639 research outputs found

    A bi-objective hybrid vibration damping optimization model for synchronous flow shop scheduling problems

    Get PDF
    Flow shop scheduling deals with the determination of the optimal sequence of jobs processing on machines in a fixed order with the main objective consisting of minimizing the completion time of all jobs (makespan). This type of scheduling problem appears in many industrial and production planning applications. This study proposes a new bi-objective mixed-integer programming model for solving the synchronous flow shop scheduling problems with completion time. The objective functions are the total makespan and the sum of tardiness and earliness cost of blocks. At the same time, jobs are moved among machines through a synchronous transportation system with synchronized processing cycles. In each cycle, the existing jobs begin simultaneously, each on one of the machines, and after completion, wait until the last job is completed. Subsequently, all the jobs are moved concurrently to the next machine. Four algorithms, including non-dominated sorting genetic algorithm (NSGA II), multi-objective simulated annealing (MOSA), multi-objective particle swarm optimization (MOPSO), and multi-objective hybrid vibration-damping optimization (MOHVDO), are used to find a near-optimal solution for this NP-hard problem. In particular, the proposed hybrid VDO algorithm is based on the imperialist competitive algorithm (ICA) and the integration of a neighborhood creation technique. MOHVDO and MOSA show the best performance among the other algorithms regarding objective functions and CPU Time, respectively. Thus, the results from running small-scale and medium-scale problems in MOHVDO and MOSA are compared with the solutions obtained from the epsilon-constraint method. In particular, the error percentage of MOHVDO’s objective functions is less than 2% compared to the epsilon-constraint method for all solved problems. Besides the specific results obtained in terms of performance and, hence, practical applicability, the proposed approach fills a considerable gap in the literature. Indeed, even though variants of the aforementioned meta-heuristic algorithms have been largely introduced in multi-objective environments, a simultaneous implementation of these algorithms as well as a compared study of their performance when solving flow shop scheduling problems has been so far overlooked

    Application of nature-inspired optimization algorithms to improve the production efficiency of small and medium-sized bakeries

    Get PDF
    Increasing production efficiency through schedule optimization is one of the most influential topics in operations research that contributes to decision-making process. It is the concept of allocating tasks among available resources within the constraints of any manufacturing facility in order to minimize costs. It is carried out by a model that resembles real-world task distribution with variables and relevant constraints in order to complete a planned production. In addition to a model, an optimizer is required to assist in evaluating and improving the task allocation procedure in order to maximize overall production efficiency. The entire procedure is usually carried out on a computer, where these two distinct segments combine to form a solution framework for production planning and support decision-making in various manufacturing industries. Small and medium-sized bakeries lack access to cutting-edge tools, and most of their production schedules are based on personal experience. This makes a significant difference in production costs when compared to the large bakeries, as evidenced by their market dominance. In this study, a hybrid no-wait flow shop model is proposed to produce a production schedule based on actual data, featuring the constraints of the production environment in small and medium-sized bakeries. Several single-objective and multi-objective nature-inspired optimization algorithms were implemented to find efficient production schedules. While makespan is the most widely used quality criterion of production efficiency because it dominates production costs, high oven idle time in bakeries also wastes energy. Combining these quality criteria allows for additional cost reduction due to energy savings as well as shorter production time. Therefore, to obtain the efficient production plan, makespan and oven idle time were included in the objectives of optimization. To find the optimal production planning for an existing production line, particle swarm optimization, simulated annealing, and the Nawaz-Enscore-Ham algorithms were used. The weighting factor method was used to combine two objectives into a single objective. The classical optimization algorithms were found to be good enough at finding optimal schedules in a reasonable amount of time, reducing makespan by 29 % and oven idle time by 8 % of one of the analyzed production datasets. Nonetheless, the algorithms convergence was found to be poor, with a lower probability of obtaining the best or nearly the best result. In contrast, a modified particle swarm optimization (MPSO) proposed in this study demonstrated significant improvement in convergence with a higher probability of obtaining better results. To obtain trade-offs between two objectives, state-of-the-art multi-objective optimization algorithms, non-dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm, generalized differential evolution, improved multi-objective particle swarm optimization (OMOPSO) and speed-constrained multi-objective particle swarm optimization (SMPSO) were implemented. Optimization algorithms provided efficient production planning with up to a 12 % reduction in makespan and a 26 % reduction in oven idle time based on data from different production days. The performance comparison revealed a significant difference between these multi-objective optimization algorithms, with NSGA-II performing best and OMOPSO and SMPSO performing worst. Proofing is a key processing stage that contributes to the quality of the final product by developing flavor and fluffiness texture in bread. However, the duration of proofing is uncertain due to the complex interaction of multiple parameters: yeast condition, temperature in the proofing chamber, and chemical composition of flour. Due to the uncertainty of proofing time, a production plan optimized with the shortest makespan can be significantly inefficient. The computational results show that the schedules with the shortest and nearly shortest makespan have a significant (up to 18 %) increase in makespan due to proofing time deviation from expected duration. In this thesis, a method for developing resilient production planning that takes into account uncertain proofing time is proposed, so that even if the deviation in proofing time is extreme, the fluctuation in makespan is minimal. The experimental results with a production dataset revealed a proactive production plan, with only 5 minutes longer than the shortest makespan, but only 21 min fluctuating in makespan due to varying the proofing time from -10 % to +10 % of actual proofing time. This study proposed a common framework for small and medium-sized bakeries to improve their production efficiency in three steps: collecting production data, simulating production planning with the hybrid no-wait flow shop model, and running the optimization algorithm. The study suggests to use MPSO for solving single objective optimization problem and NSGA-II for multi-objective optimization problem. Based on real bakery production data, the results revealed that existing plans were significantly inefficient and could be optimized in a reasonable computational time using a robust optimization algorithm. Implementing such a framework in small and medium-sized bakery manufacturing operations could help to achieve an efficient and resilient production system.Die Steigerung der Produktionseffizienz durch die Optimierung von Arbeitsplänen ist eines der am meisten erforschten Themen im Bereich der Unternehmensplanung, die zur Entscheidungsfindung beiträgt. Es handelt sich dabei um die Aufteilung von Aufgaben auf die verfügbaren Ressourcen innerhalb der Beschränkungen einer Produktionsanlage mit dem Ziel der Kostenminimierung. Diese Optimierung von Arbeitsplänen wird mit Hilfe eines Modells durchgeführt, das die Aufgabenverteilung in der realen Welt mit Variablen und relevanten Einschränkungen nachbildet, um die Produktion zu simulieren. Zusätzlich zu einem Modell sind Optimierungsverfahren erforderlich, die bei der Bewertung und Verbesserung der Aufgabenverteilung helfen, um eine effiziente Gesamtproduktion zu erzielen. Das gesamte Verfahren wird in der Regel auf einem Computer durchgeführt, wobei diese beiden unterschiedlichen Komponenten (Modell und Optimierungsverfahren) zusammen einen Lösungsrahmen für die Produktionsplanung bilden und die Entscheidungsfindung in verschiedenen Fertigungsindustrien unterstützen. Kleine und mittelgroße Bäckereien haben zumeist keinen Zugang zu den modernsten Werkzeugen und die meisten ihrer Produktionspläne beruhen auf persönlichen Erfahrungen. Dies macht einen erheblichen Unterschied bei den Produktionskosten im Vergleich zu den großen Bäckereien aus, was sich in deren Marktdominanz widerspiegelt. In dieser Studie wird ein hybrides No-Wait-Flow-Shop-Modell vorgeschlagen, um einen Produktionsplan auf der Grundlage tatsächlicher Daten zu erstellen, der die Beschränkungen der Produktionsumgebung in kleinen und mittleren Bäckereien berücksichtigt. Mehrere einzel- und mehrzielorientierte, von der Natur inspirierte Optimierungsalgorithmen wurden implementiert, um effiziente Produktionspläne zu berechnen. Die Minimierung der Produktionsdauer ist das am häufigsten verwendete Qualitätskriterium für die Produktionseffizienz, da sie die Produktionskosten dominiert. Jedoch wird in Bäckereien durch hohe Leerlaufzeiten der Öfen Energie verschwendet was wiederum die Produktionskosten erhöht. Die Kombination beider Qualitätskriterien (minimale Produktionskosten, minimale Leerlaufzeiten der Öfen) ermöglicht eine zusätzliche Kostenreduzierung durch Energieeinsparungen und kurze Produktionszeiten. Um einen effizienten Produktionsplan zu erhalten, wurden daher die Minimierung der Produktionsdauer und der Ofenleerlaufzeit in die Optimierungsziele einbezogen. Um optimale Produktionspläne für bestehende Produktionsprozesse von Bäckereien zu ermitteln, wurden folgende Algorithmen untersucht: Particle Swarm Optimization, Simulated Annealing und Nawaz-Enscore-Ham. Die Methode der Gewichtung wurde verwendet, um zwei Ziele zu einem einzigen Ziel zu kombinieren. Die Optimierungsalgorithmen erwiesen sich als gut genug, um in angemessener Zeit optimale Pläne zu berechnen, wobei bei einem untersuchten Datensatz die Produktionsdauer um 29 % und die Leerlaufzeit des Ofens um 8 % reduziert wurde. Allerdings erwies sich die Konvergenz der Algorithmen als unzureichend, da nur mit einer geringen Wahrscheinlichkeit das beste oder nahezu beste Ergebnis berechnet wurde. Im Gegensatz dazu zeigte der in dieser Studie ebenfalls untersuchte modifizierte Particle-swarm-Optimierungsalgorithmus (mPSO) eine deutliche Verbesserung der Konvergenz mit einer höheren Wahrscheinlichkeit, bessere Ergebnisse zu erzielen im Vergleich zu den anderen Algorithmen. Um Kompromisse zwischen zwei Zielen zu erzielen, wurden moderne Algorithmen zur Mehrzieloptimierung implementiert: Non-dominated Sorting Genetic Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm, Generalized Differential Evolution, Improved Multi-objective Particle Swarm Optimization (OMOPSO), and Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO). Die Optimierungsalgorithmen ermöglichten eine effiziente Produktionsplanung mit einer Verringerung der Produktionsdauer um bis zu 12 % und einer Verringerung der Leerlaufzeit der Öfen um 26 % auf der Grundlage von Daten aus unterschiedlichen Produktionsprozessen. Der Leistungsvergleich zeigte signifikante Unterschiede zwischen diesen Mehrziel-Optimierungsalgorithmen, wobei NSGA-II am besten und OMOPSO und SMPSO am schlechtesten abschnitten. Die Gärung ist ein wichtiger Verarbeitungsschritt, der zur Qualität des Endprodukts beiträgt, indem der Geschmack und die Textur des Brotes positiv beeinflusst werden kann. Die Dauer der Gärung ist jedoch aufgrund der komplexen Interaktion von mehreren Größen abhängig wie der Hefezustand, der Temperatur in der Gärkammer und der chemischen Zusammensetzung des Mehls. Aufgrund der Variabilität der Gärzeit kann jedoch ein Produktionsplan, der auf die kürzeste Produktionszeit optimiert ist, sehr ineffizient sein. Die Berechnungsergebnisse zeigen, dass die Pläne mit der kürzesten und nahezu kürzesten Produktionsdauer eine erhebliche (bis zu 18 %) Erhöhung der Produktionsdauer aufgrund der Abweichung der Gärzeit von der erwarteten Dauer aufweisen. In dieser Arbeit wird eine Methode zur Entwicklung einer robusten Produktionsplanung vorgeschlagen, die Veränderungen in den Gärzeiten berücksichtigt, so dass selbst bei einer extremen Abweichung der Gärzeit die Schwankung der Produktionsdauer minimal ist. Die experimentellen Ergebnisse für einen Produktionsprozess ergaben einen robusten Produktionsplan, der nur 5 Minuten länger ist als die kürzeste Produktionsdauer, aber nur 21 Minuten in der Produktionsdauer schwankt, wenn die Gärzeit von -10 % bis +10 % der ermittelten Gärzeit variiert. In dieser Studie wird ein Vorgehen für kleine und mittlere Bäckereien vorgeschlagen, um ihre Produktionseffizienz in drei Schritten zu verbessern: Erfassung von Produktionsdaten, Simulation von Produktionsplänen mit dem hybrid No-Wait Flow Shop Modell und Ausführung der Optimierung. Für die Einzieloptimierung wird der mPSO-Algorithmus und für die Mehrzieloptimierung NSGA-II-Algorithmus empfohlen. Auf der Grundlage realer Bäckereiproduktionsdaten zeigten die Ergebnisse, dass die in den Bäckereien verwendeten Pläne ineffizient waren und mit Hilfe eines effizienten Optimierungsalgorithmus in einer angemessenen Rechenzeit optimiert werden konnten. Die Umsetzung eines solchen Vorgehens in kleinen und mittelgroßen Bäckereibetrieben trägt dazu bei effiziente und robuste Produktionspläne zu erstellen und somit die Wettbewerbsfähigkeit dieser Bäckereien zu erhöhen

    Artificial Intelligence as an Enabler of Quick and Effective Production Repurposing Manufactur-ing: An Exploratory Review and Future Research Propositions

    Get PDF
    The outbreak of Covid-19 created disruptions in manufacturing operations. One of the most serious negative impacts is the shortage of critical medical supplies. Manufacturing firms faced pressure from governments to use their manufacturing capacity to repurpose their production for meeting the critical demand for necessary products. For this purpose, recent advancements in technology and artificial intelligence (AI) could act as response solutions to conquer the threats linked with repurposing manufacturing (RM). The study’s purpose is to investigate the significance of AI in RM through a systematic literature review (SLR). This study gathered around 453 articles from the SCOPUS database in the selected research field. Structural Topic Modeling (STM) was utilized to generate emerging research themes from the selected documents on AI in RM. In addition, to study the research trends in the field of AI in RM, a bibliometric analysis was undertaken using the R-package. The findings of the study showed that there is a vast scope for research in this area as the yearly global production of articles in this field is limited. However, it is an evolving field and many research collaborations were identified. The study proposes a comprehensive research framework and propositions for future research development

    Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and Research Opportunities

    Full text link
    Evolutionary algorithms (EA), a class of stochastic search methods based on the principles of natural evolution, have received widespread acclaim for their exceptional performance in various real-world optimization problems. While researchers worldwide have proposed a wide variety of EAs, certain limitations remain, such as slow convergence speed and poor generalization capabilities. Consequently, numerous scholars actively explore improvements to algorithmic structures, operators, search patterns, etc., to enhance their optimization performance. Reinforcement learning (RL) integrated as a component in the EA framework has demonstrated superior performance in recent years. This paper presents a comprehensive survey on integrating reinforcement learning into the evolutionary algorithm, referred to as reinforcement learning-assisted evolutionary algorithm (RL-EA). We begin with the conceptual outlines of reinforcement learning and the evolutionary algorithm. We then provide a taxonomy of RL-EA. Subsequently, we discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature. The RL-assisted procedure is divided according to the implemented functions including solution generation, learnable objective function, algorithm/operator/sub-population selection, parameter adaptation, and other strategies. Finally, we analyze potential directions for future research. This survey serves as a rich resource for researchers interested in RL-EA as it overviews the current state-of-the-art and highlights the associated challenges. By leveraging this survey, readers can swiftly gain insights into RL-EA to develop efficient algorithms, thereby fostering further advancements in this emerging field.Comment: 26 pages, 16 figure

    Математическое моделирование процессов выполнения пакетов заданий в конвейерных системах с промежуточными буферами ограниченных размеров

    Get PDF
    Modern methods of process planning in conveyor systems with buffers of a certain size between processing devices allow optimizing schedules for single tasks or fixed task packages with a limited number of them and a limited number of devices. The use of mathematical models of the processes of performing single tasks (task packages) used by these methods in optimizing the composition of packages and schedules for their execution in systems with an arbitrary number of packages and devices is impossible. At the same time, mathematical models of the processes of executing task packages in conveyor systems in the presence of buffers of limited sizes between devices are the basis for the development of methods for optimizing their (package) compositions and schedules for the implementation of actions with them on the devices of conveyor systems. In this regard, the article develops mathematical models of multi-stage processes of performing an arbitrary number of task packages in conveyor systems in the presence of intermediate buffers of limited sizes for two and three devices, as well as for an arbitrary number of devices. The use of these models makes it possible to determine the time points of the start of the execution of task packages on the devices of conveyor systems, taking into account the limited size of intermediate buffers, as well as the duration of time intervals for the use of these resources and the efficiency of their use over time. An algorithm has also been developed for mathematical modeling of the processes of executing task packages in conveyor systems in the presence of intermediate buffers of limited size, which calculates the time characteristics of these processes based on a given order of implementation of actions with task packages on the devices of conveyor systems. An application has been developed that implements synthesized mathematical models of the processes of executing task packages in conveyor systems with intermediate buffers of limited sizes and an appropriate method for modeling these processes. Versatile testing of the developed application has shown that the obtained mathematical models and the modeling method adequately describe the course of multi-stage processes of task packages in pipeline systems, set using different values of their (processes) parameters.Современные методы планирования процессов в конвейерных системах с буферами определенного размера между обрабатывающими приборами позволяют оптимизировать расписания выполнения единичных заданий либо фиксированных пакетов заданий при их ограниченном количестве и ограниченном количестве приборов. Применение математических моделей процессов выполнения единичных заданий (пакетов заданий), используемых этими методами, при оптимизации составов пакетов и расписаний их выполнения в системах с произвольным количеством пакетов и приборов является невозможным. В то же время математические модели процессов выполнения пакетов заданий в конвейерных системах при наличии буферов ограниченных размеров между приборами являются основой для разработки методов оптимизации их (пакетов) составов и расписаний реализации действий с ними на приборах конвейерных систем. В связи с этим в статье разработаны математические модели многостадийных процессов выполнения произвольного количества пакетов заданий в конвейерных системах при наличии промежуточных буферов ограниченных размеров для двух и трех приборов, а также для произвольного количества приборов. Использование этих моделей позволяет определять моменты времени начала выполнения пакетов заданий на приборах конвейерных систем с учетом ограниченных размеров промежуточных буферов, а также длительности интервалов времени использования этих ресурсов и эффективность их использования в течение времени. Также разработан алгоритм математического моделирования процессов выполнения пакетов заданий в конвейерных системах при наличии промежуточных буферов ограниченных размеров, осуществляющий на основе заданного порядка реализации действий с пакетами заданий на приборах конвейерных систем вычисление временных характеристик этих процессов. Осуществлена разработка приложения, реализующего синтезированные математические модели процессов выполнения пакетов заданий в конвейерных системах с промежуточными буферами ограниченных размеров и соответствующий метод моделирования этих процессов. Разностороннее тестирование разработанного приложения показало, что полученные математические модели и метод моделирования адекватно описывают ход многостадийных процессов выполнения пакетов заданий в конвейерных системах, задаваемый с использованием различных значений их (процессов) параметров

    Toward Robust Manufacturing Scheduling: Stochastic Job-Shop Scheduling

    Full text link
    Manufacturing plays a significant role in promoting economic development, production, exports, and job creation, which ultimately contribute to improving the quality of life. The presence of manufacturing defects is, however, inevitable leading to products being discarded, i.e. scrapped. In some cases, defective products can be repaired through rework. Scrap and rework cause a longer completion time, which can contribute to the order being shipped late. In addition, complex manufacturing scheduling becomes much more challenging when the above uncertainties are present. Motivated by the presence of uncertainties as well as combinatorial complexity, this paper addresses the challenge illustrated through a case study of stochastic job-shop scheduling problems arising within low-volume high-variety manufacturing. To ensure on-time delivery, high-quality solutions are required, and near-optimal solutions must be obtained within strict time constraints to ensure smooth operations on the job-shop floor. To efficiently solve the stochastic job-shop scheduling (JSS) problem, a recently-developed Surrogate "Level-Based" Lagrangian Relaxation is used to reduce computational effort while efficiently exploiting the geometric convergence potential inherent to Polyak's step-sizing formula thereby leading to fast convergence. Numerical testing demonstrates that the new method is more than two orders of magnitude faster as compared to commercial solvers

    Energy-Efficient Flexible Flow Shop Scheduling With Due Date and Total Flow Time

    Get PDF
    One of the most significant optimization issues facing a manufacturing company is the flexible flow shop scheduling problem (FFSS). However, FFSS with uncertainty and energy-related elements has received little investigation. Additionally, in order to reduce overall waiting times and earliness/tardiness issues, the topic of flexible flow shop scheduling with shared due dates is researched. Using transmission line loadings and bus voltage magnitude variations, an unique severity function is formulated in this research. Optimize total energy consumption, total agreement index, and make span all at once. Many different meta-heuristics have been presented in the past to find near-optimal answers in an acceptable amount of computation time. To explore the potential for energy saving in shop floor management, a multi-level optimization technique for flexible flow shop scheduling and integrates power models for individual machines with cutting parameters optimisation into energy-efficient scheduling issues is proposed. However, it can be difficult and time-consuming to fine-tune algorithm-specific parameters for solving FFSP

    Energy-aware coordination of machine scheduling and support device recharging in production systems

    Get PDF
    Electricity generation from renewable energy sources is crucial for achieving climate targets, including greenhouse gas neutrality. Germany has made significant progress in increasing renewable energy generation. However, feed-in management actions have led to losses of renewable electricity in the past years, primarily from wind energy. These actions aim to maintain grid stability but result in excess renewable energy that goes unused. The lost electricity could have powered a multitude of households and saved CO2 emissions. Moreover, feed-in management actions incurred compensation claims of around 807 million Euros in 2021. Wind-abundant regions like Schleswig-Holstein are particularly affected by these actions, resulting in substantial losses of renewable electricity production. Expanding the power grid infrastructure is a costly and time-consuming solution to avoid feed-in management actions. An alternative approach is to increase local electricity consumption during peak renewable generation periods, which can help balance electricity supply and demand and reduce feed-in management actions. The dissertation focuses on energy-aware manufacturing decision-making, exploring ways to counteract feed-in management actions by increasing local industrial consumption during renewable generation peaks. The research proposes to guide production management decisions, synchronizing a company's energy consumption profile with renewable energy availability for more environmentally friendly production and improved grid stability
    corecore