research

Effects of asymmetry on the dynamic stability of aircraft

Abstract

The oblique wing concept for transonic aircraft was proposed to reduce drag. The dynamic stability of the aircraft was investigated by analytically determining the stability derivatives at angles of skew ranging from 0 and 45 deg and using these stability derivatives in a linear analysis of the coupled aircraft behavior. The stability derivatives were obtained using a lifting line aerodynamic theory and found to give reasonable agreement with derivatives developed in a previous study for the same aircraft. In the dynamic analysis, no instability or large changes occurred in the root locations for skew angles varying from 0 to 45 deg with the exception of roll convergence. The damping in roll, however, decreased by an order of magnitude. Rolling was a prominent feature of all the oscillatory mode shapes at high skew angles

    Similar works