the flow, we need to evaluate
runtimes with small datasets that fit into our memory and larger datasets that do not
fit into our memory. We confirmed that all modules stream data at the I/O through-
put speeds. Therefore, we emulated larger processing workloads by running the data
through the pipeline multiple times to get the measured numbers reported in Table 4.9.
As a result, we can preliminarily confirm that with large enough datasets, streaming
times (marked as execution time in Figure 4.14) start dominating the overall runtimes.

Using static pipelines

Now, to compare the effectiveness of our dynamic approach against a static one with
a more dynamic workflow than our image processing example, we also created two
static configurations that fit into our PR region to be swapped according to require-
ments (again, the resource requirements of these pipelines are in the Appendix A.2).
For fairness, both approaches use the same PR region, which means that our dynamic
reconfigurable system and the static reference variant have the same number of re-
sources available. While there exists a theoretical third approach where the static shell
used for communication with the PS and main memory is synthesized together with
the static pipeline, we’ve chosen not to compare against it in this thesis. Our focus
is on contrasting the dynamic pipeline approach with a static PR “island” approach,
sidestepping the optimization nuances of the surrounding static shell, as it falls outside
our primary objective of evaluating the middleware abstraction layer. The two config-
urations are designed to require as few reconfigurations as possible to minimize the
number of reconfiguration steps for the queries we are using for evaluation (Q6, Q14,
and Q19):

• Filter; +/-; Multiplier; Global Aggregation; Linear Sort

• Merge Sort; Merge Join; Filter; Global Aggregation
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Figure 4.14: The runtime of TPC-H Q19 scales sublinearly as the configuration and
scheduling overheads get amortized with large problems. Due to limited DDR size,
SF=1 input data is recycled to verify runtimes of large SF workloads. The static
approach underperforms the dynamic approach, even with smaller datasets it was de-
signed for. Mainly because the entire static pipeline must be loaded and configured,
unlike the dynamic approach which can selectively configure resources as needed.

Instead of scheduling and handling various modules individually, the two static
configurations are switched as a whole, requiring less scheduling while having a neg-
ligible system overhead. Because of the lack of fragmentation issues that would oth-
erwise appear with synthesizing modules separately into bounding boxes, the static
configurations can fit one extra module into the PR region, which is impossible with
our current PR module library. Nevertheless, due to needing to reconfigure a larger
area with full static reconfiguration cycles, the configuration cost was larger than the
configuration cost of the more fine-grain PR approach, as we can see from Table 4.108.

8The reconfiguration overhead has increased when comparing these numbers with the results
in [200]. This difference is due to writing blank bitstreams before each module bitstream for increased
reliability and removing intermittent bugs in our system. As a result, each bitstream is twice the size (due
to combining module bitstreams with the blanking instructions), affecting larger bitstreams more - as a
result, making the static workloads slower. This blanking can be potentially optimised with bitstream
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When comparing the static and dynamic approaches, we can confirm further as-
sumptions, such as, for small problem sizes, all overheads constitute a substantial part
of the whole runtime duration. The near-constant configuration overheads entail that
we can expect better performance benefits when scaling up the system as the configu-
ration costs become proportionally neglectable.9 As a result, we can confirm from the
runtime values from Table 4.11 a speedup of 1.05× over our static pipelines with the
SF 300-sized data set. Since query 19 contains many filtering operations, there may
not be much room for the resource elastic sorter to improve performance (as shown in
the next experiment).

From Figure 4.14 we can see that the speedup can fluctuate when scaling up as
there are scale factors when the static approach would be again more preferable to the
dynamic approach. The accelerator pipeline created with PR modules and the static
system have different utilities for merge sorting, and this causes jumps, where the run-
time duration gets slower due to needing another major run (appearing at different SFs
for the PR and static variants). In other words, there are situations where substan-
tially more reconfiguration steps are required when scaling up due to not having the
ideal combinations of modules fit the PR region at that specific problem size which
can point to a lack of module variants or alternatives in the module library. However,
to gain even more speedup consistently, in our next experiment, we alter our work-
load to have a more significant time spent on an operation that our FPGA excels at
accelerating.

TPC-H Q19 without filtering

With standard TPC-H data, the filter and the projection in Q19 remove 98% of the
data, drastically reducing the accelerated problem size while showing that we spend a
large proportion of processing time moving immediately discarded data to the FPGA.
If we use data that passes all of the filters instead, we have to sort 50 times more
data, which is the cause for additional speedup over the static pipelines’, as shown
in Figure 4.15. Instead of 1.05× speedup, we now achieve a 1.61× speedup for SF
300, as shown in Table 4.14. This difference would be even more prominent with an
even more improved compute-to-memory ratio in a column-store database where the
projection operations are not required (these remove more than a third of the data as

compression, but this is out of the scope here.
9Using partial reconfiguration to set up pipelines dynamically can be compared with a buffet restau-

rant - the increased flexibility of what customers can consume is at first more expensive; however, as
customers consume more, the amount they invested initially brings more value in return.
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Table 4.9: TPC-H query 19 runtimes of our dynamic reconfiguration approach in sec-
onds.

Scale Factor Config Scheduling Init System Execution Sum

0.01 0.044 0.0014 0.0033 0.0090 0.0022 0.060

0.03 0.044 0.0014 0.0033 0.0090 0.0064 0.064

0.1 0.044 0.0014 0.0033 0.0095 0.0209 0.079

0.3 0.044 0.0014 0.0034 0.0099 0.0625 0.121

1.0 0.054 0.0013 0.0034 0.0104 0.2079 0.277

3.0 0.059 0.0014 0.0038 0.0125 0.6281 0.705

10.0 0.059 0.0016 0.0048 0.0194 2.1032 2.188

30.0 0.059 0.0021 0.0072 0.0405 6.3207 6.430

100.0 0.059 0.0040 0.0164 0.1118 21.0832 21.275

300.0 0.060 0.0093 0.0435 0.3179 63.2434 63.674

Table 4.10: TPC-H query 19 runtimes of our static apprach in seconds. The static
solution swaps between two static configurations in a region.

Scale Factor Config Scheduling Init System Execution Sum

0.01 0.051 0.0011 0.0030 0.013 0.0022 0.071

0.03 0.052 0.0011 0.0030 0.014 0.0064 0.076

0.1 0.051 0.0011 0.0030 0.013 0.0210 0.090

0.3 0.052 0.0012 0.0032 0.015 0.0627 0.134

1.0 0.051 0.0011 0.0034 0.021 0.2105 0.287

3.0 0.052 0.0013 0.0042 0.039 0.6328 0.729

10.0 0.052 0.0017 0.0069 0.093 2.1097 2.263

30.0 0.052 0.0029 0.0148 0.323 6.3754 6.768

100.0 0.052 0.0070 0.0442 0.948 21.3679 22.419

300.0 0.052 0.0180 0.1276 2.780 64.1963 67.174

Table 4.11: Overall runtime speedup improves while using dynamically configured
pipelines with larger SF running TPC-H Q19

SF 0.01 0.03 0.1 0.3 1 3 10 30 100 300

Speedup 1.19 1.18 1.14 1.1 1.04 1.03 1.03 1.05 1.05 1.05
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Figure 4.15: With data that passes the lineitem filters, even with a logarithmic scale,
we see that the data streaming time dominates the total runtime even more. Without
filtering the 300GB dataset size test case, the sorting requires four major runs with the
dynamic approach, whereas the static approach requires five major runs.

most columns in the TPC-H tables are not required).

TPC-H Q19 with cached tables

In order to also see how our PR approach compares against our static approach in a
column-store DBMS, we removed unused columns from the input tables and stored
them as “cached” tables. There are additional encoding and data formatting operations
in a columnar DBMS that are missing in this experiment, and therefore we can only
get an estimation from the results presented in Figure 4.16. Nevertheless, we see that
our assumption of increased speedup stands true in this experiment (speedup of 1.12×
instead of 1.05×), where we again use standard filtered data but omit unused columns
from the I/O operations as seen from Tables 4.15, 4.16 and 4.17.
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Table 4.12: TPC-H query 19 runtimes of our dynamic reconfiguration approach in
seconds without the initial lineitem filtering.

Scale Factor Config Scheduling Init System Execution Sum

0.01 0.045 0.0014 0.0033 0.0094 0.0051 0.064

0.03 0.059 0.0013 0.0035 0.0103 0.0149 0.089

0.1 0.059 0.0015 0.0040 0.0142 0.0588 0.137

0.3 0.059 0.0017 0.0052 0.0238 0.1845 0.274

1.0 0.059 0.0026 0.0095 0.0584 0.6302 0.759

3.0 0.061 0.0050 0.0219 0.1539 1.8949 2.136

10.0 0.059 0.0136 0.0664 0.4873 6.7052 7.332

30.0 0.060 0.0387 0.1922 1.4780 22.5860 24.355

100.0 0.061 0.1293 0.6370 4.9014 76.9255 82.654

300.0 0.059 0.3919 1.9098 14.7805 232.1328 249.274

Table 4.13: TPC-H query 19 runtimes of our static apprach in seconds without the
initial lineitem filtering.

Scale Factor Config Scheduling Init System Execution Sum

0.01 0.052 0.0011 0.0032 0.014 0.0057 0.076

0.03 0.052 0.0013 0.0036 0.025 0.0186 0.100

0.1 0.052 0.0013 0.0049 0.053 0.0633 0.174

0.3 0.052 0.0019 0.0086 0.139 0.1909 0.393

1.0 0.052 0.0038 0.0221 0.469 0.7321 1.279

3.0 0.052 0.0091 0.0612 1.259 2.2970 3.678

10.0 0.053 0.0279 0.1986 4.967 7.7692 13.015

30.0 0.053 0.0857 0.5995 12.769 24.5309 38.037

100.0 0.053 0.2869 1.9967 44.401 89.2648 136.002

300.0 0.053 0.8517 5.9868 120.459 274.2831 401.633

Table 4.14: Overall runtime speedup improves more while using dynamically config-
ured pipelines with each SF running TPC-H Q19 without filtering over a static solution.

SF 0.01 0.03 0.1 0.3 1 3 10 30 100 300

Speedup 1.2 1.13 1.27 1.43 1.68 1.72 1.78 1.56 1.65 1.61
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Figure 4.16: TPC-H Q19 runtimes with cached data containing only required columns
presented in a logarithmic scale.

Table 4.15: TPC-H query 19 runtimes of our dynamic reconfiguration approach in
seconds with only necessary columns.

Scale Factor Config Scheduling Init System Execution Sum

0.01 0.044 0.0014 0.0034 0.0094 0.0011 0.059

0.03 0.044 0.0014 0.0033 0.0092 0.0030 0.061

0.1 0.044 0.0014 0.0033 0.0090 0.0096 0.068

0.3 0.045 0.0014 0.0033 0.0097 0.0285 0.088

1.0 0.054 0.0013 0.0034 0.0098 0.0946 0.163

3.0 0.059 0.0014 0.0038 0.0122 0.2880 0.365

10.0 0.059 0.0016 0.0047 0.0196 0.9701 1.055

30.0 0.060 0.0021 0.0071 0.0399 2.9200 3.029

100.0 0.060 0.0039 0.0166 0.1124 9.7473 9.940

300.0 0.060 0.0090 0.0435 0.3185 29.2424 29.673
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Table 4.16: TPC-H query 19 runtimes of our static apprach in seconds with only nec-
essary columns.

Scale Factor Config Scheduling Init System Execution Sum

0.01 0.051 0.0011 0.0030 0.012 0.0011 0.069

0.03 0.052 0.0011 0.0030 0.013 0.0030 0.072

0.1 0.051 0.0012 0.0030 0.012 0.0096 0.078

0.3 0.052 0.0011 0.0032 0.014 0.0286 0.099

1.0 0.052 0.0011 0.0034 0.019 0.0969 0.173

3.0 0.052 0.0013 0.0042 0.036 0.2922 0.386

10.0 0.052 0.0017 0.0070 0.096 0.9749 1.132

30.0 0.052 0.0028 0.0150 0.278 2.9696 3.317

100.0 0.052 0.0066 0.0446 0.961 10.0157 11.080

300.0 0.052 0.0194 0.1288 2.997 30.1432 33.341

Table 4.17: The overall runtime speedup also improves while using dynamically con-
figured pipelines with each SF running TPC-H Q19 with only necessary columns over
a static solution.

SF 0.01 0.03 0.1 0.3 1 3 10 30 100 300

Speedup 1.16 1.18 1.15 1.13 1.06 1.06 1.07 1.1 1.11 1.12

Simultaneous queries

Now, when looking at other queries (Q6, Q14), we see a similar distribution of run-
times between the different system processes as we saw with Q19 (Figure 4.17). Just
like Q19, the other two queries start with a heavy filtering operation, and as such, with
standard TPC-H benchmark data, the number of rows that reach the end of the pipeline
is insignificant. Q6 is least suited to our approach as the query is simple and does
not benefit from our approach as the multiplication and aggregation functions are not
resource-elastic and lack join and sorting operations. Q14 does need a filter before a
sort and a join which makes it very similar to Q19. Just the filter requirements are
modest for Q14.

However, we can still execute these three queries faster than the static approach
(without altering the data) if we make the acceleration request more complex such that
the scheduler has more choices to get additional advantages from using PR over static
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Table 4.18: TPC-H benchmark runtimes in seconds while running Q6, Q14, and Q19.
Our system’s runtimes are compared to a static solution’s combined runtimes. In addi-
tion, the separate runtimes have been summed together for additional comparison.

SF Dynamic Static Speedup Dynamic Static Speedup

Combined Combined Combined Separate Separate Separate

1 0.78 0.81 1.05X 0.75 0.78 1.04X

10 6.46 6.62 1.03X 6.27 6.41 1.02X

100 61.69 63.32 1.03X 61.43 63.34 1.03X

solutions. Using the inherent parallelism of the FPGAs that comes from dataflow pro-
cessing, we can process all three queries simultaneously where the dynamic approach
is faster as the static system in all cases, as shown in Table 4.18. As a comparison, ex-
ecuting all queries individually using our dynamic approach provides a slightly lower
speedup compared to executing them concurrently (due to higher configuration over-
head).

4.3.3 Comparison with State-of-the-Art

As this is not a complete product ready to compete in the very competitive DBMS
query analytics engine market due to the lack of functionality to even process all of the
queries in the TPC-H (or TPC-DS) benchmark, amongst other standard DBMS features
(security, transactional operations), it is not easy to draw fair comparisons with other
DBMS engines. Furthermore, as the functionality it does have is not fully optimised
or scaled to use the whole board either, it is difficult to compare with other similar
FPGA accelerators as they also employ only a fraction of all possible optimisation
opportunities (e.g., implementations on larger boards with faster memory interfaces
and faster and wider datapaths). Nevertheless, we present a few example comparisons
with the current working state of our system against performance numbers provided
from related work for reference to estimate the effectiveness of our proposed system
with no intention to discredit any related work.

Comparison with related work on FPGAs

Most related work uses column-based storage, as from a performance perspective in
purely OLAP workloads, it helps a lot by removing redundant I/O operations. Con-
sequently, related work on FPGAs is mainly using data from column-store databases;
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Figure 4.17: The execution time dominates all queries. However, while executing all
queries simultaneously, many more modules can be reused to save on configuration
costs with minimal scheduling time increase to gain a further advantage ahead of a
static solution.

for example, if we look at a similar PR system proposed by Ziener et al., [348] that
achieves a peak throughput of 1.7 GB/s through a single region (512bit wide datap-
ath processing at 125MHz), while the system contains four regions in total. As our
peak throughput for TPC-H queries is higher (4.7 GB/s) due to the increased clock fre-
quency (300MHz), their system would still be faster in occasions where they can use
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all four regions in parallel to achieve a throughput speed of 6.8 GB/s. However, their
regions are connected through an immovable join operator, which is more inflexible
as queries with multiple joins (more common in TPC-DS) would have to be streamed
multiple times. Furthermore, given fast enough memory interfaces, our modules could
process data at 19.2 GB/s without changing any implementation details - showing how
wide datapath processing at high speeds is an advantage on FPGAs that facilitate good
scalability.

When comparing against static FPGA systems, we can consider Xilinx’s open-
source HLS solution, which can achieve up to 4.14 GB/s when executing TPC-H
queries (as reported on GitHub[329]). While these systems are easier to implement
with all required functionality, the performance of these implementations can degrade
significantly for some operations (for example, anti-join can drop to 203.02 MB/s)
while also consuming more resources. Xilinx’s results are demonstrated with a few
static configurations on an Alveo U280 card, which has 1M logic cells. However, in
order to support all TPC-H queries, their implementation consists of multiple expen-
sive configurations running on two Alveo U280 cards, with data directed to the correct
PE based on requirements. This approach necessitates significant overprovisioning, as
much of the FPGA area is left unused due to the need to accommodate all queries in
the benchmark.

Comparison with CPU

When we want to compare against industry-leading DBMS solutions, we have to look
at systems running on CPUs. Here, the same story is still true: column-based DBMS
have a significant advantage in OLAP workloads, and as such, any column-based
DBMS will be faster than our system while processing TPC-H queries. Therefore
we look at one of the world’s most popular open-source DBMS, which also coinciden-
tally accesses data in a row-based manner - PostgreSQL. However still, the hardware it
runs on and the configuration it is set up with (and even what kind of optimisations the
SW uses while processing different SF-sized data sets) is so variable that it makes it
difficult to draw up fair comparisons between our FPGA based system and any DBMS
running on a desktop system (or even a server-grade system).

We compared the performance of PostgreSQL (version 10.18, using default con-
figuration) running TPC-H queries on our scheduling simulation system from Sec-
tion 4.1.3. We used this comparison as a reference point. The comparison here is also
similar to comparing ourselves against our static approach, as with smaller datasets,
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Table 4.19: Heterogeneous HW shows better acceleration benefits with larger datasets
as expected when comparing Q19 runtimes against PostgreSQL execution times.

SF 0.01 0.03 0.1 0.3 1 3 10 30

FPGA 0.060 0.064 0.079 0.121 0.277 0.705 2.188 6.430

PostgreSQL 0.022 0.031 0.072 0.188 0.586 1.647 5.267 15.775

the gap between FPGA and CPU performance is minimal as seen in Table 4.19. How-
ever, the gap grows exponentially bigger with larger datasets despite the CPU using
more parallel threads to help with the processing as the dataset sizes grow. The Post-
greSQL runtimes on the ARM CPU of the FPGA were an order of magnitude worse
than the desktop runtimes. Therefore, the dynamic FPGA system was able to provide
transparent acceleration for queries with supported operations, while falling back on
PostgreSQL execution for all other queries.

4.4 Chapter Conclusion

In conclusion, in this chapter, we examined the efficacy of the proposed system and
assured that it is viable to use in practice.

More explicitly, this chapter proposed a system to create, manage, and run opti-
mised data flow-oriented acceleration pipelines on FPGAs for complex problems like
database query processing directly under the control of a runtime system such that
arbitrary SQL queries can be automatically executed on an FPGA. We designed a dy-
namic stream processing platform where modules are picked automatically from a pre-
synthesised library by a scheduler while performing optimisations to improve FPGA
utilisation and performance (by reducing the number of runs through the FPGA and
by reducing the configuration time). Illustratively, the scheduler could be considered
a JIT query compiler as it translates query nodes into stream processing pipelines at
runtime.

We compared the performance of our dynamic system to a static system with
the same resource budget and observed consistent performance improvements under
favourable conditions. However, such favourable conditions are limited to a narrow
area in the problem space when sorting by complexity. It is important to note that the
static alternatives were optimised for specific use cases ahead of time, while the dy-
namic system executed ad-hoc queries without using prior knowledge. On one end, our
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approach suits dynamic problems that require HW reconfiguration frequently enough
such that even despite the overhead costs, the alternative, more specialised static solu-
tions (e.g., ASICs) often become too ineffective or expensive in comparison. On the
other end, these same problems must still be static enough such that the required HW
reconfiguration steps are limited enough to avoid slowing down the overall perfor-
mance with frequent reconfiguration steps while providing enough acceleration over
general-purpose devices (e.g., CPUs or GPUs). All of the overhead costs can be opti-
mised to an extent such that these processes can take a negligible amount of time com-
pared to the overall end-to-end processing runtimes, and consequently, this favourable

conditions area becomes wider. For instance, we list some possible further optimisa-
tion options here (other than HW or SW quality improvements) for each aspect of the
associated overheads:

• Configuration - Implementing ICAP use, allocating more resources to PR re-
gions or allocating some modules to the static partition of the system while tol-
erating overprovisioning, or changing scheduling priorities to find scheduling
plans with reduced configuration costs.

• Initialisation - Use more specialised modules that require fewer register writes.

• Scheduling - More specialised heuristics that, for example, can use historical
data for enabling stochastic and meta-heuristic approaches that can also be ac-
celerated by the FPGA if required.

• Parsing - Tighter integration with any front-end parsing applications with more
limited flexibility.

Therefore we have successfully shown the validity of this idea from the performance
point of view, as the dynamic dataflow approach can overcome any comparative static
approach’s performance for specific problems like data analytics. Furthermore, due to
the flexibility of this approach, the system can still use the static approach if it turns
out to be beneficial, as multiple modules can be combined to act as a single pipeline
unit if the added bitstream cost is worth it in the targeted application workloads.

Another consideration is the approach of statically synthesising the entire FPGA
without distinguishing between shell and role areas. While this method might yield
better performance by eliminating fragmentation-induced issues and maximising re-
source availability for the accelerators, it has its drawbacks. If there are not enough
resources available for all of the desired operations, the reconfiguration overheads can
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escalate as the whole board needs be reconfigured (including the infrastructure logic
responsible for the communication between the accelerators and the PS). At that point
it can be more practical to utilise multiple boards, as evidenced by the evaluation of
the Vitis library [329].

Nevertheless, performance is not the only part of the system that should be ex-
amined - maintainability is a core concern for anyone adapting new technologies or
methodologies. With the added flexibility of our system, we also introduce an overhead
in complexity which we will address in the next chapter.



Chapter 5

Generalisation

Lastly, this thesis highlights an often omitted non-functional requirement: maintain-
ability. After examining 1) the current state of virtualised FPGA acceleration (Chap-
ter 2), 2) the core idea behind a runtime-managed FPGA dataflow accelerator (Chap-
ter 3), and 3) the implementation and evaluation details of an example system ca-
pable of dynamically building accelerator pipelines for executing data analytics and
image processing workloads (Chapter 4), we can concur the idea of dynamic accel-
erator pipelines has prospects. Nevertheless, continuous effort is needed to make this
approach more accessible and effective, which can be done with every new module,
scheduling strategy, or supported device added by third parties. Over time it becomes
a shared ecosystem through which different aspects of the system can be optimised
independently and then combined with ease. Therefore we still need to address gener-
alisation, scalability and security.

In this chapter, we talk about how the middleware orchestrating the dynamic stream
processing is generalised through SW engineering practices in Section 5.1. Then we
look at how the module library can be optimally expanded in Section 5.2. Finally, we
look at how potential third-party modules can be used securely with a virus scanner in
Section 5.3.

5.1 System Generalisation

In the previous chapter, we showed a sufficient performance boost when using FPGAs
with a dynamic approach that allows constructing dataflow pipelines on the fly. How-
ever, we do not want to focus on only providing accelerators for applications that have
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workloads that suit the dataflow MoC as we see that the selection range of fitting ap-
plications is made narrower by the ease-of-use of more general-purpose devices where
the industry is willing to sacrifice performance for faster time-to-market. Given the
complexity of the system we are working with, which requires configuring low-level
logic gates at the HW level, while simultaneously managing high-level SW requests,
we must consider the potential for the system’s maintenance to rapidly escalate out
of control, resulting in numerous errors across multiple dimensions. Therefore, to fa-
cilitate developers’ work and enhance their Quality of Life (QoL), it is necessary to
introduce greater levels of abstraction.

5.1.1 Correlation with Existing Abstraction Systems

First, in this chapter, we look at operating systems (OSs) for insight (albeit tangen-
tially). Historically OSs provide the necessary abstraction to help tie everything (dif-
ferent SW libraries and HW controllers) together in a maintainable way. With the
added complexity of HW reconfiguration on FPGAs, there is all the more reason to
keep following this idea of achieving maintainability through various abstraction lay-
ers, as they can be managed chiefly automatically but also expanded on if necessary.
Especially given that one of the most significant hurdles for FPGAs to become ubiqui-
tous is the intricacy of creating efficient systems with current tools.

Similarly to our system, OSs provide the ability to switch out the underlying HW
(assuming the new modules work with our existing drivers) or SW (for accelerat-
ing new applications) or middleware (e.g., for different scheduling strategies) without
breaking the functionality of the other parts. However, it is also possible to perceive
this system as not an OS - not more so than the FOS that is often mentioned throughout
this thesis or any of the other OS-like systems mentioned in the numerous virtualisa-
tion surveys that have surfaced recently ([245, 302, 282, 120, 254]), but more as a JIT
compiler. Our system similarly has a usual JIT aspect which changes the bytecode
equivalent IR (the HW pipeline of PR modules in our case) depending on the opti-
misation needed based on any conditions arising during runtime. Nevertheless, when
designing such a system, we also see that just like a compiler that uses a lot of different
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instructions defined in the available ISA1 (which can be even extended with more op-
timised bytecode operations [291]), our system can similarly do a better job with more
modules (i.e., instructions from the compiler point of view).

Long story short, following the Linux model is an excellent way to maintain such
flexibility to enable adding additional modules. Linux, with its kernel, provides many
abstraction layers with various access levels for security, and the mechanisms to cross
these abstraction layer boundaries can be provided through optional modules that use
the filesystem as a standard interface (e.g., storing configuration variables as files) to
make the system as lightweight as required. Consequently, it is omnipresent and pro-
vides a fundamental OS skeleton which is then modified through different Linux distri-
bution providers to work from low-cost wearable devices to high-performance servers.
For example, Reghenzani et al., [262] survey methodologies and applications that use
Linux for its functionality to change its code in real-time for real-time applications on
various devices.

5.1.2 Driver Generalisation

Now, this chapter focuses on what is necessary to replicate creating such a base frame-
work from which effective specialised dataflow accelerator generators can be created.
For any framework, the main goal is to improve the process of adding new features
(HW modules, in our case). As each HW module may be initialised for different use
cases, they need corresponding SW logic to run, and therefore we created a modular
middleware consisting of drivers that can be added or removed as necessary to support
any changes in HW. Each driver ensures that necessary constraints are obeyed while
abstracting the low-level implementation details and serving high-level functionality
(i.e., setting up high-level filter conditions with low-level initialisation instructions). In
practice, these drivers consist of many memory-mapped register writes (where the ad-
dresses may be unique to each module) of specific initialisation values (which may be

1Instruction set architecture (ISAs) lets SW use HW through instructions. There are many flavours
of highly optimised modern ISAs like the following examples: 1) x86 ([65]), 2) ARM ([78]), 3) RISC-
V ([316]). Nevertheless, standalone, these ISAs can have undesirable performance as the instructions
often invoke simple atomic operations, resulting in repeated memory operations in complex tasks involv-
ing loops. Therefore, these ISAs are often extended in high-performance applications where multiple
instructions are combined into new instructions (e.g., instead of using multiplication and addition op-
erations, a multiply-accumulate operation achieves the same result faster) that can also call specialised
accelerators and reconfigurable HW resources [83]. However, extending ISAs is a vast research field
that examines how to integrate these new instructions effectively without excessive bloat or how to de-
sign new schedulers that can use these extensions - challenges that we have to examine also for our
system.



146 CHAPTER 5. GENERALISATION

unique to each module again) that are likely incompatible with other modules. There-
fore to avoid limiting any HW-level optimisation opportunities, the set of drivers used
for the whole module library can be highly heterogeneous.

As with any highly heterogeneous system - this becomes more difficult to maintain
while scaling up. Hence next, we highlight these three crucial driver design principles
to manage this rising complexity:

1. Have a common shared interface with the rest of the system.

2. Find common characteristics between different module driver functionalities.

3. Use these characteristics to create optional mechanisms to tell the rest of the sys-
tem of additional constraints (including constraints about how data is transferred
over standard interfaces).

First, as a nonnegotiable requirement, drivers must have a standard interface. In our
system, all initialisation values extracted from parsed input acceleration requests get
mapped into memory blocks that are then passed between the system and the drivers.
These blocks are represented as nested 2D lists - lists of lists (alternatively called a
2D array or a 2D vector in various programming languages). In this way, the driver
can request as much data as necessary from the middleware while the data can still
be organised into various sublists - just like Linux uses the filesystem as the standard
interface. For example, the first list of values in this data structure can inform the driver
or the middleware about any specific encodings used in a particular instance, enabling
the driver code to check and correct errors.

Second, writing new drivers for any new HW module requires repeated effort. In
the following subsection, we examine the common characteristics in our module li-
brary where the supporting driver code could be reused with new HW modules.

Last, enumerating all these characteristics allows us to create customised constraint-
checking code that can be mapped to each of these indexed characteristics to let the
system automatically adapt to any new modules that may use existing characteristics
as they require existing condition checks. Moreover, it also creates a modular system
where new constraints and HW modules can be easily added to this mapping. Simi-
larly, a Linux OS image works on any HW layout given a corresponding device tree
where each node that defines different aspects of the current HW layout must have a
value for the compatible property to match different existing drivers to their previously
mapped HW counterparts.
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5.1.3 Driver Characteristics

In order to maintain a manageable complexity of such a system, we can identify dif-
ferent module characteristics that drive how the drivers should be designed:

Register writing: Having a single universal driver with a large number of unused code
and a vast degree of customizability is not that practical as there is not a large
enough overlap between the different register writes involved with running the
modules in our library. Moreover, if we constrain all modules to have a common
set of registers (some modules may not use all of these values) and the type of
values that go in there (e.g., start, input/output stream IDs, data packet sizes,
chunk/channel IDs) there are still a lot of mutually exclusive type of register
writes left as some modules need significantly more initialisation data. For in-
stance, our large filter modules need≈ 4000 register writes to initialise all of the
literals consisting of the multiple conjunctions for each DNF clause. The amount
of register writes required for initialisation affects setup time, and thus different
mechanisms (e.g., warning the scheduler about long initialisation times) might
be used depending on how many values have to be written. These different mech-
anisms will require corresponding driver support that must be custom tailored for
each case.

Register reading: However, the runtime system may also read memory-mapped ini-
tialisation registers (given the HW support), increasing the interface’s capabili-
ties by establishing two-way communications. The read values help with snoop-
ing, debugging, monitoring, getting results faster, or triggering early termination
with corresponding interruption support. Nevertheless, as with register writing,
this can only be generalised to an extent, and with different use cases, custom
logic is needed.

Data formatting requirements: As mentioned in earlier chapters, the modules can
have requirements on how data is positioned on the datapath wires. For instance,
a module could perform a stable sort that only evaluates the first column word
values for optimisation and simplification. The same applies to the join module,
where the matching key value must be placed in the first column. Moreover,
long rows may have to expand in multiple consecutive clock cycles, which may
change formatting requirements (e.g., for longer strings). In our system, the data
placement can be adjusted with another module capable of shuffling data (e.g.,
join) or through the crossbar in our DMA module.
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Data formatting capabilities: In detail, our join module implementation can shuffle
data around in time but not in space (within the same clock cycle), unlike our full
crossbars, which can simultaneously permute space and time. This constraint or
any other use case details still have to get encapsulated by this characterisation.
Especially if more dataflow utility modules are added (e.g., purely to add limited
reordering support), there has to be a mechanism to tell this information (i.e.,
about the extent of any module’s data reformatting capabilities) to the scheduler.

Data content requirements: In addition to spatial data formatting requirements, some
operations have data content requirements to produce correct results. For in-
stance, the JOIN operator uses a merge join module, so the data has to be pre-
sorted. Other cases (like sorting) require operating with hundreds of streams -
requiring channel IDs to be provided as well.

Blocking operations: Illustratively, sorting changes the data flow with blocking char-
acteristics where all input records must be seen before outputting any result rows.
This characteristic could be used by a scheduler in a different system that is ca-
pable of doing PR not only between runs but during a run when waiting before
a blocking operation.

Partitioned operations: There exist operations that need to be executed by multi-
ple module types for efficient FPGA acceleration. Such an example is again
sorting, which in our HW library is implemented using linear and merge sort
stages [151]. Additional scheduling considerations include recognising when a
single linear sorter can fully sort a small problem, where the scheduler must omit
merge sorting stages.

Tandem requirements: The scheduler also has to consider module-to-module com-
munication. Due to stream formatting constraints, some modules must be placed
next to a specific white-listed set of modules (black-listing could also be possi-
ble). In our case, the merge sorter has to get its input from the DMA module. The
DMA can create multi-channel streams, which the merge sorter uses to merge
the virtual streams within the partially sorted stream. Additionally, the Sobel op-
erator module must get input from the Black and White module that transforms
the data into having the correct encoding.

System requirements: Lastly, a module can add constraints to the platform running
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Figure 5.1: Given well-defined interfaces it is possible to dynamically build and later
alter not only the HW pipelines but also the various SW system parts.

it. Varying producer and consumer rates and volumes can change memory re-
quirements. Any join module could also increase the stream size. The stream
size is likely to increase with full outer joins, but for other types of joins, the sys-
tem must still be ready to hold the worst-case scenario, which is the combined
memory size of all input streams.

5.1.4 Decorator Based Generic Drivers

These common characteristics of how modules must be scheduled, initialised, and used
(in addition to managing the resource-elasticity of these modules), require specialised
code that can be reused for various system parts. To enable reusing this code, we
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use SW design practices like polymorphism2. The ideal way is to define expected
interfaces between all parts of the middleware and then use decorators and factories

to create parts of the system based on high-level requirements (e.g., informing about
additional custom logic and decorators required to support the functionality of a new
module).

A fitting use case of this type of system design is demonstrated by how it is possible
to build up drivers by listing all the constraint types their supported modules need and
then letting the builder build fitting drivers as shown in Figure 5.1. Consequently,
each module consists of different decorators which define its behaviours and corner
case conditions, and the rest of the system can check for these decorators and use
additional constraint checking as necessary. In addition, the diagram indicates that
both the module drivers and the entire system are constructed using factory objects
in our system builder. These factory objects are responsible for creating instances of
the various components that make up the system, all while adhering to the interface
constraints we have defined.

The main benefit is that it makes the system more expandable. Instead of compiling
the whole system each time a new feature (e.g., a new module) is introduced, the de-
sired feature can be supported by combining existing features with new configuration
options (possibly even modified during runtime, given a sufficient amount of exist-
ing features). By telling the initial builder to create elements that still obey the same
constraint but with different implementations (e.g., for different strategies), you can
easily switch up the whole underlying code of the system. Such frameworks have been
developed for self-adaptive applications on other devices already, such as the MUSIC

(Methodology for Ubiquitous Self-adaptive and Interoperable Computing) framework,
which offers a systematic methodology for the creation of self-adaptive applications.
The framework includes the specification of adaptation logic, the utilization of contex-
tual information, and the deployment and assessment of the application, as thoroughly

2Object-oriented programming uses polymorphism, where highly correlating code segments are
packaged into classes. Through the inheritance of these classes, we can share existing code with calls to
general-purpose functions (parent class) first as a standard interface which is then, as the name suggests,
morphed between various implementation options (child classes) to meet the desired requirements. As
is the case when creating dynamic HW pipelines, mapping different options through indirection to make
such a dynamic SW system work also has a performance penalty. However, modern compilers can offer
performance benefits in more complicated code bases, as Demeyer showed while studying C++ applica-
tions [67]. In order to maximise the benefits of polymorphism, SW design patterns like decorator-based
and factory-based designs have been adopted (described in publications that conclude modularity eases
maintainability [317]). Consequently, we can build more complex systems with tools familiar with these
patterns, from which the FPGA community should also aim to benefit.
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outlined by Hallsteinsen et al. in their publication [102]. These systems also employ
a middleware that monitors the context of the executing application and adapts it as
required, utilizing components from a component repository.

Such runtime SW reconfiguration was not necessary for our test cases presented in
the previous chapter, but we still laid the foundations for these features by defining the
necessary interfaces to support expanding our prototype later. A potential future use
case would be swapping out different scheduler implementations (e.g., using a meta-
heuristic scheduler once enough historical data has been accumulated and swapping
back given drastic workload changes).

5.2 Module Library Expansion

One part of the system’s maintainability is the supporting SW features providing var-
ious QoL improvements that make adding new functionality easier. Moreover, as our
system performs better with more complex tasks, we need this maintainability to be-
come more generalised, eventually through third-party contributions. However, we
still need to address how to make adding new HW modules easier on the HW side.

When incorporating modules into a library, it is essential to align the provided
functionality with anticipated system requests. The highest priority is to provide the
missing modules that enable the complete execution of expected requests on the FPGA.
Additionally, if feasible, the library should offer module alternatives with varying util-
ity or performance, considering the resource cost relative to the base library ensures a
practical selection. Providing as many utility-based alternatives as possible is benefi-
cial. If the library becomes too extensive, less frequently used modules can be pruned
later. For modules offering performance variations (e.g., operating at different clock
speeds), they should be integrated only if the scheduler can accommodate such vari-
ations (as the evaluated scheduler does not take that into consideration because the
whole module library operates at the same clock speed).

Another consideration is determining which module variants to include in the li-
brary once the desired functionality and performance modules are identified. After
building HW modules that meet the targeted dataflow interface and optimising the re-
source usage, there are still various options for figuring out which Pareto-front resource
footprint to use. We use a resource popularity concept to find optimal placement re-
gions with potential resource footprint matches and optimise the module library for the
given PR regions in this section.
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Another question is how many module alternatives are needed for this approach,
and can we have too many modules? With more modules, the scheduling algorithm
can do a better job. However, we have two limiting factors: bitstreams take up limited
space in memory, and the scheduling will take more time with more extensive module
libraries.

Therefore in this section, we analyse this module placement problem and compare
the following two approaches with a case study at the end of this section:

1. Histogram-based approach - Using modules with resource footprints that can
be placed in the largest number of locations compared to other valid footprint
options.

2. Heatmap-based approach - Using modules that can be placed in the least pop-
ular locations.

5.2.1 PR Region Histogram

There are previously explored methods for choosing PR regions (e.g., Becker et al., [22]
scan through the fabric with various masks marking suitable areas given matching re-
source requirements); however, we also want to consider placing multiple modules into
a PR region simultaneously next to each other. We can estimate the level of heterogene-
ity of a configurable region if we look at the resource string. In a configurable region
with low heterogeneity, there will be a relatively small number of different types of
resources, and additionally, there will be multiple commonly appearing resource pat-
terns (that consist of even more common subpatterns). On the flip side, with high
heterogeneity, the number of different resource types is high, and with few infrequent
resource types, it is less likely to find resource column patterns appearing more than
once. Again, on the ZU9EG, there are three types of resources (M for CLB, D for
DSP, and B for BRAM) that all include routing resources, and Figure 5.2 shows a PR
region that is well-suited for facilitating dynamic stream processing pipelines due to
numerous patterns that appear often. Frequently appearing patterns make it likely that
any design placed in one part of the PR region will also fit another part of the region.
Therefore, while scanning for PR regions, as described by Becker et al., maximizing
the number of patterns is another important objective.
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Figure 5.2: How often do all possible substrings appear in a PR region in a ZU9EG?
The most common substring in “MMDMDBMMDBMMDMDBMMDBMMDMDB-
MMDBM” is “M”, appearing 16 times.

5.2.2 HW Module Library Heatmap

Regardless of the heterogeneity of the configurable region, the effectiveness of a sched-
uler finding valid configurations diminishes with highly contested resource columns by
the modules in the HW library. If we have a highly heterogeneous PR region, it is still
possible to build an effective system by adding more modules into the library that use
the less popular resource column clusterings. Hence, adding even suboptimal module
implementations of a particular task that use less popular resource column patterns can
improve the system’s overall performance.

Nevertheless, the first step to building up a module library is to make all of the
modules as small as possible to reduce internal module fragmentation (as was done
with the module library presented in the previous chapter). However, after that, we
have two different approaches, as mentioned earlier, when expanding the library:

1. Create modules that use subpatterns that appear multiple times in the config-
urable region after analysing the resources with a subpattern histogram (Fig-
ure 5.2).

2. Use the popularity of each resource column to build up a heatmap - then add
modules that touch the cold areas.
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Figure 5.3: (0) Original module library from [195] with only one merge sorter variant;
(1) An additional sorter module that can fit into 3 locations; (2) Combination of (0)
and (1); (3) A bigger merge sorter which can fit only into 2 locations; (4) Combination
of (0) and (3).

In Figure 5.3, we have a decision when adding a module (either in row 1 or row 3) to
the library in row 0. We can see that adding additional modules that cover unpopular
resources lowers the standard deviation σ of the normalised popularity values, resulting
in a more even distribution. As a side note, the popularity of different resource columns
can also be used in scheduling to find valid configurations sooner, as shown in [92].
However, minimising the number of modules is also necessary to reduce scheduling
times and the configuration memory footprint of the module library. Therefore in the
next subsection, we evaluate whether it is better to use modules that can be placed
in multiple places (first strategy) or modules that use less popular resources (second
strategy).

5.2.3 Case Study: Database Module Library Expansion

We compare the histogram and heatmap approaches from the previous section in a
practical scenario with a module library for database operation acceleration on a ZCU102
board. Our module requirements and the PR region’s resource string are based on the
values presented by Manev in his thesis [195]. In this comparison, we extended the
library with additional alternatives for each previous module in the library. These mod-
ules are for sorting, filtering, and joining with multiple variants. First, we found all
possible resource footprints with each module’s required number of resources. Next,
we narrowed down the considered modules to only include the smallest ones possible
from the set of modules not included in the library already. Then we chose the best
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Figure 5.4: In order to cover the configurable region more evenly, choosing larger
modules with the heatmap approach leads to best results given that only 1 to 2 modules
of each type are added.

module from these alternatives with one of the following strategies. With the histogram
strategy, we chose the module with the most placement options. With the heatmap
strategy, we evaluated each module variant after extending the library and picked the
module with the lowest standard deviation of resource popularity values. Lastly, we
experimented with allowing up to three additional resource columns for larger mod-
ules (as opposed to using modules with the smallest resource footprint when building
up the initial library) to be considered with either strategy. As a result, in Figure 5.4,
we can see that as the initial library was already well constructed, adding additional
modules was only effective while adding one or two modules. With more modules, the
distribution of resource usage got more uneven as the optimal spots were taken.

In Figure 5.5, we can see that while considering larger modules, the one or two
additional resource columns do not substantially affect the overall hardware size. Fur-
thermore, we can see that the heatmap approach does pick larger modules more often
than the histogram approach. Therefore, not many modules are required to improve
the number of placement options of the modules in the HW library if the initial config-
urable region is with low heterogeneity. However, adding larger and seemingly more
nonoptimal modules can improve the likelihood of finding a valid configuration. Using
the heatmap approach and considering up to 3 resource columns larger modules, we
decrease the standard deviation of the normalised popularity values by 34.6% while
only having a 10.3% larger footprint than adding a single module of each type with the
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Figure 5.5: The library size is largest when the library gets extended with larger mod-
ules using the heatmap approach. The original library is 8.8 MB large, containing 15
modules.

histogram approach while considering only the smallest modules. Nevertheless, the
modules cannot be made too large because when the modules’ external fragmentation
decreases, the internal module fragmentation will start dominating.

After determining the best set of these additional modules, currently, these will
likely have to be built manually (involving a degree of trial-and-error) using the vendor
tools, but eventually, this process can be fully automated. However, setting up the
correct bounding boxes and synthesising modules with the correct amount of slack
is challenging to do reliably with the current set of vendor tools available. As such,
creating such a tool flow is outside the scope of this thesis due to needing expertise
about current tools, which may change in the future.

5.3 Security

Now, after creating the appropriate SW support and presenting approaches for adding
additional HW modules while keeping the module library lightweight, we look at the
last hurdle that stops dynamic stream processing from becoming more common on
FPGAs - creating the supporting ecosystem to improve the system’s usability and per-
formance. An effective way to create most ecosystems is to provide a cloud service3.

3There is research interest in evaluating the healthiness of ecosystems as it provides information to
newcomers choosing between different options while suggesting how to improve to all existing partic-
ipants: end-users, developers, and investors. For example, Jansen [126] evaluates ecosystems by mea-
suring the productivity, robustness and niche creation of the base projects themselves and the network
around them. As such, cloud service providers make good keystone projects that foster activity due to
the low barrier and more importantly, it enables others to create new projects that use this cloud product
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Cloud services are especially beneficial when the primary system idea performs better
with larger datasets and ad-hoc queries and where the supporting infrastructure can be
challenging to build up alone (like our system). FPGA acceleration has been recently
used in the cloud often as an FPGA-as-a-Service (FaaS) product with examples from
researchers (aside from commercial examples) creating cloud systems using FPGAs
standalone [19] or even along other devices [69]. In this case, whenever any product
uses third-party contributions and is accessible online - security concerns must be pri-
oritised to protect against malicious actors [251, 322]. Standard security checks on the
SW level are needed, like ensuring that the drivers do not support modules accessing
and saving data from prohibited streams or memory areas. However, we also need
further security checks for the HW level since we accept unknown bitstream contents.
As the FPGA device manufacturers do not directly support multi-tenancy with applica-
tions built separately from each other, the device tools inevitably miss out on checking
some security aspects, for which we demonstrate a virus scanner-like application that
can detect malicious design patterns in HW that the tools miss. This vendor-agnostic
approach enables the option for adding further security checks independently.

5.3.1 Importance of HW Security

Traditional HW security involves checking for physical access to devices (e.g., manip-
ulating the power supply is an attack vector), however with the recent cloud service
providers offering to use FPGAs, there has been significant research done in the hard-
ware security area concerning remote access to the device [3, 129]. Due to their low-
level programmability at the hardware level, FPGAs have vulnerabilities unknown to
only software-programmable devices, such as CPUs or GPUs. FPGAs allow mount-
ing physical side-channel attacks remotely on hardware that initially required physical
access to attack those other devices. For instance, traditionally, the confidentiality of
a device can be broken by monitoring power, voltage, temperature, or other system
parameters to gain any information that one usually should not have access to, and
this can eventually be used to find cryptographic keys with enough data to find strong
correlations [259]. Alternatively, system integrity can also be broken by introducing
soft errors by manipulating the operation of the power supply [351].

Remote monitoring of temperature and supply voltage can be performed with ring

- possibly even standalone or as a competitor. Consequently, Lucassen et al., [186] specifically evaluate
different cloud service providers and argue that active communities make them likely to succeed in the
long term.
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oscillators (ROs) connected to Time-to-Digital Converters (TDCs) [273] and the power
supply could be manipulated with short-circuits [23, 99] or with a sudden creation of
excessive dynamic power consumption. Let us look at the simplest form of interruption
- service availability. For this, an attacker would draw enough dynamic power to cause
a voltage drop, which would crash the FPGA. This attack has been demonstrated in
research where only power cycling would bring the system back into service [90]. It
should be kept in mind that these attacks have been made using bitstreams generated
directly by the FPGA vendor tools without further manipulation.

Another way of disrupting a service running on an FPGA is to make it operate
slower and eventually violate timing slack. For example, it is possible to degrade
FPGAs with elevated voltage and temperature conditions [288], which can be produced
remotely with methods mentioned earlier.

However, creating FaaS prototypes in the cloud and testing their security is out of
the scope of this thesis as this is an extensive research field with various well-written
works that we have already cited in this section. Therefore in this section, we only
highlight two important aspects of security from a high-level point of view for a better
understanding of the required system design ideas:

1. Bitstream-level security - Detect malicious hardware designs while scanning
the bitstreams with a virus scan.

2. System level security - Look for malicious driver behaviour and use precaution-
ary execution policies.

5.3.2 Bitstream Based Verification

The traditional ways to defend against any HW attacks involve using ROs, equivalently
to creating the attacks themselves [347]. These approaches are based on detecting an
attack while monitoring the system, just like an attacker. This monitoring approach
means an attack must already occur for detection, so this mitigation strategy only pro-
vides partial protection. In addition to monitoring, ROs can also be used to produce
more noise [158]. Producing noise around the logic is a known hiding technique [96].
An alternative to hiding is masking, where the functionality of the logic is the same,
but the implementation is less intuitive, making reaching any correct correlations again
more unlikely [178]. However, all of these security measures require additional HW
resources. Therefore, we look at bitstream verification as an alternative that does not
use any HW resources. Nevertheless, adding more layers to any system’s defence for
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better reliability is reasonable, and all of these measures could be used alongside each
other if the resource cost is acceptable.

Our system provides acceleration with pre-synthesised implementations and, as
mentioned at the beginning of this thesis, such bitstreams come with many benefits,
but they also come with security risks, for example, trojan horse attacks [335]. By
scanning these bitstreams before even loading them onto the board, we can not only
detect or hide from these attacks but also prevent them from happening in the first
place. Our approach looks for malicious patterns in the netlist that can be flagged with
different levels of severity, where afterwards, the system can decide whether to allow
running the design. More details about this virus scanner and the level of accuracy
it detects the attacks with are given in our papers ([199, 165]). Nevertheless, this
subsection will give a high-level view how these attacks work and how a virus-scanner
could be designed to detect these attacks next.

Detecting Attacks while Scanning Graphs

The netlist of a HW design (as illustrated in Figure 5.6) can be visualised as a graph
while marking the various resources on the FPGA, like programmable interconnect
points (PIPs), as nodes and the wires connecting these various resources as the edges.
Constructing such a graph can be done with the following steps:

1. Get the architecture graph of the area we want to scan. The architecture graph
consists of nodes and edges that are not programmable.

2. Get the dynamically configured nodes and edges (programmable resources). The
dynamically configured wiring and LUT configurations can be retrieved after
translating the bitstream values [337, 138].

3. Combine the two graphs and start traversing the resulting graph looking for ma-
licious behaviour.

As these netlists can become very large (in increasingly more heterogenous sys-
tems), the runtime of any graph traversal algorithms required to detect these patterns
becomes an issue. However, as we are dealing with PR modules only in areas con-
strained by a bounding box, we can sidestep these runtime problems. Furthermore,
these scans can be done offline in our case as we are using pre-synthesised designs as
a part of a module library that is likely constructed and optimised before accepting any
acceleration requests.
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Figure 5.6: A ring oscillator consisting of three inverters (orange LUTs) can be de-
composed into both static wires, inherent to the device’s architecture, and dynamically
configured wires. The design represented by the green highlight also incorporates yel-
low and red dynamic wires, which depict alternative dynamic configurations to com-
plete the ring oscillator. The virus scanner must be capable of detecting all possible
configurations.

Nevertheless, bitstream scanning can be easily improved while it also solves trust
issues. The IP provider does not have to trust the platform and vice versa if they both
trust the virus scanner, as is shown by Zeitouni et al., [340]. Meanwhile, building the
scanner to consist of separate steps supports maintaining each one separately and can
also help solve any remaining trust issues if separate trusted parties maintain these:
1) graph building and 2) virus signature scanning. Therefore as more malicious virus
signatures are found, more different scans can be added to the scan process just like
different boards can be supported by expanding the graph-building capabilities. Next,
we will go through two attack examples that can cause high switching frequency and
how the virus scanner can detect these.

Ring Oscillators

One of the easiest ways to generate switching activity in the circuitry, which runs faster
than the clock frequency, is through ring oscillators. A ring oscillator is a combinatorial
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Figure 5.7: Illustrations of the presented glitch amplification attack with (a) the attack
circuit consisting of glitch generators and power-burning networks, and (b) the wave-
form of the signals involved in the attack circuit.

loop whose value oscillates. That is usually achieved by using an odd number of
NOT gates. Consequently, ROs can reach frequencies close to 6GHz, much faster
than any real-world FPGA design could ever toggle [198]. As they run much faster
than the clock, ROs are a source to precisely measure system states as well as sources
to draw excessive waste power. Consequently, Amazon prohibits using designs with
combinatorial loops in cloud servers that provide FPGAs [11]. Nevertheless, there
have been papers showing ring oscillator designs that bypass vendor tools’ Design
Rule Checking (DRC) with no ring oscillators flagged [89].

These oscillators show that corresponding attacks can be surprisingly straightfor-
ward, and anyone can use the cloud services to carry through an attack (script kiddie

class of attack). For this reason, mitigation strategies for FPGA security attacks are of
paramount importance. Hence, one of the virus scanner scans detects all loops in the
design that can show up between synchronised signal sources and drains. As we do
not detect if these loops oscillate, there is a degree of false positives, but all legitimate
loops can be redesigned or flagged appropriately.
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Glitch Amplification

Once all ROs have been reliably detected, there are other ways of switching circuits
faster than the clock - one of which is glitching. In digital circuits, glitches are fluc-
tuating signal states that appear after input signals change and before output signals
fully settle. These glitches can be created intentionally when multiple input signals
arrive with significant time disparity in a combinatorial circuit. Thus it is possible to
create high-speed glitching signals that cause substantial power spikes on long output
antennas with a large fanout (demonstrated in Figure 5.7).

Glitches can be amplified through an XOR gate, which has the property that any
change at the input causes a change in the output. Therefore by adjusting routing
delays, it is possible to physically implement an oscillator where a source of a toggle
flip-flop is routed to an XOR with different delays to create glitches that, in turn, are fed
back to the toggle flip-flop. However, there are ways to hide such malicious designs,
such as using less glitchy functions at LUTs while generating glitches.

We do not use power drawing or timing characteristics in our graph, so instead of
accurate power draw modelling (the vendors’ tools do not report this accurately either),
we get an upper-bound activity estimate that can flag false positives. Therefore after
successfully identifying designs that force an Ultra96 board to shut down with either
malicious ROs or glitch amplification designs, we had to update our graph generation
and glitch scanning to include LUT functionality parsing for more accurate detection.
Our activity estimation is based on how many signal state switches occur (in the worst
case scenario) in the design, assuming all inputs switch states. Designs with ROs would
be reported to have an infinite activity value (as we do not have timing characteristics,
looping signals can keep switching an uncountable number of times before the next
input switch) and as such, having a ROs detecting scan beforehand is compulsory.

Once we know the design does not have any ROs, we can use the following steps
to detect more hard-to-spot glitch amplification attacks:

1. For all used LUTs in the design, find how many inputs this LUT uses and then
find the maximum number of times the output can change given changes on the
input side - this will be our denominator.

2. For all used LUTs in the design, find the exact LUT function (i.e., XOR, NXOR,
AND, OR) and count the number of times the output changes with all possible
combinations on the input side - this will be our numerator.

3. Now, for all used LUTs in the design, we can find the probability that a change
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on the input side affects the output of a LUT and count the upper bound signal
state switch count of the entire design, assuming all of the inputs change on any
given clock cycle. Based on the board, a certain threshold can mark activity
values higher than the threshold as malicious.

This process shows how such a system could be maintained security-wise and up-
graded as new attacks are found, just like the system could be expanded functionality-
wise with new HW modules.

5.3.3 Data Isolation

Now, simply using safe HW modules does not make the system safe. The modules
can still break the system if they break the data flow or the interface rules, which can
regularly occur accidentally. Alternatively, these behaviours could be hidden more
maliciously, like a HW module that intentionally loses data packets in long-running
jobs is difficult to spot. Since modules can have internal memory and access to all of
the streams that pass through them, they can even store data from other streams and
leak sensitive data.

Allowing the general public to use such black-box modules would be imprudent,
especially in a multi-tenant scenario. Therefore module designs and their correspond-
ing custom driver code has to get verified before their use becomes available to the
general public. Otherwise, they could be used if a user has exclusive access to the
whole system, and at the end of each session, the SW and HW systems are cleared.

The scanner mentioned in the previous subsection helps keep HW undamaged here
and is more beneficial for alternative systems like FOS, where different modules do not
form dataflow pipelines. Nevertheless, FOS and the current system could be used si-
multaneously, where some slots are used for static designs while others are partitioned
into more fine-grain slots for dynamic dataflow acceleration.

5.4 Chapter Conclusion

In this chapter, we complement an ecosystem for dataflow systems on FPGAs to in-
crease productivity with code reuse and reduced tool runtimes (compilation times).
In short, we looked at the following aspects: 1) generalisation, 2) scalability, and 3)
security.
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First, for generalisation, we discussed the overlapping features between different
modules in our module library and how shared driver features could support adding
additional modules in the future. Building systems with various parts that have shared
code is more accessible using SW principles derived from object-oriented program-
ming. Being able to characterise module features and building up new support in-
frastructure based on existing features enables faster system building and even hot-
swapping different parts during runtime if necessary (similarly to the HW pipelines).

To support scaling this ecosystem, we defined the problem of placing different
modules of different tasks such that it is possible to find the best configuration for any
dataflow problem. By assigning each PR region and module a corresponding resource
string and then counting with string matching the popularity of each column, we ef-
fectively demonstrated a way to assess the whole library’s weak points. This approach
would eventually allow a farming approach for creating various module libraries for
each desired FPGA device or PR region.

Lastly, we discussed security concerns and how these could be resolved in an iter-
ative and scalable manner with a virus scanner and strict execution policies in addition
to existing traditional security measures. Different levels of extensibility and freedom
come with various costs that can be tuned for each situation.

These findings have highlighted all design concerns associated with building a run-
time system that fully utilises FPGAs’ rarely used runtime PR capabilities. Using phys-
ically implemented modules is still beneficial in design time for application domains
and problem sizes where PR is not required. With the generalisable constraints, the
placement problem can be used in any system as a domain-specific compiler where the
modules in the supported HW library act similarly to machine code instructions. Such
flexibility will be crucial to building up a supporting ecosystem and infrastructure.



Chapter 6

Conclusion

In this last chapter, we conclude the thesis by presenting how this approach cultivates
creating an ecosystem around reusable code for FPGAs. Therefore first, we give an
overview of contributions in Section 6.1. Then the thesis concludes with a future work
discussion in Section 6.2.

6.1 Outcome

FPGAs provide high throughput and energy efficiency, particularly for stream pro-
cessing problems. We proposed a system to create, manage, and run optimised data
flow-oriented acceleration pipelines on FPGAs for problems with complex dependency
topologies like data analytics directly under the control of a runtime system such that
arbitrary high-level requests (e.g., SQL queries) can be automatically executed on an
FPGA (which is only bound by the available modules and memory in the system). As
a result, we designed a dynamic stream processing platform where modules are picked
automatically from a pre-synthesised library by a scheduler while performing optimi-
sations to improve FPGA utilisation and performance (by reducing the number of runs
through the FPGA). The system can be considered a JIT compiler as it translates ac-
celeration requests into stream processing pipelines, significantly lowering the barrier
of entry to using specialised accelerators.

6.1.1 Overview

The core aspects required to build a full working resource elastic dynamic stream pro-
cessing includes:

165
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Responsive Reconfigurability: First and foremost, this system parses SQL to accel-
erate it on an FPGA and this capability was publicly demonstrated [201]. What
sets it apart from related work are the following benefits: 1) this does not require
any compilation/synthesis steps that are required for HLS systems, 2) it does not
require a large amount of overprovisioning that comes with static solutions, and
3) given suitable HW modules, it can perform all calculations on an FPGA with-
out using generalised soft-core logic. All of this is enabled by dynamic partial
reconfiguration.

Performance: Using PR leads to our second outcome of this study: we showed that
the overhead costs of DPR can be overcome by accelerating applications that
comprise mutual exclusive or dynamic parts of execution and sufficient large
datasets. This performance increase is possible with resource elasticity. En-
abling dynamic load balancing and intelligent resource allocation to operations
that may have varying workloads due to the ability to split a problem into mul-
tiple runs using PR can improve the system’s flexibility and adaptability to meet
different runtime requirements.

Dataflow Orchestration: This project used a given resource elastic module library
that uses a streaming interface required for creating dataflow pipelines on-the-
fly. In order to swap modules, it uses a resource allocation protocol where each
module’s resource requirements are given with resource footprints correspond-
ing to fine-grain thin and tall PR region partitions. However, in this thesis, in
order to make such a system (with wide data paths and various constraints set
by the modules and the operations) run in practice, we built a corresponding
SW stack that can format the data to meet various module constraints while
also operating the whole flow while processing and tracking these conditions
automatically. These on-the-fly dataflow pipelines help avoid the von Neumann
bottleneck.

Flexible Interfacing: Such dynamic flexibility has to be scheduled, and as the schedul-
ing has to be able to react to runtime conditions, it has to be automatic. Therefore
we have to break down incoming requests and extract all dependencies between
different operations and the modules that can execute these operations and track
the parameters of these tasks. Given a flexible module library, we use a func-
tional capacity metric to check how many resources are required for each op-
eration and build a graph-like IR that works with our stream orchestration SW
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stack. Different front-end applications can create requests using this IR as had
been demonstrated for DBMS systems - demonstrating the flexibility necessary
to work in multiple stream processing workloads.

Scheduling: The requirement to schedule these modules both in time and space as
opposed to just time, which is the case for traditional CPU schedulers, resulted
in the formulation of the presented scheduling approach. Given the NP-hard
complexity of this task, we see that this requires either excessive scheduling
time or processing power (which is not ideal in a runtime system with a limited
number of resources), a lot of historical data (not always available with ad-hoc
systems), or heuristics and accepting suboptimal scheduling. Nevertheless, we
were able to demonstrate the performance benefits of this dynamic approach
when executing with large datasets and increasing the computational load per
I/O operation. As a result, the execution times were significantly reduced.

Generalisability: As more complex tasks show better performance improvements, we
need to make the infrastructure as scalable and maintainable as possible. For this
reason, we showed how creating various interfaces to decouple all system parts
from each other and enabling different parts to be developed in isolation helps
scalability. Meanwhile, the dynamic approach still offers the option to compile
everything together statically for high-performance-oriented use cases. Both in
HW and SW consider the security aspects highlighted in the last chapter of this
thesis.

Abstraction: The here developed runtime systems manages FPGA resources entirely
transparent by providing users with a high-level view on the system such that
optimised stream processing applications are composed, partial reconfiguration
is invoked, and the whole operation is controlled by only using SQL.

Open-Source: All this work is open source and is already being improved upon and
examined for future work. The following will highlight the open-source tools
this thesis project helped create.

6.1.2 Open-Source Tools

Creating more open-source tools for the community to build upon, energises the com-
munity to create new novel ideas while learning how to advocate more reuse of existing
work. Hence here is a list of repositories for tools related to this project:
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OrkhestraFPGAStream [197]: Creating dataflow pipelines on the ZCU102 is avail-
able to experiment with in an interactive shell we showcased in the demo pa-
per [201]. It is possible to change some parameters of the system and then exe-
cute SQL queries parsed either with PostgreSQL or TrinoSQL, given that these
are set up on the FPGA.

FPGADefender [196]: In order to check for any malicious activity inside bitstreams
from unknown sources, this virus scanner tool can scan for various patterns and
report the degree of suspiciousness. This tool is currently being made faster and
more customisable by Joe Powell [249].

Byteman [190]: Lastly, it is crucial to highlight an open-source tool that can sup-
port such workflow where modules can be relocated after synthesis. Byteman
(a successor to BitMan [238]) encapsulates the information about bitstreams in
Xilinx’s technical reference manuals about the instructions to program FPGAs
and allows changing these to cut, merge and move bitstreams around on a large
amount of boards [192].

6.2 Future Work

As this thesis heavily focuses on the maintainability of this system, currently, the next
aspect that this system should improve on the most is still paradoxically maintainabil-
ity. For larger scale adoption, more debugging HW and SW features are required that
are not a core topic of this thesis. Furthermore, more automation is needed to create
these HW and SW features, as the main problem of this idea is that it requires a scale
that this project still needs to reach. Then this maintainability needs to be enforced by
some practical requirements like automatically using runtime hot swappable SW parts.
For example, this can get tested with a meta-heuristic scheduler. Once there is enough
historical data, a better scheduler (meta-heuristic) should be used, enforcing a higher
degree of decoupling and hence maintainability of the system.

Alternative examples also require runtime statistics gathering and making changes
accordingly. For instance, the scheduler could be improved to use a more complicated
model for calculating the streaming cost, as with multiple simultaneous streams, there
could be situations where the execution speed of the modules becomes a bottleneck.
Then various concurrent streaming speeds should be monitored, and a more appropri-
ate DMA module should be chosen that streams multiple streams at different priorities
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rather than giving all streams an equal amount of packets.

Aside from SW features, more HW features and accelerator modules would im-
prove this system’s quality of benchmarking results. We used DBMS acceleration as
a stress test for FPGA stream processing with varying operator and utility characteris-
tics. All hardware and software parts in our system are interchangeable independently
for maximum reusability and productivity benefits. As the next step, more modules
are needed, particularly a GROUP-BY module, to run the whole TCP-H benchmark.
Additionally, more scheduling strategies and data serialization techniques will have to
be tested for integration with existing systems.

Lastly, migrating to different system layouts requires additional infrastructure work.
However, this effort could eventually lead up to being able to report competitive per-
formance numbers in practice rather than in theory (e.g., whole TPC-H and TPC-DS
numbers with access to fast and large memory). With different cost and utility models,
it is also essential to determine how much discovery is required to find the best ratios
without spending too much time on scheduling. Moreover, if the cost and utility values
are worse than the CPU alternative, the CPU should process the data instead, leading
to tighter couplings with a CPU DBMS, for example.

6.3 Closing Thoughts

Creating ecosystems with such scale is a chicken-and-an-egg problem. When querying
chatbots powered by an AI model, like GPT-3 for instance, that is pre-trained with a
dataset consisting of a diverse set of websites, books and articles from before 2021, we
get an estimation of the general perception of any topic, albeit this is unreliable, yet still
fascinating [59]. We queried OpenGPT, which is built on top of the Generative Pre-
trained Transformer (GPT-3.5) language model. This model has been fine-tuned (hence
the .5 version difference) for conversation using both supervised and reinforcement
learning methods, and it tries to predict appropriate sequences of text. Therefore we
asked if DPR can make FPGAs more usable with FPGA-OS-like frameworks and what
the performance consequences would be. Here is the answer after asking the bot to
make the answer more concise:

Dynamic Partial Reconfiguration (DPR) allows for real-time reconfigura-

tion of a portion of an FPGA, providing added flexibility to FPGA-OS.
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This technique is achieved by dividing the FPGA into multiple reconfig-

urable regions that can be independently configured, enabling parallel ex-

ecution of multiple tasks on the same FPGA. However, DPR can introduce

latency and impact performance. Nevertheless, the added flexibility and

ease of use of FPGA-OS can outweigh these performance penalties, which

can also be mitigated by optimized communication interfaces and memory

controllers. DPR is a powerful tool to increase the adoption of FPGAs as

general-purpose accelerators, but it comes with trade-offs in performance

that depend on the use-case.

FPGAs have been in use for over 30 years, but there is still no commonly agreed-
upon answer for what an FPGA-OS should look like. The system presented here shows
a major direction how resource elasticity can be used to transparently boost perfor-
mance among multiple queries (or applications) while considering runtime conditions.

With reusable HW making new accelerators can be done during runtime. As more
modules, schedulers, DMAs, and streaming interface options become available for
modular projects similar to our prototype, it becomes easier to reuse other people’s
work. Such sharing is essential to building and growing an ecosystem to make FPGAs
more of a commodity, which also increases the effectiveness of these systems.
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There Yet? A Study on the State of High-Level Synthesis. IEEE TCAD,
38(5):898–911, 2019.

[167] Yi-Hsiang Lai, Ecenur Ustun, Shaojie Xiang, Zhenman Fang, Hongbo Rong,
and Zhiru Zhang. Programming and Synthesis for Software-defined FPGA Ac-
celeration: Status and Future Prospects . ACM Trans. Reconfigurable Technol.

Syst., 14(4):17:1–17:39, 2021.

[168] Andre Lalevee, Pierre-Henri Horrein, Matthieu Arzel, Michael Hübner, and
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[319] Jan Weglarz, Joanna Józefowska, Marek Mika, and Grzegorz Waligóra. Project
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Appendix A

Partially reconfigurable modules’
resource requirements

In order to find any general conclusions about resource overheads associated with
compiling dataflow pipelines with PR modules when compared to synthesising the
pipelines from combined RTL code, a more in-depth examination is required by com-
paring a substantial number of different module combinations. Furthermore, mean-
while, each pipeline and module itself should be built with different levels of con-
straints and design choices. Therefore, such an in-depth examination of the HW aspect
of building dynamic dataflow systems is out of the scope of this thesis. First and
foremost, we designed modules to achieve a functional dynamic PR system capable
of running at 300Mhz with 512-bit wide datapaths. Then they were implemented in
smallest possible bounding boxes on the Pareto-front as described by Manev [195].
Hence, here we note the number of available resources in that bounding box and how
many of these were used in the implementation. Optimising the modules for faster
or larger systems or using fewer resources is left for future work. Nevertheless, for
reference, this appendix shows our modules’ and pipelines’ resource costs in both the
image processing (Section A.1) and data analytics (Section A.2) workloads.

A.1 Image processing

For image processing modules, the difference between using the two PR modules sep-
arately or synthesising them together while using the same sized bounding box is an
increase in LUT usage ≈ 8% and in register usage ≈ 13%. However, in general, CLB
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Table A.1: Black and white converter module resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 1789 3840 46.59

CLB Registers 1203 7680 15.66

Table A.2: Sobel module resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 6084 10560 57.61

CLB Registers 4751 21120 22.5
Block RAM Tile 15 48 31.25

DSPs 0 144 0

Table A.3: Sobel & black and white converter module resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 7263 14400 50.44

CLB Registers 5190 28800 18.02
Block RAM Tile 15 48 31.25

DSPs 0 144 0

usage is only higher ≈ 4%. The exact numbers for the individual modules are in Ta-
bles A.1 and A.2 and for the static pipeline in Table A.3.

A.2 Data analytics

For data analytics modules, we had to use two different static pipelines for the tar-
geted acceleration requests, and as the required combinations of modules used a larger
area than was available in the PRR, the static pipelines had to use the resources more
densely. While the synthesis has to put more logic into a smaller area, the resulting
bitstreams are also more optimised. However, on the contrary, as referenced in the in-
troduction, for the tools, the optimisation task becomes significantly more challenging
with larger designs.

Therefore, after constructing the first static pipeline, we can see that the difference
between using the corresponding filter, adder, multiplier, aggregation and linear sort
modules separately or synthesising them together is relatively tiny as only mainly the
CLB usage is significantly higher (≈ 5%).

In the case of the second pipeline, the difference between using the 64-way merge
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Table A.4: Filter module capable of processing 8 DNF clauses with 1 comparator unit
resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 2670 6720 39.73

CLB Registers 3182 13440 23.68
DSPs 0 96 0

Table A.5: Filter module capable of processing 16 DNF clauses with 2 comparator unit
resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 4066 7680 52.94

CLB Registers 3436 15360 22.37
DSPs 0 96 0

Table A.6: Filter module capable of processing 32 DNF clauses with 4 comparator unit
resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 7580 14400 52.64

CLB Registers 3923 28800 13.62
Block RAM Tile 0 48 0

DSPs 0 144 0

Table A.7: Aggregate sum module resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 856 4800 17.83

CLB Registers 1729 9600 18.01
DSPs 0 48 0

sorter, merge join, large filter and aggregation PR modules separately or synthesising
them together increased ≈ 5% in LUT usage and ≈ 2% in register usage. In this case,
the CLB usage is higher ≈ 8%.

As for image processing bitstreams, the detailed resource cost values for the data
analytics modules and pipelines are available in the rest of the tables.
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Table A.8: Multiplier module resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 3813 9600 39.72

CLB Registers 8439 19200 43.95
Block RAM Tile 0 48 0

DSPs 32 96 33.33

Table A.9: Arithmetic adder module resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 1598 6720 23.78

CLB Registers 2792 13440 20.77
DSPs 0 48 0

Table A.10: Linear sorter module resource requirements that can sort up to 512 records
per output sequence.

Resource type Used count Available Used precentage
CLB LUTs 9418 14400 65.4

CLB Registers 8979 28800 31.18
Block RAM Tile 35.5 48 73.96

DSPs 0 144 0

Table A.11: Linear sorter module resource requirements that can sort up to 1024
records per output sequence.

Resource type Used count Available Used precentage
CLB LUTs 13852 20160 68.71

CLB Registers 10563 40320 26.2
Block RAM Tile 70.5 72 97.92

DSPs 0 192 0

Table A.12: Join module resource requirements.

Resource type Used count Available Used precentage
CLB LUTs 5311 14400 36.88

CLB Registers 5142 28800 17.85
Block RAM Tile 32 48 66.67

DSPs 0 144 0
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Table A.13: Merge sorter module resource requirements that can merge up to 32 se-
quences into a single sorted sequence.

Resource type Used count Available Used precentage
CLB LUTs 5729 10560 54.25

CLB Registers 7061 21120 33.43
Block RAM Tile 18 24 75

DSPs 0 96 0

Table A.14: Merge sorter module resource requirements that can merge up to 64 se-
quences into a single sorted sequence.

Resource type Used count Available Used precentage
CLB LUTs 6232 14400 43.28

CLB Registers 7427 28800 25.79
Block RAM Tile 38 48 79.17

DSPs 0 144 0

Table A.15: Merge sorter module resource requirements that can merge up to 128
sequences into a single sorted sequence.

Resource type Used count Available Used precentage
CLB LUTs 7047 16320 43.18

CLB Registers 7825 32640 23.97
Block RAM Tile 70.5 72 97.92

DSPs 0 192 0

Table A.16: Data analytics static pipeline which consists of the following modules:
large filter, adder, multiplier, aggregation, and small linear sorter.

Resource type Used count Available Used precentage
CLB LUTs 23192 43200 53.7

CLB Registers 25986 86400 30.1
Block RAM Tile 35.5 144 24.7

DSPs 32 432 7.4

Table A.17: Data analytics static pipeline which consists of the following modules:
medium sorter, join, large filter, aggregation

Resource type Used count Available Used precentage
CLB LUTs 18944 43200 43.9

CLB Registers 17808 86400 20.6
Block RAM Tile 70 144 48.6

DSPs 0 432 0
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