225 research outputs found

    Disorder and Electronic Transport in Graphene

    Full text link
    In this review, we provide an account of the recent progress in understanding electronic transport in disordered graphene systems. Starting from a theoretical description that emphasizes the role played by band structure properties and lattice symmetries, we describe the nature of disorder in these systems and its relation to transport properties. While the focus is primarily on theoretical and conceptual aspects, connections to experiments are also included. Issues such as short versus long-range disorder, localization (strong and weak), the carrier density dependence of the conductivity, and conductance fluctuations are considered and some open problems are pointed out.Comment: 18 pages, 5 figures, Topical Revie

    Graphene n-p junction in a strong magnetic field: a semiclassical study

    Full text link
    We provide a semiclassical description of the electronic transport through graphene n-p junctions in the quantum Hall regime. A semiclassical approximation for the conductance is derived in terms of the various snake-like trajectories at the interface of the junction. For a symmetric (ambipolar) configuration, the general result can be recovered by means of a simple scattering approach, providing a very transparent qualitative description of the problem under study. Consequences of our findings for the understanding of recent experiments are discussed.Comment: 10 pages, 2 figure

    The recursive Green's function method for graphene

    Full text link
    We describe how to apply the recursive Green's function method to the computation of electronic transport properties of graphene sheets and nanoribbons in the linear response regime. This method allows for an amenable inclusion of several disorder mechanisms at the microscopic level, as well as inhomogeneous gating, finite temperature, and, to some extend, dephasing. We present algorithms for computing the conductance, density of states, and current densities for armchair and zigzag atomic edge alignments. Several numerical results are presented to illustrate the usefulness of the method.Comment: 26 pages, 15 figures; submitted to Journal of Computational Electronics (special issue on graphene

    Semiclassical magnetotransport in graphene n-p junctions

    Full text link
    We provide a semiclassical description of the electronic transport through graphene n-p junctions in the quantum Hall regime. This framework is known to experimentally exhibit conductance plateaus whose origin is still not fully understood. In the magnetic regime (E < vF B), we show the conductance of excited states is essentially zero, while that of the ground state depends on the boundary conditions considered at the edge of the sample. In the electric regime (E > vF B), for a step-like electrostatic potential (abrupt on the scale of the magnetic length), we derive a semiclassical approximation for the conductance in terms of the various snake-like trajectories at the interface of the junction. For a symmetric configuration, the general result can be recovered using a simple scattering approach, providing a transparent analysis of the problem under study. We thoroughly discuss the semiclassical predicted behavior for the conductance and conclude that any approach using fully phase-coherent electrons will hardly account for the experimentally observed plateaus.Comment: 22 pages, 19 figure

    Temperature Dependence of the Optical Response of Small Sodium Clusters

    Full text link
    We present an analysis of the temperature dependence of the optical response of small sodium clusters in a temperature range bracketing the melting phase transition. When the temperature increases, the mean excitation energy undergoes a red shift and the plasmon is significantly broadened, in agreement with recent experimental data. We show that the single--particle levels acquire a prominent width and the HOMO--LUMO gap as well as the width of the occupied band are reduced due to large thermal cluster size and shape fluctuations. This results in a sharp increase of the static polarizability with temperature.Comment: 9 pages, Revtex, 3 uuencoded postscript figure
    • …
    corecore