50 research outputs found

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    Peak Detection and HRV Feature Evaluation on ECG and PPG Signals

    Get PDF
    Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Heart Rate Variability (HRV) evaluates the autonomic nervous system regulation and can be used as a monitoring tool in conditions such as cardiovascular diseases, neuropathies and sleep staging. It can be extracted from the electrocardiogram (ECG) and the photoplethysmogram (PPG) signals. Typically, the HRV is obtained from the ECG processing. Being the PPG sensor widely used in clinical setups for physiological parameters monitoring such as blood oxygenation and ventilatory rate, the question arises regarding the PPG adequacy for HRV extraction. There is not a consensus regarding the PPG being able to replace the ECG in the HRV estimation. This work aims to be a contribution to this research area by comparing the HRV estimation obtained from simultaneously acquired ECG and PPG signals from forty subjects. A peak detection method is herein introduced based on the Hilbert transform: Hilbert Double Envelope Method (HDEM). Two other peak detector methods were also evaluated: Pan-Tompkins and Wavelet-based. HRV parameters for time, frequency and the non-linear domain were calculated for each algorithm and the Pearson correlation, T-test and RMSE were evaluated. The HDEM algorithm showed the best overall results with a sensitivity of 99.07% and 99.45% for the ECG and the PPG signals, respectively. For this algorithm, a high correlation and no significant differences were found between HRV features and the gold standard, for the ECG and PPG signals. The results show that the PPG is a suitable alternative to the ECG for HRV feature extraction.publishersversionpublishe

    Evaluation of Data Processing and Artifact Removal Approaches Used for Physiological Signals Captured Using Wearable Sensing Devices during Construction Tasks

    Get PDF
    Wearable sensing devices (WSDs) have enormous promise for monitoring construction worker safety. They can track workers and send safety-related information in real time, allowing for more effective and preventative decision making. WSDs are particularly useful on construction sites since they can track workers’ health, safety, and activity levels, among other metrics that could help optimize their daily tasks. WSDs may also assist workers in recognizing health-related safety risks (such as physical fatigue) and taking appropriate action to mitigate them. The data produced by these WSDs, however, is highly noisy and contaminated with artifacts that could have been introduced by the surroundings, the experimental apparatus, or the subject’s physiological state. These artifacts are very strong and frequently found during field experiments. So, when there is a lot of artifacts, the signal quality drops. Recently, artifacts removal has been greatly enhanced by developments in signal processing, which has vastly enhanced the performance. Thus, the proposed review aimed to provide an in-depth analysis of the approaches currently used to analyze data and remove artifacts from physiological signals obtained via WSDs during construction-related tasks. First, this study provides an overview of the physiological signals that are likely to be recorded from construction workers to monitor their health and safety. Second, this review identifies the most prevalent artifacts that have the most detrimental effect on the utility of the signals. Third, a comprehensive review of existing artifact-removal approaches were presented. Fourth, each identified artifact detection and removal approach was analyzed for its strengths and weaknesses. Finally, in conclusion, this review provides a few suggestions for future research for improving the quality of captured physiological signals for monitoring the health and safety of construction workers using artifact removal approaches

    Photonic Biosensors: Detection, Analysis and Medical Diagnostics

    Get PDF
    The role of nanotechnologies in personalized medicine is rising remarkably in the last decade because of the ability of these new sensing systems to diagnose diseases from early stages and the availability of continuous screenings to characterize the efficiency of drugs and therapies for each single patient. Recent technological advancements are allowing the development of biosensors in low-cost and user-friendly platforms, thereby overcoming the last obstacle for these systems, represented by limiting costs and low yield, until now. In this context, photonic biosensors represent one of the main emerging sensing modalities because of their ability to combine high sensitivity and selectivity together with real-time operation, integrability, and compatibility with microfluidics and electric circuitry for the readout, which is fundamental for the realization of lab-on-chip systems. This book, “Photonic Biosensors: Detection, Analysis and Medical Diagnostics”, has been published thanks to the contributions of the authors and collects research articles, the content of which is expected to assume an important role in the outbreak of biosensors in the biomedical field, considering the variety of the topics that it covers, from the improvement of sensors’ performance to new, emerging applications and strategies for on-chip integrability, aiming at providing a general overview for readers on the current advancements in the biosensing field

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    Modular Processing System for Biological Signals

    Get PDF
    Biologický signál je signálem velmi křehkým, proto jsou stále hledány nové a zlepšovány již objevené metody jeho zpracování. Diplomová práce se tímto zpracováním biologických signálů zabývá, klasifikuje jejich způsoby měření, problematiku rušení a metody zpracování, kdy vychází z poznatků současné literatury. Náplní práce je návrh softwaru pro zpracování nejčastěji využívaných biologických signálů v diagnostice (EKG, EEG, EMG, PPG, FKG) a jeho implementace v Matlabu. Sofware je vytvořen s cílem pojmout co největší oblast zpracování biologických signálů tak, aby bylo možné provést základní úpravy, popř. analýzu jakéhokoli jednorozměrného biologického signálu.A biological signal is a weak signal, so it is necessary to find new or improve methods of its processing. The diploma thesis deals with the processing of biological signals and classifies the ways of their measurement, problems of their interference and methods of processing, based on the contemporary literature. The content of the paper is the design of software for processing the most commonly used biological signals in diagnostics (ECG, EEG, EMG, PPG, PCG) and its implementation in Matlab. The software is designed to ensure the greatest possible area of the biological signal processing so that basic modifications or analysis of any one-dimensional biological signal can be made.450 - Katedra kybernetiky a biomedicínského inženýrstvívýborn

    Characterization and interpretation of cardiovascular and cardiorespiratory dynamics in cardiomyopathy patients

    Get PDF
    Aplicat embargament des de la data de defensa fins el dia 20/5/2022The main objective of this thesis was to study the variability of the cardiac, respiratory and vascular systems through electrocardiographic (ECG), respiratory flow (FLW) and blood pressure (BP) signals, in patients with idiopathic (IDC), dilated (DCM), or ischemic (ICM) disease. The aim of this work was to introduce new indices that could contribute to characterizing these diseases. With these new indices, we propose methods to classify cardiomyopathy patients (CMP) according to their cardiovascular risk or etiology. In addition, a new tool was proposed to reconstruct artifacts in biomedical signals. From the ECG, BP and FLW signals, different data series were extracted: beat to beat intervals (BBI - ECG), systolic and diastolic blood pressure (SBP and DBP - BP), and breathing duration (TT - FLW). -Firstly, we propose a novel artifact reconstruction method applied to biomedical signals. The reconstruction process makes use of information from neighboring events while maintaining the dynamics of the original signal. The method is based on detecting the cycles and artifacts, identifying the number of cycles to reconstruct, and predicting the cycles used to replace the artifact segments. The reconstruction results showed that most of the artifacts were correctly detected, and physiological cycles were incorrectly detected as artifacts in fewer than 1% of the cases. The second part is related to the cardiac death risk stratification of patients based on their left ventricular ejection (LVEF), using the Poincaré plot analysis, and classified as low (LVEF > 35%) or high (LVEF = 35%) risk. The BBI, SBP, and IT series of 46 CMP patients were applied. The linear discriminant analysis and support vector machines (SVM) classification methods were used. When comparing low risk vs high risk, an accuracy of 98 12% was obtained. Our results suggest that a dysfunction in the vagal activity could prevent the body from correctly maintaining circulatory homeostasis Next, we studied cardio-vascular couplings based on heart rate (HRV) and blood pressure (BPV) variability analyses in order to introduce new indices for noninvasive risk stratification in IDC patients. The ECG and BP signals of 91 IDC patients, and 49 healthy subjects were used. The patients were stratified by their sudden cardiac death risk as: high risk (IDCHR), when after two years the subject either died or suffered complications, or low risk (IDCLR) otherwise. Several indices were extracted from the BBI and SBP, and analyzed using the segmented Poincaré plot analysis, the high-resolution joint symbolic dynamics, and the normalized short time partial directed coherence methods. SVM models were built to classify these patients based on their sudden cardiac death risk. The SVM IDCLR vs IDCHR model achieved 98 9% accuracy with an area under the curve (AUC) of 0.96. Our results suggest that IDCHR patients have decreased HRV and increased BPV compared to both the IDCLR patients and the control subjects, suggesting a decrease in their vagal activity and the compensation of sympathetic activity. Lastly, we analyzed the cardiorespiratory interaction associated with the systems related to ICM and DCM disease. We propose an analysis based on vascular activity as the input and output of the baroreflex response. The aim was to analyze the suitability of cardiorespiratory and vascular interactions for the classification of ICM and DCM patients. We studied 41 CMP patients and 39 healthy subjects. Three new sub-spaces were defined: 'up' for increasing values, 'down' for decreasing values, and 'no change' otherwise, and a three-dimensional representation was created for each sub-space that was characterized statistically and morphologically. The resulting indices were used to classify the patients by their etiology through SVM models achieving 92.7% accuracy for ICM vs DCM patients comparison. The results reflected a more pronounced deterioration of the autonomous regulation in DCM patients.El objetivo de esta tesis fue estudiar la variabilidad de los sistemas cardíaco, respiratorio y vascular a través de señales electrocardiográficas (ECG), de flujo respiratorio (FLW) y de presión arterial (BP), en pacientes con cardiopatía idiopática (IDC). dilatada (DCM) o isquémica (ICM). El objetivo de este trabajo fue introducir nuevos indices que contribuyan a caracterizar estas enfermedades. Proponemos métodos para clasificar pacientes con cardiomiopatía (CMP) de acuerdo con su riesgo cardiovascular o etiología. Además, se propuso una nueva herramienta para reconstruir artefactos en señales biomédicas. De las señales de ECG, BP y FLW, se extrajeron diferentes series temporales: intervalos latido-a-latido (BBI - ECG), presión arterial sistólica y diastólica (SBP y DBP - BP) y la duración de la respiración (TT - FLW). En primer lugar, proponemos un método de reconstrucción de artefactos aplicado a señales biomédicas. El proceso de reconstrucción usa la información de eventos vecinos manteniendo la dinámica de la señal. El método se basa en detectar ciclos y artefactos, en identificar el número de ciclos a reconstruir y en predecir los ciclos utilizados para reemplazar los artefactos. La mayoría de los artefactos probados fueron detectados y reconstruidos correctamente y los ciclos fisiológicos fueron detectados incorrectamente como artefactos en menos del 1% de los casos, La segunda parte está relacionada con la estratificación de riesgo de muerte cardiovascular en función de la fracción de eyección ventricular izquierda (FEVI), mediante el análisis de Poincaré, en bajo (FEVI > 35%) y alto riesgo (FEVI 5 35%). Se utilizaron las series BBI, SBP y TT de 46 pacientes con CMP. Se utilizaron para la clasificación el análisis discriminante lineal y las máquinas de soporte vectorial (SVM). Al comparar los pacientes de bajo y alto riesgo, se obtuvo una exactitud del 98%. Los resultados sugieren la disfunción de la actividad vagal en pacientes de alto riesgo. A continuación, estudiamos los acoplamientos cardiovasculares basados en el análisis de la variabilidad de la frecuencia cardiaca (HRV) y la presión arterial (BPV) para introducir nuevos índices de estratificación de riesgo en pacientes con IDC. Se utilizaron las señales de ECG y BP de 91 pacientes con IDC y 49 sujetos sanos. Los pacientes fueron estratificados por su riesgo cardíaco como: alto riesgo (IDCHR), cuando después de dos años el sujeto murió, o bajo riesgo (IDCLR) en otro caso. Se extrajeron indices utilizando el análisis de Poincaré segmentado, la dinámica simbólica articulada de alta resolución y la coherencia parcial dirigida a corto plazo normalizada. Se construyeron modelos SVM para clasificar a estos pacientes en función de su riesgo cardiovascular. El modelo IDCLR vs IDCHR logró una exactitud del 98% con un área bajo la curva de 0.96. Los resultados sugieren que los pacientes IDCHR tienen sus HRV y BPV disminuidos en comparación con los pacientes IDCLR, lo que sugiere una disminución en su actividad vagal y la compensación de la actividad simpática. Finalmente, analizamos la interacción cardiorrespiratoria asociada con los sistemas relacionados con ICM y DCM. Proponemos un análisis basado en la actividad vascular como entrada y salida de la respuesta baroreflectora. El objetivo fue analizar la capacidad de las interacciones cardiorrespiratorias y vasculares para la clasificación de pacientes con ICM y DCM. Estudiamos 41 pacientes con CMP y 39 sujetos sanos. Se definieron tres sub-espacios: 'up' para valores crecientes, 'down' para los decrecientes, y 'no-change' en otro caso, y se creó una representación tridimensional que se caracterizó estadística y morfológicamente. Los indices resultantes se usaron para clasificar a los pacientes por su etiología con modelos SVM que lograron una exactitud de 92% cuando los pacientes ICM y DCM fueron comparados. Los resultados reflejaron un deterioro más pronunciado de la regulación autónoma en pacientes con DCM.Postprint (published version

    XXII International Conference on Mechanics in Medicine and Biology - Abstracts Book

    Get PDF
    This book contain the abstracts presented the XXII ICMMB, held in Bologna in September 2022. The abstracts are divided following the sessions scheduled during the conference
    corecore