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ABSTRACT

The oblique wing concept for transonic aircraft has been

proposed to reduce drag. This work investigates the dynamic stability

of the aircraft by analytically determining the stability derivatives

at angles of skew ranging from 0
0

and 45
0

and using these stability

derivatives in a linear analysis of the coupled aircraft behavior. The

stability derivatives were obtained using a lifting line aerodynamic

theory and found to give reasonable agreement with derivatives developed

in a Boeing study for the same aircraft.

In the dynamic analysis, no instability or large changes
o 0

occurred in the root locations for skew angles varying from 0 to 45

with the exception of roll convergence. The damping in roll, however,

decreased by an order of magnitude. Furthermore, rolling was a promi­

nent feature of all the oscillatory~eshapes at high skew angles.
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I - INTRODUCTION

1.1 Background.

The oblique wing solution for a transonic transport has been studied

increasingly in the past few years. This is not a new idea; it was

first proposed more than 25 years ago and, in addition to work in this

country, it appears that German aerodynamicists made classified studies

of this configuration during World War II, although the project never

reached- the stage of flight tests [Ref. 1J.

In 1947, a first attempt to investigate the stability of an oblique

wing was made in the NACA Free Flight Tunnel. The results of the in-

vestigation indicated that is was possible to skew the wing as a unit

to angles as great as 400 without encountering serious stability and

control difficulties.
oAt an angle of skew of 60 , however, the ai1e-

ron control became unsatisfactorily weak [Ref. 2J.

For supersonic speeds, in addition to the friction and vortex

drag, the wing experiences a wave drag associated with the thickness

or volume of the wing, as well as with the lift distribution. The

vortex drag is independent of the distribution of lift in the flight

direction, whereas the wave drag does depend on the distribution in

the direction of flight. However, it diminishes as the length of the

wing in the flight direction increases. In fact, linear theory shows

that the wave drag due to lift diminishes approximately as the inverse

square of the length, while wave drag due to volume diminishes as the

inverse of the fourth power; furthermore, spreading the lift over a

greater length diminishes the sonic boom intensity [Ref. 3].
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Structurally, an oblique wing presents the advantage of having a

structure continuous across the pivot and makes tension the primary

load on the pivot. It is well known that swept-forward wings show a

tendency for aeroe1astic divergence and this remains an area of concern

for the oblique wing also. In a.ny case, recent Boeing studies show that

for the unrestrained airplane it is possible to reach a static stabil­

ity without a severe penalty in weight. Oscillatory aeroe1astic in­

stability occurs at speeds higher than those at which the clamped

fuselage static instability occurs (the clamped fuselage being a more

conservative approach) [Ref. 4].

The object of this study is to analyze the aerodynamics and

dynamics of oblique wing aircraft.

So far, with the exception of limited work based on extensions of

symmetric aircraft theory to the yawed wing aircraft concept, only

Boeing Commercial Airplane Company and NASA-Ames Research Center have

done systematic studies on the dynamics of oblique wing aircraft. The

study by Boeing [Ref. 25J, a NASA sponsored one, was aimed toward a

design investigation for flight in high transonic speed regime. The

yawed wing aircraft was chosen as the most promising configuration for

that regime. During this work, we shall use the design solution for

a yawed wing aircraft chosen by Boeing and compare portions of our

results with theirs.

The work done at NASA-Ames Research Center in the last few years

has been characterized by several wind tunnel tests to investigate wing

aerodynamic coefficients at different skew angles. Future programs are

2



very interesting. A remote-pilot vehicle (RPV) with an oblique wing,

having 26' (unyawed) span, has already been built. The flight tests,

investigating low subsonic speed, are expected to start before the end

of the year. A pressure model, based on Boeing design 5-3 [Ref. 25J

should be completed within two years.

A supersonic drone, the Firebee II, a Flight Research Center (FRC)

project capable of Mach 1.4, should be completed in three years. The

data gathered from this project will be used for the one which in-

volves the modification of a NASA fighter, the F-8, with an oblique

wing. This last project, another FRC program, should be completed

within three years.

Very recently, Boeing has considered an oblique wing design for

a commercial transport cruising at Mach .95.

1.2 Synopsis and Contributions.

As an $,id to the reader, the remaining chapters of this report

are briefly summarized below.

Chapter II deals with the wing aerodynamics. Spanwise distribution

of lift and induced drag are computed according to the strip theory and

lifting line theory methods. An empirical correction to Schrenk's

method for evaluating spanwise lift distribution [Ref. 6J is then

proposed for the oblique wing.

In Chapter III, the basic features of an oblique wing aircraft are

first analyzed. A lift contribution to the side force due to wing

3



rotation has been found and its derivation is described; the induced

drag aleo introduces a side component and its magnitude is computed.

The new derivatives due to the oblique wing B,nd the general methodol­

ogy for evaluating stability derivatives are also described in this

Chapter.

Chapter IV deals with the derivation of the equation of motion.

The numerical results are given in Chapter V. First, the span­

wise distribution of lift, downwash, and induced drag, a.s computed by

strip and lifting line theory, are reported and compared. Then, the

results for rigid and flexible wing, as computed by lifting line theory,

are described. Special emphasis is given to the spanwise distribution

of the increments of the aerodynamic forces during simulated perturbed

conditions, and the resulting stability derivatives. Root loci vs.

skew angle along with the mode shapes are shown for all the natural

modes.

Chapter VI contains the final conclusions and remarks.

4



II AERODYNAMICS

2. 1 Genera lities

The lift generated by a wing can be divided into two contributions:

lift due to twist and camber, and lift due to the flat wing at angle of attack.

According to linear theory these two contributions are independent

of ea,ch other, and the lift is simply equal to their superposition. In

addition, the twist contribution does not depend on the angle of attack

and therefore on its variations, but it does depend on sweep and speed

changes (or, more exactly, on dynamic pressure variations). In a

stability analysis we must know the spanwise distribution of the aero­

dynamic force and how such distribution varies when the wing undergoes

perturbations. Let us now limit ourselves to the lift component of the

aerodynamic force since dra,g and side forces can be derived from the

knowledge of the lift.

For a symmetric aircraft it is possible to obtain the lift distri­

bution for the perturbed condition by applying strip theory to the cruise

spanwise lift distribution [Ref. 7]. Though an approximate one, this

method produces satisfactory results in the linear range.

The perturbations considered in a sta,bility analysis can be divided

into two groups:

1) perturbations which affect the total lift distribution (flat wing

plus twist contribution)

2) perturbations which affect only the flat wing.

To the first group belong the u, r ,and p perturbations; to

5



the second group the perturbations involving change in the local angle

of attack (ex , p ,and q) .

For a symmetric aircraft the flat wing spanwise lift distribution

for the cruise condition is symmetric.

Let us now consider the flat wing lift distributiop (FWLD) of a

skewed wing. For such a wing at no sweep, the lift distribution is

symmetric and elliptic (because of the chord distribution). When the

wing is swept, the new spanwise lift distribution will now show an

increase in lift on the a.ft part of the wing and a decrease on the

forward one, because of a.n upwash generation in the first case and a

downwash increase in the second one. The need 'for twist in this wing

will be based now not on a 'tip stall last' requirement, but primarily

on the need to obtain a symmetric lift distribution from the asymmetric

flat wing lift. Fig. 2.1 shows the asymmetric lift, lift due to twist,

and total lift versus span. The accurate evaluation of the change in

aerodynamic loading will lead to good precision in computing the wing

contribution to stability derivatives. We shall now follow two approaches

in determining the spanwise lift distribution during the perturbed motion.

The first, based on strip theory, can be used for all perturbations, but

in the case of sideslip it fails to give any acceptable result. In

order to improve this situation an empirical method, ba.sed on a. modifica.­

tion of the Pope-Schrenk method [Ref. 6J which can compute the spanwise

lift distribution for a flat oblique wing was obtained and will be

briefly discussed in section 2.5 •

The second approach is based on the eva.1ua.tion of the spanwise lift

6
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distribution of an oblique wing by means of linear aerodynamic theory.

In this case, the spa.nwise lift distribution is computed for both cruise

and perturbed conditions. This second method also allows the static

effects of a flexible wing to be included. The load distributions ob­

tained by means of these two methods will then be used in determining

the sta.bility derivB.tives B.nd the results compared. Once we have com­

puted the stability derivatives we shall use these va.1ues in the equations

of motion and determine the na.tura1 behavior and the time response to

control disturbances.

2.2 Reference Axes

To discuss the problem of stability, it is necessary to set up a

system of reference axes which form the basis of a system of notation

used to describe the motions of an airplane. Two basic body fixed axes

systems, each consisting of three mutually perpendicular axes passing

through the center of gravity of the airplane, adequately cover most of

the a.erodynamic problems in stability considerations. These are the

"body axes" and the "wind axes", which will be referred to as "stability.

axes" •

2.2.1 Body Axes (xb ' Yb ' zb)'

The body a.xes system is rigidly fixed in the airplane and is the

system ofmutua11y perpendicular axes pa.ssing through the airplane's

center of gravity and whose X-axis is parallel to the thrust axis, the

wing mean aerodynamic chord, or some other longitudinal reference and is

positive in the direction of the nose of the airplane. Herein it is

8



taken along the body centerline reference. Figure 2.2 shows this

system together with all forces, moments, displacements, and velocities.

The XZ plane is the plane of symmetry for the airplane.

2.2.2 Stability Axes (x ,y ,z).
s s s

The sta,bility axes system differs from the body axes system in that

the X-axis is parallel to the relative wind, positive forward. The

Z-axis is positive down (Fig. 2.3). The Y-a,xis is positive to the right.

The moment, angle, and angular velocity conventions are given by the

right hand rule.

The sta.bility axes system is the one used for basic aerodynamic

performance work, and it will be used in our ana,lysis. In our study we

shall also a,ssume that for zero angle of atta,ck stability and body axes

wi 11 coincide.

2.3 Strip Theory

The strip hypothesis asserts that we may calculate the aerodynamic

force on each strip as if it were an isolated airfoil moving with the

resultant velocity which it has because of its local position on the

aircra.ft [Ref. 7].

The strip hypothesis is a first approximation to the actual case

where the trailing vortices from each strip possibly interfere with the

others, but this first approximation is confirmed by experiments to give

results which are in excellent agreement with the facts as observed,

even at incidences above the stall, for a symmetric aircraft. Unfortu-

9



x
s

T:
N,r

Z,W

Zb
Notation for body axes.

T, = rolling moment p = rate of roll

M= pitching momont q = rate of pitch

N = yawing moment r ~~ rate of yaw

[X, Y, Z] = components of rcsunant aerodynamic force

[n, 1!, w] = components of velocity of C relative to atmosphere

Figure 2.2 - Body Axes [Ref. 21J

Z
B

Figure 2.3 - Stability Axes
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nate1y, when dealing with motions involving rate of pitch or ra.te of

roll, the strip theory fails to give a good approximation for the ca.se

of an oblique wing, since it predicts no lift change at the wing root

chord for the case of a roll, or at the wing station. whose quarter

chord is crossing the Ys axis, for the case of pitch.

The advantage of this approach is that it allows us to evaluate

the sta,bility derivatives using different sources of data, such as

wind tunnel or flight tests, and computer results.

2.3.1 Variations in Aerodynamic Forces due to a Perturbation a.

Since the twist (or dihedral) contributions are independent of

changes in angle of a,ttack, only the flat wing lift distribution (FWLD)

needs to be considered. (Subscript F will indica.te flat wing quantity).

We can now introduce the following approximations.

2.3.1.1 Section Lift Slope.

Assuming the FWLD is given, the local lift slope can be computed as

where

C
L

(y) =
a

(2.1)

local lift slope at station y (ljrad)

local lift coefficient of the flat wing at

station y

angle of a,ttack for cruising condition (rad).

11



2.3.1.2 Section Downwash.

The downwash is a consequence of the wing not having an infinite

span. For a 2-D wing, the section lift coefficient is given by

(2.2)

where

mo = 2-D section lift slope

e(y) section twist.

The presence of trailing vortices in a finite wing introduces local

downwash velocities whose effect is to reduce the local angle of attack

and, therefore, the lift produced by the wing. The two terms of (Eq •

2.2) will become, for a 3-D wing

(2.3)

where

= flat wing downwash angle

downwash angle due to twist.

Therefore, the section total lift coefficient for a 3-D wing is

(2.4 )

The previous expression applies to a straight a.s well as to a skewed

or swept back wing; the only change, a.ssuming all quantities are measured

12



in the flight direction, would occur in the value of so' the 2-D

section lift slope. We refer to R.T. Jones [Ref. 7J for a detailed

discussion of the derivation of a o •

We shall now evaluate the downwash angles by computing the difference

in the local lift distribution from the 2-D case. This is a "crude"

approximation, but in a strip theory analysis it is the only way to

evaluate the downwash velocity and, therefore, the spanwise induced

drag distribution.

In section 5.2.1 we shall compare the downwash results obtained with

this method against the correspondin~ results obtained applying the

method based on linear theory described in the next section.

Let us define

(2.5)

where

[CL(y)]F = flat wing section lift coefficient

[CL(y)J B = section basic-lift coefficient. It represents the

a-independent contribution to lift due to twist.

[CL(y)JF = aO[aO - EO(Y)]

[CL(y)]B = aO[e(y) -l'.E(y)J'

(2.6)

(2.7)

We can now assume, according to linear theory, that the two down­

washes are independent from each other, and furthermore, that the down­

wash due to twist does not depend on the angle of attack. With these

13



assumptions we have

(2.8)

1 -

[eL (y)J
a
8

0
(2.9)

OE
O
(y)

EO (y) = da aO

The tota.l downwash is therefore given by

(2.10)

(2.11)

~E(y) =
oa 1 - (2. 12)

2.3.1.3 Section Induced Drag.

The aerodynamic drag in a finite wing has two components: the first

is due to skin friction and pressure distributions on the boundary, the

second is the one induced by the lift because of the presence of trailing

vortices.

Both components are normally of the same order, and dependent on

the aircraft speed [Ref.lSJ. The analytic spanwise evaluation of these

two components is a difficult task.

According to Multhopp [Ref. 9J we may write the induced drag coef-

ficient for the wing as

14



b(2

f C CL(y) exi dy

-bj2

(2. 13)

where the so-called induced incidence is

1
871

bf2

f 1 d

y - 71 d71
-b(2

(2.14 )

and the section induced drag coefficient is g'iven by

Cn. (y) = CL(y)ai
~

(2. 15 )

Garner, [Ref. 10J who has discussed induced drag and its spanwise

distribution in incompressible flow, has shown that, for swept back

wings, the quantity C CL(y) ai does not give an acceptable spanwise

distribution of induced drag as suggested by Robinson and Laurmann

[Ref. 11J. This conclusion can be expected since the induced incidence

a
i

' as computed in Eqn. (2.14) implies that all the bound vortices of

the horseshoe vortex system, used as a model for the wing, lie on a

straight line perpendicu1a.r to the velocity. Therefore, the downwash

angles correspond to the ones of a straight wing and the induced drag

obtained is the product of the lift distribution of a swept wing times

the downwash angle of a straight wing having the same wing span and the

same spanwise lift distribution.

We shall return to this subject when we evaluate the induced drag

distributions by means of linear theory. For the sake of clarity we

shall recall that the downwash angle is the ratio

15
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w = downwash velocity measured at the lifting line

v = free stream velocity.

In our strip analysis the downwash angles are obtained directly

from the actual spanwise lift distribution; we assume that the downwash

angle is the cause of the difference in lift coefficient from the

corresponding 2-D one, and no assumptions are made on the wing geometry.

We may therefore expect a. better accuracy in the estimate of the spanwise

drag distribution.

l.et us now see how to relate the previous discussion to the evalua-

tion of stability derivatives by means of strip theory.

For the lift ca.se we have one term, the basic lift, which is

"0: independent" and the other, the flat wing, which does depend on 0: ;

the same considerations can be applied to the drag. In the "0: indepen-

dent" drag contribution we can group skin friction, pressure distorsions,

and, if we extend to the drag the same assumptions made for the lift,

also the induced drag due to ba.sic lift. This approxima.tion is quite

accurate for skin friction and pressure distortion, but it becomes less

accurate when considering the induced drag of the basic lift, as is

shown next.

The total section induced drag is obtained by substituting into

Eqn.(2.1S) the total values derived in the previous sections

16



(2. 16)

We can see that the induced dra.g produced by the basic lift

distribution

[CD.(Y)]B = [CL(Y)]B [EO(Y) + L.E(Y)]
~

(2.17)

has the term [CL(Y)]B EO(Y) that is a dependent since EO(Y) , as

discussed in the previous section, is a dependent.

Therefore, only the quantity [CL(Y)]B L.E(y) can be assumed,

within the range of linear theory, as a independent, whereas

(2. 18)

is the a dependent component of the drag. The change in the section

drag for perturbations introducing a local change in the angle of attack

can now be computed as the rate of change of Eqn. (2.18) with a

(2.19)

and by substituting Eqns. (2.5), (2.11) and (2.12) into (2.19) we obtain

(2.20)
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2.3.2 Evaluation of Stability Derivatives by Means of Strip Theory.

Assuming the spanwise lift distribution is given for the flat wing

as well as for the wing with the nominal twist and dihedral, it is pos-

sible to evaluate the stability derivatives by using the approximations

used in section 2.3.1 and the expressions given in sections 3.3.2 and

3.3.4 •

For the stability derivatives due to side-slip it is necessary to

know the spanwise lift distribution corresponding to the new sweep angle

differing from the nominal one by A = - ~. Because of the peculiarity

of the shape of the FWLD and its dependence on the sweep angle, an ap-

proxima,tion assuming

where

A=J\-~

2cos A
2

cos Au
(2.21)

would fail to give an acceptable result. The knowledge of the spanwise

lift distribution for the new sweep angle would therefore be required.

For the case when such lift would not be available, an empirical

correction to the Pope-Schrenk' s method [Ref. 6,12] was derived and it

is described in section 2.5 •
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2.4 Lifting Line Theory

2.4.1 Introduction

A more accurate way of evaluating the stability derivatives, spe~

cially roll and pitch derivatives, is to use linear aerodynamic theory.

The literature offers a wide variety of methods which can be used; many

of these are very complex and allow the user to eva.luate both the span­

wise and chord-wise load distribution. The simplest three-dimensional

wing theory is that based on the concept of the lifting line. In this

theory the wing is replaced by a straight line [Ref. 13J. The circula­

tion about the wing associated with the lift is replaced by a vortex

filament. This vortex filament lies along the straight line; and at

each spanwise station, the strength of the vortex is proportional to the

local intensity of the lift. According to Helmholtz's theorem, a vortex

filament cannot terminate in the fluid. The variation of vortex strength

along the straight line is therefore assumed to result from superposition

of a number of horseshoe-shaped vortices, as shown in Figure 2.4. The

portions of the vortices lying a.long the span are called the "bound

vortices". The portions of the vortices extending downstream indefinitely

are called the "trailing vortices".

The effect of trailing vortices corresponding to a positive lift is

to induce a downward component of velocity at and behind the wing. This

downward component is called the "downwash". The magnitude of the down­

wash at any section along the span is equal to the sum of the effects

of all the tra.iling vortices along the entire span. The effect of the

downwash is to change the relative direction of the air stream over the
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/'
Direction of
airstream

Line of
"-... ~rodynamic

Bound ~ - centers
vortices

Figure 2.4 - Vortex Pattern Representing a Lifting Wing
[Ref. 13 ]

The section is assumed to have the same aerodynamic characteristics

with respect to the rotated air stream as it has in normal two-dimen-

siona1 flow. The rotation of the flow effectively reduces the angle

of attack. Inasmuch as the downwash is proportional to the lift coef-

ficient, the effect of the trailing vortices is to reduce the slope of

the lift curve. The rotation of the flow also causes a corresponding

rotation of the lift vector to produce a drag component in the direction

of motion.

The methods using discrete vortices to represent the continuous

distribution of circulation of the vortex sheet are attempts· to simplify

the cmnputations. In the methods employing discrete vortices, two-dimen-

siona.1 theory is used to determine the most representative locations of

the vortices a,s well as of the control points. If only one vortex line

is used, it is placed along the center-of-pressure line in two-dimensional

flows, which for a flat plate at an angle of attack and at subsonic speeds

20



is the quarter chord line.

For subsonic speeds, the downwash va.ries inversely with the

distance behind the quarter chord line; at the position of the three­

quarter chord line it just equals in magnitude the vertical component

of the flow tangential to the flat pla.te having the same circula.tion.

Conversely, if ,the condition of tangential flow is satisfied at the

three-quarter chord line, the strength of the concentrated vortex will

indicate the lift on one wing due to angle of attack. Of course, these

methods of obtaining correspondence between the lifting lines and the

vortex sheets loose their validity near the corners of the wing, where

the flow differssha.rply from the two-dimensional.

In a stability analysis it is not required to have great accuracy

in the chordwise load distribution. Therefore, it is sufficient to use

only one vortex line pla.ced, for subsonic cruise condition, at the

quarter-chord point. In doing so, little is lost in accuracy and a lot

is gained in simplicity.

The supersonic case has to be approached in a different way accord­

ing to the properties of the supersonic flow. The method outlined in

this chapter applies to subsonic speeds only, but it can be extended

to the supersonic case. It can be shown that the horseshoe-vortex

system of Figure 2.4 is equivalent to the one where each horseshoe vortex

has a constant strength equal to the sum of the strength of the bound

vortices contained at the corresponding section of Figure 2.5 •

When the wing is skewed, two models can be used. Figure 2.6 shows

the first one where the bound vortices a.re aligned with the wing span,
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Figure 2.6 - Bound Vortex Normal to Flight Stream
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Figure 2.7 - Bound Vortex Parallel to Wing Span
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and are at a skew angle with. respect to the free stream velocity.

The second model, shown in Figure 2.7, assumes that the bound

vortices are perpendicular to the flight direction. This model corre­

sponds to the case where the wing at a skew angle is actually replaced

by a finite number of straight wings, and will be used in this study.

The first model is expected to give a better accuracy when the

number of horseshoe vortices is small, but the two models coincide when

the number of horseshoe vortices goes to infinity.

The method used in this study is based on a modification of the

Weissinger-L-Method and applies at subcritical Mach Number. This

method is derived from excellent work done by Gray and Schenk in 1953

[Ref. 14] and has been modified for the oblique wing case. Among the

advantages of such an a.pproach to the evaluation of the spanwise dis­

tribution of the loading, is the possibility of evaluating the loading

increments· due to aileron or flap deflection, effects of wing flexibility,

and accelerations on the wing. These features are fully described in

Appendix D.

2.4.2 Steady State Loading on an Airplane with an Oblique Wing.

The fundamental problem involved is the development of a series of

equations which relate the spanwise lift distribution for an arbitrary

wing plan form in a given flight condition to the properties and a.tti­

tudes of the individual sections that form the wing.

For a 2-D wing, the following relationships can be found in any
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standard textbook on aerodynamics [Ref. 7,15, l7J:

rw =­
r 21Tr

where

mo = local lift slope

C = local chord length

(2.22)

(2.23)

t =

ex =
f

q

r =

section lift

total angle of attack (see Fig. 2.8)

1 V2 d .2 p = ynam~c pressure

circulation

At a specific distance r behind the lifting line, the resultant

of the downwash velocity Wand the flight velocity V is parallel to
r

the section zero lift line. Then,

from Eqn. (2.22) we obta.in

Substituting (2.25) into (2.23) results in

(2.24 )

(2.25 )

W
r

(2.26 )

Equating (2.26) and (2.24)

or

24
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Since the theoretical section 2-D lift curve slope is 27T, r must

equal C/2, which is the distance between the lifting line and the

three-quarter-chord point.

Therefore, for the 2-D (unswept wing) ca..se

(2.28)

corresponds to the control point where no flow exists normal to the zero

lift line. Whenever the local lift slope differs from 27T, expression

(2.28) becomes

(2.29)

The essential difference between a 2-D wing and a wing of finite

aspect ratio arises from non uniform spanwise loading which produces

the trailing vortices. The equations presented so far are considered to

apply to a finite wing when the effects of all the vortices, both bound

and trailing, have been taken into account.

Equation (2.29) can be written in matrix form

\WI
l,vl3C/4

~~o]
lUi, (2.30)

This matrix relation represents a series of equations, each appli-

cable to a. particular station on the span of the wing.

The elements of 1~}3/4c' everyone of which is affected by the

- bound and trailing vortices of the wing stations can be evaluated from

l~} - _1_ [SlJ lr l
Iv 3/4 C- 47TV ;, I I

25
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a.nd by expressing 1r l in terms of I.e I.

The [SlJ matrix is the downwash matrix and is derived in Appen-

dlx D.

Combining equations (2.30) we obtain

_1_ [SlJ I.e I = [,~] la I
81Tq I I 2Th I f l

or

2.4.3 Section Final Angle of Attack lafl.

(2.32)

(2.33)

The final B,ngle of attack across the span !af j can be considered

to be composed of three essenti.al parts (see Fig. 2.8).

where

= la I + la 1+ la II rl g I I sl
(2.34 )

la 1= angle of attack caused by structural deflection of a
I s\

flexible wing

la 1= angle of attack caused by built-in twist, apparent or
I gl

aerodynamic twists, control deflection, angular velocities,

iari= flat (and rigid) wing angle of attack (measured w.r.t.

root-section zero-lift line).

I IThe angle of attack la
sl

' caused by structural deflection of a

flexible wing due to the section lift at the section a,erodynamic centers

is linearly related to the matrix

26
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Figure 2,8 - Final Angle of Attack
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10: I = [S ] j t 1
I sl 2 I I (2.35 )

where [S2 J = structural deflection matrix (described in Appendix D).

The contributions to the angle of attack

Appendix D.

2.4.4 Section Induced Drag.

0:
g

are described in

As discussed in section 2.3.1, only the induced drag varies with 0:.

The induced dra,g arises from the rotation of the aerodynamic forces due

to the downwash velocities induced by the trailing vortices.

In our model, where the wing has been replaced by a lifting line

placed, for the subsonic analysis, at the quarter-chord line, the

section induced drag can be evaluated by computing the downwa,sh angle

(O:i)i at the station bound vortex. This is similar to what is done

for (!i). , except that downwash induced by a bound vortex on itselfV 3/4 C

is zero.

Therefore

L:j (Kij ) Cf4 £j

(2.36)

where (Kij)C/4 is the same as computed in Appendix D with the following

two exceptions:

1) the term
c.

1.2 ' distance of the control point from the lifting

line, must be dropped since the downwash is now evaluated at

the lifting line;
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2) the contribution to the downwash sould be disregarded for the

case when the control point is within the horseshoe vortex, as

discussed in Appendix D.

A more accurate result would be obtained using the vortex la,ttice

method. The results obtained in this analysis are discussed in Refer-

ence 16.

2.5 An Empirical Correction to Schrenk's Method

Another approach to the problem of spanwise loa,d distribution

having much less theoretical foundation is presented by Flatt [Ref. l8J.

It follows a method first presented by Schrenk [Ref. 19J.

Schrenk's method makes allowance for the effect of the varying down-

wash along the spa,n of a nonelliptic wing by assuming that the final

span load distribution for an untwisted wing is ha,lfway between the

actual planform shape and a semi-ellipse of the same area. However,

Schrenk and Flatt did not consider a swept back wing; Alan Pope and

William R. Haney, assuming that the effect of sweepback on the non-

dimensional span loading is linear, proposed an empirical correction

[Ref. 6, 12] to take care of the effect of sweep back. It has been

successfully employed in preliminary design of subsonic aircraft.

The following empirical formula which was obtained during our

stUdy of the oblique wing, can be applied to Schrenk's method.

~ 2'
1 - ~ (2.37)
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where

A = skew angle

cR = cR IcosA: root chord measured in the flight direction
0

b = b
O

cosA: actual wing spa.n

bO = wing span for the unskewed wing.

Since the goa.! of this method is to provide, in a fast way, the

shape of the spanwise lift distribution, the wing lift coefficient is

assumed to be known. In addition, the new spanwise lift distribution

obtained with this correction must be norma,lized by multiplying it times

the ratio of the wing lift coefficient to the lift coefficient obtained

by integration of the new lift distribution.

The results of this correction, forthe case ofa flat wing, were

checked aga.inst the lift distribution as computed by the numerical

program of Reference 20.

Figures 2.9a, b, and c show the comparison between the two methods

for three different cases.

To date, no check has been done for the ca.se of a wing having

twist. The major difficulty for this case is to estimate the

downwash velocities produced by the lift due to twist and, therefore,

to determine the effective twist.

Though for symmetric wings experience suggests that an effec-

tiveness of 50% is an acceptable assumption, we do not expect that the

same can be applied to a, skewed wing.

As pointed out before, the effect of a positive sideslip corresponds,
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for an oblique wing, to s, negative change in sweep and the perturbs,tion

will therefore affect both the FWLD and the basic lift distribution.

To a first order approxims,tion it is possible to a,ssume that the

chs,nge in the shape of the lift distribution for the total lift will

be proportiona,lto'the change with sweep of the FWLD.

Therefore, the simulation of a, sideslip can be dorie by



2.6 Summary.

The reference axes system used in this work, the stability axes,

has first been defined. The method for evaluating variations in the

aerodynamic forces due to perturbations was then outlined. A simplified

method, based on strip theory, for computing spanwise distribution of

the induced drag was also proposed.

A second and more systematic way of computing spanwise lift

distribution based on lifting line and including effects of wing flexi­

bility was the described. The spanwise induced drag distribution was

then evaluated by using lifting line theory.

In the last section of this Chapter, an empirical correction to

Schrenk' method for the oblique wing case was proposed.
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III STABILITY DERIVATIVES

3.1 Basic Features

3.1.1 Flat Wing Lift Distribution (FWLD).

In section 2.1 we have described how the FWLD behaves when the wing

is skewed. This behavior is undoubtedly one of the most important

elements of difference from the sYmmetric case. The upwa,rd field gener­

ated by the forward wing, causes the aft wing to "feel" a higher angle

of attack. This, as we mentioned before, is the cause of the loss of

sYmmetry in WLD, but, because of the higher angle of a.tta.ck actually

experienced by the aft wing, the stall condition will be reached in this

region first. This is simila,r to the case of a tip stall for a symmetric

wing, except that now only one tip would stall and the loss in balance

would produce not only rolling but also pitching moments. The recovery

from such a stall is very difficult.

This can be expla,ined if we analyze in detail the motion of the

aircraft following the stall of the aft wing.

As we mentioned before, the loss in the lift sYmmetry introduces,

in the case of the left wing forward, positive pitching and rolling

moments. The nose-up motion deriving from the pitching moment introduces

an increase in the angle of. attack of the whole wing as well as an

angular velocity; whereas the rolling moment produces only an angular

velocity.

The effect of these two angular velocities results in a linear
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va.riation CluE the loca.l angle of attack for the wing, increasing it on

the a.ft part and decrea.sing it on the forward one.

Therefore, the aft wing will experience a further increase in the

angle of attack which will worsen the stall condition and extend it

inboard.

On the forward wing, instead, the increase in angle of attack of

the whole wing is counteracted by the decrease deriving from the angular

velocities and the final trend is consequently toward a delay in the

forwa.rd wing stall, which makes the nose-down attitude, required for a

recovery, difficult to achieve.

The center of pressure of the flat wing lift distribution (FWLD)

lies on the aft- portion of the wing and produces both pitching and

rolling moments as the angle of attack varies, introducing new important

derivatives. In fact, a.ny cha.nge in the angle of attack affects the

FWLD only and destroys the synnnetry in the tota.l lift distribution

obtained by twisting the wing. The consequence of this is a loss in the

moments' balance. Figure 3.1 shows the variation in spanwise lift

distribution, as given by linear theory, for a case where, for the sake

of clarity, the "perturbation" 0: is assumed to be equal to 50% of 0:0 ,

It will be seen that a positive change in 0: produces an increase in

the lift whose aerodynamic center is displaced toward a point in the

aft part of the wing, thus producing a rolling moment as well as a

pitching moment. By considering the corresponding change in induced

drag, it is possible to evaluate the yawing moment.
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3.1.2 Side Force

A wing at a skewed angle experiences a. side force deriving from

the induced drag component in the y direction. Let us now derive

its magnitude.

Figure 3.2 shows a section of a wing B,t a. skew angle A.

The principle of independence [Ref. 8J a,ssumes that, in a friction-

less flow, all the results of the two-dimensional flow theory can be

applied immedia,tely to an infinite oblique wing simply by subtracting

the axial component of velocity.

No matter whether we consider the free stream direction or the

direction normal to the leading edge, the lift generated by the wing

section is obviously the same. Therefore, the lift force is given by

1 2
t = '2 P Vo CLo

[ C • 1 ] = 1 P v2 c:.£...:..lo 2 L cosA (3.1)

where the subscript 0 defines the quantity in the flight direction.

Since

v = V0 cosA

and

C = Co cosA

from 3.1 it is possible to derive the well known relationship

2C
L

= C
L

cos A
o

(3.2)

(3.3)

(3.4 )

Figure 3.2a shows the decomposition of the velocity vector into two

components; one normal and one parallel to the leading edge. The two

elementary strips have the same area.

39



ORIGINAL PAGE IS
OF POOR QUALITY

a)

b)

I
cosA

c

I
I

I
I,

I

I
I

i i

~i 4-

:, ~O..~. 1
r
ih

•

r
A i

16
I
[,

c

Figure 3.2 - Side Force due to Induced Drag.

If we now introduce a plane defined by the velocity vector Vo
and by the trailing edge segment where the two strips coincide, we can

derive the relationship between the angles of attack measured in the two

directions. This relationship is useful when evaluating the angle of

attack during sideslip. This can be done by simply noticing that the
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height from the leading edge to the previously defined plane is the

same at the point k
O

as well as at k. This, of course, implies

that the leading edge is a straight line. The effects of twist or

dihedral would then be superimposed.

The distance h being a constant, by pure trigonometric consider-

ations applied to Figure 3.2b we obtain

Co sinaO = h

C sina= h

and from (3.3) we obtain

sinao = sina cosA

Therefore

rv = i -1 (S inaO)
VI, s n Acos

and for small angle of attack

(3.5)

(3.6)

(3.7)

(3.8)

The induced drag measured in the flight direction and the corres-

ponding one measured in the direction normal to the leading edge are

not the same.

The lift is the same in both·cases;but the downwash angles are not.

The downwash velocity at the lifting line [see 2.3.1 and 2.4.4J

must be computed with respect to the flight direction, since it is the

wing span measured with respect to such direction that will determine

the downwash velocity.

An easy mistake would be to extend the use of the well known

expression for the downwash angle (for an elliptic lift distribution)
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(3.,9)

to the case normal to the leading edge

W CL- =V rriR

2In fact, using equation 3.4 and since iR = iR
O

/ cos 11. , we find

that

(3.10)

This implies that the induced drag measured in the two directions

is ider.tical, since

a.nd

where

d. = section induced drag, flight direction
~O

d. = section induced drag, direction normal to the leading
~

edge.

The downwash velocity at the lifting line is induced by

trailing vortices aligned with the flight direction.

We shall call the downwash measured this way W.
~

The downwash angles in the desired direction can bow be computed

by dividing W. by the corresponding velocity.
~

Thus, the section

induced drag measured in the flight direction is given by
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and, in a direction normal to the leading edge

w. W.
d = 1,...1:.= 1, 1

i V V0 cos!\.
(3.11)

or d.
1 0

d =i cos!\. (3.12 )

Equation 3.12 shows that the induced drag measured normally to the

leading edge is greater than the component in the flight direction.

In a symmetric swept back (or swept forward) wing, the two side-

components would cancel each other so that the total induced drag actu-

ally experienced by the wing coincides with the component in the flight

direction. For the oblique wing, the lack of symmetry introduces a side

component of the induced drag whose section magnitude is given by

(d.) = d. sin!\. = di tan!\.
1 y 1 0

(3.13)

Therefore, for the case of the left wing forward, the side force

contribution due to the induced drag of the wing is

(3.14 )

In addition to the side force (Fy)D due to the drag component in

the y direction, a second term must be introduced when the wing is

swept and at an angle of attack. The wing rotates perpendicularly to

xb and, therefore, parallel to zb (Fig. 3.3).

Let us now consider the wing position w.r.t. the stability axes for

the case ao 1 0 and A1 0 (Fig. 3.3). This position can be better

visualized by considering these two steps: 1) a rotation of the aircraft

about its Ys == Yb axis by an angle aO ; 2) a rotation of the wing
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about zb by an angle A. The final position of the wing is no longer

parallel to the Ys axis, the left (forward) tip being higher than the

aft one. By idealizing the wing with a straight line and considering

its projection Y3 onto the plane, we define the angle YO

(Fig. 3.3b). The lift vector being by definition perpendicular to the

wing axis and to the velocity (parallel to x ), will therefore be
s

banked by an angle producing a contribution (positive in this case) to

the side force. This feature would not be present in a flying wing

since, by banking the wing by YO ' it would be possible to realign lift

and gravity, whereas in a conventional configuration the lift produced

by the tail and the different inertia properties produce a somewhat more

complex picture.

We can now quantify this side force for the case 6f a straight

rigid wing, by introducing some geometric considerations.

Let us consider the wing for a = A= 0o and assume for simplicity

that our stability axes have their origin at the wing pivot; in this

case the axes would be aligned with the wing span.

Let us now rotate aO about Ys ; we obtain the set of axes xb '

Yb ' zb ,where Yb = Ys is still aligned with the wing span.

The rotation matrix for such transformation is

~l
r cosa

O 0 - sina
O

x's

::J
= 0 I 0 Ys

LsioaO 0 cosa
O

Z
s
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Figure 3.3 - Side Force due to Wing Rotation
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Figure 3.4 - Effects of Wing Bending on Side Force

45



If we now rota.te the wing by A about its pivot, the wing axes

will be defined by the following matrix transformation

rx -I cosA sinA 0
~ cosob cosA sinA - sinao cosA x

y:r s

- sinA cosA 0 Yb = - sinA cosa
O cosA sinA sinaO Ys

Lzw. 0 0 1 zb sina
O 0 cosa

O
z

s

x x
w s

z zw s

The lift vector is perpendicular to the plane defined by Vo and

Yw and in terms of the stability axes

(A~ unit vector)

S'w (in stability axes) = [R]-l [~] = [R]T [~] =(-
Let us define

L=-L'2'
3

sinA cosao)
cosA

sinA sina
O

where '2'
3

is a. unit vector .J.. to 'X
s

and

or '2' .'X
3 s

o

'2'·9 ;::0
3 w
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z

(~) and

ex

since 'X' (in stability axes) = 'Z' = we have
s 3

0/

z3
z

z3 = 0
x

cosA z3 + z3 sinA sino:
O

= 0
y z

therefore

'Z'3=(~l tanA S inClO\-.t=1==j;~-':!:"'2......i1"'I 1 + tan A sin %

We can now define to 'X'
s

Y' • 'i? =-0
3 s

and

=

'Z'
3

• 'Z' = 0
3

tanA sino:O + y3 = 0
z

= ( ~ - ) -'=.1=====1:;;r=2=.~2i

tanA s ino:
O

"'I 1 + tan A s ~n 0:0

The aerodynamic force in the x
3

' Y3 ,z3 reference axes has the

following components
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We can now express these in terms of our stability axes

F 1 0 0
x

1
- tanA sina

O
F = '0

1 2A · 2y 1 2A · 2+ tan s~n a
O

+ tan s~n a
O

tanA sina
O 1

F 0
1 2A · 2 2 2z + tan s~n a

O
1 + tan A sin a

O

- D

- L

The value of YO w.r.t. the stability axes X s ' Ys ,zs is found

to be

and for small angles

sin YO =

tanA sina
O

(1 2A · 2 )+ tan s~n a
O

(3. 15)

Yo = aO tanA

The corresponding lift contribution to the side force is

(3. 16)

(3.17)

All the previous analyses can be extended to the case of a flexible

wing having a built-in dihedral (and neglecting the twist contribution)

by superposing a correction to the angle (Fig. 3.4)

y(y) = YO + cp(y) cosA (+ bending modes)
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where

cp(y) • geometric dihedral a,t A='O

In this case the side force hlils to be evaluated by means of an

integration along y •
s

The equilibrium condition may be reached by

banking the aircraft by an angle cPO which, in terms of stability axes,

corresponds to introducing a gravity component in the ys direction.

For a straight rigid wing with no twist, considering total side force

(contribution of the oblique wing itself and contribution of the geome-

try of the wing rotation) and gravity, the equilibrium equation is

Y = (Fy)n + (Fy)L + mg sin ~O ~ (L)Tot aO tanA+ (Fy)n + mg sin ~O

• •

SiXlce for the trimmed condition (L)Tot = mg

3.1.3 Wing Rotation.

Figure 3.5 shows the geometry of the wing rota,tion about the pivot

and the moment arms of the aerodynamic forces with respect to the center

of mass (C. G.) of the aircra,ft.

The aerodynamic force, as assumed in this study, is applied at the

quarter chord. Since the wing is stra,ight we can also assume that the

line joining all quarter-chord points is straight. Such line is repre-

sented by line "m" in the unswept condition, and by line "n" in the
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swept one.

.,~.

The moment arm x about x 11 used when computing yawing•
a.nd rolling moments as well as when cOlllPutinl the section perturbation

velocity due to rate of pitchtnd/or rate of yaw.

The moment arm y about the. Ys axis, is used when computing

In determining the pitch stiffness

angular velocities due to rate of pitch and the pitching moments.

C [Ref. 21J it is convenient
-0:

to refer to the quarter-chord line for the unswept case, the moment arm

about such line is indicated by YMA.C'

Since the wing rotation affect.s the magnitude of th~ above moment

arms, it will also modify the magnitude of all aerodynamic moments .

•The wing rotation also affects the position of the ailerons with

respect to the aircraft centerline. Figure 3.6 shows the ailerons and

section of wing which is affected by their deflection. Figure 3.6a

shows the case for zero sweep. The shadowed area is defined by two

straight lines a.ligned with the free stream velocity V
TO

passing

through the aileron's outer and inner stations. When the wing is swept,

(Fig. 3.6b) we can notice that the two straight lines defining the area

affected by the aileron a.re noW passing totRe left of the corresponding

point on the quarter chord line for the unswept case.

The result of this is an increase in the moment arm about the

longitudinal axis for the left aileron, and a decrease in the moment arm

for the right wing. The position of the pivot behind the quarter chord

line will reduce and eventually eliminate such an effect.

By simple geometric considerations, we can compute the quantities
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Ys = stability axes

X
o

Yo = axes pa.ra.l1el to stability axes centered at wing root

quarter-chord.

c = pivot-C.G. distance
p

d = pivot quarter-chord distance

x = moment arm about xs

y = moment arm about

YMAC = moment arm about m (quarter-chord line for A= 0)

Geometric expressions for the moment arms:

x = yO tanA + d sinA

Y = cp+ d cosA - yo tanA

YMAC = cp+ d(cosA- 1) - yo tan.t\

Figure 3.5 - Geometry of Wing Rotation and Moment Arms
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and being the same as and

C
2

for the case when the ailerons are symmetric with respect to the

wing centerline).

3.2 Derivatives

3.2.1 General Methodology.

The perturbation quantities considered in a stability analysis are:

- velocity in the x direction: u

- velocity (sideslip) in the y direction: v

- velocity in the z direction: w

- rate of roll (or angular velocity about the x axis): p

- rate of pitch (or angular velocity about the y axis): q

- rate of yaw (or angula.r velocity about the z axis): r

Of these quantities, the second and third are generally normalized

with respect to the free stream velocity V
TO

• In doing so the new

perturbation quantities are

(3.20)

which correspond respectively to a cha.nge in the angle of attack and a

change in the sideslip angle as can be seen in Figure 3.7.

While the effects of a perturbation u, ~ , or r must be consid-

ered separately, the perturbations p and q ca.n be dealt with in the

same fashion as for a, since in fact they all affect the local angle of

attack, as will be shown in the next section.

We shall now describe the general methodology for evaluating the
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•

stability derivatives in a systematic way according to the previous

subdivision; s. much more complete discu~.ion can be found in References

15, 21, and 22. Such methodology applies to dimensional stability

derivatives.

We refer to Appendix A for the relationship between non-dimensional

and dimensional derivatives, and to Appendix B for detailed calculations

of the non-dimensional stability deriva,tives.

3.2.2 ex, p ,q Derivatives.

Let us now concentrate on a section of our wing. Whenever we

consider a, positive perturbation ex in the local angle of attack, the
•

wing a.ctually experiences a new perturbation velocity, w. The result

of this velocity w is that the free stream velocity becomes V having

a new direction which differs by an angle ex from the previous one.

Consequently, the lift and drag components of the aerodynamic force must

now be referred to this new direction. This result is shown in Figure

3.8.
L

V, 0__c....::-+~ + ~_..._. X

S

'1r- w

zs

Figure 3.8 Section lift and drag force for an ex perturbation.

56



Let us now evaluate the forces with respect to the stability axes

system for this perturbed case.

x == J- sina - d cosO: '":: J- 0: - d

Y == J- "I - d tanA

z -- -J- cosO: - d sinO: '::: [J- + d a]

and the corresponding moments are:

£S == z x

M
S == -z YMAC

NS == -x x + Yy

For the equilibrium case, the equations are

~
,

Xo == - dO

YO == J-O"lO dO tan (A)

Zo == - J-o
o£S == Zo x

(3.218)

(3.21b)

(3.22 )

The changes due to the perturbation 0: are therefore given by

!::X ==X-X == J- a - !::>.d
0

!::>.Y == J-"I - J- 0"10 - [j. tanA

/:§.. == t:J,+ do:
(3.23)

6MS == -

I
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Because of the small perturbation auumption these equations can be

linearized by expanding them in a Taylor .eries about the equilibrium

condition (or a= 0) and retaining only the first-order terms. For the

first equation, this approach leads to

/§. = .2- [J.a - t:. d"] a
oa a= 0

and the same can be done for the other equations •

(3.24)

.This is the classical assumption of linear a.erodynamic theory which

is to a.ccept the following approximation for stability derivatives:

(3.25)

where

A = a.ny aerodynamic force (or moment)

b = any perturbation quantity.

Consequently, the stability derivatives at our section for a per-

turbation a are given by

(3.26)

where

Xa = [o~ (t a-&1) ] a- 0 = [t+~~ a- ~~ ]a= 0 = to - (~) a= 0 (3.27)
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(3.28)

~ = o~ [0: tanA + ccilnst termsJo:= 0 = tanA

(3.29)

(3.30)

The same approach can be used when studying 0: and
p

0: perturba­
q

tions. In both cases the perturbation will produce a change in the

angle of attack. Such change will no longer be constant along the span,

but will be

(J.3l)

for the pitch, and

(3.32 )

for roll.

Although the distribution in the angle of attack is a.ntisymmetric, the

corresponding increment in lift, and consequently drag,because of the

shape of the FWLD will not be asymmetric. The asymmetry in lift, case of

a symmetric wing in roll, does not produce any variation to the lift

vector. Loss of asymmetry introduces a change in the total vertical

force Z as well as in X.

The same approach used for the 0: derivatives can be applied to the

evaluation of roll and pitch derivatives.
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The only differences are:

a) the section perturbation angle of attack which is no longer a

constant as in the previous case, but varies according to Eqns.

(3.3l) and (3.32);

b) the linear operator 0 must be replaced, for the pitch byoa

(3.33)

and for the roll by

(3.34 )

The angle y remains unchanged.

The wing aerodynamic derivatives with respect to the stability axes

can be obtained by integrating the section values over the span.

3.2.3 ~ Derivatives.

The effect of introducing a sideslip angle ~ corresponds to a

negative 6A for the wing (Fig. 3.9). Consequently, for the wing

o "
,,~= - "A (3.35 )

The evaluation of the ~ derivatives is not trivial when consider-

ing the aerodynamic moments. In this case, because both FWLD as well as

the distribution of lift due to twist will be affected, it is not as

simple to derive a,nalytic expressions as for the previous cases. A

numerical calculation would be possible by considering results at two
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different wing sweeps and then comparing them. For the cases where no

moments are involved, the total aerodynamic forces considered are

In addition, the following a.pproximation ca.n be made.

(L)Tot = [(L)Tot] A= 0 cos
2
A

(3.36)

(3.37)

4
= D + I (L) (C) .1 cos Ao Tot L Tot TT lR

and, since

(3.38 )

2lR = (lR) A= 0 cos A , it is possible to evaluate the ~

derivatives of these forces.

3.2.4 r Derivatives.

The new yawing derivatives introduced by the oblique wing are due

to two factors: a) side force and b) aerodynamic coupling between rolling

and pitching moment. A rate of yaw increases the local stream velocity

according to the relation

L.u= - x • r

Therefore, for the dynamic pressure the variation is
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q(y)

H.O.T.

~2)
(3.40)

(

Substituting (3.39) into (3.40), we obtain

(3.41)

The linear antisymmetric change in q(y) due to the perturbation

r will now affect the aerodynamic forces due to both the flat wing and

twist (including effects of dihedral and camber) contributions. Since

the antisymmetric variation in q(y) is applied to a symmetric (cruise

condition) distribution, the variation in the loading distribution will

also be antisymmetric, like for the case of a symmetric aircraft. There-

fore, when first order variations only are considered, no changes will

occur in the wing total aerodynamic forces, but all three aerodynamic

moments will be affected.

Since q(y) is the only term which changes in the expressions for

x Y, and Z, the evaluation of the yaw derivatives is reduced

to computing

and similarly for y, and Z

oY x.. Y 2dr = 0 DO
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(3.44)

A simple integration over the span of the last three expressions

will determine the ya~ derivatives of the aerodynamic forces. For the

~s ,M
S

and N
S

moments, the expressions to be integrated are

x ­
f s = - Z 2 - xo Uo

x
MS = + Zo 2 - y

Uo

64
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3.3 Summary.

In this Chapter we have introduced and evaluated the two side

force contributions, one due to induced drag and one due to wing

rotation, that an oblique wing aircraft would experience. The effects

of wing rotation were then analyzed. The general methodology for

computing stability derivatives was also miscussed.
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IV EQUATIONS OF MOTION

4.1 Rigid Body

The equations of motion for the aircraft can be derived from Newton 's

Second Law of Motion, which states that the summation of all external

forces acting on a body must be equal to the time rate of change of the

momentum of the bbdy, and the summation of the external moments acting

on a body must be equal to the time rate of change of the moment of

momentum (angular momentum). The time rates of change are all taken

with respect to inertial space. These laws can be expressed by two

vector equations.
I
V = .! Ei

m
(4.1)

(4.2)

where I indicates the time rate of change with respect to inertial

space.

Now, the external forces and moments consist of equilibrium values

plus a perturbation value which stems from a, difference from this equi-

librium condition. Thus,

F=F +iFo
(4.3)

T=T +Ero

In the dynamic analyses to follow, the aircraft is always considered

to be in equilibrium before a disturbance is introduced. Thus, F
O

and

TO are identically zero.
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The equilibrium forces consist of lift, drag, thrust, and gravity,

and the equilibrium moments consist of moments resulting from the lift

and drag generated by the various portions of the aircra.ft a.nd the thrust.

The following observations are made to a.chieve a linear analysis.

First, the aircraft is in an equilibrium condition before perturbation.

Second, the mass of the aircraft remains constant during any particular

dynamic analysis. Third, it is assumed that the aircraft is a rigid

body. Fourth, it is assumed that the earth is an inertial reference

and unless otherwise stated, the atmosphere is assumed to be fixed with

respect to the earth. The time rate of change of the velocity vector

with respect to the earth, in the assumed reference axes, is given by

I S
V=V+Wxv (4.4 )

where S indicates time rate of change with respect to the assumed

reference axes system (non inertial); w is the angular velocity of the

aircraft with respect to the earth; and x signifies the cross product.

Similarly

V and W can be written as

I S
H=H+wxH (4.5 )

(4.6)

where and represent the steady state conditions and and

/::.V are the perturbation quantities.

Their components in stability axes are:
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The angular momentum is given by the dot product of the inertia

tensor, I., and the angular velocity vector, W

I'J

H = I • W

I'J

and Equation (2.5), I being time invariant because of assumption

number four, can be rewritten a.s

I
H = I . .§. + W x (I . ill)

W

(4.8)

(4.9)

The inertia matrix of an oblique wing aircraft differs from the one

of a synnnetric aircraft because of the non-zero product of inertia.

For an oblique wing aircraft, the inertia matrix in body axes is

I I Ixx xy xz

I b = I I 0xy yy

I 0 Ixz zz

I xy

Because our stability ana.lysis is based on the stability axes system

previously introduced, it is necessary to transform the inertia matrix

from body to stability axes. This transforma.tion is carried out in deta.il

in Appendix E.

Because of the transformation the inertia matrix in stability axes
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will no longer have a zero

is given by

I yz In fac t, a,s shown in Appendix C, it

I' = - I sina:yz xy
(4.10)

where the prime denotes stability axes.

The equilibrium condition we are going to consider in our analysis

is that of ~*raight level flight, therefore

P = Q = R = V = W = 0o 0
(4.11)

For this condition, after substituting (2.4) into (2.1), and after

some algebra, we obtain

F 'x
1 - 1

F = F =m m y

Fz

v + uo r

Til - q u O>

linear terms

+

qw - rv

ru - pw

vp - qu

non linear terms

(4.12 )

Similarly, Equation (2.2) becomes

I' p+ I' • + I I r (I' q-I' r) q+(I' -I' )qr
f xx xy q xz xz xy zz yy

T= M = I' • + I I · + I' i: + I' (r2 _ 2)+1' qr+(I' -II )pr
xy p yy q yz xz p . xy xx zz

- • + I I • + I' r 1,(2_2)_1' qr+(I' -I' )pqN I'xz P yz q zz xy p q xz yy xx
, ,

linear terms non linear terms
(4.13)

It is now necessary to expand the applied forces and moments and to

express them in terms of the changes in the forces and moments that cause

or result from these perturbations. These latter forces are usually of

an aerodynamic a.nd gravitational origin.

If it is assumed that, as the disturbances are small, the partial

69



derivatives are linear, the differentia,ls can be replaced by the actua.l

increments, and F and T can be written as

(d~ \ bi
i Ib.=o

1.
(4.14 )

(OF)where ~b. and
1. b.= 0

1.

T = 6T = 1:i (o~~ \b i
1.)b .=0

1.

(o~T) represent the aerodynamic stability
i b

i
= 0

derivatives eva.luated at the steady state condition when the perturbation

variable bi is zero.

The linearized set of equations therefore is:

v+ u O
r = E i (::~bo

1.
(4. 15)

I' '+1' 4+1' r=xx p xy xz
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II p+II 4+1 1 r=
. xy yY yz I:i (Q~). bi

1. b .=0
1.

II 1>+1 1 4+1 1 r= I:xz yz zz i (I)b i
1. b.=O

1.

(4.15 )

In the set of Equations (4.15) the terms II 4 and II p, not
xy xy

present in the case of a synnnetric aircraft, introduce the inertia

coupling between pitch and roll motions. The terms II 4 and II r
yz yz

have also a coupling effect and seem to make the coupling between

longitudinal and lateral dynamics even stronger, but their coupling is

only apparent since it depends on our choice of axes system.

In addition to the inertia, coupling existing in synnnetric wing air-

craft between roll and yaw, oblique wing 8.ircraft experience an inertia

coupling of pitch and yaw motions. In table 4.1 we report the matrix

representation of the set.of Equations (4.15) in terms of Laplace trans-

form.

4.2 Effects of Flexibility.

The analysis done so far applies to a rigid aircraft.

Now, it is known that the stability and control characteristics of

flight vehicles may be profoundly influenced by the elastic distortions

of the structure under a.erodynamic load. Many of the important effects

of distortion can be accounted for simply by altering the aerodynamic

derivatives. The assumption is made that the changes in aerodynamic
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loading take place so slowly that the structure is at a.ll times in static

equilibrium. This is equivalent to assuming that the natural frequencies

of vibration of the structure are much higher than the natural frequen-

cies of the rigid-body motions. Thus, a change in load produces a

proportional change in the shape of the vehicle, which in turn influences

the load.

When the separation in frequency between the elastic degrees of

freedom and the rigid-body motions is not large, then significant inertial

coupling can occur between the two. In that case, a dynamic analysis is

required, which takes account of the time dependence of the elastic

motions.

The elastic motions have no inertial coupling with the rigid-body.
motions except through I. However, it has already been assumed, in the

previous paragraph, that such time rate is second-order and negligible

in the small-perturbation theory.

The only coupling existing between elastic and rigid body motions is

due to the ~erodynamics.

The aerodynamic derivatives associated with the deformations of the

airplane are of two kinds: those that appear in the rigid body equations,

and those that appear in the added equations of the elastic degrees of

freedom.

In our analysis we shall use a. quasi-steady approa.ch neglecting

unsteady aerodynamic effects and assuming that only the wing is flexible.

Therefore, we shall also neglect the added equations of the elastic
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degrees of freedom and refer to Ashley, Etkin, and Blakelock [15, 21, 22J

for the complete study.

In a quasi-steady analysis the effects of flexibility on the wing

are basically reduced to static bending and torsion.

Because of this bending, the aerodynamic center sh~fts forward

changing the value of all the aerodynamic moments and their related

deriva.tives. The side force due to lift is also affected. These static

effects have been included in our numerical analysis and will be

described in that section.
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V NUMERICAL ANALYS IS

5.1 Model Description

In the previous chapters we have discussed qualitatively the influ­

ence of an oblique wing on the aerodynamics and dynamics of aircra.ft.

In this chapter we shall attempt to quantify these new properties and

evaluate their influence on the stability of an oblique wing aircraft.

The aircraft configuration that has been studied is the Boeing

single-body yawed wing aircraft model 5.3 (Fig. 5.1), that wa.s studied

for NASA [Ref. 24J. Unlike what is shown in Figure 5.1, our analysis,

as well as the one done by Boeing, was carried OlJ,t for the "left wing

forward" case. The nominal configuration and flight condition for the

simulation were:

Mach mnnber

Altitude

Gross weight

Wing sweep

C.G. location

= 0.8

= 20,000 ft (6096 m)

= 400,000 lb (181,440 Kg.)

= 45 degrees

= .355 (M.A.C.)~O (body station 57.8 m)

The inertia properties being referred to body axes were transformed

to the equivalent in stability axes according to the transformation

described in Appendix C.
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The .355 M.A.e. center of gravity location in the nominal con­

figuration produced a longitudinally unstable vehicle. This con­

dition was selected by Boeing in order to achieve a more satisfactory

overall vehicle design; since the design included a longitudinal

S.A.S. this was also the case in the Boeing SST design in the subsonic

regime.

In the unstable (without SAS) configuration, the normally

complex short period roots migrate significantly; one moving to the

positive real axis and one combining with the "rolling convergence"

root to form a new complex pair in the LHP.

In order to study the effect of the oblique wing under more

"normal" conditions, we chose to modify the nominal configuration

. so as to achieve a stable configuration for the zero sweep ( A = 0
0

)

condition. This was accomplished by moving the e.G. forward.
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5.2 Aerodynamic Results

In chapter II we described two different methods for evaluating the

spanwise lift distribution for the oblique wing and how to obtain the

spanwise induced drag distribution from the knowledge of the lift.

Two numerical programs, based on these two methods, have been

written: OWSD/ST computes the stability derivatives for a rigid oblique

wing aircraft by means of strip theory; OWSD!LT , instead, applies the

linear theory approach and can a.1so include the static effects of a

flexible wing.

We shall now report the numerical results obtained with the two

methods, for a wing at a skew angle A of 45°.

In our strip theory analysis, the wing was assumed to be rigid;

therefore, the results obtained with that analysis will be compared

against the rigid wing case of linear theory. The, we shall compa.re

the results given by linear theory for the rigid and flexible wing.

5.2.1 Comparison between Strip Theory and Linear Theory (Rigid Case).

Figure 5.2 shows the spanwise lift distribution at A = 45° as

computed by means of the lifting line method, for the flat wing as

well as for the case including built-in twist. The twist is linear,

and the tip values were chosen so that the resultant lift was acting

at the wing centerline. In a real design the airfoil camber distribution

would be so that the cruise lift is acting at 50% chord. The assumed

twist distribution certainly is not the optimal one, leading to a

minimum induced drag, but, at least, it produces no rolling moment

.,~





and, for the purposes of our analysis, is a satisfactory cruise

condition.

The twist values, for the unswept wing, are

Left tip

Right tip

= + 2.6 degrees

= - 3.35 degrees

The downwash angles for the flat wing computed by the two methods

are shown in Figure 5.3. The lifting line approach (Fig. 5.3a) shows

a large variation in the spanwise distribution of the downwash; it also

indicates that the right wing, beyond the 60% half span, experiences an

upwash which, in terms of horizontal force, results in a thrust.

The induced drag distribution is shown in Figure 5.5 where the

nega.tive value corresponds to the thrust mentioned before.

The results obtained by means of strip theory show a slight varia-

tion in the downwash angle distribution and the corresponding induced

drag distribution appears to be almost symmetric about the wing center-

line. The drag distribution, as obtained with the lifting line theory,

produces a yawing moment which tends to unskew the wing. This effect

is not shown in the results obtained with strip theory.

The tendency to unskew the wing has been experienced also during

wind tunnel tests run at NASA-Ames Research Center. Since the model

was not a pressure one, it is not possible to tell whether this was

due only to a higher drag an the forward wing, or also to a thrust

force in the aft one.

The side force distribution (Fig. 5.4) predicted by the two methods

differs since the drag terms differ. The side force predicted by the
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lifting line theory increases the unyawing moment produced by the drag,

instead, the strip theory result shows the opposite effect.

We can therefore conclude that the spanwise induced drag distribu-

tion, as computed by means of strip theory, is a poor approximation.

We shall now continue in the comparison between the two methods

for the cases when perturbations are considered. Unfortunately, the

numerical program computing stability derivatives according to strip

theory computes only the nondimensional lift distribution. Thus it

is only possible to compare the results obtained with the two methods

qualitatively.

The first perturbation quantity considered is a.

Figures 5.6 and 5.7 show respectively the & x
(positive forward)

and !:iFy
For the sake of clarity we recall that, for the perturbed

case !:iF is given by
x

Figure 5.8 shows the change in lift due to a roll perturbation.

According to strip theory, no change occurs in the lift at the air-

craft centerline, whereas the lifting line s~lution shows, for positive

rate of roll, a negative !Sl at the aircraft centerline.

A greater difference shows up in the change in lift due to a pitch

perturba.tion. This greater difference is also due to the fact that, in

the case of strip theory, the vertical velocity introducing the aero-

dynamic twist is computed at the quarter-chord, whereas, in the lifting

line method, it is evaluated at the 3[4-chord point.
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Figure 5.10 shows the total lift distribution for a negative side­

slip of 5 degrees.

We shall return on the sideslip case in the next section, where

we discuss in detail the behavior of the oblique wing in sideslip. For

the moment, we shall only point out how good the agreement is between the

lifting line theory results and those obtained with the empirical method

described in section 2.5.

5.2.2 Comparison between Rigid and Elastic Wing (Linear Theory).

The lifting line method described in section 2.4 implies the know­

ledge of the station 2-D lift slope. For this reason a value for this is

considered an input data for the numerical program OWSD/LT. In our analysis

the section liftslope has been assumed to be constant along the span.

This is not true in most cases and specially for our model, since the

thickness to chord ratio varies along the span. The value of the 2-D

lift slope has been adjusted so that the wing lift slope coincides with

the value computed by Boeing [Ref. 24J in its study. No built-in

dihedral was assumed, but only a linear twist was introduced, satisfying

(as mentioned in the previous section) the zero rolling moment condition.

In our model, the pivot location (50% root chord) does not coincide

with the quarter-chord line (where the lift force is assumed to be acting);

therefore, when the wing is skewed, the wing center line does not coincide

with the aircraft centerline. For that reason the right wing has a span

larger than the left one. Therefore, the lift distribution for the cruise
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condition, satisfying the equilibrium condition about the roll axis, can

no longer be symmetric in order to balance out this asymmetry in the two

semiwings. This asymmetry can be noticed in Figure 5.11 which shows the

spanwise lift distribution at A = 45
0 (rigid and flexible wing)for this twist

distribution and for an angle of attack of 3.75 degrees (.0652 rad.).

Since the twist was computed for the rigid wing case, the lift distri­

bution of the elastic wing will produce a strong positive rolling moment.

The flat wing case is shown in the next figure (Fig. 5.12) for the same

angle of attack.

It is interesting to notice that the flexible Wing case produces

almost no rolling moment about the aircraft centerline (The resultant

lift vector is applied at the quarter-chord station having a distance

to the right of the longitudinal axis equal to 0.72 ft).

Such a small difference does not even require a built-in twist,

but only a little aileron correction. At this point it should be pointed

out that the built-in twist is, for an oblique wing aircraft, a poor

design solution. In fact, since the twist measured in the flight di­

rection varies with the cosine of the sweep angle, the twist correction

is maximal when the wing is unskewed ( and then we do not need any twist

correction since the FWLD is symmetric) and decreases when we skew the

wing.

A built-in dihedral is, therefore, a far better solution, producing

no twist. for the unskewed case, and increasing the twist correction

when the skew angle increases.

We shall complete the analysis of the cruise condition, as from our
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numerical model, with Figure 5.13. Figure S.13a shows the downwash

distribution for the flat wing, where the negative values correspond

to the upwash. The flat wing drag distribution corresponding to this

downwa.sh is shown in Figure S.13b. The flexible wing shows a much higher

drag on the forward (left) wing and a thrust over a larger portion of the

aft wing. This is expected; in fact the forward wing, by bending, in­

creases the angle of attack and consequently the lift (this behavior

is well known as the divergence problem of a swept forward wing), where­

as the opposite happens on the aft one.

The direct consequence of the higher lift of the forward wing is an

increase in the upwash velocities induced on the aft one. Instead, for

the aft wing, the decrease in lift will result in a decrease in the up­

wash field induced on the forward one and, consequently, lead toward

a further increase in the downwash of the aft wing. These are the rea­

sons why the flexible wing experiences a higher downwash value on the

forward wing, and a larger portion of the right one is affected by the

upwash velocities.

Then, when we multiply the lift (a positive value) times the corre­

sponding downwash, in order to obtain the spanwise induced drag distri­

bution, we multiply the already greater downwash times a larger value

of lift for the left wing. For the right wing, instead, the lift magni­

tude is smaller and this kJ the reason why, though affecting a larger

portion of the aft wing, the thrust reaches a lower maximum value than

the corresponding one for the rigid case.

We shall now continue our comparison analyzing the results for the
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cases simulating perturbed states as are assumed in our computation of

the stability derivatives.

The numerical program OWSD/LT evaluates the stability derivatives

by first computing the distribution of the aerodynamic forces (lift,

drag, and side force) for the perturbed condition, then evaluating the

increment from the corresponding cruise distribution, and finally inte­

grating these increments as well as their product with the corresponding

moment arms in order to obtain the incremental moments over the entire

wing span.

The desired values of the stability derivatives are then obtained

by dividing the results of the integrations by the perturbation quantity

and by the appropriate nondimensionalizing factors [See Appendices A and

B]. Then, derivatives are computed with standard expressions [Appendix

B and/or Ref. 15, 21] and the yaw derivatives can be evaluated according

to strip theory as described in section 3.2.4. Therefore, for both of

them it is necessary to simulate the perturbed condition. Consequently,

the conditions to be simulated have been reduced to: angle of attack,

roll, pitch, and sideslip.

The a-perturbation has been simulated by increasing the cruise

angle of attack by 3 degrees (.05236 rad.). The new lift distribution,

including twist contribution, is shown in Figure 5.14.

The rigid wing shows a visible increase in the aft winglif~,due to the

increase in the flat wing 1ifto Eor the elastic one, this effect is much

less pronounced. These two behaviors can be predicted by looking at the

shape of the FWLD (Fig. 5.12); in fact, a change in a will introduce a
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first order variation in the lift, proportional to these shapes. The

variation, 6F ,in the horizontal force (Fig. 5.l5a) is strongly af­
x

fected by the lift contribution in that direction during the perturba-

tion, as we have discussed in section 3.2.2; in fact

The increase in lift for the rigid wing is more pronounced in the

aft part where it contributes to the thrust already experienced because

of the upwash field, but on the forward wing its increase is not suffi-

cient to offset the drag increase.

For the elastic wing, the FWLD has ~ more symmetric shape than for

the rigid one; we would therefore expect the transition point from

negative (drag) to positive (thrust) X-force to occur further outboard

on the left wing, instead, the two shapes behave similarly, except for

the magnitude. This is not the ca.se, according to our results, a.nd the

reason is probably because of the downwash distribution: stronger down-

wash on the forward wing, and consequently a higher induced drag to

counteract the higher increase in lift; but also stronger upwash on the

aft one with higher resultant thrust where the lift increment is lower

than the rigid case. The same reasoning can be applied to the variation

in the side force (Fig. 5.l5b), where the two shapes look similar, al-

though they differ in magnitude.

The perturbations due to roll and pitch a.re simulated by intro-

ducing an aerodynamic twist cor:;:'esponding to a linear va.riation in the

free stream vertical velocity [See section 3.2.2J. The roll angular

velocity is chosen to be such that the twist is equal to -5 degre~s· at the
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left tip and zero at the aircraft centerline [see Eq. 3.31].

For the pitch velocity, the left tip condition remains - 5 degrees

and zero twist now coincides with the wing station corresponding to the

intersection of the quarter-chord line with the lateral axis y •
s

The three different twists used in our study are shown in Figure

5.16.

Figure 5.l6a shows the built-in twist; the aerodynamic twist corres-

ponding to our roll simulation is shown in Figure 5.l6b. The aerodynamic

twist due to the pitch simulation (Fig. 5.16c) is not perfectly linear

because the downwash velocities have been measured at the 3/4-chord

points, which do not lie on a stra.ight line. As we would expect, the

aerodynamic twist introduced by a positive rolling motion increases the

lift distribution on the aft wing and decreases it on the forward one.

Figure 5.17 shows the spanwise lift distribution corresponding to

the cruise angle of attack plus a twist given by the superposition of

twists a) and b) of Figure 5.16. The increment in the vertical force is

of greatest interest. Although such an increment has a contribution due

to the drag, according to [see section 3.3.2J

where

such a contribution is negligible compared to the actual lift changes,

therefore the 6. Z shown in Figure 5.18 can be thought of as the actual

change in lift without any serious loss in accuracy.
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From those distributions we notice that the rigid wing shows a

positive variation on the aft wing, larger, in magnitude, than the

negative one. The opposite is true for the flexible wing. Moreover,

if we look at the shape of the corresponding case, as simulated by strip

theory, we can observe how erroneous the strip theory approximation is

for the flexible wing case.

The variations I::.x and I::.y look quite complex (Fig. 5.19 a) and

b».

The most important derivative computed from these two distributions

is the yawing moment. In a symmetric aircraft the side force is always

negligible. This, as we have proposed in section 3.1.2, is not true for

an oblique wing aircraft, in fact the side force has a magnitude compa­

rable with the horizontal one even in a perturbed condition. By inspec~

tion, we can also notice that the yawing moment produced by the I::.x

and I::.y distributions is, in this case, negative, and the rigid wing

shows a larger magnitude.

The same analysis can be extended to the pitch perturbation; there

is only one difference: the way the aerodynamic twist is measured in our

linear theory model.

Eqn. 3.31 implies a linear variation in the aerodynamic theory; this

is a common assumption and was used also in our strip theory analysis.

The linear theory, as we mentioned earlier, implies the evaluation of the

vertical velocities, induced by the angular velocity q, at 3f4-chord.

Figures 5.20 and 5.21 respectively show the spanwise lift distribution

corresponding to the cruise angle of attack plus the superposition of
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the twists of Figures 5.l6a and 5.16c.

Figure 5.22 shows the ~Z distribution a,nd 5.22b the ~ Y distri-

bution.

In our model, the sideslip is simulated by increasing the skew angle

by 5 degrees. This, as we have already mentioned, corresponds to a nega-

tive sideslip according to the reference axes system chosen. Thus, when

looking at the variations in the aerodynamic forces, we must change the

sign when considering the sideslip case. Figure 5.23 shows the total

lift distribution for the new skew angle.

Increasing the skew angle, the angle of attack measured in the flight

direction decreases (Eq. 3.8). In our case, the relationship between

perturbed and cruise angle of attack is:

cos 45 0

CX500 = CX45° 0
cos 50

The results shown in Figure 5.24 are of great interest.

Increasing the skew angle (which corresponds to a negative slip),

the total lift decreases and the spanwise distribution of such variation

is asymmetric (Fig. 5.24). This asymmetry will result in negative

pitching and rolling moments; therefore, a positive sideslip introduces

positive rolling and pitching moments. This is an unsta.ble behavior and

can be visua.lized by considering the trend of the spanwise lift distribution

when the wing is skewed.

The upwash field generate~ by the forward wing introduces the

build-up in lift on the aft wing.
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As we increase the skew angle, this build-up will shift more and

more towards the aft wing tip. Thus, this shift will introduce negative

pitching and rolling moments (left wing forward case). When we unskew

the wing, the trend will be the opposite; consequently the lift build-up

will shift towards the center decreasing the magnitude of the negative

rolling and pitching moments. These are positive increments in the

moments and the reduction in skew angle corresponds to the sideslip

situation. The effects of flexibility worsen this undesired behavior.

In our model, we have used linear built-in twist to stabilize the

rolling moment. In this case also,we see how poor such a solution

would be as compared to the case of a built-in dihedral.

The effectiveness of the linear twist decreases with the cosine of

othe skew angle; thus, the amount of twist required at 45 to trim the

aircraft would introduce a strong positive rolling moment when the wing

is unskewed.

Since a sideslip perturbation affects the total lift distribution,

the contribution due to twist in a positive sideslip situation is an

increase in the undesired positive rolling and pitching moments. Since

the equivalent twist due to dihedral varies with the sine of the skew

angle, the previous unfavorable situation now becomes a favorable one;

in fact, a decrease in sweep will introduce a variation in the equivalent

twist which results in a decrease in the forward wing lift and an in-

crease in the aft wing lift, which is a stabilizing trend. The yawing

moment due to the variation in the longitudinal force, ~ , is positive

for our negative sideslip simulation (Fig. 5.25a.), and this is a favor-
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a.ble result.

From the shape of the side force (fig. 5.25b) we can observe that

the contributions of flat and rigid wings to the yawing moment can differ

even in sign. In fact, for the negative sideslip case, the rigid wing

shows a decrease in side force whose resultant force is applied to some

point on the aft (right) wing. The rigid wing, instead, shows the

resultant side force acting on the forward (left) wing. Therefore, the

rigid wing, in sideslip, experiences a side force that produces a desta­

bi liz ing yawing moment (pos i tive for the nega.tive sides lip case shown in

Figure 5.25b), whereas the elastic wing shows a tendency to produce a

favorable rawii1g~moment.

The effect of the wing rotation on the ailerons geometry has already

been discussed in section 3.1.3.

Table 5-Ia shows the ailerons dimensions for the unswept case, and

Table 5-Ib shows the corresponding ones assumed in the computer simula­

tion for the 45 0 skew angle; the quantities used in this Table are

defined in Figure 3.6.

Three aileron deflections are considered:

1) left aileron deflected 5 degrees

2) right aileron deflected 5 degrees

3) both ailerons deflected; left 5 degrees, right - 5 degrees.

The elastic wing case considered so far assumed the elastic axis

(E.A.) to coincide with the wing quarter-chord line. In addition to

this elastic case and to the rigid one, we also considered, for the

ailerons only, the case when the E.A. is at a distance from the quarter
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YCNTOL = 93.63 ft

Left Aileron
YCNTIL = 73.93 ft

YCNTOR = 93.63 ft

Right Ai leron

YCNTIR = 73.93 ft

a) Ailerons Nomina.l Dimensions at !I. = 0

Wing Station
(non dimen.)

CNTCOL = 2.2 ft

CNTCIL = 3.66 ft

CNTCOR = 2. 2 ft

CNTCTR = 3. 66 ft

Distance from
ArC Centerline

[ft]

Left Aileron

Right Ai leron

Outboard Inboard Outboard Inboard

.937 .837 64.45 55.31

.862 .662 66.03 51. 75

b) Computer Approximation at A = 45 0

TABLE 5-1 Ailerons Dimensions
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chord.
oThe latter represents the real situation, but, since at 45 skew

angle the bending contribution to the wing twist is by far more important

.
than the contribution due to torsion, the differences between the two

elastic cases are small, at least as fa,r a,s our analysis is concerned.

We shall see how the same is true for the ailerons also.

Figures 5.26 through 5.28 show the total lift distribution corre-

sponding to the three aileron deflections considered, for both the rigid

and elastic wing cases, having the E.A. coinciding with the quarter-chord

line.

The aileron effectiveness for these three cases is shown in Figures

5 • 2 9a , b, and c.

Once more, we can observe the peculiar behavior of the oblique wi~g.

In fact, the forward aileron, affected by a stronger downwash, is less

effective than the aft one, which is instea.d influenced by a strong

upwash. The variations in horizontal force, Dx" are shown in Figures

5 • 3 Oa , b, B,nd c.

Because of the lack of points in the areas of interest, the shape of

the curves looks unusual; nevertheless it is interesting to notice the

Dx variation introduced by the aft (right) aileron.

The positive right aileron deflection produces an adverse yaw moment

much smaller than the cor::esponding one produced by the left a.ileron

(fig. 5.29 and 5.30). We have alrea.dy noticed how the favorable upwash

field decreases the drag on the aft wing; in case of right aileron de-

flection the induced dra,g rise is not only lower than the corresponding

one for the forward aileron, but the increment in lift, because of the
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upwash, results in a thrust force outboard of the aft aileron.

The same effect can be noticed in the case of antisymmetric deflec­

tion (Fig. 5.30c).

The negative deflection in the right (aft) aileron produces a

decrease in drag, or equivalent thrust, followed by a drag increase on

the outboard part of the wing. This behavior suggests the possibility

of using the aft aileron only for control during the cruise condition;

but this solution implies, first, the experimental confirmation of the

analytic results and, second, that there are no adverse aeroelastic

effects related to that solution.

Figures 5.31 through 5.34 are referred to the elastic wing case

having the E.A. passing through the wing pivot (5ifroroot chord) and

parallel to the quarter-chord line~ Very little difference can be noticed

between these results and the corresponding ones for the other elastic

wing case considered.

In fact, the twist contribution due to bending is much larger than

the contribution due to torque.

5.3 Stability Derivatives and their Influence on the Natural Modes.

At this point, the logic flow of our ana.lysis would require the

discussion of the numerical results of the stability derivatives. We

shall postpone it to the next section and carryon, instead, a qualitative

analysis of the influence of the stability derivatives on the natural

mode of an oblique wing aircraft.
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In Chapter III, the new stability derivatives due to the skewed wing

were introduced without any attempt to define their importance to the

dynamic stability and natural modes of the aircraft. This analysis had

been carried out only on the basis of understanding the behavior of an

oblique wing aircraft and its differences from a symmetric aircraft. We

shall now discuss the result of a numerical investigation to determine

the influence of the new stability derivatives, as well as of the usual

ones, on the dynamic stability of an oblique wing aircraft.

The set of six linear differential equations dervied in Chapter IV

was numerically solved using an available computer program (GSA), which

wa.s originally developed by Lockheed Missiles and Space Company. The

program solves a set of linear differential equations using the Laplace

transform method and gives root locus, bode or time domain plots for the

system. The characteristic polynomial is of the 8th order.

The influence on the roots of the characteristic equation is now

analyzed for each nonzero derivative by means of a root locus. In this

way, it is possible to find the derivatives having influence on the

natural modes. This study has been carried out for the new as well as

the conventional derivatives, by varying one derivative at a. time, start­

ing from zero to a value double that of the corresponding one reported

in Table 5-111, column 1.

It is obvious that this is actually not possible in a realistic

analysis, since the parameters affecting one derivative may affect other

derivatives also; the range itself does not reflect a real case except

for some of the derivatives depending on the skew angle. The purpose of
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this analysis is only to localize those derivatives whose contribution to

the root location is negligible and to compare them with each other.

For the sake of clarity, we have labeled the roots according to the

classical definitions though, in the case of a skewed wing, they may lose

part of their meaning. Table 5-11 reports the results of this investigation

and shows the influence on each natural mode. They were evaluated according

to the percent change in the natural modes while the value of the derivative

ranged from zero to the maximum value assumed. The symbols used are:

less than 5%

* 5 to 20~

** 20 to 50%

,~** 50 to 80 %

*,~** over 80 %

5.4 Stability Derivatives.

In section 5.2 we have analyzed the spanwise lift distribution of the

aerodynamic forces as computed with our numerical models. The stability

derivatives are the direct consequences of those spanwise distributions.

To date, neither program computes the stability derivativee with

respect to rate of change of a. These derivatives take into account

the time required for the effect of downwash produced by the wing to reach

the horizontal tail. For symmetric aircraft, the methods described in
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References 27 and 28 are usually used.

The effect of downwash is to reduce the angle of attack of the

stabilizer. Because the wing is at a skew angle, the distance from the

wing to a conventional stabilizer varies from tip to tip and complicates

the computation of such derivatives.

Since the analysis done in section 5.3 showed that the influence of

these derivatives on the dynamic of the aircraft is negligible and because

of lack of time, we decided not to further investiga.te the analytic and

numerical evaluation of such derivatives.

We recall that the nondimensionalizing quantities used in our

analysis [Appendix A] are: cruise speed, wing span, and mean aerodynamic

chord, both for the unskewed configuration.

The results obtained, together with the Boeing ones, are shown in

Table 5-111. Tables 5-IV through 5-IX are the computer printouts of the

first six cases of table 5~III. The symbols in these printouts are

explained in Appendix E.

In addition to the stability derivatives, the wing contributions

are reported separately.

Whenever a stability derivative differs from its corresponding wing

contribution, this is because of the tail contribution.

We shall now make a few remarks concerning the most influential

derivatives (Table 5-11) as computed with lifting line theory.

The comparison between rigid and flexible wing, in terms of stability

derivatives, can be done by comparing columns 3 and 4 in Table 5-111.
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TABLE 5-n - INFLUENCE OF THE STABILITY DERIVATIVES ON THE NATURAL MODES.

--

Phugoid
tlh__Damp...... _

~piral Short Period Dutch Roll
-Mode_ ~amp.__tlh _ Eamp.__tlh

Rolling
Mode

C ~~*~'d~
xu

C ~..*
xa

C *.,'(,'\.,,, *~'~**zu

Cya

C "i": .,,\"k * *** ,,\ *,,\
za

CjJ:i, .,'(*.,'\"';'\ ../\ 7('1(,;,\'1\ *~~** *'k*~~ "k-k ,'\*,'Cj'(

Cnx
.,'\"'(i,\"k i'n':: "'\'1\,'\';'\ ok * ok *"1("1\-/\

C * 7(i( 'Ok
na

Cxp

C *",\"k"k
yp

Czp

C.ep "k.,'("ki'.: '"/\,'(;'(./\ "k*,,\.,'( i'e ,'c"k.,,,:.,,,:

Cmp

C ,'(i'("ki( * ~~**~'~ "k*i'(Ok "k,'("ki( "1\"k7("/\
np

CXp

Cyp

C
Zp

C..ep
..,'(,'(,'(,'( ../\,'(,'(./\ "k"ki'(* *i'(*i'\ 7(i'( ·'/(i'(**

C i'c"k "/\7(*";'( *.,'( *** i'( **7(*
mp

C * * ok
np

C
X~

C
ytf

C
zlf
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Phugoid Spiral Short Period Dutch Roll Rolling
Damp. Uh Mode Damp. Ub. Damp. '% Mode

c~ ** * -- ~" -- ~" -- ~b"

C ***~"
;'(-;'( -- -- "k-k ~" -- "k·k"l\i'(

m'l

C
nlf -- -- -- -- -- -- -- --

-

C -- -- -- -- -- -- -- --yr

CJ,r ***'k -- "k*~("i'( -- -- ok -- **
C ** -- ~"**~" -- -- -- -- ~"mr

C ~"* -- ~"**~" -- -- ~"ok*~'( -- *~b"'knr

C
z~ -- -- -- -- -- -- -- --

Cma -- -- -- -- -- -- -- ~'(

Influence of the Stability Derivatives on the Natural Modes
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TABLE 5-111 - COMPARISON BETWEEN STABILITY DERIVATIVES FOR A=45°

1 , 2 I 3 , 4 , 5 , 6 , 7..

C .108 .108 .123 .133 .131 N.A. N.A.
xa

C .378 .283 .563 .568 .537 -- --
Ya

..

C -4.24 -4.24 -4.24 -4.11 -4.11 -4.24 -4.53
za

C,t -.203 -.164 - .17 -.0127 -.0133 -.297 -.0573
a

C -1.55 -1. 10 -1.16 .297 .292 -1.6J' .281
ma

C -.0359 -.00235 -.0913 -.0647 -.0673 .0084 .0075
na

C -.00657 -.00657 -.00857 -.00929 -.00895 -- --
x~

C -.282 -.282 -.283 -.283 -.283 -.252 -.252
Y~

C - .459 -.459 -.525 -.546 -.535 -0.228 - 0.258
z~

C,e -.023~ -.0237 -.0172 -.0146 -.0881 - .0705 -.0493

~

C .00223 .004 .195 .510 .282 -.0378 .108
m~

C .131 .131 .125 .125 .131 .035 .034
n~

C** -1. 03 -1. 03 -L03 -1.03 -L03 -1. 03 -1. 03
z"a

c** -4.78 -4.78 -4.78 -4.78 -4.78 -4.78 -4.78
m"a

C .0105 -.0279 -.06 -.0937 -.109 -.044 -.044
Yp

c -.406 -.328 -.0685 .29Q .298 0 .61
z

p

C,t -.251 -.278 - .212 -.19..: -.193 - .4 -.444
p

C -2.23 -2.50 -1. 94 -1.85 -1.84 -2.66 -3.12
m

p

C
,

-.0153 .0064 .0146 .0184 .0175 .0085 .0119
n

p J
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C
m

q

cz
r

C
m

r

C
n

r

.0202

-4~·23

-2.23

-30.1

-.354

.260

.0525

.266

-.129

.059, -.0305

-3.17 -6.73

-2.50 -2.14

-32.8 -28.6

-.163 -.133

.263 .258

.0549 .0544

.244 .292'

-.13 - .13

-.378

-3.08

-1.84

-26.7

-.0908

.261

.0541

.298

- .131

-.55 -- --

-3.09 -2.02 1.58

-1.84 -2.66 -2.79

-26.6 -27.1 -28.7

-.0831 -.163 -.159

.26 .229 .229

-- -- -.13

.055 .0885 .095

.296 .379 .436

-.130 -.1650 -.1654

* No Stability Augmentation (SAS) included.

** These data were taken from Boeing study [Ref. 5J since our program
does not have the capability, to date, of computing thesederiv&tive~

The eight columns represent:

1) Strip Theory: spanwise flat and total lift distributions as from
Reference 5 (Fig. 5.35). Sideslip evaluated according to empiri­
cal method described in section 2.5.

2) Strip Theory: spanwise flat and total lift distributions as com­
puted by lifting line theory (Fig. 5.2). Sideslip evaluated as
for case 1 •

3) Lifting line theory, rigid wing.

4) Lifting line theory, elastic wing (E.A. coinciding with quarter-
chord axis.

5) Same as No~ 4, but no built-in twist.

6) Boeing results rigid wing.

7) Boeing results elastic wing.
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~.250~A({dZEPC SWEEPI
1.122~A((oIFRC S~EEPI

}.34q~~(I.IERC S~EEPI

e.c ~At{iZcRO S~EEPI

F(R A tE~Tc~ CF G~AVITV ~ ~.355~~CI.ZERC S~EEPI THE STATIC ~APGIN IS

t)
~

H(I~ETI O.121M.CI.IERO SweEP)

0.366MACI.ZERO sweEP.

CONTFCl'OERIVATIVES

elEvATC~ C~FL~CTICN Of = 0.0 CfGREEISI
CleE --O.13&E-OZ (MOE =-C.E90E-C2

RlLCeq CEFLECTICN DR = 0.0 OEGREEISI
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TABLE 5-1V Computer Printout for Case 1 of Table 5-111.
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SAS
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eYA : 0.263E 00 Clio "-0.424E 01 CLA =-0.164E 00 C/olA =-O.llOE 01 CNt. --c. 235!:-02
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C.250~AC(iZE~Q S"EEPI
C.122MAC(ilE'l~ S~EEPI

O.242MACl.lERC SwEEPI
O.OOJMAt(~lERO S"eEPI

FeR A CENTER OF GRAVITY i 0.355~AC(.lERO SWEEPI THE STATIC MARGI~ IS

t""
CJJ
CJJ

XAClNETI C.614~AC(ilERC SwEEPI

O.Z59MACcaZEIl.O SklEEP)

CONTROL UERIVATIVES

ELEVATOR CEFLECTION OE z G.OO eEGREEISI
CluE "-0.188E-02 CMCE --Co890E-02

RUDDER DEFLECTION OR & O.OOOEGREEISt
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TABLE 5-V Computer Printout for Ca.se 2 of Table 5-III.
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assumption

The elastic wing, unlike the rigid one, shows a positive C
rnCl!

or pitch-up moment.

There are no major discrepancies between our results and

Boeing's except in the C
n
# derivative. Since the major contribution

to the latter is from the fin, the difference may result from our

O!O
(;J3 = O.

It is useful to consider stability derivatives as functions

of skew angle before discussing dynamic response.

The effect of skew is seen in the accompanying graphs (Figures

5.35 through 5.41) on a configuration that was stabilized by moving

the C.G. .15 M.A.C. further forward.

The behavior of these derivatives is explainable in terms of

two important changes in the lift distribution resulting from an

angle of attack perturbation.

The first of these is the predominance of lift on the trailing

wing. The second is the effective reduction of the lift forces

arising from roll and pitch rates or changes in pitch attitude, that

is, CLa is reduced.

The program approximates CLO! as the calculated lift divided by

dynamic pressure, wing area, and cruise angle of attack. From simple

two dimensional sweep theory, the lift on a wing at constant angle

of attack and free stream velocity varies as the cube of the cosine

of the sweep angle. The effective dynamic pressure is reduced by a

factor cos2A and the effective section angle of attack by a further

factor of CosA. The lift distrubition calculated by the program
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3
closely matches this Cos A variation. C

La
is proportional to C

L
3

and hence behaves as Cos A as well.

It is not possible to easily follow the details of a change

of skew angle through the lifting line analysis to verify the

cos
3
A dependence which results.

The trailing vortices move closer to the downwash control

points, and bound vortex segments decrease in length in proportion

2to CosA , which accounts for a factor Cos fl. The change in the

geometry relating the vortex segments to the control points is

complex however and gives rise to three dimensional effects such

as the lop-sided lift distribution, which are totally unaccounted

for in two dimensional simple sweep theory.

In addition to decreasing C
La

' the closer lateral proximity

of the skewed wing to the body reduces the roll induced velocities.

However the extension of the skewed wing fore and aft of the C.G.

causes increased pitch induced velocities.

In pitch, roll, and yaw manouvers the lift perturbation

distribution is unsYmmetrical with respect to the center line so

that consideration must be given to the changing moment arms in

interpreting the behavior of the derivatives.

The moment arms are decreased for rolling moment derivatives,

increased for pitching moment derivatives and relatively unchanged

for yawing moment derivatives.

These observations lead to the following understandings of the

effect of skew on individual derivatives:

(1) CL' C
La

experience a decrease as explained earlier. A

cos
3
A dependence applies only to small variations about
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an equilibrium position. The airplane CL would be maintained at

a constant cruise velocity by increasing cruise angle of attack

as Cos-3A..

(2) C~: The tendency of lift to shift to the rear wing leads

to a rearwand shift of the neutral point as shown in the graph

of vehicle aerodynamic center, or an increase in the static

margin. However the decrease in C~ dominates, and Cma = C
La

x

static margin is reduced.

(3) Cxa : displays slight increase until skew reaches 20
0

decreasing

thereafter. From Appendix B, Cxa = CL(l-2kC~) C
L

and C
La

are

both decreasing which results in the calculated reversal.

("Reversal" will be used to mean a reversal in the sign of a

curve's slope, and "reversal in sign" a zero crossing of the

curve). The second term in the parenthesis is the contribution

of induced drag, while the first results from the rotation in

the perturbed body frame of a lift vector fixed in stability

reference axes.

(4)

(5)

(6 )

(7 )

C
ya

: increases with the appearance of a sideways rotation of

the lift vector and a sideways component of induced drag. The

reversal is caused by the dramatic decrease of CL and C~ at

high skew angles.

C =-Cza. ~

C~, where £ is rolling moment, increases with the shift of

lift to the trailing wing, but eventually reverses with

decreasing C
La

and moment arm

C~ is the result of X
a

' the X force due to an a perturbation,

acting through a moment arm proportional to CosA and Y
a

through
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Decline sets

an arm proportional to Sin A: initially side force generated

yawing moment predominates and C~ increases.

in as the longitudinal force generated moment becomes in-

creasingly smaller and C
ya

itself begins to decline. Again

the reduction of C
L

and C
La

with skew has an important role.

(8) Cyp Monotonicly increases for the same reasons as C
ya

Normally zero for symmetric aircraft which have an(9)

The increase is less dramatic because of the decreasing distance

of the wing tip from the centerline, and reduced roll induced

angles of attack. The non-zero value at ~ero skew is due to

the rudder.

Czp

antisymmetric roll generated lift distribution, the Czp

curve has two startling reversals and a reversal in sign.

The derivative is very sensitive to slight departures of the

lift distribution from antisymmetry. In the range 0
0

to 100

skew, lift decreases more on the leading wing in a roll than

it increaseB on the trailing wing. After 10
0

the trend

is reversed until the lift increment on the right trailing

o
wing dominates as in figure 5-18 for A = 45 .

The final reversal reflects decreasing lift curve slope

and effective roll induced angles of attack.

(10) Ctp : decreases monotonicly with declining roll induced

velocities, effective section angle of attack, and lift

curve slope, causing a reduction in roll damping

(11) 9np : increases with skew because of an antisymmetric roll

distribution acting through an increasing moment arm.

Declining roll induced effective angles of attack and lift

curve slope cause a reversal.
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(12) Cnp : Decreasing X- force yawing moment arms are offset by

increasing Y- force arms. The longitudinal position of the

center of gravity will influence the shape. Figures 5-19 (a)

and (b) show distortion of the expected antisymmetric X and Y

force distribution. Since the incremental lift distribution

in roll shown in figure 5-18 for A = 45
0

is almost normal, the

distortion is related to an abnormal downwash distribution,

figure 5.13 a). The departure from an antisymmetric force

distribution decreases C
nP

from 0
0

to 30
0

•

(13) C: Figures 5-22 (a) and (b), showing pitch generated
yq

X and Y- force distributions, are similar to those for roll

generated horizontal force distributions. fm figure 5-21 the

corresponding lift increment is noticeable greater on the

trailing wing. Skewing the wing has a less detractive

effect on pitching stability derivatives because induced

velocities and aerodynamic twist increase. The detractive

effects of diminishing effective angle of attack,and dynamic

pressure remain however. The horizontal force distributions

are symmetric at 0
0

skew but become less so as portions of

the leading wing extend in front of the center of gravity.

The distortion mentioned earlier opposes this tendency.

(14) C : declines steadily with an increasingly antisymmetric
zq

lift distribution (Figure 5-21)

(15) C n : increases for the same reasons that C decreases,
;:,q zq

until the familiar high skew angle deterioration takes place.
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is initially non-zero for a center of gravity not on the(16) Cmq
quarter chord. The introduction of antisymmetry in the incremental

pitching lift distribution, and increased induced velocities, and

pitching moment arms increase C rapidly at first.mq

(17) Chq : The rapid increase after A= 15
0

, and the tapering

off above A = 30
0

correspond to the varying antisymmetry

in C The initial decrease may be because the wing quarteryq
chord lies behind the center of gravity at A = 0

0
, so that

when side force components of induced drag first appear their

contribution to yawing moment is positive. As the skew

angle increases, and the forward wing extends ahead of the

center of gravity, its contribution to yawing moment

becomes negative. The non-zero initial value of C couldnq
not be explained, but may result from an unsymmetrical

downwash distribution at zero sweep.
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5.5 Dynamic Results

5.5.1 Natural Modes

In5.l, Model description, it was noted that a C.G. location

of 355 M.A.C. resulted in longitudinal instability. In case 3 of Table

5-111 the instability is not apparent from C which is less than zero,rna

however the roots illustrate the unstable short period mode discussed

in 5.1:

Damping Wn Real Root Imag.Root

Phugoid .1265 .063 -.00797 + .0652

Dutch Roll .1001 1. 058 -.1059 + 1.053

"Rolling-Short-Period" .8007 2.120 -.1713 + 1. 25

Spiral Mode .0166

Unstable "Short Period" .1542

Table 5-X records similar roots for case 1 and case 5. These

configurations are therefore longitudinally unstable as well. The stan-

dard short period and rolling convergence modes are recovered for both

cases when 40~ SAS is introduced (equivalent to moving the C. G. forward

.4 M.A.C.) The added static margin decreased

cases 3 and 5 respectively·

C to -2.85 and -1.35 for
rna

Since the numerical integration is sensitive to the number

of wing stations, to obtain good results a large number of stations

should be considered.

For example, the stability derivatives for cases 3 and 5

(40% SAS) are shown in Tables 5-XI and 5-XII and the corresponding

natural modes in Table 5-X for 36 wing stations, compared to 40 for

previous cases.
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The roots of the dynamic equations were computed at

A 0 15 0 0 0= 0, ,30, and 45 for the configuration having a e.G. at

-.15 M.A.e., and the accompanying root loci plotted. (Figures 5.42

through 5.46)

These reveal the variation of dynamic behavior corresponding

to the stability derivative versus skew angle curves plotted earlier.

The effect of skew is to cause minor variation in the

natural frequencies of all but the rolling convergence mode, which

experiences a large reduction in roll damping. This is traceable to

the diminishing of e~p and further to declining e~, ~n~ent arms, and

induced velocities.

T~e mode shapes corresponding to the new roots at A = 45
0

are shown in the form of Argand diagrams. (Figures 5.47 through 5.50)

Although the characteristic roots have changed only moderately the

dynamic modes no longer resemble the familiar ones of a symmetric

airplane.

The diagrams show the phase and magnitude relation of the

six state variables describing the dynamic state. When the magnitude

of a state variable is insignificant its relative phase angle is still

shown by a line. State variables for non-oscillatory modes have only

0
0

or 180
0

phase relations between them. The rolling convergence mode

is one of these. The Argad diagram for A = 45
0

shows the diminished

roll rate r resulting from the reduction in roll damping.

In summary, the most dramatic change in dynamic character-

istics appears to be the reduction in the roll mode damping. No

other large changes in root locations due to sweep were encountered
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for this configuration. The changes in mode shapes due to the long­

itudinal/lateral coupling are generally small with the exception of

the short period; which takes on a substantial amount of rolling along

with the normal e and a
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Figure 5.42 - Root locus versus skew angle
for spiral mode.
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5.5.2 Transient Response

The transient responses have been computed for two cases:

(1) Rigid wing, 40% SAS added.

(2) Flexible wing, no twist, 40% SAS added

Figure 5.51 compares with a and ~ responses to an aileron im-

pulse for the 40% SAS rigid wing case and shows the cross coupling

between the lateral and longitudinal modes.

Figure 5.52 compares the a and ~ responses to an elevator im-

pulse for the elastic wing with 40% SAS. Note that the ~ response

is larger than the a response after the initial peak in the first

second and will no doubt have some effect on a pilot's evaluation of

the handling qualities. This same result was found for the rigid wing

with 40% SAS.
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5.6 Summary

The model used and the aerodynamic result obtained with both strip

and linear theory were discussed in detail and compared. The strip

theory approach, though very simple, showed results not always satisfac-

tory; in addition, its limitation to rigid wing case only turned out to

be too restrictive, since the elastic wing behavior strongly differs

from the rigid one.

The effect of stability derivative changes on the natural modes

was tabulated. The derivatives of a longitudinally stable configuration

o 0
were graphed for skew angles from 0 to 45 , and discussed in light of

the geometric and aerodynamic effects of skew.

Substitution of these in the eighth order dynamic system gave the

characteristic root loci as functions of skew angle.

Calculation of the mode shapes revealed significant changes in

dynamics, although the natural frequencies had not changed greatly,

(apart from the rolling convergence mode).

Transient responses to elevator and aileron deflections were

presented.
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VI CONCLUS IONS

The analysis and computer program for the adaptation of the lifting

line aerodynamic theory to the oblique wing have been described.

The existence of a side force component, due both to induced drag

and to the tilting of the lift force when the wing is skewed, has been

shown. Stability derivatives were obtained for an aircraft used in a

Boeing study with the oblique wing placed at 0°, 15°, 30°, and 45°.

The derivatives were generated using the lifting line theory and a

°simple strip theory (for sweep = 45). The two results are compared

with each other and with the Boeing results and show reasonable agree-

ment in most cases

The stability derivatives computed using the lifting line theory

were used in a linearized dynamic model of the aircraft to determine

the effect of sweep on dynamic behavior. No instabilities or large

changes occurred in the root locations for sweep angles varying from

0° to 45° with the exception of roll convergence. The damping of the

rolling mode was reduced by more than an order of magnitude due in

most part to a similar decrease in C~p'

A dramatic increase in the characteristic roll angle, in comparison

to other state variables, was prominent in the rolling convergence, and

the three oscillatory modes at A = 45°. The rolling motion in the

Dutch roll is exaggerated with increasing skew, and surprisingly both

the phugoid and short period modes picked up significant rolling motion.

In the latter mode rolling dominated by a factor of three.
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APPENDIX A

A.l Relations Between Dimensional and Nondimensional Derivatives (Sta-

bility Axes).

The geometric quantities bO ' wing span, and c, mean aerodynamic

chord, are referred to the wing in the unswept position.

x = 2~ Cx [lb ~tsec j
u Uo u

x = qS CXex [lb]ex

c
Cx· [lb •x· = qS 2U sec]ex ex

0

xe - mg cose
O [lb]

x~ = qSCX~ [lb]

b
[lbx· = qS 2U

O
Cx~ . sec]

~

b
Cx [lb •x = qS 2U sec]p

0
p

cx qS 2U Cx [lb • sec]q
0

q

bx qS 2U Cx [lb • sec]r r
0

The same relationship can be obtained for y and z .
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[lb • ft]

c - c [ lb ft·Lex = qSb 2U C.U~ M. = qSc - em· · sec]ex 2UO ex
0

L~ = qSbC1,~ M~ = qsccm~ [lb · ft]

b - b
[lb ft • sec]L· = qSb 2U C1,~ M· = qSc 2U

O
em~ ·~ 0 ~

b - b
[lb ft • sec]L = qSb 2u Cl, M = qSc 2U em ·p o p p o p

c - c [ lb ft • sec]L = qSb 2U Cl, M = qSc 2U em ·q o q q o q

b - b
[lb ft. sec]L = qSb 2U

O
Cl,r M = qSc 2U

O
Cmr ·r r

The relationships for the yawing moment a.re the same as for the

ro lling moment •
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APPENDIX B

Since only the wing contribution to stability derivatives is a

new element in the sta,bility ana.lysis, we shall limit ourselves to deriving

only wing derivatives and provide a list of the ones which can be com-

puted in a classica.l way and can be found in the literature [Ref. 15, 21

and 22]. The normalizing quantities b
O

' c are referred to the A= 0

condition.

B.l "u" Derivatives [Ref. 22].

C
x

u

C
z

u

Cx
u

1 oFx
= ---

qS ou = [ (
1

0T
h oCD )]

- 2C + M - -- - -
D a qS oM OMa a

(B-1)

Cz
u

1 oFz---
qS ou = (B-2)

B.2 "13" Derivatives.

Figure B-1 shows the case of the aircraft experiencing a sides lip

velocity v.

The effect of introducing a 13 corresponds to a, - t:.A for the wing.

The fuselage also is affected, but we neglect its contribution since it is

too complicated to evaluate it.

168



Neglecting the induced drag due to the fin, we consider only the

component of the lift due to the fin in the x direction.
s

F = - D cos~ + L. s in (~ - 5)
x ~1n

Since when \3=0 also 6=0

C = _ dCD + c* (1 _ 00) ~ OCD
X a o~ L . 013 013

I' -:-F1n

since

and assuming

we obtain

b
O

cosA
PR= --­

S

2
(CL)A = (C) cos A

L A 2
• "0 cosAQ

(B-3)

(B-4 )

(B-S)

(B-6)

* C~= 0 a.ssuming the trimmed condition does not require any rudder.
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(
0 1) 2

OJ\. '11 lR /'r;=Au = lR t anAo

and after substituting into (B-3), the final expression becomes

(B-7)

C
x~

(B-8)

or, in terms of the induced drag coefficient

c.
J
In a similar way we can compute

for a sideslip is

C
y~

The side force coefficient

(B-9)

where C derives from fuselage and tail contribution
c

Cy~ = - [ -
oC

OCD]C sin~ + __c +
CD cos~ +~c ~

~=O

oC
= _-.£+ CD

o~ 0

(B-lO)

The main constribution fo C usually comes from the body and the
c

vertica.l tail, for the oblique wing case the side force generated by the

wing also should be included in C ,but it turns out that such contri­
c

bution is of second order and therefore negligible.

The tail contribution is a conventional one and it is given by
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derivatives, no attempt is here made to evaluatesimilarly to the C
x~

the fuselage contribution.

(B-ll)

C

~

(B-12 )

For simplicity, we shall neglect the influence of fuselage on C~

~

Wing Contribution

(B-13)

The magnitude of this term is strongly dependent on the FWLD, there-

fore no approximation is possible which would give a meaningful result.

Assuming a zero 40lling moment for the cruise condition, it is possible

to evaluate (C~~)w by computing the wing rolling moment at the per­

turbed sweep angle and dividing it by the increment in sweep.

Tails (Fin) Contribution [Ref. 21J

172

1., ]ZF
b ~=O

(B-14 )



_C (1 _05 SF) ..e ZF
L~ Qj3 S b

(B-15 )

The same approach osed in computing (c~L is necessa.ry when

evaluating the wing contribution to (Cm~)w and (Cn~)w

C

..3l

The tail contribution is negligible, therefore

c - (c )
m~ m~ w

c
~

The fin contribution is given by [Ref. 21J

where

(B-16 )

(B-1?)

v =
v

(B-18 )

vertical tail volume.

The sidewash factor ~, generally speaking is difficult to estimate

with engineering precision. Suitable wind-tunnel tests are ~equired for

this purpose. The contribution from the fuselage arises through its

behavior as a lifting body when yawed. Associated with the side force

that develops is a vortex wake which induces a lateral-flow-field at the

tail. The contribution from the wing is associated with the asymmetric

structure of the flow that develops when the airplane is yawed. This
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phenomenon is especially pronounced with low-aspect-ra.tio swept wings.

When such tests are not available, References 27 and 28 can be used for

empirical values.

B.3 !let' Deriva tives.

where

(B-19)

For a rigid wing, ~-dO: - tanA , therefore integra.ting (3.28) over

the span and normalizing the result

of b(2

...!.. --Y = ...!.. f (L jI + L tanA - 2k LqS 00: qS 0: 0 0 0
-b(2

we obtain

CLcJ tanA dy

(B-20)

In s ta,bi li ty axes
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a,tta,ck introduces a new wing contribution to

The presence of an unsymmetric lift distribution due to the angle of

C
ma

Let us first evaluate this contribution before considering all the

other ones which are common to symmetric a,ircraft. We sha,ll refer to

Figures 3.5 and B-2 for the symbols used. To be consistent with the

conventional notations we shall consider this contribution as a part of

C = C (A) referred to the M.A. C. at zero sweep (Y
MAC

)'
m

O
m

O

The wing moment a,bout YMAC is given by

bj2

(M) = - q £/2 Z YMAC dywA
(B-23)

where (M) is the wing pitching moment due to the effects of skew.wA
Let us now consider the general problem.

Moments about C.G.

a) Wing contribution

(B-24)

b) Tail contribution

(B-25)

c) Total moment
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Figure B-2 Moment about the C.G. in the Plane of Syrrnnetry.

N.P. = Neutral Point

c = M.A.C. at A= 0

ao = Angle of attack (wing-body)

E = Effective wing downwash at tail

it = H-tail trim angle

at = a O - (E - it) = H-tail angle of attack.
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':: M + (M) + L (h - h ) c - 1J L
to wA wb t

having assumed

1
C :;::- M.r
1l\r qs~

where

(B-26)

(B-27)

(B-28)

(B-29)

(B-30)

C
m

t

(B-31)

f O'1v·· -/
j: /

- C [1 - O€] V
L oa H
at
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Neutral Poiqt (C.G. location about which C
ma

0)

or

- 1 ['0 ( de)]h = h + - -. (C) - V C 1 - -
wb CL oa m WAH La da

a t

(B-33)

(B-34)

and by substituting (B-34) into (B-32)

h - h ~ Static Margin

Aerodynamic Center Build-up.

where

(B-35)

(B-36)

(B-3?)

(B-38)

x =
ACT '1a~ s

h
Wb

== .25

C
La

VH~ (1
La
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x =
ACpivot and Sweep

(B-40)

This is one of the new derivatives and only the wing contributes to

it. It is formed of two terms: one due to the lift and one due to the

side force.

b/2

~ (X ~ + Y y) dy

-b/2

(B-4l)

The knowledge of the spanwise distribution of X and Y is needed

in order to evaluate C
nex

B.4 lip" Derivatives.

The local angle of attack varies linearly according to

ex = ~­
p U xo

Cz
-E.

(B-42)

For the symmetric wing case this derivative is zero since the in-

crease in lift on one side of the wing is balanced by an equal decrease

on the other side.

This is no longer true for the oblique wing, therefore

Cz
p

b/2

f 02
dP dy

-b/2

(B-43)
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The evaluation of oZ ca.n be done according to the method outlinedop
in section 3.2.2. However, such an approa.ch will require the evaluation

of that will take into a.ccount the behavior of the oblique wing.

To remind us of this detail, we shall add the sUbscript p to the

derivatives that must be evaluated in tha.t way.

Since
(j ~ (ja
---J
(jp - (ja (jp

and

Therefore

(B-44 )

C

.J
Wing Contribution.

b/2

f [(~) + dO ] ~ dy
-b/2 P

(B-44)

Similarly to

was antisymmetric.

(C) (C) would be zero if the change in lift
zp w' yp w

b/2 2

f
(j UoE:l.. dy = ­
op baS

-b/2

lQ()
-LVV

b/2

f o~ (1, 'Y
-b/2

d tanA,) dy

(B-46)



We notice that ~ = 0 for a rigid wing, but it would be different fromop
zero for a flexible one.

Fin Contribution [Ref. 21J.

= _ SF C ( Z1, FZ
S Lex b OFin

Therefore, for a rigid wing

_'(0)
op

(B-47 )

b/2

f [(~) YO - (~)
-bIZ p p

]
SF (z.e FZ 00)tanA dy - - C -- - -
S L

eL
. b O op

Fl.n

(B-48)

For the flexible wing, the term ~ is no longer zero, therefore

the term .eO ~ should be included in the integration representing the

wing contribution.

Wing Contribution

bIZ

1 02 - - 2
'Op x dy = T

-b/2 bOS
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b/2

f [(~~) + dO] ~2
-biZ p

dy

(B-49)



Fin Contribution

Therefore

(B-S 0)

b/2

-2 f
C,e == b2S

p 0 -b/2

C
m

-P.

(B-Sl)

No tail contribution to this new derivative

C
mp

b/2

f oZ - 2ap Y dy == -=-
-b/2 bOcS

b/2

~/2 [( 01,) - 1--00: P+ dO x Y dy

(B-S2)

C
n

-P.

Wing Contribution

The side force is the new element in the wing contribution to C
n

p

where

b/2

f lOX - OY-]op x + op Y dy

-b/2

(B-53)
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Tail Contribution [Ref. 21J.

(B-55)

Therefore, by adding the two contributions, for a rigid wing we

obtain

C
n

p

(B-56 )

The flexible wing would have the extra term

~-
;"0 dO: y

B.5 "q" Derivatives.

The q derivatives are derived in the same way as for the pones.

All the connnents made in the previous ..group of. derivatives can be

extended to this one and therefore they will not be repeated.

The local angle of attack now varies linearly according to

.c

.3
Wing contribution only
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b/2 2U

f .9.l dy = _0
Oq

-b/2 cS

2
=-

cS

b/2

f [(~)p
-b/2

b/2

f (~)q ~c: dy
-b/2

(B-57)

YO - (~)q tanA] Y dy

For flexible wing the term

tion.

C
z

-9.

Wing Contribution.

t ~y must be included in the integra­o o:x

b/2

2 1 (oz) - -2- Y dy = -.:::-
~s o:x q cS

-b/2

C
z
q w cS

b/2

f OZ dy
oq

-b/2

b/2

L2
(B-58)

Horizontal Tail Contribution [Ref. 21]

I )C =
\ Zq H. Tail

(B-59)

and

(B-60)



Wing contribution only

b/2

f oz-
dq x dy

-b/2
(B-61)

-2
=-

, -
b·'cSo

C
m

---S

Wing Contribution

(
c ) - 2UO dZ y dy

m - -2 oq
q w c S

-2
= -2

c S

(b-62)

Tail Contribution [Ref. 21J

Therefore

(B-63)

-2
C =::::z-
mq c S

b/2
r

~b/2
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C
n

-S

Wing Contribution only

2U
O=---

b/2

L2~
- -(X x + Y y) dy

(B-64)

=

derivative, due to the wing aerodynamic

B.6 "r" Derivatives.

Except for the new C
m

r
coupling, and for the wing side force contribution to yaw moments, all

the other derivatices are standard.

The method used in evaluating r derivatives in section 3.2.4 will

be applied here without any further explanation.

Assuming the steady state flight condition to be straight levelled

flight

C =
z

r
C

x
r

o

Fin Contribution only [Ref. 2lJ

_SF [ 21,FH co]
C - S CL b + cr

Yr ~. 0
Fln
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C.t
r

Wing Contribution

-2Uo
b/2

f .to ~ d~;Y)
-b/2

-4
dy =--

b
2

So

b/2

f -2
.to x dy

-b/2 (B-66)

Tail Contribution [Ref. 21J

Therefore

(B-67)

b/2

f -2
.to x

-b/2

.tF~
d + C -.!::.y Y b

r 0
(B-68)

C
mr

Wing Contribution only

C
m

r

C
n

r

b/2

f -d" (,,'I -4
.t y~ dy = ------o dr -

~b/2 bO cS

b/2f .to y~ dy

-b/2
(B-69)

Wing Contribution (including side force)

b/2

f [do
-b/2

x + (.to'Yo - d tan1\) y] dqd~Y) dy
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4

= b2S
o

b/2f [do (~- tanA, y) + .eoyo y) I~ dy

-b/2

(B-70)

Tail Contribution [Ref. 21J

(B-71)

biZ

4 f [-Cnr = b2
0
S d

-biZ
(B-72)
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APPENDIX C

C.l Similarity Transformation between Inertia Matrices.

The conversion of an Inertia Matrix from body into stability axes

occurs according to a similarity transformation [Ref. 26J.

[I Js
{C-l)

where

[I J = Inertia Matrix in stability axes
s

[IbJ = Inertia Matrix in body axes

[TS/bJ = Rotation (or direction cosine) matrix from body to

stability axes

= Transposed matrix

The stability axes are obtained by rotating the body axes about the

Yb axes by an angle a, therefore Yb:= ys •

The rotation matrix [Ts/bJ is given by

[cosa ° Si:aJ
[Ts/bJ =

_ sOina
1

° cosa

and

[co;a o - Sina]
T

1 °[Ts/bJ =

sina ° cosO:

(C-2)

(C-3)

In a symmetrical aircraft both the I andxy I yz components of

the inertia ma,trix are zero. When the wing is skewed, the I compo-xy

nent is no longer zero, therefore for an oblique wing aircraft the

inertia matrix, in body axes, looks like
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I I Ixx xy xz

[IbJ = I I 0 0 (C-4 )xy yy

I 0 Ixz yy •

If we know transform [IbJ according to the similarity tra.nsfor­

mation (C-l), we shall obtain the inertia. ma.trix expressed in terms of

the stability axes, [I J •s

After some algebra we obta,in

I' I I I'xx xy xz

[I J = I' I' I's xy yy yz

I' I I I'xz yz zz

where

I' I 2 I sin2a + I . 2
= cos a + s~n axx xx xz zz

I' = Iyy yy

I' 2 sin2a + 2
= I sin a - I I cos azz xx xz zz

I' I cosaxy xy

I I I cos2a + 1
(I - I xx) sin2a=xz xz 2 zz

I' = - I sinayz xy
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APPENDIX D

D.1 Downwash Matrix [81l..:..

The lift or circulation distribution can be visualized as resulting

from a system of horseshoe vortices, each of which is of constant

strength (Fig. D-1).

~ rb ~rd ~Ifl
~rN'-''''-r" -~~ -_ .....

...

Actual airload
curve

Approximation to the
actual loading as
given by horseshoe ~

vortices~

(

Figure D-1 [Ref. 14J.
Horseshoe Vortex System
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The net strength of the trailing vortex at any point on the span of

the wing is numerically equal to the rate of change of strength of the

bound vortex in the spanwise direction. Little loss in accuracy with

respect to the spanwise air load distribution will be entailed if:

a) The total strength of the chordwise system of bound vortices

is concentrated in one bound vortex located at the local span-

wise quarter-chord point.

b) The downwash angle at each vortex station across the span of the

!::.
wing, at the local streamwise three-quarter-chord point (= down-

wash control point D) is equal to the geometric angle of attack

for airfoil having a 2-D lift curve slope equal to 2n. When

the section 2-D lift slope is different from 2n, equation D-1

must be used

(D-l)

The downwash angle at anyone downwash control point is the sum of

the incremental downwash angles due to the horseshoes in the system of

horseshoes which represent the wing and its lift distribution.

Assuming the geometry of the wing platform, the angle of

attack and section 2-D lift curve slope variation are given across

the span, the unknowns ar~ the values of the running lift at each

point on the span. The strength of each bound vortex represents

the average airload over its own portion of the wing span.

The method for determining the downwash matrix for an oblique

wing is now illustrated.
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In Fig. D-2 a system of horseshoe vortices and the associated down-

wash control points are shown.

Il-r--~l
r I

II I

II

Ii,I

n,~
. I

I
I
I
I
!
i

Figure D-2

I
I

At the station the section lift curve slope will be m.
~

and

the angle of attack of the section zero lift line is afi .

Since a linear relationship exists between the strength r
j

of a

particular horseshoe vortex

point i

j and the downwash velocity W••
~J

at the

(D-2 )

where K is a constant, and the downwash at i due to the entire

vortex system is

W. = ~J' Woo = ~J' K•• r.
~ ~J ~J J
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From equation (D-l), which expresses the relationship which must

Wexist between the downwash angle V at each control point, the wing

angle of attack and the section lift curve slope MO for the wing

station at the control point, the following series of equations result

and in general

W.
1-=

V

and substituting (D-3) into (D-4)

(D-4 )

W.
1-=

V
1
-V L. K •• r.

J 1J J
(D-5 )

The relation between the running load 1 and the circulation at the

i th station is

1. = pVr.
1 1

(D-6)

Equation (D-5) can therefore be rewritten in terms of the running

load 1

Wi
~ L j Kij rj =

1 L j
1.-= K •.

V
PV

2 1J J

Substituting (D-7) into (D-4 ) results in

(D-7)

12 :E. K
iJ

· lJ.
pV J

(D-8)

or

L
J
' K .. l.

1J J

qm.
= __1 a:

'TT i
(D-9)
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And in matrix form

[
' qm ]

where '~~, is a diagonal matrix.

(D-lO)

Defining a new matrix

(D-ll)

Equation (D-lO) can be rewritten as

(D-12 )

The elements of the [8 l J matrix are to be influence coefficients

relating the incremental downwash angle at each control point to the

intensity of the running lift over each increment of the semispan of the

wing.

195



D.2 Evaluation of K.. Elements.
----------~J

The velocity induced by a vortex of strength r at a point P can

be written as [Ref. 24 J

w = r (cosO: - cos(3)
P 47T R

(D-B)

where 0: and (3 are the angles between the direction of the vortex

segment and lines joining the ends of the segment to the point as shown

in Figure D-3.

r

R

__1__
End
view

o. w

Figure D.3 - Finite Segment of a Straight Vortex Filament [Ref. l4J.

A plan view of the geometry of a typical horseshoe vortex is given

in Figure D-4.

In order to eva.lua.te the incremental downwash velocity induced by a

single horseshoe vortex it is convenient to consider the following three

cases:

1) Control point to the left of the horseshoe vortex.
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2) Control point within the horseshoe vortex.

3) Control point to the right of horseshoe vortex.

Fig. D-4 shows the quantity that will be used in the derivation; by

the subscript i we shall indicate quantities relative to the control

point D. , whereas by
~

j we shall refer to the horseshoe reference

point V
j

.

The origin of the axis system is at root quarter chord point. When-

ever the locus of the quarter chord point does not lie on a straight

line, it is assumed to be given by an equation f(y) w.r.t. a straight

line pasSing through the root qua.rter chord point and aligned with the

wing span (unswept case)

----1-===::::::-::::::::::::J ~~y) y

X
j

, Y
j

C.
~

Xi - 2 ' Yi

C.
~

coordinates of horseshoe reference point V.
J

coordinates of control point D
i

chord length at station i

X. = - y. tan A + f (y .) tan A
~ ~ ~.

1) Control point to the right of the horseshoe vortex (Fig. D-4a)

defining

£:,X .. = X. - X.
~J J ~
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R.. = b,X .. + Ci/2
~J ~J

b,Y .. = Y. - Y.
~J ~ J

..... _.....L... _.

Y. I
~ I

-_..-..j

t···_- ----.---.

".

hh

Qua.rter-chord Line
/

/- Y
j

"" Iv.'- ,J

.
•

Fig. D-4a Control Point to the Right of Horseshoe Vortex.
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For the left trailing vortex

and equation (D-13) becomes

o
[1 - cos (ex.. + 90 ) J

1J
4'(((D. Y.. + h)

1J

1+ sin ex..
= -:---:-:-_-=1J,,:- r

4'(((D. Y.. +h) j
1J

(D-I4 )

sin ex..
1J

R.•
= 1J

_I 2 2 i
~ (6 Y.. + h) + R•.

1J 1J

(D-lS)

For the right trailing vortex

ex=900-~ij

~ = 1800

[cos(90 - ~ij) - cos l80
0

J = _ [ ~~r- ~ij + 1 ] r.
(WiJ')R = - r J. 4 (6 Y h) 4 (6 Y h)'(( .. - '(( .. - J

1J 1J
(D-16)

The minus sign derives from having assumed positive downwash veloci-

ties.
R•.. 1J

S 1n ~ ij = -_7='==~===;2;:=="""2=ij
"V (D. Y•. - h) + R..

1J 1J

For the bound vortex

ex = ex..
1J

~ = B ..
1J

(D-I7)

W•• = r'J.1J

(cos ex.. - cos ~ .. )
1J 1J

4'(( R•.
1J
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.6Y.. +h
_

--;:.==~1:!:!:J==;;o:::==:;;=;cos a.. = _I 2 2 1

1J -V (.6 Y.. + h) + R..
1J 1J

.6Y .. -h
1J

cos ~.. = -_-;=:'==~====;2;;;::=='7<2=ii
1J -V (.6 Y.. - h) + R..

1J 1J

(D-l9)

(D-20)

The total downwash velocity at the control point D. is therefore
1

given by

r. rl+ sin a.._ J 1J
Wij - 471 L .6 Y.. + h

1J

1 + sin ~. . cos a.. - cos ~ .. ]
1J + ____=1~JL....-____=1:..LJ

.6 Yij - h Rij
(D-2l)

and

__.6 Wij __ ..l.[l+sin aij _ l+sin ~ij + cos aij -cos ~ij]
K (D-22)
ij r j 471 .6 Yij + h .6 Yij - h Rij

2) Control point within the horseshoe vortex (Fig. D-4b).

~1·····------·-···-t---·a\ ->
i~

/
/ R .•

/ 11
... ,

hh

/
.1 U_____... '._.. _.. _. _ .__ . r

i

Figure D-4b.
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Since

i == j

6X .. =6Y.. =0
~J ~~

R
i

. = C./2
~ ~

Both trailing vortices will induce the same downwash velocity

CX = 0

90
0

~ = CX•• +
~~

(D-23)

For the bound vortex

(D-24)

(w .. )B
~~

Therefore

ri
= 4 Icos CX •• + cos CX )

~ Rii \ ~~ ii

h
cos cxii = -Vr=h92F+~t=c?Rii

(D-25)

(D-26 )

J

l/ii = ~; [~ (1+ sin "ii) + c: cos "ii] (D-27)

3) Control point to the left of horseshoe vortex (Fig. D-4c),

defining
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1

0

Xi
Xjl

i
....... IR ..

....... I ~J

-""" i
....... L

-

Y. I
J 1

I

!:J.Y •.
~J,-

Y
i

" ~" ....... !Vi
r1,, ) "

i .......

i ""-
1 .......

C.! ....... "L----+------.r-
~
2i

Figure D-4c

ij
a' ~ 180

0
- a ..

~J

A' ~ 180
0

- f3 •.
t' ij ~J

Roo
~J

C.
~

=&··+-2
~J

/::"Yoo = Y. -Yo
~J J ~

For the left trailing vortex

a = 0

f3 = 90
0 + a~ .

~J
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(D-28)

Ri ·

= V J 2 2'
(/::,.Y •. - h) + R•.

~J ~J

(D-29)

For the bound vortex

ex= ex.. = 180
0

ex~ .
~J ~J

13 = 13 ij = 180
0

13 1.j

r.
(Wij)B = 4~ ~ij (cos exij - cos l3 ij )

Therefore

/::"Y .. - h, ~]

cos exij = - cos exij = - -.r='=:::::=:=:::::;20===""'2"
-V (/::,.Y •. - h) + R..

~J ~J

Simila.rly

(D- 30)

(D- 31)

cos 13 ••
~J

= - cos 13 ~ .
~J

/::"Y •• + h. ~J

= - -;====='~-='"?f""="7f=iV(/::"Y .. +h)2 + R~.'
~J ~J

(D- 32)

For the right trailing vortex

ex = 90
0

-131.j

p = 180
0
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r. [cos(90
0

- ~' •. ) - cos l80
0 J r. (sin ~ ~ . + 1)

(w) J ' . ~J = J ~ ]
ij R = 4fT (!;,Y .. + h) 4fT (!;,Y .. +h)

~J ~J

(D-33)

Therefore

. ~'nn ij
R..

= ~]

_I 2 2 '
"" (!;,Y .. + h) + R..

~J ~J

r. [ 1 + ~in ex~ .) 1+ sin ~ ~ . cos ex.. - cos 1w = J _ ~J + ~J + __"':~:;,.jJ,--__~...:i;:.w..j
ij 4fT (!;,Yij - h) !;,Yij + h Rij

(D-34)

It is now possible to derive the matrix K of equation (D-10)

since each element will be given by

w..
- .2:J.Kij - r

j



D.3 Structures Fundamentals.

As done in the previous section, the continuously varying spanwise

airload distribution will be replaced by a series of constant intensity

running loads.

The assumption of the section aerodynamic center acting at the

quarter chord becomes weak when considering the bending and

torsion due to the air load distribution whereas it is quite good when

computing spanwise lift distribution. This inconvenience,due to the

lack of predicting chord-wise lift distribution, can be reduced by

introducing a correction factor f which will allow the section aero-

dynamic center to be placed in any desired place along the chord. Such

a correction factor is here assumed to be known.

Because of reasons which will appear more evident in this section,

the horseshoe vortices must be chosen in a way such that the aircraft

centerline will coincide with one trailing vortex.

Let us consider the geometry of the structural skeleton of the wing

as shown in Figure D-S and define

M , M , ... , M Rolling moment due to total lift of all the
Xl x

2 x.
~

vortices outboard of this point (positive when

raises left wing tip).

M , M , ... , M Pitching moment due to total lift of all the
Yl Y2 Yi

vortices outboard of this point (positive when

nose up).
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h h

X.
1.

1

Figure D-5 - Structural Skeleton of the Wing.
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Beam bending moment at elastic axis point about

axis perpendicular to local elastic axis (posi-

tive when it compresses wing upper surface).

Torsional moment around elastic axis (positive

when leading edge up).

Total lift acting on the wing section having

span 2 h , numbered from the left wing tip

L. = 2hi,.
~ ~

j,. being the intensity of the running lift at
~

station i.

Streamwise distance from horseshoe reference

point at a wing station to the corresponding

point on the elastic axis (positive when elastic

axis point is to rear of horseshoe reference

point).

Section aerodynamic center correction factor;

(f positive when aircraft is to rear of quarter

chord point).

The general form for the bending moment is

M. ="' M cos A + M s in A
~ xi Yi

and for the torsional moment

T. = M cos A - M s in A
~ Yi xi

(D-35 )

(D-36)

At station 1, on the center line of the horseshoe vortex nearest to



the left wing tip (Fig. D-6) the following equations apply:

L1 ( h t;n A)M = 2 e 1 - f 1 C1 +
Y1

and substituting into equations (D-35) and (D-36)

T1 = ~1 [<e1 - f 1 C1 + ~ tan A) cos A - hZ1 sin A]

At station 2

and in general, for the left wing (forward), for i > 1

i-1

(M ) = L: 2 h L. (i - k) + L.; -4
h

xi L k=l K ...

(D-37)

(D-38)

(D-39)

(D-40)

(D-41)

i-1

(MyJL= E~(~i + ei - fk '1<) + ~i (ei - \ Ci + ~ tanA) (D-42)"

where

herefore, for i > 1 , the bending moment and torsion for the left wing

are given by:

208



Leading Edge

/-- Centroid of the Load L/2

Elastic Axis

~ ..

M

hv h
~-- -;-

\

i •

-1
I
I

Figure D-6 - Plan View of Left Wing Tip Section.
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(D-43)

-[1: 2 h 'l< (i - k) + Li ~] s in A
k=l

For i = 1 expressions (D-37) and (D-38) should be used.

(D-44 )

For the right wing, assuming n to be the farthest right station

L h
n n

Mx = TT
n

L h
M = n (e - f C - ~ tan A)

Y
n

2 n n n 2

(D-45 )

(D-46)

h L
(Mn)R = - Ln :: cos A + 2

n
(en - f n Cn

h
; tan A)sinA (D-47)

and in general, for the right wing, for k <n

i+l

(
M ) = 2: 2 h 1. (i - k)
xi R k.=n tc

(D-48)

(D-49)

i+l

(
.) ~ L. h

M = £.J ~(~J.. + eJ.. -fk Ck ) + 2J. (e. -f. C. - -2 tanA)
Yi R k=n J. J. J.

(D-50)
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where

- x.
~

Therefore the bending moment and torsion, for the right wing and

for k <n , are given by

[

i+l

(Mi)R = L 2 h ~(i - k)
k=n

- L E:] cos A
i 4

L.
e i - f k Ck ) + : (e i - f i Ci

h
2

(D-5l)

sin A

At the root station of the elastic axis the bending moments of the

right and left wing cancel each other in a trinnned flight condition.

The presence of an unsymmetric air load would introduce a non-zero aero-

dynamic moment at the root station.

In Figure D-7, such a case is shown.
(Mr)L

Figure D-7
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where

t.M = (Mr)R + (Mr)L

(Mr)R = Root bending moment due to right wing air load

(Mr \ = Root bending moment due to left wing air load

r = Root station

In such a case the following considerations can be made;

a) Instantaneously the wing is assumed clamped at the centerline,

allowing for the discontinuity in the bending moment. The

structural rotation angle across the span, due to bending, can

be computed as shown in the next pages by simply substituting,

for the semi-wing considered, the corresponding root bending

moment.

b) The t.M produces an angular acceleration which can be decomposed

w.r.t. the roll and pitch axes.

This acceleration introduces angular velocities about the roll and

pitch axes which results in an appa.rent or aerodynamic twist. This new

twist contribution modifies the spanwise air load distribution and, con­

sequent ly, the root t. M• A change in t. M changes the angular acce lera­

tion and so on.

Because of this discontinuity at the root it is convenient not to

consider the root station.

In case such a point were included in order to take into account

the two different values of the bending moment it would be necessary to
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write two separate matrices: one for the left and one for the right wing.

In addition, when computing the streamwise twist due to wing flexibility,

this discontinuity in the root moment comes up again.

By using a system of vortices such that the aircraft centerline

coincides with one trailing vortex, the root double-valued point will

not be computed. In doing so nothing is lost in accuracy but there is

a gain in simplicity for the matrix analysis.

In matrix form, equations D-37, D-3S, D-43, D-44, D-45, D-46, D-5l,

and D-52 can be opportunely combined and become

IMl = [ cos A [r] + sin A [u] J 11 I (D-53)I \

ITI = r- sin A [r] + cos A [u] I 11 I (D-54 )I I , \

where
Ml T l £'1

1M!=
~

IT I
T1

1= 2h l£,! 2h
£'1

= =
~ TR £'R

M T £,
n n n

~ , T1 ' £'1 are the values at the last sta.tion to the left of the air­

craft centerline (Fig. D-S).

~ , TR ' £'R a.re the values at the first station to the right of the

aircraft centerline (Fig. D-8).
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and

[u] =
[

[A] : [OJ]
I

[oJ I [B]
(D-56)

where [A] and [B] are reported in Tables D-I and D-II.

The moment at the aircraft centerline can be computed as follows

(MXr)R
h= M~ - ~ 4"

( MYr)R
M + ~ h= (e - f C - '2 ta.n A)YR 2 r R R

(D-57)

(D-58)

(D-59)

(D-60)

where

(
M ) - Rolling moment at the aircra.ft centerline elastic

xr L -

axis due to left wing air load distribution.

(
M ) = Pitching moment at the aircraft centerline elastic

Yr L
axis due to left wing airloa.d distribution.

Simila.rly (MXr)R and (MyJ indicate the corresponding moment due

to the right wing contribution.

The total rolling and pitching moments acting on the airplane are:

for the rolling moment f

(D-61)
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1 h l
'2(e l - flC l + T tanA)

. .. .. .. .. .. .. .. .. .... .... .. ..

1\:1
1-'1
,I

[A] =

(l'lX12 +e2 - flC
l

)

(l'lXli + e i - flC l )

1 h
'2(e2 - f 2C2 +'2 tanA)

1 h
(l'lX2i + e i - f 2C2 ) ••••• '2(e

i
- f

i
C

i
+'2 tan A)

o

(")~
I-:ij,.,..

~O

..~~
&)

~~>0Ctrj
~EiJ

.... .. .. .. .. .. .. ..

(l'lX1L + e
L

- f
l
C

l
) 1 h(l'lXn +eL - f 2 C2 ) •.••••••••••••••••••• '2(e

L
- fLC

L
+ '2 tanA)

TABLE D-I



[B] =

00
h;:l;:O

....-I
1-00
Odc:z.
~>r
ID >-d
d>>0
Ctsl
~t;j

1 h
2"(eR - fRCR - 2" tan A) ••.••..••.••••••••••••••••••••••••••• (f,XnR + e

R
- fnC

n
)

. .. .. . .. .. .. .. .. .. .. ..

~,

t-"
00'

o

1
-(e - f C h2 (n-I) (n-I) (n-l)- 2" tanA)

TABLE D-II

(f,X(n-I)R+ e(n_I)- fnCn )

1 h
-(e - f C - -!! tanA)
2 n n n 2



for the ~itching moment M

(D-62)

The streamwise angle of a.ttack contribution due to wing flexibility

can then be obtained from

where

ex
s.
~

i

= f E~ d s s in A +
k

i

f -.!. d s cos A
GJ

k

(D-63)

ex = Streamwise angle of attack contribution at station i
Si

due to values of bending and torsional moments acting

inboard and at station i.

k = R

k = L

Station when i on the right wing

Station when i on the left wing

EI Effective beam bending stiffness around elastic axis

GJ Effective torsional stiffness around elastic axis.

Since 2h
dS = cosA for this study, the integrals in equa.tion (D-62)

for station 1 can be written as

2h
= cosA

M(L - 1) 2h ~ 2h]
• •• + -E-~-I--'-- cosA+ ELI

L
cosA

(L-l) (L-1)

t2E~i.]
~= ~ ~
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T. ]
G)i

And similarly it is possible to obtain the expressions for the

corresponding values at each station.

In matrix form:

:= c~~A [sinA [EIJ 1M!+ cosA[GJJ IT!1
where

where [cJ and [DJ are reported in table D-III.

(D-64 )

(D-65 )

The matrix [GJJ is similar to [EI] and can be ontained from equation

(D-65) by simply replacing EI with GJ.

Substituting equations (D-53) and (D-54) into equation (D-64)

I I 2h r
I CXs I := cosA l sinA [EIJ (cosA [r] + sinA [uJ)

(D-66)

+ cosA[GJ] (sinA[r] - cos.t\[uJ) 1) LI
which can be written as

:asi = 4h
2

[ sinA( [EI] + [GJ] )[r] + (s::s1 [EI] , cosA[GJ] ) [U]] iL: (n-67)

It is now possible to define the elasticity matrix [S2 J .
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[C] =

[D] =

1
2

o

1 1

ERIR 2E(R+l)I(R+l)

1

1

ORIGINAL
OF POOR PAGE IS

QUALITY

o

1
. 2E. I.

~ ~

1
2E I

n n

TABLE D-III
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[S2 J It- 4h
2

[sinA ([EIJ+ [GJJ)

Then

[r] + (s;on:t [EI] - cosA [GJ]) [a]I
(D-68)

\ I - [S J \ n II CXs I - 2 IJ'J I (D-69)

The S2 .. element of the [S2 J matrix represents the angle of
1J

atta,ck change in radians at station i due to the structural deflection

of the wing caused by a unit loa,ding at station J.
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D.4 Wing Twist.

The twist in a flexible wing can have several contributions or

twists which can be divided into two cla,sses: I) those which would be

present even if the wing were rigid, and IP those due to inertia effects,

thrusts or drag, and section pitching movements on the flexible wing.

la 1= la I
I g l I gIl

class I: Aerodynamic Twists jagIl

+ la I
I gl

(D-70)

a) Built-in geometric twist due to camber or construction

(including eventual dihedral contribution) or both.

b) Interference twist (not considered in this study).

c) Twist due to control surfaces deflection (flap, aileron,

spoilers) .

d) Apparent twist due to airplane rolling and/or pitching

velocities (the angles of atta,ck due to pitching velocities

should be measured at 3C/4).

Class II: Structural Twist due to Wing Deflections caused by Aerodynamic

Loading which are independent of Wing Lift Distribution la I
I gIll

a) Vertical acceleration upon dry wing and internal fuel dead

weights.

b) Effects of a,irplane rolling and/or pitching acceleration

upon dry wing dead weight, wing internal fuel dead weight.

c) Section pitching moment with control surfa.ces in neutral

position (CmO of the airfoil).
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d) Incremental section pitching moment due to control surfaces

deflection.

The type of twist due to the effects of wing deflections arising

from loads which are independent of wing angle of attack, such as those

listed under Class II, may be computed with the aid of equation (D-63)

(D-71)

where M and T are the wing bending moments and torsion along the

wing elastic axis due to the loadings of Class II. For cases a) and b)

the knowledge of mass for each section of span 2h and the position of

the corresponding C.M. w. r. t. the ela,stic axis must be known.

No attempt is made here to compute the section pitching moment

with control surfaces in neutra.l position.

D.4.l Twist due to Control Surface Deflection.

The effect of a control surface deflection is of introducing an

a.erodynamic a,s well as a structural twist.

The aerodynamic twist can be computed from the following expression

for the lift produced by control deflection [Ref. 25J.

(D-72)

where
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e = cos -1 (2 S - 1)a

C = control surface chord
f

151 control surface deflection in radians

Equation (D-71) applies for a 2-D lift curve slope of 2n. For a

2-D lift curve slope of rna ' this equation can be written as

substituting the value for 80 results in

iCL 16 = h I CU~ fco-. -l-(tS -lH_~_2-,,~(~ -_s~ 1J 16:

And dividing both sides by [ rna j

(D-73)

(D- 74)

(D- 75)

Structura.1 twist derives from the section pitching movement due to

control deflection. Once the spanwise bending moments and torsion

distributions are known, equation (D-71) can be used to compute the

section structural twist where M and T are replaced by the corre-

sponding ones due to controls, JYl and T
c c

In Figure D- 9 the symbols used are shown.
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Figure D-9 - Structural Moments due to Control.

Station pitching moment due to controls

M = q 2h C2 CcOi mOi

C

CmOi

M =
C.1.

T
c.1.

Local chord length

Local pitching moment coefficient

M sinAca.1.

M cosAca.1.

The station pitching moments can be computed similarly to what was done

in equations (D- 42) for the left wing, and (D-50) for the right wing.

For stations land n

2
M = q h Cl C

cOl mal

2McO q h Cl C
n man
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For stations 2 and n - 1

(D-78)

M
cO (n-1)

= q 2h [f C~n_1) C
mO(n-1)

(D-79)

and so forth.

And in general, for the left wing

- i-1

q 2h lL: C
2

C + -2
1 c: c ]

k=l k mOk ~ mOi
(D-70)

for the right wing

[

i+1 ]

(M 0) = q 2h L: ck
2

C + -2
1 c: c

c i R k=n mOk ~ mOi
(D-81)

Equations (D-80) and (D-81) are derived for the general case where

the control surface can be extended from tip to tip.

In matrix form, (D-80) and (D-81) become

(D-82)

where

(D-83)

1

1/2

1/2

1/2

1/2

1

1/2

1

1

. . .

I
I
I
I
I
I
I1 1 1 . . 1/2

~I~-----------------------------

I 1/2 1 1.... 1
I
I 1/2 1. 1
I
I
I
I
I
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If wind tunnel data are not available, theoretical expressions for

C
mO

in terms of the deflection 0 may be used.

From reference [25J

(D-84 )

substituting sinS
O

and sin260 = 2sinS
O

cosS O results in

(D-85 )

Therefore, the structural bending moment and torsion are

(D-86)

(D-87)

and the structural twist is

lex (= 2hA [sinA [EIJ 1M 1+ cosA [GJJ ITc !]
(gIll cos c

= -
(D-88)

The total twist due to control deflection is
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= [[\1-_-
C08 ~1~2S d) + ~ y?~1-,:- :~~ _ 8 q h 2 [ ·c1:s1 [EI]

+ cosA [GJ] ] [D I 1] [-"'tel -_stJ lc~J1i01

(D-89)

Equation (D-89) can be applied to both aileron and/or flap systems

with no requirements for symmetry or antisymmetry in their displacement

since, once (~}is specified, the deflection vector (6 lcan assume any

configuration.

D.4.2 Apparent Twist due to Rolling and Pitching Velocities.

When the wing is at a skew angle, the apparent twist is computed

similarly for both the rolling and pitching case, the only difference

being in the way the station arms are computed.

A plan view of the geometry of the quantity used in computing the

apparent twist is given in Figure D-10.

Consequently, the apparent twist is given by:

1) for rate of'ro11 p

2) for rate of pitch q



y

q

i
L~
I
i
I
t

i

i th Station

k--+------- YO

d

Quarter-Chord Locus
x

s

d sin

ORIGINAL
OF Poo PAGE IS

R QUALITY

x. = - Y tan1\. + f(y
i

) cos1\.
~ i

Yi = c + d cos1\. + x.p ~

C.
(Y3/4)i =

~

Yi 2

x d sin1\. + Y.
~

Figure D-IO - Planview of the Geometric Parameters Used in Computing

the Apparent Twist due to Angular Velocities.
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and in matrix form

D.S Unsymmetrica.l Flight Conditions.

Because of the oblique wing, whenever an unsymmetric spanwise lift

distribution occurs, the aircraft will experience accelerations about

its rolling as well as pitching axis.

A number of unsymmetrical flight conditions are usually investigated

in structural design; for the purpose of this study, such investigation

will be restricted to those which arise through the use of control

surfaces on the wing, such as ailerons.

The load distribution on an elastic wing associated with control

deflections may be thought of as the summs.tion of distributions from the

following specific loadings.

1) Symmetrical loading with controls in meutral position.

2) Incremental loading due to controls deflection.

3) Incremental loading associated with constant rolling and/or

pitching velocity with controls in neutral position.

4) Incremental loading caused by rolling and/or pitching angular

acceleration. This loading results from the structural twist

described under "Structural Twist" (class II b).

In a steady roll and/or pitch condition, the span load distribution

for the elastic wing is given by the first three loadings enumerated.

For this condition the lagl values vary linearly and antisymmetrically
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across the span from
b

- (p+q tanN 2V at the left (forward) tip, and

b
(p + q tanJ\) 2V at the other.

The wing being B.t a skew angle, any unsymmetry in the spanwise lift

distribution produces both pitching and rolling moments and, therefore,

it introduces angular accelerations about the corresponding axes. Such

a condition occurs when deflecting the desired wing control surface,

unless some corrective action is taken in compensating the pitching

moment by mean of the horizonta.l ta.il.

.
We shall now investigate this case which implies non-zero p and/or

.
q and divide it into three parts: initiation, steady state, and termi-

nation of the motion. The second part, the steady roll and/or pitch

condition, has already been discussed. The first and third ones differ

only for the initial condition: no angular velocities for the initiation

and a steady angular velocity for the termination. Therefore the analysis

is the same for both cases.

Let us therefore consider the initiation of the motion due to an

instantaneous deflection of the ailerons.

There will be contributions to the unsymmetric loading from all

of the four loadings enumerated above. The first three ones having

already been discussed, so only the loading due to the angular accelerations

needs to be analyzed. The result of the angular accelerations is a new

contribution to the structural twist due to inertia bending and torsional

moments. The resulting twist distribution will superimpose an unsymmetric

lift distribution on the already existing spanwise lift distribution.

Because of the linear theory assumption this structural twist contribution
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is independent from the othe~ ones and, therefore, can be analyzed

separately.

Figure D-ll shows the geometry of the wing section center of mass.

The acceleration acting on the i th center of mass is

and the corresponding loading

Similarly to what done in "Structures Fundamentals" it is now

(D-90)

(D-9l)

possible to determine the pitching and rolling moments distributions and

therefore the bending moment and torsion distributions.

For the left wing

(D-92)

(D-93)

and in general (for I < i ~ L where L Ii last sta.tion to the left of air-

cra,ft centerline)
i-I

M = 2: 2h ~ (k - i) (~p+ Yll\ (1)
Xi k=1

(D-94 )

i-I

M L: - mi[~i - (ek -~) + ei](~ P+Yll\ q)
Yi K=l
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Figure D-ll - Wing Section Center of Mass.
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For the right wing

h m - -
M = - - (x p + ym . q)

x 2 2 n n
n

.(D-96 )

(D-97)

and in general for (n > i ~ R) where R tt first station to the right of

aircraft centerline

H1

M = L 2h Ill. (k - 1) (~ P + vm. q) + 4!! m. (;Z. p + ym. q)
xi k=n 1< 1<. 1< 1. 1. 1.

i+l

M = L -~(6 Xki - (ek - e i ) + xmi)(xk P + ~q)
Yi k=n

and in matrix form

IMx \= \A 1 ( P + \A 2( q

1Myl = lB 11 P + )B21 it

where

(D-98)

(D-99)

(D-100)

IA 1 1
I \

IA 2'
I I

jB 1\
\B 2 1
I \

I)nlJ

= h[AJ[-mr..] \;Zj
\-1

= h[AJ [-m:r -J t ym \
- I-I= [B Jr mr J I x I

= [BJ[-mr ..] lyml
= mass matrix (diagonal).

(D-10l)

where [E J and [F J are reported in Ta,b1e D- IV •
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1 ... h

- 2" (Xm1 + 2" tan/\)
......

......
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~g
~S

·8 rz
~~
.0."
~>
t""'Q

~:
......

-......

o
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......
1 . h

- 2" (Xmi + 2" tanA)

......

1...... h
- 2" (Xm2 + 2" tan/\)

......

.......

.......
....... ......

- [&12 - (e1 -e2)+XlD1]

- [&u - (e1 -ei )+Xm1] - [&2i - (e2 -ei )+XID2]

..................................................

[E] =

- [&lL - (e1 - eL) +Xm1] .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. ..
.......
1 ...... h

•• - 2" (XmL +"2 ~n/\)
......

1:-:1
CJ.:I
"";1

1: (- - h
-.2 X~ - 2" tanA) .-- . . . . . . . . ." . . .. - [&nR - (en - eR) + Xn\t]

-
[F] =

o
- ~... _......... - .. " ...- -

- 1 (Xm _ II tanA)- 2" 'n 2 _

TABLE D - IV



Since

1M. I
1-01 = I M I cosA + I M I sinA

I xl I yl

it is now possible to compute la I
. gulp

from equa,tion CD-7l) •

The solution of the following equation will give the lift distribu-

tion arising from the twist contribution due to p and 4

CD-103)

It is now possible to compute the aerodynamic pitching a.nd rolling

moment due to p and q by integrating over the entire span the lift

force times the corresponding moment arm.

M = h Ll 2 2 2 lJ L-x. J !1, I... I Ijx.
J

CD-104)

M = h L1 2 2 lJ [--y- .J \1, I
Yj

... I (j

where j = p 4

By a.ssuming now that p and q are small quantities, it is

possible to linearize even the p a.nd 4 contributions to aerodyna.mic

pitching and rolling moments

OM OM
M =L x .... xl.

x = op I:' + oq 'i

oM oM
M = M = -.:t.. p' + -.:t.. q'

Y oJ? 04
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where

and

MoM x.
x '" ----l

oj - j

M

~~~
oj J

j = p q
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