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ABSTRACT

The coblique wing concept for transonic aircraft has been
proposed to reduce drag. This work investigates the dynamic stability
of the aircraft by analytically determining the stability derivatives
at angles of skew ranging from 00 and 450 and using these stability
derivatives in a linear analysis of the coupled aircraft behavior. The
stability derivatives were obtained using a lifting line aerodynamic
theory and found to give reasonable agreement with derivatives developed
in a Boeing study for the same aircraft.

In the dynamic analysis, no instability or large changes
occurred in the root locations for skew angles varying from Oo to 450
with the exception of roll convergence. The damping in roll, however,
decreased by an order of magnitude. Furthermore, rolling was a promi-

nent feature of all the oscillatory mode shapes at high skew angles.



II.

-ABSTRACT + + - -

LIST OF SYMBOLS . .

LIST OF FIGURES

LIST OF TABLES

INTRODUCTION. . . .

1.1 Background . .

*

TABLE

*

»

OF CONTENTS

1.2 Synopsis and Contributions

AERODYNAMICS . .
2.1 Generalities

2.2 Reference Axes

.

2.2.1 BOdY Axes (xb 3 yb

2.2,2 Stability Axes (xs

2.3 Strip Theory -

2.3.1 Variations in Aerodynamic Forces due

Perturbation O

>

»

) 2)

»

2,3.1.1 Section Lift Slope

2.3.1.2 Section Downwash

2.3.1.,3 Section Induced Drag .

2.3.2 Evaluation of Stability Derivatives by

Means of Strip Theory

2.4 Lifting Line Theory -

2.4,1 Introduction

.

.

2.4.2 Steady State Loading on an Airplane with

an Oblique Wing. .

ii

' Page

vi
xi

xvi

11
11
12

14

18
19

19

23



111,

Iv.

2./4.3 Section Final Angle of Attack «

f

2.4.4 Section Induced Drag .+ «» - + « .+

2.5 An Empirical Correction to Schrenk's Method

2,6 Summary ¢ -+ - v e » e o
STABILITY DERIVATIVES .
3.1 Basic Features . . . . .
3.1.2 Side Force .
3.1,3 Wing Rotation . ., . .
3.2 Derivatives . .

3.2.1 General Methodology .

3.2.2 &, p , q Derivatives .

3.2.3 B Derivatives . . . .

3.2.4 r Derivatives . . . .
3.3 8ummary . . . 4 - . e 4 . o
EQUATIONS OF MOTION . . . .+ . »
4.1 Rigid Body . « « « o + . .
4,2 Effects of Flexibility ., ,
NUMERICAL ANALYSIS . . . « . .
5.1 Model Description . . + . .

5.2 Aerodynamic Results . , . o

L

.

5.2.1 Comparison Between Strip Theory

Theory (Rigid Case) .

5.2,2 Comparison Between Rigid and Elastic Wing

(Linear Theory) . v « +v ¢ « « &

5.3 Stability Derivatives and their Influence on the

Natural Modes . « ¢ ¢+ ¢« « &

iii

L]

.

Linear

.

Page

26
28
29
35
36
36
39
49
54
54
56
61
62
65
66
66
71
75

75

78

78

88

120



VI.

Page

5.4 Stability Derivatives .« « « o v o « o o o 0 o 0 W 126
5.5 Dynamic Results . « « - + « o « v o « o o o o o . 150
5.5.1 Natural Modes . . . . . . . o + « v o s o 150
5.5.2 Transient Response - - + + ¢ « « . . .« - . 161
5.6 SUMMALY «» » + v o o o o o v o o e e e e e .. 164
c0N¢LUSIONs............_.'......_._. 165
APPENDIXA....'............. . .. 166
A.l Relations Between Dimensional and Nondimensiénal .
Derivatives (Stability Axes) . . . . . . « « . . . 166
APPENDIX B , ., . . ; e e e n e e e e e s e e e e e . 168
B.l uDerivatives . . « . . « v v o o ¢ o v ¢ o s o 168
B.2 B Derivatives . . . e e e e e e e e e 168
B.3 G Derivatives , . . . . . . + o ¢« 4 e o 4 e e e . 174
B.4 p Derivatives , . ., . . . . . . . « « + & & o . . 179
B.SqDerivatives.. ................ 183
B.6 r Derivatives . ; s e e e e s e e e e e e e e e 186
APPENDIX C v v ¢ 4 o 4 « ¢ o o ¢ o o o o o s ¢ o = » 189
C.1l Similarity Transformation Between Inertia Matrices 189
APPENDIX D + ¢ v v o v o v v o o o o o o o o o o o o 191
D, 1 Downwash Matrig [5114 e e e e e e e e e e e 191
D.2 Evaluation of Kij Elements . . . . . . . . . . . 196
D.3 Structures Fundamentals . . . . . . . . . . . .. 205
Do Wing TWisSt o o « o ¢ + 2 4 o o o o o o o o o o & ; 223
D.4.1 Twist due to Control Surface Deflection , . 224

iv



‘ Page
D.4.2 Apparent Twist due to Rolling and Pitching

Velocities . . . . ¢ ¢« ¢ v v v o« v o o o 229
D.5 Unsymmetrical Flight Conditions . . . . . . . . 231
REFERENCES « + « o o o « ¢ o o o o o o e e e e un | 240



LIST OF SYMBOLS

2-D Section Lift Slope

Aspecf Ratio

Actual Wing Span

Unyawed Wing Span

Local Wing Chord

Pivot - C.G. distance (Fig. 3.5)

Mean Aefodynamic Chord for Unyawed Wing

Root Chord for Unyawed Wing
Rolling Moment Stability Derivative due
Rolling Moment Stability Derivative due

Rolling Moment Stability Derivative due

to

to

to

Roll Rate
Pitch Rate

Yaw Rate

Rolling Moment Stability Derivative due to Angle of Attack

Rolling Moment Stability Derivative due

Pitching Moment Coefficient

Pitching Moment Stability Derivﬁtive due
Pitching Moment Stability Derivative due
Pitching Moment Stability Derivat;ve due
Pitching Moment Stability Derivative due
Pitching Moment Stability Derivative due

Pitching Moment Stability Derivative due

vi

to

to

to

to

to

to

to

Sideslip

Roll Rate

‘Pitch Rate

Yaw Rate

Angle of Attack
Angle of Attack Rate

Sideslip



C, Yawing Moment Stability Derivative due to Roll Rate
P
C, Yawing Moment Stability Derivative due to Pitch Rate
q .
c Yawing Moment Stability Derivative due to Yaw Rate
r
c Yawing Moment Stability Derivative due to Angle of Attack
o .
c Yawing Moment Stability Derivative due to Sideslip
8 ) .
Cx Horizontal Force Coefficient
Cy Side Force Stability Derivative due to Angle of Attack
a
Cy Side Force Stability Derivative due to Roll Rate
P .
Cy Side Force Stability Derivative due to yaw rate
r
Cy Side Force Stability Derivative due to Sideslip
8 ‘
Cz Vertical Force Stability Derivative due to Roll Rate
p
c, Vertical Force Stability Derivative due to Pitch Rate
q
C, Vertical Force Stability Derivative due to Angle of Attack
O
Cz_ Vertical Force Stability Derivative due to Angle of Attack Rate
CZ Vertical Force Stability Derivative due to Sideslip
B
CL Lift Coefficient
[CL(y)]B Section Basic-Lift Coefficient
[CL(y)jF Flat Wing Section Lift Coefficient
c, (y) Section Lift Slope
1. f
o
[CL(y)]Tot Section Total Lift Coefficient [Ref. Eq, 2,5]
CD Induced Drag Coefficient

L

vii



C, (¥)
Dy

(¢, (N1
D, 7 "B

Section Induced Drag Coefficient
Section Induced Drag due to Basic Lift

Drag Force

Section Induced Drag Force

Side Component of the Section Induced Drag Force
Section Drag

Section Induced Drag

Flat Wing Lift Distribution

External Forces

x-Component of the Aerodynamic Force
y-Component of the Aerodynamic Force
z-Component of the Aerodynamic Force

Side Force due to Induced Drag

Side Force due to Wing Lift

Inertia Matrix

Roll Moment of Inertia in Body Axes

Roll Moment of Inertia in Stability Axes

Pitch Moment of Inertia in Body Axes

Pitch Moment of Inertia in Stability Axes

Yaw Moment of Inertia in Body Axes

Yaw Moment of Inertia in Stability Axes
Roll-Pitch Product of Imertia in Body Axes
Roll-Pitch Product of Inertia in Stability -Axes
Roll-Yaw Product of Inertia in Body Axeés |

Roll-Yaw Product of Imertia in Stability Axes

viii



Inertia Matrix in Body Axes

Inertia Matrix in Stability Axes

Component of [Slj Matrix

Wing Lift (Force)

Rolling Moment (Stability Axes)

Section Rolling Moment (Stability Axes)
Section Lift Force |

Pitching Moment (Stability Axes)

Mean Aerodynamic Chord

Section Pitching Moment (Stability Axes)
Section Lift Slope

Yawing‘Moment (Stability Axes)

Section Yawing Moment (Stability Axes)
Roll Rate

Pitch Rate, Dynamic Pressure

Rate of Yaw

Aerodynamic Influence Matrix

Structural Deflection Matrix

External Moments

x-Axis Velocity Component (Stability Axes)
Flight Air Speed

Cruise Airspeed

Downwash Velocity

Doﬁnwash Angle at Three-Quarter Chord Point
z-Axis Velocity Component (Stability Axes)

Section Horizontal Force (Stability Axes)

ix



™

9(y)

o(y)

Moment Arm about Longitudinal Stability Axis
Section Side Force (Stability Axes)

Moment Arm about Lateral Stability Axis
Moment Arm about Quarter-Chord Line at A = 0

Section Vertical Force (Stability Axes)

Perturbation Angle of Attack

Cruise Angle of Attack

Sectién Total Angle of Attack
Sideslip Angle
(Figure 3.4)

Strength of Line Vortex

Increment (except when De(y))

Crulse Yaw Angle of Wing

Flat Wing Section Downwash Angle [rad]
Section Downwash Angle due to Twist [rad]
Pitech Attitude Angle

Section Twist

Wing Built-in Dihedral (unyawed wing)
Air Density

Natural Frequency of Airplane Response Mode



Figure

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9a
2.9
2.9
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

5.2

5.3

LIST OF FIGURES

Total Lift and its Component . . . . - . . . . . .
Body Axes S
Stability AXes . + v o« v « o 4 0 4 e e e o« e . ..
Vortex Pattern Representing a Lifting Wing . . . .
Horseshoe Vortex Pattern (unyawed wing) . . - . . .
Bound Vb:tex normal to Flight Stream . . . ST

Bound Vortex parallel to Wing Span .

.
-
.
-

Final Angle of Attack . . . - . . . . . . o oo ..

Spanwise Lift Distribution . . . . . « . . . . .

. . . * . . . ’ . v - .

Increment in Load Distribution due to a Change in ¢

Side Force due to Induced Drag . . . . . .

'Side Force due to Wing Rotation , . . . . . . . . .

Effects of Flexibility and Dihedral on Side Force .
Geometry of Wing Rotation and Moment Arms , . . . .
Influence of Wing Rotation on Ailerons Geometry » .
Perturbation Angles e 4 e r e e e e e e e
Section Lift and Drag Force for an Perturbation
Sideslip
NASA-BOEING Design for Oblique-Winged Transport , ,
Total ITAf . . . . « . o o . Lo e d e e e e

Downwash Angles e et e e e e e e e s e e e

xi

Page

10
10
20
22
22
22
27
31
32
33
38
40
45
45
51
52
55
56
60
77
79

81



5.4 Side Force . . . . . . .« v o . .
5.5 Flat Wing Induced Drag

5.6 OAx due to O Perturbation .

5.7 Oy dﬁe to « Perturbatiom . . .
5.8 DAz due to Rate of Roll . . . ..
5.9 Oz due to Rate of Pitch . . . . .
5.10 Total Lift for Sideslip . . . . .
5.11 Total Lift . . . . . . . .

5.12 Flat Wing Lift . . . . . . . .

5.13a Downwash Angle e e e e e e e e

5.13b Flat Wing Induced Drag . . . . .

5.14 Total Lift for G~Perturbation . .

5.15a A% due to Q-Perturbation . . . . .

5.15b Oy due to G-Perturbation . . . . .

5.16 Twist e e e e e e e e e e e e .

5.17 Total 1Lift for Roll Perturbation .
5.18 Az for Roll Perturbation . . . . .
5.19a Ax for Roll Perturbation . . . .
5.19p Ay for Roll Perturbation . . . . .
5.20 Total Lift for Pitch Perturbation
5.21 Dz for Pitch Perturbatiom .
5.22a Ax for Pitch Perturbation

5,22b Ay for Pitch Perturbation . . . .

5.23 Total Lift Distribution for Negative

- - - . . . - . .

Sideslip Simulation

5.24 AL for Negative Sideslip + » « « « « ¢« » + v o . .

xii

Page
82

82
84
84
85
86
87
90
921
93
93
95
97
97
929
100
101
103
103
104
105
107
107
108

109



5.25a

5.25b
5.26

5.27

5.28

5.29a
5.29
5.2%c
5.30a
5.30b
5.30c

5.31

5.32

5.33

5.34

5.35

5,36

3.41

AX for Negative Sideslip . . . . . . . . . . .
AY for Negativé Sideslip . . . . . . . . .
Total'Lift for only Left Aileron Deflected . . .
Total Lift for only Right Aileron Deflected . .
Total Lift for Antisymmetric Aileron Deflection
A7 for Left Aileron Deflection only . . . . . .
AZ for Right Ailerou Deflection only . . . . . .
AZ for Antisymmetric Defleetion . . . . .'.I.
AX for Left Aileron Deflection only . . . . . .
AX for Right Aileron Deflection only . . . . ;:.
OX for Antisymmetric Deflection . . . . . . .

Total Lift for Left Aileron Deflection only
(E.A. not Coinciding with Quarter-Chord) . . . .

Total Lift for Right Aileron Deflection only
(E.A. not Coinciding with Quarter-Chord) . . . .

Total Lift for Antisymmetric Aileron Deflection
(E.A. not Coinciding with Quarter-Chord) . . . .

AZ for Aileron Deflection . . + « v = o o + « &

Lift coefficient, lift curve slope, and

aerodynamic center versus skew angle . . . .

¢ stability derivatives versus skew angle . . .
ﬁ stability derivalives versus skew angle . .

p stability derivatives versus skew angle‘ . .

g stability derivatives versus skew angle ., ..
r stability derivatives versus skew angle

u stability derivatives versus skew angle .

xiii

Page
111
111
115
116
117
118
118
118
119
119

119
121

122

123

124

143
144
145
146
147
148

149



5.43

5.45

5.46

5.47

5.48

5.49

D. 4a

D.4b

D.4c

Root locus versus skew angle for
spiral mode . . . . .

Root locus versus skew angle for

. yolling convergence . . . . . .

Root locus versus skew angle for
phugoid mode. . . . .

Root locus versus skew angle for
short period mode , . . . . . .

Root locus versus skew angle for lateral

ogcillation or butch roll

Effect of skew on rolling convergence

and spiral mode shapes . . . .

Effect of skew on the phygoid mode shape
Effect of skew on short period mode shape .

Effect of skew on lateral oscillation on

Dutch roll

Rigid Wing 40% SAS - Response to Aileron
Elastic Wing 40% SAS - Response to Elevator .
Sideslip of an Obligque Wing Aircraft.

Moment about the C.G. in the Plane of Symmetry.

Horseshoe Vortex System. , . .

Downwash Control Points .

Finite Segment of a Straight Vortex Filament.
Control Point to the Right of Horseshoe Vortex
Control Point Within the Horseshoe Vortex
Control Point to the Left of Horseshoe Vortex .
Structural Skeleton of the Wing .
Plan View of Left Wing Tip Section.

Aerodynamic Moments Balance at the Root

xiv

Page

153

154

155

160
162
163
171
176
191
103
196
198
200
202
206
209

211



Plan View of Aircraft Centerline .

Structural Moments due to Control

Plan View of the Geometric Parameters used in‘

Computing the Apparent Twist due to Angular

Velocities . + . . + ¢ v & v « o o « &

Wing Section Center of Mass

XV



5.1

5.2

5.3
5.4
5.5
5.6
5.7

5.8

LIST OF TABLES

Laplace Transform of the Equation of Motion

Ailerons Dimensions . . . .

Influence of the Stability Derivatives on the

Natural Modes . . . . . . .
Comparison Between Stability
Computer Printout for Case 1
Computer Printout for Case 2
Computer Printout for Case 3
Computer Printout for Case 4

Computer Printout for Case 5

xvi

L » * . .

Derivatives

of Table 5.3
of Table 5.3
of Table 5.3
of Table 5.3

of Table 5.3

Page
72

113

128
130
132
133
134
135

136



I - INTRODUCTION

1.1 Background,

The oblique wing solution for a transonic transport has been studied
increasingly in the past few years. This is not a new idea; it was
first proposed morelthan 25 years ago and, in addition to work in this
country, it appears that German aerodynamicists made classified studies
of this configuration during World War II, although. the project never

reached the stage of flight tests [Ref, 1].

In 1947, a first attempt to investigate the stabiiity of an oblique
wing was made in the NACA Free Flight Tunnel, The iesults of the in-
vestigation indicated that 1s was possible to skew the wing as a unit
to angles as great ag 40° without encountering serious gtability and
c&ntrol difficulties. At an angle of skew of 600, however, the aile-

ron control became unsatisfactorily weak [Ref. 2].

For supersonic speeds, in addition to the frictiom and vortex
drag, the wing experiences a wave drag associated with the thickness
or volume of the wing, as well as with the lift distribution, The
vortex drag is independent of the distribution of 1lift in the flight
direction, whereas the wave drag does -  depend on the distribution in
the direction of flight. UHowever, it diminishes as the length of the
wing in the flight direction increases, In fact, linéaf theory shows
that the wave drag due to lift diminiéhes approximately as the iaverse
square of the length, while wave drag due to volume diminishes as the
inverse of the fourth power; fﬁrthermore, spreading the lift over a

greater length diminishes the sonic boom intensity [Ref. 37.



Structurally, an oblique wing presents the advantage of having a
structure continuous across the pivot and makes tension the primary
icad on the pivot. It is well known that swept-forward wings show a
tendency for aeroelastic divergence and this remains an area of concern
for the oblique wing also. 1In any case, recent Boeing studies show that
for the unrestrained airplane it is possible to reach alstatic stabil-
ity without a severe penalty in weight., Oscillatory aefoelastic in-
stability occurs at speeds higher than those at which the clamped
fuselage static instability occurs (the clamped fuselage being a more

conservative approach) [Ref, &7,

The object of this study is to analyze the aerodynamics and

dynamics of oblique wing aircraft.

So far, with the exception of limited work based on exténsions of
symmetric aircraft theory to the yawed wing aircraft concept, only
Boeing Commercial Airplane Company and NASA-Ames Research Center have
done systematic studies on the dynamicsof oblique wing alrcraft. The
study by Boeing [Ref. 257, a NASA sponsored one, was aimed toward a
design investigation for flight in high transonic speed regime. The
vawed wing aircraft was chosen as the most promising configuration for
that regime. During this work, we shall use the design solution for
a yawed wing aircraft chosen by Boeing and compare portions of our
results with theirs.

The work done at NASA-Amez Research Center in the last few years

has been characterized by several wind tunnel tests to investigate wing

aerodynamic coefficients at different skew angles, Future programs are



very interesting. A remote-pilot vehicle (RPV) with an'oblique wing,
having 26' (unyawed) span, has already been built. The flight tests,
investigating 1oﬁ subsonic speed, are expected to sfart before the end
of the year. A pressure model, based on Boeing design 5-3 [Ref. 25

should be completed within two years,

A supersonic drone, the Firebee II, a Flight Reséafch Center (ERC)
project capable of Mach 1,4, should be completed in three years, The
data gathered from this project will be used for the. one which in-
volves the modification of a NASA fighter, the F-8, with an oblique
wing, This last project, another FRC program, should‘ﬁé completed

within three years.

Very recently, Boeing has considered an oblique wing design for

a commercial transport crulsing at Mach .95.

1.2 Synopsis and Contributions.

As an mid to the reader, the remaining chapters of this peport

are briefly summarized below.

Chapter II deals with the wing aerodynamics. Spanwise distribution
of.lift and induced drag are computed according to the strip theory and
lifting line theory methods. An empirical correction to Schrenk's
method for evaluating spanwise 1lift distribution [Ref. 6] is then

proposed for the oblique wing.

In Chapter I1I, the basic features of an oblique wing aircraft are

first analyzed. A lift contribution to the side force due to wing



rotation has been found and its derivation is described; the induced
drag also introduces a side component and its magnitude is computed.
The new derivatives due to the oblique wing and the geﬁeral methodol-

ogy for evaluating stability derivatives are also described in this

Chapter.

Chapter IV deals with the derivation of the equation of motion.

The numerical results are given in Chapter V. First, the span-
wise distribution of lift, downwash, and induced drag, as computed by
strip and lifting line theory, are reported and compared, Then, the

results for rigid and flexible wing, as computed by Iifting line theory,

are described. Special emphasis is given to the spanwise distribution
of the increments of the aerodynamic forces during simulated perturbed
conditions, and the resulting stability derivatives. Root loci vs,
skew angle along with the mode shapes are shown for all the natural

modes.

Chapter VI contains the final conclusions and remarks.



II AERODYNAMICS

2.1 Generalities

The lift generated by a wing can be divided into two contributions:

lift due to twist and camber, and lift due to the flatwing at angle of attack,

According to linear theory these two contributiéns are independent
of each other. and the 1ift is simply equal to their superposition, 1In
addition, the twist contribution does not depend on the angle of attack
and therefore on its variations, but it does depend on sweep and speed
changes (or, more exactly, on dynamic pressure variations). In a
stability analysis we must know the spénwise distribution of the aero-
dynamic force and how such distribution varies when the‘wing undergoes
perturbations, TLet us now 1limit ourselves to the lift.component of the
aerodynamic force since drag and side forces can be derived from the

knowledge of the 1lift.

For a symmetric alrcraft it is possible to obtain the 1ift distri-
bution for the perturbed condition by applving strip theory to the cruise
spanwise 1lift distribution [Ref, 7 ], Though an approximate one, this

method produces satisfactory results in the linear range.

The perturbations considered in a stablility analysis can be divided

into two groups:

1) perturbations which affect the total 1ift distribution (£flat wing
plus twist contribution)

2) perturbations which affect only the flat wing.

To the first group belong the u , r , and B perturbations; to



the second group the perturbations involving change in the local angle

of attack (&, p , and q).

For a symmetric aircraft the flat wing spanwise lift distribution

for the cruise condition is symmetric,

Let us now consider the flat wing lift distribution (FWLD) of a
skewed wing, For such a wing at no sweep, the lift distribution is
symmetric and elliptic (because of the chord distributidﬁ). When the
wing is swept, the new spanwise lift distribution will now show an
increase in lift on the aft part of the wing and a decrease on the
forward one, because of an upwash generation in the first case and a
downwash increase in the second one., The need for twist in this wing
will be based now not on a 'tip stall last' requirement, but primarily
on the need to obtain a symmetriec lift distribution from the asymmetric
flat wing 1ift.‘ Fig. 2.1 shows the asymmetric 1lift, 1ift due to twist,
and total lift versus span. The accurate evaluation of the change in
aerodynamic loading will lead to good precision in cbmputing the wing
contribution to stability derivatives, We shall now follow two approaches
in determining the spanwise 1ift distribution during the perturbed motion.
The first, based on strip theory, can be uged for all perturbations, but
in the case of sideslip it fails to give any acceptable result., In
order to improve this situation an empirical méthod, based on a modifica-
tion of the Pope~Schrenk  method [Ref., 6] which can compute the spanwise
1ift distribution for a flat oblique wing was obtained and will.be

briefly discussed in section 2,5 ,

The second approach is based on the evaluation of the spanwise 1lift
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distribution of an oblique wing by means of linear aeroﬁynamic theory.

In this case, the spanwise 1ift distribution is computed for both cruise
and perturbed conditions. This second method also allows the static
effects of a flexible wing to be included, The load distributions ob-
tained by means of these two methods will then be ﬁsed in determining

the stability derivatives and the results compared. Once we have com-~
puted the stability derivatives we shall use these values in the equations
of motion and determine the natural behavior and the time response to

control disturbances,

2.2 Reference Axes

To discuss the problem of stability, it is necessary to set up a
system of refefence axes which form the basis of a system of notation
used to describe the motions of an airplane. Two basic body fixed axes
systems, each consisting of three mutually perpendicular axes passing
through the center of gravity of the airplane, adequately cover most of
the aerodynamic problems in stability considerations. These are the
"body axes' and the "wind axes'", which will be referred to as "stability

axes”,

2.2.1 Body Axes (x Z

b * I » Fp)

The body axes system is rigidly fixe& in’the airplane and is the
system of mutually perpendicular axes passing through the airplane's
center of gravity and whose X-axis is parallel to the thrust axis, the

wing mean aerodynamic chord, or some other longitudinal reference and is

positive in the direction of the nose of the airplane. Herein it is



taken along the body centerline reference. Figure 2.2 shows this
system together with all forces, moments, displacements, and velocities,

The XZ plane is the plane of symmetry for the airplane,

2.2.2 Stability Axes (xs s Vg o zs).

The stability axes system differs from the body axeé system in that
the X-axis is parallel to the relative wind, positive forward. The
Z-axis is positive down (Fig. 2.3). The Y-axis is positive to the right.
The moment, angle, and angular velocity conventions afe given by the

right hand rule.

The stability axes system is the one used for basic aerodynamic
performance work, and it will be used in our analysis.- In our study we
shall also assume that for zero angle of attack stability and body axes

will coincide.

2.3 Strip Theory

The strip hypothesis asserts that we may calculate the aerodynamic
force on each styrip as if itwere an isolated airfoil moving with the
resultant velocity which it has because of its local position on the

aircraft [Ref. 7].

The strip hypothesis is a first approximation to the actual case
where the trailing vortices from each strip possibly interfere with the
others, but thisfirst approximation is confirmed by experiments to give
results which are in excellent agreement with the facts as observed,

even at incidences above the stall, for a symmetric aircraft, Unfortu-



*»
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Notution for body axos.

7. = rolling moment p = rate of roll
M = pitching 1nomoent q == rato of pitch
N == yawing moment r =: rate of yaw
[X, ¥, Z] = componeants of resultant asrodynamic force

{7, v, 0] = components of velocity of C relative to atmosphere

Figure 2,2 - Body Axes [Ref. 217

Figure 2.3 - Stability Axes
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nately, when dealing with motions involving rate of pitch or rate of
‘roll, the strip theory fails to give a good approximation for the case
of an oblique wing, since it predicts no 1lift change at the wing root
chord for the case of & roll, or at the wing station whose quarter

chord is crossing the Ve axis, for the case of pitch.

The advantage of this approach is that it allows us to evaluate
the stability derivatives using different sources of data, such as
wind tunnel or flight tests, and computer results,

2.3.1 Variations in Aerodynamic Forces due to a Perturbation « .

Since the twist (or dihedral) contributions are independent of
changes in angle of attack, only the flat wing lift distribution (FWLD)

needs to be considered. (Subscript F will indicate flat wing quantity),
We can now introduce the following approximations.
2.3.1.1 Section Lift Slope.

Assuming the FWLD is given, the local 1lift slopée can be computed as

[C.(y)]
L F
(04 0
where
CL {y) = local 1lift slope at statiom y (1/rad)
(04

[CL(y)]F = local 1ift coefficient of the flat wing at

station ¥y

o] = angle of attack for cruising condition (rad).

11



2.3,1.,2 Sectlion Downwash.

The downwash is a consequence of the wing not having an infinite

span. TFor a 2-D wing, the section lift coefficient is given by

00,9, 01 pop = mgl% + 61 = mol * m8() e
where
my = Z—D section lift.slope
B(y) = section twist.

The presence of trailing vortices in a finite wing introduces local
dowvawash velocities whose effect is to reduce the local angle of attack
and, therefore, the 1ift produced by the wing. The two terms of (Eq .

2.2) will become, for a 3-D wing

agQ, = mo[ao - Eo(y)]
(2.3)
aoe(y) = mo[B(Y) - Ne(y) ]

where

eg(y) = flat wing downwash angle

il

he(y)

downwash angle due to twist.

Therefore, the section total 1ift coefficient for a 3-D wing is

[CLN I = mg L0 - €91 + [8(y) - Ae&(y)] (2.4)

The previous expression applies to a straight as well as to a skewed

or swept back wing; the only change, assuming a2ll quantities are measured

12



in the flight direction, would occur in the value of ay the 2-D
section 1ift slope. We refer to R.T. Jones [Ref. 7] for a detailed

discussion of the derivation of aU .

We shall now evaluate the downwash angles by computing the difference
in the local 1lift distribution from the 2-D case, This is a "crude"
approximation, but in a strip theory analysis it is the only way to

evaluate the downwash velocity and, therefore, the spanwise induced

drag distribution.

In section 5,2,1 we shall compare the downwash results obtained with
this method against the corresponding results obtained applying the

method based on linear theory described in the next section.

Let us define

[C, () g = [ (N + [C. (0], (2.5)

where
[CL(y)]F = flat wing section lift coefficient
ECL(y)]B = gection basic-1ift coefficient, It represents the

G-independent contribution to 1ift due to twist,
(€9 Ty = 8900 = €T (2.6)
[C. ()1 = 3,[0(3) - he(m) ] @

We can now assume, according to linear theory, that the two down-
washes are independent from each gther, and furthermore, that the down-

wash due to twist does not depend on the angle of attack., With these



assumptions we have

de, (v)
[‘CLW)]F = ag[ay - €,(y)] = a, {1— a (% (2.8)
B¢, (v) [, ()3 [Cy, 3]
a0 =1-—=oFfe1.—— (2.9)
& aoao aO
aeo(y) ‘
&) = —55— % (2.10)
The total downwash is therefore given by
(€ I = W) + Aely) (2.11)
c, (y)
le(¥) pye  B€n(y) Ae( L
- y) 4 .«
ax - - L a, (2.12)

2.3.1.3 BSection Induced Drag.

The aerodynamic drag in a finite wing has two components: the first
is due to skin friction and pressure distributions on the boundary, the
second is the one induced by the 1lift because of the presence of trailing

vortices.

Both components are normally of the same order, and dependent on
the aircraft speed [Ref.15]. The analytic spanwise evaluation of these

two components is a difficult task,

According to Multhopp [Ref. 9] we may write the induced drag coef-

ficient for the wing as

14



b/2

1
CDi = 53 f C CL(y) @, dy (2.13)
-b/2

where the so-called induced incidence 1is

b/2
= L 1 d
% = B f y-nan [CCL(y)] dn (2.14)
' ~b/2

and the section induced drag coefficient is given by

CDi(y) = CL(Y)Oéi (2.15)

Garner, tRef. 10] who has discussed induced drag and its spanwise
distribution in incompressible flow, has shown that, for swept back
wings, the quantity CCL(y)Oi does not give an acceptable spanwise
distribution of induced drag as suggested by Robinson and Laurmanﬁ
[Ref. 11]. This conclusion can be expected since the induced incidence
Oéi , a8 computed in Eqn. (2.14) implies that all the bound. vortices of
the horseshoe vortex system, used ags a model for the wing, lie on a
straight line perpendicular to the velocity. Therefore, the downwash
angles correspond to the ones of a straight wing and the induced drag
obtained is the product of the 1lift distribution of a swept wing times
the downwash angle of a straight wing having the same wing span and the

same spanwise lift distribution,

We shall return to this subject when we evaluate the induced drag
distributions by means of linear theory. TFor the sake of clarity we’

shall recall that the downwash angle is the ratio %% where

15



w downwash velocity measured at the lifting line

]

v free stream velocity,

In our strip analysis the downwash angles are Sbtained direﬁtly
from the actual spanwise lift distribution; we assume that the downwash
angle is the cause of the difference in 1lift coefficient from the
corresponding 2-D one, and no assumptions are made on the wing géometry.
We may therefore expect a better accuracy in the esfimate of the gpanwise

drag distribution.

et us now see how to relate the previous discussion to the evalua-

tion of stability derivatives by means of strip theory.

For the 1lift case we have one term, the basic lift, which is
" independent™ and the other, the flat wing, which does depend on ' ;
the same considerations can be applied to thé drag. In the "¢ indepen-
dent" drag contfibution we can group skin frictibn, pressure distorsions,
and, if we extend to tﬁe drag the same assumptions made for the lift,
also the induced drag due to basic 1lift, This approximation is quite
accurate for skin friction and pressure distortion, but it becomes less
accurate when considering the induced drag of the basic 1lift, as is

shown mnext,

The total section induced drag is obtained by substituting into

Eqn.(2.15) the total values derived in the previous sectioms

[CDi(y)]Tot = [ M Ipoe L€ Igge
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= 1,1 + [0,y | L€, + he(r)]

(2.16)
= (€M1, (e, + 2T+ [C (] [€,(3) + Ae(y)]
We can see that the induced drag produced by the basic lift
distribution
[Cp N1y = [N, [€q() + Ae()] (2.17)
i

has the term [CL(y)]B Eo(y) that is ( dependent since eo(y) , as

discussed in the previous section, is & dependent,

Therefore, only the quantity [CL(y)]B Ae(y) can be assumed,

within the range of linear theory, as O independent, whereas

[CL(y) Ig €, + [CL(y)JF Leg(y) + LE(y) ] (2.18)

is the & dependent component of the drag. The change in the section
drag for perturbations introducing a local change in the angle of attack

can now be computed as the rate of change of Eqn. (2.18) with «

oC, (¥)
—L— = Gy €@+ 6 (e + be(y)]
(2.19)
an(y) .
= el —=5g— + CLa(y) [eq(y) + be(y) ] + CLn 1y

and by substituting Eqns. (2.5), (2.11) and (2.12) into (2.19) we obtain

BCDi(y) CL ()
T [CL(y”Tot 1-

+ € (y) [€,(9)] (2.20)
0 La O Tot

17



'2.3.2 Evaluation of Stability Derivatives by Means of Strip Theory,

Assuming the spanwise lift distribution is givén for the flat wing
as well as f§r the wing with the nominal twist and dihedral, it is pos-
gible to evaluate the stability derivatives by using the approximations
used in section 2.3.1 and the expressions given in sections 3.3.2 and

3.3.4 .

For the étability derivatives due to slde-slip it is necessary to
know the spanwise 1lift distribution corresponding to the new sweep angle
differing from the nominal one by A= - g . Because qf the peculiarity
of the shape of the FWID and its dependgnée on the sweep angle, an aé—

proximation assuming

coszA

c:oszAD

([ e, Ipge) = (LECLW ]Tot)AU (z.21)

where
A=Ay -
would fail to give an acceptable result. The knowledge of the spanwise

1lift distribution for the new sweep angle would therefore be required.

For the case when such 1ift would not be available, an empirical
correction to the Pope-Schrenk's method [Ref. 6,12] was derived and it

is described in sectiom 2.5 .
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2.4 Lifting Line Theory

2.4,1 Introduction

A more accurate way of evaluating thé stability derivatives, spe-
cially roll and pitch derivatives, is to use linear aerodynamic theory.
The literature offers a wide variety of methods whi;h can be.used; many
of these are very complex and allow the user to evaluate both the span-
wise and chord-wise load distribution, The Simplesf‘three-dimensionall
wing theory is that based on the concept of the 1ifting line. In this
theory the wing is replaced by a straight line [Ref, 13]. The circula-
tion about thé'wing associated with the lift is replaced by a vortex
filament. This vortex filament lies along the straight'line; and at
each spanwise station, the stfength of the vortex is'proportional to the
local intensity of the 1ift. According to Helmholtz's theorem, a vortex
filament cannot terminate in the fluid. The variation of vortex strength
along the straight line is therefore assumed to result‘fromlsuperposition
of a number of horseshoe-shaped vortices, as shown in Figure 2.4 . The
portions of the vortices lying along the span are called the "bound
vortices". The portions of the vortices extending downstream indefinitely

are called the '"trailing vortices™.

The effect of trailing vortices corresponding to a positive 1lift is
to induce a downward component of velocity at and behind the wing. This
downward component is called the "downwash', The magnitude of the down-
wash at any section along the span is equal to the sum of the effects
of all the trailing vortices along the entiré span. The effect of the

downwash is to change the relative direction of the air stream over the
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AL S . voriices
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Direction of oerodynomic
airstream Bound cenfers

vortices

Figure 2.4 - Vortex Pattern Representing a Lifting Wing
- [Ref. 13]

The section is assumed to have the same aerodynamic characteristics
with respect to the rotated air stream &s it has in normal two-diﬁen—
sional flow. The rotation of the flow effectively reduces the angle
of attack. Inasmuch as the downwash is proportional to the lift coef-
ficient, the effect of the trailing vortices is to reduce the slope of
the 1ift curve. The rotation of the flow also causes a corresponding
rotation of the lift vector to produce a drag component in the direction

of motion.

The methods using discrete vortices to represent the continuous
distribution of circulation of the vortéx sheet are attempts  to simplify
the computations. In the methods employing discrete vortices, two-dimen-
sional theory is used to determine the most representative locations of
the_vortices as well as of the control points. If only one vﬁrtex iine
is used, it is placed along the center-of-pressure line in two-dimensional

flows, which for a flat plate at an angle of attack and at subsonic speeds

20



is the quarter chord line.

lFor subsonic speeds, the downwash varies inversely with the
distance behind the quarter chord line; at the position of the three-
quarter chord line it just equals in magnitude the vertical component
of the flow téngential to the flat plate having the same circulation.
Conversely, if the condition of tangential flow is satisfied at the
three-quarter chord line, the strength of the concentrated vortex will
indicate the lift on one wing due to angle of &ttack; Of course, these .
methods of obtaining correspondence between the 1ifting lines and the
vortex sheets loose their validity near the corners of the wing, where

the flow differs sharply from the two-dimensional.

In a stability analysis it is not required to have great accuracy
in the chordwise load distribution, Therefore, it is sufficient to use
only one vortex line placed, for subsonic cruise condition, at the
quarter-chord point. In deing se, little is lost in accuracy and a lot

is gained in simplicity.

The supersonic cage has to be approached in a different way accord-
ing to the properties of the supersonic flow, The metﬂod outlined in
this chapter applies to subsonic speeds only, but it can be extended
to the supersonic case, It can be shown that the horseshoe-vortex
system of Figure 2.4 is equivalent to the‘one whefe each horseshoe vortex
has a constant strength equal to the sum of the stfength of the bound

vortices contained at the corresponding section of Figure 2.5 .

When the wing is skewed, two models can be used. Figure 2.6 shows

the first one where the bound vortices are aligned with the wing span,
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and are at a gkew angle with respect .to the free stream velocity,

The second model, shown in Figure 2,7, assumes that the bound
vortices are perpendicular to the flight direction. This model corre-
sponds to the case where the wihg at a skew angle is actually replaced

by a finite number of straight wings, and will be used in this study,

The first model is expected to give a better accuracy when the
number of horseshoe vortices is small, but. the two models coincide when

the number of horseshoe vortices goes to infinity.

The method used in this study is based on a modification of fhe
Weissinger-L-Method and applies at subcritical Mach Number. This
method is derived from excellent work done by Gray and Schenk in 1953
[Ref, 147 and has been modified for the oblique wing case, Among the
advantages of such an approach to the evaluation of the spanwise dis~
tribution of the loading, is the possibility of evaluating the loading
increments due to aileron or flap deflection,effects of wing flexibility,
and accelerations on the wing, These features are fully described in

Appendix D.

2.,4,2 Steady State Loading on an Airplane with an Oblique Wing.

The fundamental problem involved is the development of a series of
equations which relate the spanwise lift distribution for an arbitrary
wing plan form in a given flight condition to the properties and atti-

tudes of the individual sections that form the wing.

For a 2-D wing, the following relationships can be found in any
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standard textbook on aerodynamics [Ref.7,15,17]:

L= pVI'= qm, C o (2.22)
L
W= s (2.23)

where

E
L]

local 1ift slope

0
C = local chord length
4 = section lift
O = total angle of attack (see Fig. 2.8)
1 2 .
q = E’p V™ = dynamic pressure
T = circulation

At a specific distance r behind the lifting line, the resultant
of the downwash velocity Wr and the flight velocity V 1is parallel to

the section zero 1lift line. Then,

W= oV (2.24)
from Eqn, (2.22) we obtain
m q(fa
0 f Vv
P= =g =m % (2.25)

Substituting (2.25) into (2.23) results in

m
_0¢/2
W i orf ' (2.26)

Equating (2.26) and (2.24)

av=-2C2, y

or

s ——=1 (2.27)



Since the theoretical section 2-D lift curve slopé is 27, r must
equal C/2 , which is the distance between the 1ifting line and the

three-quarter-chord point,.

Therefore, for the 2-D (unswept wing) case

W -
(V)BC/a = Y% (2.28)

corresponds to the control point where no flow exists normal to the zero
1lift line. Whenever the local lift slope differs from 27 , expression

(2.28) becomes

m
Wy  _ T
(V)3c/4 "o % (2.29)

The essential difference between a 2-D wing and a wing of finite
aspect ratio arises from non uniform spanwise loading which produces
the trailing vortices. The eqﬁations presented so far are considered to
apply to a finite wing when the effects of all the vortices, both bound

and trailing, have been taken into account,

Equation (2.29) can be written in matrix form

W | _|No
iscs = |7 1% (2.30)
This matrix relation represents a series of equations, each appli-

cable to a particular station on the span of the wing.

The elements of %%;3/40 , every one of which is affected by the

” bound and trailing vortices of the wing stations can be evaluated from

1

W _ 1 ;
lv}s/a ¢= &g [B11T (2.31)
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and by expressing ;Iﬂ in terms of 2}.

The [S1] matrix is the downwash matrix and is derived in Appen-

dix D,

Combining equations (2,30) we obtain

‘ i
L ol o |0 | 1,
8mq [S11 (%4 = [2 \J 1% (2.32)
or
i ARIIERER (2.33)
bam il T ' 3 :
2.4.3 Section Final Angle of Attack {O%%,
The final angle of attack across the span }a can be considered

f

to be composed of three essential parts (see Fig. 2.8).

scx%= garj + ocf+‘oz£ | (2.34)

where
%OQE: angle of attack caused by structural deflection of a
flexible wing
5Oé§= angle of attack caused by built-in twist, apparent or
aerodynamic twists, control deflection, angular velocities,
XOE5= flat (and rigid) wing angle of attack (measured w.r.t.

root-gsection zero-~lift line).

The angle of attack 30%}, caused by structural deflection of a
flexible wing due to the section lift at the section aerodynamic centers

is linearly related to the matrix %ﬂ{ as
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Figure 2.8 - Final Angle of Attack
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ol = [8,] tel (2.35)

where [82] = gtructural deflection matrix (described in Appendix D).

The contributions to the angle of attack Q% are described in

Appendix D,

2.4.4 Section Induced Drag.

As discussed in section 2.3.1, only the induced drag varies with .
The induced drag arises from the rotation of the aerodvnamic forces due

to the downwash velocities induced by the trailing vortices.

In our model, where the wing has been replaced by a lifting line
placed, for the subsonic analysis, at the quarter-chord line, the
section induced drag can be evaluated by computing the downwash angle

(Oi)i at the station bound vortex, This is similar to what is done

for %)3/4 o o except that downwash induced by a bound vortex on itself
is zero.

Therefore

W
MYy 1
Fﬁ)i = (\1)0/4 " Voo 2:j(Kij)c/4 L= o 2:J'(Kij)cm %4

0 (2.36)

where (K:’Lj)c/4 is the same as computed in Appendix D with the following

two exceptions:
Ci
1) the term 5 s distance of the control point from the lifting
line, must be dropped since the downwash is now evaluated at

the 1lifting line;
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2) the contribution to the downwash sould be disregarded for the
case when the control point 1s within the horseshoe vortex, as

discussed in Appendix D.

A more accurate result would be obtained using‘the vortex lattice
method. The results obtained in this analysils are discussed in Refer-

ence 1l6.

2,5 An Empirical Correction to Schrenk's Method

Another approach to the problem of spanwise load distribution
having much less theoretical foundation is presented by Flatt [Ref. 18].

It follows a method first presented by Schrenk [Ref. 197].

Schrenk's method makes allowance for the effect of the varying down-
wash along the span of a nonelliptic wing by assuming that the final
span load distribution for an untwisted wing is halfway between the
actual planform shape and a semi-ellipse of the same area, However,
Schrenk and Flatt did not consider a swept back wing; Alan Pope and
William R. Haney, assuming that the effect of sweepback on the non-
dimensional span loading is linear, proposed an empirical correction
[Ref., 6, 127 to take care of the effect of sweep back. It has been

successfully employed in preliminary design of subsonic aircraft,

The following empirical formula which was obtained during our

study of the oblique wing, can be applied to Schrenk's .method.

) ) o ] e

CRCL CRCL tan A

(2.37)
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where

A = skew angle

cp = e /cosA : root chord measured in the flight direction
0

b = bO cosA: actual wing span

b0 = wing span for the unskewed wing,

Since the goal of this method is to provide, in a fast way, the
shape of the spanwise 1lift distribution, the wing 1lift coefficient is
assumed to be known, In addition, the new spanwise 1ift distribution
obtained with this correction must be normalized by multiplying it Fimes
the ratio of the wing lift coefficient to the 1ift coefficient obtained

by integration of the new lift distributiomn.

The results of this correction, for the case of ‘a flat wing, were
checked against the 1ift distribution as computed by the numerical

program of Reference 20.

Figures 2.9a, b, and ¢ show the comparison between the two methods

for three different cases.

To date, no check has been done for the case of a wing having
twist. The major difficulty for this case is to estimate the
downwash velocities produced by the lift due to twist and, therefore,

to determine the effective twist.

Though for symmetric wings experience. suggests that an effec-
tiveness of 50% is an acceptable assumption, we do not expect that the

same can be applied to a skewed wing.

As pointed ocut before, the effect of a positive sideslip corresponds,
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for an oblique wing, to a negative change in sweep and the perturbation

will therefore affect both the FWLD and the basic 1ift distribution.

To a first order approximation it is possible to assume that the
change in the shape of the lift distribution for the total 1lift will

be proportional to the change with sweep of the FWLD.
Therefore, the simulation of a sideslip can be done by

1) determining , with the Pope-Schrenk's method corrected for the
skewed case, the FWLD for both the cruise sweep AD , and the
sideélip condition A = !b -B

2) multiplying the spanwise distribution of the ratio of the FWLD
at A=A, to the FWID at A= A -B times the total lift
distribution for the cruise condition in order to obtain the

corresponding distribution for the sideslip condition.



2.6 Summary.

The reference axes system used in this work,-thé stability axes,
has first been defined, The method for evaluating variations in the
aerodynamic forces due to perturbations was then ouflined. A simplified
method, based on strip theory, for computing spanwise distribution of

the induced drag was also proposed,

A second and more systematlic way of computing spanwise 1ift
distribution based on lifting line and including effects of wing flexi-
bility was the described. The spanwise induced drag disgtribution was

then evaluated by using lifting line theory.

In the last section of this Chapter, an empirical correction to

Schrenk’ method for the oblique wing case was proposed.
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III STABILITY DERIVATIVES

3.1 Basic Features

3.1.1 Flat Wing Lift Distribution (FWLD),

In section 2,1 we have described how the FWLD behaves when the wing
is skewed, This behavior is undoubtedly one of the most important
elements of difference from the symmetric case, The upward field genexr-
ated by the forward wing, causes the aft wing to "feel" a higher angle
of attack, This, as we mentioned before, is the cause of the loss of
symmetry in FWLD, but, because of the higher angle of attack actually
experienced by the aft wing, the stall condition will be reached in this
region first., This is similar to the case of a tip stall for a symmetric
wing, except that now only one tip would stall and the loss in balance
would produce not only rolling but also pitching moments. The recovery

from such a stall is very difficult,

This can be explained if we analyze in detail the motion of the

aircraft following the stall of the aft wing.

As we mentioned before, the loss in the lift symmetry introduces,
in the case of the left wing forward, positive pitching and rolling
moments. The nose-up motion deriving from the pitching moment introduces
an increase in the angle of attack of the whole wing as well as an
angular velocity; whereas the rolling moment produces only an angular

velocity,

The effect 0of these two angular velocities results in a linear
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variation of the local angle of attack for the wing, increasing it on

the aft part and decreasing it on the forward one.

Therefore, the aft wing will experience a further increase in the
angle of attack which will worsen the stall condition and extend it

inboard.

On the forward wing, instead, the increase in angle of attack of
the whole wing is counteracted by the decrease deriving from the angular
velocities and tﬁe final trend is consequently toward a delay in the
forward wing stall, which makes the nosg»down attitude, required for a

recovery, difficult to achieve.

The center of pressure of the flat wing lift distribution (FWID)
lies on the aft- portion of the wing and produces both pitching and
rolling moments as the angle of attack varies, introducing new important
derivatives, 1In fact, any change in the angle of attack affects the
FWID only and destroys the symmetry in the total lift distribution
obtained by twisting the wing. The consequence of this is a loss in the
moments' balance, Figure 3,1 shows the variation in spanwise lift
distribution, as given by linear theory, for a case where, for the sake
of clarity, the "perturbation” <& 1is assumed to be equal to 50% of ao .
it will be seen that a positive change in « produces an increase in
the lift whose aerodynamic cenfer is displaced toward a point in the
aft part of the wing, thus producing a rolling moment as well as a
piﬁching moment. By éonsidering the corresponding change in induced

drag, it is possible to evaluate the yawing moment,
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3.1,2 Side Force

A wing at a skewed angle experiences a side force deriving from
the induced drag component in the vy direction, Let us now derive

its magnitude,
Figure 3.2 shows & section of a wing at a skew angle A .

The principle of independence [Ref. B8] assumes that, in a friction-
less flow, all the results of the two-dimensional flow theory can be
applied immediately to an infinite oblique wing simply by subtracting

the axial component of velocity.

No matter whether we consider the free stream direction or the
direction normal to the leading edge, the lift generated by the wing

section is obviously the same, Therefore, the lift force is given by

1.2 . 1 2. ¢-1
4=73 0V cLO ¢, =

(3.1)

where the subscript (0 defines the quantity in the flight direction,

Since

<3
il

V, cosh (3.2)

and

(]
i

Cy cosA (3.3)

from 3.1 it is possible to derive the well known relationship

C. =G coszA , (3.%)
LO L . :

Figure 3.2a shows the decomposition of the velocity vector into two
components; one normal and one parallel to the leading edge., The two

elementary strips have the same area,
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Figure 3.2 - Side Force due to Induced Drag.,

If we now introduce a plane defined by the velocity vector "\70
and by the trailing edge segment where the two strips coincide, we can
derive the relationship between thelangles of attack measured in the two
directions. This relationship is useful when evaluating the angle of

attack during sideslip. This can be done by simply noticing that the
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height from the leading edge to the previously defined plane is the
~ same at the point kO as well as at k , This, of course, implies
that the leading edge is a straight line., The effects of twist or

dihedral would then be superimposed.

The distance h being a constant, by pure trigonometric consider-

ations applied to Figure 3.2b we obtain

C, sin¢, = h

00 (3.5)
C sinC=h
and from (3.3) we obtain
sinctO = sind cosA _ (3.6)
Therefore ,
ine
St
o= sin Yy (3.7)
and for small angle of attack
‘ %
= eosA (3.8)

The induced drag measured in the flight direction and the corres-
ponding one measured in the direction normal to the leading edge are

not the same.

The 1lift is the same in both cases; but the downwash angles are not.

The downwash velocity at the lifting line [see 2.3.1 and 2.4.4]
must be computed with respect to ﬁhe flight direction, since it is the
wing span measured with respect to such direction that will determine

the downwash velocity.

An easy mistake would be to extend the use of the well known

expression for the downwash angle (for an elliptic lift distribution)
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vy ﬁARO '
to the case normal to the leading edge
w_ L
vV TR

In fact, using equation 3.4 and since R = ARO / coszA , we find

that
o
= (3.10)
nARO ﬂARO
This implies that the induced drag measured in the two directions
is idertical, since :
C
Lo
d, = 4
i, ﬁARO
and
C CL
d, = § —t = g =0
i ™R nARO
where
di = section induced drag, flight direction
0
di = section induced drag, direction normal to the leading

edge,

The downwash velocity at the 1ifting line is induced by
trailing vortices aligned with the flight direction.

We shall call the downwash measured this way Wi .

The downwash angles in the desired direction can bow be computed
by dividing Wi by the corresponding velocity. Thus, the section

induced drag measured in the fiight direction is given by

Wy
4. = 4=
) Yo
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and, in a direction normal to the leading edge

Wi Wi
di = 4 v - £ §;—EBEK | (3.11)
- 0
i cosh (3.12)

Equation 3.12 shows that the induced drag measured normally to the

leading edge is greater than the component in the flight directiom.

In a symmetric swept back (or swept forward) wing, the two side-
components wouid cancel each other so that the total induced drag actu-
ally experienced by the wing coincides with the component in the flight
direction., For the oblique wing, the lack of symmetry introduces a side

component of the induced drag whose section magnitude is given by

i

(di)y = di sinfA = d . tanh (3.13)

Therefore, for the case of the left wing forward, the side force

contribution due to the induced drag of the wing is

(Fy) = - (Di)o tanA (3.14)

In addition to the side force (Fy)D due to the drag component in
the y direction, a second term must be introduced when the wing is
swept and at an angle of attack. The wing rotates perpendicularly to

X, and, therefore, parallel to z, (Fig., 3.3).

Let us now consider the wing position w,r,t. the stability axes for
the case @ # 0 and A# 0 (Fig, 3.3). This position can be better
visualized by considering these two steps: 1) a rotation of the aireraft

about its Yg = Yy axis by an angle Qb ; 2) a rotation of the wing
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about 2, by an angle A . The final position of the wing is no longer
parallel to the Vg axils, the left (forward) tip being higher than the
aft one. By idealizing the wing with a straight line and considering
its projection Y3 onto the Z, 5 Vg plane, we define the angle Yo
(Fig. 3.3b). ‘The 1ift vector being by definition perpendicular to the
wing axis and to the velocity (parallel to X ), will therefore be
banked by an angle producing a contribution (positive in this case) to
the gside force. This feature would not be present in a flying wing
since, by banking the wing by 70 , 1t would be ﬁossible to realign lift
and gravity, whereas in a conventional configuration the 1lift produced
by the tail and the different inertia properties produce a somewhat more

.
" complex picture.

We can now quantify this side force for the case of a straight

rigid wing, by introducing some geometric considerations.

Let us consider the wing for Oh = A= 0 and assume for simplicity

that our stability axes have their origin at the wing pivot; in this

case the y, axes would be aligned with the wing span.

Let us now rotate &  about Yg 3 we obtain the set of axes x

0
Yy o Zyp s where Yy = Vg is still aligned with the wing span.

b H

The rotation matrix for such transformation is

r

Xb cosOb 0 - sanb xs
V| = 0 1 0 Vg
zb L s1n0b 0 cosab zs
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====== Ying position for A=0

mwsmecome Wing position for Ofo =

and A#0 (left wing forward)

Figure 3.3 - Side Force due to Wing Rotation

p(y) cosh

ORIGINAL PAGE IS
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Figure 3.4 - Effects of Wing Bending on Side Force
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1f we now rotate the wing by A about its pivot, the wing axes

will be defined by the following matrix transformation

| i cosA sinA 0] x, cosdy cosA sinA - = sin0 cosA ||x
={-sinA cosA 0 Yy |= - sinA costy cosA sinA sin0 |y
i 0 0 1_ Y s:.nOlO 0 | cos;(:t0 i _zS_
X X
W s
Ve |7 BRI}y,
z z
W 5

The 1lift vector is perpendicular to the plane defined by U _  and

Vg and in terms of the stability axes

— _ ~ é .
U0 = U0 X (~= unit vector)
0 0 - sinA cosC
A '1 T 0
P (in stability axes) = [R] 1= [R] |1j= cosA
0 0 sinA sinOﬂU
Let us define
= A
L L z3
where %, is a unit vector + to ® and ¥
3 s W
S0 =
or 23 Xs )
N A
2yt Ve T 0
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1 ®x

since ?S (i.n stability axes) = 0) and %3 =1 24 we have
0/ J
Z3z

3 3 0
y Z
therefore 0
1
2. =| - tanA sina -
3 1 0 \I 1+ tanzA sinzoz0
We can now define ?3 to ’fc‘s and ’z\3
PN -
Yy * ¥y =0 Y3 =0
’y\3 -‘?3= 0 = -y, ta.nAsinOl0+y3 = 0
y A
0 -
1
Fan
v, ={1 d
3 2 . 2
tanA sinO:O ‘\Il + tan" A sin %
1
o -2 o
X, =% 0
0
The aerodynamic force in the X35 Vg 5 Zg reference axes has the

following components
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- D

F= (Fy)D
- LO

We can now express these in terms of our stability axes

r ] 1 0 0 Tl-p 1
X .
- tanA sing ‘
1 0 )
F | =|o0 (F
y 1+tm€Ashg%) 1+tm€Ash3%) y°D
tanA sind
0 . L - L
. 7 . 2 2 7 |
L~ o 1+ tan A sin cto 14+ tan" A sin o&o 4 L i

The value of 70 w,r,t., the stability axes X0 Vg 5 B is found

to be

tanA,sinaO
sin ¥, = 7 2 (3.15)
(1 + tan A sin Oéo)
and for sméll angles
Yo = % tanA (3.16)
The corresponding lift contribution to the side force is
(Fody = (g sin ¥y = (L), & tand (3.17)

A1l the previous analyses can be extended to the case of a flexible
wing having a built-in dihedral (and neglecting the twist contribution)

by superposing a correction to the angle (Fig. 3.4)

v(y) = ’)’0 + @(y) cosA (+ bending modes) (3.18)
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where

p(y) = geometric dihedral at A= 0

In this case the side force has to be evaluated by means of an
integration along Yg - The equilibrium condition may be reached by

banking the aircraft by an angle ¢, which, in terms of stability axes,

0
corresponds to introducing a gravity component in the Vg direction,
For a straight rigid wing with no twist, considering total side force

(contribution of the oblique wing itself and contribution of the geome-

try of the wing rotation) and gravity, the equilibrium equation is

Y = (FY)D + (Fy)L + mg sin ﬁb = (L)Tot % tanA + (Fy)D + mg sin ¢h
n ¥

Cbo il [(L)Tot a, tanA + (Fy)DJ

Since for the trimmed condition (L)Tot = mg

8, = - |, canA+ (Fy)D] |

3.1.3 Wing Rotation.

Figure 3.5 shows the geometry of the wing rotation about the pivot
and the moment arms of the aerodynamic forces with respect to the center

of mass (C.G.) of the aircraft,

The aeréd?namic force, as assumed in this study, is applied at the
quarter chord. Since the wing is straight we can also assume that the
line joining all quarter-chord points is straight. Such line is repre-

sented by linme "m" in the unswept condition, and by line '"n" 1in the
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swept one, The moment arm x about X, is used wheﬁ_computing yawing
and rolling moments as well as when computing the section perturbation

velocity due to rate of pitch and/or rate of yaw.

The moment arm ; , about the A axis, is used when computing

angular velocities due to rate of pitch and the pitching moments.

In determining the pitch stiffness C. [Ref, 21] it is convenient
to refer to the quarter-chord line for the unswept case, the moment arm

about such line is indicated by Yvac

Since the wing rotation affects the magnitude of the above moment

arms, it will also modify the magnitude of all aerodynamic moments.

The wing rotation also affects tﬁe position o% the ailerons with
respect to the'aircraft centerline, Figure 3.6 shows the ailerons and
section of wing which is affected by their deflection, Figure 3.6a
shows the case for zero sweep. The shadowed area is defined by two

straightrlines aligned with the free streamvelocity V assing

0 P
through the aileron's outer and inmer stations, When the wing is swept,
(Fig. 3.6b) we can notice that the two straight lines defining the area

affected by the aileron are now passing to the left of the corresponding

point on ‘the quarter chord line for the unswept case,

The result of this is an increase in the moment arm about the
longitudinal axis for the left aileron, and a decrease in the moment arm
for the right’wing. The position of the pivet behind the quarter chord

line will reduce and eventually eliminate such an effect.

By simple geometric considerations, we can compute the quantities
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x , v = stability axes

8 8
Xg » ¥ = axes parallel to stability axes centered at wing root
quarter~-chord.

cp = pivot-C.G. distance

d = pivot quarter-chord distance

X = moment arm about X,

; = moment arm about Vg

Vyac = Tmoment arm about m (quarter-chord line for A= 0)

Geometric expressions for the moment arms:

% x =¥, tanA + d sinA

O % -

@A(%QQC y = cp+ d cosA - Yo tanA
@@0@4@@ Vyac = cp+ d{cosA-1) ~ Yo tanA

Figure 3.5 - Geometry of Wing Rotation and Moment Arms
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and ¢

c C. and G, J(C and C, being the same as ¢, and

1 2 73 3 1

Cé for the case when the ailerons are symmetric with respect to the

wing centerline).

3.2 Derivatives

3.2.1 General Methodology.
The perturbation quantities considered in a stability analysis are:

- velocity in the x direction: u

- velocity (sideslip) in the y direction: v

- velocity in the =z direction: w

- rate of roll (or angular veiocity aQSut the x axis): p

- rate of pitch (or angular velocity about the y' axis): q

- rate of yvaw (or angular velocity about the =z axis): T .

0f these quantities, the second and third are generally normalized

. In doing so the new

with respect to the free stream velocity VTO

perturbation quantities are

aév‘l— B é;]l’— (3.20)
TO - 'TO0
which correspond respectively to a change in the angle of attack and a

change in the sideslip angle as can be seen in Figure 3.7.

While the effects of a perturbation u , B , or r must be consid-
ered separately, the perturbations p and q can be dealt with in the
same fashion as for « , since in fact they all affect the local angle of

attack, as ~ will be shown in the next section.

We shall now describe the general methodology for evaluating the
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Figure 3.7 - Perturbation Angles



stability derivatives in a systematlic way according to the previous
subdivision; & much more complete discussion can be found in References
15, 21, and 22, Such methodology applies to dimensional stability

derivatives,

We refer to Appendix A for the relationship between non-dimensional
and dimensional derivatives, and to Appendix B for detailed calculations

of the non-dimensional stability derivatives.

3.2.2 ¢, p, q Derivatives.

-

Let us now concentrate on a section of our wing. Whenever we
consider a poéitive perturbation <« in the.local angle of attack, the
wing actualiy experiences & new perturbation velocity w ., Tﬁe regult
of this velocity w is that fhe free stream velocity becomes V having
a new.direction which differs by an angle « from the previous one.
Consequently, the lift and drag components of the aerodynamic force must
now be referred to this new direction, This result is shown in Figure

3.8,
L

\Do‘\‘ ‘ ' .VO .

Figure 3.8 Section lift and drag force for an « perturbation.
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Let us now evaluate the forces with respect to the stability axes

system for this perturbed case,

X = Exsina -dcosa” L a-4d
Y = 4y -d tanA (3.21a)
Z = - § cosd - d sina ¥ 4+ d o]

and the corresponding moments are:

g = Z X
M, = -2 '§MAC (3.21b)
Ng = -X X + Yy
For the equilibrium case, the equations are
o ) ' A
X, = -4,
Y, = LYy - EO tan(A)
29 T % - (3.22)
& = 24 x
fo, = %o Yvac
NOS = -XD % + Yoy

The changes due to the perturbation & are therefore given by

&K =x-x0=;&a-AE

A = By -4y - Ad tanA

o = M+ 3a (3.23)
AL, = Nx

g, = - My,

M, = - SXx + Ay
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Because of the small perturbation assumption these equations can be
linearized by expanding them in a Taylor series about the equilibrium
condition (or O=0) and retaining ohly‘the first-order terms., For the

first equation, this approach leads to
_ 2 7l o -
X = b a- Adla (3.24)
o=0.
and the same can be dome for the other equations.

This is the classical assumption of linesr aerodynamic theory which

is to accept the following approximation for stability derivatives:

~(3A}
5 ’(ab) -0 ¢ (3.23)
where

A = any aerodynamic force (or moment) )

b = any perturbation quantity.

Consequently, the stability derivatives at our section for a per-

turbation @ are given by

Xq = (’aa_)a=0 Yy oc)oczo s I (aa)a=o _
(3.26)
¢, =7_% s M, =77 s N, =X _xX+Y_y
S, o 5, ~a’MAac * Ts o a

where

: 3 TN (&)
Xa={§a (4 oz-Ad)}oz=o = [L+aao¢ ‘aa}owo = JZO ( oz)oz=o (3.27)
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|2 oy - - M
YOi- [aa (¥y 2070 A tan.AD]a
(3.28)
Y _ = y o
[aa?’*" cxta“A]ar-o'ﬂ'ayO""eoaa 3q tend

_|.2 1 8L =4 +d
Za'[Sa (,q,.[.da)]a +[aa+ ao£a+ d] -0 = Ea+‘d0 (3.29)

. %ﬁ 'é% [@ tanA + cénst terms]a= 0= tanA (3.30)
The same approach can be used when studying O% and oa perturba-

tions. In both cases the perturbation will produce a change in the

angle of attack. Such change will no longer be constant zlong the span,

but will be
a, = ?L}", (3.31)
| 70
for the pitch, and '
o =% | (3.32)
P Yo

for roll.

Although the distribution in the angle of attack is antisymmetric, the
corresponding increment in lift, and conséquently drag, because of the
shape of the FWID will not be asymmetric. The asymmetry in 1ift, case of
a symmetric wing in roll, does not produce any variation to the lift
vector. Loss of asymmetry introduces a change in the fqtal vertical

force Z as well as in X .

The same approach used for the « derivatives can be applied to the

evaluation of roll and pitch derivatives.
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The only differences are:

a) the section perturbation angle of attack which is no longer a
constant as in the previous case, but varies according to Eqns.

(3.31) and (3.32);

b) the linear operator -g% must be replaced, for the pitch by

2.2 3 3

54 " 30 3q VTO S0 (3.33)
and for the roll by

323 x 2@

3p 3¢ dp VTO o (3.34)

The angle. v remains unchanged.

The wing aerodynamic derivatives with respect to the stability axes

can be obtained by integrating the section values over the span.

3.2.3 B Derivatives.

The effect of Introducing a sideslip angle 3§ 'cérresponds to a

negative AA for the wing (Fig. 3.9). Consequently, for the wing

3 _

» - ES& ‘ (3.335)

The evaluation of the p derivatives is not trivial when consider-
ing the aerodynamic moments. In this case, because both FWLD aé well as
the distribution of lift due to twist will be affected, it is not as

simple to derive anmalytic expressions as for the previous cases. A

numerical calculation would be possible by considering results at two
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different wing sweeps and then comparing them. For the cases where no

~moments are involved, the total aerodynamic forces considered are

F = - D cosp - [(Fy)L + _(Fy)w} sing ¥ - D - l(Fy)L + (Fy)WJ B
| (3.36)
Fy‘= - D sing +[(Fy)L + (Fy)w] cosp - DB +[(Fy)L + (Fy)W
Fz - (L)Tot
In addition, the following approximation can be made.
Wpoe = [ Wgor | 4eo cos™A - @
(D)Tot - DO + (L>T0;A;CL)TOt - DO * ](L)Tot (CL)Tot E%%%A
| | (3.38)

a‘nd’.‘ since R = (R )A= 0 coszA , 1t is possible to evaluate the §

derivatives of these forces,

3.2.4 r Derivatives,

The new yawing derivatives introduced by the oblique wing are due
to two factors: a) side force and b) aerodynamic coupling between rolling
and pitching moment., A rate of yaw increases the local stream velocity

according to the relation
AU=~-x (3.39)

Therefore, for the dynamic pressure the variation is
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H.O0.T.

. | _
@) =3 p02 = % p(U, + Au)2 = % p(U::') + ZUOAU'+ 2)

(3.40)
1 2 ' -
a = 7 p(v5 + 2uA0) - (
Substituting (3.39) into (3.40), we obtain
q(y) = q(l -2 Ui r) (3.41)
0

The linear antisymmetric change in q(y) due to the perturbation
r will now affect the aerodynamic forces due to both the flat wing and
twist (including effects of.dihedral and camber) conﬁfibutions. Since
the antisymmetric variation in q(y) +«&s applied to a symmetric (cruise
condition) distribution, the variation in the loading distribution will
also be antisymﬁétric, like for the case of a symmetric aircraft, There-
fore, wheﬁ first order variations only are considered, no changes will
occur in the wing total aerodynamic forces, but all three aerodynamic

moments will be affected.

Since q(y) 1is the only term which changes in the expressioms for

X Y

, » and Z , the evaluation of the yaw derivatives is reduced

to computing
X -— —
K _ 03 -9 X = - .9 X
-'a";— q S [q(l 2 UO r)} XO 2 UO (3.42)

and similarly for y , and Z ,

Sy 2 E
S5 ° YO U, _ (3.43)
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[-YA x

Fw 027 (3.44)

(==}

A simple integration over the span of the last three expressions
will determine the yaw derivatives of the aerodynamic forces. For the

£ , M, and N

S g S moments, the expressions to be integrated are

=)

. = -2z 2=
S 0% U,
M, =+ 2 2—;-’ (3.45)
g 0 on .
X - X -
NS—+X02ﬁ—D_X-y02U0y



3.3 Summary,

In this Chapter we have introduced and evaluated the two side
force‘contributions, one due to induced drag and one due to wing
rotation, that an oblique wing aircraft would experience. The effects

of wing rotation were then analyzed. The general methodology for

computing stability derivatives was also discussed,
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IV EQUATIONS OF MOTION

4.1 Rigid Body

The equations of motion for the aircraft can be defived from Newton's
Second Law of Motion, which states that the summation of all external
forces acting on a body must be equal to the time rate of change of the
momentum of the‘body, and the summation of the external ﬁoments acting
on a body must be equal to the time rate of change of the moment'of
momen tum (angular momentum). The time rates of change are all taken
with respect to inertial space. These laws can be expressed by two

vector equations.

V=EZF ' (4.1)

I .
H=2,T (4.2)
where I indicates the time rate of change with respect to inertial

space,

Now, the external forces and moments consist'of equilibrium values
plus a perturbation value which stems from a difference from this equi-

librium condition. Thus,

F=TF,+ AF

4.3)
| T = EO + AT

In the dynamic analyses to follow, the aircraft is always considered

to be in equilibrium before a disturbamce is introduced., Thus, FO and

T0 are identically zero.
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The equilibrium forces consist of lift, drag, thrust, and gravity,
and the equilibrium moments consist of moments resulting from the 1ift

and drag generated by the various portions of the aircraft and the thrust.

The following observations are made to achieve a linear analysis.
First, the aircraft is in an equilibrium condition before perturbation.
Second, the mass of the aircraft remains comstant during any particular
dynamic analysis., Third, it is assumed that the aircraft is a rigid
body. Fourth, it is assumed that the earth is an inertial reference
and unless otherwise stated, the atmosphere is assumed t§ be fixed with
respect to the éarth. The time rate of change of the velocity vector

- with respect to the earth, in the assumed reference axes, is given by

<tj
[}
<

+wxv | (4.4)
where S indicates time rate of change with respect to the assumed

reference axes system (non inertial); w is the angular velocity of the

aircraft with respect to the earth; and x signifies the cross product,

Similarly 1 3
H=H+ owx H _ (4.5)
V and w can be written as
E=§U+Z§E
7 4.6)
V= VO + v

where LA and 3; represent the steady state conditions ‘and w and

AV are the perturbation quantities.

Their components in stability axes are:
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L -
P
w0= Au)=
| R &
4.7)
n 7
L ERE
Vo=1 Y Av=1v
| Yo, e

The angular momentum is given by the dot product of the inertia

tensor, 1 , and the angular velocity vector, ®

E=1-w (4.8)

and Equation (2.55, T being time invariant because of assumption

number four, can be rewritten as

=7 -

+ox (T w (4.9)

=R ]
E€lwn

The inertia matrix of an oblique wing aircraft differs from the one
of a symmetric aircraft because of the non-zero product of inertia IXy .

For an oblique wing aircraft, the inertia matrix in body axes is

I I I
XX Xy Xz
I =4 1 I 0.
b Xy vy
I 0 I
KZ ZZ

Because our stability analysis is based on the stability axes system
previocusly introduced, it is necessary to transform the inertia matrix
from body to stability axes, This transformation is carried out in detail

in Appendix E.

Because of the transformation the inertia matrix in stability axes
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will no longer have a zero I&z . In fact, as shown in Appendix C, it

is given by

t

Ve = - Ixy sinc . (4.10)

where the prime denotes stability axes,

The equilibrium condition we are going to consider in our analysis

is that of afraight level flight, therefore
P=Q=R=V, =W,=0 (4.11)

For this condition, after substituting (2.4) into (2.1), and after

some algebra, we obtain

Fx u qw - TV
lf._l T = 7 4+ r o+ 412)
n ¥ nlfy = v+ oy, Tu - pPW (4,
Fz w-4q Uy VP - qu
linear terms non linear terms

Similarly, Equation (2,2) becomes

,-..T — T
' 1 ) 1 L) 1 - T P Tt
5 Ixx {S-t-Ixy g+ Ixz y (IXZ q Ixy r) q+ (Izz Iyy)qr
- | = 2 2
= = ' A ' & ' ' - ' LI
T=| M Ixy 1:>+Iyy «:1-&-1yz T [+ Ix Z(r P )+‘Ixy qr + (IXx Izz)pr
- 2 2
' . i - I 2 t - - Tt L
N l_IXZ PHIl, 4+, F ] Ly =) - T ar+ (I Ixx)pq_J
e e ¥ — . [ —
linear terms non linear terms

(4.13)

It is now necessary to expand the applied forces and moments and to
express them in terms of the changes in the forces and moments that cause
or result from these perturbations, These latter forces are usually of

an aerodynamic and gravitational origin.

If it is assumed that, as the disturbances are small, the partial
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derivatives are linear, the differentials can be replaced by the actual

increments, and’ ¥ and T can be written as

~ BF
F=LF= Ei (abi)bi
b.=0
1
4. 14)
- = AT
T=A0r- Zi(é’ﬁf)bi
L

b.=0
i

where =E and 2L " represent the aerodynamic stability
3b, 3b, | _ ‘
i/b=10 i bi— 0

derivatives evaluated at the steady state condition when the perturbation

variable bi is zero.

The linearized set of equatlions therefore is:

|1

/ar
. X
u Zi 5'15'._) by
Yy .=0
T

(4.15)
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In the set of Equations (4.15) the terms Iéy q -and Iéy p , not
present in the case of a symmetric airéraft, introduce.the inertia
‘coupling between pitch and roll motions, The terms I&z g and I;z T
have also a coupling effect and seem to make the coupling between

longitudinal and lateral dynamics even stronger, but their coupling is

only apparent since it depends on our choice of axes system.

In addition to the inertia coupling existing in symmetric wing air-
craft between roll and vaw, oblique wing aircraft experience an inertia
coupling of pitch and yaw motions. 1In table 4,1 ﬁe report the matrix
representation of the set of Equations (4,15) in terms of Laplace trans-

form.

4,2 Effects of Flexibility.

The analysis done so far applies to a rigid aircraft.

Now, it is known that the stability and control characteristics of
flight vehicles may be profoundly influenced by the elastic distortions
of the structure under aerodynamicvload. Many of the important effects
of distortion can be accounted for simply by altering the aerodynamic

derivatives. The assumption is made that the changes in aerodynamic
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loading taeke place so slowly that the structure is at all times in static
equilibrium, This is equivalent to assuming that the natural frequencies
of vibration of the structure are much higher than the naturél frequen-
cies of the rigid-body motions, Thus, a change in load produces a |
proportional change in the‘shape of the vehicle, which in turn influences

the load,

Wﬁen the separgtion in frequency between the elastic degrees of
freedbm and the rigid-body motions is not large, then significant inertial
coupling can occur between the two. In that case, a'd&namic analysis is
required, which takes account of the time dependence of the elastic
motions.

The elastic motions have no inertial coupling with the rigid-body
motions except through %'. However, it has already been assumed, in the
previous paragraph, that such time rate is second-order and negligible

in the small-perturbation theory.

The only coupling existing between elastic and rigid body motions is

due to the derodynamics.

The aerodynamic derivatives associated with the deformations of the
airplane are of two kinds: those that appear in the rigid body equations,

and those that appear in the added equations of the elastic degrees of

freedom.

In our analysis we shall use a gquasi-steady approach neglecting

unsteady aerodynamic effects and assuming that only the wing is flexible,

Therefore, we shall also neglect the added equations of the elastic
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degrees of freedom and refer to Ashley, Etkin, and Blakelock [15, 21, 22]

for the complete study,

In a quasi-steady analysis the effects of flexibility on the wing

are basically reduced to static bending and torsionm,

Because of this bending, the aerodynamic center shiifts forward
changing the value of all the aerodynamic moments and their related
derilvatives. The side force due to lift is also affected.‘ These static
effects have been included in our numerical analysis and will be |

described in that section,
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V NUMERICAL ANALYSIS

5.1 Model Description

In the previous chapters we have discussed qualitatively the influ-
ence of an oblique wing on the aerodynamics and dynamics of aircraft,
In this chapter we shall attempt to quantify these new properties and

evaluate their influence on the stability of an oblique wing aircraft.

The aircraft cbnfiguration that has been studiéd is the Boeing
single~body yawéd wing aircraft model 5.3 (Fig. 5.1), that was studied
for NASA {Ref. 24j. Unlike what is shown in Figure 5.1, our analysis,
as well as the one done by Boeing, was carried out for the 'left wing
forward" case. The nominal configuration and flight condition for the

simulation were:

i

Mach number 0.8

Altitude 20,000 £t (6096 m)

Gross weight 400,000 1b (181,440 Kg.)

45 degrees

il

Wing sweep

i

C.G. location .355 (M‘A'C')AFO (body station 57.8 m)

The inertia properties being referred to body axes were transformed
to the equivalent in stability axes according to the transformation

described in Appendix C.
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The .3556 M.A.C. center of gravity location in the nominal con-
figuration produced a longitudiﬁally unstable vehicle.  This con-
dition was selectea by Boeing in order to achleve a more satisfactory
overall vehicle design; since the design included.a longitudinal
S5.A.5. this was also the case in the Boeing SST design.in the gubsonic

reginme.

In the unstable (without SAS) configuration, the normally
complex short period roots migrate significantly; one.ﬁoving to the
positive real axis and ome combining with the 'rolling convergence'
root to form a new complex pair in the LHP.

In order to study the effect of the oblique wing under more
"mormal’ conditions, we chose to modify the nominal configuration
50 as to achieve a stable configuration for the zero sweep ( A = 0°)

condition, This was accomplished by moving the C.G. forward.
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5.2 Aerodynamic Results

In chapter II we described two different methods for evaluating the
spanwise lift distribution for the oblique wing and how to obtain the

spanwise induced drag distribution from the knowledge of the 1ift,

Two numerical programs, based on these two methods, have been
written; OWSD/ST computes the stability derivatives for a rigid oblique
wing aircraft by means of strip theory; OWSD/LT , instead, applies the
linear theory approach and can also include the‘static effects of a

flexible wing.

We shall now report the numerical results cobtained with the two

methods, for a wing at a skew angle A of 45°,

In our strip theory analysis, the wing was assumed to be rigid;
therefore, the results obtained with that snalysis will be compared
against the rigid wing case of linear theory. The, we shall compare

the results given by linear theory for the rigid and flexible wing.

5.2.1 Comparison between Strip Theory and Linear Théory (Rigid Case).

Figure 5.2 shows the spanwise lift distribution at A = 45° as
computed by means of the lifting line method, for the flat wing as
well as for the case including built-in twist. The twist is linear,
and the tip values were chosenn go that the resultant 1ift was acting
at the wing centerline. In a real design the airfoil camber distribution
would be so that the cruise 1ift is acting at 50% chord. The assumed
twist distribution certainly is not the optimal one, 1eading to a

minimum induced drag, but, at least, it produces no rolling moment
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~and, for the purposes of our analysis, is a satisfactory cruise

condition.

The twist values, for the unswept wing, are

it

Left tip + 2.6 degrees

li

Right tip - 3.35 degrees

The downwash angles for the flat wing computed by the two methods
are shown in Figure 5.3. The lifting line approach (Fig. 5.3a) shows
a large variation in the spanwise distribution of the downwash; it also
indicates that‘the right wing, beyond the 60% half span, experiences an

upwash which, in terms of horizontal force, results in a thrust.

The induced drag distribution is shown in Figure 5.5 where the

negative value corresponds to the thrust mentioned before,

The results obtained by means of atrip theory show a slight varia-
tion in the downwash angle distribution and the corresponding induced
drag distribution appears to be almost symmetric about the wing center-
line. The drag distribution, as obtained with the lifting line theory,
produces a yawing moment which tends to unskew the wing., This effect

is not shown in the results obtained with strip theory.

The tendency to unskewrthe wiﬁg has been experienced also during
wind tunnel tests run at NASA-Ames Research Center, Since the médel
was not a pressure one, it is not possible to tell whether this was
due only to a higher drag on the forward wing, or also to a thrust

force in the aft one.

The side force distribution (Fig. 5.4) predicted by the two methods

differs since the drag terms differ. The side force predicted by the
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1ifting line theory increases the unyawing moment produced by the drag,

instead, the strip theory result shows the opposite effect,

We can therefore conclude that the spanwise induced drag distribu-

tion, as computed by means of strip theory, is a poor approximation.

We shall now continue in the comparison between the two methods
for the cases when perturbations are considered. Unfortunately, the
numerical program computing stability derivatives according to strip
theory computes only the nondimensional lift distribution. Thus it

is only possible to compare the results obtained with the two methods

qualitatively.
The first perturbation quantity considered is O .

Figures 5.6 and 5,7 show respectively the AFX (positive forward)
and AFy . For the sake of clarity we recall that, for the perturbed
case AFX is given by

AF ~ L. O-D
x 0

Figure 5,8 shows the change in 1lift dve to a roll perturbation,

According to strip theory, no change occurs in the 1ift at the air-
craft centerline, whereas the 1ifting line solution shows, for positive

rate of roll, a negative A2 at the aircraft centerline,

A greater difference shows up in the change in lift due to a pitch
perturbation., This greater difference is also due to the fact that, in
the case of strip theory, the vertical velocity introducing the aero-
dynamic twist 1s computed at the quarter-chord, whereas, in the lifting

line method, it is evaluated at the 3/4-chord point.
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Figure 5.10 shows the total lift distribution for a negative side-

slip of 5 degrees.

We shallvreturn on the sideslip case in the next section, where
we discuss in detail the behavior of the oblique wing in sideslip. For
the moment, we shall only point out how good the agreement is between the
lifting line theory results and those obtained with the empirical method

described in section 2.5.

5.2.2 Comparison between Rigid and Elastic Wing (Linear Theory).

The 1ifting line method described in section 2.4 Implies the know-
ledge of the stétion 2-D 1lift slope. TFor this reason a value for this is
considered an input data for the numerical program OWSD/LT. In our analysis
the section liftslope has heen assumed to be constant along the span,

This is not true in most cases and specially for our model, since the
thickness to chord ratio varies along the span, The value of the 2-D
lift slope has been adjusted so that the wing lift slope coincides with
the value computed by Boeing [Ref, 24] in its study, ©No built-in
dihedral was assumed, but only a linear twist was introduced, satisfying

(as mentioned in the previous section) the zero rolling moment condition,

In our model, the pivot location (50% root chord) does not coincide
with the quarter-chord line (where the lift force is assumed to be acting);
therefore, when the wing is skewed, tﬁe wing center line does not coincide
with the aircraft centerline. For that reason the right wing has a span

larger than the left one, Therefore, the lift distribution for the cruise



condition, satisfying the equilibrium condition about the roll axis, can

no longer be symmetric in order to balance out this asymmetry in the two
semiwings, This asymmetry can be noticed in Figure 5.11 which shows the
spanwise lift distribution at A = 45° (rigid and flexible wing) for this twist
distribution and for an angle of attack of 3.75 degrees (.0652 rad.).

Since the‘twist was computed for the rigid wing case, the 1ift distri-
bution of the elastic wing will produce a strong positive rolling moment,
The flat wing case is shown in the next figure (Fig. 5.12) for the same

angle of attack,

It is interesting to notice that the flexible wing case produces
almost no rolling moment about the aircraft centerline (The resultant
lift vector is applied at the quarter-chord station having a distance

to the right of the longitudinal axis equal to 0.72. ft).

Such a small difference does not even require a built-in twist,
but only a little aileron correction., At this point it should be pointed
out that the built-in twist is, for an oblique wing airvcraft, a poor
design solution. In fact, since the twist measured in the flight di-
rection varies with the cosine of the sweep angle, the twist correction
is maximal when the wing is unskewed ( and then we do not need any twist
correction since the FWLD is symmetric) and decreases when we skew the

wing.

A built-in dihedral is, therefore, a far better solution, producing
no twist. for the unskewed case, and increasing the twist correction

when the skew angle increases,
We shall complete the analysis of the cruise condition, as from our
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numerical model, with Figure 5.13. Figure 5.13a shows the downwash
distribution for the flat wing, where the negative values correspond

to the upwash, The flat wing drag distribution corresponding to this
downwash is shown in Figure 5,13b., The flexible wiﬁg shows a much higher
drag on the forward (left) wing and a thrust over a larger portion of the
aft wing, This is expected; in fact the forward wing, by bending, in-
creases the angle of attack and consequently the lift (this behavior

is well known as the divergence problem of a swept forward wing), where-

as the opposite happens on the aft one.

The direct consequence of the higher 1lift of the forward wing is an
increase in the upwash velocities induced on the aft one., Instead, for
the aft wing, the decrease in 1lift will result in &4 decrease in the up-
wash field induced on the forward one and, consequently, lead toward
a further increase in the downwash of the aft wing, These are the rea-
sons why the flexible wing experiences a higher downwash value on the
forward wing, and a larger portion of the right one is affected by the

upwash velocities.

Then, when we multiply the 1lift (a positive wvalue) times the corre-
sponding downwash, in order to obtain the spanwise induced drag distri-
bution, we multiply the already greater downwash times a larger value
of lift for the left wing. TFor the right wing, instead, the lift magni-
tude is smaller and this is the reason why, though affecting a larger
portion of the aft wing, the thrust reaches a lower maximum vaiue than

the corresponding one for the rigid case.

We shall now continue our comparison analyzing the results for the
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cases simulating perturbed states as are assumed in our computation of

the stability derivatives.

The numerical program OWSD/LT evaluates the stability derivatives
by first computing the distribution of the aerodynamic forces (lift,
drag, and side force) for the perturbed condition, then evaluating the
increment from the corresponding cruise distribution, and finally inte-
grating these increments as well as their product with the corresponding
moment arms in order to obtain the incremental moments over the entire

wing span.

The desired values of the stability derivatives are then obtained
by dividing the results of the integratioms by the perturbation quantity
and by the appropriate nondimensicnalizing factors [See Appendices A and
B]. Then, derivatives are computed with standard expressions [Appendix
B and/or Ref. 15, 21] and the vaw derivatives can be evaluated according
to strip theory as described in section 3.2.4, Therefore, for both of
them it is necessary to simulate the perturbed condition., Consequently,
the conditions to be simulated have been reduced to: angle of attack,

roll, pitch, and sideslip.

The - perturbation has been simulated by increasing the cruise
angle of attack by 3 degrees (,05236 rad.). The new lift distribution,

including twist contribution, is shown in Figure 5.14,

The rigid wing shows a visible increase in the aft winglif%,due to the
increase in the flat wing 1lift. Eor the elastic one, this effect is much
less pronounced, These two behaviors can be predicted by looking at the

shape of the FWLD (Fig. 5.12); in fact, a change in & will introduce a
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first order variation in the 1lift, proportional to these shapes., The
variation, AFX , in the horizontal force (Fig. 5.15a) is strongly at-
fected by the 1ift contribution in that direction during the perturba-

tion, as we have discussed in section 3.2.2; in fact
=4 g-(d-d
AFX a- (d do)
The increase in lift for the rigid wing is more pronounced in the
aft part where it contributes to the thrust already experienced because

of the upwash field, but on the forward wing its increase is not suffi-

clent to offset the drag increase,

For the elastic wing, the FWLD has & more symmetric shape than for
the rigid one; we would therefore expect the tramsition point from
negative (drag) to positive (thrust) X-force to occur further outboard
on the left wing, instead, the two shapes behave similarly, except for
the magnitude. This is not the case, according to our results, and the
reason 1s probably because of the downwash distribution: stronger down-
wash on the forward wing, and consequently a higher induced drag to
counteract the higher increase in 1lift; but also stronger upwash on the
aft one with highevr resultant thrust where the 1lift increment is lower
than the rigid case. The same reasoning can be applied to the variation
in the sideforce (Fig, 5.15b), where the two shapes look similar, al-

though they differ in magnitude.

The perturbations due to roll and pitch are simulated by intro-
ducing an aerodynamic twist corrvesponding to a linear variation in the
free stream vertical veloeity [See section 3.2.27, The roll angular

velocity is chosen to be such that thetwist ie equal to -5 degrees at the

96



S ST

[P S

i
b
b
|
i

L.

rhat

u

Gt

Tt

dep

ue Lo

i

W-BIEESY BVIINID 340 0181 Y B el R IR o

ORIGINAL PAGE IS
A nnnD NTTATT



left tip and zero at the aircraft centerline [see Eg, 3.31].

For the pitch velocity, the left tip condition remains -5 degrees
and zero twist now coincides with the wing station corresponding to the

intersection of the quarter-chord line with the lateral axis Vg -

The three different twists used in our study are shown in Figure

5.16‘

Figure 5.16a shows the built-in twist; the aerodynamic twist corres-
ponding to our roll simulation is shown in Figure 5.16b. The aerodynamic
twist due to the pitch simulation (Fig. 5.16c) is not perfectly linear
because the downwash velocities have been measured at the 3/4-chord
points, which do not lie on a straight line, As we would expect, the
aerodynamic twist introduced by a positive rolling motion increases the

1ift distributiop on the aft wing and decreases it on the forward one.

Figure 5.17 shows the spanwise 1lift distribution corresponding to
the cruise angle of attack plus a twist given by the superposition of
twists a) and b) of Figure 5.16. The increment in the vertical force is
of greatest interest. Although such an increment has a contribution due

to the drag, according to [see section 3,3.2]

N=N+da
where
a=va—§
TO

such a contribution is negligible compared to the actual 1lift changes,
therefore the AZ shown in Figuve 5.18 can be thought of as the actual

change in 1ift without any serious loss in accuracy.
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From those distributions we notice that the rigid wing shows a

positive variation on the aft wing, larger, in magnitude, than the
negative one, The opposite is true for the flexible wing. Moreover,

if we look at the shape éf the corresponding case, as simulated by strip
theory, we can observe how erroneous the strip theory approximation is

for the flexible wing case,.

The variations Ax and Ay look quite complex (Fig. 5.19 a)and
b)).

The most important derivative computed from these two distributions
ig the yawing moment. In a symmetric aircraft the side force is always
negligible, This, as we have proposed in section 3.1.2, is not true for
an oblique wing aircraft, In fact the side force has a magnitude compa-
rable with the horizontal one even in a perturbed condition. By inspec-
tion, we can also notice that the yawing moment produced by the Ax
and Ay distributions is, in this case, negative , and the rigid wing

shows a larger magnitude.

The same analysis cen be extended to the pitch perturbation; there
is only one difference: the way the aerodynamic twist is measured in our

linear theory model.

Eqn. 3.31 implies a linear variation in the aerodynamic theory; this
is a common assumpition and was used also in our strip theory analysis,
The linear theory, as we mentioned earlier, implies the evaluation of the
vertical velocities, induced by the angular velocity q , at 3/4-choxd.
Figures 5.20 and 5,21 fespectively show the spanwise 1lift distribution

corresponding to the cruise angle of attack plus the superposition of
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the twists of Figures 5.16a and 5, 1l6c,

Figure 5.22 shows the A7Z distribution and 5,22b the AY distri-

bution,

In our model, the sideslip is simulated by increasing the skew angle
by 5 degrees. This, as we have already mentioned, corresponds to a nega-
tive sideslip according to the reference axes system chosen. Thus, when
looking at the variations in the aerodynamic forces, we must change the
sign when considering the sideslip case. Figure 5,23 shows the total

lift distribution for the new skew angle.

Increasing the skew angle, the angle of attack measured in the flight
direction decreases (Eq. 3.8). In our case, the relationship between

perturbed and cruise angle of attack is:

)
B cos 45
%50 = Y50 o
cos 50

The results shown in Figure 5.24 are of great interest.

Increasing the skew angle (which corresponds to a negative slip),
the total 1lift decreases and the spanwise distribution of such variation
is asymmetric (Fig. 5.24). This asymmetry will result in = negative
pitching and rolling moments; therefore, a positive sideslip introduces
positive rolling and pitching moments, This is an unstable behavior and
can be visualized by considering the trend of the spanwise 1ift digtribution

. when. the wing is skewed.

The upwash field generatec by the forward wing introduces the

build~up in 1ift on the aft wing.
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As we increase the skew angle, this build-up will shift more and
more towards the aft wing tip. Thus, this shift will introduce negative
pitching and rolling moments (left wing forward case). When we unskew
the wing, the trend will be the opposite; consequently the 1lift build-up
willl shift towards the center decreasing the magnitude of the negative
rolling and pitching moments, These are positive increments in the
moments and the reduction in skew angle corresponds to the sideslip

situation. The effects of flexibility worsen this undesired behavior.

In our model, we have used linear built-in twist to stabilize the
rolling moment. In this case also,we see how poor such a solution

would be as compared to the case of a built-in dihedral,.

The effectiveness of the linear twist decreases with the cosine of
the skew angle; thus, the amount of twist required at 45° to trim the
aircraft would introduce & strong positive rolling moment when the wing

is unskewed,

Since a sideslip perturbation affects the total lift distribution,
the contribution due to twist in a positive sideslip situation is an
increase in the undesired positive rolling and pitching moments. Since
the equivalent twist due to dihedral varies with the sine of the skew
angle, the previous unfavorable situation now becomes a favorable one;
in fact, a decrease in sweep will introduce a variation in the equivalent
twist which results in a decrease in the forward wing 1ift and an in-
crease in the aft wing iift, which is a stabilizing trend. The yawing
moment due to the variation in the longitudinal force, AX , is positive

for our negative sideslip simulation (Fig. 5.25a), and this is a favor-:
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able result,

From the shape of the side force (fig. 5.25b) we can observe that
the contributions of flat and rigid wings to the yawing moment can differ
even in sign, In fact, for the negative sideslip case, the rigid Wing.
shows a decrease in side force whose resultant force is applied to some
point on the aft (right) wing. The rigid wing, instead, shows the
resultant side force acting on the forward (left) wing., Therefore, the
rigid wing, in sideslip, experiences a slde force that produces a desta-
bilizing yawing moment (positive for the negative sideslip case shown in
Figure 5,25b), whereas the elastic wing shows a tendency to produce a

favorable ¥hwing’ moment.

The effect of the wing rotation on the ailerons geometry has already

been discussed in section 3.1.3.

Table 5-Ia shows the ailerons dimensions for the unswept case, and
Table 5-Ib shows the corresponding ones assumed in the computer simula-
tion for the 45° skew angle; the quantities used in this Table are

defined in Figure 3.6,
Three aileron deflections are considered:

1) left aileron deflected 5 degrees
2) right aileron deflected 5 degrees

3) both ailerons deflected; left 5 degrees, right - 5 degrees.

The elastic wing case considered so far assumed the elastic axis
(E.A.) to coincide with the wing quarter-chord line, In addition to
this elastic case and to the rigid one, we also considered, for the

ailerons only, the case when the E.A, is at a distance from the quarter
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YCNTOL = 93.63 ft
Left Aileron

YCNTIL = 73.93 ft

YCNTOR = 93.63 ft
Right Aileron

YCNTIR = 73.93 ft

CNTCOL = 2.2 ft

CNTCIL = 3.66 ft
CNTCOR = 2,2 ft
CNTCTR = 3.66 ft

a) Ailerons Nominal Dimensions at A= 0

Wing Station
(non dimen.)

Distance from
A/C Centerline

Left Aileron

Right Aileron

[£t]
Qutboard Inboard Outboard Inboard
.937 .837 64.45 55.31
.862 L 062 ©6.03 51.75

b) Computer Approximation at A = 45°

TABLE 5-1

Allerons Dimensions
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chord, The latter represents the real situation, but, since at 450 skew
angle the bending contribution to the wing twist is by far more important
than tﬁe contribution due to torsion, the differences between the two
elastic cases are small, at least as far as our analysis is concerned,

We shall see how the same is true for the ailerons also,

Figures 5.26 through 5,28 show the total lift distribution corre-
sponding to the three aileron deflections considered, for both the rigid
and elastic wing cases, having the E.A. coinciding with the quarter-chord

line,

The aileron effectiveness for these three cases is shown in Figures

5.29a, b, and c.

Onpce more, we can observe the peculiar behavior of the oblique wing.
In fact, the forward aileron, affected by a stronger downwash, is less
effective than the aft one, which is instead influenced by a strong
upwash, The variations in horizontal force, AX,6, are shown in Figures

5,30a, b, and c,

Because of the lack of points In the areas of interest, the shape of
the curves looks unusual; nevertheless it is interesting to notice the

AX  variation introduced by the aft (right) aileron.

The positive right aileron deflection produces an adverse yaw moment
much smaller than the corresponding one produced by the left aileron
(fig. 5.29 and 5.30). We have already noticed how the favorable upwash
field decreases the drag on the aft wing; in case of right aileron de-
flection the induced drag rise is not only lower than the corresponding
one for the forward aileron, but the increment in lift, because of the
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upwash, results in a thrust force outboard of the aft aileron.

The same effect can be noticed in the case of antisymmetric deflec-

tion (Fig. 5.30c).

The negative deflection in the right (aft) alleron produces a
decrease in drag, or equivalent thrust, followed by a drag increase on
the outboard part of the wing. This behavior suggests the possibility
of using the aft aileron only for control during the cruise condition;
but this solution implies, first, the experimental confirmation of the
analytic results and, second, that there are no adverse aercelastic

effects related to that solution,

Figures 5,31 through 5,34 are referred to the elastic wing case
having the E,A. passing through the wing pivot (50% root chord) and
parallel to the quarter-chord line. Very little difference can be noticed
between these results and the corresponding ones for the other elastic

wing case considered.

In fact, the twist contribution due to bending is much larger than

the contribution due to torgue,

5,3 Stability Derivatives and their Influence on the Natural Modes,

At this point, the logic flow of our analysis would require the
discussion of the numerical results of the stability derivatives, We
shall postpone it to the next section and carry on, instead, a qualitative
analysis of the influence of the stability derivatives on the natural

mode of an oblique wing aircraft,
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In Chapter III, the new stabllity derivatives due to the skewed wing
were introduced without any attempt to define thelr importance to the
dynawic stability and natural modes of the aircraft. This analysis had
been carried out only on the basis of understanding the behavior of an
cblique wing aircraft and its differences from a symmetric aircraft., We
shall now discuss the result of a numerical investigation to determine
the influence of the new stability derivatives, as well as of the usual

ones, on the dynamic stability of an oblique wing aircraft.

The set of six linear differential equations dervied in Chapter IV
was numerically solved using an available computer program (GSA), which
was originally developed by Lockheed Missiles and Space Company. The
program solves a set of linear differential equations using the Laplace
transform method and gives root locus, bode or time domain plots for the

systen. The characteristic palynomial is of the 8th order.

The influence on the roots of the characteristic equation is now
analyzed for each nonzero derivative by means of a root locus. In this
way, it is possible to find the derivatives having influence on the
natural modes. This study has been carried out for the new as well as
the conventional derivatives, by varying one derivative at a time, start-
ing from zero to a value double that of the corresponding one reported

in Table 5-1II, column I.

It is obvious that this is actually not possible in a realistic
analysis, since the parameters affecting one derivative may affect other
derivatives also; the range itself does not reflect a real case except

for some of the derivatives depending on the skew angle. The purpose of
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this analysis is only to localize those derivatives whose contribution to

the root location is negligible and to compare them with each other.

For the gake of clarity, we have labeled the roots according to the
classical definitions though, in the case of a skewed wing, they may lose
part of their meaning. Table 5-11 reports the results of this investigation
and shows the influence on each natural mode. They were evaluated according
to the percent change in the natural modes while the wvalue of the derivative

ranged from zero to the maximum value assumed. The symbols used are:

—— : less than 5%

* : 5 to 20%

*% : 20 to 50%
%%% : 50 to 80%
*%kk 1 over 80%

5.4 Stability Derivatives.

In section 5,2 we have analyzed the spanwise 1lift distribution of the
aerodynamic forces as computed with our numerical models. The stability

derivatives are the direct consequences of those spanwise distributions.

To date, neither program computes the stability derivatives with .
respect to rate of change of & . These derivatives take into account
the time required for the effect of downwash produced by the wing to reach

the horizontal tail. For symmetyic aircraft, the methods described in
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References 27 and 28 are usually used,

The effect of downwash is to reduce the angle of attack of the
stabilizer. Because the wing is at a skew angle, the distance from the
wing to a conventional stabilizer varies from tip to tip and complicates

the computation of such derivatives,

Since the analysis done in section 5.3 showed that the influence of
these derivatives on the dynamic of the aircraft is negligible and because
of lack of time, we decided not to further investigate the analytic and

numerical evaluation of such derivatives.

We recall that the nondimensionalizing quantities used in our
analysis [Appendix A] are:; cruise speed, wing span, and mean aerodynamic

chord, both for the unskewed configuration.

The results obtained, together with the Boeing ones, are shown in
Table 5-I11, Tables 5-1IV through 5-IX are the computer printouts of the
first six cases of table 5:XII. The symbols in these printouts are

explained in Appendix E.

In addition to the stability derivatives, the wing contributions

are reported separately,

Whenever a stability derivative differs from its corresponding wing

contribution, this is because of the tail contribution,.

We shall now make a few remarks concerning the most influential

derivatives (Table 5-1I) as computed with lifting line theory.

The comparison between rigid and flexible wing, in terms of stability

derivatives, can be done by comparing columns 3 and 4 in Table 5-I1I.
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TABLE 5-IT ~ INFLUENCE OF THE STABILITY DERIVATIVES ON THE NATURAL MODES,

Phugoid gpiral| Short Period | Dutch Roll |Rolling
_Damp.|_ _|_Mode | Damp._ Damp._ % _Mode

C FekeAN - - - - - - - -
Xu :

E - - - - —-— - -

C
X

C ET e Ex ke - - . —_— - -
zZu

ya
* K - * rhd * - EXS

Cza

C Fededek W Fededesk Fededek dekedede s - ke

C B Xk Fedekek * * % - Kkt

- - * - - *& - *
nwo
it
C - - -— - - K - -
vB
C - - - - -- - - --
z
Cﬁﬂ Fdhkd - EX s - - hkkd * Fkdek
C - - - - - -- - -
mp
C Fekkk * B -- - wkdodk wkhk E
npg
Xp
C - - - - - - - -
yp
Czp - - - - - - - -
CJa Fededek sedederk Jededede Fededed F* - Fededek
P
C Yo - Fededee Fore Jedede * - etk

mp

np

C - - —_— - - -— - -
%

C - - - - - - - - - -
4

C -- - - - - - -- --

2%




Phugoid Spiral| Short Period | Dutch Roll | Rolling
Damp. Mode | Damp. | “h Damp. | Y%k Mode
C ﬁq_ Kk * - * - * - *%
C EL T Exh - - Kk * - Hhkk
mq
C
ng -- -- -- -- -- -- -- --
C - - - - - -- - --
yr
c Feskdede - el - - * - ek
Lr
C wk - Tedededk - - - - *
mr
C L33 - L - - Eo i - Fedoek
nr
Cza -— - - - - - - -
Cm& - -- -- -- - -- -- *

Influence of

the Stability

Derivatives on the Natural Modes
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TABLE 5-TIT - COMPARISON BETWEEN STABILITY DERIVATIVES FOR A = 45°
. 1 f 2 1 3 1 4 1 5 1 6 1 7
c J108 | .108 | .123 .133/ J131] N.AL | ONLA.
X
a .
c .378 .283 .563 .568 5371 -- -
Yo
c 4.2k | -t.26 | 4,24 | <4011 -4.11]  -4.240 4053
2 o ‘
¢, -.203 | -.164 -.17 | -.ot27l -.0133| -.297| -.,0573
64
. ' % X
C 1,55 | -1.10 | -1.16 .297 2920 -1.63 ,281
ma
c_ . 0359 |-.00235 | -.0913 | -.0647| -.0673] .o084| .0075
a .
G, -, 00657 |-.00657 |-.00857 | -.00929 -,00895 - -
B
c, -.282| -.282 | -.283 _.283] -.283| -.252] -.252
[3 : )
c, -.459| -.459 | -.525 546 -.535| -0.228| -0.258
B
c, -.0239] -.0237 | -.0172 | -.0146] -.0881| -,0705) -,0493
B
c_ _00223|  .004 ,195 .510 282|  -.0378 .108
g
c_ J131] .131 .125 ,125 131 .035 .034
B
Ciex 1,03 -1.03 | =1.03 -1.03l  -1.03| -1.03] -1.03
z a
Gk 4,78) 4,78 | -4.78 4.78]  -4.78]  -4.78)  -4.78
By
C L0105 -.0279 -.06 -, 0937 -.109 -.044] -,044
Ip
c, -406| -.328 | -.0685 .299 .298 0 .61
p
c, ~,251| -.278 | -.212 -.193  -.193 A VYA
P
¢, -2.23| -2.50| -1.9% ~1.8d  -1.8s|  -2.66!  -3.12
p
¢ -.0153] .0064 | .0146 co18el  .o17s|  .ooss]  .o119
p

cont'd



c .0202 .0594 =-.0305 -.378 -.55 -~ --
y
q
CZ -4 .23 -3.17 -6.73 -3.08 =3.09  -2.02 1.58
q
Cz -2.23 -2.,50 -2, 14 -1,84 -1,84] -2,66 -2,79
q
Cm -30.1 -32.8 ~28.6 -26.7 -26.6f -27.1 -28.7
q
Cn ~-.354 -.163 -.133 ~-.0908f -.083L -.163 -.159
q -
C 260 263 .258 261 .26 .229 .229
yr
C -- -- -- -- -- -- -.13
kA
r
CE . 0525 . 0349 . 0544 L0541 .055 . 0885 . 095
- r
C. .266 244 .292 .298 .296 .379 436
T
Cn -.129 -.13 -.13 -,131 -, 130 ~.1650 | -.1654
T
* No Stability Augmentation (SAS) included.

** These data were taken from Boeing study [Ref. 5] since our program
does not have the capability, to date, of computing these derivatives

The eight columns represent:

1) Strip Theory: spanwise flat and total 1lift distributions as from
Reference 5 (Fig. 5.35). Sideslip evaluated according to empiri-
cal method described in sectiomn 2.5.

2) Strip Theory: spanwise flat and total lift distributions as com-
puted by lifting line theory (Fig. 5.2). Sideslip evaluated as
for case 1 .

3) Lifting line theory, rigid wing,

4) Lifting line theory, elastic wing (E.A. coinciding with quarter-~
chord axis,

5) Same as No. 4, but no built-in twist,
6) Boeing results rigid wing.

7) Boeing results elastic wing,
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TABLE 5-IV Computer Printout for Case 1 of Table 5-I1T,
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The elastic wing, unlike the rigid one, shows a positive Cm&
or pitch-up moment.

There are no major discrepancies between our results and
Boeing's except in the Cnﬁ derivative, Since the ﬁajor contribution
to the latter is from the fin, the difference may result from our
assumption %g = 0,

It is useful to consider stability derivatives as functions
of skew angle before discussing dynamic response.

The effect of skew is seen in the accompanying graphs (Figures
5.35 through 5.41) on a configuration that was stabilized by moving
the C.G. .15 M.A.C. further forward.

The behavior of these derivatives is explainable in ferms of
two important changes in the lift distribution resulting from an
angle of attack perturbation.

The first of these is the predominance of 1ift on the trailing
wing. The second is the effective reduction of the lift forces
arising from roll and pitch rates or changes in pitch attitude, that
is,

CLOé is reduced.

The program approximates CLa as the calculated lift divided by
dynamic pressure, wing area, and cruise angle of attack, From simple
two dimensional sweep theory, the 1lift on a wing at constant angle

of attack and free stream velocity varies as the cube of the cosine
of the sweep angle. The effective dynamic pressure is reduced by a
factor Cos A and the effective section angle of attack by a further

factor of CosA . The 1lift distrubition calculated by the program
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closely matches thie COSSA.variation. CLa is proportional to CL
and hence behaves as Cos A as well.

It is not possible to easily follow the details of a change
of skew angle through the lifting line analysis to verify the
CosgA.dependence which results.

The trailing vortices move closer to the downwash control
points, and bound vortex segments decrease in length in proportion
to CosA , which accounts for a factor Coszﬁu. The change in the
geometry relating the vortex segments to the control points is
complex however and gives rise to three dimensional effects such
as the lop-sided lift distribution, which are totally unaccounted
for in two dimensional simple sweep theory.

In addition to decreasing qu, the closer lateral proximity
of the skewed wing to the body reduces the roll induced velocities,
However the extension of the skewed wing fore and aft of the C,G.
causes increased pitch induced velocities.

In pitch, roll, and yaw manouvers the lift perturbation
distribution is unsymmetrical with respect to the center line so
that consideration must be given to the changing moment arms in
interpreting the behavior of the derivatives.

The moment arms are decreased for rolling moment derivatives,
increased for pitching moment derivatives and relatively unchanged
for yawing moment derivatives.

These obgervations lead to the following understandings of the
effect of skew on individual derivatives:

(1) CL’ C experience a decrease as explained earlier. A

1o

3
Cos A.dependence applies only to small variations about

=2
L
o



(2>

(3)

(4)

(5)

(6)

(7)

an equilibrium position. The airplane Cp would be maintained at
a constant cruise velocity by increasing cruise angle of attack
as cos A..

QMI : The tendency of 1lift to shift to the rear wing leads

to a rearwand shift of the neutral point as shown in the graph
of vehicle aerodynamic center, or an increase in the static
margin. However the decrease in C1a dominates, and Cma = CLa b's
static margin is reduced.

Cxa : displays slight increase until skew reaches 200 decreasing

thereafter From Appendix B, C

are
Lo

o = CL(I-ZKQUX) CL and C

both decreasing which results in the calculated reversal.
("Reversal™ will be used to mean a reversal in the sign of a
curve's slope, and "reversal in sign" a zero‘crossing of the
curve). The second teyrm in the parenthesis is the contribution
of induced drag, while the first results from the rotation in
the perturbed body frame of a 1lift vector fixed in stability

reference axes.

Cy& : increases with the appearance of a sideways rotation of
the 1ift vector and a sideways component of induced drag. The
reversal is caused by the dramatic decrease of CL and CL& at

high skew angles.

Cﬂa? where‘ﬂ is rolling moment, increases with the shift of
lift to the trailing wing, but eventually reverses with
decreasging CLa and moment arm

Cna is the result of Xa, the X force due to an & perturbation,
acting through a moment arm proportional to CosA and Ya through
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an arm proportional to Sin A : initially side force generated
yawing moment predominates and Cn& increases, Decline setgs
in as the longitudinal force generated moment bhecomes in-
creasingly smaller and Cya itself begins to decline., Again
the reduction of C, and CUI with skew has an important role,

L
(8) Cyp : Monotonicly increases for the same reagons as Cya .
The increase is less dramatic because of the decreasing distance
of the wing tip from the centerline, and reduced roll induced
angles of attack. The non-zero value at zero skew is due to
the rudder.
(9) CZp : Normally zero for symmetric aircraft which have an
antisymmetric roll generated lift distribution, the CZp
curve has two startling reversals and a reversal in sign.
The derivative is very sensitive to slight departures of the
‘1ift distribution from antisymmetry. In the range OO to 100
skew, lift decreases more on the leading wing in a roll than
it increasem on the trailing wing, After 10O the trend
is reversed until the 1lift increment on the right trailing
wing dominates as in figure 5~18 for A = a5°,
The final reversal reflects decreasing lift curve slope
and effective roll induced angles of attack.

(10) decreases monotonicly with declining roll induced

Cgp
velocitieg, effective section angle of attack, and 1ift
curve slope, causing a reduction in roll damping

(11) Cmp: increases with skew because of an antisymmetric roll

distribution acting through an increasing moment arim.

Declining roll induced effective angles of attack and lift

curve slope cause a reversal.
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(12) Cnp{ Decreasing X- force yawing moment arms are offset by
increasing Y- force arms. The longitudinal position of the
center of gravity will influence the shape. Figures 5-19 (a)
and (b) show distortion of the expected antisymmetric X and Y
force distribution, Since the incremental 1ift distribution
in roll shown in figure 5-18 for A = 450 is almost normal, the
distortion is related tc an abnormal downwash distribution,
figure 5.13 a). The departure from an antisymmetric force
distribution decreases CUP from 0° to 300.

(13) qu:.Figures 5-22 (a) and (b), showing pitch generated
X and Y- force distributions, are simllar to those for roll
generated horizontal force distributions. £z figure 5-21 the
corresponding lift increment is noticeable greater on the
trailing wing. Skewing the wing has a less detractive
effect on pitching stability derivatives because induced
velocities and aerodynamic twist increase. The detractive
effects of diminishing effective angle of attack, and dynamic
pressure remain however. The horizontal force distributions
are symmetric at 0O skew but bhecome less so as portions of
the leading wing extend in front of the center of gravity.
The distortion mentioned earlier opposes this tendency.

(14) Czq: declines steadily with an increasingly antisymmetric
1lift distribution (Figure 5-21)

(15) Czq: increases for the same reasons that CZq decreases,

until the familiar high skew angle deterioration takes place.
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(16)

(17

Cmq: is initially non-zerc for a center of gravity not on the
quarter chord. The introduction of antisymmetry in the incremental
pltching 1ift distribution, and increased induced velocities, and

pitching moment arms increase Cmq rapidly at first.

Chq: The rapid increase after A = 150, and the tapering
off above A = 30o correspond to the varying antisymmetry
in € q ‘The initial decrease may be because the wing quarter
chord lies behind the center of gravity at A = Oo, so that
when side force components of induced drag first appear their
contribution to yawing moment is positive. As the skew
angle increases, and the forward wing extends ahead of the
center of gravity, its contribution to yawing moment
becomes negative., The non-zero initial value of qu could

not be explained, but may result from an unsymmetrical

downwash distribution at zero sweep.

142



.8 -

6 CL

N \\

2 L '

0 | l I | J A

.8 —  vVehicle aerodynamic center
(Neutral point) in terms of M.A.C,
.6
4 -
L2
o 4+ 1 it A
o o 0 o o

Figure 5.35 - Lift coefficient, 1ift curve
slope, and aerodynamic center
versus skew angle

143



N C C
§76%
2 L x -9
1| -1
00 [Olol(’)IOJO'A OO ]0 J_Olf" IO!OA
0 10 20 30 40 50 0~ 10 20 307 40 50
6 -6
Ry -
.5 -5
.4 -4 | me¥
.3 -3 |
.2 -2
.1 -1
0 SRS R N T Y\ 0 L L L A
0° 10° 20° 30° 40° 50° 0° 10° 20° 30° 40° 50
-12
- C
O
10 L Z n
-8 L
-6 L
-4 |
-2
o lo i lO | IOA oo lo I0 [0 lo IOA
0° 10° 20° 30° 40° 50 0” 10° 20° 30° 40° s0
Figure 5.36 - @& stability derivatives
versus skew angle
ORIGINAL PAGE IS 144

OF PR 2 UATLITY



015 —
L Cxﬁ
o1 L
005 |
0 lolol Io ]OA
0° 10° 20° 30” 40" 50
_f——-—\‘_,________“
|
i___
L C
yB
o 040 lo L lo o\
0° 10° 20° 30” 40" s0
-
5 L /’\
.4 .8
.3
.2
1
o L4
o~ 10° 20° 30° 40 50

.03

.02

.01

c

8

| I I B N A Y

[a]

O

[s) o] (e] 0
10 20 30 0 50

.

0

T

0” 10° 20 30 40 50

Figure 5.37 - B stability derivatives

versus skew angle

145



-, 06— . -3
—.05::_“__,//’//”~—
.04l — -
4 C 2
yp
-, 03] —
-. 02— -1
-, 01—
0 o] 1O [O lO lo IO A 0
@ 10 20 30 40 50
-.1 .03
-.0 Czp .02
0 = [ ] . | | A
10°/20° 30° 20° 50°
.0 04
1
.15 0

| T O B
000000
o 10° 20° 30 40 50
-
o
I I T N 'V
(0] O
0® 10° 20° 30° 40° 50°
c
- np
b—
. _Jb L1 | {0 A
0% 10”7 20° 30 40° 50

Figure 5.38 = p stability derivatives

versus skew angle
146



-20

ya

L1

zq

0% 10° 20° 30" 40" 50

I

11 A

0" 10° 20° 30° 40° 50°

-A

| 1 § 1 A

0° 10° 20° 30° 40° 50°

ng

I N IO N

-.25

-.15

-. 05

. O
6° 10% 20° 30° 40° 50

nhq

T

|

LA L]

q

] A
0 15 20° 30° 40° 50°

.03

.

Figure 5.39 - q stability derivatives

versus skew angle

147



3 —
2 C,@r
i
0 Lot %A_,i A
o® 10° 20° 30° 40" s50°
3 6 —
— i
2 - .4 L
cyr Cor
1| 2 |-
o, | | Ll 1A o LA
0° 10° 20° 30° 40° 50° 0° 10° 20° 30° 40° 50°
-3
. 2 |
Op VAL PAGE I3 | —
POOR AT T —
QUALITY L L ,
. 0 I

0° 10° 20° 30° 40° 50°

Figure 5.40 - r stability derivatives

versus skew angle
148



-1, -
Cc x 104
- .8 [— xu
- .6 ::-‘\\\\\‘\\\_____
-4
_ el
0 L | % L1 A
0° 10° 20° 30° 10° 50°
CHZR;QV
OF po AL p
FP%RQUQS}%S
-3
-2
C . X 1072
-1 b
0 L 1] 1A
0°10° 20° 30° 40" s50° -

Figure 5,41 - u stability derivatives

versus skew angle
149



5.5 Dynamic Results

5,5,1 Natural Modes

In5.1, Mcdel description , it was noted that a C.G. location

of 355 M.A.C. resulted in longitudinal instability. 1Ih case 3 of Table
5~II1 the instability is not apparent from Cma which is less than zero,

however the roots illustrate the unstable short period mode discussed

in 5.1:

Damping Wn Real Root Imag. Root
Phugoid .1265 .063 -, 00797 T .o0652
Dutch Roll .1001 1.058 -.1059 T 1.053
"Rolling-Short~Period” . 8007 2,120 -.1713 + 1,25
Spiral Mode . 0166
Unstable "Short Period" . 1542

Table 5-X records similar rxoots for case 1 and case 5. These
configurations are therefore longitudinally unstable as well, The stan-
dard short period and rolling convergence modes are recovered for both
cases when 40% SAS is introduced (equivalent to moving the C. G. forward
.4 M.A.C.) The added étatic margin decreased Cma to ~2.85 and -1.35 for
cases 3 and 5 respectively-

Since the numerical integration is sensitive to the number
of wing stations, to obtain good results a large number of stations
should be considered,

For example, the stability derivatives for cases 3 and 5
(40% SAS) are shown in Tables 5-XI and 5-XII and the corresponding
natural modes in Table 5-X for 36 wing stations, compared to 40 for

previous cases,
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The rcots of the dynamic equations were computed at
A = 0%, 15°, 30°, and 45° for the configuration having a C.G. at
-.15 M.A.C., and the accompanying root loci plotted. (Figures 5.42
through 5.46)

These reveal the variation of dynamic behavior corresponding
to the stability derivative versus skew angle curves plotted earlier.

The effect of skew is to cause minor variation in the
natural frequencies of all but the rolling convergence mode, which
experiences a large reduction in roll damping. This is traceable to
the diminishing of Cﬁp and furthey to declining Cta, moment ayms, and
induced velocities.

The mode shapes corresponding to the new roots at A = 450
are shown in the form of Argand diagrams, (Figures 5,47 through 5.50)}
Although the characteristic roots have changed only moderately the
dynamic modes no longer resemble the familiar ones of a symmetric
airplane.

The diagrams show the phase and magnitude relation of the
six state variables describing the dynamic state. When the magnitude
of a state variable is insignificant its relative phase angle is still
shown by a line, State variables for non-oscillatory modes have only
Oo or 180o phase relations between them. The rolling convergence mode
is one of these. The Argad diagram for A = 450 shows the diminished
roll rate r resulting from the reduction in roll damping.

In summary, the most dramatic change in dynamic character—

istics appears to be the reduction in the roll mode damping. No

other large changes in root locations due to sweep were encountered
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for this configuration. The changes in mode shapes due to the long-
itudinal/lateral coupling are generally small with the exception of

the short period; which takes on a substantial amount of rolling along

with the normal & and o .
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5.5.2 Transient Response

The transtent responses have been computed for two cases:

(1) Rigid wing, 40% SAS added,

(2) Flexible wing, no twist, 40% SAS added

Figure 5.51 comparss with & and B responses to an aileron im-
pulse for the 40% SAS rigid wing case and shows the cross coupling
between the lateral and longitudinal modes.

Figure 5.52 compares the & and ﬁ responses to an elevator im-
pulse for the elastic wing with 40% SAS. Note that the 8 response
ig larger than the & response after the initial peak in the first
second and will no doubt have some effect on a pilot's evaluation of
the handling qualities, This same result was found for the rigid wing

with 40% SAS.
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5.6 Summary

The model used and the aerodynamic result obtained wilth both strip
and linear theory were discussed in detail and compared. The strip
theory approach, though very simple, showed results not always satisfac-
tory; in addition, its limitation to rigid wing case only fturned out to
be too restrictive, since the elastic wing behavior strongly differs
from the rigid one.

The effect of stability derivative changes on the natural modes
was tabulated. The derivatives of a longitudinally stable configuration
were graphed for skew angles from 00 to 450, and discussed in light of
the geometric and aerodynamic effects of skew.

Substitution of these in the eighth order dynamic system gave the
characteristic root loci as functions of skew angle,

Calculation of the mode shapes revealed significant changes in
dynamics, although the natural frequencies had not changed greatly,
(apart from the rolling convergence mode).

Transient responses to elevator and aileron deflections were

presented.
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VI CONCLUSIONS
The analysis and computer program for the adaptation of the lifting
line aerodynamic theory to the oblique wing have been described,
The existence of a side force component, due both to induced drag
and to the tilting of the lift force when the wing is skewed, has been
shown. Stability derivatives were obtained for an aircraft used in a

® 30°, and 45°.

Boeing study with the oblique wing placed at Oo, 15
The derivatives were generated using the lifting line theory and a
simple strip theory (for sweep = 450). The two results are compared
with each other and with the Boeing resu;ts and show reasonable agree-
ment in most cases

The stability derivatives computed using the liftihg line theory
were used in a linearized dynamic model of the aircraft to determine
the effect of sweep on dynamic behavior. No instabilities or large
changes occurred in the root locations for sweep angles varying from
0O to 450 with the exception of roll convergence. The damping of the
rolling mode was reduced by more than an order of magnitude due in
most part to a similar decrease in Cﬂp'

A dramatic increase in the characteristic roll angle, in comparison
to other state variables, was prominent in the rolling convergence, and
the three oscillatory modes at A = 45°, The rolling motion in the
Dutch roll is exaggerated with increasing skew, and surprisingly both
the phugoid and short period modes picked up significant rolling motion.

In the latter mode rolling dominated by a factor of three.
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APPENDIX A

A.1 Relations Between Dimensional and Nondimensional Derivatives (Sta-

bility Axes).

The geomektric quantities b0 , wing span, and c¢ , mean aerodynamic

chord, are referred to the wing in the unswept position.

_ 5 8q [1b -_sec
X 2 Uo Cxu -
X, = qs Cxa [1b]

¢
Xy = qs “Z—U—O' CX(-] [1b « sec]
Xg = - W8 cosG0 [1b]
X = g8Cx 1b
g - 950 [1b
b
XB = qS E[—J:S Cxé [Ib « sec]

_ b

XP = ¢S Eﬁa CXP [1b - sec]
c
Xq = g8 Eﬁg Cxq [1b + sec]

_ b

X, = q8 Eﬁa er [1b * sec]

The same relationship can be obtained for y and =z .
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L& = quCia ;
LO£= qu_Egt Cza H
L[3 = qSl:»'CﬁJB ;
1+ = gqSb E%E Cﬂ)B ;
Lp = ¢gSb E%; Csz ;
I..q = q8b E%g Czq 5
Lr = qSh E%E CEr 5

The relationships for

rolling moment,

the

]
e
9]
(¢}
&

il
a]
45
Lo

i
Na)
(7
s)
[}
g3

vawing moment are the same as
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APPENDIX B

Since only the wing contribution to stability derivatives is a
new element in the stability analysis, we shall limit ourselves to deriving
only wing derivatives and provide a list of the ones which can be com-
puted in a classical way and can be found in the literature [Ref. 15, 21
and 227, The normalizing quantities b0 , c are referred to the A=0

condition,

B.1 '"u" Derivatives [Ref, 227].

C
X
2
3F [ ( aT ac )]
1 b 1 h D
cC = — =2 _ -2C_ + M | == o - (B-1)
X gsS du D al\qgs aMa aMa
C
Z
u
JF ac
-1l Tz L -
Czu_qS o - _(2 Cp+ M aMa) (B=2)

B.2 "B'" Derivatives.

Figure B-1 shows the case of the aircraft experiencing a sideslip

velocity v ,

The effect of introducing a £ corresponds to a - AA for the wing.
The fuselage also is affected, but we neglect its contribution since it is

too complicated to evaluate it,
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Neglecting the induced drag due to the fin, we consider only the

component of the lift due to the fin in the X direction.

F = -D cosp + LFin sin (p - &)

F = --a—cosﬁ+C sinf + = C (B~6)sin(ﬁ-5)
8 D S L
O’Fin

00
-5 L
+ CLFincos (B ) (1 BB)}B=0

Since when B=0 also &0

c. = - EEQ + C¥* (1 - éQ) o EEQ
XB B LFin 3B 3B
aC
.a_.E_D. - acD T - Dl
E") £V A
ac
b, 2¢ acL+ 23 1 5
3\ TR 23A L AR
since
b0 cosA
®R= — (B-&4)
and assuming
cosZA
cos./\.D
we obtain
(BCL) 4‘0%
BN AFAO = " TR tanAU (B-6)
* CLF= 0 assuming the trimmed condition does not require any rudder,
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== tarLAU (B-7)

and after substituting into (B-3), the final expression becomes

3¢ ¢ 202

D D _ L '
xg % " %A " wR = (8-8)

or, in terms of the induced drag coefficient

R

c

C, T . ZCD tan,A0

B i
%
—B
In a similar way we can compute C . The side force coefficient
p
for a sideslip is
Cy = - CC cosp - CD sinB (38-9)

where Cc derives from fuselage and tail contribution

- aC,, 3,
Cy = =-p- Cc sing + —a;-+ CD cosf + 7&? B
B B=0
aCC (B-10)
=-—B—B—+CDO

The main constribution fo CC usually comes from the body and the
vertical tail, for the oblique wing case the side force generated by the
wing also should be included in Cc , but it turns out that such contri-

bution is of second order and therefore negligible.

The tail contribution is a conventional one and it is given by
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5 ) ( o
~£) . = 1 - 9—) (B-11)
( 3 /Fin Ly pin 3B

similarly to the Cx derivatives, no attempt is here made to evaluate

the fuselage countribution.

Cz
—B
ac;  °C
== - = = ~-2 ta -
cZB % Sh ¢, anj\D (B-12)
c
4
B
For simplicity, we shall neglect the influence of fuselage on C, -
' e
Wing Contribution
(ES%) > - ° ~ o Ay (B-13)
3 /w ‘?ﬂ( AA

The magnitude of this term is strongly dependent on the FWILD, there-
fore no approximation is possible which would give a meaningful result,
Assuming a zero rolling moment for the cruise condition, it is possible
to evaluate (Czs) by computing the wing rolling moment at the per-

W

turbed sweep angle and dividing it by the increment in sweep,

Tails (Fin) Contribution [Ref., 21]

ac ‘ s. &
(7§§)F = g% {~ ¢, (B-6) cos (-8 & "%E}s=o (B-14)
94

F
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d
¢ S\ 4
A _ 26 F)- ZF
( mz)F -4 (1 ® s/ b (B-15)

“F

The same approach used in computing (CL ) is necessary when
B/w

evaluating the wing contribution to (Cm ) and (Cn )
B/w B/w

C
m

—B

The tail contribution is negligible, therefore

¢ ={¢ (B-16)
g ( ma)w

The fin contribution is given by [Ref, 217

' EL)
C ) =V (C ) (1 - ) (B-17)
( B /pin Y\ La/pin 3
where
S_.. &_.
_ _Fin Fin
Vv =355 (B-18)
w 0

vertical tail volume,

The sidewash factor %g , generally speaking is difficult to estimate
with engineering precision. Suitable wind-tunnel tests are required for
this purpose. The contribution from the fuselage arises through its
behavior as a 1lifting body when yawed; Associated with the side force
that develops is a vortex wake which induces a lateral-flow-field at the
tail. The contribution from the wing is associated with the asymmetric
structure of the flow that develops when the airplane is yawed. This
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phenomenon is especially pronounced with low-aspect-ratio swept wings.

When such tests are not avallable, References 27 and 28 can be used for

empirical values.

B.3 "¢ Derivatives,

C
o
oF oC
1 X D
Cx —qs BOJ_CL- aoa"CL (1-2k CL ) (B-19)
a o
where
ac
K @ —
"acL
C
Yo

For a rigid wing, %2 = tanA , therefore integrating (3.28) over

the span and normalizing the result

3 b/2
1 jz 1 nA - 2k L. C A
‘v, @S B " gs Fa Yo g tand T B by O ) Fenddy
-b/2 (B-20)
we obtain
cya = [CLOA Vy + CL,(l - 2k CLa) tanAl (3-21)
C
o
In stability axes
C =, C (B_22)
2o Loy



Cm
8]

The presence of an unsymmetric 11ft distribution due to the angle of

attack introduces a new wing contribution to Cm
(0

let us first evaluate this contribution before coﬁsidering all the
other ones whichlare common to symmetrxic aivcraft. We shall refer to
Figures 3.5 and B-2 for the symbols used; To be consistent with the
conventional notations we shall consider this contribution as a part of

CmO = Cmﬁ(AJ referred to the M.A.C. at zero sweep (yMAC)'

The wing moment about YMAC is given by

b/2 _
™M, =-q f Z Yypc W (B-23)

where (M)w is the wing pitching moment due to the effects of skew.

A

Let us now consider the general problem,

Moments about C.G,.
' a) Wing contribution
M= M, + (M)Wr + (L cost + D sind) (h-hwh) c (B-24)
A
b) Tail contribution

M =-4_ L (B-25)

c¢) Total moment

M, = M+ (M)WA+ (L cosf + D sind)(h-h_)c - 4, L
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Figure B-2 Moment about the C.G. in the Plane of Symmetry.

N.P. = Neutral Point

c = M.A.C. at A=0

oy = Angle of attack (wing-body)

€ = Effective wing downwash at tail

ilt = H-tail trim angle

Q. = Qb - (€ —it) = H~tail angle of attack.
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- D - - -
= M0 + (M>WA,+ L lcosOﬁO + L sinc|(h hwb)c ﬂtLt

= MO + (M)WA+ L (h-hwb)c - JZt I..t (B-26)
having assumed :
D : ~ .]2. ~
(:osOI0 + L s:I.nOKO 14 L Oto 1
C == M, (B-27)
Ry qSE
S
G =C 4+ (C) G (h-bd-C —f;-‘i
mT 0 A t Sc
{B-28)
=c +(c ). +C (h-h,)-V C
m0 m wA L wb Lt
where
5_4
y LEE (B-29)
H —
Sc
CL = CL (Céo + i - e) (B-30)
t (@
t
&
C, = -vyc (B-31)
t t
0
3 3 )
c === = — + = (C) +C  (h-h_)
ma o mT mO 3¢ tTm WA La wh
(B-32)
dg
o, [1-2
La oal H

17



i
o
—

Neutral Point (C,G. location about which Cm‘

|9
c =—é%(c) +6 (h-h )V G ll-%ﬁ}=o
ma mwA o wh th
. Tbh, _ 1|2 ) _ 8¢ _
h'"h'"hwb c [aa (Cm)w Vi 1 (1 aa)] (B-33)
Ly A o

or

= 12 ] _ 2e) _
hwb_ h + C [E}Od Cm)w VH CL (l BG)J (B-34)
La A ozt

and by substituting (B-34) into (B-32)

d - 3 de
C ==— (C) + C (h-h)-["—-(c) - V. C (1-“‘“)]
™, AN mowy Ly, 3 “Tm WA H LOLt [ 1o
(B-35)
de )
“voc (1 J 2
H L, o
t
c =C_ (h-h) (B-36)
my Ly
h-h & Static Margin (B-37)
Aerodynamic Center Build-up.
XAC = hwbc (B-38)
where
WbE .25
CL
= % 2e) -
X =V —-——(1- v—)c (B-39)
ACTails H C-La oo



X - L2 c -
X =2 2 G, © (B-40)

ACPJ‘.vot: and Sweep Ly YA

c

Ry

This is one of the new derivatives and only the wing contributes to
it. It is formed of two terms: ome due to the 1lift and one due to the

side force,

b/f2
C = X x+Yy) dy (B-41)
-b/2

The knowledge of the spanwise distribution of X and Y 1is needed

in order to evaluate Cn
[0

B.4 "p" Derivatives.

The local angle of attack varies linearly accoxrding to

N
o = X (B-42)
P UO

]

For the symmetric wing case this derivative is zero since the in-
crease in 1lift on one side of the wing is balanced by an equal decrease

on the other side.

This is no longer true for the oblique wing, therefore

¢ - r 2Zg (B-43)
z Sb0 o Y
P -b/2
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The evaluation of %% can be done according to the method outlined

in section 3.2.2. However, such an approach will require the evaluation

of %% that will take into account the behavior of the obllque wing.

To remind us of this detail, we shall add the subscript p to the

derivatives that must be evaluated in that way,

Since
2_3%%
3p QX Ip
and
L8 -
—P_ %
ap U0
37 (az)§ [(ae) - J p
op ¥, U, \o 0 0 U,
Therefore
b/2
-2 —_ | -
Cz =55 f (%f—x) + dOJ x dy (B-44)
P 0 Lo /2 P
CY
P

Wing Comtribution.

Similarly to |{C s c would be zero if the change in 1ift
plu Tplw

was antisymmetric.

b/2 p. bL2
- __9 gy = 0 2 -d
= b, f = b3 f » (4 4 - d tanA) dy
-b/2 -b/2

(B=46)

|
fu
je]
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We notice that %% = 0 for a rigid wing, but it would be different from

zero for a flexible one.

Fin Contribution [Ref. 217,

A
y b,S L [ p 2U FZ F
p/Fin 0 O%in 0 0
(B-47)
"'_"....?EC (.Z_{E.Z._Eé)
S La_ bo P
Fin

Therefore, for a rigid wing

b/2 . ‘ . :
: s 8 24
_ 2 V) ad °F FZz 28
“_ T b8 / [(acx) Yo © (aoz) ta“AJ dy - 3 ‘L, (bo )
P “b/2 P P Fin
(B-48)
For the flexible wing, the term %g is no longer zero, therefore

the term ﬂo %g should be included in the integration representing the

wing contribution.

Cy
p

Wing Contribution

-
oo
-t



Fin Contribution

£
(cﬁ ) = (c ) 1§§ (B-50)
A Tp/Fin yp Fin 70
Therefore
b/2 7
¢ =22 )T, P oo, ) 2L @
% bZS d 0 Y5 ¥in bO
P bpS Lppp P P
C
n
"

No tail contribution to this new derivative

oy P2 e
c = |c — % 3 4y = 2 f ANy d |57 dy
m /% b.os o bes “bs2 L\3¢ 0
P P 0 -b/2 0 P
(B~52)
c
Tt

Wing Contribution

The side force is the new element in the wing contribution to Cn

P
b/2
2U
c _ oo X o, y] dy (B-53)
n /o bzs op 3p
P 0° “bs2

where

. _ 1e] — _
(%%) =[§% (ha - d)] 75? = [LO - (%%) } x (B-54)
P



Tail Contribution [Ref. 217,

24

o ) =] 2
( N fpin VL Bp %P

FZ @Q] c
L

Q%in

(B-55)

Therefore, by adding the two contributions, for a rigid wing we

obtain

The

B‘S Ilqll

b/2 -
o2 _{8d ) o 3t
%/ {[’50 )+ |(2) 7
0% ““bj2 P P
24,
Fz b
+ Yy [ b0 T op CL

flexible wing would have the extra term

g Xy

037

Derivatives.

The

All

extended

The

4

&)

E

o

I

q derivatives are derived in the same way as for the

P

£

y

(B-56)

ones.,

the comments made in the previous.group of . derivatives can be

to this one and therefore they will not be repeated.

local angle of attack now varies linearly according to

a =335
q " v, "7

Wing contribution only
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2u 2u
yq yq w cS Lb/2 4 cS Lb/2 4 9q
(B-57)
b/2 b/2 _
2 [z [ Bl @l
= y dy = - tanA' d
“s f o /q e f Voo Y0 7 \iafg T
-b/2 b/2

For flexible wing the term ﬂo @y\§ must be included in the integra-

. T w
tiomn,
C
2
-9
Wing Contributioen.
20 b/2
. .20 &
C m=o—— == dy
Z - U/P 3q
qw cS Zb/2
(B-58)
b/2 b/2 :
- L (’a}')gdy=i (-aﬁ)+ao 3 dy
=S /g oS /g
-b/2 -b/2
Horizontal Tail Contribution [Ref. 217
, S 4
(C ) = - E_t CL = - 2 VH CL (B-59)
q H,Tail Sc OﬁT QﬁT
and b2
2 =1 = | =
cC = - = =21 4+ d - -
Zq S [(aw)q 0] y dy - 2 VH CL (B-60)
‘b /2 %1
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£
—4d
Wing contribution only
2U0 b/2
c, = (C ) = — ‘/r — X dy
b/2
I (@&)Jrzi 77 dy
b.eS /a0
¢ ~b/2
C
m
—4
Wing Contribution
20
0 —
(Cm ) "2 %% y dy
q/w ¢S
b/2 .
-2 M —
= — + d /7 d
-b/2
Tail Contribution [Ref. 21]
£
t
c ) =-V_C —
m H L -
( q/T OﬁT c
Therefore
b/2
-2 f a’@ e —
C = e ==144d -
-b/2
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Wing Contribution only
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B.6 "r' Derivatives.

Except for the new Cm derivative, due to the wing aerodynamic
T
coupling, and for the wing side force contribution to yaw moments, all

the other derivatices are standard.

The method used in evaluating r derivatives in section 3,2.4 will

be applied here without any further explanation.

Assuming the steady state flight condition to be straight levelled

flight

Fin Contribution only [Ref. 21]

5 24
_°F FH , 28
Cy = CL [ bo + 8?] (B-65)
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c

e

Wing Contribution

oy b/2 b/2
- -2
Zr w qb2 S 0 T b2 S 0
0 ~b/2 0° “b/2 (B-66)

Tail Contribution [Ref, 21]

(Cz ) = ¢ -gﬂi (B-67)
r/Fin Yr o
Therefore
b/2 P
¢ =2 4. 72 ay +c -LZ (B-68)
Ir OS 0 Yy bO
-b/2
C
m
—
Wing Contribution only
b/2 b/2
C = {C ;—gﬁ-ﬂdyx -LL L. yx dy
T T/w q‘b cs * b, eS8 0
-b/2 0 -b/2
(B-69)
C
el
=
Wing Contribution (including side force)
b/2
20
0 _— -
C = [d x+()ay-dtan/§)yiﬁ
n 2 0 070
r/w qgb.S



b/2
-

2
boS /2

l'&o (x - tanA y) + %0, V) x dy

Tail Contribution [Ref. 21]

B 'l
o o 2
r/Fin Tr Fin 0

b/2

4 - - - i
Cn == f [d (x - tanA y) +,@0y0 y]x dy - (Cyr)

T bOS Lb/2
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APPENDIX C

C.1 Similarity Transformation between Inertia Matrices.

The conversion of an Inertia Matrix from body into stability axes

occurs according to a similarity transformation [Ref. 26].

(1,15 [T, 0 (L) (T, (c-1)
where
[IS] = Inertia Matrix in stability axes
[Ib] = Inertia Matrix in body axes
[Ts/b]- = Rotation (or direction cosine) matrix from body to
stability axes
L ]T = Transposed matrix

The stability axes are obtained by rotating the body axes about the

Yy axes by an angle « , therefore ybiEy .

8
The rotaticn matrix {TS/b] is given by

T cos 0 sina
[Ts/b] = 0 1 0 (C-2)

L-sina 0 cosC¥

and
[(cos O - sing
T

[Ts/b] = 0 1 0 (C~3)

Lsin 0 cosC¥

In a symmetrical aircraft both the Ixy and Iyz components of
the inertia matrix are zero. When the wing is skewed, the Ixy compo-
nent is no longer zero, therefore for an oblique wing ajrcraft the

inertia matrix, in body axes, looks like
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I

(1,1= {1

I
XZ

xy

)

If we know transform [Ib] according to the similérity transfor-

mation (C-1), we shall obtain the inertia matrix expressed in terms of

the stability axes,

1, ]

After some algebra we obtain

i I'
XX
= '
1.} IXy
Il
XZ
where
I' =1 cosza-+ I sin20x + I
XX XX Xz zz
I' =1
Yy ¥y
I' =
ZZ
I' =1 cos
Xy Xy
I' =
Xz
I' = -1 sinc
yaz Xy

1
Xy

1

1

ya
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APPENDIX D

.1 Downwash Matrix [81] .

The 1ift or circulation distribution can be visualized as resulting

from a system of horseshoe vortices, each of which is of constant

strength (Fig. D-1).

LLLLLE
rb’[ﬁhrbhr»”‘*:bb»rh”*?-
L L |4 L {4 lt F> k S 4{ TS
!
)
R IR{RIRIRIR{IRIRR
‘ ‘ ’ , Actual airload
l 1 curve
t— —
Ny
Approximation to the
i actual loading as
_L S given by horseshoe
vortices
P , 5
oL LLLT ‘
f le c‘b‘a

Figure D-1 [Ref. 147,
Horseshoe Vortex System
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The net strength of the tralling vortex at any point on the span of
the wing is numerically equal to the rate of change of strength of the
bound vortex in the spanwise direction, Little loss in accuracy with

respect to the spanwise airload distribution will be entailed if:

a) The total strength of the chordwise system of bound vortices

is concentrated in one bound vortex located at the local span-

wise quarter-chord point.

b) The downwash angle at each vortex station across the span of the
wing, at the local streamwise three-quarter-chord point (-é down-
wash control point D ) is equal to the geometric angle of attack
for airfoil having a 2-D lift curve slope equal to 27 , When
the section 2-D lift slope is different from 27 , equation D-1

must be used

m

(%) 3/4" E??r e (2-1)

The downwash angle at any one downwash control point is the sum of

the incremental downwash angles due to the horseshoes in the system of

Assuming the geometry of the wing platform, the angle of
attack and section 2-D 1lift curve‘slope variation are given across
the span, the unknowns arc the values of the running 1ift at each
point on the span. The strength of each bound vortex represents
the average airload over its own portion of the wing span.

The method for determining the downwash matrix for an oblique

wing is now illustrated.
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In Fig. D-2 a system of horseshoe vortices and the associated down-

wash control points are shown.

Figure D-2

At the 7, station the section 1ift curve slope will be m, and

the angle of attack of the section zero lift line is Qe -

Since a linear relationship exists between the strength I} of a
particular horseshoe vortex j and the downwash velocity wij at the

point 1

W,.=K,, I (D-2)
1] 3 1]
where K 1s a constant, and the downwash at 1 due to the entire

vortex system is

W, = ZJ. Wis T }:j Ky 5 rj (D-3)

1
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From equation (D-1), which expresses the relationship which must
exist between the downwash angle % at each control point, the wing
angle of attack and the section 1ift curve slope MO for the wing

station at the contrel point, the following series of equations result

o R
v 2n 1 W 27 2 2ot
and in general
W m
i i
— e (Y -
v St (D-4)
and substituting (D-3) into (D-4)
i1
T v 2y Ky T (0-3)

The relation between the running load 1 and the circulation at the

.th s .
i station is

1i = va‘i (D-6)

Equation (D-5) can therefore be rewritten in terms of the running

load 1
v v j ij j DVZ j iJ J

Substituting (D-7) into (D-4) results in

1 o
" Zj Kih =9 (D-8)
or
qm,
R, 1, = —xq .
I e (0-9)
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And in matrix form

! -
Q%‘ (D-10)
\\qm
where —E: is a diagonal matrix.
Defining a new matrix
A
[81] = 4 [K] (D-11)
Equation (D~10) can be rewritten as
(ol = by | -
(51 141 = Pramgd (%) (D-12)

The elements of the [51] matrix are to be influence coefficients
relating the incremental downwash angle at each control point to the
intensity of the running lift over each increment of the semispan of the

wing,
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D.2 Evaluation of Kij Elements,
The velocity induced by a vortex of strength I at a point P can

be written as [Ref., 24]

T (cost - cosB)
P LT R

W (D-13)

where « and B are the angles between the direction of the vortex
segment and lines joining the ends of the segment to the point as shown

in Figure D-3.

End
R view

Plon view

Figure D.3 - Finite Segment of a Straight Vortex Filament [Ref. 147.

A plan view of the geometry of a typical horseshoe vortex is given

in Figure D-4,

In order to evaluate the incremental downwash velocity induced by a
single horseshoe vortex it is convenient to consider the following three

cases:;

1) Control point to the left of the horseshoe vortex,
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2) Control point within the horseshoe vortex.
3) Control point to the right of horseshoe vortex.

Fig. D-4 shows the quantity that will be used in the derivation; by
the subscript 1 we shall indicate quantities relative to the control

point Di , whereas by j we shall refer to the horseshoe reference

point V, .
J

The origin of the axis system is at root quarter chord point, When-
ever the locus of the quarter chord point does not lie on a straight
line, it is assumed to be given by an equation If(y) w.r.t., a straight
line passing through the root quarter chord point and aligned with the

wing span (unswept case)

| i~y
T} £

Xj s Yj coordinates of horseshoe reference point Vj
C;

Xi -5 Yi coordinates of control point Di

Ci chord length at statiom 1

Xi = -y tan A+ f(yi) tan A

1) Control point to the right of the horseshoe vortex (Fig, D-4a)

defining
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Fig. D-4a Control Point to the Right of Horseshoe Vortex,
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For the left trailing vortex

a= 0°
- (o]
B = 0 +90
and equation (D-13) becomes
[1- cos(0y, + 90°)]  1+sin a
Wy = T Gn(AY, B RIS L (D-14)
, 17 :
sin @, , = i (D-15)
ij Y
\f(AYij+ h)*+ R
For the right trailing vortex
— 0 -
=907 -,
B = 180°
[cos (90 =B, ;) - cos 180°] sin By, +1 ‘
Wy p =~ T ZIOS A e P re AR T, (0-16)

The minus sign derives from having assumed positive downwash veloci-

ties,
Rij
sin B, . = : (D-17)
SN Y -my? + R?_j

For the bound vortex

a=Q,,
1]
B = Bij
(cos &,, ~cos B..)
— i 1]
Wiy = I in R (D-18)



AY..+h
£

cos O, , = ] (D-19)
13 Yo Y +h)° + R‘:’_j
A Yij_- h
cos Bij = i (D-20)

7
v 7y, -7+ R,

The total downwash velocity at the control point Di is therefore

given by
Wiy ™ Mg+ (et (0
T |1+sin @, 1l+sinp,, «cos O ,L-cosB,,
W, =t ij _ ii . ij ij (0-21)
ij 4wl AY,.+h AY..-h R, .,
1 ij ij ij
and
£ § in O, . 14 si . s A ..
. :_@‘;1 1 1;— sin 1 + sin B'.LJ . cos Ole cos BlJ (D-22)
ij . 4 Y..+h Y.,.-h R, .
J J 4 1] & 1] 1]

2) Control point within the horseshoe vortex (Fig. D-4b).

Figure D-4b.
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Since

i=
DR, =0Y,=0
Riy = C/2

Both trailling vortices will induce the same downwash velocity

a= 0

[8)
p= 0oy + 90

T
_ s O .
Wigdp = (Wigdp = Gp (Ltsin O 0)
R, c,/?

sin O&i =
\Ih +R,.
il

For the bound vortex

v h2 4 (Cif2)2

o= «,
il

" o
p=180° + o,

) = I
ii’B 41t R, .
11

W (cos &, . + cos a,,)
11 ii

cos oai = h
h ~FZ'Cl
Therefore
r ]
i 2 . 4
Wii = {h (l+sin Oﬁi) + Ci cos aii}

3) Control point to the left of horseshoe vortex (Fig.

defining

(p-23)

(D-24)

(D-25)

(D-26)

(D-27)

D-4c),
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T, [1-cos(90°+ar,) T. (L+sin a,)
W, ), = - 7 S O . i (D-28)
1L 4 AYij -t bn (AYij -h)
Rij
gin &), = ] (D-29)
ij 7 . 7
Vi -w° + i,
For the bound vortex
o= . = 180° - o,
1] 1]
= = ° - 1
B Bij 180 aij
T
= - -
(Wij)B i Rij (cos Gij cos Bij) (D-30)
cog Q,, = cos(180o - o)
ij 13
Therefore
Axij - h
cos &, , = ~ cos !, = - ] (D-31)
ij ij 32 2
Vv, -»' + &,
Similarly
A'Yi_'] + h
cos B,, = - cos B!, = - ) (D- 32)
1 1] \/(AY. .ur-h)—2 + Rz..
13 1]

For the right trailing vortex

203



o 0 ,
E& [cos(90 —B'ij) - cos 180 ] Eﬁ (sin 3£j4~1)

(Wij)R = by (BY; ;+B) T 4q (B, +1) (D-33)
Rij
sin B!, = ) )
i 2
\/ (AYij +h)" + Rij
Therefore
T. 1+ sin ®%.) l+sinBi. cos & . -cos B,
P vl R v 5 R
ij ij ij

It is now possible to derive the matrix K of equation (D-10)

since each element will be given by

W, .
K. = i
13- T

.

Do
o
i



D.3 Structures Fundamentals.

Ag done in the previous section, the continuously varying spanwise
airload distribution will be replaced by a series of constant intensity

running loads.

The assumption of the section aerodynamic center acting at the
quarter chord becomes weak when considering the bending and
torsion due to the airload distribution whereas it is quite good when
computing spanwise lift distribution. This inconvenience,due to the
lack of predicting chord-wise 1lift distribution, can be reduced by
introducing a correction factor f which will allow the section aero-
dynamic center to be placed in any desired place along the chord. Such

a correction factor is here assumed to be known.

Because of reasons which will appear more evident in this section,
the horseshoe vortices must be chosen in a way such that the aircraft

centerline will coincide with one trailing vortex,

Let us consider the geometry of the structural skeleton of the wing

as shown in Figure D-5 and define

M , M, ..., M Rolling moment due to total lift of all the
vortices outboard of this point (positive when

raises left wing tip).

M ,M , ... , M Pitching moment due to total 1lift of all the
vortices outboard of this peoint (positive when

nose up).
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Figure D-5 - Structural Skeleton of the Wing.
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Beam bending moment at elastic axis point about
axis perpendicular to local elastic axis (posi-

tive when it compresses wing upper surface),

Torsional moment around elastic axis (positive

when leading edge up).

Total 1lift acting on the wing section having

span 2h , numbered from the left wing tip
Li=2hf:i

ﬂi being the intensity of the running lift at

station i ,

Streamwise distance from horseshoe reference
point at a wing station to the corresponding
point on the elastic axis (positive when elastic
axis point is to rear of horseshoe reference

point).

Section aerodynamic center correction factor;
(£ positive when aircraft is to rear of quarter

chord point).

The general form for the bending moment is

M, =M cos A+ M sin A
S Vi

and for the torsional moment

T. =M cos A-M sin A
i v, X

(D-35)

(D-36)

At station 1, on the center line of the horseshoe vortex nearest to

N
D
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the left wing tip (Fig., D-6) the following equations apply:

..L_]‘E:LEL
2 2 1 4

Ly h tanA

MY1= 5 (el - fl Cl + —-"“é"-"—'—)

and substituting into equations (D-35) and (D-36)

L, [y cos A h
Ml =5 2 + (el - f1 Cl + 0 tan A) SlnA.] (D-37)
Tl =5 [(el- fl Cl + > tanA) cos A - 3 sinA] _ (D-38)
At station 2
_ L2h .

MX2= Ll(hl+h) + (D-39)

- - - h .
My =L (,Ax12 f1 G, + ez) + Lz(ez £, c?_ + 5 tan A) (D-40)

2

and in general, for the left wing (forward), for i>1
i-1
(M ) =22th(i-k)+L.h (D-41)
X. i4
i/l k=1

i-1
M =Z ( + e, ~-£ C)+-I—d—i e, -f. C +EtanA) (D-42)
v, )L bl S T e T e M R A T e

where
Mg =% - %
‘herefore, for 1i>1 , the bending moment and torsion for the left wing

are given by:
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Leading Edge

~— Centroid of the Load L/2
g Elastic Axis

Figure D-6 - Plan View of Left Wing Tip Section.
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i-1
(Mi)L = :L:; 2th(1-k) + Ly % cos A
(D~43)

i-1
L,
+ZL(AX + e, - f C)+—1-(e-»fc+htanj\) sin A
k==1k ki i "k 'k 2 i 1L 2

i-1
T,), = E N+ -f c)+fi -f c+1‘-taA) A
(Tyly = k=1Lk( ki T %17 Tk Yk ; (e;- % G +5 tan cos

ii. (D-44)
h

- 2hL (i-k) + L, » |sinA

k=1 Lk i4

For i =1 expressions (D-37) and (D-38) should be used.

For the right wing, assuming n to be the farthest right station
L h

= 0.0 -
MX =55 (D-45)
n
Ln hn
MYn= 5 (e -£ C_ - - tan A) (D-46)
hn Ln hfl
MJp =" L, 7 cos A + 5 (e -f C, - - tan AsinA  (D-47)
L hn hn ]
(Tn)R =5 (e -E£,C_ - = tan A) cos A + T3 sin A (D-48)
and in general, for the right wing, for k<na
i+l
(Mx) =22h1-k(i-k) -Lig (D-49)
i/R k=n

i+1 L
M =2Lk(AXk.+e-f C)+-—i-(e -f C -'llta.nA)
Y. = i i "k 'k 2 i i 4 2
i’R  k=n (D-50)
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where
By =% - %
Therefore the bending moment and torsion, for the right wing and

for k<n , are given by
i+l

(Mi)R = E 2th(i -k) - Li cos A
k=n

1=

i+l L (D-51)

i h
+ ;Lk(ﬂxki-l-ei-fk Ck)+ 5 (ei-fi Ci-2 tanA) | sin A
i+l
(T,), = Z ( + e, -£ C)+Ei(e -£, C -htanA) cos A
Pr 7 & BB T e B G T (et G mg e

iil (D-52)
- 2hL (i-k) - L, = |sinA
e 2R Yy i

i

At the root station of the elastic axig the bending moments of the
right and left wing cancel each other in a trimmed flight condition.
The presence of an unsymmetric airload would introduce a non-zeroc aero-

dynamic moment at the root station.

In Figure D-7, such a case is shown.

o)
R "—‘TAM
T
T
M)y
Figure D-7
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where

AM = )+ 1))
(M.r)R = Root bending moment due to right wing airload
(Mr)L = Root bending moment due to left wing airload
T = Root station

In such a case the following considerations can be made;

a) Instantaneously the wing is assumed clamped at the centerline,
ellowing for the discontinuity in the Bending moment. The
structural rotatlon angle across the span, due to bending, can
be computed as shown in the next pages by simply substituting,
for the semi-wing considered, the corresponding root bending

moment,

b) The AM produces an angular acceleration which can be decomposed

w.r.t. the roll and pitch axes.

This acceleration introduces angular velocities about the roll and
pitch axes which results in an apparent or aerodynamic twist. This new
twist contribution modifies the spanwise airload distribution and, con-
sequently, the root AM. A change in AM changes the angular accelera-

tion and so on.

Because of this discontinuity at the root it is convenient not to

consider the root station.

In case such a point were included in order to take into account

the two different values of the bending moment it would be necessary to
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write two separate matrices: one for the left and one for the right wing.
In addition, when computing the streamwise twist due to wing flexibility,

this discontinuity in the root moment comes up again.

By using a system of vortices such that the aircraft centerline
coincides with one trailing vortex, the root double-valued point will
not be computed. In doing so nothing is lost in accuracy but there is

a gain in simplicity for the matrix analysis,

In matrix form, equations D-37, D-38, D-43, D-44, D-45, D-46, D-51,

and D-52 can be opportunely combined and become

EM% = [cosA [r] + sinA[u]J :Lg (D=53)
| = [- sin A[x] + cos A[u]] L] (D-54)
where
M (Tn 41
T )
| _ ML > ) _4 L $ _ (gl = é L
My —J 3 Ty = ; L=2h!4l =2h
% My } | T [ Lg >
\Mn-J \TnJ L'@n.)

Mo, T EL are the values at the last station to the left of the air-

craft centerline (Fig, D-8).

MR s TR . ﬂR are the values at the first stationm to the right of the

aircraft centerline (Fig. D-8).
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Figure D-8 - Plan View of Aircraft Centerline.
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and
[A1 1 [0]
[u] = mmmmme o (D-56)

(01 | [B]

where [A] and [B] are reported in Tables D-I1 and D-II,

The moment at the aircraft centerline can be computed as follows

h
M) =M +1L B (D-57)
( £ x L 4
h
M =N L -f.C = A -58
( Yr)L v, + L(er 1L + > tan A) (D-58)
(M ) =M, - I h (D-59)
xr R R 4
g h
= & -f - 2 ta -
(Myr)R MyR+ 5 (e - f,0p - 5 tanA) (D-60)

where

Rolling moment at the aircraft centerline elastic

———
NZ
H
R
=
i

axis due to left wing airload distribution.

Pitching moment at the aircraft centerline elastic

| —
%3
la
~—
ol
L}

axis due to left wing airload distribution.

Similarly (M ) and (M ) indicate the corresponding moment due
/R r

to the right wing contribution.

The total rolling and pitching moments acting on the airplane are:

for the rolling moment £

T h -
AR = MXL + MXR + g (LL LR) (D-61)

[S8]
=t
Gy



[\
bt
=l

[A] =

1 hy
7(81 - £,0) + 5 tanp)

1 h
(A}(12+ e, - flcl) z(e2 - f202 +3 tan )

...........................

1 ) h
(m(u+ei-flcl) (Ax21+ei—kfzc2) ..... -Z-(ei-fici+2

TABLE D-T

tan A)

.....................

ALITYOD yooq
do
ST 80V Tyngapg

............................................

1
E(eL - f

h
Lt 3 tan A)



812

[B]

190

TynD ¥e0d J0
g1 BHVA TVNID

ALl

...............

..........................

h
2C 1" fm-1)C%m-1)" 7 ) (R o) -1 EnCn)

n
2(en—fﬂcn -3 tan A)

TABLE D-II

....................




for the pitching moment M

1
M= MYL+MyR+ 5 e (L +1L) + (L -LptenA- L £ C -L £ C
(D-62)

The streamwice angle of attack contributlion due to wing flexibility

can then be obtained from

i i
o = RS ds sinA + L ds cos A (D-63)
S; [N GJ
k k
where
o% = Streamwise angle of attack contribution at station 1
i
due to values of bending and torsional moments acting
inboard and at station 1 .,
k=R Station when 1 on the right wing
k=1 Station when i on the left wing
EL Effective beam bending stiffness around elastic axis
GJ Effective torsional stiffness around elastic axis.
. 2h . . . R
Since d§ = cosh for this study, the integrals in equation (D-62)

for station 1 can be written as

1
Moy 1 n o on M- ah ML om
71 987 cosATE.1. cosAT - T E 1 cosATE. 1. cosA
. 1t 212 (L-1)t-1) L'L
L
W e N 3 My
~cosA |2 E I ot B, T,



"1 i=2 "i7i

1 L

T . Ty

fGJ ‘cosAch"'Z GJ
L

And similarly it is possible to obtain the expressions for the

corresponding values at each station.

In matrix form:

gotsg = ci:A. [sinA [E1] ;ME + cos A[GJ] %T% (D-64)
where
[c] : (0]
(BI]= }J---+--- (D-65)
(01 ' [p]

where [C] and [D)] are reported in table D-III.

The matrix [GJ] is similar to [EI] and can be ontained from equation

(D-65) by simply replacing EI with GJ .

Substituting equations (D-53) and (D-54) into equation (D-64)

2h
cosA

sinA [EL] (cosA [r] + sinA [u])
(D-66)

+ cosA[GI] (sinA[x] - cosA{u])l }L%

which can be written as

sin A

o, | = 4p2 [sinA([EI]+ [GJ])[r]+( ook [EL1-cosA [GJ]) [u]J }zg (D-67)

S

It is now possible to define the elasticity matrix [82] .
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[€1=

[b] =

N =

1
2E ey T (reD)

1
Ere )y T(re)

e T re)

1

1
2 E

TABLE D-ITI
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D up? A GJ] (SinzA 1 .A J
[32]- h® |sinA ([EI1+ [GJ]) [r]+ —K[E]-cos [GJ1} {u]

cos
(D-68)
Then
bg | = i gl -
1% = [8,] '21 (D-69)
The Szij element of the [82] matrix represents the angle of

attack change in radians at station 1 due to the structural deflection

of the wing caused by a unit loading at station J .
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D.4 Wing Twist.

The twist in a flexible wing can have several contributions or
twists which can be divided into two classes: I) those which would be
present even if the wing were rigid, and 1I) those due to inertia effects,

thrusts or drag, and section pitching movements on the flexible wing,

(D-70)

Class I: Aerodynamic Twists {o% %
I

a) Built-in geometric twist due to camber or construction
(including eventual dihedral contribution) or both.

b) Interference twlst (not considered in this study).

c¢) Twist due to control surfaces deflection (flap, aileron,
spoilers).

d) Apparent twist due to airplane rolling and/or pitching
velocities (the angles of attack due to pitching velocities

should be measured at 3C/4),

Class II: Structural Twist due to Wing Deflections caused by Aerodynamic

Loading which are independent of Wing Lift Distributiom 50% ;
11

a) Vertical acceleration upon dry wing and internal fuel dead
weilghts,

b) Effects of airplane rolling and/or pitching acceleration
upon dry wing dead weight, wing internal fuel &ead weight,

¢) Section pitching moment with control surfaces in neutral

position (Cm of the airfoil).

0

N
N
(]



d) Incremental section pitching moment due to control surfaces

deflection.
The type of twlst due to the effects of wing deflections arising
from loads which are independent of wing angle of attack, such as those
listed under Class II, may be computed with the aid of equation (D-63)

= cf;z/\, [sinA [EL] }M} + cosA [GJ] ;Tj] (D-71)

o

where M and T are the wing bending moments and torsion along the
wing elastic axis due to the loadings of Class TI. For cases a) and b)
the knowledge of mass for each section of span 2h and the position of

the corresponding C.M. w.r.t, the elastic axis must be known.

No attempt is made here to compute the section pitching moment

with control surfaces in neutral position.

D.4.1 Twist due to Control Surface Deflection.

The effect of a control surface deflection is of introducing an

aerodynamic as well as a structural twist.

The aerodynamic twist can be computed from the following expression

for the 1lift produced by control deflection [Ref. 25].

2 [(ﬁ_-‘eo‘-(-sinﬁoz_ ] jé% (D-72)

zg(f"J
(2]
]

where

]

8 sin_]'[?_ §(1-§>']
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Cf = control surface chord

5} control surface deflection in radians

Equation (D-71) applies for a 2-D 1lift curve slope of 21 . For a

2-D 1lift curve slope of m this equation can be written as

0 H

[y-~.86 sinb
‘ = “:\—0‘ o 0 i ) -
]cﬂé [‘mox} [( L - )]163 (D-73)

~

Substituting the value for 90 results in

—

( 1- T-];‘co‘s-lk(Z'i r1)—+_%_2 _V E(} -*g‘) ) 36% (D-74)

sl [=| |

And dividing both sides by [mo ]

J 35} (D-75)

lo | = [‘(1-‘11&“1?25: 1422 45(L- 5 )
81 m T

Structural twist derives from the section pitching movement due to
contrel deflection. Once the spanwise bending moments and torsion
distributions are known, equation (D-71) can be used to compute the
section structural twist where M and T are replaced by the corre-

sponding ones due to controls, Mc and TC .

In Figure D- 9 the symbols used are shown.

o
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. th ,
i Station

Figure D-9 - Structural Moments due to Control.

McO Station pitching moment due to controls
T 2
M = q 2h C” C
c0, M,
i 01
C Local chord length
Cm Local pitching moment coefficient
0i
Mc’ = McO, sinA
1L 1
T = M cosA
c, c0.
i i

The station pitching moments can be computed similarly to what was done

in equations (D- 42) for the left wing, and (D-50) for the right wing.

For stations 1 and =n

2
M =qhC]C (D-76)
cOl 1 g
M = h C2 C
cO 4 1 ™m (D-77)
n (1731
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For stations

M

and so forth.

And in general, for the left wing

q 2h|_
k=

i+l
q 2h :E: C2 C
k m
k=n

e, )
(COiL

for the right wing

(o,

Equations (D-80) and (D-81) are derived

2

= q 2h
cO(n_l)

and n-1

-+
M=
(9]
o

N =
(]
O

+

Ok 0i

the control surface can be extended from tip to tip.

In matrix form, (D-80) and (D-81) become

where
1/2
1 1/2
1 1
1 1
[DITE

!
c0|

= 2h q [DIl][\C\J *tcmog

2

(D-78)

(D-79)

(D-70)

(D-81)

for the general case where

(D-82)

(D-83)



I1f wind tunnel data are not available, theoretical expressions for

Cmo in terms of the deflection & may be used.

From reference [25]

—
—

scmﬂga = - % {(siﬁéd‘»‘%asiqg? )] ] 35} (D-84)

Substituting sinBO and sin290 = ZsinBO cose0 results in

e o ls = - %[2 Vea -"x-:’“--z—’\lgcl_-g)‘(gz‘-i)'] 3

e (D-85)
- - 2[\/@?1-5}{ ];a;
Therefore, the structural bending moment and torsion are
| = -4 qnsimA@pIl] [ VEI-5)? [\‘ci{ 16! (D-86)
fp | = - N T 20 qal
T i = 4 q h cosA [DI1] (r-8)_ N, ¢5‘ (D-87)
and the structural twist is
_ _2h 3 P | fp |
{och} Zosh [51nA [ET] M + cosA [GJ] ‘TCJ
.2 =
- - 8qn’ [%‘-‘é}{—\ [EL]+ cosA [GJ]] [DI1] [Jg(l*- §)iJ[c%\]}6§
(D-88)

The total twist due to control deflection is

A}
N
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T~ =1 _ ” 1 / 2
- [(1- £os8 szg =11 2.3 FT(lef))J - 8qn’ l%ns—/j(\ [EI] (D-89)

+ cosA [GJJl[DIH [\l‘é(l-\z)fj 2] 15|

Equation (D-89) can be applied to both aileron and/or flap systems
with no requirements for symmetry or antisymmetry in their displacement
since, once (£lis specified, the deflection vector {0 }can assume any

configuration,

D.4.2 Apparent Twist due to Rolling and Pitching Velocities.

When the wing is at a skew angle, the apparent twist is computed
similarly for both the rolling and pitching case, the only difference

being in the way the station arms are computed.

A plan view of the geometry of the quantity used in computing the

apparent twist is given in Figure D-10,
Consequently, the apparent twist is given by:

1) for rate of‘roll p

2) for rate of pitch ¢

o o N _229



... Quarter-Chord Locus

VA
,/') pi} i p4
3o
4{: d sind,) . - Yi”
~ - -
\ﬁ~\ .
~ ; - Y
~ ; X
d i ~. o
i ~ -~ - }_L
) . 2
] ¥ Pivot L
: b S [ S
oF PAgg | -
POOR qua7 prd “» y. | Tamds
t [ is L
ith Station
Xi = - Yi tanh + f(yi) cosi
;i = cP +'d cosh + Xi

c.
- - 1
SEY T I Firy

L
]

d sinh + Y,
i

Figure D-10 - Planview of the Geometric Parameters Used in Computing

the Apparent Twist due to Angular Velocities.
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and in matrix form

D.5 Unsymmetrical Flight Conditions.,

Because of the oblique wing, whenever an unsymmetric spanwise 1lift
distribution occurs, the aircraft will experience accelerations about

its rolling as well as pitching axis.

A number of unsymmetrical flight conditions are usually investigated
in structural design; for the purpose of this study, such investigation
will be restricted to those which arise through the use of control

surfaces on the wing, such as ailerons.

The load distribution on an elastic wing associated with control
deflections may be thought of as the summation of distributions from the

following specific loadings.

1) Symmetrical loading with controls in meutral position,

2) Incremental loading due to controls deflection.

3) Incremental loading associated with constant rolling and/or
pitching velocity with contrels in neutral position,

4) Incremental loading caused by rolling and/or pitching angular
acceleration. This loading results from the structural twist

described under "Structural Twist" (class IT b).

In a steady roll and/or pitch condition, the span load distribution
for the elastic wing is given by the first three loadings enumerated,

For this condition the 30%% values vary linearly and antisymmetrically

Do
3]
-



b
across the span from - (p+¢q tanA) oy &t the left (forward) tip, and

(p+q tand) %% at the other,

The wing being at & skew angle, any unsymmetry in the‘spanwise lift
distribution produces both pitching and rolling moments and, therefore,
it introduces angular accelerations about the corresponding axes, Such
a condition occurs when deflecting the desired wing control surface,
unless some corrective action is taken in compensating the piﬁching

moment by mean of the horizontal tail.

We shall now investigate this case which implies non-zero ﬁ and/or
é and divide it into three parts: initiation, steady state, and termi-
nation of the mofion. The second part, the steady roll and/or pitch
condition, has already been discussed. The first and third ones differ
only for the initial condition: no angular velocities for the initiation
and a steady angular velocity for the termination. Therefore the analysis
is the same for both cases.

Let us therefore consider the initiation of the motion due to an
instantaneous deflection of the ailerons.

There will be contributions to the unsymmetiric loading from all
of the four loadings enumerated above. The first three ones having
already been discussed, so only the loading due to the angular accelerations
needs to be analyzed. The result of the angular accelerations is a new
contribution to the structural twist due to inertia bending and torsional
moments. The resulting twist distribution will superimpose an unsymmetric
1ift distribution on the already existing spanwise 1lift distribution.
Because of the linear theory assumption this structural twist contribution
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ig independent from the other ones and, therefore, can be anaiyzed
separately.
Figure D-11 shows the geometry of the wing section center of mass,

. th
The acceleration acting on the 1 center of mass is

a, =% p+ym § (D-90)

and the corresponding loading

Fi = mi(x__.L P+ ym, q) (D-91)

Similarly to what done in "Structures Fundamentals" it is now
possible to determine the pitching and rolling moments distributions and

therefore the bending moment and torsion distributions.

For the left wing

F m
_h’1 Bl = . =
- —_— h
Myl = -7 (xl P+ ymy q)(xml + 2 tanA) (D-93)

and in general (for 1<is1 where L Q last station to the left of air-

craft centerline)

i-1
= 2 2hom (- ) Guba T @) - Bm 5, bbm ) (D-%)
: i-1
S K;l "y LBy - (e mxm) + ey Gy P ym &)
(D-95)
m

i h - ., .
-5 (e o+ g tanAJ(xi P+ ym 4
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Figure D-11 - Wing Section Center of Mass,
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For the right wing -

m
_ _.n _h - . _ _
My; 5 (e -5 tanA) (x_ B+ ym q) (D-97)

b

and in general for (n>i=R) where R & first station to the right of

aircraft centerline

it1
_ - - " - - E - . - - _
M"i = ;1 Zh m, (k D P+ oymy @) + ; Wy (% b+ ymy q) (D-98)
i+l
Myi= ;1 - m (B Xy - (e mey) oy ) (x D+ oym @)
(D-99)
o1 h - —
-5 (- o ta.nA)(Xi P+ ym, q)
and in matrix form
M 1= a1ip+ laz]q
e 1o fn 1l fon ] (D-100)
where
{ | = - =1
{A1{ = h[A]["m; ] {x!
a2] - aiCeg 1 (7
{ [ . ol
By = [B][mg ] {x;
fn ol _ - {1
(Bzg = [B]] miJ Yy
[mi,] = mass matrix (diagonal).
[E} | [0]
[B] = |--=--r--~ (D-101)
(0l ' [F]1]

where [E] and [F] are reported in Table D-1IV.
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[E] =
i
[F] =

TABLE D - IV

.
Y
~ 0
- (X, -(ey-e) 4+ - 2 0m, +2 tenp)
12 "oy m eyl txmy 7 Jmyty tan
b
-,
........................ -
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‘ - .
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Since

EM | cosA + 'M | sinA
x| Uy :

5l

ST; =M | cosA - IM | sinA

‘ Ty 17

it is now possible to compute sOd } and ‘lOt } from equation (D-71).
15 ®11'q

The solution of the following equation will give the lift distribu-

tion arising from the twist contribution due to p and §

|

o (D-103)
.

- 1] s} Loy |+

q

It is now possible to compute the aerodynamic bitching and rolling'
moment due to P and q by integrating over the eﬁti;:e span the lift
force times the corresponding moment arm.

. el P
/ %%—-hlez...le rxgczu

(D-104)

= - ‘-—_ ‘ 1
Myj hilt22...1] [y] Eat

*

where j=p , q .

By assuming now that P and § are small quantities, it is
possible to linearize even the p and q contributions to aerodynamic

pitching and rolling moments

BMX 25Mx
MX=L=E.;15+-E—Q
— Egl ' Eﬁz‘_ (D-105)
y " T3 PR A
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where

and
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