10,044 research outputs found

    Graphene nanoring as a tunable source of polarized electrons

    Get PDF
    We propose a novel spin filter based on a graphene nanoring fabricated above a ferromagnetic strip. The exchange interaction between the magnetic moments of the ions in the ferromagnet and the electron spin splits the electronic states, and gives rise to spin polarization of the conductance and the total electric current. We demonstrate that both the current and its polarization can be controlled by a side-gate voltage. This opens the possibility to use the proposed device as a tunable source of polarized electrons.Comment: 12 pages, 7 figures, accepted in Nanotechnolog

    Conductance of a single-atom carbon chain with graphene leads

    Full text link
    We study the conductance of an interconnect between two graphene leads formed by a single-atom carbon chain. Its dependence on the chemical potential and the number of atoms in the chain is qualitatively different from that in the case of normal metal leads. Electron transport proceeds via narrow resonant states in the wire. The latter arise due to strong reflection at the junctions between the chain and the leads, which is caused by the small density of states in the leads at low energy. The energy dependence of the transmission coefficient near resonance is asymmetric and acquires a universal form at small energies. We find that in the case of leads with the zigzag edges the dispersion of the edge states has a significant effect on the device conductance.Comment: 9 pages, 4 figure

    Miniature Microwave Notch Filters and Comparators Based on Transmission Lines Loaded with Stepped Impedance Resonators (SIRs)

    Get PDF
    In this paper, different configurations of transmission lines loaded with stepped impedance resonators (SIRs) are reviewed. This includes microstrip lines loaded with pairs of SIRs, and coplanar waveguides (CPW) loaded with multi-section SIRs. Due to the high electric coupling between the line and the resonant elements, the structures are electrically small, i.e., dimensions are small as compared to the wavelength at the fundamental resonance. The circuit models describing these structures are discussed and validated, and the potential applications as notch filters and comparators are highlighted

    Radio frequency pulsed-gate charge spectroscopy on coupled quantum dots

    Full text link
    Time-resolved electron dynamics in coupled quantum dots is directly observed by a pulsed-gate technique. While individual gate voltages are modulated with periodic pulse trains, average charge occupations are measured with a nearby quantum point contact as detector. A key component of our setup is a sample holder optimized for broadband radio frequency applications. Our setup can detect displacements of single electrons on time scales well below a nanosecond. Tunneling rates through individual barriers and relaxation times are obtained by using a rate equation model. We demonstrate the full characterization of a tunable double quantum dot using this technique, which could also be used for coherent charge qubit control

    Quantum Effects in Coulomb Blockade

    Full text link
    We review the quantum interference effects in a system of interacting electrons confined to a quantum dot. The review starts with a description of an isolated quantum dot. We discuss the status of the Random Matrix theory (RMT) of the one-electron states in the dot, present the universal form of the interaction Hamiltonian compatible with the RMT, and derive the leading corrections to the universal interaction Hamiltonian. Next, we discuss a theoretical description of a dot connected to leads via point contacts. Having established the theoretical framework to describe such an open system, we discuss its transport and thermodynamic properties. We review the evolution of the transport properties with the increase of the contact conductances from small values to values e2/π\sim e^2/\pi\hbar. In the discussion of transport, the emphasis is put on mesoscopic fluctuations and the Kondo effect in the conductance.Comment: 169 pages, 28 figures; several references and footnotes are added, and noticed typos correcte

    Semiconductor quantum dots for electron spin qubits

    Get PDF
    We report on our recent progress in applying semiconductor quantum dots for spin-based quantum computation, as proposed by Loss and DiVincenzo (1998 Phys. Rev. A 57 120). For the purpose of single-electron spin resonance, we study different types of single quantum dot devices that are designed for the generation of a local ac magnetic field in the vicinity of the dot. We observe photon-assisted tunnelling as well as pumping due to the ac voltage induced by the ac current driven through a wire in the vicinity of the dot, but no evidence for ESR so far. Analogue concepts for a double quantum dot and the hydrogen molecule are discussed in detail. Our experimental results in laterally coupled vertical double quantum dot device show that the Heitler–London model forms a good approximation of the two-electron wavefunction. The exchange coupling constant J is estimated. The relevance of this system for two-qubit gates, in particular the SWAP operation, is discussed. Density functional calculations reveal the importance of the gate electrode geometry in lateral quantum dots for the tunability of J in realistic two-qubit gates

    Effects of asymmetry on the dynamic stability of aircraft

    Get PDF
    The oblique wing concept for transonic aircraft was proposed to reduce drag. The dynamic stability of the aircraft was investigated by analytically determining the stability derivatives at angles of skew ranging from 0 and 45 deg and using these stability derivatives in a linear analysis of the coupled aircraft behavior. The stability derivatives were obtained using a lifting line aerodynamic theory and found to give reasonable agreement with derivatives developed in a previous study for the same aircraft. In the dynamic analysis, no instability or large changes occurred in the root locations for skew angles varying from 0 to 45 deg with the exception of roll convergence. The damping in roll, however, decreased by an order of magnitude. Rolling was a prominent feature of all the oscillatory mode shapes at high skew angles

    Two-oscillator model of trapped-modes interaction in a nonlinear bilayer fish-scale metamaterial

    Full text link
    We discuss the similarity between the nature of resonant oscillations in two nonlinear systems, namely, a chain of coupled Duffing oscillators and a bilayer fish-scale metamaterial. In such systems two different resonant states arise which differ in their spectral lines. The spectral line of the first resonant state has a Lorentzian form, while the second one has a Fano form. This difference leads to a specific nonlinear response of the systems which manifests itself in appearance of closed loops in spectral lines and bending and overlapping of resonant curves. Conditions of achieving bistability and multistability are found out.Comment: 14 pages, 6 figure
    corecore